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Coarse-grained resource allocation models (C-GRAMs) are simple math-
ematical models of cell physiology, where large components of the
macromolecular composition are abstracted into single entities. The
dynamics and steady-state behaviour of such models provides insights on
optimal allocation of cellular resources and have explained experimentally
observed cellular growth laws, but current models do not account for the
uptake of compound sources of carbon and nitrogen. Here, we formulate
a C-GRAM with nitrogen and carbon pathways converging on biomass pro-
duction, with parametrizations accounting for respirofermentative and
purely respiratory growth. The model describes the effects of the uptake
of sugars, ammonium and/or compound nutrients such as amino acids
on the translational resource allocation towards proteome sectors that maxi-
mized the growth rate. It robustly recovers cellular growth laws including
the Monod law and the ribosomal growth law. Furthermore, we show
how the growth-maximizing balance between carbon uptake, recycling,
and excretion depends on the nutrient environment. Lastly, we find a
robust linear correlation between the ribosome fraction and the abundance
of amino acid equivalents in the optimal cell, which supports the view
that simple regulation of translational gene expression can enable cells to
achieve an approximately optimal growth state.
1. Introduction
Unicellular organisms are remarkably efficient self-replicators as they are under
selective pressure to grow fast or risk being outcompeted by rival colonies or
species [1,2]. On the other hand, microbial cells are faced with internal con-
straints limiting their growth, because each metabolite, macromolecule, or
unit of membrane area can only be used for one reaction at any given time.
Fast-growing cells must therefore possess an ability to allocate these limited
resources in varied environments [3–6]. The interplay between gene expression
and growth can be studied reproducibly in states of balanced growth, where
cells are maintained in the same environment for many generations [7].

Observed patterns of gene expression and the resulting rate of growth
depend heavily on the growth environment, in particular on the presence of
external stresses and, importantly, the nutrient make-up. Awell-established fea-
ture of gene expression in multiple model organisms is the presence of linear
correlations between broad classes of macromolecules and the cellular growth
rate [8–12]. The most pervasive positive correlation is between the abundance
of translational resources (chiefly ribosomes) and the growth rate [13–17].
Classes of proteins that are negatively correlated with the growth rate are
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associated with stress, or induced by the specific cause of
growth inhibition—stressors or reductions in the nutrient
quality or quantity [15,17–19].

These observed correlations between the total abundance
of proteome sectors and the cellular growth rate have been
explored in several coarse-grained phenomenological and
mechanistic models [20–28]. These coarse-grained resource
allocation models (C-GRAMs) make explicit the intuition
that the conversion of nutrient into biomass can be done in
more or less efficient ways. Abundant proteins are costly to
produce and therefore have a large effect on the growth
rate, which is a measure of fitness [6].

Extended summaries of these models are provided in
electronic supplementary material, text S1. All were used to
study trade-offs between resource allocation towards meta-
bolic versus ribosomal gene expression and they all account
for the experimental relation between ribosomal gene
expression and the growth rate. Another common feature of
these earlier models is the hyperbolic dependence of the
growth rate on the concentration of external nutrients,
observed first experimentally in [29]. C-GRAMs have been
used to model the burden of synthetic circuits in the host
cell [24,26]. Another powerful application of the coarse-
grained approach came from [27], which explained how
differences in cell size across different growth modulations
could be explained by the underlying proteome composition.

The coarse-graining approach of C-GRAMs entails that
large sectors of the proteome are abstracted into a single
protein, whose kinetics are explicitly described. The coarse-
graining approach boils down assumptions about metab-
olism, growth, gene expression and cellular physiology into
only a handful of parameters. Fitting nonlinear models is a
challenging problem in general and, in the case of whole-
genome models, further complicated by the large number
of parameters to be estimated. By contrast, a coarse-grained
approach is much more computationally tractable than expli-
citly accounting for the complexity of metabolism. This is
particularly true for minimal approaches such as proposed
in [20], which constructed a C-GRAM that incorporated nitro-
gen metabolism and described proteome allocation under
optimal growth, and [27], which additionally included
metabolites into the system size.

Because of their tractability, C-GRAMs are also well
suited to exploring hypotheses about the interplay between
metabolism, growth and gene expression [30], and finding
insights on the general principles behind the physiology of
unicellular organisms [6]. They can furthermore be designed
in an organism-agnostic manner and thereby provide an
opportunity to compare microbes based on those model para-
metrizations that best explain global observations about
growth in each organism. In summary, the coarse-grained
approach allows one to directly interpret and explore model
parameters, with minimal need for explicit or large-scale
parameter inference.

Earlier C-GRAMs chiefly considered carbon modulations
representative for the effect of the nutrient quality in general.
In such models, metabolism was typically considered as a
linear pathway from nutrient to protein production. This
included the models proposed in [24] and in [27]. Contrasting
with this earlier work, a strategy commonly employed in
Schizosaccharomyces pombe to modulate the growth rate uses
ammonium chloride and a variety of amino acids as nitrogen
sources [17,31]. Using this strategy, we have recently reported
differential expression for many enzymes involved in carbon
metabolism across nitrogen sources, even though abundant
glucose was provided in all conditions [17]. Different amino
acids have also been used as sole nitrogen sources in order
to modulate growth while studying the proteome of Sacchar-
omyces cerevisiae [32] and of three bacterial strains found in
the Arabidopsis rhizosphere [33].

We aimed to better understand the effect of nitrogen-
source modulation on resource allocation in a coarse-grained
modelling context. We took a minimal approach, opting to
construct a model with fewer parameters and therefore omit-
ting transcription, the distinction between energy and amino
acid metabolism. We extended the metabolic model proposed
in [27] to include the uptake and metabolism of carbon-
containing nitrogen sources. We studied how a growth-
rate-maximizing allocation towards proteome sectors varied
between steady states that were imposed by choices of
parameters representing different nutrient conditions.

