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Unconventional reservoirs are the productive zones in other words the rock quality and the mechanical prop-
erties of the rocks this process is devastating if humans or people try to search for the best reservoirs. So we can
use machine learning (ML) algorithms to help us find and search easily and fast for the best reservoirs with less
human interaction as possible. The objectives of this paper is to use machine learning (ML) techniques to predict
and classify the reservoirs based on the properties of each reservoirs and choose the best reservoir. In this paper
we have made a comparison between the different types of machine learning algorithm and described how we
get the best and worst result for each one, the comparison we made gave us that the AdaBoost algorithm gave the

worst performance measured in the accuracy while the random forest (RF) algorithm gave the best performance,
this paper aim to make improvement of the process of searching for productive zones using ML algorithms.

1. Introduction

Identifying the productive area or "sweet spot" in unconventional
resources has been a real challenge over the past decade because there
are huge number of parameter to consider when searching for the best
area. We need a new technique to make the life easier and the business
more profitable, but before we discuss how we solved this problem in
this paper let’s understand the idea first. In unconventional resources
rely on three factors: Organic Quality (OQ), Rock Quality (RQ), and
Mechanical Quality (MQ) [1]. Mapping sweet spot benefits the hori-
zontal well drilling and the selection of perforation clusters that can
result in the highest production and recovery in unconventional re-
sources. Traditionally, geoscientists determine sweet spots from the
interpretation of well logs [2]. One of the most exciting technologies
that have recently entered the field of unconventional reservoirs is the
application of Artificial Intelligence and Machine Learning. Machine
Learning (ML) is a field within Artificial Intelligence (AI) where intel-
ligence is induced regardless of precise programming [3]. ML algorithms
can significantly improve workflows used for evaluating sweet spots or
productive zones in complex reservoirs [4]. ML is mainly divided into
two categories, namely, supervised and unsupervised as shown in Fig. 1
[5].

In this article we talk about machine learning algorithms that
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significantly improve the workflow used to evaluate and identify pro-
ductive areas in complex reservoirs where a set of dominant machine
learning classification algorithms such as logistic regression, decision
tree, random forest, K-nearest neighbours, and boost (AdaBoost) are
introduced and Gradient Boosting) to automatically identify productive
areas.

The article format will be as follows:

Talking about the methodology, the most important of which is the
rapid analyser technology that determines the ideal tank interval and
targets production areas, which is much faster and simpler than
traditional 2D and 3D sweet spot modelling.

Results and their discussion which includes QA validation and
comparison of Quick Analyser results with traditional logging results
then comparison of Quick Analyser (QA) results with MDT Log, 3D
Petrel sweet spot mapping and Geology sweet spot mapping.

Data Analysis

e Machine Learning (Logistic Regression, Decision Tree Technique,
Nearest Neighbours (KNN), Boosting, Random Forest, Comparison of
All Techniques).

Conclusion: In the conclusion, the techniques and their results were
compared, and the best ones were shown, the benefits and
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Fig. 1. Machine learning techniques.

advantages of each one separately, and what are the algorithms and
methodologies used from machine learning.

Machine Learning (ML) algorithms can significantly improve work-
flows used for evaluating sweet spots or productive zones in complex
reservoirs [4]. ML is mainly divided into two categories, namely, su-
pervised and unsupervised as shown in Fig. 1 [5]. Supervised learning
can be used for two sets of problems or data, classification and regres-
sion. In classification problems the outcome variable or response vari-
able (Y) takes discrete values. The primary objective of a classification
model is to predict the probability of an observation belonging to a class,
known as class probability [6]. In this paper application of Machine
Learning (ML) for classification in an unconventional oil field (tight oil
reservoir) were investigated in conjunction with a novel method, Quick
Analyser (QA), for identifying productive zones.

Supervised learning can be used for two sets of problems or data,
classification and regression. In classification problems the outcome
variable or response variable (Y) takes discrete values. The primary
objective of a classification model is to predict the probability of an
observation belonging to a class, known as class probability [6]. In this
paper application of Machine Learning (ML) for classification in an
unconventional oil field (tight oil reservoir) were investigated in
conjunction with a novel method, Quick Analyser (QA), for identifying
productive zones.

The oil industry has used artificial intelligence for decades in many
ways and applications, but with the machine learning era, the industry
moved to new and better algorithms and programs that tend to solve
hard and complex operations quickly and with optimized result as
possible. With the use of machine learning the oil and gas major com-
panies can get fast and accurate data to support their business actions,
we will discuss where the ML has been used over time by the oil and gas
industry [4].

