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Abstract—In this paper, we study the interference exploitation
precoding in the presence of distortion from nonlinear power
amplifiers (PAs) in multi-user multiple-input single-output (MU-
MISO) downlink communication systems. We consider the mem-
oryless polynomial model of nonlinear PAs, which is incorporated
into the symbol-level precoding (SLP) design to allow the PA
nonlinearities in the constructive interference (CI) exploitation.
The optimization problem that aims to enhance the signal-to-
interference-plus-noise ratio (SINR) without investing additional
transmit signal power is formulated for both PSK and QAM
signaling. Since the original optimization problem is nonconvex,
we first introduce auxiliary variables to transform the optimiza-
tion problem and adopt the alternating optimization framework
for the new optimization problem. For non-convex subproblems,
additional auxiliary variables are introduced and several ap-
proximations are employed to transform the problem into a
semidefinite programming (SDP) form, where the semidefinite
relaxation (SDR) method is adopted to obtain feasible solutions.
In order to reduce the computational cost of the iterative
algorithm, we further propose a low-complexity algorithm for the
original PA-aware SLP optimization problem. Numerical results
verify the superiority of our proposed PA-aware SLP approach
in the presence of nonlinear PAs in the MU-MISO downlink in
terms of the error-rate performance over the state-of-the-art.

Index Terms—MIMO, symbol-level precoding, constructive
interference, nonlinear power amplifier, optimization.

I. INTRODUCTION

W ITH the rapid expansion of the application field of
wireless communication technology, the wireless com-

munication devices and wireless data services have grown
dramatically during the past decades. According to the global
mobile data traffic forecast by Cisco [1], the global mobile
data traffic will continue to grow at an annual rate of more
than 60% in the coming years. Therefore, the future mobile
communication technology needs to meet this rapid growth
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of mobile data traffic. Massive multiple-input multiple-output
(MIMO) technology can significantly improve the spectral
efficiency and the capacity of wireless communication systems
[2], which has attracted considerable attention in both the
academic research and the wireless industry in recent years.

For the ideal fully-digital massive MIMO architecture,
without considering the limited resolution of the digital-to-
analog converters (DACs) and the nonlinearity of the power
amplifiers (PAs), research has shown that a simple frame-level
linear precoding scheme can achieve transmission performance
close to Shannon’s theoretical limit [3]. However, downlink
transmission of MIMO systems requires the base station (BS)
to equip each transmit antenna element with a separate radio
frequency (RF) chain (including a pair of high-resolution
DACs, a linear PA, mixers, and so on). Since massive MIMO
system contains hundreds or thousands of antenna elements,
the fully-digital massive MIMO BS architecture presents high
hardware complexity and power consumption, which have a
significant impact on the performance and power efficiency of
the communication system [4]. Hence, fully-digital massive
MIMO may not be preferable in practical implementation,
and the study for reducing the power consumption of BS in
massive MIMO plays an important role for their widespread
deployment in cellular mobile communication systems.

To provide the trade-off between achievable spectral effi-
cieny and power consumption in massive MIMO architecture,
the hybrid analog/digital architecture, where the MIMO signal
processing is divided into analog and digital domains, can
reduce the number of required RF chains and attracted ex-
tensive attention from both academia and industry [5], [6]. In
addition to the hybrid architecture, employing low-resolution
DACs instead of high-resolution DACs in massive MIMO
architecture can effectively reduce the power consumption
of BS by reducing the power consumption per RF chain
instead of reducing the number of RF chains [7], [8]. However,
low-resolution DAC introduces severe signal distortion to
massive MIMO systems, which is difficult to compensate by
traditional precoding schemes and usually requires symbol-
level processing to achieve satisfactory performance [9]–[11].

Similar to the low-bit DAC architecture, employing power-
efficient nonlinear PAs in massive MIMO system can also
reduce the power consumption of each RF chain, thereby
improving the energy efficiency of massive MIMO commu-
nication systems. However, in the traditional multi-antenna
system, due to the limited linear region of nonlinear PAs,
the transmit signals with a high peak-to-average power ratio
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(PAPR) will introduce non-negligible signal distortions, which
has negative effects on the performance of the communication
system. A number of studies have been carried out on PAPR
problem, which can be divided into two directions: a) to
keep the signal power constant by designing the constant
envelope precoding (CEP) scheme [12]–[18], which can be
classified as SLP schemes; b) to reduce the PAPR of the
transmit signal by optimizing the frame-level precoding matrix
[19]–[24]. By limiting the amplitude of the transmit signal
to a constant value, the CEP can completely eliminate the
performance loss introduced by nonlinear PAs. To be more
specific, [12] first studied the CEP in single-user massive
communication system, while the optimal CEP scheme in the
single-user case is further given in [13]. Based on [12], the
joint design scheme of CEP and antenna selection in single-
user scene was considered in [14], which presented a new idea
to design the precoding scheme from a geometric perspective.
[15] extended the CEP to multiuser communication system
for the first time, where a nonlinear least squares precoding
optimization problem was constructed to minimize the multi-
user interference (MUI), followed by an efficient iterative
solution algorithm. [16] presented the optimization of CEP
based on the cross-entropy algorithm, which further improves
the performance of the scheme in [15].

In addition to the CEP, there exist other low-PAPR trans-
mission schemes which relax the strict CE constraint by
allowing the maximum PAPR to a certain value. For example,
a low-PAPR transmission scheme based on minimizing the
dynamic range of the transmit signals was presented in [19].
In [20], a zero forcing (ZF) scheme was proposed, which
reduced the PAPR by limiting the input power of each antenna.
Based on the nonlinear vector perturbation (VP) precoding
scheme, [21] proposed a method to optimize the transmit
signal norm, which achieved a compromise among transmis-
sion performance, PAPR and computational complexity. [22]
introduced the internal back-off scheme to limit the maximum
input power of the PAs such that they work in the linear
region. [23] proposed symbol-level precoding (SLP) for MU-
MISO systems with nonlinear PAs, which can minimize the
transmit power of each antenna or minimize the spatial PAPR
(SPAPR). By studying the relationship between the PAPR and
the bit-error-rate (BER) at users, [24] introduced PAPR as an
additional constraint into the optimization problem that aimed
for error-rate minimization, where a distributed solution was
proposed. Despite the above precoding schemes for nonlinear
PAs, few of them have taken the response characteristics of
the nonlinear PAs and their specific impact on the wireless
transmission signal into consideration.

Very recently, studies that utilize PA’s response character-
istics for the precoding design in the presence of nonlinear
PAs have appeared in the literature, rather than only reduc-
ing the PAPR of the transmit signal. [25] used a clipping
function to model the response characteristics of nonlinear
PAs, where the precoder was designed to resist the MUI and
the nonlinearities of PA. [26] suggested a distortion-aware
beamforming (DAB) algorithm for MU-MISO communication
system, where an iterative algorithm is proposed for rate
maximization. [27] investigated a PA-aware precoding scheme

in massive MU-MIMO downlink system, and developed an
efficient algorithm to reduce the MUI and PA nonlinearity. In
a single-user MISO communication system with nonlinear PAs
at BS, [28] developed a power control method and a precoding
scheme that maximized the received SINR, where an iterative
precoding algorithm was presented. [29] jointly optimized
the precoding and power allocation strategy to maximize the
achievable sum rate of MU-MIMO systems. [30] investigated
the effect of PA nonlinearity for the downlink MU-MIMO
orthogonal frequency division multiplexing (OFDM) system
in a correlated channel, and derived the analytical signal to
distortion, interference and noise ratio (SINDR).