2. Results
In this study, we aim to investigate optimal resource allocation
behaviour under growth in defined media with varying nitro-
gen sources. This, for example, will be relevant for growth
media where different amino acids act as the sole source of
nitrogen. Amino acids generally consist of an amino group
and a ketoacid backbone, and we therefore focused on
modelling nitrogen and carbon metabolism. We constructed
a C-GRAM with pathways representing nitrogen and carbon
uptake, protein biosynthesis, and the excretion and recycling
of carbon from carbon-containing nitrogen sources. The
model was formulated dynamically using ordinary differential
equations (ODEs), their steady state representing balanced
growth. The steady-state growth rate was calculated from the
solution to the ODEs as an emergent property.

Pathways in the model were represented by enzymes
with simple kinetics, and the parameters in this represen-
tation were chosen to reflect nutrient conditions. For
example, carbon limitation was modelled by reducing the cat-
alytic rate of the carbon uptake enzyme. Furthermore,
nitrogen sources were distinguished by the catalytic rates of
the enzymes metabolizing them as well as their stoichi-
ometries, related to their elemental carbon-to-nitrogen ratio.
For each nutrient condition (parametrization), we deter-
mined the resource allocation that maximized the growth
rate. The details regarding the model implementations,
namely the full formulation of the ODEs, considerations
with regards to parameter choices, and the approach used
to optimize resource allocation are described in the Methods.

As described in the remainder of this manuscript, we
explored the effect of different growth-rate modulations on
the optimal allocation. We first considered the behaviour of
two submodels that lacked the recycling and excretion of the
ketoacid backbone. This enabled us to explore trade-offs in
resource allocation in media with simple sources of carbon
(such as glucose) and nitrogen (such as ammonium chloride).
In the first submodel, no distinction was yet made between
respirofermentative and purely respiratory metabolism; in
the second submodel, two parallel pathways representing
the two were introduced. Finally, the full model was used to
describe growth on amino-acid nitrogen sources. As expected,
various nutrient limitations induced complex trade-offs
between allocations to different enzyme fractions.
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Figure 1. Analysis of the core metabolic model under modulation of the carbon uptake rate kC. The uptake rate parameter kC of the transporter was modulated to
yield different growth rates. The allocation fractions were chosen to maximize the growth rate for each chosen kC. (a) Illustration of the model. (b) Growth rate μ as
a function of the carbon uptake rate kC. (c) Optimal protein allocation fractions as a function of the growth rate μ. (d ) Steady-state mass fractions of metabolites as a
function of the growth rate μ.

Table 1. Variables (metabolites and proteins) implemented in the full model.

type description concentration allocation fraction

metabolite ketoacid k n.a.

carbon c

amino acid a

free nitrogen n

protein ketoacid recycler eKre fKre
ketoacid excreter eKex fKex
carbon uptake eC fC
respirofermentative enzyme eAf fAf
purely respiratory enzyme eAr fAr
nitrogen-compound uptake eN fN
ribosome r fR
housekeeping (non-metabolic) z fZ
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2.1. Modulation of the carbon uptake rate with one
metabolic pathway

The first submodel we explored was one with parallel uptake
of carbon and nitrogen, which were combined by a single
amino-acid-producing enzyme. An illustration of the model
is provided as figure 1a and the interpretation of all model
constituents (proteins and metabolites) is provided in
table 1. This model was explored by varying the carbon
uptake rate parameter kC. All model parameters are listed
in table 2.

As expected, thedependencyof the growth rate on themodu-
lation parameter approximated a Monod curve (figure 1b),
and the optimal protein allocation fractions were approximately
linearly correlated with the growth rate (figure 1c). The total
relative metabolite abundance in steady state amounted to



Table 2. Parameters (Michaelis constants, enzyme efficiencies and stoichiometries) implemented in the full model.

type description symbol default value

Michaelis constant ketoacid ksat 0.0167

carbon csat 0.0167

amino acid asat 0.0167

free nitrogen nsat 0.0167

enzyme efficiency ketoacid recycler kKre 10.0 h−1

ketoacid excreter kKex 20.0 h−1

carbon uptake kC 10.0 h−1

respirofermentative enzyme kAf 15.0 h−1

purely respiratory enzyme kAr 7.5 h−1

nitrogen-compound uptake kN 20.0 h−1

ribosome kR 6.46 h−1

mass stoichiometry carbon consumed per amino acid produced in respirofermentative metabolism aCf 48/55

carbon consumed per amino acid produced in purely respiratory metabolism aCr 24/31

ketoacid produced per nitrogen compound consumed γK 0
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approximately 10%–30% of biomass (figure 1d). In experimental
cultures, metabolites comprise only a small fraction of the bio-
mass (BNID 111490; [34,35]), so in this respect the growth-
optimized model was a poor approximation for conditions
where this occurred. Thismay reflect the current parametrization
of the model to be inaccurate.

Importantly, under modulation of the carbon uptake
enzyme, the allocation fractions of the nitrogen assimilation
enzyme EN and the amino-acid biosynthesis enzyme EA

were positively correlated with the growth rate (figure 1c).
This behaviour was also implemented in [20], but it is notably
different from the model described in [24], which assumed
that the transporter and metabolic enzyme were both
regulated identically.

Proteins associated with translation are estimated to
constitute approximately 45% of the total protein mass in
the fastest-growing Escherichia coli cultures [13,15,19],
which reach maximal growth rates of around 2.0 h−1. A mini-
mal partitioning of the proteome based on growth rate
correlations suggested that around half of the proteome
mass does not change with the growth rate [13,21]. The ear-
lier model in [24] reflected this by implementing protein
expression regulation with a metabolic sector, a translational
sector and a constitutive sector. Its proteome comprised two
sequential enzymes (corresponding to our EC and EA), ribo-
somes (our R), and housekeeping proteins (our Z). In their
parametrization, the latter took up around 70% of the total
protein mass, and were negatively correlated with the
growth rate.

