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The role of endothelial cells in autoimmune rheumatic 
disease 
Medha Kanitkar and Christopher P Denton   

Vasculopathy is a generic feature of autoimmune rheumatic 
disease and there is substantial evidence that endothelial cell 
dysfunction has a role in pathogenesis and clinical 
manifestations of this challenging group of diseases. 
Endothelial cells (EC) are a target for injury and through their 
essential functional role in vascular homoeostasis, this has 
significant impact. In addition, the emerging recognition that EC 
are important regulators of other cell types and can differentiate 
into other relevant cell types has direct relevance. These 
aspects are reviewed with a focus on recent published evidence 
regarding the importance of EC in development, 
progression and treatment of autoimmune rheumatic disease. 
The potential role of the adaptive and innate immune system in 
causing endothelial cell damage, including anti-endothelial cell 
autoantibodies, will be reviewed. Recent advances in 
understanding how EC may differentiate into mesenchymal 
lineages and the interplay between physiological roles in 
healing or tissue repair and dysfunctional responses in acquired 
connective tissue disease will be reviewed. 
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Introduction 
Endothelial cells (EC) are central to the pathobiology of 
maintaining vessel and tissue haemostasis. Systemic auto
immune rheumatic diseases, in particular the connective 
tissue diseases, have aberrant pathways in the function of 
EC, leading to inflammation, fibrosis and vasculopathy. In 
this review, we consider the importance of endothelial cell 

dysfunction in the autoimmune rheumatic diseases — in 
particular, systemic sclerosis (SSc), systemic lupus er
ythematosus (SLE), antiphospholipid syndrome (APLS) 
and vasculitis. We describe the interaction of EC with 
other key cell types and molecular mechanisms con
tributing to immune dysregulation. We also explore the 
recent literature and translational research data looking at 
potential therapeutic targets and pharmacological treat
ments that aim to modify the dysregulated state of en
dothelial function in disease. 

Endothelial cell dysfunction in autoimmune 
rheumatic disease pathobiology and 
pathogenesis 
There are many ways in which EC dysfunction is im
portant in autoimmune disease pathogenesis. This in
cludes the role of EC regulating vascular tone and in 
inflammation as gatekeepers of the quality and quantity of 
leucocyte trafficking during immune regulation. The en
dothelium is a semipermeable single-cell layer lining the 
vasculature and lymphatic system. ECs act as a physical 
barrier and first line of defence from pathogens [1]. 

A generic feature of many autoimmune rheumatic dis
eases is tissue inflammation and immune activation. 
Initially, neutrophils and monocytes enter tissue from 
the bloodstream. Activated macrophages and par
enchymal cells produce pro-inflammatory cytokines and 
chemokines. TNF-alpha and IL-1 are potent cytokines 
activating ECs resulting in a dysfunctional endothelium. 
Downstream signalling cascades then activate secretion 
of GM-CSF, IL-1, IL-6 and monocyte chemoattractant 
protein [2]. ECs lining the blood vessels are activated 
producing cell adhesion molecules (ICAM-1, VCAM- 
1 and E-selectin) that attract circulating leucocytes to 
sites of inflammation (i.e. skin, kidney, joint, etc.), which 
is also an important aspect in the development of 
atherosclerosis and plaque growth [3]. 

Another pathogenic mechanism is that of the dysregu
lated humoral immune response. Herein, EC dysfunc
tion produces antibodies that form immune complexes 
(ICs) with autoantigens such as microparticles and 
apoptotic bodies. This occurs in both the micro- and 
macrovasculature of SLE ECs. Therefore, MPs and MP- 
ICs could be a possible therapeutic target to avoid EC 
injury in SLE patients. [4] Vascular integrity is main
tained by endothelial progenitor cells (EPCs), a hetero
geneous population of cells. Once injury or an 
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environmental insult occurs, EPCs mobilise to replace 
damaged ECs. In the peripheral blood, EPCs are made 
up of endothelial cell-forming cells (ECFCs), which are 
the true endothelial cell precursors and myeloid angio
genic cells (MACs) act to sustain angiogenesis. Both 
ECFCs and MAC are downregulated in SLE causing 
vasculopathy [5]. 

