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Abstract: Predicting monthly streamflow is essential for hydrological analysis and water resource
management. Recent advancements in deep learning, particularly long short-term memory (LSTM)
and recurrent neural networks (RNN), exhibit extraordinary efficacy in streamflow forecasting. This
study employs RNN and LSTM to construct data-driven streamflow forecasting models. Sensitivity
analysis, utilizing the analysis of variance (ANOVA) method, also is crucial for model refinement
and identification of critical variables. This study covers monthly streamflow data from 1979 to 2014,
employing five distinct model structures to ascertain the most optimal configuration. Application of
the models to the Zarrine River basin in northwest Iran, a major sub-basin of Lake Urmia, demon-
strates the superior accuracy of the RNN algorithm over LSTM. At the outlet of the basin, quantitative
evaluations demonstrate that the RNN model outperforms the LSTM model across all model struc-
tures. The S3 model, characterized by its inclusion of all input variable values and a four-month
delay, exhibits notably exceptional performance in this aspect. The accuracy measures applicable in
this particular context were RMSE (22.8), R2 (0.84), and NSE (0.8). This study highlights the Zarrine
River’s substantial impact on variations in Lake Urmia’s water level. Furthermore, the ANOVA
method demonstrates exceptional performance in discerning the relevance of input factors. ANOVA
underscores the key role of station streamflow, upstream station streamflow, and maximum tempera-
ture in influencing the model’s output. Notably, the RNN model, surpassing LSTM and traditional
artificial neural network (ANN) models, excels in accurately mimicking rainfall–runoff processes.
This emphasizes the potential of RNN networks to filter redundant information, distinguishing them
as valuable tools in monthly streamflow forecasting.

Keywords: LSTM; RNN; ANOVA; input data sensitivity analysis; Zarrine River; precipitation

1. Introduction

Streamflow forecasting and simulation of precipitation runoff are crucial components
of water resource planning and management [1], such as reservoir planning and flood risk
control [2,3]. Generally, the simulation of the rainfall–runoff process encompasses two
branches: methods grounded in physics and empirical techniques [4]. The first type of
methods, demonstrated by process-driven techniques, need to understand the physics of
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hydrological processes and use linear equations and partial differential equations [4–6].
However, the second type of methods, demonstrated by data-driven techniques including
machine learning models, do not require the knowledge of physical process and build a
direct relationship between rainfall and runoff as the input and output [7]. Various models,
such as autoregressive moving average (ARMA), autoregressive integrated moving average
(ARIMA), and autoregressive (AR), utilize linear relationships between output and input
to forecast runoff, according to a number of studies [8–10].

For runoff forecasting, machine learning models, which are a sub-set of data-driven
techniques, are widely implemented. The utilization of support vector machines (SVM)
and artificial neural networks (ANN) as machine learning models for runoff prediction has
been the subject of several studies [11–15].

The artificial neural network (ANN) has excellent capability in nonlinear hydrologic
models [16,17]. ANNs have the ability to identify nonlinear links between model inputs
and model outputs, as well as recreate extremely nonlinear interactions. This is particularly
useful in situations where the nonlinear relationships in question are unknown [18]. For
a long time-series, overfitting [19] and converging to local least squares [20], which are
both disadvantages associated with ANNs, make it tough to attain a desired prediction
performance in hydrological modeling. This is the case despite the fact that ANNs are
widely used [16].

In addition, a support vector machine (SVM) may find a solution that is globally
optimal for classification or regression challenges. So, it could be an excellent tool in the
hydrological modeling and management of water resources [1,21]. Nevertheless, SVM
abilities could be restricted in practical applications due to the fact that its predicting
outcomes are heavily reliant on the computational parameters that are selected [14]. Such
methods can successfully reflect the nonlinearity relationships of the rainfall–runoff method
which is considered among the one advantage that such models generally provide [22].
Nevertheless, one of the drawbacks associated with these machine learning methodologies
is that they will have difficulty when the behavior of the system is controlled by the
environment of either space or time [23,24].

In a nutshell, a machine learning model is a way of “mapping” certain input data
to some desired outcomes. In order to access the full array of traditional nonlinear and
linear links of such methods, the data must first be reframed before proceeding with time
series forecasting [7]. The sliding window approach is often used to accomplish this goal.
In the context of time series data analysis, it is customary to employ the variables from
the preceding step as inputs and the variables from the subsequent step as outputs. Thus,
the time series dataset is restructured as a machine learning problem in which the value
at the preceding time step is utilized to predict the value at the subsequent time step [7].
The adjustable parameter is the time step utilized in the sample creation process. This
choice will have an effect on the subsequent training of the model. Without any previous
information, determining the best time step to take might be a challenging task. For runoff
forecasting with machine learning methods, one must first determine the influence that
time step selection has on runoff forecasting in order to reach the highest possible level of
forecast accuracy. Recent years have witnessed an explosion in the development of deep
learning technologies, including long short-term memory (LSTM), gated recurrent unit
(GRU), and recurrent neural networks (RNN). This development has provided insight into
how to simplify the resolution of this issue.

A significant proportion of deep learning methodologies possess the capability to
analyze extensive sequences of data. One example of this is the recurrent neural network,
also known as an RNN. It has been shown that an RNN is a useful tool for dealing
with sequence data in order to make predictions about time series [25]. It is crucial to
acknowledge that the performance of the standard implementation of an RNN does not
show a substantial improvement in sequence prediction as a result of the intrinsic issue of
disappearing or bursting gradients that it has. LSTM networks with an enhanced variant
of an RNN have been shown to be capable of resolving the issue [7,26]. LSTM can capture
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not only the periodic patterns of time series data but also the chaotic ones, and they can
learn their long-range links with better precision than conventional NNs are able to [27].