Although some performance benefits can be observed in
[25]–[30] by considering the nonlinear PA characteristics,
these schemes view the MUI in the communication system
and the signal distortion introduced nonlinear PA as harmful
interference that need to be eliminated. Nevertheless, such
design criterion may be sub-optimal since it has been shown
that known interference can further benefit the system per-
formance, achieved by constructive interference (CI) and SLP
[31]. In [32], the interference in communication system was
categorized into constructive interference (CI) and destructive
interference (DI) from symbol level for the first time. Based
on this concept, [33] proposed a modified zero-forcing (ZF)
precoding, which only forces DI to be zero and exploits CI.
In [34], a correlation rotation scheme was further proposed,
in which it is shown that all interference can become CI
through manipulating and rotating DI. In order to relax the
strict phase rotation constraints in [34] and improve perfor-
mance, an SLP scheme based on CI convex optimization
was presented in [35] and [36], which also introduced the
concept of constructive region. However, optimization-based
CI precoding methods may be computationally inefficient
since the convex optimization problem needs to be solved
symbol by symbol. In [37], optimal and low-complexity solu-
tion for CI precoding based on SINR balancing optimization
was designed, where an iterative precoder was formed to
achieve a compromise between performance and complexity.
In addition, [38] further presented a general form for multi-
level modulation. Because of the performance benefits that
CI can offer, CI-based precoding design has been applied to
massive MIMO systems with limited hardware. For example,
[39] proposed several transmit beamforming schemes for the
massive MIMO downlink with 1-bit DACs based on CI, which
greatly improves the performance of low-resolution massive
MIMO system. [17] introduced a CI-based CEP method
for generic PSK modulations. Furthermore, a low-complexity
manifold algorithm for the CI-based CEP was presented in
[18].

In this paper, we investigate the potential of CI for the
precoder design in the presence of nonlinear PAs. By incor-
porating the response characteristics of the nonlinear PAs, we
study how interference exploitation SLP can help alleviate the
distortion brought from nonlinear PAs, and propose an iterative
algorithm based on alternating optimization and SDR to obtain
a near-optimal solution. A low-complexity algorithm is also
designed to address the performance-complexity tradeoffs.
Moreover, since power-efficient PAs are employed and their
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nonlinearity is already taken into account in the precoder
design, there is no need to consider the specific impact of
PAPR in our work. For the sake of clarity, we list this paper’s
contributions as follows:

1) We focus on the interference exploitation SLP design for
the downlink transmission of MU-MISO communication
systems. Specifically, we construct an SINR balancing
SLP optimization problem and introduces the response
characteristics of nonlinear PAs into the precoder design
as elements that can be exploited constructively.

2) For PSK modulation, the non-convex optimization prob-
lem is firstly transformed by introducing auxiliary vari-
ables, and subsequently the iterative algorithm based on
alternating optimization framework is presented for the
new optimization problem. For subproblems that are still
non-convex, additional auxiliary variables are introduced
and several approximations are employed to transform
the problem into the SDP form, where SDR is adopted
to obtain feasible solutions.

3) For QAM modulation, we show that the non-convex
problem has a similar solution framework as PSK mod-
ulation. The major difference between QAM modulation
and PSK modulation is the mathematical CI condition,
where for QAM modulation only the outer constellation
points can exploit CI while all the interference for the
inner constellation points are seen as destructive. Thanks
to the similar problem structure, the proposed iterative
algorithm can be extended to the PA-aware SLP design
with QAM modulation.

4) We further propose a low-complexity algorithm to
reduce the computational complexity for both PSK-
modulated and QAM-modulated PA-aware SLP. By sub-
stituting the higher-order terms in the PA polynomial
model with the initial CI precoded vector, a relaxed
version of the original non-convex optimization problem
is obtained, thus allowing a flexible iterative procedure.

Simulation results show that the proposed iterative algo-
rithm based on the alternating optimization framework con-
verges within a few iterations, which indicates that the iterative
algorithm can approximate the optimal solution to the original
problem. It is also observed that the proposed low-complexity
algorithm achieves promising performance-complexity trade-
offs in small-scale MU-MISO systems, and offers a near-
optimal performance in large-scale MU-MISO systems in
lower complexity. Moreover, it is shown that both of our
proposed interference exploitation precoding considering the
response characteristics of nonlinear PA are superior to tradi-
tional precoding schemes in terms of error-rate performance.

The remainder of this paper is organized as follows. In
Section II, the system model and nonlinear PA model are
introduced, and the conception of CI is reviewed. Section III
introduces the proposed PA-aware SLP formulation for PSK
and QAM modulation respectively, including mathematical CI
conditions and the original optimization problem formulation.
The iterative algorithm based on alternating optimization,
the problem-dependent Gaussian randomization and the low-
complexity algorithm are presented in Section IV. The com-
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Fig. 1. MU-MISO downlink with nonlinear PA communication system model

plexity analysis of the proposed iterative algorithm and the
low-complexity algorithm are both discussed in Section V.
Numerical results of the proposed algorithms are shown in
Section VI, and Section VII concludes the paper.
Notations: Lowercase, lowercase boldface and uppercase

boldface letters denote scalar, vectors and matrices, respec-
tively. (·)∗, (·)T , (·)H and tr{·} denote conjugate, transposi-
tion, conjugate transposition and trace of a matrix, respectively.
diag(·) is the transformation of a column vector into a
diagonal matrix. ⌈·⌉ represents the ceiling function. ai denotes
the i-th term of vector a. | · | denotes the absolute value of a
real number or the modulus of a complex number, and ∥ · ∥2
denotes the ℓ2-norm. Cn×n and Rn×n represent the sets of
n× n complex- and real-valued matrices, respectively. ℜ{·}
and ℑ{·} respectively denote the real and imaginary part of
a complex scalar, vector or matrix. ȷ denotes the imaginary
unit, IK denotes the K ×K identity matrix, and ei represents
the i-th column of the identity matrix. 0K represents the K-
dimensional zero vector.

II. SYSTEM MODEL AND CONSTRUCTIVE INTERFERENCE

A. System Model

We consider a downlink MU-MISO communication system
as shown in Fig. 1. The BS with Nt transmit antennas
communicates with K single-antenna users on the same time-
frequency resources simultaneously, where K ≤ Nt. We
assume that all the nonlinear PAs at the BS have the same
response characteristics, which is known to the BS.

We express the k-th user’s received signal as

yk = hT
kF(x) + nk, (1)

where, hk ∈ CNt×1 represents the flat-fading channel vector
between the BS and user k. Throughout the paper, perfect
CSI is assumed. F(·) : C → C represents the transfer
function of nonlinear PAs. x = W(s) ∈ CNt×1 is the
precoded signal, W(·) : C → C represents the precoder and
s = [s1, s2, . . . , sK ]

T ∈ CK×1 is the data symbol vector. nk

is the standard complex additive Gaussian noise at the k-th
user with zero mean and variance σ2.
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B. Nonlinear PA Model

In this paper, we adopt the memoryless polynomial model
to modeling the behavior of nonlinear PAs, which has long
been commonly used to approximate nonlinear PAs [26]–[30].
Specifically, the output signal of the nonlinear PAs can be
expressed as

F(x) =

P∑
p=1

βpdiag(|x|p−1)x,∀P ∈ Z+, (2)

where βp is the coefficient corresponding to the p-th order
component, |x| represents the modulus of x operated on the
element-wise. The first-order term (p = 1) describes the
linear relationship between the input and output signals, and
the other higher-order terms (p > 1) describe the nonlinear
relationship between input and output signals [40], [41]. The
advantages of the polynomial PA model are twofolds: a) the
response characteristics of arbitrarily memoryless PAs can be
approximated accurately by adjusting the modle parameters
βp [42]; b) the model is simple and mathematically tractable.
In addition, since it has been shown in [41] that the even-
order terms only contributes to the out-of-band distortion and
lead to spectrum regrowth, we omit the even-order terms
in the subsequent derivations. The transfer function of the
memoryless polynomial model can be simplified as

F̂(x) =

P̂∑
p=1

β2p−1diag(|x|2p−2)x,∀P̂ ∈ Z+, (3)

where P and P̂ satisfies P̂ = ⌈P/2⌉. By substituting (3) into
(1), yk can be further written as

yk = hT
k

P̂∑
p=1

β2p−1diag(|x|2p−2)x+ nk, (4)

C. Constructive Interference

Interference exists in the multi-antenna communication sys-
tem, which makes the received signal deviate from the nominal
constellation points in both amplitude and phase. Observing
the interference from the instantaneous point of view, [32]
shows that interference can be divided into two types: con-
structive interference (CI) and destructive interference (DI).
CI is the interference that push the noiseless received signal
away from all of their corresponding decision boundaries of
the modulated-symbol constellation, which thus contributes to
the useful signal power [31].

