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Abstract

The complexity and connectivity of modern information technology systems present
a significant modelling challenge from a security perspective. The field of security
economics aims to use the tools of economics to reason about security problems
to understand and evaluate the different possible outcomes of varying security
postures. This thesis is primarily focused on the economics of cyber-insurance, which
provides indemnity for individuals and organizations against financial losses related
to degradation in cyber-security risk parameters such as confidentiality, integrity, or
availability. The research presented addresses several pertinent questions related to
cyber-insurance. An existing influential model for cyber-security investment decisions,
the Gordon-Loeb Model, is expanded to included cyber-insurance and the optimal
combination of defensive security investment versus insurance is investigated. A
modelling framework is then developed that combines a systems-focused descriptive
approach to security modelling using entity relationship diagrams and security
maturity models to demonstrate how their outputs might be used to provide or
adjust parameters for an expected utility maximization insurance pricing approach.
This model helps to provide a consistent methodology for pricing cyber-insurance,
which then poses the question of scalability and insurance market capacity. If
a market is not efficient, theory suggests financial imbalances will develop. Via
simulations, it is demonstrated that better information sharing is a key condition to
strengthen the sustainability of the cyber-insurance market. Finally, an economic
model of a ransomware attack across a network is developed. Ransomware is a key
concern for cyber-insurers as it has the potential to trigger immediate financial losses

and accordingly is an important modelling target for the cyber-insurance industry.
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Impact Statement

This thesis makes a number of contributions to both the academic field of security

economics and to practitioners in cyber-insurance.

The literature review organizes the existing literature on cyber-insurance into
categories, providing structure to a literature that is currently fairly disperse in terms

of publication venue and content.

In terms of the specific scholastic contributions, Chapter 3 expands a well-
established model in security economics, the Gordon-Loeb model, to cyber-insurance.
This is of theoretical interest from a decision theoretic approach to security investment
decisions but the model simulations developed could easily be used by a corporate
decision-maker given an appropriate set of parameters. Chapter 4 proposes a novel
modelling framework for combining a systems ‘picture’ of an organization and using
that to develop a security maturity assessment of that organization which can then
be used to provide parameters or adjustments to parameters in a utility function for
pricing cyber-insurance. Chapter 5 tackles the significant and important problem of
the conditions required for efficiency in cyber-insurance markets and the conditions
needed to provide more risk capacity to that market. In a geopolitical climate where
organizations face significant harms from cyber-threats, cyber-insurance can help
mitigate the financial losses associated with cyber-incidents and provide access to
external expertise to help organizations recover. The conclusion of the modelling work
in this chapter is that better information sharing about cyber-incidents is needed to
assist with convergence in beliefs on probability distributions of cyber-losses, which
is a key condition for efficiency. Finally, Chapter 6 presents a partially observable

Markov decision process (POMDP) model of a ransomware attack. This could
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Impact Statement

be used by strategic decision-makers, such as a Chief Information Security Officer
(CISO), to engage in discussions with managers and ultimate risk owners about the
optimal defence strategy against such attacks.

At a more structural level, security economics has a long-standing problem in
that much research is either very detailed and focused on specific systems, attacks or
vulnerabilities. On the broader scale, there is a criticism that is valid in some cases
that economic models are too abstract to be of practical use. This thesis aims to show
that it is possible to combine both approaches to deliver useful insights, particularly
within the insurance domain. Robust modelling of outcomes might be used to
inform policy and regulation around cyber-insurance, response to cyber-threats, and

providing rigour and structure to defensive security investment decisions.
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Introduction

The adoption of technology by society has transformed computers from curiosities to
useful tools to essential staples of human existence. This ‘digitization’ of society has
brought many benefits: information transmission and retrieval take mere fractions
of a second in many cases; people can communicate seamlessly across the globe
at barely any cost; and global commerce has been transformed courtesy of online
shopping. However, while much of the technological innovation has been harnessed
for good, its potential for misuse also presents many significant challenges. The field
of information security (often also known as cybersecurity), which aims to articulate
and mitigate against these threats, has seen rapid development since internet use
expanded through the mid-to-late 1990s and now comprises many different disciplines.
This thesis is concerned with the economic aspects of information security and in

particular the financial costs of degradation in information security.

1.1 Background

In the early days of computer use, information security was a minor consideration
outside highly sensitive sectors such as the military. In its infancy, the internet
was largely geared towards collaboration and communication with only modest
consideration of security!'. Early users of the world wide web may recall that it
was not uncommon for the individual hobbyist webmaster to publish their postal
addresses on their website. Prior to the internet, systems communicated on closed

or semi-public networks, providing a quasi-physical barrier. Maintaining physical

INot all users were unconcerned about privacy; Chaum proposed a transaction system under
which the user would not be identified in the mid-1980s [58] while Zimmerman developed Pretty
Good Privacy (PGP) in the early 1990s as described in [308]
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1.1. Background

media confidentiality would ensure relative security and viruses were largely intended
to cause a nuisance, or developed as a proof-of-concept, rather than for revenue
generation. Of course, in the days of the modem and dial-up or dial-in access, there
was always the risk of a social engineering attack?, but this required persistent effort.

In the Web 2.0 era [217], systems may be distributed, hosted in ‘clouds’, and
linked to or even directly accessible via the internet. A company anywhere in
the world can be held to ransom by an agent located anywhere with an internet
connection, with the ransom payments facilitated by cryptocurrencies, which allow
pseudonymous monetary transfers to take place outside of the conventional financial
system. Known as ‘ransomware’, these attacks have moved from being an academic
concept introduced by Young and Yung in 1996 [304] to a serious threat to corporate
profitability, to healthcare, and to education. Connectivity is now an operational
requirement for many individuals and industries simply for daily life, but the defensive
calculus has accordingly shifted from how to stop all attacks with certainty to how

to limit the damage.

1.1.1 The development of information security as a field of research

There has been interest among economists in the economics of information since
the ‘dotcom boom’ of the late 1990s [261]. In 2001, Ross Anderson argued at the
Seventeenth Annual Computer Security Applications Conference that many infor-
mation security problems can be explained more clearly and convincingly using
the language of microeconomics than via technical measures [10]. Anderson’s argu-
ments arguably helped generate significant interest in the development of the field
of information security economics. In 2002, Lawrence Gordon and Martin Loeb
proposed a mathematical model for evaluating the optimal amount of investment
in information security [128], that has become known as the Gordon-Loeb model
and is now generally as a foundational contribution in the use of economic theory to
capture security trade-offs and forms the focus of Chapter 3. If Anderson articulated

the qualitative issues associated with the analysis of information security, Gordon

2Kevin Mitnick deployed this with great success, achieving significant notoriety among law
enforcement [200]
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1. Introduction

and Loeb played a pivotal role in demonstrating how quantitative methods might be

used to analyze security problems.

1.2 Systems and security

As terms such as cyber-incident, cyber-attack, and data breach enter the main-
stream vernacular with increasing frequency and form news headlines, the need
for a disciplined and sensible analysis of information security risks has never been
greater. Generalization can lead to sensationalizing of threats, potentially clouding
decision-making by those tasked with managing information security. Economics can
help support decisions related to security by providing concepts and mathematical
techniques for understanding and framing losses associated with a degradation in
the intended security posture of a dataset or system. The tools of the economics
discipline are most powerful when their application and range of parameters are
clearly identified and specified and sources of potential uncertainty clearly defined.A
particular challenge of cybersecurity modelling is that technology and systems are
not homogenous and constantly evolve. This means that modelling certain systems
and risks cogently and coherently is challenging, but by no means impossible.

When aiming to model systems at a large scale, it is rarely possible or advisable
to capture every feature of every individual component — in essence, building a
complete replica of the ecosystem of interest. Rather, the task of the modeller is
to identify the necessary set of features that allow for the desired outcomes of the
analysis to be generated. For applications such as insurance pricing, developing a
depiction of systems that allows for probability distributions to be generated or fitted
is a useful goal, particularly if the depiction allows for comparison between different
companies and their security postures.

The intended contribution of this thesis is to demonstrate the application of
economic techniques and methodology to a range of security problems. This section
provides a brief overview of fundamental concepts in analyzing and describing systems
and their security and how these related to an economic analysis of information

security. This supplies the core foundations upon which the work in this thesis builds.
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1.2.1 Core concepts in security

In security, it has become commonplace to frame problems in terms of confidentiality,
integrity and availability since work by Anderson in the early 1970s [9] (see, for
example, [135] for further historical background). These concepts may be explained

as follows

o Confidentiality — only authorised or intended parties may view the information
e Integrity — the information must not be altered from its intended state

o Availability — the information must be accessible on demand

One can further reduce the set of parameters to criticality and sensitivity as
described in, for example, [236]. Criticality maps to availability, sensitivity to
confidentiality, and integrity is the intersection of criticality and sensitivity. The
property of having as few parameters in a model is known as parsimony; using just
the necessary set of parameters to describe a system may be viewed as a desirable
modelling objective. These security parameters are useful for economic models as
they may be defined across the interval [0, 1] and be intuitively understood while
aiding the use of models by enforcing clear bounding. This is helpful where the

monetary value of these relatively abstract concepts is hard to instantiate.

1.2.2 Describing systems

As computer systems have become more complex, significant research endeavour
has been devoted to producing mathematically rigorous descriptions of systems. In
particular, there has been significant output in the field of logic. The literature
is far too rich to cover in any depth within the scope of this thesis, but [199] is
recommended as an excellent introduction to the use of logic to describe processes,
while [67] gives a more contemporary overview of systems modelling with practical
examples. Further suitable references are contained within Chapter 4 in Sections 4.4
and 4.7.1. In the context of this thesis, it is important to acknowledge the existence
of rigorous systems modelling and that it can be compatible with economic modelling.

However, detailed systems modelling is used only lightly in Chapter 4. Combining
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systems depictions and economic models for any of the other chapters would in itself
be a significant, multi-year research endeavour and is consequently outside the scope

of what might reasonably be accomplished within this work.

1.2.3 Measuring security

In a simple system, security may be readily defined and enforced in absolute terms.
However, for most real world applications, security is not a binary. For some very
sensitive applications, such as the military, security might be afforded the highest
priority. For others, certain elements of an operation or data set may require
stringent security, but for services where availability and ease of use is a greater
concern, enforcing complex or prescriptive security procedures may not be a desirable
objective.

The concept of measuring security might be construed as trying to form an
assessment of how vulnerable a system is as measured against a set of criteria.
This takes many different forms; examples might include penetration testing of
an organizational network, formal methods and verification of computer code or
configuration files, or behavioural sampling. Security standards such as ISO27001 try
to provide a structured set of controls across different domains that must be fulfilled
to achieve certification to the particular standard [49].

Measurement of security is important, as it allows those reliant on it being
maintained to have confidence in the measures deployed to implement security and
to guard against ‘window dressing’. One of the most well-know explanations of the
phenomenon of signalling security without actually enhancing security is ‘security
theater’, a phrase coined by Bruce Schneier in 2003 [257]. The ability to distinguish
policies and processes that genuinely improve security rather than merely giving the
impression of so doing is particularly critical for industries such as cyber-insurance,
which rely heavily on client declarations of security posture. Usually, companies
will undergo some form of audit, which is designed to convey assurance of controls.
However, as discussed in Chapter 28 of [11], auditors usually rely on declarations
of ‘good faith’ or to the ‘best of knowledge’ Almost every major ‘cyber-incident’

exposes some weakness in underlying processes, and it is arguably very important
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for company management and boards to take external advice to expose potential

shortcomings in internal security assessments.

1.3 Economics

Economics provides a structured means of analyzing competing incentives between
agents, evaluating the strategies and trade-offs in the case of game theory, and
determining whether an equilibrium can exist. It also allows for rigorous mathematical
solution of problems under certain circumstances where the preferences of agents may
be modelled using so-called utility functions. A technical, systems-centric perspective
of security need not compete with an economic perspective; the two analyses can be
complementary and help explain different elements of the problem.

