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A B S T R A C T   

In October 2022 British households entered a heating season amidst exceptionally high energy prices – squeezing 
household incomes and increasing fuel poverty. This study analyses electricity and gas consumption in 5594 
households from October 2022 to March 2023 using XGBoost counterfactual models trained on historic data. 
With survey data collected in early 2023 we investigate how consumption reduction correlated with energy- 
saving actions, household and dwelling characteristics, and indicators of underheating and fuel poverty. 

Our analysis showed that electricity consumption was 8.4% lower and gas consumption 10.8% lower than the 
previous winter (accounting for weather), saving consumers around £29/month. Despite this and a government 
subsidy, energy bills were still around £34/month higher than the previous winter (£158/month (median); £500/ 
month (95th percentile)); price elasticity was − 0.10 for electricity and − 0.07 for gas consumption. Greatest 
consumption reduction correlated with largest reported changes to heating practices, in particular heating for 
fewer hours and turning thermostats down lower. We find evidence of greater fuel poverty and underheating 
among the greatest energy reducers. 

This paper presents novel methods for analysing energy saving using smart meter data for changes without a 
control group, plus novel findings related to short-term price elasticity and the energy-saving impacts of 
behaviour change.   

1. Introduction 

Since early 2022 households in Great Britain (GB1) have been 
experiencing exceptional rises in inflation and interest rates, particularly 
in food, fuel and energy prices [1]. As a result, many households have 
been struggling to pay bills, keep warm and fed, and stay healthy [2]. A 
combination of a global gas shortage following Russia’s invasion of 
Ukraine in February 2022 and economic downturn during the COVID-19 
pandemic has led to what the IEA has called a “full-blown global energy 
crisis” [3], with billions facing the “greatest cost-of-living crisis in a 
generation” [4]. 

This study focuses on the impact of the cost-of-living crisis during 
winter 2022/23, since in Britain this is when domestic energy 

consumption is highest due to heating demand. In September 2022 the 
pound (GBP) dropped to its lowest value2 (73.61) since the first lock
down in 2020, down from 82.94 in January 2022, and had only partially 
recovered to 78.90 by the end of March 2023 [5]. 2022 also saw high 
inflation in GB (up to 11.1%, a 41-year high) caused by a combination of 
high global demand for consumer goods and disrupted supply chains 
linked to the COVID-19 pandemic, and “soaring energy and fuel prices” 
largely driven by Russia’s invasion of Ukraine [6]. Following the inva
sion oil prices saw an immediate rise and petrol and diesel prices at the 
pump set new records in July 2022 (191.6p/litre and 199.2p/litre, 
respectively), with prices falling only gradually over the next 12 months. 
Wholesale gas prices had started rising in the second half of 2021, which 
were slowly passed on to consumers. 

* Corresponding author. 
E-mail address: e.webborn@ucl.ac.uk (E. Zapata-Webborn).   

1 Great Britain consists of the United Kingdom (UK) excluding Northern Ireland (which is part of the Irish power grid and hence not part of this study).  
2 Broad Effective exchange rate index, Sterling (January 2005 = 100). 
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In 2017 Ofgem3 introduced a price cap (a limit on the daily standing 
charge and kWh unit cost) for customers on pre-payment meters, and in 
2019 a price cap for most other domestic customers, i.e. those on a 
standard variable tariff. From the start of 2021 these were combined into 
the ‘Default Tariff Cap’ or ‘energy price cap’. In early 2022 this increased 
by 54%, so that the ‘typical’ direct-debit household would see annual 
energy bills rise from £1277 to £1971 per year. To prevent a further rise 
of 80% above the early 2022 cap, from 1st October the Energy Price 
Guarantee (EPG) was introduced to keep ‘typical’ annual bills at around 
£2500/year.4 Additionally, the Energy Bill Support Scheme delivered a 
£400 subsidy over six months from October 2022 to March 2023 to dual- 
fuel customers (equivalent support was available for single-fuel cus
tomers) [6,7]. 

Recent decades have seen gas prices rise in real terms while demand 
has dropped (due to a number of factors, from improved home insulation 
to changes in heating behaviours) [8]. The relationship between price 
and demand is complex but generally the price elasticity, a measure of 
how much demand changes with a given change in price, is considered 
low for energy, both in the short and long term. Estimates for domestic 
gas price elasticity in the UK have ranged from − 0.10 to − 0.28 (i.e. for a 
10% increase in price we would expect gas demand to decrease by be
tween 1% and 2.8%), with some indications that lower income house
holds show greater price elasticity (greater sensitivity to rising prices) 
[8]. Pellini estimates long-run electricity price elasticity in the UK to be 
− 0.607, similar to Sweden (− 0.668) and Spain (− 0.699) but much 
greater than the Netherlands (− 0.081) and France (− 0.266) [9]. A meta- 
analysis estimated short-term and long-term electricity price elasticity in 
the US to be − 0.35 and − 0.85, respectively [10]. One of the challenges 
of estimating energy price elasticity is that households may choose (or 
feel compelled) to reduce their energy consumption due to multiple cost- 
of-living pressures, not simply rising energy bills. 

To tackle rising inflation the Bank of England increased interest rates 
every month from December 2021 (at 0.1%) to August 2023 (5.5%). 
Rising rates affected mortgage payments while private renters saw 
average rent rises of 5.5% from August 2022 to August 2023 [6]. One 
survey found 29% of UK adults with a mortgage and 34% of renters saw 
their payments increase between August 2022 and January 2023 [11]. 
Over the same period food prices rose by over 28%,5 peaking in March 
2023 at 19.1%; the highest rate of food price increase since 1977 [12]. In 
March 2023 a survey of over 10,000 people found that almost 20% of 
respondents had to eat less or skip meals in the preceding month (43% of 
those receiving benefits) [13]. Between April 2022 and March 2023, the 
Trussell Trust distributed almost 3 million emergency food parcels; over 
twice as many compared with five years previously. The Trussell Trust 
reports a particular increase in employed people requiring help whose 
incomes are insufficient to afford essential items [14]. A survey by the 
Financial Conduct Authority of over 5000 people in January 2023 found 
that the number of adults missing bill/credit payments in at least three 
of the past six months increased from 4.2 million (8%) in May 2022 to 
5.6 million (11%), with many more finding them a ‘heavy burden’ (7.8 
million (15%) to 10.9 million (21%)). Additionally, over half of UK 
adults (28.4 million people) reported greater anxiety or stress due to the 
rising cost of living [11]. 

Low-income households are disproportionately affected by rising 
inflation due to spending a greater proportion of their income on energy 
and food, with electricity and gas bills making up 7.4% of total spending 
of those in the lowest income decile in 2021/22, while those in the 

highest income decile only spent 3.5% on energy bills [6]. The number 
of households in fuel poverty6 by the end of winter 2022/23 is yet to be 
reported, but between 2021 and 2022 the number in England is esti
mated to have risen by around 100,000 households (from 13.1% to 
13.4%). At the same time the average ‘fuel poverty gap’ (the fuel bill 
reduction needed to lift the average household out of fuel poverty) rose 
33% to £338 [15]. The percentage in fuel poverty is projected to rise to 
14.4% in 2023 [16]. However, a data-driven study on fuel poverty and 
meter disconnection led the authors to conclude that “the English defi
nition of fuel poverty considerably underestimates need” and that a 
better definition is required [17]. A study that defined fuel poverty as 
spending more than 20% of net income on fuel estimated that from April 
2023 20% of households would have been fuel poor if not for increased 
support for those on social security; with the support, around 15% of 
households would be fuel poor [18]. When households are unable to 
afford their energy bills homes end up cold and may have issues with 
mould and damp. Such living conditions have been linked to excess 
winter deaths, cardiovascular and respiratory diseases, mental health 
problems, exacerbation of conditions such as arthritis, as well as lower 
educational attainment and emotional wellbeing among children 
[19–21]. Figures compiled by the End Fuel Poverty Coalition estimate 
that living in a cold home caused 4706 excess winter deaths in winter 
2022/23 in GB [22]. 

To date there have been few studies on the impact of the cost-of- 
living crisis on actions taken by householders to reduce their energy 
consumption and on their resulting energy consumption and energy bills 
(a gap we address in this paper). Consumer group Which? report an 
estimated 13 million UK households (46%) have not been turning on 
their heating in cold weather; 51% of those with a household income 
below £20,000; 32% of those with income over £80,000. The most 
popular actions taken to avoid energy use were wearing extra layers 
indoors (54%), reducing oven use (41%) and taking fewer or shorter 
showers (33%) [23]. Early analysis of the 2023 SERL Energy Survey by 
Huebner et al. [24] found householders generally reported making 
increased efforts to save energy, in particular closing curtains at night 
and turning lights off in unused rooms. Putting on more clothes to 
reduce heating use was one of the five most popular actions, and 40% of 
those surveyed reduced their boiler flow temperature. A related study 
reported a rise in the proportion of households setting their thermostat 
lower than 18 ◦C from 6.7% in winter 2020/21 to 15.2% in winter 2022/ 
23 [25]. 

During the pandemic electricity and gas use increased, particularly 
during winter lockdowns, but by summer 2021 energy use had returned 
to pre-pandemic levels, and through winter 2021/22 gas use was slightly 
down on pre-pandemic levels [26]. In 2022 average household elec
tricity consumption was down by 6% compared to 2021 (after temper
ature adjustment) and annual domestic gas use was 12% lower than 
2021 when temperature adjusted. The Office for Budget Responsibility 
estimated in March 2023 that weather-adjusted household gas demand 
in winter 2022/23 was around 15% lower than before Russia’s invasion 
of Ukraine [27]. Compared to Q1 (Quarter 1) in 2022, Q1 2023 
temperature-adjusted domestic energy consumption is estimated to have 
been down overall by 9.5% (11% reduction in industrial consumption) 
[28]. National Grid ESO (Electricity System Operator) reported national 
electricity demand was lower than expected throughout most of winter 
2022/23 except for during the coldest periods [29]. A study of 11,519 
households (of which a higher proportion than average was believed to 
be vulnerable consumers with very low pre-price rise energy consump
tion) found annual gas and electricity use dropped by 20% and 3%, 
respectively, in 2022/23 [17]. 3 Ofgem (the Office of Gas and Electricity Markets) is the energy regulator in 

Great Britain.  
4 Note that the energy price cap and EPG set maximum standing charges and 

unit costs for electricity and gas rather than limiting the amount a household 
pays in total; actual bills depend on location and electricity/gas consumption.  