In order to start with, we use ML to predict future results so we can
use ML to predict the happening of some events and try to take actions to
prevent them or minimize their effects. Another important role of ML
inside the oil and gas industry that there is so many data to handle data
of marketing, fields, workers, etc. ML can help with this data to choose
what is really important. This can define the next step of ROI (Return on
investment). One of the important roles of ML in the industry is to take
direct, fast and correct decisions and actions [7].

2. Methodology
2.1. Quick Analyser (QA) technique

Reservoir characterization using subsurface or sweet spot modelling
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during exploration and appraisal is a time-consuming process which
heavily relies on 2D and 3D modelling. The Quick Analyser method
identifies the ideal reservoir interval and targets the productive zones.
This method is much quicker and simpler than traditional 2D and 3D
sweet spot modelling and provides initial information about the sub-
surface without using any traditional simulation and with robust results
for field development.

QA technique, which is a data-driven approach, integrates all sub-
surface parameters such as geomechanics, petrophysics, geochemistry
and drilling to identify the productive zone. This method can optimize
field development by reducing technical and commercial risk and
establish a repeatable and more profitable recovery strategy and it is
applicable for any type of reservoirs (conventional or unconventional).

Applying the QA method can provide:

- Initial and vital information about the subsurface quickly and with
high accuracy

- More complete understanding of the reservoir on using real-time
data through data acquisition

- Cost effective field planning and optimal well placement (identifying
the location of productive zones benefits the horizontal well drilling
and completion zones)

The QA method uses an optimum value for each parameter to
characterize and evaluate the reservoir utilising real time data. In gen-
eral, to apply the Quick Analyser technique the following steps are
taken:

. Export all available data from logs for petrophysics analysis

. Export all calculated data for geomechanics analysis

. Export all calculated data for geochemistry analysis

. Using cut-off values or optimum values for all above parameters

. Integrate all of these values to detect productive zones

. Carry out validation by conducting sensitivity analysis via machine
learning

DU WN R

For example, applying the QA method can identify and evaluate a
resource potential with depth, thickness, porosity, permeability, water
saturation, oil saturation, total organic carbon, and use them to identify
the productive zone. Table 1 through 5 demonstrate classification and
characterization of geological subsurface factors using QA technique.
This is based on classifying and characterising each parameter according
to their optimum (cut-off) values.

Table 6 demonstrate the output of the QA method. The results col-
umn shows that if all the conditions for the optimum values for each
parameter are met (Equation (1)) it will show 1(productive zone)
otherwise 0 (not productive zone).

IF(AND(K < =3,9 <3, Vg,=1, S;=1, S,=1),”17,70”) Equation 1
Where K represents the permeability, ¢ is the porosity, Vg, depicts the
shale volume, S, and S, show the oil and water saturations respectively.

Table 7 presents an illustration of the most significant inferential
statistical characteristics of dependent and independent variables,
including the total number of observations, a five-number summary, the
mean, and the standard deviation.

Table 1
Permeability classification of QA method.

Permeability Classification Permeability and
range color key
0.01> Very low
0.01-1 Low 3

1-10 Mid 2
10-100 Good 1
100 < Extremely Good
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Table 2

Porosity classification of QA method.

Porosity range

Classification

Porosity and color

key
0.1> Very low 3
0.1-0.2 Mild 2
Table 3
Shale volume classification of QA method.
Shale volume Classification | Shale Color key ‘
0.5> High 2
0.5< Low
Table 4

Qil saturation classification of QA method.

Oil Saturation Classification Oil Sat color code
0.5< High
0.5> Low 1
Table 5

Water saturation classification of QA method.

‘Water Sat color key
1

Classification
High
Low

‘Water Saturation
0.6 <
0.6>

Table 6
Input and results of QA for Nene Marine fiel well number
NNM-1.

Depth
(m)
2420.57
2420.72
2420.87
2421.03
2421.18
2421.33
2421.48
2421.64
2421.79
2421.94
2422.09
2422.25
2422.40
2422.55
2422.70
2422.86
2423.01
2423.16
2423.31
2423.46
2423.62

Permeability | Porosity Results

%)
(5}

[SIISTISIISY IS INY Y] [NY ][] [ [ [ [ ] [ Y [ Y] 8}
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Boxplot is another standardized way of displaying the distribution of
data based on a five-number summary (“minimum?”, first quartile (Q1),
median, third quartile (Q3), and “maximum”). It tells about the outliers
and what their values are. It can also indicate if the data is symmetrical,
how tightly the data is grouped, and if and how the data is skewed. Fig. 2
shows the boxplot for porosity compared to the target zones O (non-
productive zone) and 1 (productive zones).

