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Abstract
Motivation: Gene expression is characterized by stochastic bursts of transcription that occur at brief and random periods of promoter activity.
The kinetics of gene expression burstiness differs across the genome and is dependent on the promoter sequence, among other factors. Single-
cell RNA sequencing (scRNA-seq) has made it possible to quantify the cell-to-cell variability in transcription at a global genome-wide level.
However, scRNA-seq data are prone to technical variability, including low and variable capture efficiency of transcripts from individual cells.

Results: Here, we propose a novel mathematical theory for the observed variability in scRNA-seq data. Our method captures burst kinetics and
variability in both the cell size and capture efficiency, which allows us to propose several likelihood-based and simulation-based methods for the
inference of burst kinetics from scRNA-seq data. Using both synthetic and real data, we show that the simulation-based methods provide an ac-
curate, robust and flexible tool for inferring burst kinetics from scRNA-seq data. In particular, in a supervised manner, a simulation-based infer-
ence method based on neural networks proves to be accurate and useful when applied to both allele and nonallele-specific scRNA-seq data.

Availability and implementation: The code for Neural Network and Approximate Bayesian Computation inference is available at https://github.
com/WT215/nnRNA and https://github.com/WT215/Julia_ABC, respectively.

1 Introduction

Gene expression is stochastic in nature due to the random
timing of chemical reactions involving low numbers of key
molecular players, such as genes and mRNAs, as well as the
coupling to other variable cellular processes, such as the cell
cycle. This stochasticity gives rise to cell-to-cell phenotypic
variability in a population of genetically identical cells, with a
broad impact on cellular functions.

Over the last 20 years, a considerable body of research
combining experimental and mathematical studies has pro-
vided a deep understanding of the sources and consequences
of this kind of biomolecular noise (Raj and Van Oudenaarden
2008, Shahrezaei and Swain 2008b, Sanchez and Golding
2013). Single-cell imaging studies of fluorescently tagged pro-
teins were the first to quantify gene expression noise (Elowitz
et al. 2002). Pioneering experimental and mathematical re-
search broadly classified the sources of stochastic gene expres-
sion as either intrinsic due to random timing of the reactions

involved in gene expression or as extrinsic due to the fluctua-
tions of other relevant cellular factors (Swain et al. 2002).
Also, direct time-lapse imaging and inference from snap-shot
data revealed that gene expression could occur in bursts
(Golding et al. 2005, Chubb et al. 2006, Raj et al. 2006, Suter
et al. 2011, Stavreva et al. 2019). Methods such as the single-
molecule Fluorescence In Situ Hybridization (smFISH) and
the MS2 system allowed for the quantification of the gene ex-
pression noise and burstiness at the mRNA level (Vera et al.
2016, Bahrudeen et al. 2019). Most recently, the development
of single-cell RNA sequencing (scRNA-seq) has made it possi-
ble to map global transcript counts in many cells and many
genes routinely and cheaply (Eling et al. 2019). scRNA-seq
data can reveal biophysical mechanisms of gene regulation
when they are combined with mechanistic models (Gorin and
Pachter 2020, Luo et al. 2023). However, due to additional
technical variability in scRNA-seq data, inferring burst kinet-
ics from such data is a challenging mathematical and statisti-
cal problem (Eling et al. 2019).
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As mRNA copy numbers are typically low, it is generally
well accepted that transcription is dominated by intrinsic
noise (Raj et al. 2006), but the cell cycle can contribute to ex-
trinsic expression noise (Thomas 2019). Recent work has
shown that transcription is coupled to cell size in eukaryotic
systems, which underlies mRNA concentration homeostasis
and also underlies extrinsic variability in gene expression
(Kempe et al. 2015, Padovan-Merhar et al. 2015, Ietswaart
et al. 2017, Sun et al. 2020). Accounting for cell size and cel-
lular context transcription is reported to be nonbursty follow-
ing a Poisson distribution in some cellular systems (Battich
et al. 2015, Sun et al. 2020). However, more generally tran-
scription is observed to be bursty and is modelled well using a
so-called telegraph model, in which transcription switches be-
tween on and off states (Raj et al. 2006). The telegraph model
is theoretically extensively analysed, and it is known that it
admits a Beta-Poisson distribution at steady-state (Peccoud
and Ycart 1995, Kepler and Elston 2001, Raj et al. 2006,
Shahrezaei and Swain 2008a, Kim and Marioni 2013). At the
bursty limit of transcription, the solution of the telegraph
model can be approximated as a negative-binomial distribu-
tion characterized by the burst size and burst frequency (Raj
et al. 2006, Shahrezaei and Swain 2008a, Kumar et al. 2015,
Amrhein et al. 2019, Thomas 2020). Moreover, the negative
binomial (NB) distribution is a versatile over-dispersed distri-
bution that is commonly used in bulk and scRNA-seq studies
to model gene expression capturing both biological and tech-
nical dispersion (Anders and Huber 2012, Love et al. 2014,
Tang et al. 2020, Svensson 2020).