The CI condition for the strict phase rotation metric refers
to the case where the interference signals are strictly aligned
to data symbols of interest by controlling and rotating the
phases of the interference [34]. The concept of CI region
has been further introduced in [35], and it is the region in
the complex plane where the received signal falls when CI is
achieved. Based on this, [35] proposed the CI condition for
the non-strict phase rotation metric, under which the phase
of the interference signals may not be necessarily strictly
aligned to that of the data symbols of interest. It should be
noted that the non-strict phase rotation is a relaxed CI metric,
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Fig. 2. 8PSK, ‘non-strict phase rotation’, [28]

which gains further performance improvements, and the strict
phase rotation is suboptimal. In addition, both the strict phase
rotation and the non-strict phase rotation can only be applied
to PSK modulation, but not to QAM modulation. The reason
is that PSK modulation only modulates phase, whereas QAM
modulation modulates both amplitude and phase, so that only
the real or imaginary part of the outer constellation points can
exploit CI. Consequently, the CI metric of QAM modulation
has been discussed in [36], [43], where the symbol-scaling
metric is introduced.

III. PA-AWARE SLP FORMULATION

A. PSK Modulation

1) Non-Strict Phase-Rotation CI Metric: In Fig.2, the CI
condition for non-strict phase rotation metric is shown by
depicting the first quadrant of an 8PSK constellation as an ex-
ample. Without loss of generality, we use point S to represent
the nominal constellation point of the desired data symbol for
user k, then O⃗S = sk, and introduce O⃗P = t · sk to represent
the desired data symbol satisfying power constraint. Therefore,
t = |O⃗P |

|O⃗S|
is the distance between the detection thresholds and

the CI region, and a larger value of t leads to a better error-rate
performance. Let O⃗I represent the noiseless received signal
for user k, i.e., O⃗I = hT

k x , then P⃗ I = O⃗I − O⃗P is the
interference signal.

We introduce a complex auxiliary variable λk to represent
the scaling effect on both the amplitude and phase of the data
symbol after experiencing the wireless channel, i.e.,

O⃗I = hT
k x = λksk. (5)

The projection of λk in the direction of O⃗S is its real part,
i.e., O⃗Q = ℜ(λk), and the projection perpendicular to O⃗S is
its imaginary part, i.e., I⃗Q = ℑ(λk). In order for O⃗I to fall
into the ‘green’ CI region, we need

θ∠POI ≤ θth, (6)

where θth = π
M for M -PSK. (6) can be further expressed as

a function of λk as
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Fig. 3. 16QAM, ‘symbol-scaling’, [29]

[ℜ(λk)− t] tan θth ≥ |ℑ(λk)|,∀k ∈ K, (7)

where K = {1, 2, . . . ,K}. (7) is therefore the mathematical CI
condition for non-strict phase rotation to be used subsequently
for PSK modulation.

2) Problem Formulation: In this paper, we consider SLP
design based on CI for PA nonlinearity. Specifically, we focus
on the CI-based SINR balancing problem where we aim to
maximize the power scaling parameter t. Accordingly, we
construct the optimization problem of the SLP design for M -
PSK modulation as

P1 : max
x

t

s.t.

C1 : hT
k

 P̂∑
p=1

β2p−1diag(|x|2p−2)x

 = λksk,∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|,∀k ∈ K,

C3 :

∥∥∥∥∥∥
P̂∑

p=1

β2p−1diag(|x|2p−2)x

∥∥∥∥∥∥
2

2

≤ p0.

(8)
In P1, C1 and C2 jointly represent the CI condition for non-

strict phase rotation, C3 indicates that the maximum transmit
power does not exceed p0. The above optimization problem
P1 is non-convex and difficult to directly handle, owing to the
existence of high-order terms in the memoryless polynomial
PA model.

B. QAM modulation

1) Symbol-scaling CI Metric: Fig.3 depicts a quarter of
16QAM constellation as the example to characterize the CI
condition for the symbol-scaling metric. The constellation
points A, B, C and D respectively represent the four received
signal types in the first quadrant of the 16QAM constellation
and the green area indicates the CI region. With loss of
generality, denoting O⃗S = sk as a nominal constellation point

that is the intended data symbol for user k, we decompose the
O⃗S along the detection thresholds as

O⃗S = O⃗E + O⃗F ⇒ sk = sAk + sBk , (9)

where sAk = ℜ(sk) and sBk = ȷ · ℑ(sk) represent a set of
bases derived from the decomposition of the O⃗S along the
detection threshold direction. Following the similar approach
to (9), we decompose the noiseless received signal O⃗I in the
same direction to yield O⃗G and O⃗H , given by

O⃗I = hT
k x = O⃗G+ O⃗H. (10)

Based on which, we introduce a set of real auxiliary scalars,
αA
k and αB

k , to represent O⃗I with the bases sAk and sBk obtained
above as

O⃗I = αA
k s

A
k + αB

k s
B
k = ΩT

k sk, (11)

where Ωk and sk are given by

ΩT
k =

[
αA
k αB

k

]T
, sk =

[
sAk sBk

]T
. (12)

It is observed that the values of Ωk directly indicate the
effect of the CI. Since only the real or imaginary part of the
outer constellation points can exploit CI, then in Fig.3, the CI
region only includes the real part of constellation point type B,
the imaginary part of type C and the real and imaginary part
of type D. We refer to O⃗D = t ·sk as the user k’s desired data
symbol satisfying power constraint, where the power scaling
parameter t is the distance between the detection thresholds
and the CI region, then D⃗I = O⃗I − O⃗D can represent the
interference signal of user k. Similarly, O⃗D can be written in
the form of sk as

O⃗D = t · sk = t · (sAk + sBk ). (13)

Subsequently, for the purpose of forcing the noiseless re-
ceived signal O⃗I to fall into the CI region, the CI condition
for symbol-scaling metric to be used for QAM modulation can
be expressed as

t ≤ αO
l ,∀α

O
l ∈ O,

t = αI
m,∀αI

m ∈ I,
(14)

where set O includes the real scalars corresponding to the
real or imaginary part of the constellation points that can be
scaled, and set I includes the real scalars corresponding to the
real or imaginary part of the constellation points that cannot
be scaled. Accordingly, we obtain

card {O}+ card {I} = 2K,

O ∪ I =
{
αA
1 , α

B
1 , α

A
2 , α

B
2 , · · · , αA

K , αB
K

}
.

(15)

2) Problem Formulation: The optimization problem of PA-
aware SLP for QAM modulation that maximizes the CI
effect for the outer constellation points while maintaining
the performance for the inner constellation points, can be
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constructed as

P2 : max
x

t

s.t.

C1 : hT
k

 P̂∑
p=1

β2p−1diag(|x|2p−2)x

 = ΩT
k sk,∀k ∈ K,

C2 : t ≤ αO
l ,∀α

O
l ∈ O,

C3 : t = αI
m,∀αI

m ∈ I,

C4 :

∥∥∥∥∥∥
P̂∑

p=1

β2p−1diag(|x|2p−2)x

∥∥∥∥∥∥
2

2

≤ p0.