Both LSTM and RNNs have recently received a lot of interest from academics working
in the water field. The water levels of a sanitary sewer structure in Drammen, Norway, were
simulated and predicted through the utilization of online data obtained from rain gauges
and water level sensors [28]. To ascertain the architecture of NNs with the most effective
capability to simulate and forecast water levels, they conducted a comparative analysis
of their performance. They were able to demonstrate conclusively that conventional
designs that lacked explicit cell memory were not as well adapted for making multi-step-
ahead predictions as LSTM and other recurrent neural network architectures that have
cell memory. For the purpose of estimating future groundwater levels, the LSTM was
used by Zhang et al. [29]. The simulation produced by the LSTM-based technique was
evaluated with a CNN (conventional neural network), and the results showed significant
improvements for the former. Utilizing the Soil and Water Assessment Tool (SWAT),
Wang et al. [30] analyzed the hydrological response to the downscaled weather data after
statistically downscaling meteorological data with an RNN. There has been recent research
on runoff prediction utilizing LSTM, RNNs, and GRUs [6,7,31,32].

Among the issues that must be addressed by a variety of corporations and legislators
in Iran is integrated water resource management [33]. For this purpose, the accuracy of
streamflow prediction plays a key role, which is represented in some studies. Zhihua
et al. [34] used the SWAT and ANN models for runoff prediction. The Baliqlu Chai Water-
shed, located in Ardabil province, was chosen as the study area. Furthermore, the error in
the ANN was reduced in this study by employing an optimization method based on the mu-
tated model of the whale optimization algorithm (MWOA). In the study [35] by Sarzaeim
et al., the utilization of data-mining techniques, such as support vector machines (SVMs),
genetic programming (GP), and artificial neural networks (ANNs), proved advantageous
in forecasting runoff in the Aidoghmoush basin amidst climate change circumstances. The
research in [36] presented a model based on the combination of genetic algorithms and the
Levenberg–Marquardt (LM) algorithm to improve forecasting results. The model was pro-
posed in the Aghchai watershed located in Azerbaijan province as the study area, and the
results indicated the accuracy of the proposed method for runoff prediction in comparison
with an ANN and the adaptive neuro-f inference system (ANFIS). A robust hybrid model
(W-WRELM) was constructed through the integration of the wavelet transform (WT) to
simulate precipitation runoff data from 2000 to 2017 in the Shaharchay River basin, which
is a significant source of water for Lake Urmia in the province of Azarbayjane-Gharbi. The
model spanned a duration of 18 years [37].

Drawing insights from an extensive literature review, the identification of utilizing
deep learning methods for streamflow forecasting in the nuanced context of Iranian rivers
underscores a key research gap. The current scientific landscape predominantly relies
on established methodologies, and introducing the application of advanced techniques,
specifically an RNN and LSTM, in this specific setting offers a compelling opportunity to
advance hydrological research. By investigating the specific challenges and intricacies of the
Zarrine River basin, which is the most expansive and significant sub-basin of Lake Urmia in
Iran, this study aims to not just fill a research gap but to forge new pathways in advancing
our understanding of hydrological processes in Iranian distinct geographical context.

In addition, streamflow prediction models are beset by a substantial degree of un-
certainty due to the scarcity of accessible data and the intricacy of the water distribution
and management network. The presence of nonoptimal model parameters, which can be
challenging to evaluate directly, systematic or measurement errors in the input dataset,
and a statistical model that is oversimplified and based on assumptions all contribute to
the presence of uncertainty [38,39]. The uncertainties in streamflow forecasting have been
the subject of a great number of studies which have been used to quantify and estimate
them [39–41]. Both Zhang et al. [42] and Her et al. [43] came to the same conclusion, that the
uncertainty in the input plays an important role in determining how accurate the stream-
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flow prediction model is. As the most fundamental input to the rainfall–runoff model,
imprecise spatial and temporal estimations of precipitation or errors in their assessment
may introduce significant uncertainty into the streamflow prediction [39].

There have been numerous investigations that have used a variety of methods to
quantify the uncertainty in the streamflow forecasting models [44–46]. Among these
approaches, we benefited from the one-way analysis of variance (ANOVA) as an uncertainty
analysis method to evaluate the effects of input data at each ZR station on the results. By
subjecting the model to different values of input parameters and analyzing the resulting
variations in the model’s output, sensitivity analysis offers significant insights regarding
the model’s resilience and dependability. This information is crucial for making informed
decisions, optimizing processes, and enhancing the predictive accuracy of models. As
many studies have highlighted, one-way ANOVA sensitivity analysis can reveal critical
input parameters that require closer attention and fine-tuning, ultimately contributing to
more effective decision making and problem solving in various fields.

This research aims to evaluate and compare the performance of recurrent neural
networks (RNNs) and long short-term memory (LSTM) models for monthly streamflow
prediction in the Zarrine River basin, northwest Iran. The objectives include assessing
model effectiveness, determining the optimal structure among five configurations, and
identifying key parameters’ impact on predictions. Hypotheses anticipate better accuracy
in prediction by machine learning techniques, especially in replicating monthly streamflow
patterns. These objectives and hypotheses collectively aim to enhance our understanding
of deep learning applications in hydrological modeling within the specific environmental
context of the Zarrine River basin.

In order to ascertain the precise significance of this work, a topic evaluation is con-
ducted utilizing the R Studio and Scopus databases (Bibliometrix library). Streamflow
prediction using machine learning approaches and sensitivity analysis are not heavily
considered by researchers, as indicated by the keyword assessments (Figure 1a); hence, this
concept can be regarded as innovative. Furthermore, water management, artificial intelli-
gence, streamflow prediction, and machine learning are prevalent topics within scientific
communities. However, as shown in Figure 1b, neither Iranian enterprises nor researchers
have made significant advancements in these areas. As a result, senior-level managers in
Iran should assess the results of the current investigation as an innovative resolution.