5 The last time food prices had risen by 28% was over the previous 13 years 
(April 2008 – August 2021). 

6 By the government definition households in England are classed as fuel poor 
if their dwelling has Energy Performance Certificate (EPC) rating band D or 
below and if, were they to heat their home to the required level, their remaining 
income would be below the official poverty line. 
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In this study we investigate the electricity and gas consumption in 
5594 GB households from October 2022 to March 2023 (henceforth 
referred to as ‘winter 2022/23′) and use survey data from early 2023 to 
understand changes in energy consumption, energy-saving behaviours, 
and the impact of rising prices and demand reduction on household 
energy bills. We train and test machine learning (extreme gradient 
boosting (XGBoost)) counterfactual/predictive models for 5594 homes 
with electricity and gas data in GB using smart meter, weather and 
calendar data from winter 2021/22 and produce counterfactuals for 
winter 2022/23 (our estimate for energy demand if conditions in winter 
2022/23 had been the same as in winter 2021/22). Comparing the 
counterfactuals with observed daily demand allows us to estimate the 
impact of the cost-of-living crisis in GB. Combining this analysis with 
survey data collected early in 2023 reveals how different types of 
households and dwelling may have achieved different levels of savings, 
and how self-reported energy-saving actions correlated with observed 
energy reduction. We address the following research questions using an 
innovative method to predict a weather-corrected counterfactual during 
a natural experiment.  

1. What was the impact of the cost-of-living crisis on household electricity 
and gas consumption during October 2022–March 2023 (‘winter 2022/ 
23′)?  

2. How did energy bills change in winter 2022/23 compared to the previous 
winter, and how did any energy consumption reduction translate to bill 
savings?  

3. How did savings vary between different types of household and dwelling 
(e.g., financial wellbeing, presence of children and the elderly, dwelling 
type, dwelling energy efficiency)?  

4. Which self-reported energy-saving actions showed the greatest correlation 
with reduction in total energy consumption?  

5. Were those who saw the greatest reduction in energy consumption more 
likely to be struggling financially and/or to experience problems related to 
underheating? 

While the small amount of previous analysis of the cost-of-living 
crisis in winter 2022/2023 has either reported on survey results or en
ergy data, this is the first peer-reviewed study to combine both and 
address the questions above. The SERL dataset provides smart meter 
data for thousands of households in GB dating back several years 
allowing for household-level analysis of change over time in energy 
consumption. Combined with the survey sent out to the same house
holds in January 2023, this dataset provides unique insights into how 
householders adapted (or otherwise) their behaviours during the first 
heating season of the cost-of-living crisis and how their electricity and 
gas consumption changed, accounting for changes in weather using 
predictive models. 

This paper is structured as follows. In Section 2 we describe the 
methods including the datasets, data preparation and predictive 
modelling. Section 3 presents the results with discussion of implications 
and limitations. Conclusions are summarised in Section 4 along with 
plans for further research. 

2. Methods 

Self-reported changes in behaviour in winter 22/23 are compared 
with longitudinal gas and electricity data from 5594 GB homes. The 
energy saving is calculated by comparing the metered energy during the 
cost-of-living crisis to a counterfactual. The counterfactual is calculated 
using a machine learning algorithm trained on data prior to the cost-of- 
living crisis that is then run with the weather during the cost-of-living 
crisis. Often a counterfactual is measured using data from properties 
that have not been subject to the intervention being studied i.e. a cross- 
sectional study with a control group, however, in the case of a natural 
experiment such as the cost-of-living crisis, there is no natural control 
group as all homes are subject to the intervention and so a 

counterfactual needs to be calculated from historic data correcting for 
weather. 

Appendix B contains detailed information about the model training, 
selection and performance. All code used for data preparation, analysis 
and figure creation is publicly available on GitHub (https://github. 
com/ellenwebborn/Winter-demand-falls-as-fuel-bills-rise). All data 
processing, modelling and analysis was performed using the program
ming language R version 4.1.2 [30] and R packages: broom [31], caret 
[32], data.table [33], doParallel [34], epitools [35], forcats [36], 
ggplot2 [37], ggpubr [38], glmnet [39], lubridate [40], mlbench [41], 
monochromeR [42], purrr [43], RColorBrewer [44], stringr [45], 
timeDate [46], and xgboost [47]. 

2.1. Data pre-processing 

We use the 6th edition Smart Energy Research Lab (SERL) [48–52] 
datasets comprising electricity, gas (where available), survey and 
weather data for around 13,000 homes in Great Britain. Initially 
households were removed from the sample who indicated having 
installed/replaced a heat pump or acquired an electric vehicle (EV) in 
the previous 12 months in the 2023 SERL Energy Survey (described 
below) as the predictive models are trained on the previous winter 
(before the heat pump installation or EV charging began/increased). 
After further filtering for energy data quality and model accuracy 
(described below), 5594 households remained in the sample (all of 
which had both gas and electricity data). See Appendix A for a summary 
of sample representativeness. 

2.1.1. Energy data 
Models were trained and tested on data from the previous winter (1st 

October 2021–31st March 2022). Data from earlier winters were 
excluded to prevent capturing the effects of the COVID-19 pandemic 
[26,53]. The counterfactual (prediction) period was 1st October 
2022–31st March 2023 (‘winter 2022/23′). Although energy prices had 
already started to increase during winter 2021/22 (the training/testing 
period), the increases were much lower than the large rises in April 2022 
[7]. There is no perfect separation of the pandemic effects and the start 
of the cost-of-living crisis, and therefore our analysis aimed to show the 
effects of the cost-of-living crisis on energy consumption compared to 
consumption during the economic conditions of winter 2021/22. 
Zapata-Webborn et al. [26] estimate that winter 2021/22 electricity 
demand remained around 2% higher than pre-pandemic levels, while 
gas demand was around 2% lower – possibly due to the initial rise in gas 
prices at this time. 

Households required at least 25 days’ valid data in every month of 
the training/testing period and at least 90% valid days’ data in winter 
2022/23 (at least 164 days) for inclusion in the study. Daily consump
tion used the sum of half-hourly data for the day if available, otherwise 
daily reads were used, and gas demand was converted from cubic metres 
to kWh.7 Households were also excluded if over 50% of their electricity 
reads or 90% of their gas reads8 were zero in either the training/testing 
or prediction periods, likely due to data collection issues. Additional 
filtering was applied at the modelling stage to exclude households 
without a sufficiently accurate predictive model (described below), and 
households without both gas and electricity data were removed due to 
fuel price assumptions requiring dual fuel customers. The final sample 
size was 5594 households. 

7 Gas volume (kWh) = Gas volume (m3) * 1.02264 * calorific value / 3.6 and 
we used a calorific value of 39.5 MJm− 3.  

8 The threshold was higher for gas reads since households which only use gas 
for space heating could feasibly only heat their homes 10% of the time in 
winter. 
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2.1.2. Survey data 
Two surveys were used for this study – the initial survey given to 

SERL participants at sign up and the 2023 SERL Energy Survey; available 
under ‘Data Documentation’ in [54] and documented in [55]. The 2023 
study contains the most up-to-date information and focuses on questions 
relating to the cost-of-living crisis. It was therefore the main source of 
contextual information. A postal copy was sent to 12,001 SERL partic
ipants on 2nd February 2023 with a weblink for optional online response 
and data collection ended on 7th April 2023. The response rate was 49% 
although not all questions were completed by all participants. The 
response rate for the sample in this study was also 49% (2733 house
holds). For details of the initial sign-up survey see [50,56]. 

2.1.3. Weather, date and time data 
Mean, maximum and minimum daily temperature, mean daily solar 

irradiance, total daily precipitation, and mean and maximum wind 
speed from the ECMWF [57] (linked at the household level in the SERL 
dataset) were selected to be the predictor weather variables, as these 
have been shown to be predictors of energy consumption [58]. Mean 
temperature and mean solar irradiance on the preceding day were also 
included in some models as they contribute to building thermal response 
and so heating demand. All regression formulas included a (single) in
dicator variable for the date being a weekend or national holiday. In 
addition, sinusoidal transforms were applied to day-of-the-year to cap
ture seasonal effects using the methods in [17, Appendix B]. See Ap
pendix B3 for details of how all variables were used in the models. 

2.1.4. Energy prices 
To calculate energy costs in October 2022–March 2023 we assumed 

that all participants were paying the capped rates set by the UK gov
ernment’s Energy Price Guarantee (EPG). The EPG set out the maximum 
daily standing charge and unit rates for gas and electricity that could be 
charged to domestic consumers and varies by energy supply region and 
payment method [59,60]. It is likely that some households had tariffs 
below the EPG levels. Some consumers (mostly living in flats) pay for 
their electricity as part of their rent or service charge and this may be set 
at business rates to which the EPG does not apply. Other consumers may 
have long-term or special tariff contracts with their supplier. However, 
there were very few tariffs at a level lower than the EPG available in 
winter 2022/23 [61]. 

For winter 2021/22 we assumed tariff rates were the Default Tariff 
Cap [62] (described above). It is less likely that all consumers were 
paying the cap level in winter 2021/22 than were paying the EPG in 
2022/23, with an unknown number on fixed price tariff contracts at 
lower levels taken out in the preceding year. The difference in costs 
between the two time periods is therefore a conservative estimate, since 
the actual difference for those with lower tariffs than the cap in the first 
winter will be greater. 