2.2. Experiment and environment

Our work has been conducted in python environment using python
language version 3.8.2, this paper used a self-gathered dataset from the
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research field that contain the needed data which is reading about the
land rocks and some other metric.

3. Results & discussion
3.1. QA validation

In order to validate Quick Analyzer (QA) results (our dataset) the
following steps were taken:

A. Compare Quick Analyser results with traditional logging results
using data obtained from an oil field located in Middle East, Oman,
(case study 1)

B. Compare Quick Analyser (QA) results with MDT log and 3D Petrel
and Geology sweet spot mapping, (case study 2)

C. Compare with unsupervised methods, MDT log and poresize distri-
bution (case study 3)

3.1.1. Tight oil reservoir, Middle East, (Case study 1)

In order to demonstrate the efficiency of the proposed Quick Ana-
lyser method, a case study from an Oman oilfield was undertaken. Fig. 3
shows the results for this case study (A). The results clearly match with
SLB Techlog results and the following conclusion can be drawn.

In Fig. 3, there are 8 tracks which represent depth, calliper, gamma
ray, permeability, porosity, water saturation, shale volume and QA
results, respectively.

e Red colour in the last column in Fig. 3 represents the productive

zones detected by QA (last track) and the blue colour shows the non-

productive zones.

There have been two perforations in the intervals of 4800-4825 m

and 4895-4905 m (highlighted).

e The QA clearly detected the areas of higher porosity and perme-
ability and lower shale volume and water saturation in the
mentioned intervals.

e As it shown in Fig. 3, QA detected a thin non-productive zone (blue

colour) in the perforated depth of 4815. By investigating the well

performance reports, it turned out that this depth was cemented after
perforation. This could have been avoided by using the QA, prior to
the perforation process.

3.1.2. Nene Marine field, tight oil reservoir, (Case study 2)

The MDT Modular Formation Dynamics Tester log (mD/cp) provides
fast and accurate pressure measurements and high-quality fluid sam-
pling. It can also measure permeability anisotropy, reservoir heteroge-
neity and reservoir quality. The MDT log (mD/-cp) is able to acquire
most of the data requirements needed for accurate and timely decision-
making (see Fig. 4). Therefore, the following conclusion can be drawn:

e Comparing QA results (last column) with sweet spot mapping and
MDT log from a west African tight oil field (NNM1), shows that upper
Djeno A formation matches with sweet spot mapping, and higher
MDT reading (green colours).

e In addition, in Middle Djeno formation, QA correctly detected non-
productive zone (brown colour).

o In other regions, QA also shows a strong correlation with sweet spot
mapping and MDT readings.