The inference of parameters of mathematical models of sto-
chastic gene expression from single-cell data is an important
and challenging problem. Depending on the type of model,
type of data, and the form of extrinsic noise, a range of differ-
ent approaches have been developed recently to tackle this kind
of inference problem (Lillacci and Khammash 2013, Neuert
et al. 2013, Zechner et al. 2014, Fröhlich et al. 2016, Lenive
et al. 2016, Schnoerr et al. 2017, Tiberi et al. 2018, Sun et al.
2020, Davidovi�c et al. 2022, Fu et al. 2022). The inference of
gene expression burst kinetics from scRNA-seq data has its
own unique challenges due to specific kind of technical vari-
ability, complexity and sparsity of such data. Several recent
studies have used single-allele-specific scRNAs-seq data to map
global burst kinetics genome-wide based on the Beta-Poisson
distribution solution of the telegraph model (Kim and Marioni
2013, Reinius et al. 2016, Jiang et al. 2017, Larsson et al.
2019). However, it is still an open question how to take into
account the extrinsic biological and technical variability such
as variation in cell size and capture efficiency in such methods
(Blasi et al. 2017). The model by Jiang et al. (2017) considers
the cell-specific variations via spike-ins data, which is an experi-
mental control that is not commonly available. In addition, the
model by Jiang et al. (2017) does not properly account for low
and variable capture rates in scRNA-seq protocols.
Meanwhile, the recent work by Larsson et al. (2019) applies
Maximum Likelihood Estimation (MLE) directly on the raw
scRNA-seq counts, hereby ignoring the cell-specific extrinsic
variations. Ignoring extrinsic noise in such inference can inflate
the amount of variability attributed to intrinsic noise and could
lead to misleading estimates of the burst kinetics.

Here, we revisit the problem of statistical inference of the
parameters of gene expression from scRNA-seq data focusing
on the role of extrinsic variability. We present a mathematical
model of gene expression measured by scRNA-seq. Our

model appropriately accounts for the extrinsic variability in-
troduced by cell-to-cell variations in scRNA-seq data through
the capture efficiency and cell size. To estimate the gene-
specific kinetic parameters, we implement and compare four
different inference schemes: MLE, methods of moments esti-
mation (MME), an Approximate Bayesian Computation
(ABC) rejection sampling algorithm, and using direct
likelihood-free inference based on a neural network (NN) im-
plementation (Jørgensen et al. 2022). We benchmark these in-
ference methods in a series of applications to synthetic and
real data and discuss which methods work best.

2 Materials and Methods
2.1 Theory and model

The classical model for stochastic gene expression is the so-
called telegraph model (Fig. 1a). It is known that the chemical
master equation of the telegraph model results in a Beta-
Poisson distribution for the mRNA at steady state (Peccoud
and Ycart 1995, Raj et al. 2006, Iyer-Biswas et al. 2009).

However, the statement that the telegraph model results in a
simple Beta-Poisson distribution is only valid in the absence of
any extrinsic noise and cell cycle effects when considering a
gene with a constant transcription rate (ksyn). These assump-
tions do not hold true for real-world applications. As discussed
in the introduction, gene expression is coupled to cell size and
is, therefore, affected by the cell cycle (Battich et al. 2015, Sun
et al. 2020). Moreover, we have recently shown that the tele-
graph model satisfies the so-called stochastic concentration ho-
meostasis condition when the transcription rate scales with cell
size (s) (Thomas and Shahrezaei 2021). This notion implies
that the transcript counts (Xij) of gene i in cell j in a population
of growing and dividing cells (Fig. 1) is distributed as follows:

Xij � Poissonðsjk
0
syn;ipiÞ;

pi � Betaðk0on;i;k
0
off;iÞ;

(1)

where sj is the cell size, and k0x;i ¼ kx;i=ð/i þ aÞ denotes the
gene-specific synthesis and promoter switching rates scaled by
the effective degradation rate. The latter comprises the gene-
specific degradation rate /i and the exponential growth rate a
of the population.

During scRNA-seq, only a fraction of transcripts in each
cell is captured. As we have recently demonstrated, the tran-
script counts observed in scRNA-seq data can be well-
modelled by a binomial model with a cell-specific capture effi-
ciency (probability) denoted by bj (Tang et al. 2020).
Intuitively, the binomial model is a natural choice as each
transcript in a given cell is captured with the same cell-specific
probability bj. Notably, the binomial model can explain the
statistics of drop-out events without the need to invoke any
zero-inflation models (Tang et al. 2020, Svensson 2020).