Note that unit rates and standing charges vary by region in GB, so 
LSOA geographic area matched with geographic energy supply region 
[63] was used to link SERL participants with the relevant unit rates and 
standing charges. For the small number of LSOAs on the boundary of 
multiple supply regions the mean tariff level was taken. Households 
were assumed to pay by direct debit (the most common payment method 
in the UK [64]) unless they indicated otherwise on the 2023 SERL energy 
survey (question C2 on payment methods). Price data statistics are 

presented in Appendix C. 

2.2. Counterfactual modelling 

We based our counterfactual modelling on the approach used in 
[26], which created counterfactual models for each household sepa
rately. We used extreme gradient boosting (XGBoost) as this was the 
most successful algorithm used in that study. XGBoost is an ensemble- 
based predictive machine learning technique that employs ‘boosting’ 
to iteratively learn from combining lots of different models. The training 
dataset is reweighted each iteration such that the less well predicted 
datapoints are the focus of later iterations, and a final model is created 
by averaging over the models used [65,66]. XGBoost improves upon 
standard gradient boosting in terms of reducing over-fitting and 
computational efficiency with proven success in machine learning 
competitions [67,68]. For examples of the use of XGBoost for predicting 
energy consumption see, for example, Zapata-Webborn et al. [26]. The 
model training and selection processes are described in Appendix B 
including details of hyperparameters, regression formulas, and final 
model performance. 

3. Results and discussion 

3.1. Energy consumption changes in winter 2022/23 

Our first research question asks what impact the cost-of-living crisis 
had on domestic energy consumption in winter 2022/23. Table 1 shows 
the results of a repeated-measures t-test with the 1-sided alternative 
hypothesis that observed consumption was lower than predicted con
sumption in winter 2022/23. The results confirm that there was a sig
nificant difference between mean observed and mean predicted 
electricity and gas consumption for the sample. 

Table 2 presents statistics for the predicted and observed daily en
ergy consumption along with the estimated ‘reduction’ in consumption. 
Reduction (kWh) is the difference between a household’s predicted and 
observed consumption; reduction (%) is the kWh reduction divided by 
the predicted consumption. We consider medians to be more reliable 
estimates for average than mean as they are more resistant to skew by 
outliers (which can be caused by households with exceptionally high 
consumption or change in consumption, or by inaccurate model pre
dictions). We find that on (median) average, consumers reduced their 
electricity consumption by 0.6 kWh/day (8.4%) and their gas con
sumption by 4.9 kWh/day (10.8%, similar to the 9.5% estimated 
reduction for Q1 2023 by Harris [28]; lower than the 15% estimate for 
winter 2022/23 by Bolton [27]). 

Fig. 1 shows the distribution of the data summarised in Table 2. 
While most households reduced their energy consumption compared to 
the previous winter, some saw energy consumption rise (negative 
reduction) by up to around 50%. Conversely, some households saw very 
large reductions of over 50%. In later sections we investigate these 
differences in terms of household characteristics and self-reported en
ergy-saving actions. 

3.2. Impact of price rises and energy reduction on energy bills 

Using the fuel price assumptions described in Section 2.1.4 we can 
estimate the energy bills each winter and the impact of energy con
sumption reduction on energy bills. As described above, energy prices 
rose significantly in 2022 and the UK government introduced the Energy 
Bill Support Scheme (£400 for dual fuel bills spread out from October 
2022 to March 2023). In order to show the estimated costs/cost re
ductions we split this subsidy between electricity and gas bills in a 2:3 
ratio (our observed cost ratio from the data). This equates to a monthly 
subsidy of £26.67 for electricity and £40 for gas. 

Fig. 2 shows how bills changed compared to the previous winter and 
compared to the predicted bills from the energy counterfactuals. On 

Table 1 
T-test results for the alternative hypothesis: observed consumption was lower 
than predicted consumption in winter 2022/23. CI: confidence interval, upper 
bound infinite as 1-sided t-test. Mean difference: difference in means between 
predicted and observed consumption (>0 implies predicted higher).   

Mean difference (kWh/day) t-value P-value 95% CI 

Electricity  0.937  24.995 < 0.001 (0.876, Inf) 
Gas  6.941  45.822 < 0.001 (6.691, Inf)  

E. Zapata-Webborn et al.                                                                                                                                                                                                                      



Energy & Buildings 305 (2024) 113869

5

average the estimated reduction in energy consumption reduced elec
tricity bills by £7.81/month and gas bills by around £20.78/month. 
Despite the efforts of households to reduce consumption and the gov
ernment subsidy, median total energy bills increased from around £125/ 
month to £158/month. Those in the top 5% of bill payers saw total 
energy bills rise from almost £300/month to £500/month. On average 
the combination of energy consumption reduction and government 
subsidy reduced bills by around £100/month; approximately one 
quarter of which was due to lower energy consumption. For more 
detailed statistics on the change in energy bills see Appendix C. 

Monthly analysis reveals that average bills were highest in December 
2022 (coinciding with the lowest temperatures and Christmas holidays), 
when median total energy bills before the government subsidy was 
£296, (£413 and £674 at the 75th and 95th percentiles). Pay-as-you-go 
customers (in particular those on pre-payment meters) would be 
particularly affected by high costs in a particular month, because their 
bills do not benefit from being averaged over multiple months and they 
are at risk of being cut off if unable to keep up with payments [17]. Note 
also that around 1% of households were ineligible for the £400 subsidy 
[69] while renters were at risk of missing out on various support if 

Table 2 
Average winter results for the sample (N = 5594). IQR: interquartile range, sd: standard deviation. Negative reduction implies consumption was higher than predicted.   

Predicted 
(kWh/day) 

Observed 
(kWh/day) 

Reduction 
(kWh/day) 

Reduction 
(% of prediction)  

Median 
(IQR) 

Mean 
(sd) 

Median 
(IQR) 

Mean 
(sd) 

Median 
(IQR) 

Mean 
(sd) 

Median 
(IQR) 

Mean 
(sd) 

Electricity 8.14 
(5.72, 11.92) 

9.82 
(6.57) 

7.40 
(5.11, 10.76) 

8.89 
(5.95) 

0.61 
(− 0.03, 1.60) 

0.94 
(2.80) 

8.38 
(− 0.48, 17.56) 

7.08 
(24.24) 

Gas 47.92 
(33.03, 66.48) 

53.12 
(29.82) 

41.63 
(28.06, 58.82) 

46.18 
(26.99) 

4.94 
(0.46, 11.30) 

6.94 
(11.33) 

10.78 
(1.19, 22.44) 

11.74 
(24.86)  

Fig. 1. Histograms and box plots showing observed and predicted daily electricity and gas consumption and consumption reduction compared to the previous winter 
(N = 5594). Counts < 10 not shown for statistical disclosure control. Summary statistics in Table 2. 
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paying via a landlord who did not pass subsidies on [70]. 

3.2.1. Price elasticity 
We find that the median (IQR) price elasticity9 for winter 2022/23 

compared with winter 2021/22 was − 0.099 (− 0.223, 0.016) for elec
tricity and − 0.071 (− 0.144, − 0.010) for gas, respectively. These values 
show lower price elasticity than typical values in the literature [8–10]. It 
has been suggested that those with lower income are more sensitive to 
price changes [8], and so we calculated the price elasticity by fuel and by 
‘financial wellbeing’ (Fig. 3). We find opposite trends in the electricity 

and gas elasticities; more affluent households are more responsive to 
increases in electricity price (higher absolute elasticity) while those 
struggling financially are more responsive to rising gas prices. This could 
be because wealthier households have more electric appliances that they 
can turn off standby or choose to use less or have the capital to buy more 
efficient appliances such as low energy lighting, while those struggling 
financially are more willing to reduce their (typically gas) heating to 
save money. There is also an interaction between electricity and gas use, 
for instance reducing lighting increases the need for extra heating, while 
use of an electric heater to reduce gas use will drive up electricity con
sumption, despite potentially reducing energy consumption overall 
depending on the way heating is used in the rest of the home. This will 
be the focus of future work. 

Fig. 2. Observed and predicted electricity, gas and total monthly energy bills in winter 2021/22 and 2022/23. Subsidy described in the text. Boxes show the 
interquartile range, ‘whiskers’ extend to the 5th and 95th percentiles. 

Fig. 3. Electricity (left) and gas (right) price elasticity by self-reported financial wellbeing (2023 SERL Survey). Figures show the median, boxes show the inter
quartile ranges. N = 815 (living comfortably), 1157 (doing alright), 549 (just about getting by), 108 (finding it quite difficult), 52 (finding it very difficult). 

9 Each household’s price elasticity is calculated monthly for winter 2022/23 
as monthly % energy reduction / % difference between winter 2021/22 unit 
cost and unit cost in that month. The mean of the 6 months’ elasticities gives 
mean winter elasticity per household, of which we take the mean and inter
quartile range (IQR). 
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3.3. Household and dwelling characteristics: correlation with percentage 
consumption reduction 

Section 3.1 revealed a wide distribution of energy reduction, with 
most households changing consumption within ± 50% of their predicted 
amount. Exploratory analysis reveals that absolute (kWh) reduction is 
most strongly correlated with predicted consumption, i.e. those who 
typically consume the most reduced their energy by the most, possibly 
those with low consumption to start with had little potential to lower 
their energy use. In this analysis we therefore study percentage reduc
tion, in particular percentage of total (electricity + gas) energy. Table 3 
shows the results of a linear regression of total energy reduction per
centage against household and dwelling characteristics selected 
following individual regressions (those which on their own showed 
significant correlation with energy reduction)10, where the ‘high/low’ 
financial wellbeing classification is defined as in [26]11. Once combined, 
the only variable with significant correlation with energy reduction is 
financial wellbeing; low financial wellbeing is associated with greater 
energy reduction. This may not be surprising since those struggling 
financially are more likely to be motivated by rising energy prices (as we 
found for gas price elasticity) and dwelling and household characteris
tics are more likely to correlate with total consumption and therefore 
kWh rather than percentage energy reduction. 