3.1.3. Quick Analyser Vs Machine Leaning (unsupervised) & Poresize
distribution (Case study 3)

Fig. 5 illustrates the comparison of several unsupervised methods,
comprising of Fuzzy C-means clustering (FCM), K-means, Hierarchial,
Geolog software results, and QA results (Cutoffs), with MDT data, and
poresize distirbution. Green regions show productive zones while red
area shows non-productive zones. Similar to case study A and B, QA
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Table 7
Inferential statistical analysis.
DEPT PHIE 2014 VSH_2014 SWE 2014 K_FZ1 2014 TOC
Count 140.000000 140.000000 140.000000 140.000000 140.000000 140.000000
Mean 2463.213929 0.476207 0.354419 0.310618 0.135067 0.518374
Std. 117.036635 0.215008 0.217709 0.199981 0.172214 0.193306
Min 2244.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 2374.225000 0.337436 0.227080 0.157053 0.015827 0.381720
50% 2458.450000 0.450444 0.336371 0.271866 0.038556 0.508769
75% 2570.425000 0.647758 0.508057 0.448310 0.233173 0.646662
Max 2697.600000 1.000000 1.000000 1.000000 1.000000 1.000000
Youngsmodulus Poisson’sRatio BrittlenessIndicator poresize Super RT
Count 140.000000 140.000000 140.000000 140.000000 140.000000
Mean 0.491025 0.451739 0.401229 0.212168 0.214286
Std. 0.207723 0.164976 0.188157 0.213502 0.411799
Min 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.317761 0.362376 0.291125 0.044520 0.000000
50% 0.505679 0.464613 0.391189 0.099123 0.000000
75% 0.667133 0.532225 0.493612 0.375561 0.000000
Max 1.000000 1.000000 1.000000 1.000000 1.000000
productive zone.
Fig. 6 provide heatmap and correlation plot of all the varibles. The
m m correlation plot is used for measuring the strength and direction of the
Maximum linear relationship between two continuous random variables.
|
' 1. The correlation value lies between —1.0 and 1.0. The sign indicates
08 Median -Q2 whether it is positive or negative correlation.
A= 2. —1.0 indicates a perfect negative correlation, whereas +1.0 indicates
£ 08 perfect positive correlation
|
ft 4 ' '\ Fig. 6 shows that porosity (PHIE_2014), permeability (K_FZI 2014)
e~ and TOC are positively correlated with the targets zone (Super RT)
whereas mechanical properties such as Brittleindex and Young’s
m modulus, and poison’s ratio as well as shale volume are not so strongly
a correlated. More Details about data analysis (EDA) results are shown in
1 [9] Appendix 1.
SuperRT

Fig. 2. Porosity boxplot.

shows high correlation with unsupervised methods and poresize dis-
tirbution as well as MDT reading in order to detect productive zone from
non prodcuvte region. Even in some depths, QA shows better and more
accurate results.

3.2. Data analysis

3.2.1. Exploratory data analysis (EDA)

EDA was the first stage to conducting Machine Leaning (ML). For
Data scientists and stakeholders, EDA is one of the vital stages that
provides certain insights and statistical measures. It is used to describe
and present the key features and to perform variable selection [8]. The
dataset is based on geological parameters and characteristics of an un-
conventional basin (tight oil sandstone) based on the Quick Analyser
(QA) method. The dataset contains 140 records and 11 columns. It has
several features related to the potential zones (productive zones) and
whether the zones are productive zones or not. The objective, in this
case, is to predict which zones are productive zones or potentials and to
determine which parameters play important roles in order to detect
these zones from unproductive zone (feature importance). Table 8 shows
the first 10 columns as the independent variables, where the response
variable Y (shown in column “Super RT”) is equal to 1 for a productive
zone and 0 otherwise).

EDA Analysis of the full 140 data points showed that there are
around 78% observation of unproductive zone and 21% observation of
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3.3. Machine learning

The following ML classification techniques such as Logistic Regres-
sion, Decision Tree, Random Forest, K-Nearest Neighbours and Boosting
(AdaBoost, Gradient Boosting) were investigated to determine produc-
tive zones(target variable) which obtained by QA method in the previ-
ous section. Before the model was build, the dataset was split X:Y to
create a training and test dataset (with 70:30 ratio). The model was then
built using the training set and tested using the test set.

3.3.1. Logistic regression

Logistic Regression is one of the supervised machine learning algo-
rithms used for classification. In logistic regression, the dependent var-
iable is categorical [10]. Logistic regression is a statistical model in
which the response variable takes a discrete value and the explanatory
variables can be either continuous or discrete. If the outcome variable
takes only two values, then the model is called binary logistic regression
model. The outcomes are called positive (usually coded as Y = 1) and
negative (usually coded as Y = 0). Then the probability that a record
belongs to a positive class, P(Y = 1), using the binary logistic model is
given by sigmoid function which converts the input into range 0 and 1.

3.3.1.1. Logistic regression results. To understand how many observa-
tions the model has classified correctly and how many has not, a cut-off
probability of 0.5 (default) initially was used. The actual column in
Table 9 depicts the actual label of the SuperRT in the test dataset, while
predicted column depicts what the model has predicted by taking 0.5 as
cut-ff probability value. For obesrvation10, the model predicateds very
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Fig. 4. Comparison of MDT reading, sweet spot mapping and QA method for well number NNM1.

low probability (0.2) of being a non-prodcutive zone whereas it is
actually a prodcutive zone. The model has wrongly classified this one.
Similarly, for observation of 104, the model predicted high probability
(0.7) of being a prodcutive zone whereas it is actually a non-prodcutive
zone. The model has wrongly classified this one either. However, the
model predicts high probability (0.9) of being a productive zone for
observation 0, which is actually a productive zone. The model correctly
predicted the class in this case.