ANOVA (analysis of variance) is crucial in this research for assessing the significance
and impact of different variables on streamflow prediction models. It helps identify the key
factors influencing streamflow forecasts, enhancing the accuracy of hydrological analyses.

With regard to the forecast of monthly streamflow via machine learning algorithms like
an RNN and LSTM, ANOVA serves as a valuable tool to quantify the influence of various
hydrological parameters. This statistical technique aids in distinguishing which variables,
such as station streamflow, upstream station streamflow, and maximum temperature,
significantly affect the model’s output. ANOVA’s contribution lies in pinpointing the most
influential factors, thereby improving the precision and reliability of streamflow predictions
in water resource management and hydrological analysis.

In spite of the increased attention recently given to the application of machine learning
methods such as LSTM and RNNs in streamflow prediction, the comparative performance
of these models in the context of streamflow forecasting remains an area that requires
further investigation. Specifically, there is limited research that systematically evaluates and
compares the predictive accuracy and suitability of RNNs and LSTM models for streamflow
forecasting, particularly in the context of the Zarrine River basin in Iran. Additionally, there
is a need for more in-depth exploration of the key hydrological variables that influence
streamflow predictions using these models.

This research aims to assess the performance of two machine learning models, an
RNN and LSTM, in streamflow prediction for the Zarrine River basin in northwest Iran.
This study aims to determine which model provides more accurate predictions and identify
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the most influential hydrological variables. This research aims to improve streamflow
prediction methods for effective water resource management in the region.
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2. Data Collection and the Study Area

Lake Urmia (LU) is the largest body of water in Iran, which covers around 5750 km2

and contains roughly 7% of Iran’s surface water [47]. Around 41% of the environmental
discharge into the LU basin originates in the Zarrine River (ZR), making it the most
substantial and sizable sub-basin of the LU basin [48]. As is evident in Figure 2, the ZR
extends for a total distance of almost 300 kilometers and has an area of around 12,025 square
kilometers to the southeast of the Lake Urmia [49]. With a storage capacity of 650 MCM,
the Bookan Dam is the most sizable and consequential operational dam in the ZR basin.
It stores water for human use, agriculture, and industry [50]. During the previous four
decades, this basin has received 352 mm of precipitation annually on average, making it a
semiarid area with a Mediterranean climate.
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In this research, four hydrological stations were taken into account in the Zarrine River
basin (see Figure 2). The statistics for the reservoir outflow and the monthly streamflow
were taken from the websites www.yekom.com (Reservoir outflow statistics (Yekom Ltd.,
Tabriz, Iran)) and www.dams.wrm.ir (Not accessible with non-Iranian IP), respectively, for
the years 1974–2014. In addition, we gathered meteorological information from the Iran
Meteorological Organization, such as rainfall and high and low temperatures from 1974
to 2014.

A holistic analysis of the physical mechanisms influencing streamflow in the Zarrine
River basin involves considering geographical, climatic, hydrological, anthropogenic, and
topographical factors. According to Yazdandoost et al. [48], the analysis of geographical
and climatic variances within the provinces reveals significant influences on hydrological
processes. Variations in elevation, slope, and land cover contribute to distinct streamflow
patterns in each sub-basin. Land use/cover data for 2017 showcases the impact of human
activities on the basin, prompting an examination of correlations between land use pat-
terns and observed streamflow variations over time. Hydrological connectivity within the
Zarrine River basin is crucial to understanding streamflow dynamics. Factors such as soil

www.yekom.com
www.dams.wrm.ir
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type, derived from the Food and Agriculture Organization of the United Nations (FAO)
Soil Map of the World archive, play a role in shaping hydrological responses. Assessing
the variations in soil properties provides insights into how different regions contribute
to the overall efficiency of streamflow prediction models. Meteorological data obtained
from four stations, including Zarrine, Saqez, Takab, and Maragheh, allow for an analysis
of seasonal and climatic influences. Evaluating variations in maximum and minimum
daily temperatures and precipitation helps discern distinct seasonal patterns in streamflow.
Additionally, the presence of the Boukan Dam, the largest water management infrastructure
on the Zarrine River, with a gross storage capacity of 760 MCM (million cubic meters),
influences streamflow and contributes to the mean flow rate of 139.5 MCM. Agricultural
activities, outlined by information from the Iranian Ministry of Agriculture Jihad (IMAJ),
introduce another layer of complexity. Cropping patterns, planting and harvesting dates,
and irrigation management directly impact streamflow dynamics. The cultivated area of
major crops in the Zarrine River basin further influences water usage and runoff patterns.
Utilizing the digital elevation model (DEM) with a spatial resolution of 30 m × 30 m, the
topography of the region is analyzed. Steep slopes, high elevations, and other topograph-
ical features contribute to variations in streamflow, influencing the overall hydrological
response. Examining runoff data from hydrometric stations and reservoir outflow data
provides valuable insights into the variations in streamflow at the outlets of representative
sub-basins. These observations contribute to understanding the role of different factors in
shaping the observed runoff patterns in the Zarrine River basin [48].

3. Model Description
3.1. RNN (Recurrent Neural Network)

While regular neural networks have full relationships between layers, there is no
communication between nodes in the same layer. In a spatial–temporal network, there are
relationships between the nodes, which means that this type of network could fail when
attempting to solve temporal–spatial problems. In an RNN, unlike in traditional networks,
the hidden units are fed back information about how the current state compares to the
previous state [51].