There is also clear evidence that ECs have a role in 
regulation and may be a target of the adaptive immune 
system. There is emerging recognition of the central role 
of the IL-33/ST2 axis in autoimmune disease and ECs 
may have a central role in perturbation of this pathway. 
Thus, ECs are one of the key cell populations that ex
press IL-33, a pro-inflammatory nuclear factor that plays 
an important immunomodulatory role in both physiolo
gical and pathological inflammation [6]. It has been 
shown that under conditions of cellular injury or damage, 
IL-33 is released from ECs and various other cell types. 
The IL-33/ST2 axis stimulates several cells of in the 
innate immune system such as TNF-alpha, TLR4, 
CD80, CD40 and other chemokines [7]. As a target of 
the adaptive immune system, it has been shown over 
many years that antibodies targeting EC surface antigens 
occur in autoimmune rheumatic disease and may have a 
role in pathogenesis. 

Role of endothelial cell dysfunction in 
individual diseases 
Systemic sclerosis 
SSc is a heterogeneous condition with the major drivers 
of SSc morbidity and mortality being tissue fibrosis as 
well as both structural and functional vasculopathy re
sulting in renal crisis, pulmonary artery hypertension 
(PAH), Raynaud phenomenon and digital ulcers [8]. EC 
injury is a crucial triggering event for vascular remodel
ling [9]. ECs have a central pathogenic effector role. The 
early changes are characterised by microvascular 
changes, EC apoptosis [10] and immune system activa
tion [11]. 

Early EC injury causes vascular remodelling and anti- 
EC antibodies (AECAs) are effectors of EC activation/ 
damage. AECAs are one of the drivers of endothelial 
damage in SSc [12]. Earlier studies [13] have shown that 
antibodies directed against antigen targets such as 
ICAM-1 on the surface of EC tissue result in pro-in
flammatory activation. 

AECAs have a positive correlation with microvascular 
abnormalities. Antibodies targeting functional G-pro
tein-coupled receptors (GPCR) have been shown to 
have a both a physiological and pathological role across a 
range of autoimmune conditions [14,15]. These include 
chemokine GPCRs such as CXCR3 and CXCR4 that are 
overexpressed in SSc and correlate with worsening lung 

function [16]. ET-1 and AT1R antibodies (see Ther
apeutics section) target vascular GPCRs and are implicated 
in SSc vasculopathy. Endothelial PAR-1 antibodies 
cause downstream IL-6 activation and also offer an ex
citing therapeutic target [17]. 

The damage to ECs may precede the fibroblastic acti
vation responsible for the fibrotic phenotype of SSc. 
There is substantial evidence of epigenetic alteration of 
EC in SSc [6], including DNA methylation and histone 
changes. Epigenetic modifications in SSc may offer 
therapeutic targets, for example, DNA methyltransferase 
inhibitors: azacitidine and decitabine show anti-fibrotic 
effects [18]. This builds upon a body of evidence im
plicating epigenetic mechanisms in maintaining the al
tered phenotype of microvascular EC isolated from SSc 
skin [19,20]. 

There is evidence of endothelial-to-mesenchymal tran
sition (EndoMT) in dermal vessels of SSc murine 
models, leading to dysregulated ECs and their transfor
mation to profibrotic myofibroblasts [21]. This is sup
ported by several studies showing EndoMT in SSc 
tissues, including in the skin [21] and pulmonary circu
lation where it may have relevance to complications such 
as pulmonary arterial hypertension [22]. 