Using this binomial model, one can show that the distribu-
tion of observed transcripts (xij) in a cell of size sj and capture
efficiency bj still follows the Beta-Poisson distribution but
with a scaled effective synthesis rate:

xij � Poissonðkeff
syn;iðbj; sjÞpiÞ;

pi � Betaðk0on;i;k
0
off;iÞ

(2)

with keff
syn;iðb; sÞ ¼ bjsjk

0
syn;i denoting an effective transcription

rate for the observed counts. The observed counts x are
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necessarily lower than the actual original counts X and we
therefore also refer to these as the downsampled counts. The
dependence of the actual and observed transcript distributions
on b and s is illustrated in Fig. 1b and c. This distribution
then represents the correct likelihood function that should be
used in the inference of kinetic rates from scRNA-seq data as
it takes the biological variability introduced by the cell size
and technical variability introduced by the capture efficiency
into account. In the following, the kinetic rates of the model
are defined relative to the effective decay rate, and as we are
dealing with snap-shot data (and assuming a steady state), we
will omit the primes on the scaled rates.

Detailed descriptions of the likelihood-based and
simulation-based inference methods used in our study can be
found in Supplementary Section S1.

3 Results
3.1 Benchmarking on synthetic data

Our aim is to infer the parameters of the classic model of sto-
chastic gene expression, the telegraph model (Fig. 1a), from
scRNA-seq data. As illustrated in Fig. 1b, gene expression is
coupled to the cell size, and scRNA-seq observations are af-
fected by heterogeneous cell-specific capture efficiencies inher-
ent to scRNA-seq protocols. This makes inference of the
parameters of the gene expression, also referred to as burst ki-
netic parameters in this study, from downsampled scRNA-seq
data a challenging task (as illustrated in Fig. 1c). As discussed
in Section 2, the inference methods we are considering firstly
include the existing bare maximum likelihood (BMLE) and
bare method of moments estimation (BMME), in which raw
scRNA-seq counts are used for inference (Larsson et al.
2019). In this study, we have introduced modified MLE and
MME methods (denoted simply as MLE and MME), where
the variability in the cell size and capture efficiency is taken
into account in an approximate manner (see Supplementary
Sections S1.2.1 and S1.2.2). We have also introduced two
likelihood-free approaches, the approximate Bayesian compu-
tation rejection sampling scheme (ABC) and a direct inference
approach based on Bayesian neural networks (NN) recently
employed by Jørgensen et al. (2022) and based on Gal and
Ghahramani (2016), Kendall and Gal (2017), and Kendall
et al. (2017) (see Supplementary Sections S1.3.1 and S1.3.2).
We note that in the ABC and NN methods, the cell size and
capture efficiency has been taken into account by binomial
down-sampling of the simulated gene expression using an ef-
fective capture deficiency (see Section 2 and Supplementary
Sections S1.3.1 and S1.3.2).

We begin the result section by benchmarking the perfor-
mance of the different inference methods on synthetic datasets
that are generated from known gene-specific parameter sets
as discussed in Supplementary Section S1.3.3. By comparing
the inferred parameter sets to the ground truth, this section
thus presents a self-consistency check that allows for an evalu-
ation of the different methods in ideal settings. The synthetic
datasets include different numbers of cells, spanning from 200
to 5000. In each case, we sample between 1000 and 7000 dif-
ferent combinations of kinetic parameters, repeating each
combination 20 times.

When assuming a fixed capture efficiency of 1.0, we find
that all methods yield accurate and precise predictions for
single-allele data. We summarize the results of this analysis in
Supplementary Figs S2–S4 in the supplementary material.
However, this scenario is not realistic; in real-world experi-
ments, the capture efficiency is variable and much lower than
one. So, next, we created another synthetic dataset for single-
allele measurements with b ¼ 0:06 (Klein et al. 2015, Tang
et al. 2020). For this dataset, we find that the BMLE and
BMME procedures by Larsson et al. (2019) lead to a pro-
nounced systematic bias (offset) between the predictions and
the ground truth for koff and ksyn as well as the ratio of the
two (Fig. 2). As a result, the scores of many performance met-
rics, including the mean squared and absolute errors, fall be-
low those obtained from randomly assigning values to these
parameters (Supplementary Figs S7 and S8). This makes sense