By contrast, in the parametrization used to generate
figure 1, the allocation towards housekeeping proteins was
only 20% of the proteome. However, this parametrization
was chosen such that the maximal ribosomal allocation
agreed reasonably well with E. coli data from [13]. The
discrepancy between the two models in their estimated
housekeeping allocations is explained by the considerable
cost of the non-modulated enzymes. At maximal growth,
the amino-acid synthesis and nitrogen-uptake enzymes
amount to around 25% and 5% of the proteome, respectively.
2.2. Modulation of carbon and nitrogen uptake rates
with two parallel metabolic pathways

Next, we considered that a key determinant of unicellular
growth is the metabolic state, with a principal difference
whether fermentation occurs or whether biosynthesis is main-
tained in a purely respiratory fashion. Fast-growing cells
express both fermentative and respiratory pathways, with
the former the primary generator of free energy (in the form
of ATP). When growing on poorer or less abundant carbon
sources, cells rely on respiration for energy generation, but res-
piratory enzymes and the citric acid cycle are involved in
amino acid biosynthesis even when free energy is primarily
generated by fermentation [36]. Comparing the two pathways
at equivalent energy generation, the fully respiratory pathway
poses a greater burden on gene expression. On the other hand,
the respirofermentative pathway requires more carbon uptake
from the environment, because it is converted into overflow
metabolites such as acetate or ethanol. We aimed to construct
a minimal model allowing for these two different metabolic
states, and wondered how the optimal state would be affected
by nitrogen and carbon limitation.

Deciding against introducing further metabolites and
enzymes to the model, we instead implemented two parallel
amino-acid synthesis pathways. The parametrization of these
parallel pathways reflected the above considerations about
carbon uptake and gene expression burden. First, we
implemented the purely respiratory enzyme EAr with a lower
enzyme efficiency than the respirofermentative EAf. Second,
we adjusted the carbon stoichiometry, such that EAf required
additional carbon per nitrogen atom consumed (eight atoms
instead of four; for details, see Methods §4.3), representing
overflow metabolism without implementing it as an additional
pathway. The allocation fractions to both enzymes were
included in the growth rate optimization. Our parametrization
implied that EAr required less carbon substrate, but a higher
expression to sustain the same synthesis rate, than EAf.

We modulated the carbon and nitrogen transporter rate
parameters in the model containing two parallel metabolic
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pathways with different parameterizations (figure 2a). As
before, the growth rate depended on the modulation par-
ameters approximately following a Monod curve (figure 2b).
Because the two pathways are parallel, the usage of one of
the two was preferred over the other in each parametrization,
such that one of EAr and EAf was expressed while the other was
not. As shown in figure 2c, the purely respiratory enzyme was
induced by low values of the carbon uptake rate kC. We note a
sharp and discontinuous transition from respiration to fermen-
tation at a specific level of carbon uptake rate (figure 2c). This
agrees with results of a model similar in scope to ours, where
the optimal choice between a metabolically efficient or cata-
bolically efficient pathway was shown to depend on the
growth rate [20]. In contrast to this behaviour under modu-
lations of the carbon uptake, the respirofermentative enzyme
was present in all conditions where the nitrogen uptake
efficiency kN was varied from its default.
Both the internal carbon abundance c and the nitrogen
abundance n varied discontinuously with the growth rate
near the transition point (μ≈ 0.5−1 h). This indicates how
purely respiratory metabolism required a higher abundance
of both of its substrates (c and n) than respirofermentative
metabolism to sustain the same turnover. By contrast, the abun-
dance of the product, the amino acid equivalent a, varied
almost continuously with the growth rate even at the transition
point. The relation between a and the ribosomal allocation will
be explored in detail in a further section of this paper.

Under perturbations of the nitrogen transporter uptake
rate kN (figure 2c, bottom panel), the allocation towards the
metabolic enzyme varied nonlinearly with the growth rate.
In addition to this, the amount of nitrogen metabolite n built
up much more strongly with increasing growth rate via kN
than the equivalent carbon build-up under perturbations of
kC (figure 2d). Note that modulating each transporter’s
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efficiency (kN and kC) repressed the abundance of its own sub-
strate (n and c, respectively). On the other hand, the
modulation of one transporter rate barely affected homeostasis
of the metabolite in the other pathway (c and n, respectively).

2.3. Recycling and excretion of ketoacids disturbed
carbon metabolism

In the above, we restricted ourselves to the metabolism of
freely usable nitrogen, which typically comes in the form of
ammonium ions (NH þ

4 ). However, the cellular growth rate
can also be perturbed considerably by using different nitro-
gen sources, particularly amino acids, as the sole nitrogen
source instead of NH þ

4 [17,31]. These pathways typically dea-
minate or transaminate the amino acid, either by a single
enzyme or as the net result of a longer pathway [37]. Nitrogen
is assimilated as free NHþ
4 (after deamination) or glutamate

(after transamination). The leftover carbohydrate, usually a
ketoacid, may be recycled into biomass or excreted.

To account for this process in the model, we implemented
the nitrogen uptake pathway as an enzyme that produced both
free nitrogen and a carbon-containing ketoacid metabolite. To
represent different complex nitrogen sources such as amino
acids, we perturbed the parameter γK, which represents the
relative mass of recycled ketoacid with respect to the total
mass taken up by the nitrogen uptake enzyme. Additionally,
we introduced two enzymes, EKre and EKex that, respectively,
recycled the ketoacid into usable carbon precursor or excreted
it from the cell. The model is illustrated in figure 3a.

The behaviour of the model that included ketoacids
depended qualitatively and quantitatively on the values
of key parameters, particulary on the efficiencies (catalytic
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rates) of the enzymes involved and on the ketoacid stoichi-
ometry γK. Recycling enzymes were only expressed if their
efficiency (catalytic rate) kKre was large. We first explored
the model behaviour for two choices of this parameter, mod-
ulating γK but leaving fixed all other metabolic parameters.
The results are shown in figure 3b–d.

Based on the types of proteins that were expressed, there
were three qualitatively different growth regimes for kKre ¼ 10
and two for kKre ¼ 5. One important trade-off here is between
the cellular cost of expressing ketoacid processing enzymes
and the cost of carrying the excess metabolite for cell
growth. When recycling enzymes were inefficient and
costly (kKre ¼ 5, bottom panels), but the carbon-to-nitrogen
ratio was still below a certain threshold, the ketoacid metab-
olites built up considerably (up to almost half the total
biomass). In this regime, this still led to faster growth than
expressing either recycling or excretion enzymes would
have. However, with the amino acid nitrogen source contain-
ing relatively more carbon, the growth-optimized cell-
excreted ketoacids and the internal concentration were
approximately stable across the range of growth rates investi-
gated. When recycling enzymes were efficient (kKre ¼ 10, top
panels), recycling replaced the uptake of carbon through the
canonical carbon pathway, i.e. no carbon uptake enzyme EC

was expressed below a critical growth rate. For both choices
of kKre , in the fastest-growing regime, no excretion took place,
i.e. the excretion enzyme EKex was not expressed; but in the
slowest-growing regime, ketoacid excretion was required to
optimize growth. Curiously, we found a recycling-only
regime with neither canonical carbon uptake nor ketoacid
excretion. In this latter regime, all carbon in the biomass has
its origin in the amino acid from the nutrient, and all the
carbon from the nutrient made its way into the cell.