As systems and their connectivity become more complicated, building a ‘bottom-
up’ model becomes inefficient and some level of approximation and/or abstraction is
likely to yield a more tractable model. Technical controls are of course important
and the first line of defence, but vulnerabilities (as they are known in the field
of information security) are techniques that allow an attacker to circumvent the
intended controls to manipulate a system away from its intended state. If security
were perfect, then cyber-security practitioners need not exist. However, this is far
from the case. It may not be possible to defend every attack surface in a system
fully and then economic analysis can help order the allocation of resources to give
the best defence possible subject to relevant constraints.

It is also worth considering the management structure and decision making
process of organizations. In a typical large organization, the board of directors will
have overall strategic oversight and responsibility for security. Increasingly, many
organizations employ a chief information security officer (CISO). The CISO acts as a
conduit between the organizational management team and the technical personnel
responsible for monitoring and delivering operational information security. Therein
lies a potential divergence of knowledge and experience; it is not guaranteed that
organizational management will be well versed in the technical aspects of information

security. A well-developed economic model may assist optimal decision making by
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structuring the information in a manner more familiar to executives and presenting

a clear range of investment options, objectives, risks and trade-offs.

1.4 Cyber-insurance

As awareness of information security risks developed and companies appeared willing
to spend money to protect against the financial losses associated with cyber-attacks,
underwriters in the insurance market spotted an opportunity to launch a new product:
cyber-insurance [132]. Cyber-insurance allows for individuals or companies to pay
a premium to be reimbursed, either in money or services, for damage or losses
associated with an information security event. Initially, cyber-insurance proved
profitable for insurers as while the threat landscape developed, information security
incidents did not cause severe economic losses for companies. Insurance typically
uses a rigorous claim process, enforced by the rule of law. Accordingly, unless the
contract provides otherwise, costs must be tangible. This leads to a perception by
some that cyber-insurance is unlikely to ever pay out; this is not the case, but the
information exchange between purchasers of cyber-insurance and the insurers who
write the policies is certainly complex and asymmetric, which presents an interesting

if not unique modelling challenge among insurance perils.

The cyber-insurance market has seen rapid growth in recent years, especially in the
United States where the National Association of Insurance Commissioners estimates
total premium written has grown from $1.4bn in 2015 to $6.5bn in 2021 [210]3.
Cyber-insurance is particularly interesting as a research topic as it is relatively new
as a line of cover and past data on claims is not necessarily as comparable as for
other, more established lines of business. Much of the content of this thesis is devoted
to the analysis of problems relevant to cyber-insurance and how economics can help
to suggest solutions to them. We now briefly sketch a few broad considerations as to

the motives and incentives of buyers and sellers of cyber-insurance.

3Some caution is required with these figures as the premium income is a function of both the
policy rate charged and the amount covered.
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1.4.1 Demand

It is important to note that there is no universal cyber-insurance policy that covers
all outcomes. Commercial cyber-insurance policies are highly tailored and specific
contracts that cover a range of clearly stated perils up to a stated limit [88, 247].
This is no different to any form of insurance; even mass-market consumer insurance
is tailored to the preferences and risk tolerance of the buyer [64, 86]. The diversity
of insurance policies reflects the different requirements of the various buyers. A
small firm with fairly simple requirements is unlikely to possess extensive in-house
cybersecurity capabilities or have consultants on retainer. In the event of a suspected
data breach, a cyber-insurance policy will connect the policyholder with appropriate
assistance to diagnose, remedy, and prevent future recurrence of the breach [295].
Larger companies may have dedicated cybersecurity functions or outsource these to
an external provider. For these entities, cyber-insurance largely serves as a means of
balance sheet management — in the event of a serious breach of information security,
coverage for investigations by specialist (expensive) consultants and subsequent
remediative measures might help mitigate the loss of revenue the company would
otherwise face. The extent to which a company assumes versus indemnifying risk

will be commensurate with its level of risk aversion.

1.4.2 Supply

Supply of insurance comes from firms who believe that the activity will be profitable —
the value of premiums written will exceed the value of claims and other expenses [63,
6, 72]. Usually, insurance pricing is determined via probability distributions derived
from past experience, parameters or other data [229]. The field of risk quantification in
this manner is known as actuarial science. For cyber-insurance, the field is relatively
new and faces several unique challenges related to the evolution of technology
and the inter-connectedness of the internet removing the geographical element of
diversification that insurers usually rely on for lines such as flood insurance. The
particular challenge for cyber-insurers is how to assess the likelihood of a cyber-

insurance customer claiming on their policy, especially if the customer itself is not
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able to fully articulate its own security posture. This thesis will explore some possible
approaches to answering this question using models and model frameworks.

When insurers are uncertain or uncomfortable with the totality of risks they have
underwritten, they may rely on reinsurance — insurance on insurance [53]. This can
act as a simple risk transfer mechanism or as a portfolio management tool, which
provides cover for losses in excess of certain pre-defined characteristics. However,
the dynamics of information exchange are important for a reinsurance market to
be sustainable and the aforementioned difficulties for cyber-insurers relating to risk

analysis apply equally to reinsurance providers.

1.5 Thesis structure

The remainder of this thesis is organized as follows. Chapter 2 presents a compre-
hensive Literature Review of the cyber-insurance market and the economic methods
needed to support analysis of it.

Chapter 3 introduces the Gordon-Loeb (GL) model for investment in information
security. The GL model is used as the basis for an expected utility maximization
problem for deriving the optimal combination of cyber-insurance and defensive
security investment under exogenously observed premia. This demonstrates how
given a few parameters, the case for competing allocations of capital to investment
versus insurance might be evaluated for a number of different outcomes.

One issue with modelling approaches such as the Gordon-Loeb model is the esti-
mation of appropriate parameters in the absence of clear priors. Chapter 4 proposes a
methodology for describing an organization and its systems using entity relationship
diagrams, calculating the maturity of the security posture of the organization and
using this assessment to deliver parameters that can be used to populate the utility
function of an insurance company providing cyber-insurance. This addresses the
criticism of excessive abstraction from real world technical considerations sometimes
levied at economic approaches to information security modelling. Chapter 5 examines
the difficulties of achieving efficient information exchange in the cyber-insurance

market. The analysis concludes that only with statutory public reporting of losses
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from information security incidents could pricing of cyber-insurance be efficient.
Inefficiency does not imply that transactions cannot or should not take place, but
suggests that there is a risk of financial imbalances building. Chapter 6 illustrates
how a information security specific risk might be modelled, describing a partially ob-
servable Markov decision process (POMDP) model of ransomware spreading through

a model organizational network.

1.5.1 Relation to prior published work

Chapter 3 in based on [267] and Chapter 6 on [269]. Chapter 4 is adapted from [266]
and Chapter 5 [265], both of which were under submission as separate articles to
The Journal of Cybersecurity, at the time of thesis submission. A statement of
contributions to these papers is provided in the Appendix. The literature reviews

from all the aforementioned papers were combined to form Chapter 2.

1.6 Thesis Contributions

This thesis contributes to the academic literature on security economics and cyber-
insurance, but the three models and single modelling framework contained within
it also have relevance for insurance companies, managers of enterprise information
security, and policymakers. It aims to bridge the gap between a systems-focused and
economic view of security by showing how these disciplines can be complementary
rather than competing in an analysis of security.

The literature review in Chapter 2 is intended to provide an overview of the
body of work that should be read to gain a thorough grounding in the discipline of
insurance economics. The review of the cyber-insurance literature is aimed to be
comprehensive and the categorization imparts structure on a field that can often
appear lacking in organization [101].

When published as [267], Chapter 3 was the first example of an expected utility
model for cyber-insurance pricing using the Gordon-Loeb model. It provides a
credible use of a well-established model for the vulnerability of an information set to

breach to price cyber-insurance in a classical sense. One particularly useful feature of
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the Gordon-Loeb model is its flexibility. Parameters such as the inherent vulnerability
of the information set to a breach or expected loss from a breach could be taken
from other models. Consequently, the model imparts a degree of structure to framing
decision problems that might otherwise become fairly complex.

Chapter 4 addresses a long-standing research challenge of taking serious account
of system structure in pricing cyber-insurance policies. No single framework let
alone model could ever price a cyber-insurance policy on its own. However, the
modelling framework developed combines well-established modelling technologies in
the form of entity relationship diagrams as a language, security maturity models as
a measure, and utility functions as a pricing model. This could easily be mapped
to insurance company pricing factors as described in [247]. Informal discussions
with individuals from three insurance companies and one insurance broker have
suggested that the modelling framework may be of use by practitioners. Currently,
the insurance industry is heavily reliant on questionnaires and there is an apparent
lack of standardization. At the very least, the modelling framework proposed acts
as a template for discussions on how pricing of cyber-insurance might be improved.
If deployed on real-world organizations, the modelling framework might be able to
deliver outputs that could be used in the model developed in Chapter 3, acting as a
support to decision-makers.

Chapter 5 represents a novel contribution in considering the interaction between
reinsurance and cyber-insurance. According to regulatory sources, almost half
of all cyber-insurance premium written is ceded to reinsurers [210]. Yet, to date,
reinsurance has received barely any attention in the cyber-insurance focused literature.
Reinsurance has been cited as an important factor in the liability insurance crisis
of the 1980s [291, 28]. Given the growth in the cyber-insurance market [210], the
interaction between cyber-insurance and reinsurance merits consideration. The
nature of cyber-threats and technological development presented in the chapter
suggests that, according to established economic theory, ex post efficiency will be
almost impossible to achieve in the cyber-insurance market. This is supported by
analysis using simulations of a fictional cyber-insurance market, which has been

carefully constructed to be representative of the existing cyber-insurance market.
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There have been a number of empirical studies and game theoretic analyses of the
cyber-insurance market as reviewed in Chapter 2 but very few Monte Carlo-type
simulations. This has broader relevance for insurance modelling beyond cyber-
insurance alone. The conclusion of the analysis of the cyber-insurance market is that
better co-ordination and public information sharing is needed. This demonstrates
the need for the modelling framework presented in Chapter 4 and illustrates why it
is not just of theoretical interest.

Chapter 6 is somewhat different in nature from the preceding chapters in modelling
a specific rather than generic attack. Ransomware has been modelled using game
theory (see Section 6.3.1) but the outputs of these models are not particular helpful
for insurance loss estimation. The POMDP model introduced in the chapter can
produce loss estimates for different ransomware strains on different networks as
illustrated in Section 6.5.3. The output of the ERD modelling framework from
Chapter 4 could be used to deliver parameters to the POMDP model and produce
loss estimates that might be used in the GLCI model in Chapter 3. This in turn

might be used to assess the need for reinsurance per the modelling in Chapter 5.
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This chapter contains a review of the literature relevant to this thesis. It begins
with an overview of the classical economic literature devoted to or useful for an
analysis of insurance decisions. This is aimed to present the foundational economics
used within the models that follow in subsequent chapters and should not be viewed
as a comprehensive analysis of a rich field of work, particularly on asymmetric
information.

The literature on security investment models is then reviewed, followed by a
systematic review of the literature on cyber-insurance. This was initially conducted
in late 2019 but has been updated with relevant subsequent contributions where
possible. Finally, the literature on modelling ransomware attacks is reviewed. This
should be regarded as a specific case study of a threat that is highly relevant to

cyber-insurance.