3.3.1.2. Confusion matrix & measuring accuracies. Fig. 7 and Table 10
illustrate confusion matrix results and linear regression (LR) reports. In
Fig. 7, the columns represent the predicted label (class), while the rows
represent the actual label (class) [6]. For example, out of 11 (i.e., 5 + 6)
productive zones (Good Zone), only 6 have been classified correctly as
productive zones (Poor Zone) and rest 5 have been classified as unpro-
ductive zones when the cut-off probability is 0.5.

Table 10 gives a detailed report of precision, recall, and F-score for
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each class. Recall for positive cases (Y = 1) are only 55%, which suggests
some of the cases were predicted as negatives.

The model is very good at identifying the unproductive zone (Y = 0)
with F1 score of 91%, but not very good at identifying productive zones
(Y = 1) with recall score of 55%. Overall accuracy based on logistic
regression is 86%. This is the result for cut-off probability of 0.5%. Fig. 8
depicts the distribution of predicted probability values for productive
and non-productive zones to understand how well the model can
distinguished non-productive zones from productive zones. The larger
the overlap between predicted probabilities for different classes, the
higher the misclassification will be.

3.3.1.3. ROC and AUC curves. ROC and AUC are two important mea-
sures of model performance for classification problems at various
threshold settings. The higher ROC curve, the better the model. As it can
be seen, the ROC curve for the logistic model was 89% is shown in Fig. 9,
indicating a good model.
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Fig. 5. Comparison of all used methods for sweet spot detection by mobility and poresize distribution.

3.3.1.4. Finding optimal classification cut-off. The overall accuracy,
sensitivity and specificity will depend on the choosen cut-off probability.
This was investigated using the Youden index [6], and the cost-based
approach [6]. Both methods gave an optimal cut-off of 0.23. Applying
this gave the improved results, shown in Fig. 10.

Fig. 10 and Table 11 show new confusion matrix with optimal cut-off
using Yodens’ index and cost function (P = 0.23). With cut-off proba-
bility of 0.23, the model is able to classify the prodcutive zones better
and F1-score and Recall for prodcutive zones (Y = 1) has improved to
0.77 and 0.91 from 76% to 55% respectively.

3.3.2. Decision tree technique

Decision tree is one of the most important and powerful predictive
analytics methods applied for generating business rules. It use tree-like
structure to predict the value of an outcome variable. The algorithm use
the complete data and start with the root data then splits the notes into
multiple branches. In this technique, the data is divided into subsets in
order to create more uniform branches (children nodes), [6]. Decision
tree results shows the following in Fig. 11.

The following points can be concluded:

e At the top node, there are 98 observations of which 79 are unpro-
ductive zones and 19 are productive zones. The corresponding Gini
index is 0.313.

TOC is the most important feature for splitting productive and un-
productive zones in the dataset when compared to other features and
hence, chosen as the top splitting criteria.

The first rule (TOC< 0.5) means if the zones has TOC values below
0.7 or above

This rule has split the dataset into two subsets represented by the
second level nodes. On the left node, there are 79 samples (i.e., TOC
below 0.7) and on the right node, there are 19 samples (i.e. having
TOC above 0.7).

The nodes represented by dark shades depict unproductive zones,
while the nodes represented by light shades are productive zones.

One of the rules can be interpreted as: If the zone does have TOC
values above 0.7 and volume of shale below 0.4 and brittle index is
below 0.218, it then there is high probability of being a productive zone.
There are 17 records in the dataset that satisfy these conditions and 2 of
them have unproductive zones. Another rule: If TOC values is below 0.6,
shale volume is above 0.2, and brittle index is below 0.067, then there is
high probability of being a poor zone. There are 78 samples in the
datasets and 74 records of which in the dataset that satisfy these
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conditions and 4 of them have productive zones. Parameters such as
TOC, Volume of shale, SWE (water saturation) and brittle index are most
important parameters to identify good zones or productive zones.

3.3.2.1. Decision tree accuracy. Fig. 12 provides ROC AUC score of the
decision tree model. As Shown in Fig. 12, DT model has AUC score of
69% and is lower than the LR model.

3.3.2.2. DT confusion matrix. Fig. 13 and Table 12 provide confusion
matrix and classification report of the decision tree model. As it can be
seen recall for the positive cases (Y = 1, productive zones) is 0.55,
suggesting some misclassification.