We note that across all simulations, no respiratory
enzyme EAr was expressed. Furthermore, the optimal allo-
cation to ribosomal proteins deviated discontinuously from
the ribosomal growth law for both choices of kKre when the
ketoacid stoichiometry γK was varied.
2.4. Different nutrient environments ( parametrizations)
induced complex trade-offs between carbon
uptake, ketoacid recycling and excretion

We further explored the five different growth regimes across
a more extensive parameter sweep. The ketoacid stoichi-
ometry γK is related to the ratio of carbon and nitrogen
atoms in a nutrient molecule

gK ¼ nC � 12
nC � 12þ nN � 14

¼ 12ðnC=nNÞ
12ðnC=nNÞ þ 14

, ð2:1Þ

where nC and nN are the numbers of carbon and nitrogen
atoms in a nutrient molecule, and the factors 12 and 14
account for the approximate molar masses of these two
elements. For example, glycine molecules contain two
carbon atoms for each nitrogen atom, which would be rep-
resented by γK = 2 × 12/(2 × 12 + 14) = 12/19≈ 0.63, whereas
each molecule of isoleucine contains nine carbon atoms, for
γK = 9 × 12/(9 × 12 + 14) = 54/61≈ 0.89.

Alongside the ketoacid stoichiometry γK, we varied the
maximal turnover rates (efficiencies) kN, kKex and kKre of the
enzymes involved in ketoacid metabolism, as plotted in
figure 4. This showed that the five regimes highlighted in
the previous section were universal. The optimally allocated
cell expressed only one or two out of the ketoacid recycling,
ketoacid excretion, and carbon uptake enzymes depending
on the parametrization (figure 3). Neither recycling nor
excretion was expressed in nitrogen sources not also contain-
ing carbon, and additionally this was optimal even for
carbon-containing nitrogen sources when the ketoacid recy-
cling and excretion enzymes were inefficient relative to the
nitrogen uptake enzyme (figure 4a,d,e). The value of the
ketoacid recycling rate kKre below which ketoacid recycling
was suboptimal depended weakly on the ketoacid stoichi-
ometry (figure 4a). When recycling enzymes were
expressed, the trade-off between the excretion and ketoacid
uptake was heavily influenced by the nitrogen source’s
carbon content and all three enzyme rates (figure 4a–c).
Low-carbon nutrient sources required additional carbon
uptake whereas high-carbon nutrient sources generally
required ketoacid excretion, with pure recycling being
favoured in regimes with intermediate carbon content or
inefficient excretion.

2.5. Approximately optimal allocation towards
ribosomes could result from amino-acid regulation

Until now, we have explored the model using defined modu-
lations of one or more rate parameters and the ketoacid
stoichiometry. Across all of these, we found that the ribosomal
growth law (ribosomal proteome allocation fraction fR∝ μ) was
robustly satisfied. Moreover, the amino acid abundance a
appeared to be similarly correlated with the growth rate. We
wondered if this was an artefact of our parametrization
approach or a deeper property of the model and used a
random sampling parametrization strategy to further study
this behaviour. We sampled 100 triplets of the rate parameters
ðkC, kN , kAf Þ from independent uniform distributions with sup-
port [0, 20], set kAr ¼ 0:5kAf , and matched these samples to
four choices of the ketoacid stoichiometry γK, representing
carbon-to-nitrogen ratios of 0, 3, 6 and 12, and two choices
of the ketoacid recycling efficiency kKre .

In the ketoacid-free model (γK = 0) with random rate par-
ameters, the ribosomal growth law was nearly exactly
satisfied (figure 5a), even though expression of the two trans-
porters and the metabolic enzyme was highly variable
between parameter choices. In a recent experimental study,
we also observed this contrast between the linear ribosomal
growth law and variable expression of metabolic classes
[17]. In figure 5b, we show the expression of protein classes
mapped to their three C-GRAM equivalent: ribosomes (trans-
lation and ribosome biogenesis from [17]), carbon uptake
(glycolysis), and amino acid synthesis (precursors and
energy generation, and amino acid metabolism).

Furthermore, the concentration of the amino acid a was
closely related to growth rate as well (figure 5c). It follows
from the growth rate correlations for both fR and a that the
two were correlated themselves as well (figure 5d ). A linear
fit fR∝ (a− a0) closely approximated the observed relation.

We further explored the relation between fR and a in the
presence of complex nitrogen sources such as amino acids,
when additionally the recycling and/or excretion of ketoacid
is accounted for (figure 5d ). For large carbon-to-nitrogen
ratios, the relation between fR and a may be better described
by a nonlinear relation, although the fit for fR∝ (a− a0)
obtained for nitrogen sources without carbon was still a
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Figure 4. Phase diagrams of ketoacid recycling, excretion and carbon uptake under perturbations of enzyme efficiencies and nutrient carbon-to-nitrogen ratio. For
each figure, the optimal allocation was determined for 412 combinations of the ketoacid stoichiometry γK and one of the enzyme efficiencies kKre , kKex and kN. As
before, the carbon-to-nitrogen ratio was varied between 0 and 20 in steps of 0.5 and the ketoacid stoichiometry γK was subsequently calculated. Furthermore, the
enzyme efficiencies were chosen to be equidistant after log-transformation. In the figure, colours indicate whether ketoacid recycling, ketoacid excretion and carbon
uptake enzymes were expressed in the optimal allocation, and dashed lines indicate parameter values that were fixed in the other panels and in figure 3. (a)
Ketoacid recycling rate kKre varied, ketoacid excretion rate kKex ¼ 20:0 h�1 and nutrient uptake rate kN = 20.0 h−1 held fixed. (b) kKex varied, kKre ¼ 10:0 h�1

and kN = 20.0 h−1 fixed. (c) kN varied, kKre ¼ 10:0 h�1 and kKex ¼ 20:0 h�1 fixed. (d ) and (e) as b and c, but with kKre ¼ 5:0 h�1.
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close approximation. Only when the optimal solution
involved ketoacids building up in the cell without recycling
or excretion did the linear fit break down entirely. Since our
model does not account for the toxicity of the intermediate
ketoacids beyond their passive drag on growth, this situation
is not likely to occur in real cells.