3.4. Energy-saving actions and energy consumption reduction 

3.4.1. Overall engagement with energy-saving actions 
There are a number of reasons why a household may reduce their 

energy consumption from one winter to the next, such as occupant- 
related changes (e.g. the number of occupants or their working sta
tuses), energy efficiency improvements such as loft insulation or double 
glazing), or specific energy-saving actions taken by the occupants on a 
one-off or regular basis (e.g. reducing boiler flow temperature or 

avoiding using the oven). The reasons behind efforts to reduce con
sumption could include the cost-of-living crisis, environmental con
cerns, or efforts to support the war in Ukraine by reducing gas demand 
[71]. It is not possible to pinpoint the reasons for the energy reduction 
we observe in each household, but the 2023 SERL Energy Survey data 
reveals whether people were reducing consumption deliberately, what 
actions were being taken, and some of the challenges faced (such as 
being unable to keep warm or afford to use the heating). 

Of the 2710 households in our sample who responded to the question 
“How much effort, if any, would you say your household makes to limit or 
reduce the amount of gas or electricity used?” 38% reported making “a 
great deal of effort”, 47% reported “some effort”, 13% reported “a little 
effort”, while only 1% responded “no effort at all”. This shows that most 
households were actively making efforts to reduce their energy con
sumption this winter, which is likely to explain, at least in part, the re
ductions presented in Section 3.1. 

Fig. 4 shows the percentage of respondents who report doing each 
action ‘always’ or responded ‘yes’ when asked if they do them 
(depending on the question response options). The most popular (more 
than 60% of respondents ‘always’ perform them, shown in purple) are 
closing blinds/curtains at night, taking showers rather than baths and 
switching off lights in unused rooms. We would not expect to see a large 
correlation between these actions and energy reduction because their 
response indicates that these actions did not change between the two 
periods of interest. In contrast, if typically unpopular actions (orange 
and yellow) show high correlation with energy reduction, or are un
usually popular with those who reduced consumption the most, then 
they might be actions that more people should be performing if they 
wish to reduce consumption, and a potentially underutilised approach to 
energy saving worthy of greater publicity. To understand which actions 
might be most effective for energy consumption reduction we begin by 
comparing the actions of those who reduced consumption by the most 
with the rest of the sample followed by regression analysis of electricity 
and gas reduction against energy-saving actions, and lastly investigate 
their change in thermostat settings and gas use with external tempera
ture compared to the rest of the sample. 

3.4.2. Energy-saving actions and total consumption reduction 
To understand how energy-saving actions may have contributed to 

energy consumption reduction we begin by comparing the survey re
sponses of those who reduced by the most with the rest of the sample. 
We split the sample into five ‘energy reduction quintiles’ where quintile 
5 were in the top 20% of total percentage energy reducers and quintile 1 
had the 20% lowest total energy reduction (in fact all saw consumption 
increase). See Appendix D for details about the quintile groups including 
by how much each quintile reduced consumption. 

Those who reduced their total energy consumption the greatest 
percentage (quintile 5) were 2.6 times more likely (risk ratio with 95% 
CI (2.2, 3.0), p-value < 0.001) to report making “a great deal of effort” to 
reduce consumption (61% of this group whereas the sample average was 
38% and among the lowest reducers, (quintile 1) 26%. In response to 
question A6 about whether any of 16 actions were taken ‘a lot more’, ‘a 
little more’, ‘a lot less’, etc. compared to the previous winter, quintile 5 
reported taking an average of 4.4 actions ‘a lot more’ than previously, 
the highest of all quintiles, with quintile 1 only averaging 2.1 actions 
taken ‘a lot more’ than in the previous winter. There was little difference 
between the quintiles in reporting doing actions ‘a little more’12; 
therefore, for subsequent analysis we reduce these variables to binary 
outcomes ‘a lot more’ than last winter or ‘not a lot more’ for the purposes 
of comparing quintiles and for linear regression. 

Next, we investigate which actions tended to be taken a lot more than 
previously, and whether they were generally popular (purple and green) 

Table 3 
Linear regression results for household and dwelling characteristics previously 
found to be significant individually when regressed against % total energy 
reduction (N = 1208). Categorical variable base cases: financial wellbeing 
(high), dwelling (semi-detached), EPC (band C), tenure (owner-occupier), any 
aged 85+ years (no). Std. Err.: standard error. ***(p < 0.001), **(0.001 ≤ p <
0.01), *(0.01 ≤ p < 0.05).  

Term Estimate (%) Std. Err. P-value 

Dependent variable: % total energy reduction 
Intercept*** 8.878 2.169 0.000 
Financial wellbeing: low** 1.547 0.516 0.003 
Dwelling: detached 0.813 0.584 0.164 
Dwelling: terraced 0.524 0.564 0.354 
Dwelling: flat/maisonette/apartment − 0.529 0.564 0.349 
EPC: A-B 0.747 0.517 0.149 
EPC: D 0.708 0.586 0.227 
EPC: E-G 0.608 0.575 0.291 
Number of bedrooms 0.265 0.577 0.646 
Tenure: private renter 0.556 0.502 0.268 
Tenure: social renter − 0.981 0.548 0.074 
Tenure: live rent free − 0.480 0.488 0.326 
Any aged 85yrs+ − 0.552 0.490 0.260  

10 Those tested but excluded from the final model due to non-significance at 
the p < 0.05 level were: index of multiple deprivation (IMD) quintile; number 
of occupants; binary indicators for: any children aged 0–15 years, any children 
under 6 years, and anyone aged 75+ years; dwelling age, presence of solar PV, 
solar water heating, a battery, and an electric vehicle.  
11 We define households with ‘high’ financial wellbeing if their survey 

response to the question about how they themselves were managing financially 
was "Living comfortably" or “Doing alright". Households are classed as having 
‘low’ financial wellbeing if they responded "Just about getting by", "Finding it 
quite difficult", or "Finding it very difficult". 

12 Appendix D.2 includes a figure of these results including all response 
categories. 
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actions that most people were ‘always’ performing (see Fig. 2) or if they 
were less commonly performed and their recent adoption/increase by 
quintile 5 was atypical of the sample more widely. We calculate the risk 
ratio of quintile 5 performing each action a lot more than in the previous 
winter compared to the rest of the sample13 (left-hand subplot of Fig. 5). 
Actions with the highest risk ratios saw the biggest differences between 
quintile 5 and the rest of the sample in terms of whether they did the 
action ‘a lot more’ (or not) than in the previous winter. The percentage 
of respondents who performed each action a lot more than previously 
are shown in the right-hand subplot of Fig. 5, where black circles (and 
numbers to the right) represent quintile 5, grey circles (and numbers to 
the left) show the percentage of quintile 1, and white circles show the 
percentage of the full sample. 

While more than half of the sample heated their home for fewer 
hours than in the previous winter, quintile 5 were over 4.3 times more 
likely to do this than the rest of the sample – by far the biggest risk ratio 
of all the actions, and their most popular action to adopt/increase, with 
88% of quintile 5 heating their homes for fewer hours than before 
compared with only 42% of the lowest reducers. Five actions that less 
than 40% of the sample reported ‘always’ doing (orange or yellow from 
Fig. 2) were around twice as likely (risk ratios 2.0–2.2) to be done a lot 
more this winter by the greatest reducers than by the rest of the sample. 
They all relate to using less energy for heating, either by turning down 
radiators (in both used and unused rooms), putting on more clothes, 
using an electric blanket or hot water bottle, or using a standalone 

heater. The percentage of quintile 5 who did these actions a lot more 
than in the previous winter ranged from 24% to 59%, which, while 
similar to many other actions shown, tended to see much bigger dif
ferences compared to quintile 1 (their range was 8%− 24% for these 
actions). Being actions that most people were not always doing or 
increasing since the previous winter, these may have the greatest un
tapped potential for energy consumption reduction (as discussed above). 

All SERL participants have a smart meter, although not all have a 
working in-home display (IHD). There has been some controversy as to 
the benefits of smart meters for helping reduce energy consumption. 
Interestingly, of those with a working IHD, quintile 5 were 1.8 times 
more likely to use to their IHD a lot more than in the previous winter 
compared to the rest of the sample, with 56% of the greatest energy 
reducers using it a lot more than previously, compared to 41% of the 
sample and 28% of the lowest energy reducers. How effective they were 
in supporting households with energy reduction would be a question for 
future research, yet people making efforts to save energy reported 
engaging with them a lot more than previously, which may indicate 
greater regular interaction, rather than, say, a one-off check. 

3.4.3. Correlation between energy-saving actions and energy reduction 
As discussed above, the greatest energy reducers were more likely to 

do actions ‘a lot more’ than the previous winter compared to the rest of 
the sample, whereas they did a similar number ‘a little more’ (Appendix 
D2). Therefore, to understand the correlation between energy-saving 
actions and energy reductions we transformed the responses of ques
tions relating to action change since the previous winter to binary 

Fig. 4. The percent of respondents who reported ‘always’ performing the actions shown, *except for the question about ‘any living spaces not normally heated’ 
(responded yes). Questions have been abbreviated, in particular ‘turn the heating off when absent for more than a day’. Percents given out of the total responses 
excluding those who answered ‘not applicable, cannot do this’. Colours group by bands of 20% for use in later analysis. 

13 Risk ratio (also known as ‘relative risk’) of 1 implies the chance of quintile 5 
doing the action ‘a lot more’ is the same as for the rest of the sample. Risk ratio 
> 1 implies a higher chance for those in quintile 5. 
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outcomes ‘a lot more’ or ‘not a lot more’14 and performed linear 
regression of these variables against percentage reduction in electricity 
and gas consumption separately. Initially we included all possible 

actions with reported change since the previous winter, of which 10 or 
fewer showed significant correlation with electricity or gas reduction. 
Table 4 shows the results of the final regressions for electricity and for 
gas reduction against the 10 most important variables for each fuel. 

