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Abstract
Objective.As themost common solution tomotion artefact for cone-beamCT (CBCT) in
radiotherapy, 4DCBCT suffers from long acquisition time and phase sorting error. This issue could be
addressed if themotion at each projection could be known, which is a severely ill-posed problem. This
study aims to obtain themotion at each time point andmotion-free image simultaneously from
unsorted projection data of a standard 3DCBCT scan.Approach.Respiration surrogate signals were
extracted by the Intensity Analysismethod. A general frameworkwas then deployed tofit a surrogate-
drivenmotionmodel that characterized the relation between themotion and surrogate signals at each
time point.Motionmodelfitting andmotion compensated reconstructionwere alternatively and
iteratively performed. Stochastic subset gradient basedmethodwas used to significantly reduce the
computation time. The performance of ourmethodwas comprehensively evaluated through digital
phantom simulation and also validated on clinical scans from six patients.Results. For digital phantom
experiments,motionmodels fittedwith ground-truth or extracted surrogate signals both achieved a
much lowermotion estimation error and higher image quality, comparedwith nonmotion-
compensated results.For the public SPAREChallenge datasets,more clear lung tissues and less blurry
diaphragm could be seen in themotion compensated reconstruction, comparable to the benchmark
4DCBCT images but with a higher temporal resolution. Similar results were observed for two real
clinical 3DCBCT scans. Significance.Themotion compensated reconstructions andmotionmodels
produced by ourmethodwill have direct clinical benefit by providingmore accurate estimates of the
delivered dose and ultimately facilitatingmore accurate radiotherapy treatments for lung cancer
patients.

1. Introduction

As one of themajor therapies for lung cancer of all stages, over half of all patients receive radiotherapy (Brown
et al 2019).Modern intensitymodulated radiotherapy can produce dose distributions that are highly conformal
to the shape of tumor so as to deliver high radiation dose to the tumorwhile sparing the surrounding normal
tissues (Pirzkall et al 2000). However, the patients anatomy can change during the course of treatment (Cole et al
2018)which can lead to the tumor receiving less dose and/or the normal tissues receivingmore dose than
planned (denOtter et al 2020).

On-board cone-beamCT (CBCT), which is integrated onmost clinical linear accelerators nowadays (De Los
Santos et al 2013), has beenwidely investigated for Adaptive Radiotherapy (ART) to account for patients inter-
fraction anatomical changes (Cole et al 2018). However, artifacts due to respirationmotion usually degrade the
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quality of theCBCT images (Sweeney et al 2012). In addition, standard 3DCBCTprovides no information on the
tumormotion, which can change between between sessions of daily radiotherapy (Dhont et al 2018).

To informARTwithmotion-of-the-day, the scan duration can be increased 2–4 times so as to acquiremore
projections that can then be sorted intomultiple respiratory phases (normally 6–10 phases) to obtain 4DCBCT
(Sonke et al 2005), i.e. a series of CBCT images reconstructed out of binned projections that belong to each
respiratory phase.Nevertheless, 4DCBCT suffers from severe streak artifacts due to the uneven angular
distribution of projections within each phase (Leng et al 2008), and breath-to-breath variability and sorting
errors can lead to residual blurring.Moreover, the longer acquisition time of 4DCBCT is undesirable in clinical
practice and associatedwithmore imaging dose to patients (Thengumpallil et al 2016).

Variousmethods can be utilized to improve the quality of 4DCBCT.One type ofmethod exploits
compressed sensing theory for sparse-view reconstruction, e.g. using different kinds of edge-preserving total
variation (Jia et al 2010) or prior-image-constrained-compressed-sensing (Chen et al 2008). Another type of
method utilizes deep learning techniques to postprocess the CBCT images reconstructed with under-sampled
data to achieve similar image quality as CBCT images reconstructedwith full data (Jiang et al 2019). However,
thesemethods reconstruct the CBCT image for each phase separately and do not take advantage of the temporal
redundancy of theCBCTdata. Other studies (Mory et al 2014, 2016, Zhi et al 2021) applied temporal
regularization as well as spatial regularization on 4DCBCT reconstruction. Nevertheless, 4DCBCT assumes
periodic breathing, which is not always a valid assumption for lung cancer patients (Nøttrup et al 2007).