(16)
In P2, C1, C2, C3 represent the CI condition for QAM

modulation, and C4 indicates the available transmit power of
antennas. Due to the high-order terms in C1 and C4, P2 is
non-convex. It is observed that P2 and P1 are similar in terms
of problem formulation and all the optimization variables in
P2 are consistent with those in P1, and the only difference
between them is the CI condition, which is convex and thus
will not affect the subsequent problem transformation and
solution.

IV. PROPOSED SOLUTIONS

In order to obtain feasible and near-optimal solutions to
P1(P2), we propose an iterative algorithm which can obtain a
near-optimal solution of P1(P2), as well as a low-complexity
algorithm which can offer a performance-complexity tradeoff
in this section. We consider P1 as an example in the following
problem derivation.

A. The Iterative Algorithm via Alternating Optimization

We begin by introducing xp and performing the following
variable substitution for x in P1:{

x1 = x ∈ CNt×1,
|xp|2p−2 = |x|2p−2 ∈ CNt×1,∀p ∈ P, p>1,

(17)

where P = {1, 2, . . . , P̂}. Inserting (17) into P1 yields

P3 : max
xp

t

s.t.

C1 : hT
k

 P̂∑
p=1

β2p−1diag(|xp|2p−2)x1

 = λksk,∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|,∀k ∈ K,

C3 :

∥∥∥∥∥∥
P̂∑

p=1

β2p−1diag(|xp|2p−2)x1

∥∥∥∥∥∥
2

2

≤ p0,

C4 : x1 = x2 = . . . = xP̂ .
(18)

With the addition of C4, the solutions to P3 and P1 are
guaranteed to be equivalent, and the variables to be optimized
are changed from x to xp,∀p ∈ P.

The above optimization problem is still difficult to directly
solve. Therefore, we adopt the following iterative proce-
dure which sequentially updates each xp that corresponds to
|x|2p−2 from lower-order terms to higher-order terms, where in
each iteration, we optimize xp and maintain other xq, (q ̸= p)
fixed. We repeat this process until x1 ≈ x2 ≈ . . . ≈ xP̂ .

1) Optimization on x1: Given xp, p = 2, 3, . . . , P̂ , the
optimization for x1 can be expressed as

P4 : max
x1

t

s.t.

C1 : hT
k

 P̂∑
p=1

β2p−1diag(|xp|2p−2)x1

 = λksk,∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|,∀k ∈ K,

C3 :

∥∥∥∥∥∥
P̂∑

p=1

β2p−1diag(|xp|2p−2)x1

∥∥∥∥∥∥
2

2

≤ p0,

C4 : ∥x1 − xp∥22 ≤ ϵ1,∀p ∈ P, p ̸= 1,
(19)

where ϵ1 is a small nonnegative parameter which provides
a relaxed version of C4. With the above approximations, P4

becomes convex and can be solved efficiently with existing
convex optimization tools. By solving P4, we obtain the
optimal x∗

1, and update the x1 to the obtained x∗
1.

To sequentially update each xp, 1<p<P̂ , we additionally
introduce Qp′ =

∑
∀p∈P,p̸=p′ β2p−1diag(|xp|2p−2)x1 that is

irrelevant to the variable xp′ to be optimized.

2) Optimization on x2: We substitute x1 into P2. Conse-
quently, the optimization for x2 with fixed xp, p ̸= 2 can be
expressed as

P5 : max
x2

t

s.t.

C1 : hT
k

[
β3diag(|x2|2)x1 +Q2

]
= λksk,∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|,∀k ∈ K,

C3 :
∥∥β3diag(|x2|2)x1 +Q2

∥∥2
2
≤ p0,

C4 : ∥x2 − xp∥22 ≤ ϵ1,∀p ∈ P, p ̸= 2.

(20)

Based on the fact that diag(|x2|2)x1 = diag(x1)|x2|2, P5

can be further expressed as

P6 : max
x2

t

s.t.

C1 : hT
k

[
β3diag(x1)|x2|2 +Q2

]
= λksk,∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|,∀k ∈ K,

C3 :
∥∥β3diag(x1)|x2|2 +Q2

∥∥2
2
≤ p0,

C4 : ∥x2 − xp∥22 ≤ ϵ1,∀p ∈ P, p ̸= 2.

(21)

By introducing d1 = |x2|2 ∈ RNt×1, P6 can be transformed
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as

P7 : max
d1

t

s.t.

C1 : hT
k [β3diag(x1)d1 +Q2] = λksk,∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|,∀k ∈ K,

C3 : ∥β3diag(x1)d1 +Q2∥22 ≤ p0,

C4 :
∥∥d1 − |xp|2

∥∥2
2
≤ ϵ2,∀p ∈ P, p ̸= 2,

C5 : d1(i) ≥ 0, i = 1, 2, · · · , Nt,

(22)

where ϵ2 is another small nonnegative parameter, which leads
to the relaxed version of d1 = |x2|2 ≈ |xp|2,∀p ∈ P, p ̸= 2.
P7 is convex and belongs to the second-order cone pro-
gramming (SOCP) problem, which is equivalent to quadratic
programming quadratic constraints (QCQP) by squaring each
of the constraints [44]. By solving P7 we can obtain the
optimal d∗

1.

With the obtained d∗
1, we need to find a proper x2 that

satisfies d∗
1 = |x2|2 and is closest to xp,∀p ∈ P, p ̸= 2 as

much as possible. To proceed, we expand x2 ∈ CNt×1 into
its real form x̃2 ∈ R2Nt×1, given by

x̃2 =
[
ℜ(x2) ℑ(x2)

]T
, (23)

based on the above, we can express the i-th entry in x2 with
x̃2 as follows:

x2(i) = Aix̃2, i = 1, 2, · · · , Nt, (24)

where Ai is a selection matrix, given by

Ai =

[
eTi 0Nt

0Nt
eTi

]
∈ R2×2Nt , i = 1, 2, · · · , Nt. (25)

Subsequently, we can further express d1 as

d1 = |x2|2 =


|x2(1)|2
|x2(2)|2

...
|x2(Nt)|2

 =


x̃T
2 A

T
1 A1x̃2

x̃T
2 A

T
2 A2x̃2

...
x̃T
2 A

T
Nt

ANt
x̃2

 , (26)

by expanding each xp,∀p ∈ P, p ̸= 2 into its real form x̃p ∈
C2Nt×1,∀p ∈ P, p ̸= 2, and following a similar way, we can
construct a real-valued optimization problem P8 that aims to
find a x̃2 that is close to other x̃p, given by

P8 : min
x̃2

∑
∀p∈P,p̸=2

∥x̃p − x̃2∥22

s.t. x̃T
2 A

T
i Aix̃2 = d∗

1(i), i = 1, 2, · · · , Nt,

(27)

by observing that the matrices AT
i Ai, i = 1, 2, · · · , Nt are

all real symmetric and positive semi-definite, we propose to
reformulate the above problem into its SDP form and adopt
SDR to solve the above problem. To be more specific, we
introduce Ci = AT

i Ai ∈ S2Nt and transform the constraint

of P8 into

x̃T
2 A

T
i Aix̃2 = d∗

1(i), (28)

⇒Tr
{
x̃T
2 A

T
i Aix̃2

}
= d∗

1(i),

⇒Tr
{
AT

i Aix̃
T
2 x̃2

}
= d∗

1(i),

⇒Tr
{
Cix̃

T
2 x̃2

}
= d∗

1(i), i = 1, 2, · · · , Nt.

Accordingly, we can transform P8 into

P9 : min
x̃2,r

∑
∀p∈P,p̸=2

∥rx̃p − x̃2∥22

s.t.