2.1 Insurance economics

The benefits of insurance in spreading risk away from the individual towards society
were described by Adam Smith in the late 18th century [272]. The modern discipline
of insurance economics was arguably established by the work of Borch, Pratt, Arrow
and Mossin in the 1960s, following von Neumann and Morgenstern’s expected utility
theory [211]. This was followed by key developments in the 1970s with regard to
asymmetric information, particularly the celebrated contributions of Akerlof [5],
Spence [274] and Rothschild & Stiglitz [248]. A literature detailing the theory of
insurance supply also subsequently developed. The coverage of insurance economics

in this thesis aims to summarise some notable contributions to the literature rather
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than representing a complete survey of a what is a diverse and well-established field.

2.1.1 Expected utility and the theory of insurance demand

The economic concept of utility, essentially the mathematical formulation of prefer-
ences or behaviours, is fundamental to a quantitative analysis of insurance markets.
Expected utility was first introduced by Bernoulli in the 18th century [110]. In
classical economics, expected utility is usually descriptive rather than normative?.
Von Neumann and Morgenstern introduced an axiomatic version of expected utility
theory [211]. The essence of their argument is that it is particularly hard to describe
utility as a number and they assume that “the aim of all participants in the economic
system... is money”. In rudimentary terms, their proposition is similar to a notion in
physics that while certain fundamental properties of nature such as mass and charge
can be readily defined in theoretical terms, their properties are most apparent and
readily understood in an experimental sense. The axioms they propose for a system
of abstract utilities are shown to be interpretable as one of numbers up to a linear
transformation. Von Neumann-Morgenstern utility functions form the basis of the
theory of insurance demand.

It should be noted that the expected utility hypothesis is not universally accepted:
the Allais and Ellsberg paradoxes provide noted counterexamples [7, 93]. One of
the most famous critiques of expected utility theory known as prospect theory was
introduced by Kahneman and Tversky [154]. The core idea of prospect theory is that
“choices among risky prospects exhibit several pervasive effects that are inconsistent
with the basic tenets of utility theory.” In particular, Kahneman and Tversky argue
that people underweight outcomes that are merely probable in comparison with those
that are obtained in certainty; they develop a theory that assigns value to gains and
losses rather than to final assets and in which probabilities are replaced by decision
weights. The additional versatility of prospect theory is likely to prove important in
modelling cyber-insurance, where the loss function is still primarily monetary but
has an additional dimension in the form of loss of information. This adds additional

complexity to the problem.

'A normative model is one which dictates rather than describes the behaviour of an agent
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Pratt introduced r(z) = —u”(x)/u/(x) as a measure of local risk aversion, where
u(x) is a utility function for money and «'(z) and u”(x) are the first and second
derivatives of the utility function, respectively [234]. r(z) is often known as Arrow-
Pratt risk aversion given contemporaneous work by Arrow [14]. Mossin analyzed four
different problems in terms of the wealth effect on the propensity to take insurance
coverage: the maximum acceptable premium for full coverage, optimal reinsurance
quota, the optimal coverage at given premium, and the optimal amount of deductible
— an amount of loss below which no claim is paid by an insurer [203]. These are
foundational to the theory of insurance demand and are collectively sometimes
called the Mossin Theorem. Arrow considered optimal insurance and generalized
deductibles [15]. He demonstrated that a risk averse buyer will prefer a policy offering
complete coverage beyond a deductible. This form of contract effectively places a

cap on the loss of wealth an individual may incur.

Borch addressed the issue of insurance pricing under incomplete information or
analytical methods [40]. He argued that the ends or objectives of an economic
analysis of insurance ought not to be subservient to the means of analysis available,
in essence that data quality or methods need not preclude transactions. Borch argued
initially that insurance should be considered using the principle of equivalence, from
which the insurance premium an agent is willing to pay should be equal to the sum
of expected claim payments and administrative costs. He then expands the simple
principle of the equivalence model to multiple contracts, suggesting that the choice
of market premium ultimately implies a choice of profit distribution. This choice
of premium is a subjective decision and will depend on the insurance company’s
objectives. The problem may be reduced to the task to maximizing a mathematical
expression after reformulation using expected utility. Finally, Borch discusses some
of the issues involved in applying traditional economic analysis to insurance and
proposes an equilibrium price in which total insurance supply would equate to total
insurance demand. However, under classical economic theory, there is no natural

unit of insurance cover from which to define a price.
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2.1.2 Information asymmetry, adverse selection and moral hazard

A key development in modern economics is models incorporating asymmetric or
imperfect information, which allow for a more realistic and versatile depiction of
many real world problems. For insurance markets, adverse selection and moral hazard
are two widely studied problems in this domain. In simple terms, adverse selection
is the risk that an insurance buyer takes advantage of their personal knowledge of
their circumstances to which the insurer is not privy; moral hazard is the risk that

possessing insurance encourages risky behaviour.

One of the most important contributions in understanding asymmetric infor-
mation, The Market for Lemons, was introduced by Akerlof in 1970 [5]. Akerlof
introduced a structure for determining the economic costs of dishonesty, which pro-
vides the foundation for analysis of adverse selection in insurance. Akerlof’s model
relied upon linear utilities to avoid algebraic complication but also to allow clear
focus on the asymmetry of information rather than endogenous factors such as the
treatment of risk aversion inherent in a concave utility function. The analysis of
the used car model Akerlof uses to illustrate his theory highlights the connection
between price and quality: if a market contains sufficient inferior goods of lower
price, and the buyer is willing only to pay the lower price for fear of being sold
an inferior goods at a higher price, the inferior goods drive out the superior good.
Akerlof uses the example of the over-65 health insurance market, arguing that this
group has difficulty in buying health insurance, but that the price does not rise to
match the risk. The reason given for this is that as the price rises, only those in need
of the insurance will take it out; that is, the quality of the applicant moves in inverse
proportion with the price. This has the potential result that no sale may take place
at any price. This principle is readily applicable to many insurance markets, and has
clear relevance for cyber-insurance. Spence introduced the idea of signalling within
the context of the job market [274]. His idea was that job candidates will possess
certain characteristics such as a college degree, which signals to employers that they
have a capacity to learn. Any candidate could claim that capacity to learn, but there

is then an information asymmetry between candidate and prospective employer; the

36 of 255



2. Literature Review

college degree acts as a signal to resolve the information asymmetry. This concept is
particularly valuable in the context of cyber-insurance where the poorly protected
might claim otherwise to try to lower insurance costs; however, clear evidence of
preventative measures such as firewalls or information security policies might act as
a signal in this instance.

Rothschild and Stiglitz considered competitive markets in which the “characteris-
tics of the commodities exchanged are not fully known to at least one of the parties
to the transaction.” [248]. The key insight from this paper is that when a competitive
equilibrium does exist, they may have strange properties compared with a more
traditional sense of equilibrium. In an insurance market, a consumer is not offered a
price at which they can buy all the insurance they desire; rather, they are offered a
quantity and a price. Rothschild and Stiglitz argue that high risk individuals cause
an externality as low risk individuals are generally worse off as insurance consumers
than they would be in the absence of the high-risk group. However, the high-risk
group are indifferent to the existence of the low-risk group. Rothschild and Stiglitz
are able to show that under some circumstances, a competitive insurance market
may have no equilibrium. Wilson also found that no stationary equilibrium may
exist if all firms have static expectations with regard to the policy offers of other
firms [290]. However, under a different policy rule in which any policy is immediately
withdrawn that become unprofitable after that firm makes its own policy offer, the
equilibrium is found to exist.

Moral hazard as it relates to the improvement of contracts has been studied
by Holmstrém [144]. He argues that by creating additional information systems
or by using other available information about the agent’s action or the state of
nature, contracts can generally be improved. A particular relevant point for further
analysis raised in this work is that in a long-term relationship, the propensity for
moral hazard is decreased as if an agent repeatedly behave recklessly, their insurer
will soon recognise this and their premiums will commensurately increase upon
renewal. Lee considers how the problem of moral hazard might be solved by provision
of a loss-preventative good [171]. For cyber-insurance, an example would be the

government providing anti-malware software to the population. Moral hazard may
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also be addressed via the use of deductibles in insurance contracts [82].

2.1.3 Insurance supply and pricing

A key contribution in explaining the supply of insurance was made by Raviv, who
noted that in the earlier model proposed by Arrow, it is unclear whether the optimal
insurance policy with a deductible is due to risk neutrality of the insurer, non-
negativity of insurance coverage or loading on the premium [239]. Raviv proposed a
solution to this question via a general formulation of the insurance problem, which
embedded previous models such as those proposed by Borch and Arrow. Raviv
found that the cost of insurance could be shown to be the driving force behind the
deductible results proposed by Arrow. He showed that the Pareto optimal insurance
policy involves a deductible and coinsurance of losses above the deductible. If the
cost of providing insurance is independent of the insurance contract, then the Pareto

optimal contract does not have a deductible.

Borch developed a model to investigate regulation and supervision of insurance
companies, finding that if a company is interested solely in making a short-term
quick profit, then regulation is needed [41]. However, if the management of the
company take a long-term view, no regulation should be necessary. Borch also shows
there are limits to what a government can achieve by regulation of private insurance
companies which operate in a free economy. Munch and Smallwood examine the
case for solvency regulation in the property and casualty insurance industry, noting
that the case for solvency regulation derives from the difficulty of a policyholder
establishing the financial soundness of alternative firms [205] . However, firm owners
are also at risk as they may lose their entire equity in a firm whereas the insurance
buyer may just receive partial coverage. Finsinger and Pauly argue that beyond an
assumption of consumer ignorance of risk of insurance company default two further
assumptions are necessary to justify regulation: if not regulated, firms will hold
reserves below the socially optimum level and regulators can determine and enforce a

level of reserves that is closer to the social optimum than the unregulated level [109].
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2.1.4 Reinsurance

The following series of works represent significant contributions on understanding
reinsurance, but is not exhaustive. As a general overview, Dionne is an excellent
collection of important papers related to reinsurance and includes many key con-
tributions to the field [80]. Within this, Borch is of particular relevance to this
work, focusing on describing the conditions required to achieve equilibrium in a
reinsurance market via generalizing the classical theory of commodity markets to

include uncertainty [97].

Kaluszka et al introduce a more contemporary example of optimal reinsurance
treaty pricing derived from the classical literature on the subject [155]. The work
suggests that stop loss and truncated stop loss contracts are the optimal structure
for maximising utility, the stability and the survival probability of the cedent for a
fixed reinsurance premium.

Schlesinger and Doherty provide a useful treatment of issues associated with
incomplete insurance markets, in particular suggesting that focusing on correlation
of risks is essential for making use of incomplete markets theory [256]. This is an
argument as to why an insurer who does not currently offer cyber-insurance might
enter the market should it believe that cyber-losses will not be highly correlated with
areas in which it currently has exposure. Empirically, there is concern of hidden
or ‘silent’ cyber-risks within existing lines, meaning that for many insurers offering
cyber-insurance could be utility detracting.

Froot and O’Connell discuss the pricing of US catastrophe insurance with some
illustrative data [113]. They find that price increases and quantity declines are more
pervasive than they should be within catastrophe reinsurance based on fundamental
data; this is strongly suggestive of historical inefficiency.

Aase discusses the Nash bargaining solution in relation to the competitive equi-
librium allocation for a reinsurance syndicate and finds that in certain cases, a first
order Taylor approximation of the two solutions may be equivalent [1]. This has

relevance for comparing potential game theoretic representations of reinsurance.

Mata provides a theoretical methodology to calculate the distribution of total
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aggregate losses for two or more consecutive layers when there is a limited number
of reinstatements [187]. In the reinsurance market, a layer is a specific proportion
of losses a reinsurer will cover and reinstatements are the number (as oppose to
magnitude) of loss events covered by a policy. This thesis only considers single or
aggregate losses, but the pricing methodology proposed by Mata would be useful
for pricing more complex structures such as those with specific triggers or event

definitions.