In comparison to 4DCBCT, themotion compensated approach estimates themotion that occurred during
theCBCT acquisition and uses themotion estimation to reconstruct a single ‘static’ 3D image throughmotion
compensated versions of Feldkamp–Davis–Kress (FDK) (Rit et al 2009) or iterative reconstruction (Chee et al
2019) algorithms. Since all the projections are used in reconstructing the image, the image quality should not be
influenced by under-sampling effects, but the difficulty of this approach lies in accurately estimating themotion.
Somemethods estimated themotion from the planning 4DCT scan (Rit et al 2009), but changes to themotion
and/or anatomy between the 4DCT andCBCT scan could limit the accuracy of such approaches. Other
methods used 4DCBCT to estimate themotionmodel (Guo et al 2019) or iteratively registered and reconstruct
4DCBCT in amulti-resolution approach (Wang andGu 2013), where image registration between different
phases of 4DCBCT is required but the poor image quality could limit the accuracy of these approaches. Some
studies used deep-learning based approaches to improve the quality of the initial 4DCBCT images and the
subsequent image registration step (Yang et al 2022, Zhang et al 2023), but thesemethods could not account for
breath-to-breath variation.

Alternatively, surrogate drivenmotionmodels (McClelland et al 2013) can estimate themotion at each
timepoint, with the capability to capture breath-to-breath variability. In this approach, themotion is
parameterized by one ormore respiratory surrogate signals which can be acquired from external devices, such as
marker(s) on the skin surface (Hurwitz et al 2014,Dong et al 2023), or derived directly from the projection data
using the Amsterdam shroudmethod (Zijp et al 2004) or similar techniques (Kavanagh et al 2009). The common
approach forfitting a surrogate-drivenmotionmodel consists of two separate steps, i.e.first performing image
registration to get 3Dmotion fields and thenfitting the relation between the 3Dmotion fields and the
corresponding surrogate signals (McClelland et al 2013). However, to obtain 3Dmotionfield requires dynamic
3D images, whichwouldmost likely be obtained by pre-existing phase-sorted 4D images and thus lose
information of breath-to-breath variability. In recent years a generalmotionmodelling framework has been
proposed that unifies the image registration andmotionmodel fitting steps into a single optimization process,
enabling themethod to be applied on unreconstructed ‘raw’ data such asCBCTprojections (McClelland et al
2017).Moreover,motion compensated reconstruction could also be integrated into thismethod so no prior
image is required. This framework has been optimized and extensively evaluated formulti-sliceMRI data from a
MR-Linac (Tran 2022).

This paper adapted the framework above so it could be applied toCBCTprojection datawith several
technical developments, which include incorporating forward- and back-projection operators (fromopenRTK)
into the framework, implementing a new similaritymeasure (LNCC), implementing amotion-compensated
FDK reconstruction that utilizes the projection-specificmotion estimates provided by themotionmodel, and
implementing a stochastic gradient descent optimization schemewhich greatly improves the computation time.
Additionally, amethod for extracting the surrogate signal from the projection datawas implemented and
utilized. The contributions of this paper also include thorough quantitative and qualitative evaluation using
simulated data from a computer phantom.More importantly, the feasibility of thismethod is demonstrated on
real patient data. Using ourmethod, dynamic images that showed the respirationmotion of lung cancer patients
can be generated fromnothingmore than unsortedCBCTprojection in a standard 3DCBCT scan. An earlier
version of this paper was presented at the IEEE international Symposiumof Biomedical Imaging andwas
published in its proceedings (Huang et al 2023).
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2.Material andmethods

2.1 The generalmotionmodelling framework
Full details of the general framework can be found in (McClelland et al 2017), but for the sake of clarity, a brief
description of the framework, and how it has been adapted for CBCTprojection data, will be given below.

Given a set of 2DCBCTprojection images (Pt), the goal of this study is to obtain amotion-free CBCT image
(I0) and a time series of deformation vector fields (DVFs)Dt that canwarp the reference state image I0 to the
CBCT image (It) at themoment when each projectionwas acquired using

= ( ) ( )TI I D, , 1t 0 t

whereT is a function that resamples I0 according to the spatial transformdetermined byDt at time-point t.
This study used a B-spline free-formdeformation (FFD) transformationmodel:

f= ( ) ( )D M , 2t t

wheref is a function based on cubic B-splines, that takes the control point grid displacements that define the
FFD,Mt, as input and returns the voxel-wiseDVF,Dt. The surrogate-driven respiration correspondencemodel
can then be represented as follows:

= = S =· · ( )SM S C C 3i
N

itt t i1
s

inwhichNs is the number of surrogate signals, Sit is the ith surrogate signal at time-point t andCi is the ith
component of correspondencemodel parameters. At least two surrogate signals are required tomodel both
intra- and inter-cycle variability (McClelland et al 2013).More signals can be used, but this increases the number
ofmodel parameters and the danger of overfitting the data. Furthermore, there is some evidence in the literature
that just two signals can approximate themotionwell over a fewminutes (Liu et al 2012,Manber et al 2016, Tran
et al 2020), so two signals were used in this study.