C1 : r2 = 1

C2 : Tr
{
Cix̃

T
2 x̃2

}
= d∗

1(i), i = 1, 2, · · · , Nt,

(29)

if (x̃∗
2, r

∗) is an optimal solution to P9, then x̃∗
2 is an optimal

solution to P8 when r∗ = 1 and −x̃∗
2 is an optimal solution

when r∗ = −1 [36]. P9 can then be expressed as a separable
QCQP:

P10 : min
x̃2,r

∑
∀p∈P,p̸=2

[
x̃2

r

]T [
I2Nt

−xp

−xT
p ∥x̃p∥22

] [
x̃2

r

]
s.t.

C1 : r2 = 1,

C2 : Tr
{
Cix̃

T
2 x̃2

}
= d∗

1(i), i = 1, 2, · · · , Nt,

(30)

by introducing a column vector x̂2 ∈ R(2Nt+1)×1, matrices
X̂2 ∈ R(2Nt+1)×(2Nt+1) and Fp ∈ R2Nt×2Nt ,∀p ∈ P are
given below

x̂2 =

[
x̃2

r

]
, X̂2 = x̂2x̂

T
2 =

[
x̃2x̃

T
2 rx̃2

rx̃T
2 r2

]
,

Fp =

[
I2Nt

−x̃p

−x̃T
p ∥x̃p∥22

]
,∀p ∈ P

(31)

therefore, the objective function of P10 can be further ex-
pressed as ∑

∀p∈P,p̸=2

x̂T
2 Fpx̂2

=
∑

∀p∈P,p̸=2

Tr
{
x̂T
2 Fpx̂2

}
=

∑
∀p∈P,p̸=2

Tr
{
FpX̂2

}
,

(32)

it should be noted that X̂2 = x̂2x̂
T
2 is equivalent to x̂2 being a

rank-one symmetric positive semidefinite (PSD) matrix. Here,
we introduce

Di =

[
Ci 0
0 0

]
∈ R(2Nt+1)×(2Nt+1), i = 1, 2, · · · , Nt,

E =

[
0(2Nt+1)×(2Nt+1) 0

0 1

]
∈ R(2Nt+1)×(2Nt+1),

(33)
based on the above, we can obtain the constraints of P10, given
by

Tr
{
DiX̂2

}
= d∗

1(i),

T r
{
EX̂2

}
= 1, i = 1, 2, · · · , Nt.

(34)
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Therefore, we obtain the following equivalent formulation
of P9:

P11 : min
X̂2∈S(2Nt+1)

∑
∀p∈P,p̸=2

Tr
{
FpX̂2

}
s.t.

C1 : Tr
{
DiX̂2

}
= d∗

1(i), i = 1, 2, · · · , Nt,

C2 : Tr
{
EX̂2

}
= 1,

C3 : X̂2 ⪰ 0,

C4 : rank(X̂2) = 1.

(35)

subsequently, SDR can be used to produce an approximate
solution to P11 [45], where we relax the nonconvex rank-one
constraint C4 in P11, which leads to the SDR form of P11 as

P12 : min
X̂2∈S2Nt+1

∑
∀p∈P,p̸=2

Tr
{
FpX̂2

}
s.t.

C1 : Tr
{
DiX̂2

}
= d∗

1(i), i = 1, 2, · · · , Nt,

C2 : Tr
{
EX̂2

}
= 1,

C3 : X̂2 ⪰ 0.

(36)

Denoting X̂∗
2 as the optimal solution to P12 , we can obtain

a feasible solution x̃2 through the Gaussian randomization
method introduced in Section IV-B in the following. With the
obtained x̃2, x2 can be obtained as

x2 = U1x̃2, (37)

where U1 = [INt ; INt · j] ∈ R2Nt×Nt is a transformation
matrix that recovers its original complex form. For the opti-
mization on the higher-order terms, i.e., 2P̂ −1 > 3, we adopt
a solution similar to that of the above. In the following, we
discuss the optimization for xp̃ (p̃ > 2).

3) Optimization on xp̃: By updating each xp to the optimal
value of the latest iteration optimization, the optimization for
xp̃ can be expressed as

P13 : max
xp̃

t

s.t.

C1 : hT
k

[
β2p̃−1diag

[
|xp̃|2p̃−2

]
x1 +Qp̃

]
= λksk,∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|,∀k ∈ K,

C3 :
∥∥β2p̃−1diag

[
|xp̃|2p̃−2

]
x1 +Qp̃

∥∥2
2
≤ p0,

C4 : ∥xp̃ − xp∥22 ≤ ϵ1,∀p ∈ P, p ̸= p̃.
(38)

By referring to the fact that diag
[
|xp̃|2p̃−2

]
x1 =

diag(X1)|xp̃|2p̃−2, and introducing an auxiliary variable
dp̃−1 = |xp̃|2p̃−2 ∈ CNt×1, P13 can be further transformed
as

P14 : max
dp̃−1

t

s.t.

C1 : hT
k [β2p̃−1diag [x1]dp̃−1 +Qp̃] = λksk,∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|,∀k ∈ K,

C3 : ∥β2p̃−1diag [x1]dp̃−1 +Qp̃∥22 ≤ p0,

C4 :
∥∥dp̃−1 − |xp|2p̃−2

∥∥2
2
≤ ϵp̃,∀p ∈ P, p ̸= p̃,

C5 : dp̃−1(i) ≥ 0, i = 1, 2, · · · , Nt,
(39)

where ϵp̃ is a small nonnegative parameter to relax the con-
straint dp̃−1 = |xp̃|2p̃−2 ≈ |xp|2p−2,∀p ∈ P, p ̸= p̃. P14

becomes convex and belongs to the SOCP problem, and by
solving it we can obtain the optimal d∗

p̃−1.

With the obtained d∗
p̃−1, we need to find a proper xp̃ that

satisfies dp̃−1 = |xp̃|2p̃−2 and is closest to xp,∀p ∈ P, p ̸= p̃.
To proceed, we introduce a variable gp̃−2, given by

gp̃−2 = p̃−1

√
d∗
p̃−1, (40)

based on the above, we expand xp̃ to its real form x̃p̃, then
gp̃−2 can be further expressed as

gp̃−2 = |xp̃|2 =


x̃T
p̃ A

T
1 A1x̃p̃

x̃T
p̃ A

T
2 A2x̃p̃

...
x̃T
p̃ A

T
Nt

ANt
x̃p̃

 ∈ CNt×1, (41)

subsequently, we can construct a real-value optimization prob-
lem P15 that aims to find a x̃p̃ that is close to other x̃p, given
by

P15 : min
x̃p̃

∑
∀p∈P,p̸=p̃

∥x̃p − x̃p̃∥22

s.t.

x̃T
p̃ A

T
i Aix̃p̃ = gp̃−2(i), i = 1, 2, · · · , Nt,

(42)

similarly, we introduce the real equivalent of xp̃ and a new
variable X̂p̃, given by

x̂p̃ =

[
x̃p̃

r

]
, X̂p̃ = x̂p̃x̂

T
p̃ =

[
x̃p̃x̃

T
p̃ rx̃p̃

rx̃T
p̃ r2

]
, (43)

based on the expression for Fp in (31) and Di, E in (33), we
transform P15 into its SDP form as

P16 : min
x̂p̃∈S2Nt+1

∑
∀p∈P,p̸=p̃

Tr
{
FpX̂p̃

}
s.t.

C1 : Tr
{
DiX̂p̃

}
= gp̃−2(i), i = 1, 2, · · · , Nt,

C2 : Tr
{
EX̂p̃

}
= 1,

C3 : X̂p̃ ⪰ 0,

C4 : rank(X̂p̃) = 1,

(44)

by relaxing the rank-one constraint C4, we obtain the SDR
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form of P16, given by

P17 : min
X̂p̃∈S2Nt+1

∑
∀p∈P,p̸=p̃

Tr
{
FpX̂p̃

}
s.t.