Figure 1. Model of stochastic gene expression and the effect of the cell

size and sequencing capture efficiency on observed transcript count

distributions. (a) An illustration of the telegraph model of stochastic gene

expression and its associated parameters. The gene switches between

an inactive and active state, and mRNAs are transcribed only from the

active state. (b) Illustration of downsampling in scRNA-seq with a

constant b ¼ 0:5. (Note that in reality, b tends to be smaller and varies

across the cells.) The effective transcription rate (keff
syn) is proportional to

the cell size in the original transcript counts (right) and both the cell size

and capture efficiency in the observed counts (right). (c) Distributions of

original mRNA counts in cells with constant size for three specific

parameter sets for the telegraph model (left) and their corresponding

downsampled distribution (right). The distribution of cell-specific capture

efficiencies (b) used in downsampling is illustrated in the middle upper

arrow (sampled from a log-normal distribution as described in

Supplementary Section S1.3.3). The challenge lies in using the

downsampled observed count distribution that is also affected by

variability in the capture efficiency and cell size to infer the parameters of

the original distribution (middle lower arrow).
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as these methods effectively assume that the capture efficiency
is 100% by not considering any normalization. Moreover,
both the BMLE and BMME procedures fail to attribute pa-
rameter values to a large fraction (about 65%) of the dataset,
yielding no parameter estimates and also producing outliers
when the optimization methods fail. We note that while the
modified MLE correctly includes capture efficiencies and
therefore does not suffer from the systematic bias observed in
BMLE, it suffers from numerical problems in the evaluation
of the modified likelihood and the optimization (see
Supplementary Figs S5 and S6). In contrast, our simulation-
based approaches, rejection ABC and the NN, consistently
yield accurate and precise predictions across all datasets and
kinetic parameters. They thus consistently yield the lowest
mean absolute and mean squared errors among all six meth-
ods, and the true values lie within the assigned 95% confi-
dence interval of both methods in the majority of cases
(Fig. 2).

As seen in Fig. 2, the accuracy of inferring koff is the poor-
est among the kinetic parameters, suggesting some degree of
nonidentifiability. Also, as expected, increasing the number of
cells from 200 to 5000 improves the performance metrics of
all methods. Interestingly, the NN has the best performance
at small cell numbers. We also note that only the MME, ABC,
and NN attribute confidence intervals while the remaining
methods solely provide the best fit (Supplementary Figs S4
and S8). The MME generally leads to narrower confidence
intervals than both the ABC and NN, but a significantly
larger fraction of the true values do not lie within the error
bars of the MME, suggesting that the MME significantly
underestimates the prediction error.

Finally, we developed a modified MME, ABC, and NN
method that works for nonallele-specific data (Supplementary
Section S1.4) and benchmarked their performance on syn-
thetic nonallele-specific data. We find that the NN yields
smaller residuals than the other methods. The results are

summarized in Supplementary Fig. S9 in the Supplementary
Material. So, overall, we propose that the NN method is the
most robust approach, and we mostly use this approach in
the applications to real data in the rest of this study.

3.2 Sparsity of gene counts leads to wrong model

identification

Even if expression counts are drawn from a Beta-Poisson dis-
tribution, the counts may equally well be fitted by other distri-
butions depending on the underlying parameters. For
example, the Beta-Poisson distribution reduces to a negative
binomial distribution for large kon; and to a Poisson distribu-
tion when the effective synthesis rate, and consequently the
mean, is very small (Shahrezaei and Swain 2008a, Thomas
2020, Ham et al. 2021). These alternative distributions have
fewer parameters than the Beta-Poisson distribution. We hy-
pothesized that these identifiability issues could be exacer-
bated in scRNA-seq data through low capture efficiency
(Fig. 1c).

To investigate how this aspect affects practical parameter
identification, we use the Akaike information criterion (AIC),
which is a commonly used metric for model selection and
accounts for both the quality of the fit (the likelihood of the
data) and the complexity of the model (the number of param-
eters). We generated a simulated dataset (500 cells and 7000
genes) using the Beta-Poisson model, and we calculated the
AIC using the following three models and parameter choices
for each gene:

• Beta-Poisson: Ground truth parameters were used.
• Negative binomial: R package bayNorm (Tang et al.

2020) (an NB model for nonallele specific scRNA-seq
data) was applied to the raw counts to infer the NB
parameters for calculating the AIC.

• Poisson: Raw counts were scaled by b̂, after which the
mean expression of each gene was calculated. For each
gene in each cell, the mean expression was multiplied by b̂
to be the mean parameter in the Poisson distribution,
which was used for calculating the Poisson model AIC.