Themotionmodel parametersC can be determined byminimizing the loss function below:

= -S ¢= ( ) ( )f L P P, 4t
N

t t1
t

¢ = · ( )P A I 5t t t

where L refers to the localized normalized cross correlation, ¢Pt andPt are the estimated andmeasured projection
images at time t respectively, andAt is the acquisitionmatrix for CBCT forward projection. Voxels outside the
reconstruction field-of-view (FOV)will be set to null value so thatAtwill ignore those voxels and prevent them
from interfering with loss function calculation.

Combining equations (1)–(5) the gradient of the loss functionwith respect to themotionmodel parameters
is:
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where i= 1,K,Ns, and *At is the adjointmatrix ofAt. The gradient can be calculated over all the projections or a
subset of projections. For the sake of computation efficiency, themodelfitting used evenly-spaced subsets, with
just one-tenth of the projections in each, and stochastic gradient descent, reducing computation time by a factor
of∼10 per update step.

In the proposedmethod, I0 is initially reconstructed using the standard FDK algorithm (Feldkamp et al
1984). This is used tofit themotionmodel parameters,C. However, the accuracy of this initial fitmay be limited
due to themotion artifacts in I0. Therefore, I0 andC are alternatingly updated by performing amotion
compensated FDK reconstruction (Rit et al 2009) andfitting themotionmodel parameters as described above.

The proposedmethodwas implemented by adapting our open-source software SuPReMo (https://github.
com/UCL/SuPReMo).We used openRTK (Rit et al 2014) for forward and back projection but implemented the
motion compensated reconstruction by ourselves bywarping each back projection volume. A dockerized
implementationwill bemade available after reasonable request to the authors.

The hyperparameters used for this study are: control point grid spacing of 8 voxels,maximumnumber of
motion compensated reconstructions per level was 6,maximumnumber ofmodel fitting iterationswas 100. A
multi-resolution approachwas adopted, withPt,C, and I0 being resampled at each resolution level. Two
resolution levels were used, i.e. 1/4 and 1/2 of the original resolution, as we found that fitting themotionmodel
at the original resolution level greatly increased the runtime for little or no improvement to themodel accuracy.
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2.2CBCT acquisition data
2.2.1Digital phantom simulation
TheXCAT software (Segars et al 2010)was used to generate a ground truth reference state image and sequence of
DVFs frombreathing traces that represent themotion of diaphragm in SI direction andmotion of chest surface
alongAP direction. This study used two sets of real breathing traces, as shown infigure 1, whichweremeasured
from cine sagittalMR slices.

Thefirst set of breathing traces showed regular respiration and the other one exhibited amore irregular
pattern including hysteresis and inter-cycle variation.More specifically, the two traces are in-phasewith each
other in the regular simulation, while out-of-phase with each other in irregular simulation, the latter of which
also hasmore variablemagnitudes among different breathing cycles.

For both simulations, the reference state image (size: 375× 375× 343, resolution: 1 mm× 1 mm× 1 mm)
was created representing the time average position of the anatomy over the acquisition. A spherical tumorwith
radius of 15 mmwas added to the reference state images on the lower part of left lung, as shown infigure 2.

TheDVFs from theXCAT simulation can cause different structures/organs tomove through each other.
TheCID-X software (Eiben et al 2020)was used to post-process the outputs of the XCAT to prevent this
happening, and give consistent and invertible DVFs that still preserve the slidingmotion between the lungs and
the chest wall. These post-processedDVFs provide the ground truthmotion, Dt

gt, for each time point t, andwere
used towarp the reference state image to produce the dynamic image for each time point. Theywere also used to
warp amask of the tumor to produce ground truth tumormasks for each time point, Mask t

gt.
Projection images were generated from the dynamic images withOpenRTK (Rit et al 2014) using the

geometry of a real CBCT scan on an Elekta Synergy (Elekta AB, Stockholm, Sweden) system (scan angle: 360°,
source-to-isocenter distance (SID): 1000 mm, source-to-detector distance (SDD): 1536 mm). 310 projections

Figure 1.The input breathing traces for XCAT simulation that represent regular breathing (a) and irregular breathing (b).

Figure 2.Ground-truth reference state image for the 4DXCAT simulation of irregular breathing.
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were generated per scan to simulate a one-minute scan at acquisition rate of 5.4 fps. Resolution and dimensional
size of the projection images are 0.8 mm× 0.8 mmand 512× 512 respectively.