Actions correlated with the greatest energy reduction were those that 
reduced gas heating demand, with heating the house for fewer hours 

Fig. 5. Left: risk ratio for energy reduction quintile 5 to perform an action ‘a lot more’ this winter compared to the rest of the sample. All risk ratio p-values < 0.037 
with 17/21 < 0.001. Right: the percentage of survey respondents who performed each action ‘a lot more’ than in the previous winter; numbers show the percent of 
quintile 1 (left) or quintile 5 (right). Colours indicate popularity (the percentage of the sample who ‘always’ perform each action (see Fig. 4)). Grey used for actions 
where the propensity to perform the action ‘always’ is not applicable or unknown. 

Table 4 
Linear regression of percentage reduction in electricity and (separately) gas consumption against energy-saving actions (N = 2006). Following regression with all 
actions with responses about change since the previous winter, the 10 most important variables were retained for the final regressions shown (10 or fewer actions were 
shown to have significance at the p < 0.05 level in the initial regression). Estimate (kWh/day) = estimate (% reduction) × median predicted consumption (Table 2), 
Estimate (pence/day) = Estimate (kWh/day) × January–March 2023 unit costs (Table). ***(p < 0.001), **(0.001 ≤ p < 0.01), *(0.01 ≤ p < 0.05).   

Term Response Estimate 
(% reduction) 

Estimate 
(kWh/day) 

Estimate 
(pence/day) 

Std. Err. P-value 

Electricity Intercept***   5.891  0.479  15.64  0.688 <0.001 
Use standalone heater rather than more heating*** A lot more  − 2.359  − 0.192  − 6.26  0.446 <0.001 
Dry clothes without a tumble dryer* A lot more  1.091  0.089  2.90  0.492 0.027 
Turn down radiators in unused rooms* A lot more  1.113  0.091  2.96  0.489 0.023 
Put more clothes on rather than more heating* A lot more  1.208  0.098  3.21  0.485 0.013 
Avoid using the cooker/oven for main meal A lot more  0.765  0.062  2.03  0.467 0.102 
Shower rather than bath* A lot more  − 1.109  − 0.090  − 2.94  0.504 0.028 
Any living spaces not normally heated Yes  0.631  0.051  1.68  0.432 0.144 
Use dishwasher rather than washing up A lot more  − 0.640  − 0.052  − 1.70  0.468 0.172 
Turn appliances off standby when not in use A lot more  0.458  0.037  1.22  0.480 0.339 
Use electric blanket/hot water bottle rather than more heating A lot more  0.479  0.039  1.27  0.476 0.314 

Gas Intercept***   1.887  0.904  8.90  0.840 0.025 
Heating house for fewer hours*** Yes  3.807  1.824  17.95  0.446 <0.001 
Use electric blanket/hot water bottle rather than more heating*** A lot more  2.015  0.965  9.50  0.464 <0.001 
Any living spaces not normally heated*** Yes  1.498  0.718  7.06  0.417 <0.001 
Reduced boiler flow temperature* Yes  1.026  0.492  4.84  0.421 0.015 
Put more clothes on rather than more heating* A lot more  1.051  0.503  4.95  0.482 0.030 
Use smart meter in-home display* More often  0.964  0.462  4.54  0.428 0.024 
Use standalone heater rather than more heating* A lot more  0.965  0.463  4.55  0.436 0.027 
Turn down radiators in used rooms* A lot more  1.140  0.546  5.37  0.461 0.014 
Shower rather than bath* A lot more  − 1.133  − 0.543  − 5.34  0.461 0.014 
Turn appliances off standby when not in use* A lot more  0.978  0.469  4.61  0.453 0.031  

14 In the case of questions with yes/no responses these were left as yes/no. 
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reducing consumption by the most of any single action taken/taken a lot 
more than in the previous winter. There is strong agreement with the 
risk ratios in Fig. 6 (the behaviours more likely to be increased by the 
greatest reducers). On average using a standalone heater increased 
electricity use (required for standalone heaters) by 0.19 kWh/day but 
reduced gas use (normally used for central heating) by 0.46 kWh/day, 
resulting in an overall reduction in energy use of 0.27 kWh/day. How
ever, since the unit cost of electricity was higher than for gas, on average 
using a standalone heater increased bills by 1.7p/day (~£0.51/month). 
Therefore, when discussing the potential benefits of standalone heaters 
it is important to consider how much they will be used compared to use 
of the heating system and (if cost is the main driver) the relative price/ 
kWh of electricity and gas. 

Avoiding using the tumble dryer understandably correlates with 
lower electricity consumption, although care must be taken not to cause 
mould or damp issues if drying clothes indoors in cold weather or 
compensating by turning up the space heating. A few heating-related 
actions showed significant correlation with electricity reduction, 
despite most of these households having gas heating; possibly due to a 
certain set of behaviours being common among the greatest energy re
ducers irrespective of whether they individually contribute to the lower 
electricity consumption. 

Increased use of a smart meter IHD also correlated with reduced gas 
use which may be due to insights gained from the IHD about energy 
consumption or it could be an indicator that a household is making real 
efforts to reduce consumption (as is likely the case with turning appli
ances off standby, which clearly does not lower gas use). Showering 
rather than taking a bath correlated with increased electricity and gas 
use; an unexpected finding; perhaps complicated by factors such as 
people showering more frequently than taking baths, and very few 
households taking this action a lot more than before (16%). An added 
complexity is that some showers are electrically heated or pump 

assisted. Either way, showering compared to bathing does not appear to 
reduce energy consumption. 

3.4.4. Thermostat settings 
Changes to thermostat settings are not easily compared with the 

actions analysed above so we analyse them separately. 2074 households 
in our sample reported their thermostat temperature setting in both their 
original SERL (“sign-up”) survey and in the 2023 SERL energy survey. 
The mean setting was 20.3 ◦C in the original survey and 19.2 ◦C in the 
2023 survey (a mean reduction of 1.1 ◦C). Standard deviation for all 
three variables was approximately 2.0 ◦C or 2.1 ◦C; standard error of the 
mean 0.04 ◦C or 0.05 ◦C. 

Fig. 6 shows the mean thermostat settings reported in the survey at 
sign up (between 2019 and 2021 due to three recruitment waves15) and 
the mean change by energy reduction quintile. While all quintiles 
initially reported a thermostat setpoint of approximately 20 ◦C, ther
mostat reduction increased with energy saving quintile, with the 
greatest energy reducers lowering their setpoints by 1.8 ◦C on average; 
around twice the mean reduction of the rest of the sample (0.9 ◦C). 
Therefore, not only were the greatest reducers 4 times more likely to 
heat their homes for fewer hours than the rest of the sample, and to 
avoid using the heating or turning it up by using alternatives such as hot 
water bottles or wearing more layers, but in general they kept their 
homes at lower temperatures, thus reducing the heating demand while 
the heating was on. 

Given these results, we performed linear regression of change in 
thermostat setting against gas (and for consistency, electricity) con
sumption percentage reduction (Table 5). As expected, there is 

Fig. 6. Thermostat settings in the sign-up and 2023 energy survey and the difference in reported settings, by energy reduction quintile.  

Table 5 
Linear regression, gas consumption percentage reduction against change in thermostat setting, N = 2074. Estimate (kWh/day) = estimate (% reduction) × median 
predicted consumption (Table 2), Estimate (pence/day) = Estimate (kWh/day) × January–March 2023 unit costs (Table C1).   

Term Estimate 
(% reduction) 

Estimate (kWh/day) Estimate (pence/day) Std. Err. P-value 

Electricity Intercept***  7.499  0.610  19.91  0.482  <0.001 
Reduction in thermostat setting in ◦C  − 0.279  − 0.023  − 0.74  0.422  0.501 

Gas Intercept***  9.201  4.409  43.38  0.710  <0.001 
Reduction in thermostat setting in ◦C***  3.839  1.840  18.10  0.622  <0.001  

15 Thermostat settings showed no significant difference between sign-up years 
when analysed by Hanmer and Zapata-Webborn [25]. 
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Fig. 7. Median gas consumption predictions, observations, and reductions against external temperature by energy reduction quintile.  

Fig. 8. Comparing rates of fuel poverty and underheating-related survey variables between those who reduced total energy consumption by the most (energy 
reduction quintile 5) with the rest of the sample. N per variable between 2550 and 2695, smallest subgroup N = 20 (quintile 5 with substantial mould). 
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significant correlation between thermostat reduction and gas con
sumption; on average for every 1 ◦C reduction in thermostat setpoint gas 
consumption reduced by almost 4% or around £5.43/month (an average 
that will be highly influenced by external temperature each month). 
There was no statistically significant correlation found with electricity 
reduction. Previous studies have reported energy and cost savings 
associated with thermostat settings, but these are either based on 
theoretical models or observational data, whereas this is the first report 
of the impact of interventions. 

3.5. The effects of external temperature 

Energy consumption for domestic heating is highly influenced by 
external temperature [58,72]. We have already found correlation be
tween gas consumption reduction and heating homes for fewer hours 
and reducing thermostat settings. Next, we explore how gas consump
tion and reduction varied with external temperature. We focus on gas 
consumption since this is the main heating source for most of the sample, 
and exploratory analysis of electricity use against temperature showed 
weak trends. For each household, daily gas consumption was split into 
temperature bins of width 1 ◦C. It was important that the same house
holds contributed equally to all temperature bins,16 so that the data did 
not become biased as temperatures changed (for example over- 
representing households in the North during the coldest weather). A 
balance was therefore struck between temperature range and number of 
households – temperatures between 0 and 15 ◦C gave a sample of 5124 
(with at least 1013 in each energy saving quintile). 

Fig. 7 reveals several interesting features of the data. Firstly, quintile 
1 (whose consumption actually increased (Appendix D1)) had the lowest 
predicted gas consumption at all temperatures (and particularly in cold 
weather), while their actual gas use with temperature was very similar 
to quintiles 2–4. Secondly, quintile 5 used less gas at higher tempera
tures than the other quintiles and also increased their gas use by less 
than the others as weather turned colder. Indeed, quintile 5 was typi
cally consuming around 49 kWh/day (gas) in 0–1 ◦C weather (IQR 
29–72 kWh/day) compared to 74 kWh (median of the rest of the sample, 
IQR 52–101 kWh). This resulted in gas reduction of over 20% at these 
temperatures for quintile 5, while for the rest of the sample gas con
sumption was approximately at predicted levels (i.e. no reduction) at 
these temperatures. 