2.1.5 Relevant contemporary work

The field of behavioural economics aims to combine psychology and economics to
model the behaviour of agents endowed with human characteristics [147, 204, 12].
This has potentially interesting applications to cyber-security decision making, where
machines behave according to a prescribed set of instructions but controls must be
adhered to by humans who are either susceptible to errors [150, 237, 213] or may
be malicious actors [202, 262, 178]. Within the area of contracts, Készegi, reviews
the behavioural economic literature of relevance to contract theory and accordingly
insurance. The issue of informed principals —- where the principal has superior
information regarding a variable that affects both their incentive-design problem and
the agent’s willingness to exert effort — discussed by Kdszegi among other topics
related to asymmetric information is relevant for cyber-insurance. While directed
towards labour market concerns, the model of Fang and Moscarini [102] where the
principal receives a private signal about each agent’s ability and can decide whether
to make different contract offers is closely aligned to the work of an underwriter in
insurance (the insurance ecosystem is discussed in Chapter 5).

The issue of preference heterogeneity in insurance has been studied by Cutler et
al [71]. The authors find that in annuity and acute health insurance markets, higher-
risk individuals have more insurance, as classical theory would predict. However, in
life insurance and long-term care insurance, they find that “advantageous selection”
is evident where lower-risk individuals have higher coverage. This may suggest that
lower-risk individuals have higher risk aversion and thus are more likely to seek

insurance; in cyber-insurance, it is possible that high-risk entities may be restricted
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from full coverage due to capacity constraints [299].

Gollier et al comprehensively review the literature on decision making under
uncertainty in the post-expected utility hypothesis era [126]. From this survey, the
findings of Eeckhoudt & Gollier that the intuitive idea that risk aversion should
always increase self-protection is mistaken [84] has implications for a decision-maker
balancing security investment versus cyber-insurance. The survey also contains an
interesting discussion on higher-order derivatives of utility functions that may have
future relevance for cyber-insurance decision problems that might be modelled using

more complex utility functions than the standard formulations deployed in this thesis.

2.2 Security investment models

2.2.1 The Gordon-Loeb Model and some alternatives

Gordon and Loeb introduced an economic model in 2002 that determines that optimal
amount to invest to protect a given set of information [128]. The Gordon-Loeb
(henceforth GL) model is discussed in full detail in Chapter 3, but its most important
contributions are presented here for comparison with other relevant literature. The
key result of the GL model is that investment should not exceed more than 37%
of the expected loss. Gordon and Loeb introduce the concept of a security breach

function with three key assumptions:

1. If the information set is completely invulnerable, it will remain perfectly

protected for any security investment;

2. If there is no investment in information security, the probability of a security

breach is the inherent vulnerability of the information set;

3. As investment in security increases the information is made more secure but at

a decreasing rate.

The GL model is conditioned using security breach functions (SBFs) that are linear
(class I) and exponential (class II) in the inherent vulnerability of the dataset. These

security breach functions are a function of investment in information security, and
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provide a route to quantification of the risk reduction provided by such investment

and as such the Gordon-Loeb model may be considered a security investment model.

The GL model laid the foundations for a rigorous quantitative structured analysis
of information security investment problems. The two types of breach function
introduced are intuitive to understand and fairly simple to manipulate, which is a
distinct advantage of the model. Béhme gives a good summary of security invest-
ment models, their terminology and parameters [35]. Huang and Behara likewise
provide an excellent summary of the various security models and derive similar
security breach functions to Gordon and Loeb, albeit via a mathematically more
sophisticated route [146]. While this approach might be regarded as superior by the
more mathematically inclined, it is not necessarily superior to the approach taken
by Gordon and Loeb as the GL model is arguably more intuitively accessible to a

broader audience.

2.2.2 Criticisms of the Gordon-Loeb Model

There have been examples in the literature of attempts to disprove the Gordon-Loeb
optimal security investment. The first of these is due to Hausken who provides a
counter-example via the use of a logistic function but with quite a few changes to the
original Gordon-Loeb assumptions [138]. Willemson disproves the conjecture by also
showing investment up to 50%; upon relaxation of the original requirements he shows
that with the Gordon-Loeb framework, levels of close to 100% investment can be
achieved [288]. With any simple mathematical model, it is relatively straightforward
to engineer a counter-example and these prove useful in understanding the limitations
of the Gordon-Loeb model. The key advantage of the Gordon-Loeb model is the
balance it strikes between rigour and simplicity while offering useful insights into how
to consider security investment. Baryshnikov aims to counter the assertion made
by some critiques of the GL model that the 1/e rule of investment does not hold in

generality [25].
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2.2.3 Extensions of the Gordon-Loeb Model

A body of literature has developed evaluating potential empirical uses of the Gordon-
Loeb model and the calibration of its parameters. Matsuura proposes a productivity
space of information security, specifically considering a productivity regarding threat
reduction and a productivity involving vulnerability reduction [188]. In essence,
this might be regarded as an extension of the original Gordon-Loeb model to a
two-dimensional case. Tatsumi and Goto add a timing dimension to the original
Gordon-Loeb model using a real options approach [280]. Gordon, Loeb, Lucyshyn
and Zhou extend the original Gordon-Loeb model to include costs associated with
the externalities of security breaches rather than just the firm’s private costs [129].
The revised model is sometimes referred to in the literature as the GLLZ model.
Farrow and Szanton propose extensions to the Gordon-Loeb and GLLZ models,
based on mathematical equivalency with a generalized homeland security model [104].
Gordon, Loeb and Zhou explain how the Gordon-Loeb model can be used in a
practical setting and the intuition underpinning the model’s parameters [130].
Young et al use the Gordon-Loeb as the foundation for setting up an insur-
ance problem involving minimising a linear combination of expected loss, security
investment and insurance premium [305]. Naldi and Flamini provide a thorough
investigation of the productivity parameters in both classes of Gordon-Loeb security
breach functions and propose estimators for these parameters [209]. Mazzoccoli and
Naldi [189] expand upon the work of [305] by providing closed form solutions to the

same problem.

2.3 Systematic cyber-insurance literature review

This section presents a systematic review of the literature on cyber-insurance. Papers
are classified into the following categories: Economic Modelling, Frameworks and
Policy, Game Theory, Law and Surveys and Literature Reviews. This classification
is necessarily subjective - for the game theory category, papers are selected where
the abstract explicitly references games or the paper structure clearly implies this

was the main purpose of the analysis. Economic modelling papers are generally

43 of 255



2.3. Systematic cyber-insurance literature review

classified as such where the papers follow a risk management or optimization-type
narrative. Actuarial models covers literature that identifies its contribution as in the
domain of actuarial science, which is the rigorous mathematical modelling of financial
risks. There is similarity between the actuarial/economic model classifications and
there is not intended to be a strong distinction; classification in this literature
review is informed in part by publication venue. Frameworks and policy aims to
categorise those papers which provide either a qualitative means or risk classification
or normative discussions on cyber-insurance relevant policy. Law is self-evident.
Surveys and empirical analyses encompasses questionnaire based research, market
analysis and ‘state of the field” type analyses. Cyber-insurance linked securities
and capital requirements are specific categories with direct relevance for insurance

companies. Table 2.1 summarizes the surveyed literature by category.

Classification Relevant Literature

Economic modelling [39, 222, 263, 223, 253, 224, 232, 264,
116, 158, 215, 233, 24, 34, 100, 160,
185, 21, 300, 37]

Frameworks and Policy | [127, 36, 219, 218, 259, 191, 157, 176,
170, 95, 115, 159, 231, 287]

Game Theory [151, 301, 225, 302, 139, 79, 186, 307,
107, 106, 245, 296, 226]

Law [140, 212, 278]

Surveys and empirical | [32, 89, 281, 112, 182, 193, 246, 294,

analyses 271, 87, 92, 91]

Actuarial models [29, 141, 306]

Cyber-insurance linked | [161, 156, 43]

securities

Capital requirements [90]

Table 2.1: Summary of systematic literature review on cyber-insurance

2.3.1 Economic modelling

Bojanc et al outline a variety of different economic techniques that could be used for
information security risk management; they discuss cyber-insurance as a potential
solution to the problem [39] but note that prior literature raised a cause for concern
that some cyber policies may not pay out [181]. Pal et al investigate the problem

of self-defense investments in the Internet under full and partial insurance coverage
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models, finding that cooperation among users results in more efficient self-defence
investments and that partial insurance motivates non-cooperative internet users to
invest efficiently in self-defense mechanisms [222]. There is some agreement in the
literature that cyber-insurance does not necessarily improve network security from
a theoretical perspective, though user welfare generally improves [263, 224, 185].
Khalili et al suggest that an insurance company can increase profit by insuring both
a primary and associated party and that this reduces collective risk [158]. This seems
a counter-intuitive result unless the purchase of cyber-insurance encourages better
security, which is at odds with the findings of other papers; this work is expanded
in [160].

The literature on pure cyber-insurance modelling is relatively modest in quantity.
Pal et al introduce a cyber-insurance model, Aegis, in which a user accepts a fraction
of loss recovery on themself and transfers the rest of the loss recovery to a cyber-
insurance agency [223]. Bodin et al provide a model for selecting the optimal set of
cyber-security insurance policies by a firm, given a finite number of policies being
offered by one or more insurance companies [34]. Bandyopadhyay et al build a model
to capture the impact of secondary loss in structuring the use of cyber-insurance and
then combine the backward analysis of myriad breach scenarios to derive the overall
optimal decision to purchase cyber-insurance [21]. This appears an area where there
is significant opportunity for further work.

Similarly, the literature on theoretical pricing of cyber-insurance appears particu-
larly sparse and underdeveloped. Saini et al attempt to produce a model for deriving
utility functions for cyber-insurance, using a university network as an example [253].
Determining the optimal utility function to describe insurance buyer and supplier
behaviour is fundamental in developing a sound pricing model as it established a
fair value for risk, making this a useful contribution. Fahrenwaldt et al introduce a
polynomial approximation of claims together with a mean-field approach that allows
to compute aggregate expected losses and prices of cyber-insurance [100]. However,
the limited data publicly available around cyber-insurance would make such a model
difficult to validate. Piromsopa et al propose a rudimentary cyber-insurance scoring

model, which can incorporate existing security standards - this is most applicable to
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enterprise risk management [233]. Xu et al propose a three component model based
on the epidemic mode, loss function and premium strategy and study the dynamic
bounds for infection probability based on Markov and non-Markov models and pro-
pose a simulation approach to compute the premium for cybersecurity risk [300]. This
is an interesting approach, although the cyberattack model is somewhat simplistic
relative to the variety of overall threats.

Bohme et al [37] builds on and updates the analysis in an earlier paper by Bohme
and Schwartz [38]. The newer paper develops a cascade model of cyber risk arrival
factors, and links these to practical top-down and bottom-up risk management
frameworks deployed by practitioners. A model is then developed, which accounts
for information asymmetries. The model is then expanded to account for security
interdependence — dependence not only on one’s own security but also on the
security of all connected nodes. The work concludes that a detailed understanding
of cyber risk is required for cyber-insurance to be a sustainable line of insurance and
that modelling must be predictive rather than reactive and grounded in scientific

principles.

2.3.2 Actuarial models

Developing specific actuarial models for cyber-insurance has become a focus through
the support of industry funding [17]. Some of the models that have been proposed thus
far through this initiative are briefly summarised here, though for brevity technical
details are omitted. Bessy-Roland et al introduce a multivariate Hawkes process
for cyber-insurance and demonstrate how it can be calibrated using the Privacy
Rights Clearinghouse database of data breaches to provide a full joint distribution
of future cyber attacks [29] (see also [142] for an application of such modelling to
cyber-insurance derivatives). Hillairet and Lopez propose a stochastic diffusion model
for estimating the propogation of cyber-incidents within an insurance portfolio [141].