Figure 3 shows a simple RNN cell over two iterations. In this configuration, the RNN
accepts input vectors, one at a time rather than using a fixed number of input vectors, as is
the case in more conventional network architectures. Furthermore, all of the input data
that have been gathered up to this point can be utilized by this architecture. Furthermore,
the depth of the RNN can be adjusted without regard to the theoretical application. As
demonstrated by Zhao et al. [52], the output of each subsequent hidden layer influences
the ultimate result.
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By using the network’s depth as an approximation of time, an RNN can simulate
the correlation present in sequential data. However, the vanishing and bursting gradient
problems make the RNN model less accurate as the time span becomes longer, which affects
the final output [52]. Mathematically, the RNN model shown in Figure 3 can be represented
as follows:

pi = S (W1Xi + W2Xi−1 + b1) (1)

ri = W3pi + b2 (2)

ö = S (ri) (3)

cf = ∑i(∥ö − o∥/2) (4)

where pi and ri are the temporary variables. Xi is the input variable, W1, W2, and W3 are
weight matrixes, b1 and b2 are bias vectors, S is sigmoid function, cf is the cost function,
and ö and o are the expected and actual output, respectively. The sigmoid function (σ) is
a mathematical function commonly used in neural networks to introduce nonlinearity. It
squashes input values to a range between 0 and 1, facilitating gradient-based optimization.
Temporary variables (pi and ri) play roles in our model’s computations. pi denotes the input
gate activation, controlling the extent of input information to be stored, and ri represents
the reset gate activation, influencing the extent to which the previous state is neglected.
Another fundamental aspect is backpropagation which is a crucial aspect of training neural
networks. It involves iteratively adjusting the model’s parameters using the chain rule of
calculus to minimize the difference between predicted and actual outputs.

Additionally, the backpropagation through time approach (BPT) can be used to train
the RNN model through the utilization of a gradient calculation, where the cost corre-
sponding to the input weights and hidden weights of the previous time steps is determined.
However, the partial derivative error increases with each successive time step when using
the BPTT approach. A gradient will either vanish entirely if the time step T is enormous, or
it will explode enormously. The term “vanishing/exploding gradient problem” is often
used to describe this issue [6]. In order to prevent vanishing/exploding gradients, LSTM
or GRU blocks have largely replaced the hidden block in RNNs in recent years.

3.2. LSTM (Long Short-Term Memory)

Similar to RNNs, LSTM consists of chain-like modules; however, the design of the
LSTM’s recurring modules is more complex. Each module of an LSTM contains a memory
block that is repeated. This memory block is specifically designed to retain data for extended
durations. Constant error carousel (CEC) cells and three gates, which are specialized
multiplicative units, are the four components of the memory block. The gradient remains
when an LSTM is trained using backpropagation via time, as the CEC cell propagates in a
direction perpendicular to the entire chain in the absence of any activation function. Long
short-term model (LSTM) dependencies have been observed to be more proficient than
RNNs in this regard due to the unaltered transmission of information via the cells [29].

The three gates depicted in Figure 4 of an LSTM are responsible for the management
and adjustment of the hidden state (Hst) and cell state (Cst): the input gate (IGt), the forget
gate (FGt), and the output gate (OGt) [7]. These three gates function as filters for various
reasons [53]. What information will be removed from the Cst is decided by the FGt, what
information will be added to the Cst is decided by the IGt, and the OGt defines which
Cst information is used as the output [7]. Each memory block has its own set of input,
forget, and output gates that regulate how data move around inside the block. The input
gate governs the flow of inputs into the memory cell, whereas the forget gate assesses
the condition of the cell’s contents. In contrast, the output gate controls the flow of cell
activations [16]. In contrast to conventional RNNs, LSTM cells’ three-gate architecture
allows them to effectively capture complicated connections in time series over both the
short and long term [52].
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These are the transition equations for an LSTM:

FGt = S(WF[Hst−1, Xt] + bF), (5)

IGt = S(WI[Hst−1, Xt] + bI), (6)

Ĉst = tan h(WC[Hst−1, Xt]+bC), (7)

Cst = FGt ⊙ Cst−1 + IGt ⊙ Ĉst, (8)

OGt = S(WO[HSt−1, Xt] + bO), (9)

Hst = OGt ⊙ tan h(Cst), (10)

where IGt, OGt, and FGt represent input, output, and forget gates; WI, WO, WF, and WC are
weights for each gate; and bF, bC, bO, and bI stand for the bias terms. The logistic sigmoid
function is denoted by S, while the hyperbolic tangent function is represented by tanh. The

sign ⊙ is the scalar product of two vectors; Cst and
ˆ
Cst stand for the current and updated

cell states, and Xt and Hst signify the input and output of the cell, respectively.

3.3. Sensitivity Analysis

In this study, we used the one-way analysis of variance (ANOVA) calculated by design
expert software. The variance value (S2) can be used to figure out the standard deviation
(S) using the following formula [54]:

S2 =
∑(Xi − x)
(N − 1)

(11)

With a degree of confidence of 95% and a significance level of 5%, we tested for a
significant difference in the Xi variable between two stations. The p-value was used as an
indicator of the significance of the Xi variable difference between stations. If the p-value (sig)
is less than 0.05, then there is a significant difference between the two stations with respect
to the Xi variable. If the p-value (sig) is larger than 0.05, consequently, disparity is not
statistically significant; that is, the Xi variable exhibits no variation among the stations [55].