2.2.2 Patient data
The approachwas verified in 2 real-world patient datasets:

(i) SPARECHALLENGEDATASET (Shieh et al 2019). The SPARE challenge dataset includes data from 10 patients,
but 6 of these suffer fromheavily truncated data (i.e. parts of their anatomy aremissing from the
reconstructed images due to the limited field of view) and cannot be used in this study. TheCBCT images
were acquiredwith a scan angle of 360° on aVarian Trilogy systemwith SIDof 1000 mmand SDDof
1500 mm,with an offset detector to enlarge thefield-of-view (FOV) to 450 mm× 450 mm× 220 mm.
Dimensions and pixel size of the projection images were 1024× 768 and 0.388 mm× 0.388 mm
respectively. The datasets consist of 680 projections each, equivalent to a standard 1 min 3DCBCT scan,
although they have actually been subsampled from longer scans (∼8 min) 4DCBCT scans.

(ii) ROSS-LC CLINICAL TRIAL (Price et al 2018). We have also demonstrated our method on true (i.e. not
subsampled) clinical 3DCBCT scans from two patients from the ROSS-LC clinical trial (REC ref. 14/NW/

0037). The data were acquired using an Elekta XVI (Elekta AB, Stockholm, Sweden) systemunder standard
3DCBCT settings, i.e.∼600 projections during a 2 min scan over a full rotation. The SID and SDDare
1000 mmand 1536 mm respectively. Resolution and dimensional size of the projection images are
0.8 mm× 0.8 mmand 504× 504 respectively. FOVs of the two patients were
410 mm× 410 mm× 264 mmand 410 mm× 410 mm× 168 mmrespectively.

3. Experiments

3.1 Surrogate signal extraction
As external breathingwere not available for the clinical datasets, the Intensity Analysis (IA)method (Kavanagh
et al 2009)was used to extract the surrogate signals directly from theCBCTprojection data. Briefly, The IA
method calculates the sumof the pixel intensities for each projection, and splits the 1D signal obtained from this
into low-frequency and high-frequency components. The low-frequency part reflects slow gantry rotationwhile
the high-frequency part is related tomore frequent respirationmotionwhich is used as the surrogate signal. As
eachmodel requires two surrogate signals as inputs, the temporal gradient of the IA signal was used as the second
surrogate signal when fitting themodels. The temporal gradient is used to present breathing rate, in accordance
with 5D lungmotionmodel (Low et al 2005) that has been supported bymany studies (Zhao et al 2009, Liu et al
2015, Chee et al 2019).

Tomake better use of the simulation dataset for evaluating the impact of surrogate signals, the input
breathing traces to the XCAT simulationwere also used as another set of surrogate signals tofit anothermotion
model. These should provide the best possible surrogate signals, as theywere used to drive the XCAT
simulations, but comparable signals are not available for real data. Comparison between different types of
signals can reveal the impact of using non-perfect signals. All the surrogate signals were normalized to have
mean of 0 and standard deviation of 1.

3.2 Evaluation
For simulation data, the performance of themotionmodel was assessed by the followingmetrics:

(i) ED: The L2-norm of the difference between the ground-truth (Dt
gt) and estimated (Dt

est) DVFs averaged
over all the time-pointsNt and aVolume-of-Interest (VOI) defined as the human bodywithin the
reconstruction FOV:
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(iii) Ecenter: The Euclidean distance between estimated ct
est and ground-truth ct

gt tumor centroid positions
averaged over nt time-points:

= S -= ∣∣ ∣∣ ( )
n

c cE
1

9
t

t
N

t
est

t
gt

center 1 2
t

(iv) NRMSE: normalized root-mean-square-error (normalized to themaximumpixel value of ground-truth):

= -
( )

·
∣ ∣

· ∣∣ ∣∣ ( )
VOII
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1
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1
10

0
gt 0

est
0
gt 2

where I0
gt is themotion compensated FDK reconstruction using ground-truthDVFs and I0

est is themotion
compensated FDK reconstruction usingmodel estimatedDVFs.

(v) SSIM: structural similarity index between I0
gt and I0

est.

For real patient data, as ground-truthDVFswere not available, visual inspectionwas used to evaluate the
quality of the reconstructed image. Visualising the results for both the simulated and real datasets can be found
in the supplementarymaterial.

3.3Comparing scenarios
Three scenarios were compared using themetrics above:

Suncorr: Uncorrected results, i.e. not involvingmotion compensation. The tumormasks at all time-points are
the same as themask on the average position image. DVFs are zero over space and time. Reconstruction is a
standard FDK reconstruction.