The genes were then assigned to the one among the three
models (Beta-Poisson, negative binomial or Poisson) that
yielded the lowest AIC value (Notably this model preference
is strong as illustrated by the distribution of AIC weights, see
Supplementary Fig. S10). As the data were generated from a
Beta-Poisson model, one might expect this model to always be
selected; however, for many genes, we found that one of the
simpler models performed better based on the AIC score. This
can be also visually inspected for a sample of genes, where
simpler models have a likelihood very similar to data (see
Supplementary Figs S11–S13). The genes for which the
Poisson and NB models were preferred tend to have a lower
mean expression (Fig. 3a), which highlights the fact that there
is less information for estimating the Beta-Poisson parameters.
Indeed, ksyn, which regulates the mean expression, has the
highest impact on the identifiability of the Beta-Poisson model
(Supplementary Fig. S14). This indicates that inference of
burst kinetics is only possible for genes that have a sufficiently
high expression—which was to be expected. In line with this
result, we observe that the inference accuracy is poorer for the
lowly expressed genes in our synthetic data (Fig. 3b,
Supplementary Fig. S16). The same qualitative conclusions
can be drawn via the Widely Applicable Information

(a)

(b) (c)

Figure 2. Comparison between different modelling approaches for allele-

specific synthetic data with b ¼ 0:06. (a) Logarithmic residuals across all

four parameters for a dataset containing 1000 cells. (b, c) The panels

contain four performance metrics for data containing 200 and 5000 cells,

respectively. These metrics are the coefficient of determination (R2), the

mean absolute error (MAE), the fraction of the true parameter values that

lie outside of the 95% confidence intervals (O95), and the width of the

95% confidence intervals in logarithmic space (FW95). Only the NN, ABC,

and MME supply confidence intervals. For each number of cells, the

synthetic dataset contains 7000 genes with 20 repetitions each. All

metrics (except for FW95) are formulated such that a lower value implies

a better fit. Note that the modified MLE is omitted from this summary as

our implementation suffers from numerical issues (see Supplementary

Fig. S5).
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Criterion (WAIC) (Watanabe 2010) for model selection
(Supplementary Fig. S15, and see Supplementary Section
S1.4.1 for detailed formula for calculating WAIC via ABC),
however, we observe in this case simpler models are less com-
monly selected. As WAIC results is expected to converge to
AIC for large sample size and also it relies on ABC samples,
we believe the discrepancy maybe due to sample size, or the
effect of specific choice of prior or the approximate nature of
ABC.

3.3 Application to real-world data
3.3.1 Estimating kinetic parameters from individual allele
data

We used the NN method to reassess the allele-specific data
from Larsson et al. (2019) containing 10 727 genes and 224
cells. The data contain missing values. The number of missing
values varies between different genes. Here, we only include
genes with mean expression across nonmissing values above
1. As shown above, this is important as genes with low counts
do not contain enough information. This first filtering leaves
us with 1992 genes. Of these genes, we remove genes with a
large number of missing values. This leaves us with 1953
genes. We find that the NN yields kinetic parameter estimates
that are consistent with those obtained from the BMLE proce-
dure by Larsson et al. (2019) when assuming that b ¼ 1:0.
However, as seen in Supplementary Fig. S17 using realistically
small and cell-specific capture efficiencies leads to a systematic
shift to higher burst sizes and a wider spread in burst fre-
quency. The choice of prior used in training our NN inference
method has only a small effect on the inference results, which
suggests the robustness of our method (Supplementary Fig.
S17). Also, we find as expected the distribution of cell specific
keff

syn to be wider and shifted to the lower compared to the dis-
tribution of ksyn due to the relatively wide distribution of cap-
ture efficiencies (Supplementary Fig. S18).

As investigated in the original study by Larsson et al.
(2019), we look at the link between the presence of TATA ele-
ments and Initiator (Inr) and the burst kinetics using our in-
ferred parameters. We find that the NN yields kinetic
parameter estimates that are qualitatively consistent with
those obtained from the original MLE procedure by Larsson
et al. (2019) such that genes with TATA elements have larger
burst size (Fig. 4a and b). By filtering out lowly expressed

genes, our analysis reveals that genes with only Inr can boost
burst sizes (Fig. 4). Similar qualitative results can be achieved
via the MLE approach adapted by Larsson et al. (2019) after
removing the lowly expressed genes (Fig. 4). We note that we
do not observe consistent and significant results for the link
between the presence of TATA elements and Inr and burst fre-
quency using different inference methods (Fig. 4 and
Supplementary Fig. S19).

Based on the present dataset, we find the simulations to
successfully recover the observed relation between the drop-
out rate and the mean expression for each allele
(Supplementary Fig. S20), providing further support for the
accuracy of our mathematical model of scRNA-seq data.