All together with the previous sections, these results
suggest that a single linear regulation of ribosomes by
amino acids can achieve near optimal allocation of ribosomes.
For the regimes explored here, a simple proportionality fR =
δa such as proposed in [27] would work reasonably well,
though our introduction of an offset a0 (i.e. fR = δ(a− a0))
improved the fit. Interestingly, if fR∝ a is chosen and the ribo-
somes are implemented with Michaelis–Menten kinetics, the
ribosomal growth law follows analytically. A derivation of
this statement is presented in electronic supplementary
material, text S4; it holds whether or not there is an offset
a0 in the fR–a relationship. We note that we did not observe
a simple relationship between the allocation of other
non-ribosomal proteins and the metabolite concentrations.
3. Discussion
A holistic understanding of growth, gene expression and
resource allocation can be codified in and achieved by
C-GRAMs. Here, we constructed a minimal C-GRAM of
microbial metabolism that accounted for (i) the metabolism
of both carbon and nitrogen, (ii) the different proteomic
and kinetic efficiencies of respirofermentative and respiratory
energy metabolism and (iii) the stoichiometry of complex
nitrogen sources that contain a carbon backbone, such as
amino acids. We optimized the allocation towards different
protein classes so as to maximize the growth rate.

Different parameter sweeps of the model allowed us to
explore different nutrient environments. The optimal allo-
cation and resulting growth rate co-varied according to
strikingly regular behaviour. In particular, the Monod law
and ribosomal growth law were very robust. Furthermore,
we described growth on carbon-containing nitrogen sources
by introducing the possibility of recycling and/or excreting
residual carbon, which induced complex trade-offs in metab-
olism. Notably, both the optimal allocation towards
ribosomes and their substrate (internal amino acids) varied
approximately linearly with the growth rate, leading to an
also approximately linear relationship between the two.

3.1. Protein reserves and simple feedback of free amino
acids setting ribosome allocation

Our assumption that expression of all proteins was optimized
for growth in any given condition considerably simplified the
model parametrization. Precise optimality conditions have
been formulated for the E. coli carbon uptake system and
gene expression indeed maximized the growth rate for sev-
eral carbon sources [38]. Furthermore, a recent theoretical
advance pointed out a general method of adapting gene
expression control towards the optimum [39]. However,
recent evidence has challenged the view that all allocation
is growth-optimal. It is thought that significant fractions of
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Figure 5. Analysis of the full model with randomly chosen rate parameters, exploring the relation between amino acid precursor abundance and ribosomal allo-
cation. The enzyme efficiencies kAf , kC and kN were randomly drawn from separate uniform distributions ranging between 0 and 20.0 m−1, and the respiratory
enzyme efficiency kAr was set to 0:5kAf . The ketoacid recycling efficiency kKre and carbon-to-nitrogen ratio were initially fixed to 10.0 h

−1 and 0, respectively (for a, c
and d ), and then varied jointly (for e). The allocation fractions were chosen to maximize the growth rate for each set of parameters. (a) Optimal protein allocation
fractions as a function of the growth rate μ. Housekeeping proteins and ketoacid-processing enzymes were omitted to improve clarity. The best-fit of a linear
regression model to the ribosomal allocation fraction is drawn as a dashed line to guide the eye. (b) Experimentally observed proteome mass fractions from a
Schizosaccharomyces pombe study, mapped to their coarse-grained equivalents. (c) Steady-state biomass fractions of amino acid a, carbon c, and free nitrogen
n plotted against the growth rate μ. (d ) Scatter plot of the amino acid concentrations a and ribosomal allocation fractions fR, indicating the type of energy metab-
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the E. coli [40–42] and budding yeast [16,43] proteome are not
necessary for sustaining the growth rate. In particular, central
carbon metabolism has been suggested to have a large
reserve capacity, suggesting that many enzymes are not
used solely to maximize metabolic fluxes [32,44,45]. Pools
of proteins held in reserve may be beneficial instead by
their ability to support adaptation to environmental changes.

An intermediate step between a fully growth-optimized
and a dynamically regulated allocation model may be the
proportional regulation fR ∝ a. We showed this to be a
good approximation to the growth-rate-maximizing allo-
cation; additionally, it was robust to many variations of
the parameters describing the nutrient quality. The simpli-
city of this relation is remarkable: in principle, optimal
allocation could depend on all internal metabolite concen-
trations and be highly nonlinear, instead of this linear
dependence on only a single metabolite. Explicit regulation
of bacterial ribosome synthesis mediated by a single metab-
olite, guanosine tetraphosphate (ppGpp), was thoroughly
explored in a coarse-grained model by [46]. Recently,
ppGpp was shown to regulate the growth rate and ribosome
content in E. coli by sensing the instantaneous translation
elongation rate [47].