In developing a model for cyber-insurance claims, catastrophic claims are a
significant concern. Dassios and Jang use the Cox process? to model the claim arrival

process for catastrophic events [75]. Baldwin et al use the multi-variate Hawkes

2A doubly stochastic Poisson process
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process as the basis of a model for estimating contagion in cyber attacks [20]. Bessy-
Roland et al introduce a multi-variate Hawkes framework for modelling and predicting
cyber attacks frequency across firms following successful cyber-attacks against a
subset of the population [30]. Gollier suggests how to design optimal insurance under
ambiguous risks [125]. An ambiguous risk is one where the uncertainty is not known
and well-understood

Zeller and Scherer propose a statistically motivated model of marked point
processes for capturing the dynamic nature of cyber-risk in insurance pricing [306].
While the proposed model of Zeller and Scherer is judged to be well-motivated by
expert practioners [243], given the paucity of extant data, in practice the model
would be very hard to calibrate and some paramaters may not be estimable. This
appears to be a significant limitation at the moment in the cyber-insurance literature

as the available data for modelling is many steps behind the current state of theory.

2.3.3 Frameworks and policy

The literature concerning frameworks and optimal cyber-insurance policy is rather
better developed than that on the economics of cyber-insurance. The four step
decision plan of Gordon, Loeb and Sohail [127] is one of the earliest contributions
specifically on cyber-insurance we have identified in the literature. The difficulties
surrounding potential risk correlation are well studied: B6hme and Gaurav investigate
the potential limits of cyber-insurance in the context of the high correlation of
potential risks [36] , which Bandyopadhyay et al develop arguing that cyber-insurance
tends to be overpriced as insurers cannot estimate the potential secondary losses
of customers [219]. Ogut et al find that firms invest less than the socially optimal
level when risks are correlated but that the appropriate social intervention policy
to induce a firm to invest at these levels depends on whether insurers can verify a
firm’s self-protection levels [218]. How the latter would be achieved in practice would
depend on regulation.

Shackelford argues that firms should take a proactive stance toward managing
cyber attacks implicitly cautioning against over-reliance on cyber-insurance [259];

this perspective is somewhat countered by Laszka and Grossklags who suggest that
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insurance providers taking a role in helping improve software security can lead to a
more profitable cyber-insurance market [170].

In terms of papers describing the field, Linton et al and Keegan summarise
research in the cyber-security chain [176, 157] while Elnagdy et al outline the
taxonomy of cyber-risks for cyber-security insurance of the financial industry in
cloud computing[95]. There are a few papers, which propose frameworks for cyber-
insurance, specifically cloud based insurance for big data; organization insurance;
and pre-screening and security interdependence [115, 231, 160]. As with economic
modelling, contract and cyber-insurance design is an important field for developing
a functioning market and likely merits further work. However, the field remains

underdeveloped and as such critical evaluation of the existing output is difficult.

2.3.4 Game theory

A reasonable number of papers have attempted to analyse cyber-insurance from a
game theoretic perspective. Players in the games in the simplest formulations are
attackers and targets or defenders, while more complex games involve attackers,
defenders, and a regulator or policy co-ordinator. Massacci et al critique the emergent
narrative that insurance companies act as a clearing house for information and
then provide guidance on appropriate security investment to firms seeking liability
coverage [186]. Their modelling framework demonstrates that this view of cyber-
insurance as a delegated policy tool is unlikely to yield the anticipated coordination
benefits and may in fact erode the aggregate level of security investment undertaken
by targets. This is a similar result to that identified within the economic modelling
strand of the literature.

Johnson et al find that equilibria with a joint investment in protection and
self-insurance may exist in a one-shot security game under a restricted case with
a weakest-link externality [186]. The key conclusion of the analysis is that full
market insurance should only be chosen when it is cheaper than an option involving
a combination of protection and insurance or full protection against risks (though
full protection is arguably unachievable in the real world).

Yang et al investigate cyber-insurance as part of a Bayesian network game analysis
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on security investment [301, 302]. They argue that when insurance is offered at the
actuarially fair price (highly unlikely in practice) that the optimal insurance is full
coverage. Pal et al propose Bonacich/Eigenvector centralities of network users as an
appropriate parameter for differentiating insurance clients, highlighting the value of
network topology as a defence mechanism [225]. Hayel & Zhu deploy a game-in-games
framework where a zero-sum game is nested within a moral-hazard game problem to
model cyber-insurance with the goal of enabling the systematic design of a robust
insurance policy [139]. Martinelli et al investigate how a drop in security investments
for non-competitive cyber-insurance markets might be prevented [184]. Zhang et
al develop a bi-level game appraoch to attack-aware cyber insurance of computer
networks [307]. Rios Insua et al model a number of cyber-insurance problems as a
network and offer decision making models for cyber-insurance, although the models
are not solved or analyzed in detail [245]. Woods et al investigate how aggregated
claims data impacts investments in information security using Monte Carlo methods
to simulate an extended iterative weakest link model [296].

The game theoretic literature suggests that in theory, there is benefit for defenders
in holding cyber-insurance policies, but that the contracts require careful design
to deter negligent behaviour by defenders. One challenge is that attackers are not
uniform and may have different objectives, such as theft of data for one group but
direct extortion for another. Network topology is a particularly interesting area for

analysis, given the increasing use of cloud storage.

2.3.5 Law

The literature treating cyber-insurance from a legal perspective is surprisingly sparse
considering that contracts are an integral to insurance. Economics informs the
optimal pricing of and decision making around insurance, but whether the contract
pays out or not on a claim is open to legal interpretation, especially in complex
cases. Niewesteeg et al provide the first contemporary legal analysis of cyber-
insurance contracts we are aware of focused on the Netherlands [212]. Their results
suggest that there are two current options for insurers: a strategy of rigorous

market penetration with easily accessible and attractive insurance products, or
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a strategy of significant hedging of correlated risks that reduces the potential of
cyber-insurance. Talesh conducts an analysis contributing to two literatures on
organizational compliance: new institutional organizational sociology studies of how
organizations respond to legal regulation and sociolegal insurance research on how
institutions govern through risk [278]. Talesh concludes that insurers act as de facto
compliance managers for organizations dealing with cyber security threats via the
provision of risk management services. Heath explores theories of torts and insurance
in driving efficient management of risk and addresses the possibilities and limiations

of both fields in developing effective deterrence of risk [140].

2.3.6 Surveys and empirical analyses

Surveys of individual corporate decision-makers and empirical analyses of the state
of the cyber-insurance market represent a notable component of the body of cyber-
insurance literature. Biener et al emphasise the distinct characteristics of cyber
risks compared with other operational risks including highly interrelated losses,
lack of data and severe information asymmetries based on an analysis of almost
1000 cyber risk incidents [32]. The lack of business and economics literature on
cyber-insurance has been identified by Eling et al, who concur with this review
in describing the lack of data and modelling approaches in the cyber-insurance
literature [89]. Tondel et al explore the challenges insurance companies face in
assessing risk including from interviews with insurers; they propose two options for
improvement: basing analysis on reusable sector-specific risk models, and including
managed security service providers in the value chain [281]. Marotta et al undertake
a highly comprehensive survey of cyber-insurance, albeit analyzing only a small
number of insurance firms [182]. Their characterization of risks via a 'heat map
grid’ type analysis is particularly pertinent and helps elucidate the range of technical
challenges associated with and complexity of cyber-insurance.

Romanosky et al collect and analyse over 100 cyber-insurance policies filed
with state insurance commissioners in the United States to fulfil regulatory require-
ments [246]. This is an important paper, as it represents deployed pricing schedules

in the admitted US insurance market. The analysis is accordingly more objective
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than qualitative survey of market participants, which are susceptible to sampling bias
or subjectivity of participant response. The authors find that policies were generally
classified as property and casualty lines and that cyber-insurance is generally not
covered under a single line of business. Regarding pricing, they found that the firm’s
asset value base rate rather than specific technology or governance controls, was the
single most important factor used in policy pricing.

Regarding surveys, Woods et al present the first systematic analysis of cyber-
insurance proposal forms, suggesting that to avoid adverse selection the number of
controls that proposal forms include should be in alignment with two key information
security controls: ISO/IEC27002 and the CIS Critical Security Controls [294]. De
Smidt and Botzen provide an analysis of individual perceptions of cyber risks among
professional decision-makers; they find that the probability of a successful cyber
attack is overestimated in general and the financial impact underestimated [271].
A reluctance to insure cyber risks is noted compared against expected value-based
decision making, which supports a notion that some may believe that cyber-insurance
is unlikely to pay out. Eling and Zhu analyse the relationship between corporate
characteristics and the writing of cyber-insurance in the US property and casualty
insurance industry; a key finding is that insurers writing cyber-insurance policies
use more reinsurance to transfer their risk [92]. Eling and Wirfs use extreme value
theory to estimate cyber-risk costs based on an operational risk database [91].

Nurse et al investigate the types of data used in pricing cyber-insurance via a qual-
itative study of professional practitioners including underwriters and actuaries [216].
Their analysis sheds useful light on the trade-offs faced by insurance suppliers, though
their interview sample size is relatively small and the paper acknowledges support
from a sole insurer, meaning the analysis might not fully represent the views of the
broader insurance market.

Dambra et al surveys past research into cyber-insurance and classifies the outputs
into four areas: economic aspects, mathematical models, risk management method-
ologies, and cyber-event prediction [74]. The authors then identify areas of practical
research endeavour where data-driven methodology and automated tools might be

used to replace qualitative reporting in insurance pricing across risk prediction, data
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collection, catastrophe modelling, and forensic analysis.

2.3.7 Insurance-linked security pricing

Reinsurance is a common device used by insurance companies to manage their
exposure, but in the event of needing to raise further external capital (especially to
cover catastrophic events), there is a relatively active market for insurance-linked
securities (ILS), which are also sometimes known as ‘catastrophe bonds’ [44].

Kolesnikov et al suggest how a cyber-catastrophe bond might be priced drawing
on classical catastrophe bond pricing [161]. This work is a useful contribution on
pricing a cyber bond, however, the use of an exponential distribution for modelling
a cyber event is probably too simplistic a depiction of reality. It might have use in
modelling a single catastrophic event, analagous to credit event, but this is unlikely
to be helpful in valuing, for example, an aggregate XL structure triggered by multiple
small claims.

Kasper provides a very thorough feasibility study into cyber-bonds, concluding
that they could be sufficiently attractive to capital market investors and sufficiently
utility enhancing for the issuers to be viable [156].

Braun gives a comprehensive overview of historical primary market catastrophe
bond issuance [42]. Liu et al present a pricing model for an Insurance Linked
Security that uses stochastic calculus in the tradition of financial dervative pricing
theory [177]. The authors price the ILS by generating a stream of payments linked
to an insurance risk process (a multi-dimensional compound Poisson process) and a
reference rate process. This model has potential for use in pricing cyber-insurance
linked securities, however, work on appropriate insurance processes remains in early
stages and is arguably some way from being ready for deployment in a marketable
security. Further, the nature of cyber-risk means that a process that well describes
risks at a point in time may quickly become obsolete.