C1 : Tr
{
DiX̂p̃

}
= gp̃−2(i), i = 1, 2, · · · , Nt,

C2 : Tr
{
EX̂p̃

}
= 1,

C3 : X̂p̃ ⪰ 0.

(45)

Denoting the optimal solution to P17 as X̂∗
p̃, the feasible

solution x̃p̃ can be obtained from X̂∗
p̃ through the Gaussian

randomization method introduced in Section IV-B in the
following. x̃p̃ can then be converted to xp̃ by

xp̃ = U1x̃p̃. (46)

By optimizing each xp sequentially until obtaining xP̂ , one
alternating optimization process is completed. Then, we need
to examine whether the results of this iteration satisfy the
convergence condition, given by

η ≤ γ, (47)

where γ is a small nonnegative value and η is the sum of
norms among optimization variables, given by

η =

P∑
p=1

P∑
p′=p

∥xp − xp′∥22 , (48)

subsequently, (47) provides a relaxed version of C4 in P3. If
(47) is valid, x1 is considered as the approximate optimal
solution of x, if (47) is invalid, we need to update each
xp,∀p ∈ P by substituting the results of the previous alternat-
ing optimization as the initial values of the new optimization,
and repeat the above process (19)-(45) until convergence.

Based on the above problem transformation and the alter-
nating optimization, we present the iterative algorithm for the
PSK-modulated PA-aware SLP, given in Algorithm 1, where
nIter represents the number of iterations. Algorithm 1 can
be extended to the QAM-modulated PA-aware SLP P2 by
replacing the CI condition for PSK modulation with that for
QAM modulation.

B. Gaussian Randomization

In this paper, we consider adopting Gaussian randomization
to obtain feasible solutions for P12 and P17, which share a
same problem form. Gaussian randomization is a effective
methods for extracting the solution of the original QCQP prob-
lem from solution of the SDR problem [45]. The procedure is
based on the typical random procedure provided in [45], and
include the problem-dependent design, which is shown below.

Takeing P17 as an example, we start by generating random
vector ξl ∼ N (0, X̂∗

p̃), l = 1, · · · , L, where L is the number
of randomizations. Since the obtained random vectors do not
satisfy the equality constraints of P17, we further construct

Algorithm 1 The proposed iterative PA-aware SLP algorithm
based on alternating optimization

Input: s,H, βp, p0, ϵp, γ, Itermax, P̂ ;
Output: x;
Initialize: xp, η, nIter = 0;
While η ≥ γ and nIter < Itermax do

Solve P4, Obtain x1;
Solve P7 Obtain d1;
Solve P12, Obtain X̂2;
Calculate x2;
While p′ ≤ P̂

Solve P14, Obtain dp′−1;
Calculate gp′−2 with (40);
Solve P17, Obtain X̂p′ ;
Calculate xp′ ;
Update p′ = p′ + 1;

Endwhile
Update nIter = nIter + 1;
Obtain η with (48);

Endwhile
Obtain x = x1.

the P17-feasible vectors as:

ξ̂l(i) =
ξ(i)√
(ξTDiξ)

· di, i = 1, 2, · · · , Nt, l = 1, · · · , L

ξ̂l(i+Nt) =
ξ(i+Nt)√
(ξTDiξ)

· di, i = 1, 2, · · · , Nt, l = 1, · · · , L

ξ̂l(2Nt + 1) = sign {ξ(2Nt + 1)} ,
(49)

Through the above modifications, ξ̂2l (i)+ ξ̂2l (i+Nt) = di and
ξ̂2l (2Nt+1) = 1 can be obtained, and the modified vector used
for approximation satisfies the equality constraints. Based on
the above, we choose the modified vector that yields the best
objective as x̂∗

p̃ through

x̂∗
p̃ = arg min

l=1,··· ,L

∑
∀p∈P,P ̸=p̃

ξ̂TFpξ̂, (50)

x̃∗
p̃ can then be determined by x̂∗

p̃ can be determine by

x̃∗
p̃ = x̂∗

p̃(2Nt + 1) ·U2x̂
∗
p̃ (51)

where U2 = [I2Nt
,O2Nt

] is a selection matrix.

C. The Low-Complexity Algorithm

While the above iterative algorithm can obtain a near-
optimal solution of P1(P2), the corresponding computational
complexity would be high as the alternating optimization
framework decomposes P1(P2) into (2P̂ − 1)nIter subprob-
lems. Therefore in this subsection, we further propose a low-
complexity algorithm, where we consider only optimizing the
lower-order terms xl,∀l ∈ P, l ≤ N(N<P̂ ) by substituting
a fixed vector for the higher-order terms xh,∀h ∈ P, h>N ,
instead of optimizing xp, p ∈ P sequentially. The precoded
signal of the SLP based on CI [37], [38] is adopted for the
fixed vector.
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By substitute the higher-order terms xh,∀h ∈ P, h>N
with the precoded signal vector xSLP−CI in P3, we obtain a
relaxed version of P3, which can be written as (52), where N
represents the number of xl,∀l ∈ P, l ≤ N to be optimized.

P18 : max
xl

t

s.t.

C1 : hT
k

[
N∑
l=1

β2l−1diag(|xl|2l−2)+

P̂∑
h=N+1

β2h−1diag(|xSLP−CI |2h−2)

x1 = λksk,∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|,∀k ∈ K,

C3 :

∥∥∥∥∥
[

N∑
l=1

β2l−1diag(|xl|2l−2)+

P̂∑
h=N+1

β2h−1diag(|xSLP−CI |2h−2

x1

∥∥∥∥∥∥
2

2

≤ p0,

C4 : x1 = x2 = . . . = xN .
(52)

It can be observed that compared with P3 , P18 omits some
high-order terms that are difficult to handle. When N = 1,
P18 is simplified to a SOCP problem, which can be directly
solved by using standard convex optimization tools or the
IPM without iteration, and when 1<N<P̂ , P18 is nonconvex,
but it can obtain the near optimal solution using the iterative
algorithm provided in the previous subsection by substituting
P̂ with N . The low-complexity algorithm can also be extended
to the QAM-modulated PA-aware SLP by replacing the CI
condition for PSK modulation with that for QAM modulation.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of
the proposed iterative algorithm. Since both algorithms are
based on optimization, the computational cost is evaluated
based on the worst case complexity via the IPM [45], [46].

Without loss of generality, we focus on the iterative al-
gorithm for PSK modulation, while it is very simple to
extend to QAM modulation, since they have similar problem
formulation.

For the optimization-based iterative algorithm, the complex-
ity is dominated by solving the convex optimization problem
P4, P7 and P14 via the IPM. For P4 and P14, which belong to
the SOCP problem, they have the same problem formulation.
Here, we consider to take P14 as an example and express it

in a standard SOCP form as

P∗
14 : min

z
−cT z

s.t.

C1 : cTk1z+ lk1 = 0,∀k ∈ K,

C2 : cTk2z ≤ 0,∀k ∈ K,

C3 : cTk3z ≤ 0,∀k ∈ K,

C4 : ∥A4z+Qp̃∥2 ≤ √
p0

C5 : ∥A5z− bp5∥2 ≤ √
ϵp̃,∀p ∈ P, p ̸= p̃,

C6 : cTi6z ≤ 0, i = 1, 2, · · · , Nt,

(53)

where we introduce

z =
[
dT
p̃−1, t,ℜ(λk),ℑ(λk)

]T ∈ CNt+1+2K ,∀k ∈ K,

c =
[
0T
Nt

, 1,0T
2K

]T ∈ CNt+1+2K ,

ck1 =

[
hT
k · β2p̃−1diag[x1]

sk
, 0,−eTk ,−ȷeTk

]
∈ CNt+1+2K ,

∀k ∈ K,

lk1 = hT
k ·Qp̃,∀k ∈ K,

ck2 =

[
0T
Nt

, 1,−eTk ,−
1

tanθth
· eTk

]
∈ CNt+1+2K ,∀k ∈ K,

ck3 =

[
0T
Nt

, 1,−eTk ,
1

tanθth
· eTk

]
∈ CNt+1+2K ,∀k ∈ K,

A4 =
[
β2p̃−1diag[x1],0Nt×(2K+1)

]
∈ CNt×(Nt+1+2K),

A5 =
[
INt

,0Nt×(2K+1)

]
∈ CNt×(Nt+1+2K),∀p ∈ P, p ̸= p̃,

bp5 = |xp|2p̃−2 ∈ CNt ,∀p ∈ P, p ̸= p̃,

ci6 =
[
eTi ,0

T
2K+1

]
∈ CNt+1+2K , i = 1, 2, · · · , Nt.