Systemic lupus erythematosus and antiphospholipid 
syndrome 
There is considerable evidence of the importance of 
EC dysfunction in other autoimmune rheumatic dis
eases that have considerable vasculo-centric clinical 
manifestations including vasculitis. Antibodies to β2- 
glycoprotein I (β2GP-I)/LDL have been implicated in 
SLE-associated vascular disease. The APLS is asso
ciated with thrombosis and recurrent fetal loss. β2GP- 
I under oxidative stress activates dendritic cells 
causing downstream T-cell activation and subsequent 
IFN gamma production. [23]. Anti-β2GPI antibodies 
also mediate EC activation [24]. In in vitro studies, 
modulation of downstream pathways includes activa
tion of p38 MAPK and NF-κB [25,26] resulting in 
reduced nitric oxide synthesis and increased expres
sion of tissue factor and cell adhesion molecules [27]. 
Production of type-1 interferons has been shown to 
mediate damage to ECs amongst other cell types, in 
the kidney in SLE [28]. SLE risk factors include 
high levels of cytokines (IL-6, VEGF), endothelial 
adhesion molecules, costimulatory molecules (CD40/ 
CD40L), CRP and fibrinogen. IC deposition [4] in 
organs where ultrafiltration processes occur, tissue 
injury and a pro-coagulant state all result in compro
mise to the endothelium and microvascular injury. 

As noted earlier, EPCs have been implicated in the 
pathogenesis of SLE [5]. A recent review has provided 
an overview of the role of EPCs in SLE and the 
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potential for immunomodulatory agents, including anti- 
CD20 on B cells (rituximab), anti-IFN-alpha (ani
frolumab) and anti-BAFF (belimumab) to restore EPC 
function [29]. 

Neutrophil extracellular traps (NETs) are protein 
scaffolds that contribute to host immune defences. 
Aberrant production or clearance of NETs and their 
release of autoantigens contribute to lupus pathogen
esis through loss of immune tolerance [30]. A recent 
study showed that NET-bound RNA is taken up by 
ECs and can induce exacerbated pro-inflammatory re
sponses in the endothelium in SLE [31]. ANCA and 
neutrophil activation are responsible for loss of EC 
integrity in granulomatosis with polyangiitis. Another 
recent study showed that the in vitro angiogenic ca
pacity of ECFCs is impaired when they are treated 
with sera from patients with anti-proteinase-3-positive 
vasculitis [32]. 

Role of anti-endothelial cell antibodies 
As described above, AECAs have been implicated in the 
pathogenesis of SSc. Evidence for their role in SLE and 
vasculitis, as for SSc, was provided over 20 years ago  
[33–36] with identification of putative EC self-antigen 
targets. More recently, two self-antigens from EC were 
identified in Takayasu arteritis [37]. The utility of these 
antibodies as potential biomarkers remains to be con
firmed, but the presence of AECAs suggests widespread 
EC activation and damage. 

Therapeutic targeting of endothelial cell in 
autoimmune rheumatic disease 
ET-1 as a target for treating Connective Tissue Disease- 
associated vasculopathy 
The endothelial cell-derived vasoconstrictor peptide 
ET-1 was first discovered in 1988 [38]. ETA and ETB 
are the two receptor subtypes [39] that are therapeutic 
targets in SSc-associated conditions — digital ulcers and 
PAH [40]. Stimulating antibodies for angiotensin 
(AT1R) and endothelin (ET1R) receptors are thought to 
be co-factors in the pathogenesis of SSc among other 
vasculopathies [41]. 

The RAPIDS-2 trial [45] found bosentan, a non-selective 
ETA/ETB receptor antagonist, showed a 30% reduction in 
the number of new digital ulcers in SSc patients. Rubens 
et al. [42] reported a 10-fold increase in ET-1 plasma con
centrations in patients with PAH, which corresponded to 
disease activity and severity. Ambrisentan, a selective ETA 
receptor antagonist, is licensed for use in PAH as studied in 
the ARIES-1 and ARIES-2 trials [43]. Similarly, the SER
APHIN trial showed significant mortality and morbidity 
benefit with macitentan, a potent dual ETA/ETB receptor 

antagonist [44]. Thus, ERAs have shown clinical efficacy in 
trials and are now approved therapies for PAH. 