3.3.2.3. Finding optimal criteria and max depth. Figs. 14 and 15 and
Table 13 provide ROC curve, confusion matrix and classification report
of the tuned decision tree model based on GridSearchCV results.

Compared to the previous DT model (default model), tune DT model
accuracy has been increased to 0.79 from 0.76.

3.3.3. K-Nearest Neighbours (KNN)

KNN algorithm compares distance of the data points to determine the
similarities between data points [5]. Different approaches exist to
calculate the distance; however, Euclidean distance (length of the line
segment between the two points) is the usual method to calculate the
distance [6]. As the distance between two points decreases, the simi-
larity increases. KNN classifies data points based on their similarities in
labels, (see Fig. 16).

3.3.3.1. KNN accuracy. As Shown in Fig. 17, KNN has AUC score of
91% and is better than two previous models LR and DT with 89% and
73% respectively.

3.3.3.2. KNN confusion matrix. Fig. 18 and Table 14 provide confusion
matrix and classification report of KNN model. As shown in Table 14 the
recall of positive cases has improved from 0.45 (DT model) to 0.73 in
KNN model. The above model accuracy is obtained by considering
default number of neighbours (k = 5). The Recall score has been
increased significantly comparing with LR and DT models. Resulting in
prediction improvement in positive cases (Y = 1).

3.3.3.3. KNN hyperparameters tuning. Hyperparameter tuning is a
technique used in ML and DL in order to find optimal value for hyper-
parameters. GridSearchCV method can be used in ML algorithms such as
DT, KNN, LR, RF, etc. in order to find these optimum values. GridSearch
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productive and non-productive zones.
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Fig. 9. ROC curve for logistic regression method.
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Fig. 10. Confusion matrix with optimal cut-off using Yodens’ index.

suggests the best combination of parameters is K (neighbours) of 7,
Canberra distance, and the corresponding roc_auc score is 89. Finally, a
new model was built based on optimal hyperparameter tuning. The re-
sults in Fig. 19 and Table 15 show improvement for increasing F1 score
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Table 11
Logistic regression calssification report based on cut-off value of 0.23.
Precision Recall f1-score Support
0 0.96 0.84 0.90 31
1 0.67 0.91 0.77 11
Accuracy 0.86 42
Macro avg 0.81 0.87 0.83 42
Weighted avg 0.89 0.86 0.86 42
@it = 0,375
saples = 4
vahe = [3,1]
class = poortuee
Fig. 11. Designed decision tree.
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Fig. 12. ROC curve for dection tree model.

and recall of class 1 compared with previous KNN model (default) using
k = 5. As it can be seen this model has higher percentage of true positive
compare to previous KNN model. In business context, the objective is to
build a model that will have a high number of true positive.

3.3.4. Random forest

Random forest is one of the most popular ensemble techniques used
in the industry due to its performance and scalability. A random forest is
an ensemble of decision trees (classification and regression tree), where
each decision tree is built from bootstrap samples (sampling with
replacement) and randomly selected subset of features without
replacement. The decision trees are normally grown deep (without
pruning) [6].
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Table 12 Table 13
DT calssification reort based on default values. Tuned DT model classification report of based on GridSearchCV results.
Precision Recall f1-score Support Precision Recall f1-score Support
0 0.84 0.84 0.84 31 0 0.82 0.90 0.86 31
1 0.55 0.55 0.55 11 1 0.62 0.45 0.53 11
Accuracy 0.79 42
Accuracy 0.76 42 Macro avg 0.72 0.68 0.69 42
Macro avg 0.69 0.69 0.69 42 Weighted avg 0.77 0.79 0.77 42
Weighted avg 0.76 0.76 0.76 42
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o & ° g 5
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Fig. 16. Similar data points typically exist close to each other (Wikipedia).

3.3.4.1. Random forest accuracy. The plot of ROC curve is shown in

Fig. 14. DT ROC curve for tunned.

Fig. 20. The corresponding AUC value for the RF model is 91%.

AUC for the random forest model is 90% (Fig. 20) and better
compared to the DT and LR models. However, the accuracy still can be
improved by using grid search by fine-tuning the hyperparameters.
Fig. 21 and Table 16 show confusion matrix and classification report for
the RF model. The model detects 6 out of 11 productive zones with recall

55%. The overall accuracy of the model is 76%.