(54)
Based on [46], the complexity of a generic IPM for solving

conic programming consists of two parts: a) the iteration
complexity, which is on the order of

√
kIPM log(1/ϵ), where

kIPM represents the number of cones and ϵ represents the
target accuracy of the solutions; b) per-iterative computation
cost, which dominated by the formation and the factoriza-
tion of the coefficient matrix H, which is used to find the
searching direction. The Cform and Cfact are the order of
the cost of forming H and dominated by the dimensions
of z and all cones. By combining the two parts, it follows
that the complexity of a generic IPM for solving P∗

14 is
on the order of

√
kIPM · (Cform + Cfact) · log(1/ϵ), where

kIPM = Nt + 1 + 2K. The expression of Cform and Cfact
are given by

Cform =(Nt + 2K + 1)(Nt + 2K)+

(Nt + 2K + 1)2(Nt + 2K) + (Nt + 2K + 1)P̂ (N2
t ),

Cfact =(Nt + 1 + 2K)3.
(55)

The overall complexity of P14 is on the order of (56), which
is shown in the top of next page.

Following the similar analysis approach, the complexity in
solving P4 can be analyzed. With some inspection, P4 is less
Nt linear cones compared to P14. Therefore, the complexity
of P4 via IPM is on the order of (57), which is shown in the
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CP14 =O
{
Iter ·

√
Nt + 2K + 1

[
(Nt + 2K + 1)(Nt + 2K) + (Nt + 2K + 1)2(Nt + 2K)+

(Nt + 2K + 1)P̂ (N2
t ) + (Nt + 1 + 2K)3

]
· log(1/ϵ)

}
,

(56)

CP4
=O

{
Iter ·

√
Nt + 2K + 1

[
(Nt + 2K + 1)(2K) + (Nt + 2K + 1)2(2K) + (Nt + 2K + 1)P̂ (N2

t )+

(Nt + 1 + 2K)3
]
· log(1/ϵ)

}
.

(57)

top of this page.
As for P17, we can obtain the worst-case complexity for

solving the SDR problem via the IPM by referring to [45],
given by

CP17
= O(max {mSDR, nSDR}4 n1/2

SDRlog(1/ϵ)), (58)

where mSDR is the number of the quadratic constraints and
nSDR represents the dimension of the optimization variable.
Based on the construction of P17, we obtain

mSDR = Nt + 1, nSDR = 2Nt + 1, (59)

which further leads to the expression of CP12
as

CP17 = O
{
(2Nt + 1)9/2log(1/ϵ)

}
, (60)

With the complexity of each optimization problem, we can
obtain the overall complexity of the iterative algorithm based
on the structure of the iterative algorithm, given by

CIter =
{
CP4 + (P̂ − 1)(CP14 + CP17)

}
· Iter, (61)

where Iter is the average number of iterations. In addition, the
complexity of the low-complexity algorithm can be similarly
obtained by replacing ′P̂ ′ with ′N ′ in (61), and is omitted for
brevity.

VI. NUMERICAL SIMULATION

In this section, the numerical results of the proposed
schemes are presented and compared with other conventional
precoding schemes in the presence of PA nonlinearities, using
Monte Carlo simulations. Both PSK and QAM modulation
are considered. In each plot, we assume the total transmit
power available as p0 = 1, the transmit SNR per antenna
as ρ = 1/σ2. We consider to adopt the precoded signal of ZF
precoding as the initial point of xp,∀p ∈ P1, and set the value
of ϵp,∀p ∈ P as follow{

ϵ1 = αNt

M ,
ϵp = ϵ2p−1,∀p ∈ P, p ̸= 1,

(62)

where α is the scaling factor. To achieve smooth and efficient
convergence, it is always set to 0.8.

The following abbreviations are used throughout this sec-
tion:

1) ‘GR, Iter/LC’: the Gaussian randomization method for
SDR, the iterative algorithm proposed in Section V-A

1The initial point of xp, ∀p ∈ P can be arbitrarily selected as long as
x1 = x2 = · · · = xP is satisfied, and it is verified that this does not change
the final solution of the algorithm when the iteration terminates.

0 20 40 60 80 100

Iterations

0.2

0.4

0.6

0.8

1 GR, Iter

R1A, Iter

GR, LC(N=2)

R1A, LC (N=2)

Fig. 4. Convergence behavior of the proposed algorithm, 8PSK, Nt = K =
8, SNR= 30dB

and the low-complexity algorithm proposed in Section
V-B;

2) ‘R1A, Iter/LC’: the rank-one approximation method for
SDR, the iterative algorithm proposed in Section V-A
and the low-complexity algorithm proposed in Section
V-B;

3) ‘ZF’: traditional ZF precoding with symbol-level
power normalization. The ZF precoding signals are
xZF =

√
p0

fZF
· HH(HHH)−1s, where fZF =∥∥HH(HHH)−1s
∥∥
2

[3];
4) ‘RZF’: traditional regularization zero-forcing precoding

with symbol-level power normalization. The RZF pre-
coded signals are xRZF =

√
p0

fRZF
·HH(HHH+K

σ2 ·I)−1s,
where fRZF =

∥∥HH(HHH + K
σ2 · I)−1s

∥∥
2

[3];
5) ‘MRT’: traditional maximum ratio transmission precod-

ing with symbol-level power normalization. The MRT
precoded signals are xMRT =

√
p0

fMRT
· HHs, where

fMRT =
∥∥HHs

∥∥
2

[47];
6) ‘CEP-CI’: constant envelope precoding based on CI

using manifold algorithm [18];
7) ‘SLP-CI’: optimization-based CI SLP for non strict

phase rotation based on P5 in [37] and P3 in [38];
8) ‘PA-aware SLP, Iter/LC’: the proposed PA-aware SLP

based on CI, the iterative algorithm proposed in Section
V-A and the low-complexity algorithm proposed in
Section V-B;

Before we present the performance results of the PA-aware
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Fig. 5. Uncoded BER v.s. N , 8PSK, Nt = K = 8, SNR= 30dB

SLP, in Fig.4 we first show the convergence behavior of the
Algorithm 1 by illustrating the number of iterations to achieve
the near-optimality through the GR with that through the R1A
method, where we consider 8PSK modulation, Nt = K = 8,
SNR= 30dB, and set the PAs’ coefficients as β1 = 1.0108 +
ȷ0.0858, β3 = 0.0879 − ȷ0.1583, β5 = −1.0992 − ȷ0.8891,
βp = 0 (p > 5) [48]. As can be observed, the GR based
approach is convergent while the R1A based approach is not.
This means that, both the proposed iterative algorithm and the
low-complexity algorithm can obtain a near-optimal solution
by SDR with the GR. In addition, by choosing parameters
γ and ϵp appropriately, the GR method converges within
60 iterations. In subsequent simulation, we employ the GR
method to obtain a feasible solution to SDR problem.