4. Methodology
4.1. LSTM and RNN Model Development

In Figure 5, the research roadmap for the study is shown graphically. To predict the
Zarrine River’s monthly streamflow, LSTM and RNN networks were used. After thorough
data collection, a descriptive statistical analysis was produced. As such, the training,
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validation and testing sample data for the years 1979–1999 (400 data points), 2004–2014,
and 1999–2004 (a total of 87 data points) were studied, respectively (117 data points). The
testing dataset contains information that was excluded from the training phase in order to
assess the effectiveness of the calculative algorithm. In contrast, overfitting is avoided by
using the validation dataset to identify the ideal model variables. Due to the absence of
established methods for identifying input variables, trial and error is required to determine
which input factors have the greatest impact on the model’s output.
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To ascertain the model structure that exhibited the maximum performance, a total
of five model structures were employed, each with a unique set of input variables and a
lag time of up to four months (see Table 1). In Table 1, Qt and Qt

us represent the current
and upstream station streamflows at month t, respectively. Pt represents precipitation at
month t. Tt

max, Tt
min, andTt

avg are three variant temperatures in the month. The model’s
structure is shown by t1, t2, t3, and t4 with a delay of one to four months between each
event. Scenario 3, 4, and 5 incorporate all input parameters with two to four-month latency.
However, scenarios 1 and 2 have zero and one-month lag time and include all features
except the current station’s streamflow. The first station in scenario 1 does not incorporate
upstream station streamflow (Safakhaneh station). Setting hype-parameters for the LSTM
and RNN networks is next. Adjusting hype accurate predictions requires careful network
hype-parameter adjustment. Kan et al. in [11] used the trial–error method to obtain
the hype-parameters with the best validation dataset model performance. Thus, many
experiments are run with a large parameter range.
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Table 1. The architectures of the LSTM and RNN networks’ models.

Name Input

Scenario 1 (S1) Qt
us; Pt; Tt

max; Tt
min; Tt

avg

Scenario 2
(S2) Qt

us, Qt−1
us ; Qt−1; Pt, Pt−1; Tt

max, Tt−1
max; Tt

min, Tt−1
min ; Tt

avg , Tt−1
avg

Scenario 3
(S3) Qt

us to Qt−2
us ; Qt−1 to Qt−2; Pt to Pt−2; Tt

max to Tt−2
max; Tt

min to Tt−2
min ; Tt

avg to Tt−2
avg

Scenario 4
(S4) Qt

us to Qt−3
us ; Qt−1 to Qt−3; Pt to Pt−3; Tt

max to Tt−3
max; Tt

min to Tt−3
min ; Tt

avg to Tt−3
avg

Scenario 5
(S5) Qt

us to Qt−4
us ; Qt−1 to Qt−4; Pt to Pt−4; Tt

max to Tt−4
max; Tt

min to Tt−4
min ; Tt

avg to Tt−4
avg

Given the utilization of the stochastic gradient descent optimization technique during
the training phase of deep learning networks, a cost function was devised to iteratively
assess the model’s condition. Following that, adjustments were made to the network’s
weights with the intention of enhancing the model’s performance in the forthcoming
evaluation. The loss function in the present study is denoted by the mean squared error
(MSE) (Equation (12)).

MSE = ∑n
t−1(Qot − Qpt

)2 (12)

where Qot and Qpt
represent the streamflow as observed and projected at time t, respectively.

Finally, the third step was to utilize the ANOVA method in order to evaluate the
sensitivity analysis of input data.

4.2. Data Normalization

The pre-processing phase of raw data normalization is a key step in training machine
learning methods. By standardizing the attribute data to a single scale, one can circumvent
numerical obstacles presented by the model, thereby facilitating a more efficient and precise
modeling process. For machine learning approaches in general and ANN networks in par-
ticular, Ref. [56] advised incorporating data normalization into the range [0,1]. To achieve
data normalization for the purposes of this study, the subsequent equation is utilized.

In =
I* − Imax

Imax − Imin
(13)

where Imax, Imin, In, and I* represent, respectively, the maximum and minimum values, and
the raw dataset and the normalized data.

4.3. The Criteria of Model Evaluation

An evaluation of the precision and dependability of streamflow forecasting was
performed utilizing three distinct statistical metrics: the Nash Sutcliffe coefficient (NSE),
the coefficient of determination (R2), and the root mean square error (RMSE). Equation
(14) represents the Sutcliffe Nash coefficient (NSE), a widely employed and reliable metric
utilized in the evaluation of hydrological model performance. It signifies the proportion
between the variances in observed and projected data. NSE ratings exhibit a range between
0 and 1, where values approaching 1 indicate enhanced performance [57]. The linear link
between the data that were seen and the data that were anticipated is represented by the
coefficient of determination (R2), which is found in Equation (15) and has a range of [0,1].
When the value of R2 is closer to 1, the prediction model generates outcomes that are more
accurate. An expression representing the magnitude of the deviation between actual and
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expected values is known as the root mean square error (RMSE) (Equation (16)). If the
value of RMSE is near zero, the forecast is very precise.

NSE = 1 −
∑t=1(Qp − Qo)

2

∑t=1(Qo − Q)
2 (14)

R2 = 1 −
∑(Qp − Qo

)2

∑ Q2
p

(15)

RMSE =

√√√√ ∑(Qp − Qo

)2

N
(16)

where Q, Qp, and Qo, indicate the average, predicted, and observed values, respectively,
whereas N denotes the quantity of data points.

5. Results
5.1. Evaluation of LSTM and RNN Networks

As stated earlier, the research utilized LSTM and RNN networks with five unique
model architectures in order to forecast streamflow at consecutive hydrometric stations
located in the Zarrine River basin. In order to reduce the potential for overfitting, a
train–validation–test methodology was implemented. The model was trained using the
training dataset, while the validation dataset was employed to determine the most effective
model structure and its corresponding parameters. Following that, the selected model was
assessed using an unobserved test dataset. The level of generalization error of the model
was ascertained through a comparison between the evaluation of the test and validation
sets’ performance. When the outcomes of the two sets exhibited comparability, it indicated
that the model possessed a minimal generalization error and had not been overfit.

The results of the LSTM and RNN models for the four hydrometric stations and five
structures specified in Table 1 are presented in Table 2. In order to prevent model overfitting,
the selection of the ideal structure is based on which one achieves the highest performance
measures, namely, NSE and R2, while ensuring that the outcomes of the validation and test
phases stay comparable.