Overall, gas consumption reduction as a percentage increased with 
temperature, likely due to people delaying turning their heating on 
during October/November, avoiding using the heating in relatively 
warmer autumn/winter weather, and/or the effects of reduced ther
mostat settings. In absolute (kWh) terms reduction was greatest at 
around 6 ◦C (the average heating season external temperature). At 
colder temperatures (below 5 ◦C) both the absolute and percentage 
reduction in gas demand reduced. For future winters it is important to 
note that the potential to save energy reduces significantly in colder 
weather, so vulnerable consumers struggling financially may be unable 
to afford their heating when they need it most. Additionally, if future 
winters are significantly colder than winter 2022/23 then we would 
expect that overall gas consumption may rise compared with this winter. 

3.6. High energy reduction: A potential cause for concern? 

Quintile 5 (greatest energy reducers) on average used less gas during 
cold weather (Fig. 7), set their thermostats at lower temperatures 
(Fig. 6), and were more likely to reduce the hours of heating in their 
homes, turn down radiators and use alternatives such as extra clothing 
to avoid turning the heating on/up (Fig. 5). They were also more likely 

to be struggling financially (Table 3). While energy reduction can be 
highly commendable as we move towards net zero and vital for house
holds in financial difficulty, a lack of energy consumption, and in 
particular underheating, can cause or exacerbate physical and mental 
health issues [19–21] and even excess winter deaths [22]. Given the 
increasing levels of fuel poverty in GB [15,16] (which is also reflected in 
the SERL sample17), our final analysis investigates whether high energy 
reduction in winter 2022/23 could indicate underheating practices and 
related issues. 

Fig. 8 shows the percentage of the greatest energy reducers (quintile 
5) in each fuel poverty or underheating-related survey variable group 
compared to the rest of the sample. Risk ratio analysis (Appendix D3) 
reveals that quintile 5 were 2.3 times more likely to be unable to keep 
comfortably warm in their living room, 1.5 times more likely to find it 
‘very’ or ‘fairly’ difficult to meet their heating costs and 1.4 times more 
likely to suffer from low financial wellbeing. They were only slightly 
more likely (1.2 times (95% CI 1.0–1.32)) to report problems with 
condensation, mould or damp and showed no significant difference in 
terms of issues of ‘substantial mould’, which only affected around 3.3% 
of respondents (83 households). 

While it is reassuring that when the survey was completed (Febru
ary–April 2023) those reducing their energy consumption the most were 
not significantly more likely to suffer substantial mould issues, it is 
possible that sustained underheating could cause such issues in future. 
However, that 31% of the sample reported issues with condensation, 
mould or damp regardless of their energy reduction is concerning for GB 
households generally. These results paint a picture of a significant pro
portion of households struggling financially, finding it difficult to meet 
heating costs, and feeling cold in their homes. The evidence from our 
sample points to greater support needed to ensure those struggling 
financially are not left choosing between eating and heating due to 
unaffordable heating costs, particularly in cold weather. Effective pol
icies could include greater financial support combined with improved 
home energy efficiency to reduce the cost of keeping homes warm. 

3.7. Limitations 

The results presented here must be considered within the context in 
which they were obtained in order to understand their potential limi
tations in terms of generalisability and reliability. Appendix A summa
rises sample bias from the data available but cannot capture all sources 
of bias. Of those who completed the 2023 energy survey, there is likely 
some response bias, which we have attempted to mitigate by considering 
specific groups of households, such as those with different levels of 
financial wellbeing. Households were excluded if we knew they had 
acquired a heat pump or electric vehicle within the last 12 months (since 
their predictions would be invalid), or if they had insufficient electricity 
or gas data, which excluded those without a mains gas supply. 

Unfortunately, we did not have access to actual energy prices/bills 
throughout both winters, and so we assumed that all households were on 
the Default Tariff Cap in 2021/22 and the Energy Price Guarantee (EPG) 
the following winter. It is likely that most households were paying 
similar prices to the EPG in 2022/23 but that more households were 
paying less than the price cap the previous winter. Therefore, we are 
likely to have underestimated the bill increase from winter 2021/22 to 
winter 2022/23. 

Finally, it is not possible to know the reliability of the survey data. 
We hope that participants answer honestly and that their memory of 
actions taken the previous winter compared to this winter was accurate, 
but respondents may have chosen to answer in ways that imply greater 

16 A household’s contribution was its mean gas consumption (kWh) over all 
temperatures within the bin. The median of the individual means was then 
taken to reduce skew by outlier households. 

17 Comparing the financial wellbeing responses of the sign-up SERL survey 
with the 2023 survey, the percentage ‘living comfortably’ dropped from 47% to 
31%, while those ‘just about getting by’ or finding ‘quite’ or ‘very’ difficult 
increased from around 15% to 26% (total N = 2498). 
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efforts to reduce energy due to a sense that it was the ‘right’ thing to be 
doing, they may have misremembered actions taken previously, or have 
been unaware of actions taken by other household members. 

4. Conclusions 

This paper investigated the change in domestic electricity and gas 
consumption in 5594 households in GB from October 2022 to March 
2023 (‘winter 2022/23′) compared to the same period in the previous 
year, which we attribute in large part to the cost-of-living crisis and 
associated rise in energy prices. We used counterfactual (predictive) 
modelling with XGBoost to compare measured energy consumption with 
predicted consumption (accounting for differences in weather condi
tions), had all other conditions remained the same from one winter to 
the next. We used daily energy demand data, national price cap data, 
and detailed survey data from the start of 2023 to analyse energy con
sumption and energy bills, self-reported energy-saving actions, and 
conditions linked to underheating and fuel poverty. 

The analysis provided the following answers to the original research 
questions18:  

1. What was the impact of the cost-of-living crisis on household electricity 
and gas consumption during October 2022–March 2023 (‘winter 2022/ 
23′)? 

Electricity and gas consumption decreased significantly in winter 
2022/23 compared to the previous winter; by 8.4% (median), (IQR 
− 0.5%–17.6%) and 10.8% (1.2%–22.4%), respectively. These figures 
are likely to be higher for the wider population due to the sample’s slight 
underrepresentation of those struggling financially, who were more 
likely to reduce consumption by greater amounts. Note that these results 
will not match annual figures since electricity demand plays a much 
larger role outside of the heating season when total consumption is 
generally lower.  

2. How did energy bills change in winter 2022/23 compared to the previous 
winter, and how did any energy consumption reduction translate to bill 
savings? 

The energy reductions saved consumers an average of £28.60/month 
(IQR £25.84 - £34.09) off their total (dual) fuel bills. Despite these 
savings and the £66.67/month government subsidy, total energy bills 
still rose on average by £33.72/month (IQR £− 7.54 – £87.34). While 
average energy bills were around £158/month (including savings and 
subsidy), the highest 5% of household energy bills rose to over £500/ 
month (up from around £300/month the previous winter).  

3. How did savings vary between different types of household and dwelling 
(e.g. financial wellbeing, presence of children and the elderly, dwelling 
type, dwelling energy efficiency)? 

The only household/dwelling/low carbon technology characteristic 
found to correlate significantly with total energy reduction (as a per
centage of predicted consumption) was self-reported ‘financial well
being’; those with low financial wellbeing (defined above) made greater 
energy consumption reductions. 

Only 1% of the 2710 survey respondents reported making ‘no effort 
at all’ to save energy, while 38% and 47% reported making ‘a great deal’ 
or ‘some’ effort, respectively.  

4. Which self-reported energy-saving actions showed the greatest correlation 
with reduction in total energy consumption? 

Energy-saving actions that reduce heating demand were the most 
strongly correlated with reduced gas consumption, in particular: 
lowering the thermostat setting, heating the house for fewer hours, using 
an electric blanket/hot water bottle and putting on more clothes rather 
than more heating, avoiding heating some living spaces, reducing boiler 
flow temperature, and turning down radiators. Fewer actions correlated 
with a reduction in electricity demand, likely due to observed reductions 
being lower than for gas. Drying clothes without a tumble dryer a lot 
more than previously was the one action that showed a reduction in 
electricity consumption that did not relate to heating. Increased use of a 
standalone heater reduced total energy consumption but the transfer of 
heat from gas to electricity tended to increase bills. Those who switched 
from baths to ‘a lot more’ showers saw electricity and gas use rise, 
possibly due to showering more often than bathing or transfer of water 
heating from gas to electricity.  

5. Were those who saw the greatest reduction in energy consumption more 
likely to be struggling financially and/or to experience problems related to 
underheating? 

Those struggling financially showed greater sensitivity to gas price 
increase and lower sensitivity to electricity price increase compared to 
more affluent households. Median price elasticity was − 0.099 for elec
tricity consumption and − 0.071 for gas consumption (compared to the 
previous winter). 

Households who reduced their energy consumption the most (i.e. the 
highest 20% of total energy percentage reduction) tended to report 
doing more energy-saving actions ‘a lot more’ than in the previous 
winter compared to the rest of the sample, were over four times as likely 
to heat their homes for fewer hours than before, and were around twice 
as likely to avoid using the heating through actions such as wearing 
more layers or using an electric blanked or hot water bottle, and their 
mean change in thermostat setting was − 1.8 ◦C (from 20.0 ◦C to 18.2 ◦C) 
(twice the mean reduction of the rest of the sample). 

Below 5 ◦C households were much less likely to reduce their gas 
consumption than in warmer weather. Within 10 ◦C–15 ◦C gas reduction 
increased with temperature, which may indicate households delaying 
the start of their personal heating season, or a greater willingness to 
handle cooler temperatures indoors when it was still relatively warm 
outside. The greatest energy reducers increased gas use less in cold 
weather compared to the rest of the sample, with the top 20% of energy 
reducers using around 49 kWh/day at temperatures close to freezing 
compared to 74 kWh/day (sample median). 