Role for mammalian target of rapamycin inhibitor as 
therapeutic agent in vasculitis and systemic lupus 
erythematosus 
The mammalian target of rapamycin (mTOR) complex, 
a serine/threonine kinase known for its im
munosuppressive effects [46], modulates EC function. It 
also has downstream effects on Th1 and Th17 cell pro
liferation, Treg depletion, plasma cell differentiation, 
macrophage dysfunction and increased antibody and IC 
production. Pharmacological blockade of the mTOR 
pathway in pulmonary hypertension (Everolimus) tar
gets the vascular endothelium and smooth muscle cells  
[47]. In Takayasu’s arteritis, rapamycin significantly re
duced IgG-induced EC viability and proliferation [48], 
thus reducing vascular intimal hyperplasia. Similarly, in 
SLE [49] and APS [49,50], rapamycin indirectly targets 
ECs with effector modulation of T cells, plasma cells 
and ICs. Thus, the mTOR pathway is a promising target 
in reducing vascular proliferation associated with SLE. 

Several other EC-targeting therapeutics are being eval
uated in SLE. Existing therapeutics have shown fa
vourable outcomes in SLE. For example, 
hydroxychloroquine has an immunomodulator effect on 
ECs in animal models [51]. A recent trial showed that 
Ramipril improved endothelial function and increased 
the number of EPCs and VEGFs in the absence of 
cardiovascular risk factors [52]. In vitro and murine 
models have shown anti-type-I IFN alpha and anti- 
BAFF reverse the reduction of circulating EPC numbers 
and their function. [29]. B-cell-depleting therapies such 
as Rituximab showed a significant reduction in EC ac
tivation markers such as VEGF, ICAM-1 and IL8 [53]. 

IFN-β is upregulated in the ECs of skin in dermatomyo
sitis (DM). The increased amount of inactivated PPAR-γ  
[54], and adhesion molecules in EC versus healthy control 
skin in DM, is thought to increase the recruitment of in
flammatory cells via leucocyte–endothelial interaction. 
This is notable as previous studies [55,56] have found 
decreased PPAR-γ resulting in increased inflammatory cell 
recruitment. These novel findings in DM may offer new 
targets for potential therapies on the horizon, for ex
ample, PPAR-γ agonists such as Lenabasum. Like in SSc, 
the adhesion molecules expressed on ECs are important 
for the attraction of immune cells to sites of inflammation, 
for example, the skin, joints and kidneys. A recent meta- 
analysis and systematic review of dysregulated EC markers 
in SLE recently showed a positive, albeit weak correlation 
between these EC markers and disease activity in SLE  
[57] (Table 1). 
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Conclusion 
This review highlights the importance of EC dys
function in autoimmune rheumatic disease. It is clear 
that EC dysfunction is important for pathogenesis and 
relevant to understanding disease mechanisms that 
could be broadly relevant in autoimmune and vascular 
disease. In addition, ECs represent an important 
therapeutic target, implicated in the pharmacody
namic effects of current and emerging therapeutics 
and as a potential specific target in future to alleviate 
vascular manifestations and attenuate inflammation 
that leads to irreversible tissue damage and organ 
dysfunction. But there remain many outstanding gaps 
in knowledge. For example, the mechanisms and role 
of EPC and importance of endoMT, as well as the 
extent to which autoantibodies modulate EC function 
and whether ECs are an important target for auto
immune disease. Although the role of EPCs has been 
well-characterised in in vitro studies, challenges re
main in standardising methodologies in ECFC culture 
and flow cytometry techniques. Thus, our advancing 
understanding of the pathogenic mechanisms by 
which ECs can cause autoimmune and microvascular 
dysfunction paves the way for exciting new ther
apeutic targets and development of prognostic bio
markers in connective tissue diseases. 
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