As presented in Table 2, there is a significant enhancement in the performance of the
models at the initial station, Safakhaneh, when transitioning from the S1 to S5 structure.
This improvement suggests that utilizing antecedent data leads to the best output results.
Notably, during the testing phase, the RNN model consistently outperforms the LSTM
network for Safakhaneh, exhibiting higher values for NSE (0.76) and R2 (0.79) and a lower
RMSE (5.6). While the model structures for Safakhaneh do not incorporate upstream station
streamflow data, downstream stations benefit from it. The RNN model’s output for the S5
structure in Safakhaneh station serves as upstream streamflow input for predicting outflow
in the Bookan reservoir model. The RNN model consistently outperforms the LSTM model
across all model structures. The S3 model, which includes all input variable values and has
a delay of four months, demonstrates particularly outstanding results in this regard. Within
this context, the accuracy measures are as follows: RMSE (22.8), R2 (0.84), and NSE (0.8).
This indicates that the performance of the model has a tendency to decrease when excessive
inputs are introduced, which highlights the significance of maintaining a balanced level of
model complexity.
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Table 2. A comparison of the performance of LSTM and RNN-based streamflow forecasting models
with varied monthly lag times for four station structures in the Zarrine River basin.

Training Phase Validation Phase Testing Phase

Station Model Type Structure NSE R2 RMSE NSE R2 RMSE NSE R2 RMSE

Safakhaneh (#1)

LSTM

S1 0.21 0.42 13.3 0.44 0.31 3.4 0.01 0.3 11.8
S2 0.48 0.65 10.8 0.38 0.21 5.7 0.44 0.48 8.9
S3 0.77 0.83 7.17 0.53 0.24 4.2 0.64 0.67 7.2
S4 0.56 0.63 10 0.58 0.27 3.7 0.55 0.58 8.0
S5 0.68 0.77 8.4 0.68 0.71 5.0 0.7 0.73 6.3

RNN

S1 0.56 0.7 17.21 0.44 0.35 3.3 0.58 0.04 14.6
S2 0.62 0.16 15.1 0.68 0.1 3.3 0.61 0.1 11.9
S3 0.68 0.75 8.4 0.65 0.5 2.5 0.64 0.67 7.1
S4 0.69 0.75 8.3 0.64 0.56 2.5 0.68 0.71 6.7
S5 0.75 0.81 7.5 0.75 0.76 5.0 0.76 0.79 5.6

Bookan reservoir
(#2)

LSTM

S1 0.82 0.12 169 0.54 0.2 79 0.76 0.08 160
S2 0.79 0.85 35.3 0.63 0.00 50.4 0.81 0.89 24.1
S3 0.84 0.88 30.5 0.59 0.62 20.7 0.73 0.88 28.8
S4 0.77 0.79 37 0.51 0.59 23.7 0.77 0.78 26.6
S5 0.79 0.81 35.2 0.73 0.58 42.3 0.79 0.81 24.4

RNN

S1 0.77 0.01 165.1 0.58 0.01 68.8 0.87 0.2 137.5
S2 0.83 0.86 32.1 0.73 0.69 19.5 0.82 0.88 23.8
S3 0.84 0.84 31.3 0.84 0.7 19.3 0.86 0.87 20.6
S4 0.81 0.82 34.1 0.69 0.73 18.8 0.84 0.84 22.3
S5 0.77 0.83 37.5 0.77 0.8 21.4 0.82 0.85 22.7

Qezkorpi (#3)

LSTM

S1 0.96 0.96 14.5 0.98 0.98 4.8 0.96 0.98 11
S2 0.93 0.96 20.6 0.94 0.99 8.2 0.93 0.99 15
S3 0.93 0.96 19 0.92 0.98 9.3 0.94 0.98 25.2
S4 0.78 0.8 35.8 0.6 0.65 22.6 0.81 0.82 25.25
S5 0.93 0.96 20.1 0.95 0.99 9.8 0.93 0.99 13.8

RNN

S1 0.96 0.96 15.1 0.9 0.98 10.4 0.97 0.99 9.6
S2 0.95 0.96 16.3 0.97 0.98 5.4 0.99 0.99 5.6
S3 0.97 0.95 81.2 0.93 0.91 35.6 0.93 0.97 59.5
S4 0.9 0.96 89.1 0.91 0.98 40.26 0.96 0.99 64.9
S5 0.95 0.97 16.7 0.96 0.99 8.5 0.96 0.66 10.8

Nezamabad (#4)

LSTM

S1 0.65 0.01 16.7 0.28 0.53 3.3 0.57 0.01 13.8
S2 0.59 0.64 9.6 0.56 0.28 4.9 0.51 0.51 8.3
S3 0.78 0.82 7.03 0.48 0.04 3.4 0.61 0.64 7.4
S4 0.57 0.63 9.8 0.51 0.31 3.6 0.56 0.58 7.9
S5 0.48 0.11 10.8 0.66 0.11 6.76 0.47 0.52 8.5

RNN

S1 0.65 0.78 47.8 0.55 6.2 14.5 0.64 0.75 31
S2 0.81 0.84 35 0.65 0.69 12.7 0.79 0.79 23.6
S3 0.87 0.88 28.7 0.65 0.76 12.8 0.78 0.83 24.1
S4 0.88 0.89 26.9 0.73 0.79 11.7 0.8 0.84 22.8
S5 0.82 0.29 101.3 0.77 0.31 36.5 0.75 0.2 61.1