SXCAT: Results obtained by amotionmodel fittedwith the normalized input breathing traces from theXCAT
simulations.

SIA: Results obtained by amotionmodel fittedwith the normalized IA signal and its temporal derivative.
These three scenarios were assessed for both the regular and irregular breathing simulations.

4. Results

4.1 Extracted surrogate signal
Figure 3 displays the normalized IA signals extracted fromprojection images (blue curves), overlaid on
normalized diaphragm traces (red curves) for the two 4DXCAT simulations. The IA signals are similar to the
diaphragm signal overmost timepoints (Pearson correlation coefficients: 0.936 and 0.920 for regular and
irregular breathing respectively), although there are a few timeswhere there are relatively large differences
between the signals. Figure 4 shows the IA signals for the four patients from the Spare Challenge, respectively.

Figure 3.The normalized IA signals obtained fromprojection images (blue curves), overlapped on normalized diaphragm traces for
the two 4DXCAT simulations (red curves).
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For the real data there is no ground truth signal to compare to. It should be noted that the SPARE challenge
provides datasets with subsampled sets of projection images from8min scans, such that the number of
projection images are the same as would be available from1min scans (680 projection images). This is why the
respiration seems to have a high frequency (although it is not clearwhy the frequency is lower for the first part of
thefirst scan). Figure 5 shows the IA signals for the two patients from the ROSS-LC clinical trial, respectively.
Here, the IA signals havemore natural breathing frequencies because theywere extracted from standard clinical
scans.

4.2 Evaluation results for simulation data
Table 1 contains the results of the evaluationmetrics for the three scenarios respectively, as described in
section 3.2. The uncorrected results (Suncorr) show that there is substantialmotion of the tumor and other
anatomy duringCBCT acquisition.Whenfitting themotionmodel with any type of surrogate signals

Figure 4.The IA signals obtained fromprojection images of four patients from the spare challenge.

Figure 5.The IA signals obtained fromprojection images of two patients fromROSS-LC clinical trial.
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(SXCAT/SIA), the accuracy ofmotion estimation and the quality of the reconstructed images have been
improved. TheDSC and Ecentermetrics show that tumormotion has been estimated accurately. EDVF shows that
motion everywhere else has also been estimatedwell. NRMSE and SSIM show that I0

est ismore similar to I0
gt

when amotionmodel is used.
The regular and irregular breathing simulations are different in terms ofmagnitude and hysteresis of

respiration.However, the improvement is observed for both simulations, showing that ourmethod canmodel
the intra- and inter-cycle variations seen in the simulations and canmodel the largermotion seen in the regular
simulation aswell as the smallermotion seen in the irregular simulation. For both simulations, the surrogate
signals used as input toXCAT (SXCAT) givemarkedly better results than IA signals (SIA). Figures 6 and 7
demonstrate the displacement of tumor centroid at each frame in the SI (left column) andAP (right column)
directions for the regular and irregular breathing simulation, respectively. Thesefigures compare the three
scenarios as explained section 3.2, Suncorr/SXCAT/SIA, in terms of their capability to track tumormotion. The red
solid traces refer to the result without anymotion (a)–(b) or obtained by themotionmodels (c)–(f), while the
blue dashed traces refer to the ground-truth tumor centroid displacement. The Pearson correlation coefficients

Figure 6.Estimated and ground-truth displacement of tumor centroid in SI (left) andAP (right)direction, for regular breathing
simulation.

Table 1.Evaluationmetrics for regular and irregular breathing simulations (unit of Ecenter and EDVF:mm).