Braun et al conduct a feasibility study into cyber-insurance linked security
facilitation of risk transfer [43]. They conclude that this is feasible but only if
cyber-risk is better understood, highlighting the need for better modelling of the

cyber-peril.
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2.3.8 Capital requirements

Eling and Schnell provide an overview of the capital requirements for cyber-insurance,
analyzing Solvency II, US risk-based capital standards and the Swiss solvency test [90].
This work thus captures many of the key jurisdictions in which insurance is commonly
written. The authors conclude that the regulatory models surveyed underestimate
the potential risks associated with cyber-threats due to the heaviness of the tail of

distributions of potential losses.
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3.1 Introducing the Gordon and Loeb Model

Gordon and Loeb proposed a model! for decisions on information security invest-
ment in 2002, in which the probability of a security breach occurring reduces with
investment according to a specified function [128]. Under such a framework, a
rational decision-maker will aim to maximise the expected net benefit of investment
in information security. Gordon and Loeb consider two classes of security breach
function and show that for these functions, the optimum security investment will
always be less than (1/e) times the expected loss. The Gordon and Loeb model is well
suited to the type of Marshallian cost-benefit analyses undertaken by decision-makers
in firms as it is intuitive, adaptable and does not require advanced Mathematical
knowledge. This work addresses the research question of whether the Gordon-Loeb
model can form the foundations of a classical expected utility maximization problem
to investigate some of the trade-offs between security investment and cyber-insurance.
Following a literature review of the fields of insurance economics, security economics
and cyber-insurance, we present a single period, two-state model where the utility
of an insurance buyer is maximised subject to a number of constraints. We assume
that decisions around information security may be framed solely based on economic

considerations, which results in a model that is fairly abstract compared with reality.

!The original paper is titled The economics of information security investment, but the model
contained in it is generally known in the literature as the ‘Gordon and Loeb’ or ‘Gordon-Loeb’ model
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However, we believe that the model yields useful insights on cyber-insurance pricing

and provides the foundations for further work and development in this field.

3.1.1 Key results from the Gordon-Loeb Model

Some key results and assumptions underpinning the Gordon-Loeb (henceforth GL)
Model are briefly summarised here, which have relevance for the model developed in
this research. Gordon and Loeb assume that an information set may be characterised
by three parameters: [, 7 and v which represent the loss conditioned on a breach
occurring, the probability of a threat occurring and the vulnerability (the probability
that a threat once realised would be successful). In the GL model, 7 and [ are
assumed to be constant. The expected loss from a breach event if no investment is
made is then E[L] = 7vl. This loss may be reduced by an investment in security z,
which the model accommodates via the introduction of a security breach probability

function, S(v, z). The GL model makes three assumptions about S(v, z):
Al: S(z,0) =0 for all z
A2: For all v, S(0,v) =v

A3: For all v € (0,1) and all 2z, S;(z,v) < 0 and S,,(z,v) > 0 where S, and S,
are the first and second partial derivatives of the security breach probability

function with respect to z.

The expected benefit of investment in information security (EBIS) may be defined
as:

EBIS(z) = [v— S(z,v)|Tl (3.1.1)

This is the reduction in the expected loss as a result of the investment z. Subtracting
the investment, z, then yields the expected net benefit of investment in information
security (ENBIS):

ENBIS(z) =[v— S(z,v)|]Tl — = (3.1.2)

ENBIS neatly encapsulates the cost-benefit trade-off of security investment and

should be strictly positive for a rational decision-maker investing in security measures.
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As the security breach probability function is strictly convex in z by definition,
ENBIS is accordingly strictly concave in z, meaning that an interior maximum

z* > 0 is given by the first order condition:

=S.(z5 0Tl =1 (3.1.3)

The GL model proposes two classes of security breach function: S(z,v) = m

and S (a,v) = v***!. o and B are parameters for the productivity? of information

security. The optimal level of investment in defence for a particular information set

are then easily obtained for the two classes of security breach functions:

vBalT)/(B+H) 1
a

ZI*(U) _ (

(3.1.4)

In(1/—avlT(Inv))

1 (U) - alnv

(3.1.5)

Gordon and Loeb show that for either of these forms of S, z*(v) < (1/e)vrl. The
GL security breach functions are illustrated in Figure 3.1 for vulnerability v = 0.65

and the corresponding ENBIS for these breach functions.
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Figure 3.1: Example Gordon-Loeb security breach functions

2In economics, productivity is a measure of the efficiency of an input
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3.2 Related work

3.2.1 Critique of the approach of Young et al (2016) to combining
the Gordon-Loeb Model and Cyber-insurance

Young et al adopt a similar conceptual approach to the model introduced in this
chapter in terms of setting up an optimization problem incorporating parameters from
the Gordon-Loeb model [305]. They propose minimising the expression S(z,v)7l+z+
P with the constraints that the cost of security investment and insurance premium
cannot exceed the security budget and that coverage should be fixed at [. For the
premium, they assume a base premium rate of 8% which is then discounted in
a linear fashion based on the Gordon-Loeb Security breach function for levels of
investment. Their model is solved using a commercial solver add-in to Microsoft
Excel. While empirically pragmatic, this lacks mathematical rigour. Furthermore,
this minimization is only reliable to specific practical examples where one is assured
of the appropriateness of the chosen parameters. The approach taken by Young et
al has merit for use in an enterprise situation (for example by a risk department)
where a quick calculation is required for analytical approaches, but falls short of the
rigour and theoretical consistency provided by a formal economic model such as the

GL model.

3.2.2 Mazzoccoli and Naldi on mixed insurance/investment cyber-

risk management

Mazzoccoli and Naldi produced a valuable contribution to the literature on cyber-
insurance [189], pursuing a similar approach to [305]. A central feature of the
Mazzoccoli and Naldi approach is their inclusion of a Gordon-Loeb type security
breach function in the premium calculation that might be charged by an insurance
company. This differs subtly, but importantly, from the approach in the model
presented in this chapter of treating the Gordon and Loeb security breach function as

governing the probability of a breach occuring from the perspective of the insurance
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buyer, rather than the insurance supplier, who is treated as exogenous®. Helpfully,
Mazzoccoli and Naldi incorporate the possibility of variable coverage and deductibles,
which give their model significant real world relevance. Their analysis ultimately
focuses on the optimal investment allocation for any given vulnerability level, which
provides a useful comparison for our model results. However, our approach aims
to provide extensive insight into the implications of variation in the full gamut of
relevant parameters on the expected utility of an insurance buyer. We believe the
most important contribution of our model is that investment dynamically reduces
the breach probability and thus the amount of risk a buyer would wish to insure. We
view our work as complementary to the approach of Mazzoccoli and Naldi, though,

rather than contradictory.

3.2.3 Return on Security Investment (ROSI)

Sonnenreich et al proposed a measure for calculating the value of security expenditure,

the return on security investment (ROSI) [273]:

(Risk Exposure x %Risk Mitigated) — Solution Cost
Solution Cost

ROSI = (3.2.1)

This measure is broadly similar to ENBIS in the Gordon-Loeb Model (Equa-
tion 3.1.2), but is defined in percentage rather than monetary terms. This metric
is potentially very useful in a real-world context, the parameters of risk exposure
and percentage risk mitigated are extremely difficult to estimated as noted by [273].
This is an area, therefore, where theoretical economic models of security investment
may be able to make a useful contribution by providing some initial quantitative
inputs that could then be refined based on real world experience. This is a common
approach in insurance, where expected loss distributions might be initially simulated

but then refined based on losses and claims experienced.

3In less formal terms, the insurance supplier is treated as an independent input to the model
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3.3 Economic utility

3.3.1 Utility functions

It is possible to formulate theoretical problems in generality without specifying the
form of a utility function and solely its inputs. Whilst this allows for determining the
conditions required for an optimum, to produce numerical outputs and thus make
judgements on real world problems, the utility function needs to be specified. As
elegantly described by Gollier, “It is often the case that problems in the economics
of uncertainty are intractable if no further assumption is made on the form of the
utility function." [124]. The optimal form of utility function is of great importance
for solving problems and forms a significant branch of literature in its own right.
For the purposes of this research, we work with simple, well established utility
functions as the focus of the models in this thesis are to demonstrate how real world
problems might be set up as opposed to constructing detailed case studies of real

world organizations.

We now explain how to relate preferences and utility functions. There are three
key properties in relation to the utility function that are usually considered, absolute

risk aversion:

A(z) = —Z/:((ZZ)) (3.3.1)
prudence:
P(z) = —Z,,((;) (3.3.2)
and relative risk aversion:
R(z) = —ZZZS) = 2A(2) (3.3.3)

The usual procedure for establishing a utility function is to determine the set of risk
preference characteristics of the agent in the model, then to choose a utility function
that captures these characteristics. The parameters of the utility function can then

be set as required for the problem at hand.
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Forms

There are two particular classes of utility function that have properties of constant

absolute risk aversion (CARA):
u(z) = —— (3.3.4)
or constant relative risk aversion (CRRA):

2= /(1 — if
u(z) = TAL=) Ey L (3.3.5)

In(2) ify=1

As noted by [151], CRRA is an established choice within the cyber-insurance literature
though examples of CARA are also found. Both forms are used in this thesis, though

in cases involving unsophisticated agents, CARA is favoured for ease of manipulation.

State dependence

A key use of utility functions is to optimise decision making across multiple states
of the world with different payoffs. For simple insurance pricing examples (see, for
example [241]), it is convenient to work with a model involving two states — loss and
no loss. Given a loss, L, with probability 7 of occurrence, insured by a policy costing

P providing cover C, the insurance decision problem in terms of expected utility is
ElU] = (1 = m)u(=P) + mu(—~L — P+ CO) (3.3.6)

where u(.) is the appropriate utility function for the decision maker covered by the
problem. It is evident that the utility of the agent is dependent on the different
payoffs in different states and the probability of that state of the world occurring.
More generally, consider a set of states s € .S, with associated losses Ls; where each
state has an associated probability, 5. Denoting the overall probability of any loss
occuring as m = ) 7, subject to the constraint 0 < 7 < 1. Writing the indemnity

provided by an insurance policy in state s as Cg, and assuming that there is a
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component of the premium, P; attributable to each state Equation 3.3.6 becomes
E[U] = (1 = m)u(—P) + Y meu(—Ls — Ps + Cj) (3.3.7)
S

This is not simply of theoretical relevance, but is highly relevant for cyber-insurance
decisions as a buyer may need to choose between different policies offered by different

firms which offer different indemnities against different risks.

3.4 Incorporating cyber-insurance into the Gordon-Loeb

Model

We introduce a simple model following Rees and Wambach to describe the microe-
conomic analysis of a firm aiming to determine its optimal level of cyberinsurance
cover [241]. For convenience, this model will be referred to as the Gordon-Loeb
with cyber-insurance (GLCI) model. The GLCI model considers the decisions of an
individual (for example a Chief Information Security Officer) charged with allocat-
ing an annual cyber-security budget, which is treated initially as analogous to the
wealth of an individual in a traditional analysis of insurance. A simple model for
insurance demand may be formulated in terms of maximising the expected utility
(see Section 3.3.1) of an insurance buyer where there are two states, no-loss and loss:

E[U] = (1 —75(z,v))u(Bsec — 2 — P(C))
(3.4.1)

+75(2,v)u(Bsec — 2 — P(C) — 1+ C)
The probability of the loss state is given by a Gordon-Loeb security breach function,
S(z,v) - thus, investment in security measures reduces the probability of a loss. The
maximum expected loss is denoted by 1. The introduction of the GL model SBFs into
the utility function of an insurance buyer is, to the best of the author’s knowledge, the
first example of their use in a classical economic analysis of insurance. C' represents
the cash coverage of the insurance policy. The case C' = 715(z,v) thus implies full
cover but depending on the cost of the premium, it may be optimal for the insurance

buyer to only take partial cover and accept some residual financial risk. Bge. is the
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security budget (analogous to wealth in the classical insurance model), P(C) is a
cash premium, assumed to be a function of cash cover C', which is allowed to vary.
u(.) is a von Neumann-Morgenstern utility function?, which is increasing and strictly
concave implying that the individual is risk averse. Constant absolute risk aversion
(CARA) and constant relative risk aversion (CRRA) forms are used for comparative
purposes in the simulations that follow, which are defined in Section 3.3.1).