In light of the downstream location of the Qezkorpi station in relation to the Bookan
reservoir, the models utilize the reservoir’s monthly discharge as the upstream outflow
input. Each of the model structures exhibits robust performance and produces similar
outcomes. On the contrary, the RNN model that incorporates the S2 structure, which
includes all input variables, and incorporates a lag period of one month demonstrates a
marginal improvement in accuracy. The assessment criteria for the S2 model include NSE,
R2, and RMSE values of 0.99, 0.99, and 5.6, respectively, which indicate its exceptional
accuracy. An outlet station of utmost importance in the Zarrine River basin is Nezamabad,
which is tasked with feeding Lake Urmia with outflow. With the exception of S1, the
RNN network demonstrates favorable output results across a range of structures. The S4
structure exhibits the most remarkable model performance, as seen by its NSE, R2, and
RMSE values of 0.8, 0.84, and 22.8, respectively. The outcomes underscore the remarkable
capability of the RNN network to forecast monthly streamflow at consecutive stations
across the basin, with a particular emphasis on the outlet station that aids in the inflow of
Lake Urmia.
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This study utilizes a successive station procedure to simulate the streamflow at each
station. Therefore, the models use the downstream simulated streamflow in their structure,
leading to improved prediction results at each station. The Boukan reservoir uses the
Safakhaneh station’s streamflow, which is located on the river tributary leading to the
reservoir. Thus, the simulated results improved at each upstream station. However, the
model performance in the Nezamabad station (outlet station) is decreased due to the
presence of numerous tributaries between the Qezkorpi station and the outlet station. This
will increase the uncertainty in the model and reduce the model performance.

The scatter plots show the observed and predicted hydrographs for the highest per-
forming models during the validation, training, and testing phases, and each hydrometric
station is depicted in Figure 6. Streamflow fluctuations are predicted with a higher degree
of accuracy by the RNN model, as evidenced by the hydrographs. Furthermore, the scatter
plots reveal that in each station, the RNN model demonstrates higher R2 values for stream-
flow compared to the LSTM model. Although the model displays certain incongruities,
namely, during periods of high flow at the Safakhaneh station and Bookan reservoir, its
operational efficacy remains satisfactory when applied to flows in the low to medium range.
Significantly, the RNN model exhibits constant excellence across all flow circumstances for
the stations of Qezkorpi and Nezamabad. The findings underscore the model’s enhanced
performance for stations situated downstream as opposed to those situated upstream, a pat-
tern that corresponds well with the calibrated river flow successfully reaching downstream
stations. In general, these techniques have the potential to be examined and applied across
various scientific disciplines, with particular relevance to environmental studies [58–61].

However, it is crucial to acknowledge that despite the high accuracy of the model,
inherent uncertainties and complexities in flood dynamics pose significant challenges to
comprehensive hazard management. One of the fundamental scientific aspects contribut-
ing to potential errors lies in the stochastic nature of the phenomenon. Flood events are
influenced by a myriad of random variables, such as precipitation patterns, soil moisture
content, topography, and human activities, making it challenging to predict with abso-
lute certainty [62]. Moreover, the dynamic nature of hydrological processes introduces
an additional layer of complexity. River basins are intricate systems characterized by
nonlinear interactions between various components, including rainfall, runoff, infiltration,
and channel flow. The interplay of these factors can lead to emergent behaviors that are
difficult to capture accurately in a predictive model. As a result, the model’s susceptibility
to errors increases, especially during extreme or unprecedented events that may deviate
from historical patterns [63]. Another scientific consideration is the impact of climate
change on flood dynamics. Climate variability introduces new challenges in predicting
future flood scenarios, as shifts in precipitation patterns, temperature, and sea level con-
tribute to altering the hydrological cycle. The model’s reliance on historical data may not
adequately account for these evolving climatic conditions, leading to potential inaccuracies
in long-term predictions [64]. Furthermore, uncertainties in data quality and availability
can significantly affect the model’s performance. Incomplete or inaccurate data, especially
in regions with limited monitoring infrastructure, may compromise the model’s ability to
provide reliable flood forecasts. It is essential to continually update and validate the model
with the latest data to enhance its robustness and reliability in real-world applications [65].
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5.2. Sensitivity Analysis

Conducting a one-way analysis of variance (ANOVA) sensitivity study is critical for
determining how different input parameters affect the performance of a model. A criti-
cal statistical indicator, the p-value acquired by a one-way ANOVA sensitivity analysis,
measures the significance of the observed discrepancies in the model’s output that may
be ascribed to various input parameters. A p-value that is small, usually less than a pre-
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established significance level (e.g., 0.05), provides robust support for rejecting the null
hypothesis. This implies that at least one of the input parameters significantly influences
the output of the model. On the contrary, a substantial p-value indicates that the available
evidence is inadequate to reject the null hypothesis, thus suggesting that the input parame-
ters might not significantly influence the operational efficiency of the model. ANOVA goes
beyond merely identifying influential factors; it provides a statistical basis for comparing
their individual contributions. This comprehensive analysis aids in discerning not only
which factors play a significant role but also the extent to which they affect the accuracy of
our streamflow predictions. The utilization of ANOVA in our sensitivity analysis strength-
ens the scientific rigor of our approach, allowing us to pinpoint and prioritize the key
factors influencing the performance of our models.

The outcomes of the sensitivity analysis, as determined using one-way ANOVA, are
depicted in Figure 7. In contrast to precipitation and minimum and average temperature,
which have the least impact on the model’s output, the results indicate that upstream station
streamflow, station streamflow, and maximum temperature exert the greatest influence on the
model’s output. The downstream streamflow is not included in the sensitivity analysis of the
Safakhaneh station; thus, the analysis only shows a great impact on the maximum temperature
and the antecedent streamflow of that station. The other three stations not only show high
influence on those inputs but also the downstream station of each one of the stations.
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Figure 7. The results of one-way ANOVA sensitive analysis for various input parameters in the RNN
network.

6. Physical Mechanism Analysis

The Muskingum–Cunge method is a widely used technique for predicting the flow
of water through river channels, particularly in hydrological modeling. This method is
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essentially a routing equation that helps simulate the movement of water through a basin
over time (Equation (17)).