Simulation Scenarios ED DSC Ecenter NRMSE SSIM

Regular breathing Suncorr 2.38 ± 1.14 0.46 ± 0.23 8.32 ± 5.68 0.11 0.92

SXCAT 1.34 ± 0.63 0.90 ± 0.05 0.93 ± 0.54 0.07 0.95

SIA 1.58 ± 0.57 0.78 ± 0.11 2.41 ± 1.31 0.09 0.94

Irregular breathing Suncorr 1.70 ± 0.68 0.63 ± 0.15 7.72 ± 3.70 0.10 0.94

SXCAT 1.07 ± 0.46 0.92 ± 0.03 0.70 ± 0.31 0.08 0.96

SIA 1.30 ± 0.56 0.83 ± 0.09 1.78 ± 1.04 0.09 0.95
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between estimated and ground-truth tumor displacement for SXCAT are 0.997 [SI direction] and 0.976 [AP
direction] for regular breathing, and 0.993 [SI direction] and 0.991 [APdirection] for irregular breathing. For SIA
they are 0.940 [SI direction] and 0.857 [APdirection] for regular breathing, and 0.930 [SI direction] and 0.845
[APdirection] for irregular breathing. For Suncorr the correlation is always 0 since nomotion is estimated. For
both simulations, it can be seen thatmotionmodels fittedwith the XCAT input traces can estimate the tumor
motionwith high accuracy, whereas themodelfittedwith the extracted IA signals is less accurate, although it still
estimatesmost of themotion reasonably well. These results, together with those in table 1, suggest that the use of
extracted signals which do not perfectly correspond to the internalmotion can have a considerable impact on the
accuracy of themotionmodels. Figures 8(a) and (b)display sagittal and coronal views of the ground-truth
images, and the reconstruction images under the different scenarios listed in section 3.2.Here, ground-truth
images refer tomotion compensated FDK reconstruction using the known ground-truthmotion.

From figures 8(a) and (b), it can be seen that the image quality of the standard FDK reconstruction (c), (d) is
impacted by themotion, with the tumor, diaphragm, and other structures appearing blurry. This ismore
noticeable for the regularmotion infigures 8(a) since themotion is larger for the regular simulation.When a
motion compensated FDK is performed using the ground truthDVFs (a), (b) it can be seen that themotion is
almost perfectly compensated for and all the blurring and other artifacts have been removed. The results from
ourmethod using the XCAT input traces (e), (f) are almost as good aswhen the ground-truthDVFs (a), (b) are
used. The results fromourmethodwhen using the extracted IA signals (i), (j) show a fewmore artifacts compare
to the results using the XCAT input traces, with the tumor and part of the diaphragm slightly blurred (this is
more noticeable for the regular simulation due to the largermagnitude ofmotion). However, even the results
using the extracted surrogate signals show considerable improvement over the standard FDK reconstruction (c),
(d). These visual assessment results are in good agreement with the quantitative results presented in table 1.

To demonstrate how differentmotionmodels change the anatomy temporally, twomovies of animated
CBCT images can be found in appendix A1 andA2 for regular and irregular breathing simulation respectively.
ReferenceCBCT images are obtained bymotion compensated FDK reconstruction and then animated by

Figure 7.Estimated and ground-truth displacement of tumor centroid in SI (left) andAP (right)direction, for irregular breathing
simulation.
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motionmodels using different surrogate signals (SXCAT/SIA). The red circles refer to the ground-truth tumor
masks at each time-point, which aremostly consistent with the tumor boundary seen in the animatedCBCT
images.

4.3 Evaluation results for real patient data
Figures 9 and 10 show the sagittal (left column) and coronal (right column) views of standard FDK
reconstructions (a)–(b) andmotion compensated reconstructions using ourmethod (c)–(d) for the two patients
from the SPARE challenge dataset with themostmotion. Similar to the observation for the simulated data,
clearer lung tissue details and sharper diaphragm edges can be observed in the reconstructedCBCT after
applying ourmethod for both patients. Similar results of twomore patients in SPAREChallenge dataset can be
found in appendix A3 andA4. These two patients exhibit lessmotion, so there are lessmotion artifacts in the
original CBCTs, but there are stil some noticeable improvements in themotion compensated images produced
by ourmethod.

Benchmark results in SPAREChallenge did not include CBCT images at each projection time-point. To
comparewith the results from the SPAREChallenge (Data S6 in Shieh et al (2019)), we have created a ‘synthetic’
4DCBCT for thefirst patient fromSPARE challenge, which can be found in appendix A5. This was generated by
animating themotion compensated reconstructionwith ourmotionmodel and the average values of the
surrogate signals of each phase bin. The quality of the synthetic 4DCBCTusing ourmethodwas comparable to
the best results from the SPARE challenge, but it should be emphasized that ourmethod also has the ability to
provide frame-by-frameCBCT images over all projections, and thus can estimate CBCTs exhibiting breath-to-
breath variation.

Similarly, figures 11 and 12 display sagittal (left column) and coronal (right column) views of the
reconstructions for the two patients from the ROSS-LC clinical trial. It can be seen in bothfigures that the edge
of airways and diaphragm look sharper after applying ourmethod, similar to the results for the SPARE challenge
datasets and simulated data.