95

3.3.4.2. Optimal parameters tuning. Similar to the previous models,
GridSearchCV technique was conducted to find the optimal values for
hyperparameters. Therefore, parameters such as max_depth, n_estima-
tors and max_features of 15, sqrt, 10 respectively were calculated as the
best model. AUC score has reached 0.92 with the following optimal
values for the hyperparameters (see Fig. 22).

3.3.4.3. Random forest confusion matrix. Fig. 23 and Table 17 provide
confusion matrix and classification of random tuned forest model.
As shown in Table 17 the precision, recall and F1 score for positive
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Fig. 17. ROC AUC curve for KNN model. Fig. 19. Tuned KKN confusion matrix results.
Table 15
Tuned KNN model classification report based on GridSearchCV results.
~25 Precision Recall f1-score Support
N 6 0 0.93 0.87 0.90 31
g - 1 0.69 0.82 0.75 11
Sl - 20
_ =
[[T=}
==
=0 Accuracy 0.86 42
y - 15 Macro avg 0.81 0.84 0.83 42
= Weighted avg 0.87 0.86 0.86 42
o - 10
=
=]
[
'gf 5 Receiver operating characteristic example
o 10 =
[] ] T
Good Zone Poor Zone ’
Predicted label
08 .
Fig. 18. KKN confusion matrix results using default values. ] e
g 06 /‘,‘
Table 14 EP .
KNN model classification report using default values. =T L
Precision Recall fl-score Support el
02 e
0 0.90 0.90 0.90 31 e
1 0.73 0.73 0.73 11 /"
o — ROC curve (area = 0.90)
0.0 £= . - T T
00 02 0.4 06 08 10
Accuracy 0.86 42 False Positive Rate or [1 - True Negative Rate]
Macro avg 0.82 0.82 0.82 42
Weighted avg 0.86 0.86 0.86 42

cases are 0.78 and 0.64. 0.70 respectively which are better than what
was obtained by two previous models, RF model (default model) and DT
model namely. The overall accuracy of this model also improved from
76% to 86%.

3.3.4.4. Finding important features. Random forest algorithm reports
feature importance by considering feature usage over all the trees in the
forest.). Fig. 24 shows the tuned random forest model feature impor-
tance. The top 5 features are TOC, Poresize, K_FZI, SWE and Brittleindex.

Fig. 25 represents the cumulative sum of features importance can
show the amount of variance explained by the top five features.

The top five features provide nearly 80% of the information in the
data with respect to the outcome variable. This technique can also be

96

Fig. 20. ROC AUC curve for random forest.

used for feature selection. Random forest being a black box model,
cannot be interpreted. But it can be used to select a subset of features
using feature importance criteria and build simpler models for
interpretation.

3.3.5. Boosting

Boosting is another popular ensemble technique which combines
multiple weak classifiers into a single strong classifier, boosting is done
by create and training model with any ML algorithm and after that
create and train another model to correct the mistakes of the first model
and increase the accuracy of prediction. A weak classifier is one which is
slightly better than random guessing. That is, the error is less than 50%.
Any classification algorithm can be used for boosting and is called the
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Table 16 Table 17
Radom forest calssification report. Classification report of tuned random forest model.
Precision Recall f1-score Support Precision Recall f1-score Support
0 0.84 0.84 0.84 31 0 0.88 0.94 0.91 31
1 0.55 0.55 0.55 11 1 0.78 0.64 0.70 11
Accuracy 0.76 42 Accuracy 0.86 42
Macro avg 0.69 0.69 0.69 42 Macro avg 0.83 0.79 0.80 42
Weighted avg 0.76 0.76 0.76 42 Weighted avg 0.85 0.86 0.85 42
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Fig. 22. Improved random forest ROC curve.

base classifier [6]. Boosting builds multiple classifiers in a sequential
manner as opposed to bagging, which can build classifiers in parallel.
Boosting builds initial classifier by giving equal weights to each sample
and then focuses on correctly classifying misclassified examples in
subsequent classifiers.

Two most widely used boosting algorithms are:

e AdaBoost
o Gradient Boosting
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Fig. 24. Feature importance results (tuned random forest model).

3.3.5.1. AdaBoost. In AdaBoost, each record in the training dataset will
receive a weight, which indicates the possibility of using that record for
training. For the first classifier, AdaBoost will use an equal weight for all
of the examples (random sampling). Afterward, the weight of the mis-
classified records will be increased, in order to increase the possibility of
their selection. This way, the next classifier learns to classify them more
efficiently [6]. Similar to the KNN model the AdaBoost model has an
AUC score of 0.91% (see Fig. 26). Fig. 27 and Table 18 provide confusion
matrix and classification of AdaBoost model.