Notably, neither our growth-optimized model nor one
implementing ribosomal allocation proportional to internal
amino acids explicitly account for a reserve pool of ribosomes
not actively involved in translation. Such a pool has been held
responsible for the observed offset ϕR0 in the ribosomal
growth law ϕR = ϕR0 + σ−1μ [16,42,48]. Although our model
did not implement any inactive ribosomes, we still observed
an offset greater than zero. We explain this effect by the fact
that the ribosomes in our model are not fully saturated with
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substrate, even when growth is optimized. Specifically, linearly
correlated ribosome allocation and amino-acid abundance
(either through optimization or explicit regulation), combined
with nonlinear Michaelis–Menten ribosome kinetics, resulted
in a offset

fR0 ¼ dasat, ð3:1Þ
when fR = δ(a− a0) and fR∝ a/(a + asat). Naturally, ribosome sat-
uration and inactivation are not mutually exclusive, and a
quantitative understanding of their relative importance will
have profound implications on our understanding of the inter-
play between ribosome synthesis, excess translational capacity
and cell growth [49].
J.R.Soc.Interface
20:20230206
3.2. The fate of the carbon backbone for complex
nitrogen sources such as amino acids

We next discuss the fate of the carbon backbone from com-
plex nitrogen sources, as modelled first in the model
presented here. In our model, modulations of the ketoacid
stoichiometry γK gave rise to a wide range of growth rates
in a monotonically decreasing manner. However, a nitrogen
source’s quality is not solely determined by its carbon-to-
nitrogen ratio. For example, glycine and tryptophan media
gave rise to very similar growth rates in S. pombe ([17], but
carbon is present in a 2 : 1 ratio in glycine and in a 5.5 : 1
ratio in tryptophan (see electronic supplementary material,
text, table S2). This strongly suggests that each growth
medium is not only associated with the ketoacid stoichi-
ometry γK, but that at least one out of the enzymatic rates
kN (nitrogen uptake), kKex (ketoacid excretion) and kKre (keto-
acid recycling) must also be modulated by the choice of
nitrogen source.

Unlike translation and central carbon metabolism, the
topology of amino acid uptake pathways is rather poorly con-
served between organisms. In practice, then, whether
recycling or excretion is preferred for a given amino acid
nitrogen source depends on which reactions are available to
the organism, and how efficient they are. If ketoacid recycling
effectively feeds into other synthesis pathways, this would
correspond to a large kKre in the model; on the other hand,
the effectiveness (or absence) of suitable excretion pathways
would influence the value of kKex .

While our model provides a framework for understand-
ing the optimality of recycling and excretion of carbon, we
refrained from a full parametrization of growth on specific
nitrogen sources. We note that despite this limitation, our
model agrees with metabolic gene expression being medium-
specific rather than correlated with growth rate, as has
indeed been recently reported in S. pombe growing on different
amino acids (figure 5a,b).

In terms of possible biotechnological applications, we
note that carbon uptake from complex nitrogen sources
may be advantageous from a yield perspective. However,
its effect on the growth rate is generally deleterious as
reflected by the model (see e.g. figure 3b). As our model
shows, choosing a complex nitrogen source will affect
carbon metabolism, though it probably will not repress fer-
mentation. To study the interplay between metabolism and
the expression of synthetic constructs, our C-GRAM could
be extended by implementing an additional coarse-grained
protein in the manner of [24].
Understanding the balance between carbon uptake, recy-
cling and excretion is also important for applications where
the product consists mostly of excretions, such as brewing.
The metabolism of indigestible ketoacids has been well
studied in S. cerevisiae, whose excretions of such ‘fusel oil’
can spoil the product [37]. While the carbon-to-nitrogen
ratio is specific to the nutrient, our results shown in
figure 4 suggest that the balance between excretion and
recycling is not only affected by the respective efficiencies
of these two processes itself, but also the uptake efficiency.
In other words, if a complex nitrogen source contains
relatively much carbon, it may still be effectively recycled if
it is otherwise efficiently assimilated.

To get a better idea of the exact molecules and pathways
involved, these general considerations should be sup-
plemented with whole-genome models of metabolism. It is
challenging to condense those into C-GRAMs due to the
complexity of metabolism; the presence of many parallel
pathways, moonlighting enzymes and metabolic cycles are
just three examples of this complexity. However, some pro-
gress may be made in adapting our generic C-GRAM to
specific organisms. Recently, high-quality metabolic maps
that are aware of limited resource allocation in multiple cel-
lular compartments have been developed for S. cerevisiae
and S. pombe [50,51]. Such maps may enable comparisons
between the coarse-grained proteome sectors and proteome
data in the future.
3.3. Explicit overflow metabolism and energy
generation

We accounted for the distinction between purely respiratory
and respirofermentative growth by adjusting parameters of
the enzyme representing the pathway, similar to one
approach in [20]. Specifically, we adjusted αC, which rep-
resents the stoichiometry of carbon required for biomass
production relative to nitrogen, and kE, the efficiency (maxi-
mal specific flux) of the pathway. This induced differing
behaviours under nitrogen and carbon limitation: carbon
limitation induced a switch to fully respiratory growth
upon decreasing growth rates, but nitrogen limitation did
not. However, an important feature of fermentation, namely
the excretion of overflow metabolites, was not explicitly mod-
elled. Furthermore, we did not include the generation of
cellular energy in the form of ATP. These two omissions are
related, as ATP is generated in different amounts by fermen-
tative and respiratory pathways. A natural extension of the
model would therefore be the addition of an explicit fermen-
tative pathway, and parametrizing metabolic pathways by
relative amounts of ATP generation and consumption.

In this light, we note that our model predicts sharp and
discontinuous changes in gene expression and metabolite
abundances where the switch between optimal metabolic
strategies occurs (figure 2c,d ). Because the substrates and pro-
ducts of the model were identical, our fully respiratory and
respirofermentative enzymes could function as drop-in re-
placements of each other. Therefore, expression of either
one or the other was optimal in our system. Such behaviour
has been observed earlier in a similar C-GRAM framework
[20] with linear carbon metabolism. There, adding explicit
ATP metabolism-induced mixed expression of metabolically
and catabolically efficient pathways.
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Related to this, Basan et al. [52] studied fermentative
fluxes under growth rate modulations in E. coli. They exper-
imentally observed no fermentation below a critical growth
rate, whereas fluxes increased rapidly with growth rate
above the critical point. All results were quantitatively
explained by a model of efficient proteome allocation balan-
cing the need for biomass synthesis and energy generation.
The finite resolution of the data does not enable distinguish-
ing true discontinuity from a continuous transition over a
narrow range of growth rates. What is clear is that fermenta-
tion does not completely replace respiration but rather
supplements it at fast growth. This discussion highlights
how C-GRAM proteins such as our fermentorespiratory
enzyme must be interpreted cautiously as they represent
multiple metabolic responsibilities.
oc.Interface
20:20230206
3.4. Non-protein biomass
A second caveat to our choice modelling biosynthesis in one
simple pathway is the following. While the parameter αC
represented the biomass carbon-to-nitrogen ratio in the
model, it cannot be directly equated to observed dry mass
compositions in real cells (some examples are collated in
electronic supplementary material, text, table S3). This is
partially due to the inclusion of extra carbon that real cells
excrete during fermentation (see previous paragraph and
electronic supplementary material, text S4.3), but also
because the biomass of real cells consists of additional
macromolecules besides proteins. For example, nucleotides
are important cellular constituents with a higher nitrogen
content than proteins, and an efficient cell must synthesize
them in proportion to ribosomal proteins, as most RNA is
ribosomal. Upstream, nucleotide synthesis depends on the
pentose phosphate pathway (PPP), which shares multiple
intermediate metabolites with glycolysis and amino acid
metabolism. The trade-off between glycolytic and PPP flux
has been implied to influence the relationships between
growth rate, yield and oxidative stress [45,53,54]. A coarse-
grained model that includes both protein and nucleotide
synthesis must account for the coordination between the
two carbon metabolic pathways [55], considerably increas-
ing its complexity versus the model presented in this study.