Appendix A6 andA7 displaymovies of the animatedCBCT images at each time-point for the two scans in
ROSS-LC clinical trial, estimated by ourmethod. Themovies show that the overallmotion estimated by our

Figure 8. Sagittal andCoronal views of the ground-truth CBCT images, and the reconstruction under the three scenarios (Suncorr/
SXCAT/SIA) for (a) regular and (b) irregular breathing simulation.
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method is generally plausible. However, it is evident that the slidingmotion between the tumor and the ribs for
thefirst patient has not been perfectlymodeled. This is expected due to the use of the B-spline FFD
transformationmodel andwill be addressed in future work.

We showed all the results of real patients to two experienced radiation oncologists who agreed that in all
cases themotion compensated images contained lessmotion artifacts than the standard FDK reconstructions,
and this could facilitatemore accuratemonitoring and delineation of the tumor and other organs in theCBCT
scans.

Figure 9. Standard FDK reconstruction (top) andmotion compensated reconstructionwith ourmethod using IA signal for patient 1
in SPARE challenge.

Figure 10. Standard FDK reconstruction (top) andmotion compensated reconstructionwith ourmethod using IA signal for patient 2
in SPARE challenge.
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5.Discussion and conclusion

Themajor contribution of this work is obtaining amotion-free reconstruction and frame-by-frameDVFs just
fromunsorted projection data of a standard clinical 3DCBCT scan. Performance of ourmethod has been
validated on simulated and real data, showing promising results. It should be emphasized that the aim of our
study is not to improve 4DCBCT. Rather, the aimof our study is to estimate themotion for every projection

Figure 11. Standard FDK reconstruction (top) andmotion compensated reconstructionwith ourmethod using IA signals (bottom)
for first patient of clinical trial.

Figure 12. Standard FDK reconstruction (top) andmotion compensated reconstructionwith ourmethod using IA signals (bottom)
for second patient of clinical trial.
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from a standard 3DCBCT scan and use the estimatedmotion to reconstruct a single 3Dmotion compensated
image. Unlike 4DCBCT, andmethods that attempt to improve 4DCBCT image quality, ourmethod canmodel
breath-to-breath variation in themotion and just requires projection data from a standard 3DCBCT scan. The
motion compensated image fromourmethod can be animated using the estimatedmotion to produce CBCT
images corresponding to all of the projections, andwhich exhibit breath-to-breath variability. The general
framework (McClelland et al 2017) in this studymakes it possible tofit themotionmodel directly onCBCT
projections.When using a traditional approach forfitting surrogate-drivenmotionmodels (McClelland et al
2013), image registration needs to be performed separately for each time-point to obtain theDVFs prior to
fitting themotionmodel, but this requires volumetric images. In comparison, our framework integrates image
registration andmotionmodel fitting into a unified process so that the surrogate-drivenmotionmodel can be
fitted directly to the projection data.

When applying ourmethod, there are several technical points that need consideration. The choice of
similaritymeasure is critical. Sum-of-Squared-Difference or similarmeasures (e.g.mean-absolute-difference)
may be suitable for simulated datawhere both themeasured projection images andmodel estimated projection
images are produced byOpenRTK and so have similar intensities. However, there is an intrinsic difference of
pixel values between themeasured andmodel estimated projections in real patient data, due to themore
complicated physical process such as beamhardening and scattering, etc. Therefore, LNCCwas used as the
similaritymeasure, which assumes a linear relationship between the intensities in themeasured and estimated
projections, but allows this relationship to vary across the image.

The number of surrogate signals is another essential factor. For data like the irregular breathing simulation,
themotion of chest skin surface and diaphragm is hysteretic, i.e. out-of-phase with each other. Fitting the
motionmodel with just one surrogate signal can only recover themotion in the dominant direction, e.g. the SI
direction. At least two signals are required tomodel the out-of-phase hystereticmotion.While increasing the
number of surrogate signals can strengthen the ability tomodelmore complex or variablemotion, the danger of
overfitting and thus need for larger dataset should be consideredwith caution. Since it has been reported that
respirationmotion can bemodeledwell with two signals/components (Tran et al 2020)weused two surrogate
signals in this study.

It is also noticeable that themethod used to extract the surrogate signals can have a considerable influence on
the results.We also investigated themorewell-knownAmsterdam Shroud (AS)method (Zijp et al 2004) as well
as the IAmethod, but found it gave unsatisfactory results for all the real scans except the first ROSS-LC clinical
trail scan.We speculate that this could be due to the SPARE challenge datasets being sub-sampled froma longer
scan, and the small FOV in the secondROSS-LC trial scanmeaning the diaphragmwas not present in all
projections. For the XCAT simulations, the IAmethod produces signals thatmatch the input diaphragm signal
reasonably well. However, themodels built using the extracted IA signals have noticeably worse results than the
model built with the XCAT input signals, indicating that using the extracted signals can negatively impact the
model’s accuracy evenwhen the signals appear plausible.More advanced surrogate extractionmethods or
external devicesmay generatemore suitable surrogate signals in some cases and give better results, but in general
it is still a challenge to reliably acquire good signals that have a strong and consistent relationshipwith the
internalmotion. An alternative approach is to developmodels that do not rely on good surrogate signals as
input, andwe are currently working on suchmodels.