The greatest energy reducers were more likely to have low financial 
wellbeing, to find it difficult to meet their heating costs, to be unable to 
keep comfortably warm in their living rooms and were slightly more 
likely to experience problems with condensation, mould or damp. This 
indicates that those found to be making large reductions in energy 
consumption could be vulnerable to health and wellbeing issues related 
to underheating, and in need of greater financial assistance and support 
to improve the energy efficiency of their homes, particularly in relation 
to insulation and boiler efficiency. 

The above contribution to knowledge has been achieved by accessing 
comprehensive gas and electricity longitudinal data that predates the 
cost-of living crisis. In addition, it is complemented by self-reported 
changes in behaviour and detailed contextual weather data and other 
property data. This combined with novel methods of producing coun
terfactuals accounting for changes in weather has enabled the quanti
fication of a range of changes in behaviour and a detailed calculation of 
price elasticity, and the impact of measures such as changes to boiler 
flow temperatures. Historically, the impact of individual changes in 
behaviour have largely been calculated theoretically rather than 
empirically because detailed energy, contextual and behaviour data has 
not been accessible for a large enough sample to obtain meaningful 
statistical results [82]. Also, this study has for the first time enabled the 
quantification of the impact of measures normally recommended to save 18 Where ‘average’ is the median unless otherwise stated, as explained above. 
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energy such as showering rather than bathing but which do not appear 
to correlate with energy reductions. 

This research has already been utilised by policymakers to help 
provide advice to occupants as to how to cope with the even higher fuel 
prices that homeowners will experience this coming heating season 
(2023–24) when the energy price guarantee and £400 subsidy has been 
removed. There is also considerable interest in looking at long-term 
price elasticity as fuel prices are now predicted to stay high for the 
coming years. 

Further research should investigate more fully the experiences of 
those in fuel poverty including those who are making large reductions to 
their energy use and those with no ability to reduce their consumption 
further as they already have very low consumption. Improving home 
energy efficiency could be very valuable to such households, and iden
tifying those with greatest need could be the subject of further research. 
We identified a range of energy-saving actions that showed potential to 
make significant energy savings, many of which have not yet been 
adopted as regular practice by most households. Understanding why 
not, and who might benefit from better communication would be 
valuable to enable greater energy reduction without causing issues such 
as underheating among those already making great efforts to save 
energy. 
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Appendix A: Sample representativeness. 

Table A1 describes the representativeness of our sample compared with national estimates using 2021 England & Wales Census data [73], 
Scotland’s 2022 Census data [74], Ordnance Survey’s Address Base dataset [75], and the English Housing Survey (EHS) [76]. 

Regionally our sample is broadly representative of GB, with a slight over-representation of households in Wales, the West Midlands and North West 
and a slight under-representation of households in Scotland. Our sample slightly under-represents households in areas with the greatest deprivation 
(IMD quintile 1) and over-represents those in areas with the greatest affluence (IMD quintile 5). This is likely to mean our sample-level results slightly 
under-estimate energy reductions since we found low financial wellbeing to correlate with greater energy reductions. Childless households are 
particularly over-represented in our sample, in particular households with a single occupier aged under 65 years and those with two adults both aged 
over 65 years, while households with children are a little under-represented. However, we did not find correlation between the presence of the elderly 
or of children and percentage total energy reduction. 

The most and least efficient dwellings are over-represented in our sample, at the expense of dwellings in EPC band C, while band B dwellings are 
represented fairly (and the most common category). It is unclear how this may affect the results, particularly as recent analysis has shown that EPC 
band is a poor predictor of energy use for bands C-G [77]. In general the SERL dataset struggled to be representative by dwelling and tenure type due to 
the uneven rollout of smart metering [50], and thus our sample is biased towards detached dwellings and owner-occupiers and under-represents flats/ 
apartments and renters. This is likely to have increased our estimates of energy reduction as those in larger dwellings had greater potential to reduce 
consumption. However, our use of percentage reduction for most of the analysis meant that no correlation between the variables in this table and 
percentage energy reduction was established (effectively normalising for predicted consumption). 

19 https://smarter.energynetworks.org/projects/nia_wpd_059/. 

E. Zapata-Webborn et al.                                                                                                                                                                                                                      

https://smarter.energynetworks.org/projects/nia_wpd_059/


Energy & Buildings 305 (2024) 113869

15

Appendix B: Model training, selection and performance. 

B.1 Summary 

All code used is publicly available on GitHub at https://github.com/ellenwebborn/Winter-demand-falls-as-fuel-bills-rise. The training period (1st 

October 2021–31st March 2022) was split into a train and test set, by randomly selecting five days in each month to be the test set, and the rest were the 
training set. All households were modelled separately and used the same train/test split (regardless of the occasional missing data) to allow for sample- 
level daily error analysis. Five-fold cross-validation was used on the training set, and data was scaled and centred before modelling. This study 
employed XGBoost with R packages xgboost [47] and caret [32] with booster ‘xgbTree’. For each household a model was selected based on its mean 
monthly coefficient of variation of the root mean squared error; CV(RMSE) and normalised mean bias error; (NMBE), defined as follows: 

CV(RMSE) =
1
y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(yi − ŷi)
2

n − 1

√

× 100 (B1)  

NMBE =
1
y

∑
( yi − ŷi)

n − 1
× 100 (B2)  

where n is the number of observations, yi is the mean observation the ith month, ŷi is the mean prediction in the ith month, and y is the mean of the 
observations. ASHRAE guidelines [78] recommend requiring monthly CV(RMSE) < 15% and NMBE within ± 5%. Households were excluded from our 
sample if, after all models had been trained, none met these criteria. After each round of modelling (see the Procedure below), the latest trained model 
was accepted (and further model training stopped) if its monthly NMBE was within ± 5% and its monthly CV(RMSE) < 10% (lower than the final 15% 
cutoff to allow for model improvement). After model evaluation, the final set of households was restricted to those with both a sufficiently accurate 
electricity and gas model (final sample size 5594 households). Final model performance is reported in Appendix B4. 

Table A1 
Sample breakdowns by various categories where data is available and comparable population estimates exist. Some categories have been merged for statistical 
disclosure control due to low counts. *Census data excludes caravans, mobile and temporary structures as they are not included in our sample. **Census data uses 66 as 
the upper age limit rather than 65 years.  

Category (number with data) Subgroup Sample 
(%) 

Population 
estimate (%) 

Source 

Region (5594) East Midlands  8.5 7 2021 England & Wales Census, 2022 
Scotland Census East of England  9.3 9 

Greater London  11.4 12 
North East  3.7 4 
North West  12.9 11 
Scotland  7.0 8 
South East  13.8 13 
South West  8.7 8 
Wales  6.2 4 
West Midlands  10.0 8 
Yorkshire  8.5 8 

Index of Multiple Deprivation (IMD) quintile (5594) 1 (greatest deprivation)  19.7 21 Address Base 
2  22.3 21 
3  18.3 21 
4  18.7 20 
5 (greatest affluence)  21.1 18 

EPC rating (3091) Bands A & B  5.1 2 EHS 2019 to 2020: headline report 
data C  30.7 38 

Band D  46.6 47 
Bands E-G  17.6 14 

Dwelling type* (5369) Detached house or bungalow  30.1 23 2021 England & Wales Census 
Semi-detached house or bungalow  34.7 32 
Terraced house or bungalow  26.3 23 
Flat, maisonette or apartment  9.0 22 

Tenure (5370) Owned outright, with mortgage or loan or 
shared ownership  

84.8 63 2021 England & Wales Census 

Private rented or lives rent free  6.7 20 
Social rented  8.5 17 

Household size (5420) 1 person  25.5 32 2021 England & Wales Census 
2 people  43.6 37 
3 people  13.4 17 
4 people  12.4 14 
5 or more people  5.1 7 

Household composition** (5316) 1 adult 65+, no children  15.5 13 2021 England & Wales Census 
1 adult < 65, no children  9.7 17 
1 adult 65 + and 1 adult < 65, no children  6.0 4 
2 adults 65+, no children  19.5 9 
2 adults < 65, no children  16.9 18 
3 + adults, no children  12.3 12 
1 + children  20.2 26  
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B.2 Procedure 

For each household, initially a model was trained using a simple formula and a small set of hyperparameters (‘set A’). If the model accuracy was 
acceptable then training stopped. Otherwise, a more complex formula was introduced (defined below). If model accuracy was still too low, a wider 
range of hyperparameters were tested (‘set B’) using the most accurate formula from the previous models. The following algorithm describes the 
process of model development following data pre-processing and filtering, up to the creation of the counterfactuals. Table B3 below defines the 
hyperparameters used and examples tested in related studies.  

Model training and selection procedure 

0: for each fuel (electricity and gas) do 
1: for each household in the filtered fuel set do 
2:  i = 0 
3:  while i < 4 do 
4:  Train model on the training set with formula fi and hyperparameter set A 
5:  if CV(RMSE) < 10% and |NMBE| < 5% then 
6:  Save model as m* and skip to line 18 
7:  else 
8:  i = i + 1 
9:  end 
10:  end while 
11:  f* is the formula of the model with the lowest CV(RMSE) 
12:  Train model with f* and hyperparameter set B 
13:  if CV(RMSE) < 15% and |NMBE| < 5% then 
14:  Save model as m* 
15:  else 
16:  Exclude household from the analysis. Stop. 
17:  end 
18:  Predict the test set consumption using m* 
19:  Calculate train and test errors 
20:  Retrain model with the formula and hyperparameters of m* on the full training and testing set 
21:  Save retrained (final) model as M* 
22:  Use M* to predict counterfactual consumption during winter 2022/23 
23:  end 
24: end  

B.3 Hyperparameters and formulas 

For each household the following regression formulas were used, starting with f0 and only continuing to the next formula if the model accuracy was 
too low (see Procedure above). National holidays were defined using the ‘holidayLONDON’ function from R package ‘timeDate’ [81] which does not 
include national holidays in Scotland or Wales. Sinusoidal calendar variables sinday and cosday are as defined in [26]. 

f0 (used for 5432 electricity and 5311 gas models): 

dailyenergy = β1sinday + β2cosday + β3weekend or holiday indicator + β4mean temperature at 2m above surface level + β5mean solar radiation

+ β10total precipitation + β11mean wind speed 

f1 (used for 98 electricity and 159 gas models): 

dailyenergy = β1sinday + β2cosday + β3weekend or holiday indicator + β4mean temperature at 2m above surface level

+ β5minimum temperature at 2m above surface level + β6maximum temperature at 2m above surface level

+ β7mean temperature at 2m above surface level on previous day + β8mean solar radiation + β9mean solar radiation on previous day

+ β10total precipitation + β11mean wind speed + β12maximum wind speed 

f2 (used for 34 electricity and 52 gas models): 

Table B3 
Hyperparameters tested during model development (see procedure above for use of sets A and B). Set A was sufficient for 5552 households’ electricity models and 5500 
households’ gas models; set B was used for 42 households’ electricity models and households’ gas models.  