Another large contribution to the biomass of microbes
comes from their cell surface, which mostly consists of
carbon. The interplay between cell surface biosynthesis, size
homeostasis and growth has been explored in coarse-grained
models of bacteria [56–58]. The relative importance of the cell
surface changes with the size and shape of the cell, both of
which depend on growth conditions and fluctuate during
the cell cycle as recently reported in fission yeast [59]. There-
fore, the dry mass density varies as cell mass and cell volume
evolve differently. While balanced growth may be defined in
terms of repeated cell cycles and the dynamic equations may
be studied outside of steady state, the fluctuating dry mass
density invalidates a focus on relative abundances. Account-
ing for the contribution of the cell surface to biomass in our
model would therefore require reformulating the model
into absolute abundances and including the effect of the
cell cycle, which was outside the scope of this study. How-
ever, we expect that the improved understanding of
concepts such as the optimization of resource allocation, the
kinetic modelling of coarse-grained pathways, and the para-
metrization of stoichiometries, as presented in this work,
should be useful in the development of surface-aware
C-GRAMs.

3.5. Conclusion
In summary, we have presented a modelling framework that
describes uptake and metabolism of carbon and nitrogen in
unicellular microbes in a coarse-grained manner. While the
parametrization of the model presented here was chosen
to facilitate comparisons with earlier models of E. coli, the
structure of the model was deliberately kept general. The
framework may therefore be applied to study the optimality
of gene expression and growth across the tree of life. We
hope that extensions of our model will be constructed to
describe overflow metabolism, ATP, nucleotide metabolism,
a cell surface and/or cell density fluctuations.
4. Methods
4.1. Dynamic equations describing the metabolic model
The model from [27] served as our starting point. We disre-
garded non-metabolic proteins and the inhibition of
ribosomes, which were both present in the original model,
because here we aimed to describe the steady-state behaviour
of unperturbed wild-type cultures. We then introduced
additional metabolic pathways representing (i) the uptake of
carbon and nitrogen, (ii) fermentative and respiratory energy
generation, represented by different parametrizations of a simi-
lar enzyme, and (iii) the recycling and excretion of carbon from
complex nitrogen sources containing both nitrogen and carbon.
Simplifications of the model were obtained by setting some
model parameters to zero.

The reactions included in the full model are pictured in
figure 3a; the interpretations of the variables and parameters
in the model are given in tables 1 and 2. These reactions were
modelled by the following formalism of ODEs, which is
explored in more detail in electronic supplementary material,
text S2. The time evolution of the concentration vector x was
decomposed and given by

_x ¼
_a
_m
_p

0
@

1
A ¼ SjðxÞ � mx

SA � ĵðxÞ � jRðxÞ � ma

Ŝ̂jðxÞ � mm
jRðxÞf � mp

0
B@

1
CA: ð4:1Þ

The concentrations described by this equation are those repre-
senting the amino acids a, the other metabolites m ¼ ðk, c, nÞ,
and the proteins p ¼ ðeKre , eKex , eC, eAf , eAr , eN , r, zÞ. The
ribosomal allocation is given by the vector
f ¼ ðfKre , fKex , fC, fA f , fAr , fN , fR, fZÞ (table 1). Fluxes catalysed by
the proteins are given by the vector

j ¼

jKre
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0
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: ð4:2Þ

The enzymes were chosen to follow Michaelis–Menten kin-
etics (for single-substrate enzymes) and products thereof, such
that the rate laws were linear in the enzyme concentration,
linear in the substrate concentrations at low concentrations, and
saturated at high substrate concentrations. Details on the
enzyme kinetics are provided in electronic supplementary
material, text S3. Note that the housekeeping proteins (with
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concentration z) do not catalyse any enzymatic reaction and
therefore did not feature in the fluxes (table 2). Finally, the stoi-
chiometry matrix was given by

S ¼ (SA)T

Ŝ

� �
¼

0 0 0 þ1 þ1 0
�1 �1 0 0 0 gK
1 0 1 �aCf �aCr 0
0 0 0 �aNf �aNr gN

0
BB@

1
CCA: ð4:3Þ

Mass balance was maintained in all internal reactions, mean-
ing columns in the stoichiometry matrix representing these
totalled zero. However, the carbon and nitrogen transporters
imported nutrients from the environment (so columns totalled
+1), and the ketoacids could be excreted to the environment by
the respective enzyme (so this column totalled −1). These con-
siderations imposed the following constraints:

aCf þ aNf ¼ 1, ð4:4Þ
aCr þ aNr ¼ 1 ð4:5Þ

and
gK þ gN ¼ 1: ð4:6Þ

Using the above definitions, the ODEs describing the system
can be written as

_a ¼ jA f þ jAr � jR � ma, ð4:7Þ
_k ¼ gKjN � jKre � jKex � mk, ð4:8Þ

_c ¼ jC þ jK � aCf jAf � aCr jAr � mc, ð4:9Þ
_n ¼ gNjN � aNf jAf � aNr jAr � mn, ð4:10Þ