Finally, in our inference methods, the only source of biolog-
ical and technical variability is the cell size and capture effi-
ciency. To test the validity of this assumption in real data, we
simulated data for two independent alleles from 100 cells
down-sampled by the same capture efficiency using parame-
ters inferred by the NN method on the single-allele data of
Larsson et al. (2019). We then computed the correlations be-
tween the two alleles in simulated data and plotted the results
against the correlation between the two alleles in real data
(Supplementary Fig. S21). We find a clear linear relationship
between the simulated correlation and the real correlation.
This indicates that it is reasonable to consider cell size and
capture efficiency as an important source of extrinsic noise
since we observe most genes to have a significantly positive
correlation between the two alleles, captured in our simula-
tions. These results suggest that the observed positive correla-
tion between the gene expression between the two alleles is
well-explained by variation in capture efficiency across cells.
So, one does not need to invoke correlated activity between
the alleles or other significant sources of extrinsic noise.
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Figure 3. Genes with low counts are assigned to simpler models. (a)

Based on synthetic data generated by the Beta-Poisson model, genes

were labelled to be from one of the three models according to their AIC

value. The mean counts for genes assigned to each model are shown. (b)

The ratios between inferred and true parameter values in each group of

genes are shown. Estimates from genes which are correctly assigned to

the BP model are closer to ground truth values.
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This further motivates the approach we have proposed for the
inference of gene expression parameters from nonallele-
specific data. Interestingly, for some genes in the real data,
there is a negative correlation between two alleles, which
might indicate anti-correlation in the activity of those genes.

3.3.2 Estimating kinetic parameters from nonallele-specific
scRNA-seq data

In this section, we analyse scRNA-seq data of mouse brain
cells from two recent studies (Mizrak et al. 2019, Ximerakis
et al. 2019) to highlight the application of our inference meth-
ods (MME, ABC, and NN) on nonallele-specific data that as-
sume that the counts are related to the sum of two identical
but independent alleles (Supplementary Section S1.4).

The data from Mizrak et al. (2019) contain 28 407 cells
from mouse brains (after removing doublets) and covers
multiple cell types like neuronal progenitors [active neural
stem cells, transit amplifying cells, and neuroblasts
(aNSCþTACþNB)], oligodendrocyte progenitor cells
(OPCs), committed oligodendrocyte precursors (COPs), oli-
godendrocytes (OLG), microglia (MG), astrocytes (ASC), and
neurons. In addition, we explored the data from mouse brains
Ximerakis et al. (2019), where there are 37 069 cells collected
from either young or old mice. The dataset contains various
cell types, including neural stem cells (NSC), mature neurons
(mNEUR), OPC, and other cell types from young and old
mice.

Cell type markers are by definition the ones that are overex-
pressed in a particular cell type but not in others. Here, we in-
vestigate whether these gene expression alterations are
associated with changes in burst size or burst frequency.
When comparing stem cells (aNSCþTACþNB) with other
differentiated cells, all inference methods reveal higher burst
frequencies for stem cell markers in stem cells than differenti-
ated cells like neurons and oligodendrocytes (Fig. 5). A differ-
ent visualization of these data in Supplementary Fig. S23
shows a clear correlation between the mean expression and
burst frequency. To a lower degree, we see that the burst size
increases with the mean expression (Supplementary Fig. S22)
(though the burst size from MME is not consistent with that
obtained from the ABC and NN). Interestingly, cells at differ-
ent stages of oligodendrocyte differentiation (COP, OPC, and
oligodendrocyte) tend to have either slightly higher or similar
burst frequency/size to the other mature cell types.

Our second dataset from Ximerakis et al. (2019) contains
data from both young and old brains and supports the men-
tioned relationship between the mean expression and burst
frequency (but not burst size) for the stem cell markers in
stem cells regardless of brain age (Fig. 6 and Supplementary
Fig. S24). Ximerakis et al. (2019) also reported that genes
encoding ribosomal subunits have a reduced expression upon
ageing. Here, we again ask whether it is the burst frequency
or burst size this time in the ribosomal genes that changes fol-
lowing changes in the mean expression upon ageing in the dif-
ferent cell types. We find that, while changes in the mean
expression of ribosomal genes in the young and old cells fol-
low different trends in the stem/progenitor cells [NSC
(Ximerakis et al. 2019), ASC (Clarke et al. 2018, Ximerakis
et al. 2019), and OPC (Ximerakis et al. 2019)] compared
with other mature cell types, results from NN, MME, and
ABC show that as before mainly the burst frequency but not
burst size is modified to regulate mean expression
(Supplementary Figs S25 and S26).