The expected utility is a function of two states: one where a breach does not
occur and one where a breach occurs. In both states it is assumed that an investment
z is made; this investment is allowed to vary but for simplicity, timing effects®
and the decision process around that investment® with respect to the system are
both excluded. This leaves the model relatively abstract” in relation to a real-
world example of security investment and defence, although its one-period nature
is arguably comparable to the annual budgeting and investment cycle undertaken
by many organizations both in government and industry. Further, the estimation
and attribution of economic losses from cybersecurity incidents is a live area of
research and there is no reason why the loss parameters in the model could not be
expanded as required for a specific use case. The GL model arguably suffers the
same limitations as the model in this chapter and these simplifying assumptions still
allow for a useful economic analysis of the interaction between security investment
and insurance as is evidenced by the enduring popularity of the GL model and the
significant body of subsequent literature that has developed. The expected utility

maximization problem then becomes:

maxu = (1 — 75(2,v))u(Bsec — 2 — P(C))
©=0 (3.4.2)
+75(2,0)u(Bsec — 2 — 1L+ C — P(C))

subject to the constraints P(C) = pC' where p represents a percentage premium

4Such a utility function is one that conforms to the four axioms proposed in von Neumann and
Morgenstern (1944) [211]

5Timing effects in an economic model where the unit of measure is money would require treatment
of the time value of money and assumptions on interest rates. This would increase the model
complexity without yielding significant insights relevant to the research question

5This could be a fruitful area of potential further research work

"The same observation applies to economic models used in decision making in a range of fields;
for example, models of the economy used by Central Banks to inform monetary policy.
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vl
e

(as is conventional in insurance) and z + pC' < ”Tfl The value is the maximum
potential value of optimal security investment in the Gordon-Loeb model. The choice
of cash constraint is likely in reality to be dictated by a the budgetary preferences of
a firm and the Gordon-Loeb maximum potential investment is used as a convenient
assumption rather than one that can be rigorously proved as in the GL model. Under
the simplifying assumption that p is constant and determined by the insurance
supplier, the insurance buyer is faced with the decision as to how much cover to take
at that premium. Substituting the first constraint into equation 3.4.2 yields:
u(C,z) = (1 = 78(z,v))u(Bsec — 2 — pC)
(3.4.3)
+75(2z,v)u(Bsec — 2 — 1+ C(1 — p))
In this formulation, the level of cover C' and defensive security investment z are
the only variables in the problem; the vulnerability v is an inherent property of
the information set as are 7 and I. The Lagrangian® for the problem depicted in
Equation 3.4.2 is:

vl

Z=U+ )\(7 —pC —2) (3.4.4)

where U = @(C, z) The Karush-Kuhn-Tucker conditions? are (where Z, denotes the

partial derivative of Z with respect to z):

Zo=Uc—p\ <0 C>0 CZc=0
Z,=U,—A<0 2>0 2.7,=0 (3.4.5)

l
Zy=""pC—2>0  A>0  AZy =0
e

The third constraint implies that for A # 0, the solution would imply a commitment

of capital up to the Gordon-Loeb maximum. In the case where both cover and

8A Langrangian is a function used in mathematical optimization for finding the maxima or
minima of a function subject to an equation being satisfied by chosen values of certain variables.

9These are the conditions under which an optimal solution to a non-linear programming problem
such as the one in the model proposed in this chapter may be found - see, for example, [120] for a
formal definition. As the form of the utility function is variable, it is important not to lose generality
at this stage.
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investment are non-zero, by conditions 1 & 2, we assume Z¢o = Z, = 0 then:

U,—-Uc

A= 4.
— (3.4.6)
This then implies that the fair premium is given by
Uc
= = 3.4.7
P=T (3.4.7)

This set of conditions specify the conditions under which a local maximum may
exist. However, there is no guarantee that under all sets of conditions that it
will. Furthermore, depending on the nature of utility function chosen, solving the
system of equations in Equation 3.4.5 has the potential to become a difficult non-
linear programming challenge in general terms. Our primary focus is to ascertain
whether the model provides useful insights that can guide behaviour towards security
investment. This can likely be deduced via the appropriate use of graphical methods
to evaluate the model in the first instance to guide an optimization strategy for model
cases rather than producing a closed-form solution ab initio that is algebraically

intractable and unintuitive to interpret.

3.5 Simulation

3.5.1 Method

The simulations of the Gordon-Loeb with Cyber-Insurance (GLCI) model use the
following parameters, adapted with slight variations from [130, 209]. We set
[ = $500,000 with the probability of a threat occuring, 7 = 0.8. Both of these
parameters are constant in the GL model, which gives an expected loss of $400,000
before any security investment, z. v is initially set at 0.65, which as previously
discussed represents the probability that a threat is successful once realised. The
budget of the defender, B, is set at $600,000 — this is equal to L + z* with extra
margin to avoid the risk of negative inputs to the logarithmic utility functions.

Finally, @ = 1.5 x 107° in Class I and II breach functions and 3 = 1 for the Class I
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breach functions. This choice of a was informed partially by the existing literature,
where o = 1 x 107 is often used; this produced some erratic behaviour within the
Class II security breach function whereas the slightly higher a provides well bounded
results for both classes of security breach function. The parameter values used in
the simulation give well-bounded results and allow for a thorough examination of
the model behaviour. Graphical analysis was generated using the Plots.jl package
within the Julia language.

The GLCI model simulations are presented using both logarithmic and exponen-
tial utility functions in the form of plots of the utility functions varying different
model parameters. Initially, closed form!? solutions to the system of equations in
Equation 3.4.5 were sought but it became clear that this approach was unlikely to
prove fruitful given the large number of variables in the model and small number of
constraints. Furthermore, the choice of utility function could be varied depending on
the use case and consequently plotting the utility functions imposing the relevant

model constraints is sufficient for evaluating the focal research question of this work.

3.5.2 Optimal investment per the Gordon-Loeb Model, variable

cover

We first consider the simple case where a firm invests the optimal amount rec-
ommended by the Gordon-Loeb model, z* and then investigates the possibility of
cyber-insurance with varying cover and different premium rates observable in the
market. To illustrate this case, we plot both logarithmic and exponential utility
functions for Equation 3.4.3 in Figure 3.2. The logarithmic utility function is simply
u(.) = In(.) while the exponential function is Equation 3.3.4 setting a = 1075, These
utility functions will be used for the remainder of the simulations in this work. A key
model assumption is that the total cost of investment and insurance premia should
not exceed (1/e)7vl. Having invested an amount, z, the GL model states that there
is a commensurate reduction in the probability of a breach being successful. Utility
functions are therefore plotted up to cover C' = min(7lS(v, z*), %) This

ensures that the monetary amount spent on security investment and insurance does

0Equations produced using software to resolve the symbols contained within the utility functions
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not exceed the imposed constraint. The results broadly suggest that utility is largely

maximised at maximum coverage, which concurs with comparable game theoretic

modelling work [151, 301].
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Figure 3.2: Utility as a function of cover assuming z = z*

Variable investment, maximum cover

Relaxing the assumption that the firm first invests the optimal amount into protecting
its information allows us to consider the competing interaction between spend on
insurance and investment. As in Section 3.5.2 the maximum cover an insurance
buyer would wish to take out is Ciap = 71S(v, 2) with maximum cover available

respecting the cash constraint is then given by C' = (1/6)}'&.

Figure 3.3 shows the variation of maximum available cover subject to the cash
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Figure 3.3: Maximum available cover under the cash constraint at different levels of
z

cost constraint with premium rates, along with the optimal GL values of investment
for reference and the theoretical maximum cover at each value of z. For class I SBFs,
it is possible for an insurance buyer to obtain full coverage at z* for premia less than
25% in our model setup. However, for a corresponding class II SBF, only premia
below about 10% offer full cover under the terms of the model. Figure 3.4 illustrates
the utility functions in the case of variable investment. The relevant optimum level
of investment specified by the GL model is plotted as a dotted vertical line. Under
the cover decision we have outlined, it is clear that insurance is usually preferable
to investment in our example model set-up at all but very high insurance premium
rates. This is an interesting result as the utility functions plotted incorporate the
expected benefits of a reduction in breach probability. Economically this makes sense
- if the cost of insuring a risk is lower than the cost of reducing it to a certain level

then it makes sense to take out the insurance.

3.5.3 Premium versus vulnerability under optimal security invest-

ment

Thus far simulations have had fixed v = 0.65. It is interesting to consider the effect
of varying v, especially for the second class of GL security breach functions, which

are exponential in v. To do so, it is assumed that the insurance buyer invests the
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Figure 3.4: Utility as a function of investment with maximum insurance coverage
purchased
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Figure 3.5: Highest premium rate at which maximum cover may be obtained for
vulnerability, v and variation of optimal GL investment with vulnerability, v

optimal amount recommended by the GL model. Figure 3.5 plots the variation of the
highest premium at which full cover can be achieved with v for both GL SBF classes
and also how the GL optimum investment, z* varies with v with the other model
parameters as specified previously. Figure 3.6 plots the utility functions previously
described for buying insurance at the maximum coverage available (as described in
section 3.5.2) as a function of the vulnerability, v. The main use of this analysis is to
demonstrate how the sensitivity of the utility to the premium rate varies at different
values of v.

Table 3.1 provides an alternative presentation of this analysis. For each vulner-
ability, v, the maximum investment under the GL model is calculated followed by
the optimum for class I and II SBFs. The expected probability of breach after the
investment is then calculated. The maximum cash available to the insurance buyer
for insurance purchase is then calculated, from which the maximum premium rate
at which full relative cover may be achieved is then calculated. For the class I SBF,
this is relatively high; however for Class IT SBFs, the relatively higher level of z!1*
compared with z/* means that it is difficult to achieve full coverage. It should be
noted that Class II SBFs start to produce somewhat erratic results as v — 1 given

the form of z/7*(v).
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Figure 3.6: Utility functions for different vulnerabilities assuming investment at
the Gordon-Loeb optimum, z* and maximum coverage respecting the model cash

constraint
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3.6 Remarks

3.6.1 Model limitations

The GLCI model demonstrates that the Gordon-Loeb security breach functions
can be used within a classical two-state utility maximization model yielding useful
insights. In particular, the GLCI model offers insight into the competing dynamics of
purchasing insurance coverage versus investing in security. However, it is inherently
abstract in drawing on the Gordon-Loeb model and classical microeconomic treatment
of maximising expected utility. This abstraction brings advantages in terms of ease of
use and adaptability but this is at the expense of realism. In a real-life scenario, the
trade-offs between security investment and insurance are likely to be more subtle and
also not, exogenous as our model assumes. A specific example of this is the approach
to the insurance premium, which is likely to be unique to each insurance buyer and
their specific circumstances. The model treats the premium rate, p as an independent,
market observed variable. Further, the insurance premium for each utility curve is
static and the buyer has the choice of purchasing varying levels of cover at that rate
combined with an investment in security subject to a cash constraint proportional
to the ‘value’ of the dataset. In reality, the baseline market observed premium is
likely to be a reducing function of the investment in security, z, as the insurer is
likely to account for the reduction in breach probability effected by the client. The
insurance problem has been framed from the perspective of the insurance buyer (the
decision-maker in the model) as this naturally follows from the Gordon-Loeb model.
However, a useful extension would be to include a more sophisticated premium rate
term. Unfortunately, cyber-insurance premium data is extremely difficult to obtain
in the public domain as the inputs are of high commercial sensitivity to insurance
companies. A model with dynamic premia would also further increase in complexity
as an optimization problem, but the simulation approach in this chapter would likely

yield useful insights.