As it can be seen form Table 18, the F1 score and recall for positive
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feature importance cumsum
4 TOC 0.193844  19.384390
] poresize 0.186512 38.035638
3 K_FZl_2014 0.174460  55.481684
2 SWE_2014 0.154522  70.573500
7 BrittlenessIndicator 0.089686 79.942504
0 PHIE_2014 0074142  B87.356747
6 Poisson'sRatio 0.064332 93.789991
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1 VS5H_2014 0.029:00 100.000000

Fig. 25. Cumulative sum of features importance.
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Table 18
Classification report of AdaBoost model.
Precision Recall f1-score Support
0 0.77 0.97 0.86 31
1 0.67 0.18 0.29 11
Accuracy 0.76 42
Macro avg 0.72 0.57 0.57 42
Weighted avg 0.74 0.76 0.71 42
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Fig. 28. Gradient Boosting ROC AUC curve.
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Fig. 29. Gradient Boosting model confusion matrix.
Table 19
Classification report of Gradient Boosting model.
Precision Recall f1-score Support
0 0.84 0.87 0.86 31
1 0.60 0.55 0.57 11
Accuracy 0.79 42
Macro avg 0.72 0.71 0.71 42
Weighted avg 0.78 0.79 0.78 42
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Fig. 31. Comparison of the used methods.

cases are 0.29 and 0.18 respectively, which are far lower than the pre-
vious models. The model detects 11 out of 42, productive zones with
recall reaching 18%, which is the lowest among all models.

3.3.5.2. Gradient boosting. In Gradient Boosting, the main focus is on
the residuals from previous classifiers and a model will be fit to re-
siduals. This technique leverages the residuals patterns and improves the
model with weak classifiers. When the model recognizes that the re-
siduals are out of patterns, it will stop the residuals modelling. The base
classifier in Gradient Boosting is Decision Tree [6,11]. The ROC curve of
gradient boosting is shown in Fig. 28. The corresponding AUC is 0.69.
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Fig. 29 and Table 19 illustrate Gradient Boosting confusion matrix re-
sults and classification report.

The model detects 11 out of 42 productive zone cases with recall
reaching 55%. Comparing to AdaBoost model Gradient boosting model
showed a better performance in detecting the positive cases (Y = 1),
with Recall and F1 score of 55% and 57% compared to 18% and 28%
respectively. The overall accuracy of Gradient boosting model is 79%.
Like Random Forest algorithm, the boosting algorithm also provides
feature importance based on how each feature has contributed to the
accuracy of the model. Gradient boosting also selected the poresize, SWE
and VSH and PHE as well as TOC as top features (see Fig. 30) which have
maximum information about whether a zone is productive or not.

3.4. Comparison of all techniques

Comparing the performance of all methods are shown in Fig. 31
Random Forest (RF) and KNN models showed the highest accuracy (~
86%), while boosting algorithms, AdaBoost and Gradient Boosting
models, showed the lowest accuracy 76% and 79% respectfully among
other sensitives.

4. Conclusion

This research has made a complete study and analysis about the
classification of reservoir by understanding their characterization and
extracting features from them, this features will be used in training and
testing the machine learning models, most important characterization
we used in our work are subsurface or sweet spot modelling during
exploration and appraisal characterizing the reservoir is a time-
consuming process and chore and heavily relies on 2D and 3D model-
ling. However, Quick Analyser (QA) method provides results, which are
robust and quick baseline for field development that reduces technical
and commercial risk and establishes repeatable, more profitable recov-
ery without any traditional 2D and 3D modelling. Different machine
learning algorithms were used in this study in order to detect sweet spots
as a supervised learning problem and used tools and methodology from
machine learning to build data-driven sweet spot classifiers. In this
research we used a different type of machine learning models and for
each model we calculated the performance in order to compare between
the models. The results we found by running work is as follow the LR,
KNN and Random Forest show a fair degree of promise, scoring the
highest 86%, boosting algorithms AdaBoost and Gradient Boosting
models exhibited the lowest accuracy of 76% and 79% respectfully
among all sensitivities, as result from this research is to make the process
of searching for the best areas a robust process and with the highest
accuracy as possible.
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