_eK ¼ fKjR � meK, ð4:11Þ
_eC ¼ fCjR � meC, ð4:12Þ
_eAf ¼ fAf jR � meAf , ð4:13Þ
_eAr ¼ fAr jR � meAr , ð4:14Þ
_eN ¼ fNjR � meN , ð4:15Þ
_r ¼ fRjR � mr ð4:16Þ

and _q ¼ fQjR � mq: ð4:17Þ
The growth rate μ is found by taking the sum of these equations.
Furthermore, using the allocation constraint

P
i fi ¼ 1 and the

concentration constraint
P

i xi ¼ 1, such that
P

i _xi ¼ 0, gives

m ¼ jC þ jN � jKex ¼ kCeC þ kNeN � kKex eKex

k
k þ ksat

: ð4:18Þ

This is equal to the net import of nutrient from the environment
(uptake minus excretion).
4.2. Balanced growth
As mentioned in the main text, we aimed to describe gene
expression allocation under balanced growth in defined environ-
ments. The state of balanced growth was represented in the
model by the steady state of equation (4.1). To compute the
steady state numerically, we evolved these equations until a
steady state was reached.

Given a model parametrization (see §4.3), an initial condition
was partially guessed from the allocation fractions. Because
the protein content in steady state is proportional to the pro-
teome allocation, the initial relative abundance of each protein
was chosen as a fixed multiple of its allocation fraction
parameter. Furthermore, each initial relative metabolite abun-
dance was established manually as 0.05. All together, the initial
concentration vector x0 was set to

x0 ¼
a0
m0

p0

0
@

1
A ¼

a0
(k0, c0, n0)

p0

0
@

1
A ¼

0:05
(0:05, 0:05, 0:05)

0:8f

0
@

1
A, ð4:19Þ

with f the given allocation vector.
The simulations were implemented in the Julia programming
language, using the DifferentialEquations.jl ecosystem [60]. For
solving the concentration ODEs towards steady state, we used
the Rodas5 solver.

4.3. Parametrization
Unicellular organisms grow in one of two principal states:
respirofermentative growth and entirely respiratory growth.
From the point of view of coarse-grained modelling, there are
two primary differences between the two. On the one hand,
the fermentation pathway consists of few different enzymes.
Although the individual enzymes are highly abundant, they
are highly efficient. The aggregate effect on the total expression
burden is that the fermentation enzymes comprise a markedly
smaller proteome fraction than the respiratory pathway
would when providing equal biomass and energy production.
On the other hand, fermentation requires more nutrients
from the environment: carbon is consumed rapidly and con-
verted into ethanol or acetate. We encoded the efficiency
in the rate parameter kA, and the carbon usage in the para-
meter αC. Specifically, with respirofermentative growth
represented by the subscript f and purely respiratory growth
by the subscript r, the above considerations require kAf . kAr

and aCf . aCr .
To obtain a rough estimate of the stoichiometry parameter

in respiratory growth aCr , we used that proteinogenic amino
acids contain approximately four carbon atoms per nitrogen
atom. Using molar masses of 12 and 14 g mol−1 for carbon and
nitrogen, respectively, this ratio translated to (mass-action)

aCr ¼
4� 12

4� 12þ 14
¼ 24

31
: ð4:20Þ

A further rough estimate, namely that the excess carbon
excreted in fermentation is approximately equal in amount to
the carbon converted to biomass, gave the stoichiometry in
respirofermentative growth as

aCf ¼
8� 12

8� 12þ 14
¼ 48

55
: ð4:21Þ

The full metabolic model, described in §4.1, was explored
in figures 3, 4 and 5. The simplified models described earlier
were obtained by setting key parameters to zero. For the
model with parallel carbon and nitrogen assimilation path-
ways, the lack of ketoacid recycling or excretion (figure 2)
was represented by the ketoacid stoichiometry parameter
γK = 0. Additionally, the initial ketoacid fraction k0 was set to
zero, and no allocation was made to the ketoacid enzymes,
i.e. fKex ¼ fKre ¼ 0. For the initial core model, which did not
distinguish respirofermentative and respiratory growth,
fAr ¼ 0 was additionally forced.

4.4. Optimizing ribosomal allocation to maximize
steady-state growth rate

We explored the behaviour of the model under parameter modu-
lations that represented different growth environments, while
assuming that growth was optimized to suit this environment.
The allocation vector f from equation (4.1) was therefore
chosen not as a free parameter, but rather as the result of an
optimization routine that maximized the growth rate μ. The frac-
tion of housekeeping proteins fZ was excluded from the
optimization. The optimization problem can be defined as find-
ing the allocation fraction f that maximizes the growth rate μ,
while satisfying the allocation constraint

X
i

fi ¼ 1: ð4:22Þ
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The computation of the optimal allocation fraction is compli-
cated, because the function mðfÞ is only defined implicitly: a
steady state must be found for each choice of f before the
steady-state growth rate can be extracted. The nonlinearity of the
Michaelis–Menten kinetics prohibits an explicit solution for μ in
terms of f , which would be required by gradient-based optimiz-
ation routines. We were therefore restricted to using a gradient-
free optimization routine, for which we chose the Nelder–Mead
algorithm as defined in the Optim.jl package [61–63]. We used
tolerances of 1.0 × 10−10 and set the initial simplex to Optim.
AffineSimplexer (a = 0.0, b =−0.1). The optimization objective
was set to minimize the doubling time td = log 2/μ.

The allocation constraint (4.22) further complicated the
optimization procedure. We eliminated one element of the allo-
cation vector by imposing the allocation constraint. However,
the Nelder–Mead sampling strategy still allowed for situations
where this constrained element became negative. As a practical
solution for such situations, and for allocation fractions whose
sum exceeded the constraint, we evaluated the doubling time
as the inverse of the machine precision, which served as a
predefined very large value.

The Nelder–Mead algorithm further proved to be sensitive
to numerical inaccuracies when the optimal allocation fraction
had zero elements, i.e. the optimal cell entirely lacked
expression of some proteins. Therefore, we ran the optimization
procedure several times, each with different allocation fractions
set to zero and excluded from the optimization. Each iteration
resulted in one optimal allocation vector; the one with the
largest growth rate (smallest doubling time) was selected as
the global optimum.
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