4 Discussion

In this article, we revisited the problem of inferring the burst
kinetics of gene expression from scRNA-seq data. We provide
a novel expression for the likelihood to be used for single-
allele scRNA-seq data, which allows us to take cell-to-cell var-
iation in cell size and capture efficiency correctly into account.
We show that numerical challenges can make maximum
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likelihood estimation (MLE) unreliable. To overcome this lim-
itation, we introduce likelihood-free approaches, including a
modified method of moments (MME) and two simulation-
based inference methods. We demonstrate the reliability and
flexibility of the simulation-based inference methods through
a series of benchmarks on synthetic and real data. We show
that these methods also provide confidence intervals and
could be easily generalized to nonsingle-allele situations,
which makes them more widely applicable. We obtain the
best results using simulation-based inference based on
Bayesian neural networks (Gal and Ghahramani 2016,
Jørgensen et al. 2022). Our analysis suggests the importance
of properly taking into account cell size and capture efficiency
variation and can be used to guide the design of scRNA-seq
experiments suitable for reliable estimates of gene expression
parameters. While, as expected, more cells and more sequenc-
ing depth will yield better results, we find that about 1000–
2000 cells are sufficient to estimate the burst kinetics
accurately.

Recent studies have used the maximum likelihood estimation
method (Larsson et al. 2019) or Bayesian method (Kim and
Marioni 2013) using a Beta-Poisson model without any nor-
malization. As we show in this article, this approach can result
in biased and distorted distributions of estimates for burst ki-
netic parameters, including the burst size. Also, we show that
burst kinetics parameters become unidentifiable for lowly
expressed genes and that this property could result in mislead-
ing results. While maximum likelihood estimation has good
theoretical guarantees, computational challenges in evaluating
the likelihood and also challenges in optimization can make
this method less favourable. Indeed, recent studies have like-
wise highlighted the challenges with maximum likelihood esti-
mation and the nonidentifiability for similar models of
stochastic gene expression (Ham et al. 2021, Fu et al. 2022).

There are few available allele-specific scRNA-seq datasets,
but UMI-based nonallele-specific scRNA-seq data are highly
abundant. We have therefore modified the MME method and
our simulation-based methods to infer the kinetic parameters
directly from nonallele-specific (e.g. UMI) count matrices.
Although we assume that the two gene copies have identical
kinetic parameters and transcribe independently in this study,
we note that these assumptions can easily be relaxed for
simulation-based methods. Indeed, some recent studies have
suggested evidence for allelic imbalance and dependence in
burst kinetics across the gene alleles in existing scRNA-seq
data (Choi et al. 2019, Mu et al. 2021). We applied our meth-
ods to two mouse brain scRNA-seq datasets. Our results indi-
cate that gene regulation across stem cells and the ageing of
the brain tends to be associated with the regulation of burst
frequency and, to some degree, burst size. A recent study has
proposed that epigenetic regulation of burst frequency in fit-
ness genes upon stress could underlie the evolution of cancer
(Loukas et al. 2023).

We note here that we are neglecting other possible sources
of extrinsic variability, such as fluctuations in the kinetic rates
due to fluctuations of other molecules in the cells (Ham et al.
2021). However, we have shown here that many gene expres-
sion correlations between alleles can be explained by account-
ing for variations in cell size and capture efficiency. In fission
yeast, we have previously shown that it is possible to capture
most of the extrinsic variability observed in gene expression
by accounting for cell size variation (Sun et al. 2020). Other
studies have included the effect of different cell cycle stages,

replication and gene copy numbers (Fu et al. 2022). Sun and
Zhang (2020) used allele-specific expressions in diploid cells
and intrinsic and extrinsic noise decomposition to study the
genetic factors affecting gene expression noise. We note that
more detailed mechanistic models of RNA-sequencing proto-
cols can help to explain more of the technical noise and biases
in the data (Dyer et al. 2019, Fischer et al. 2019, Davies et al.
2021, Gorin and Pachter 2022, Luo et al. 2023).

Inferring kinetic parameters of stochastic gene expression
from scRNA-seq data is challenging. First and foremost, the
data are sparse and have missing values. This characteristic of
the data presents an obstacle to any attempt to estimate the
parameters accurately. In addition, the extrinsic variables,
such as cell size and capture efficiency, are usually not known
[for an exception, where cell size has been measured along
with scRNA-seq, see Saint et al. (2019)]. Furthermore, meas-
urements or theoretical considerations that constrain the ki-
netic parameters’ range are not readily available. Statistical
analysis, such as the one presented in this article, would thus
benefit from additional measurements or other constraints
that would provide tighter priors. While many researchers
have already studied the inference of kinetic parameters from
high-throughput data, such as scRNA-seq data, several
aspects are hence, by far, not fully explored. An important
area of future research is using multi-omic single-cell data.
The data are quickly becoming available and could thus in-
form our understanding of global gene expression variability
(Lee et al. 2020, Argelaguet et al. 2021). Some research is al-
ready starting in this important area based on both statistical
data integration (Argelaguet et al. 2021, Rautenstrauch et al.
2022, Rodosthenous et al. 2021) and model-based inference
(La Manno et al. 2018, Bergen et al. 2020, Gorin and Pachter
2022). Ultimately, by harnessing gene-gene correlations, such
multi-omic single-cell datasets could be used to infer genetic
networks (Stumpf 2021, Qiu et al. 2022).