Fig.5 shows the BER performance for the different com-
putational complexity, where we consider the same system
setting as Fig.4. Note that ‘PA-aware SLP’ is solved by
the iterative algorithm proposed in Section V-A when N =
3, (2N − 1 = 5) and solved by the low-complexity algorithm
proposed in Section V-B when N < 3. It is then observed that
when N = 3, the performance of ‘PA-aware SLP’ is consistent
with that when N = 2, (2N−1 = 3). This is because the fifth-
order term of the complex coefficient polynomial PA model
used here has negligible impact on the performance of the
communication system. Therefore, for simplicity, we consider
employing the third-order complex coefficient polynomial PA
model at the BS in the subsequent simulation, and assume
that β1 = 1.0108 + ȷ0.0858, β3 = 0.2637 − ȷ0.4749,
βp = 0 (p > 3), which come from fitting the fifth order model
used above.

In Fig.6, we demonstrate the BER performance for different
precoding schemes with 8PSK modulation for the case of
Nt = K = 8, where the BS with nonlinear PAs and ideal
PAs are denoted as solid and dashed lines, respectively. It is
observed that ‘PA-aware SLP, Iter’ with nonlinear PAs in the
BS can achieve almost same performance as that of ‘SLP-
CI’ with ideal PAs in the BS, which indicates that ‘PA-aware
SLP, Iter’ can completely eliminate the impact of nonlinear
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Fig. 6. Uncoded BER v.s. transmit SNR, 8PSK, Nt = K = 8
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Fig. 7. Uncoded BER v.s. transmit SNR, 8PSK, Nt = 64, K = 20

distortion of PAs on communication system. Moreover, ‘PA-
aware SLP, LC’ is inferior to ‘PA-aware SLP, Iter’ while
outperforming ‘SLP-CI’ with nonlinear PAs in the BS. Both
of ‘PA-aware SLP, Iter’ and ‘PA-aware SLP, LC’ achieve an
improved performance over ZF precoding, MRT precoding,
‘CEP-CI’, and ‘SLP-CI’ with nonlinear PAs in the BS for
all SNRs, while also outperforming RZF precoding scheme
at high SNR. CEP performs poorly in small-scale MIMO
systems because it cannot handle high residual interference.
For ‘PA-aware SLP, Iter’ at high SNR regime, we observe
that a SNR gain of over 14dB compared to ZF precoding,
over 10dB compared to RZF precoding, over 8dB compared
to ‘SLP-CI’ and near 2dB compared to ‘PA-aware SLP, LC’
under nonlinear PAs architecture.

In Fig.7, we demonstrate the BER performance for different
precoding schemes with 8PSK modulation in large-scale com-
munication system, where Nt = 64, K = 20. As can be ob-
served, with the number of the transmit antennas increasing the
performance gains of the ‘SLP-CI’, ‘PA-aware SLP, Iter’ and
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Fig. 8. Uncoded BER v.s. transmit SNR, 16QAM, Nt = K = 8

‘PA-aware SLP, LC’ are no longer significant, however, the
performance of ‘CEP-CI’ is significantly improved. Moreover,
‘PA-aware SLP, LC’ achieves exactly the same performance
as ‘PA-aware SLP, Iter’, which indicates that the performance
loss of ‘PA-aware SLP, LC’ can be ignored in large-scale
systems. When BER reaches 10−3, we observe that ‘PA-aware
SLP, Iter’ and ‘PA-aware SLP, LC’ can provide a SNR gain of
about 2dB compared with ZF precoding, RZF precoding and
‘SLP-CI’ and near 4dB compared with ‘CEP-CI’.

We further simulate the BER performance comparison under
16QAM modulation in Fig.8, where K = Nt = 8. It is
observed that our proposed PA-aware SLP still has superi-
ority over the traditional precoding schemes and ‘SLP-CI’. In
addition, ‘PA-aware SLP, Iter’ achieves a better performance
than ‘PA-aware SLP, LC’. Comparing Fig.8 with Fig.6, we
observe that the performance gain of PA-aware SLP and ‘SLP-
CI’ under 16QAM modulation is slightly less than that under
PSK modulation, the loss of the performance gain is due to
only the outer constellation points can exploit CI in QAM
modulation. In the high SNR regime, ‘PA-aware SLP, Iter’
can provide a SNR gain of more than 9dB over ZF precoding,
7dB over RZF precoding, 6dB over ‘SLP-CI’ and 1dB over
‘PA-aware SLP, LC’.

Fig.9 shows the BER performance for different precoding
schemes with 16QAM modulation in large-scale communi-
cation system, where Nt = 64, K = 20. Similar to PSK
modulation, we observe that the error-rate performance of ‘PA-
aware SLP, Iter’ and ‘PA-aware SLP, LC’ are exctly the same.
In addition, when BER reaches 10−3 , ‘PA-aware SLP, Iter’
and ‘PA-aware SLP, LC’ can provide a SNR gain of near 2dB
compared with ZF precoding, RZF precoding and ‘SLP-CI’.

In Fig.10, we present the BER performance of different
precoding schemes with respect to the PA nonlinearities by
varying the value of β3. Fig.10 shows that as the absolute
value of β3 becomes larger, the BER performance of the
ZF precoding, RZF precoding and ‘SLP-CI’ increases, which
indicates that the enhancement of nonlinear distortion will
degrade the performance of the precoding schemes designed

0 5 10 15 20 25 30

SNR (dB)

10-4

10-3

10-2

10-1

100

B
E

R

ZF

RZF

MRT

SLP-CI

PA-aware SLP, Iter

PA-aware SLP, LC

Solid: Nonlinear PA  Dashed: Ideal PA

Fig. 9. Uncoded BER v.s. transmit SNR, 16QAM, Nt = 64, K = 20

0.1 0.2 0.3 0.4 0.5 0.6

|
3
|

10-3

10-2

10-1

100

B
E

R

ZF

RZF

MRT

CEP-CI

SLP-CI

PA-aware SLP, Iter

PA-aware SLP, LC
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under the ideal hardware assumption. In addition, since the
low-complexity algorithm omits the optimization of higher-
order terms of the PA model in the original optimization
problem, we observe that the BER performance of ‘PA-aware
SLP, LC’ also deteriorates with the increase of PA nonlinearity.
Due to the error-rate performance of ‘CEP-CI’ and MRT
precoding is heavily influenced by other factors, no significant
variation is observed. Meanwhile, the BER of ‘PA-aware
SLP, Iter’ can essentially maintain a constant value when the
absolute value of β3 rises, which shows the superiority of our
proposed iterative algorithm to nonlinear distortion.

In order to demonstrate the potential complexity bene-
fits of the proposed iterative algorithm and low-complexity
algorithm, we evaluate the computational cost of different
precoding schemes with 8PSK modulation in terms of the
execution time per channel realization in Fig.11. It is observed
that ‘PA-aware SLP, Iter’ requires more time to obtain the near
optimal solution because of the larger required subproblems
number than ‘PA-aware SLP, LC’. Moreover, ‘PA-aware SLP,
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LC’ exhibits additional over 20dB complexity gain than the
proposed iterative algorithm, i.e., the proposed low-complexity
algorithm is more time-efficient than the proposed iterative
algorithm, which motivates the use of the PA-aware SLP in
practice.

VII. CONCLUSION

In this paper, we study the interference exploitation SLP for
a downlink MU-MISO communication system with nonlinear
PAs, where both PSK modulation and QAM modulation are
considered. By analyzing the non-convex optimization prob-
lem of PA-aware SLP problem, we first introduce auxiliary
variables to transform the optimization problem into a new
form, then propose an iterative algorithm, which can obtain
a near-optimal solution to the PA-aware SLP by employing
the Gaussian random method to the SDR problem. For the
purpose of addressing the performance-complexity tradeoffs,
we further present a low-complexity algorithm. Numerical
results show that the PA-aware SLP design can well alleviate
the performance loss of non-ideal PAs due to nonlinearity,
and achieves an improved performance over the benchmark
schemes. It is also observed that the performance loss of
the low-complexity algorithm becomes marginal in large-scale
systems.
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