Despite the issues with the extracted surrogate signals, it should be noted that ourmethod has produced very
promising looking results on six real datasets. There have been other studies that attempt to produce similar
results as we have in this paper, i.e. DVFs for every projection, that can include breath-to-breath variability, and a
motion-free reconstruction, (Liu et al 2015, Jailin et al 2021, Zhang et al 2023). However, Liu et al (2015) only
applied theirmethod to simulated data from a simplified 2D simulation (i.e. the anatomy andmotionwas only
2D). Themethod in (Zhang et al 2023) can only be applied to low resolution data due toGPUmemory
constraints, and has only been demonstrated on simulated data. Jailin et al (2021) did apply theirmethod to real
data, but only demonstrated it on a single scan, and it required very long computation times (∼30 h). As far aswe
are aware this is the first time such amethod has been applied tomultiple real CBCTdatasets.We believe our
method is less complicated than those presented in (Liu et al 2015, Jailin et al 2021, Zhang et al 2023). The
runtime for ourmethod ranged from30 to 120 min for the real CBCT scans on an Intel Core i7-10700KCPU.
We acknowledge that this is still too long for clinical use, but in the future ourmethodwill be implemented to
run on aGPU and the codewill be further optimised to reduce runtime, whichwe expect will enable clinically
usable runtimes of a fewminutes.

Another limitation of ourmethod is that we currently require non-truncated data, as themissing anatomy in
the reconstruction contributes to themeasured projection but not to the estimated projections, causing inherent
mismatch between themeasured and estimated projections and thus interfering withmotion estimation.More
advanced reconstruction algorithms, such as iterative reconstruction algorithms, will be investigated to
overcome the truncation issue. Another potential solution is to use an existing image that contains all of the
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anatomy, e.g. from the planningCT, as the reference state image, I0, instead of using themotion compensated
CBCT.Aswell as overcoming the issuewith truncated data this can provide a synthetic CT and updated
structure delineations by deforming the planningCT and structures, facilitating dose calculations. However, this
approach could struggle if there are substantial anatomical changes between the reference image and the daily
anatomy.

Ourmethod has great potential for future clinical applications as it can provide both a high-qualitymotion
compensatedCBCT image, and accurate estimates of the respiratorymotion, including intra- and inter-cycle
variations, fromnothing other than projection data of a standard 3DCBCT scan. Thismeans it can provide up-
to-date estimates of the image andmotion of the day on standard linacs, facilitating future innovations in
adaptive treatments and outcome studies by providing up-to-date targets andOARs delineation, andmore
accurate estimates of the delivered dose.
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Appendix

A1: Animation ofmotion compensatedCBCT images usingmotionmodels fromdifferent surrogate signals
(SXCAT/SIA) for regular breathing simulation. Ground-truth tumormasks (red circles) are overlapped onCBCT
images.

A2: Animation ofmotion compensated CBCT images usingmotionmodels fromdifferent surrogate signals
(SXCAT/SIA) for irregular breathing simulation. Ground-truth tumormasks (red circles) are overlapped on
CBCT images.

A3: Standard FDK reconstruction (top) andmotion compensated reconstructionwith ourmethod using IA
signal for patient 3 in SPARE challenge.

A4: Standard FDK reconstruction (top) andmotion compensated reconstructionwith ourmethod using IA
signal for patient 4 in SPARE challenge.

A5: Synthetic 4DCBCTof the first patient fromSPARE challenge using average value of IA signals within
each phase. Bcnd inData S6 in Shieh et al (2019).

A6:Movies of CBCT images estimated by ourmethodwith IA signals at each time-point for patient 1 in
ROSS-LC clinical trial.

A7:Movies of CBCT images estimated by ourmethodwith IA signals at each time-point for patient 2 in
ROSS-LC clinical trial.
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Figure A1. Static image of supplementarymovieA1.Movie can be found in online version.

Figure A2. Static image of supplementarymovieA2.Movie can be found in online version.
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Figure A3. Supplementary imageA3.

Figure A4. Supplementary imageA4.

Figure A5. Static image of supplementarymovieA5.Movie can be found in online version.
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