In summary, we proposed a simple and accurate method to
take the variation of cell size and capture efficiency into ac-
count when performing the inference of burst kinetics from
scRNA-seq data. We provide implementations of our
likelihood-free approaches that are robust and flexible and
apply them to synthetic and real data. Our analysis shows
how state-of-the-art inference tools can help us to extract
valuable information missed by standard approaches.

Acknowledgements

The authors acknowledge Ioannis Loukas and Paola Scaffidi
for early discussions on the challenges in inferring burst kinet-
ics from scRNA-seq data. They thank Zekai Li and Dimitris
Volteras for providing detailed comments on the manuscript.

Supplementary data

Supplementary data are available at Bioinformatics online.

Conflict of interest

None declared.

Funding

This work was supported by the Oli Hilsdon Foundation
through The Brain Tumour Charity [GN-000595] in

Burst kinetic inference 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/7/btad395/7206880 by C
atherine Sharp user on 22 January 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad395#supplementary-data


connection with the program ‘Mapping the spatio-temporal
heterogeneity of glioblastoma invasion’; a UKRI Future
Leaders Fellowship [MR/T018429/1 to P.T.]; and the
Engineering and Physical Sciences Research Council [EP/
N014529/1 to V.S.]. Finally, A.C.S.J. was supported by the
Eric and Wendy Schmidt AI in Science Postdoctoral
Fellowship, a Schmidt Futures programme.

Data availability

Regard to real experimental data used in this study, scRNA-
seq allele specific data can be downloaded from https://
github.com/sandberg-lab/txburst; scRNA-seq data from
Mizrak study can be downloaded from GEO: GSE109447;
scRNA-seq data from Ximerakis study can be downloaded
from GEO: GSE129788.

References

Amrhein L, Harsha K, Fuchs C. A mechanistic model for the negative bi-

nomial distribution of single-cell mRNA counts. bioRxiv, 2019:

657619.
Anders S, Huber W. Differential Expression of RNA-Seq Data at the

Gene Level–The Deseq Package. Heidelberg, Germany: European

Molecular Biology Laboratory (EMBL), 2012.

Argelaguet R, Cuomo AS, Stegle O et al. Computational principles and

challenges in single-cell data integration. Nat Biotechnol 2021;39:

1202–15.

Bahrudeen MN, Chauhan V, Palma CS et al. Estimating RNA numbers

in single cells by RNA fluorescent tagging and flow cytometry. J

Microbiol Methods 2019;166:105745.
Battich N, Stoeger T, Pelkmans L. Control of transcript variability in sin-

gle mammalian cells. Cell 2015;163:1596–610.
Bergen V, Lange M, Peidli S et al. Generalizing RNA velocity to transient

cell states through dynamical modeling. Nat Biotechnol 2020;38:

1408–14.

Blasi T, Buettner F, Strasser MK et al. cgcorrect: a method to correct for

confounding cell–cell variation due to cell growth in single-cell tran-

scriptomics. Phys Biol 2017;14:036001.

Choi K, Raghupathy N, Churchill GA. A Bayesian mixture model for

the analysis of allelic expression in single cells. Nat Commun 2019;

10:1–11.
Chubb JR, Trcek T, Shenoy SM et al. Transcriptional pulsing of a devel-

opmental gene. Curr Biol 2006;16:1018–25.
Clarke LE, Liddelow SA, Chakraborty C et al. Normal aging induces

a1-like astrocyte reactivity. Proc Natl Acad Sci USA 2018;115:

E1896–905.

Davidovi�c A, Chait R, Batt G et al. Parameter inference for stochastic

biochemical models from perturbation experiments parallelised at

the single cell level. PLoS Comput Biol 2022;18:e1009950.

Davies P, Jones M, Liu J et al. Anti-bias training for (sc) RNA-seq: ex-

perimental and computational approaches to improve precision.

Brief Bioinf 2021;22:bbab148.

Dyer NP, Shahrezaei V, Hebenstreit D. LiBiNorm: an htseq-count ana-

logue with improved normalisation of smart-seq2 data and library

preparation diagnostics. PeerJ 2019;7:e6222.
Eling N, Morgan MD, Marioni JC. Challenges in measuring and under-

standing biological noise. Nat Rev Genet 2019;20:536–48.
Elowitz MB, Levine AJ, Siggia ED et al. Stochastic gene expression in a

single cell. Science 2002;297:1183–6.

Fischer DS, Fiedler AK, Kernfeld EM et al. Inferring population dynam-

ics from single-cell RNA-sequencing time series data. Nat Biotechnol

2019;37:461–8.
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