Qout (t) = K·∆t·(dQin(t)/dt) + (1−K)·Qin(t−∆t) (17)

where Qout (t) is the outflow at time t; Qin (t) is the inflow at time t; ∆t is the time step; and
K is the routing parameter.

This method essentially calculates the outflow at a given time (Qout (t)) based on the
inflow at the same time (Qin(t)) and the inflow at a previous time (Qin(t − ∆t)), along with
a fraction (K) of the rate of change in inflow with respect to time [66,67].

In the present research, the physical assessment of flow in the basin is programmed as
per MATLAB 2021b software. The outcomes are demonstrated in Figure 8. In the model,
as per the statistical data of the Water Management Organization of Iran, at the evaluated
time, the maximum, average, and minimum flows of the Zarrine River basin are considered
equal to 560, 250, and 60 m3/s, respectively. Also, the total time and ∆t are adjusted to
100 and 30, respectively. In the model, different K values from 0 to 1 are computed in the
present model. By concentrating on Figure 8, it can be concluded that the physical state
of the basin is computed from 60 to 350 in the time steps, which is seen as the average of
different station flows in Figure 6. Therefore, the physical analysis of average stations in
the basin is close to the absolute measured values at different stations. Finally, the physical
analysis of the basin approves the machine learning outputs of this study as well as the
real data of the case study. In general, the contour plot provides a comprehensive visual
representation of the dynamics of the outflow, considering the interplay between time
and the parameter K in the Muskingum–Cunge method. It helps users understand how
adjustments in the parameter K impact the outflow at different time points during the
simulation.

Water 2024, 16, x FOR PEER REVIEW 18 of 21 
 

 

average stations in the basin is close to the absolute measured values at different stations. 
Finally, the physical analysis of the basin approves the machine learning outputs of this 
study as well as the real data of the case study. In general, the contour plot provides a 
comprehensive visual representation of the dynamics of the outflow, considering the 
interplay between time and the parameter K in the Muskingum–Cunge method. It helps 
users understand how adjustments in the parameter K impact the outflow at different 
time points during the simulation. 

 
Figure 8. The output of basin physical analysis as per Muskingum–Cunge method in this research. 

7. Conclusions 
In this study, we established a robust forecasting framework and evaluated the 

predictive capabilities of two prominent networks, namely, ANN and LSTM models, 
applied to monthly streamflow forecasting. The focus on the Zarrine River basin, a 
significant sub-basin of Lake Urmia, allowed us to aĴribute a substantial portion of 
variations in the lake’s water level to the dynamic streamflow of the Zarrine River. Our 
models, supported by an effective application of the ANOVA method, demonstrated 
remarkable performance in discerning the relative relevance of input factors. Examining 
streamflow at the current and upstream stations, precipitation, and temperature variables 
provided valuable insights. Crucially, our findings underscored the superiority of the 
RNN model over LSTM in accurately mimicking the rainfall–runoff processes inherent in 
monthly streamflow forecasting. The RNN’s capacity to filter out redundant information 
during the modeling of rainfall–runoff connections contributed to its superior 
performance, contrasting with the discernible decline in the accuracy of the typical ANN 
model. In terms of sensitivity analysis, the one-way ANOVA approach highlighted that 
maximum temperature, station streamflow, and upstream station streamflow 
significantly influenced the RNN model’s output. This insight emphasizes the critical role 
of these factors in shaping the predictive accuracy of our model. 

Connecting these results with our study objectives, we aimed to provide not only a 
comparative evaluation of ANN and LSTM models but also a nuanced understanding of 
the factors influencing streamflow predictions. Looking ahead, these findings have 
broader implications for hydrological research and practical applications. They suggest 
the potential of RNN networks, particularly in mitigating information redundancy, and 
emphasize the importance of considering key factors like temperature and upstream 
streamflow in hydrological modeling. This study contributes to advancing our 

Figure 8. The output of basin physical analysis as per Muskingum–Cunge method in this research.

7. Conclusions

In this study, we established a robust forecasting framework and evaluated the pre-
dictive capabilities of two prominent networks, namely, ANN and LSTM models, applied
to monthly streamflow forecasting. The focus on the Zarrine River basin, a significant
sub-basin of Lake Urmia, allowed us to attribute a substantial portion of variations in the
lake’s water level to the dynamic streamflow of the Zarrine River. Our models, supported
by an effective application of the ANOVA method, demonstrated remarkable performance
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in discerning the relative relevance of input factors. Examining streamflow at the cur-
rent and upstream stations, precipitation, and temperature variables provided valuable
insights. Crucially, our findings underscored the superiority of the RNN model over LSTM
in accurately mimicking the rainfall–runoff processes inherent in monthly streamflow
forecasting. The RNN’s capacity to filter out redundant information during the modeling
of rainfall–runoff connections contributed to its superior performance, contrasting with
the discernible decline in the accuracy of the typical ANN model. In terms of sensitivity
analysis, the one-way ANOVA approach highlighted that maximum temperature, station
streamflow, and upstream station streamflow significantly influenced the RNN model’s
output. This insight emphasizes the critical role of these factors in shaping the predictive
accuracy of our model.

Connecting these results with our study objectives, we aimed to provide not only a
comparative evaluation of ANN and LSTM models but also a nuanced understanding of
the factors influencing streamflow predictions. Looking ahead, these findings have broader
implications for hydrological research and practical applications. They suggest the potential
of RNN networks, particularly in mitigating information redundancy, and emphasize
the importance of considering key factors like temperature and upstream streamflow in
hydrological modeling. This study contributes to advancing our understanding of effective
methodologies for streamflow forecasting, paving the way for future research and informed
water resource management practices.
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