Hyperparameter Description Set A Set B Literature examples 

eta Learning rate (step size for each iteration) 0.1, 0.3 0.05, 0.1, 0.3 0.05 [79] 
n rounds Maximum number of iterations (number of decision trees in the forest) 100 100, 200, 300 300 [79] 
max depth Maximum depth of the tree 6 0.5, 1, 5, 10 6 [79]; 5 [80] 
min child weight Minimum sum of weights in a subset 1 1, 3, 6 3 [79]; 1 [80] 
gamma Weights for tree pruning – controls regularization 0 0 0.1 [79]; 0 [80] 
subsample Controls the number of samples (observations) supplied to a tree 1 1 0.9 [80] 
colsample bytree Controls the number of features (variables) supplied to a tree 1 0.4, 0.6, 0.8, 1.0 0.9 [80]  
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dailyenergy = β1sinday + β2cosday + β3weekend or holiday indicator + weekend or holiday indicator × (β4mean temperature at 2m above surface level

+ β5minimum temperature at 2m above surface level + β6maximum temperature at 2m above surface level

+ β7mean temperature at 2m above surface level on previous day + β8mean solar radiation + β9mean solar radiation on previous day

+ β10total precipitation + β11mean wind speed + β12maximum wind speed)

f3 (used for 30 electricity and 72 gas models): 

dailyenergy = β1sinday + β2cosday + β3weekend or holiday indicator + β4mean temperature at 2m above surface level

+ β5minimum temperature at 2m above surface level + β8mean solar radiation + β10total precipitation + β11mean wind speed

+ β12maximum wind speed + weekend or holiday indicator × (β4mean temperature at 2m above surface level

+ β5minimum temperature at 2m above surface level + β6maximum temperature at 2m above surface level

+ β7mean temperature at 2m above surface level on previous day + β8mean solar radiation + β9mean solar radiation on previous day

+ β10total precipitation + β11mean wind speed + β12maximum wind speed)

B.4 Selected model performance 

Table B4 shows the performance metrics of the selected models. The errors are lower than the seven machine learning algorithms tested in [79] 
that predicted electrical heating load (lowest training MAPE and RMSE 3.25 and 35.63, respectively; lowest testing MAPE and RMSE 5.21 and 59.75, 
respectively), although when compared with our gas model results (since their focus was heating demand which may be more comparable), their 
MAPE training and testing errors were slightly lower while their RMSE were both far higher. Nine models to predict space cooling tested in [80] 
showed similar or higher RMSE training errors to our final models. Our models were selected based on the ASHRAE guidelines [78] recommending 
monthly CV(RMSE) < 15% and NMBE within ± 5%, and the sample-level final models are well within this range. CV(RMSE) and NMBE were similar to 
model performance in [26] (where training CV(RMSE) for electricity and gas were 3.86% and 3.19%, respectively and training NMBE for electricity 
and gas were 0.21% and − 0.10%, respectively). The similarity of the training and testing errors gives us confidence that the models did not suffer 
unduly from overfitting and would be capable of generalising to the following winter. 

Appendix C: Energy bill statistics. 

Table C1 shows the price assumptions used based on the Energy Price Cap and Energy Price Guarantee (see Section 2.1.4 for details). 
Table C2 presents more detailed statistics of how energy bills were predicted and observed to increase, along with the impact of energy con

sumption reduction, both with and without the government subsidy (as described in Section 3.2). 

Table B4 
Predictive model performance metrics (sample level).  

Performance Electricity Gas 

Training Testing Training Testing 

MAPE (%)  2.00  2.28  5.32  5.69 
RMSE (kWh)  0.27  0.32  3.26  3.64 
R-squared (%)  0.91  0.91  0.97  0.96 
CV(RMSE) (%)  2.73  3.27  6.18  6.78 
NMBE (%)  0.57  1.36  0.85  1.80  

Table C1 
Price assumptions based on local Energy Price Cap (October 2021–March 2022) [62] and local Energy Price Guarantee (October 2022–March 2023) [59,60].    

Electricity Gas 

Period  Oct 2021–Mar 
2022 

Oct 2022–Dec 
2022 

Jan 2023–Mar 
2023 

Oct 2021–Mar 
22 

Oct 2022–Dec 
2022 

Jan 2023–Mar 
2023 

Standing charge (pence/ 
day) 

Mean  23.41  45.59  43.42  24.88  28.50  27.12 
Minimum  22.20  33.20  31.57  24.88  28.50  27.12 
Maximum  26.09  52.60  50.13  24.88  28.50  27.12 

Unit cost (pence/kWh) Mean  19.83  32.58  32.62  3.87  9.84  9.84 
Minimum  19.12  30.71  30.35  3.77  9.72  9.71 
Maximum  20.95  34.27  34.71  4.00  10.01  10.01  
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Appendix D: Energy reduction quintiles 

D.1 Energy reduction statistics 

The energy reduction quintiles are defined by the quintiles of total energy percentage reduction. Quintile 5 reduced consumption by the highest 
amount (over 23.8%) while quintile 1 increased consumption by more than 0.1%. Table D1 provides some basic statistics about the energy reduction 
of each quintile group. 

D.2 Number of energy-reduction actions performed ‘a lot more’ in winter 2022/23 than in winter 2021/22 

The 2023 SERL energy survey question A6 asked respondents how often each of 16 actions were performed compared with the previous winter. 
Fig. D1 shows the number of actions participants in each energy-saving quintile reported doing ‘a lot more’, ‘a little more’, etc. compared with the 
previous winter. Those who saved the most energy (energy reduction quintile 5) reported doing more actions ‘a lot more’ than the rest of the sample, 
and that doing more actions ‘a lot more’ than last winter increased with saver quintile (from 2.1 actions on average for quintile 1 up to 4.4 actions on 
average for quintile 5). Conversely, the greatest energy reducers tended to report doing fewer actions ‘about the same’ (7.1 on average) compared to 
the other quintiles (up to 9.3 actions on average for quintile 1). 

Table C2 
Average monthly change in energy bills in winter 2022/23 compared to the previous winter: predicted and observed. Subsidy is the Government subsidy of £400 for the 
winter for electricity and gas (total) which we split 40:60 between electricity and gas as this is approximately the average bill split. Consumption reduction impact is 
the unit cost multiplied by the average monthly energy consumption reduction (predicted – observed).   

Predicted increase in energy bills* (£/month) Observed increase in energy bills* (£/month) Consumption reduction impact (£/month) 

Median IQR Median IQR Median IQR 

Without subsidy Electricity 39.53 (29.29, 54.69) 31.71 (23.63, 43.61) 7.81 (5.66, 11.08) 
Gas 89.46 (55.68, 133.40) 68.68 (35.50, 110.40) 20.78 (20.18, 23.00) 
Total 128.99 (84.97, 188.09) 100.39 (59.13, 154.01) 28.60 (25.84, 34.09) 

With subsidy Electricity 12.86 (2.62, 28.02) 5.04 (− 3.04, 16.94) – – 
Gas 49.46 (15.68, 93.40) 28.68 (− 4.50, 70.40) – – 
Total 62.32 (18.30, 121.42) 33.72 (− 7.54, 87.34) – –  

Table D1 
Energy reduction statistics for each energy reduction quintile.  

Energy reduction quintile 1 2 3 4 5 

% total energy reduction Range (definition) (− 107.2, − 0.1) [− 0.1, 7.1) [7.1, 14.0) [14.0, 23.8) [23.8, 86.2) 

% reduction Total Median − 5.8 3.8 10.5 18.4 32.3 
IQR (− 13.1, 2.7) (1.9, 5.4) (8.8, 12.1) (16.1, 21.0) (27.4, 40.3) 

Gas Median − 7.7 3.3 10.7 19.6 35.1 
IQR (− 16.5, − 3.4) (1.0, 5.5) (8.2, 13.1) (16.5, 22.6) (29.4, 45.2) 

Electricity Median 1.9 5.9 8.9 11.8 14.6 
IQR 1.9 5.9 8.9 11.8 14.6 

kWh reduction Total Median − 2.8 2.1 6.3 11.5 18.7 
IQR (− 5.8, − 1.2) (0.9, 3.4) (4.4, 8.8) (8.0, 15.7) (12.9, 27.0) 

Gas Median − 3.0 1.5 5.3 10.0 16.8 
IQR (− 6.0, − 1.3) (0.4, 3.0) (3.4, 7.9) (6.8, 14.2) (11.5, 25.1) 

Electricity Median 0.1 0.5 0.7 0.9 1.0 
IQR (− 0.7, 0.8) (− 0.1, 1.2) (0.0, 1.7) (0.2, 2.0) (0.3, 2.5)  
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D.3 Risk of fuel poverty and underheating-related issues 

Table D2 shows the results of risk ratio analysis for how much more likely energy reduction quintile 5 were to have each of the variables in column 
1 than the rest of the sample. All variables showed significance (p < 0.05) except for substantial mould which did not establish a significant difference 
between quintile 5 and quintiles 1–4. 
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