A further problem is that the nature of loss introduced in the Gordon-Loeb model

is hard to reconcile with real world scenarios in the context of insurance. The concept
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of loss for many lines of insurance is relatively straightforward to understand; if
an individual’s vehicle is stolen for example, one motivation (beyond the fact that
in most countries it is a legal requirement) is that the insurance should cover the
cost of replacing the vehicle as well as any damage inflicted by the driver on other
vehicles or persons. However, for data, what is the economic notion of loss? One
interpretation would be the regulatory costs of a breach an organization might suffer,
but these cannot necessarily be covered by insurance. One purpose of regulation
such as GDPR could be argued to be protecting consumers by providing a significant
financial deterrent to firms from not investing in appropriate security measures. This
presents an issue of possible moral hazard around cyber-insurance; the fact that a
firm can recover some of its costs if data is stolen is of scant benefit to consumers,
for example, if their valuable personal data is stolen. Where cyber-insurance does
have a useful role to play is in assisting firms with forensic computing resources to
identify the extent of a breach once identified, to help patch any vulnerabilities and
to aid with system recovery in the event of a ransomware attack, for example. These
dynamics are rather difficult to properly encapsulate in a the simple parameters of
loss and coverage. A further issue is that once data is stolen, it can be duplicated, so
differs from many conventional economic goods in terms of potential recovery. There
are also issues of reputational damage to a firm that must be considered following a
data breach; these could provide some motivation for the purchase of an annuity-type
structure as part of an insurance package as one would expect the effects of a data

breach to gradually fade from public memory over time.

The behaviours of those involved in attacking and defending a set of information
are also of interest, though perhaps are better represented via a game theoretic
treatment of the problem rather than in a classical economic model. However, the
notion of a constant threat probability in the GL model is possibly one of the more
problematic assumptions in a real world sense. It is helpful to treat attacks as arising
from nature in an initial evaluation of the problem, but it would equally be relatively
straightforward to attempt to measure the frequency of general attacks (e.g. via the
use of a ‘honeypot’ [47, 201, 282, 36]) and then including a parameter to account for

the risks of a firm being a specific target. There is also the question of the behaviour
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of the defender (the insurance buyer in our model). Ioannidis et al discuss the notion
of a steward, who is able to intervene under certain conditions to either slow the
degradation of a system’s operating capacity (promoting sustainability) or return a
system to its intended state (resilience) [148]. Under the right circumstances, the
presence of a steward might help to turn a major data breach into a minor one and
thus reduce the tendency for loss. The steward for an organization might be its
cyber-security team, who if deemed capable by an insurer, would likely result in it

quoting a lower premium.

Thus far, we have negated the supply side of the insurance market, which our
model treats as a readily available commodity at uncertain price. In reality, most
insurance policies will have a coverage limit and responsible insurers will have clearly
defined and enforced risk limits. A particular issue with cyber-insurance is the ability
to offset risk. A common strategy among insurers appears to be offering consulting
services as part of the insurance package, which generates revenue that helps to
form a compensation pool in the event of an insurance claim while also lowering the
risk that such a claim will occur. There is an issue of adverse selection inherent in
cyber-insurance; a naive view might be that the insurance buyer poses greater risk
as an insurer cannot know all the details of the insurance buyer’s activities. However,
in reality, the insurer likely has a great information advantage; there are only a
limited number of cyber-insurers who are likely to have proprietary pricing models
and datasets of breaches and vulnerabilities assembled from a multitude of customers
and sources. It is very difficult for firms in a sector to share such information,
and indeed to do so might be considered economically irrational (albeit potentially
socially responsible) and in some potential instances unlawful given competition
law. There is no guarantee also that an insurer will agree to provide coverage at an
economically satisfactory level, and the insurance buyer must be assured that the
policy is likely to pay out as it expects. The GLCI model helps to quantify what the
economically satisfactory level might be (see Figure 3.5 and Table 3.1). However,
the model inherently assumes that in the loss state with probability of breach given
by the Gordon-Loeb security breach functions, the policy will pay out with certainty.

This is difficult to parametrise a priori, but a distribution of cyber-insurance payouts
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might be obtained or modelled to incorporate this uncertainty.

3.7 Summary

This chapter has demonstrated that the Gordon-Loeb model for investment in
information security can be used to build a model for cyber-insurance based on
maximising the expected utility of an insurance buyer. This model suggests that
when the Gordon-Loeb recommended optimum is invested in security measures, then
utility is maximised at full coverage for reasonable insurance premium rates subject
to a cash constraint that the total spend on security measures and insurance cannot
exceed the maximum amount stipulated by the Gordon-Loeb model. We demonstrate
that for each of the two classes of Gordon-Loeb security breach function, there is a
maximum premium rate at which cover can be purchased equal to the maximum
expected loss from a breach after the investment has been made while respecting an
imposed cash constraint that the total spent on security investment and insurance
cannot exceed (1/e) of the maximum total expected loss. The abstract nature of
the model means that it simplifies the intricate trade-offs and decisions of a real-life
security investment problem. Nevertheless, it establishes in a rigorous economic
sense that cyber-insurance can be a cost effective solution in addition to security

investment.
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Based on System Structure

4.1 Background

Cyber-insurance policies provide financial mitigation against defined cyber-risk events
up to a specified limit, for which the buyer of insurance pays the insurance provider a
premium (fee). The definition of events and calculation of both premia and losses are
non-trivial and require significant administrative, financial and legal resources. As
such, the areas of cyber-risk and cyber-insurance present a multitude of interesting

research problems.

For many years, there have been attempts in the academic community to organize
and structure the research agenda related to cyber-insurance, an early example of
which is a proposal from 2010 by Bohme and Schwarzfor a unifying cyber-insurance
modelling framework [38], updated in [37]. Despite considerable subsequent research
endeavour, several comprehensive literature reviews [88, 183, 18, 267] suggest that
the cyber-insurance research field remains fragmented. This fragmentation motivated
a number of eminent researchers and practitioners in the field to reiterate the
need for a well-defined research agenda for cyber-risk and insurance [101]. One key
identified contribution is to quantify cyber-risk and its relationship with organizational

structure.

Insurers will often attempt to assess the security posture of the insurance seeking
entity via questionnaire forms [294, 247] and potentially via some limited investigation
of their own (for example, perimeter scanning). The use of questionnaires is potentially

problematic in cyber-insurance. A company will typically be required to provide
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answers ‘to the best of its knowledge’ This creates the risk that (assuming no
dishonesty), if a company does not have a complete grasp of its own security posture
or maturity, the price of its insurance policy may not correctly capture the risk
dynamics of the organization. For example, asking the question ‘Do you have anti-
virus software and/or firewalls?” may seem straightforward. However, there are a
number of deficiencies in the question. An answer ‘yes’ does not mean that every
machine on the network has anti-virus software installed; it says nothing about
the robustness of the firewall configuration or any potential rule exemptions set
up. Either of these details could be easily exploited by an attacker to introduce
ransomware, for example, into an enterprise network. As such, both the detail of the

system architecture and how the system is monitored are important.

4.2 Problem statement

The key question for pricing cyber-insurance is: what is the probability of a successful
attack on an organization and what are the expected losses from a successful attack?
Estimating these requires a threat model to estimate the frequency of attacks and a
methodology to estimate the size of losses. Mapping out the detail of an organization’s
network is one possible starting point, but this only reveals details about the systems
an organization uses as opposed to its revenue generating operations, which ultimately
determine the scope of possible losses related to a cyber-risk incident. There is
therefore a need for an integrated description of the structure of an organization
and the IT systems that support delivery of its objectives. Once this relationship
is described, the potential scope of losses resulting from cyber-incidents and their
probability need to be estimated. Based on these estimates, an insurance company
can then quote a premium for reimbursing a customer for these losses should they
occur.

This chapter proposes a modelling framework drawing on the fields of operations
management, security and economics that can be used to support moving from
describing an organization to pricing a cyber-insurance policy. Our motivation is

primarily to contribute to the conceptual debate on how to address the significant
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modelling challenges associated with cyber-insurance pricing and so this chapter
does not directly calculate premiums for real-world organizations. However, we aim
to provide sufficient illustration that a practitioner equipped with appropriate data

could quickly implement it for real-world insurance assessments.

4.3 Theory

4.3.1 Grammar

We shall use the term object to represent a modelling target of interest, which may
be (without restriction) a system, phenomenon or some other entity. A language
is needed to describe an object. The language may consist of words, diagrams
or mathematics. The language has a grammar, which describes the connectivity,
properties and components of the language. The components of the language are
descriptors of the system and its security objectives. Properties describe the state
of the system. Connectivity stipulates how the components interact. In a simple
system with a modest set of objectives, there may be just two states in which case
economic analysis is not required. However, for more complex systems, the state
of the system may only be partially observable, requiring agents to make decisions
based on beliefs rather than certainty. These behaviours may be dictated either by
policies or by preferences. It may be possible to simplify a representation of a system
by making assumptions. The security properties of the system may then be explored

by varying parameters within the bounds of the assumptions.

4.3.2 Describing systems
Single systems

The most intuitive way for humans to understand systems is by using diagrams. From
the earliest stages of education, children learn to draw pictures that represent their
subjective view of the world. At the fundamental level, any computer system is simply
a flow of electrons across a large number of transistors, which either permit or block

electron flow. This is used to represent truth or falsity (conventionally represented as
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a binary number, i.e. 0 or 1). The precise details are far too numerous and complex
for the human mind to reasonably process, which means that a model or description is
needed to analyse the system. One could construct a systems representation along a
number of objectives, focused around location, resources, or processes. Fundamentally,
a description requires a representation of what the components of a system are; how
they interact; which properties relate to each component; and perhaps some measure

of their importance depending on the application of the description.

Distributed systems

A distributed system may be defined as “one in which components located at
networked computers communicate and coordinate their actions only by passing
messages” [81]. Many of the systems of interest for security modelling are distributed
systems. The most famous distributed system is of course the internet, which could
be viewed in a number of different ways. The worldwide web (WWW) is the most
famous component of the internet and can be considered in simple terms as a system
for storing and accessing information.

A significant cybersecurity concern is the interaction between internet facing
and non-internet facing components of organizational systems. The then raises the
question of how the interaction of systems should best be described. This thesis does
not directly model distributed systems in the classical sense, but it is important to
be aware of this discipline as the models introduced in this thesis could be further

expanded to incorporate a rigorous analysis of distributed systems [56].

Interacting systems

Significant research endeavour has been devoted to developing a branch of logic that
describes the interactions of different components of a system. One of the seminal
contributions is the synchronous calculus of communicating systems (SCCS) by
Milner [199]. This work inspired many significant subsequent contributions, which
are too numerous to summarise here. The work in this thesis does not directly make
use of formal logic, but the principles underpinning calculi such as SCCS are used as

the basis of the model developed in Chapter 4.
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4.3.3 Describing security

Objectives

Security may be defined in many different ways for a diverse range of applications.
In the context of information security, which is the focus of this thesis, a suitable
definition is ‘the process by which it is ensured that just the right agents have just
the right access to just the right (information) resources at just the right time’ [236].
The process of ensuring security is specified by declarative objectives, which state
what is required to achieve the desired state of security. Declarative objectives should
not be confused with operational objectives, which stipulate how security is expected
to be implemented (access control and backups, for example). In a purely binary
view of security, objectives might be deemed either true of false. However, if the
objectives are measurable in smaller intervals, then the security objectives may be
described using parameters which can be used to populate economic models to guide

decision making.

4.3.4 Parameters

As discussed in Section 1.2.1, a commonly used set of parameters in security analyses
are confidentiality, integrity, and availability. These provide the necessary set of
parameters for capturing security objectives in many situations. The extent to
which these objectives are met for each of the parameter may be measurable. If
the parameters are measurable, then confidentiality, integrity and availability may
be defined over the closed interval [0, 1], which is of benefit when working with
utility functions and economic models. The parameters may be further simplified
into criticality and sensitivity, where criticality is availability and some aspects of
integrity and sensitivity is confidentiality and those aspects of integrity not included
in criticality. Criticality and sensitivity are arguably more straightforward parameters
to work with in instances where independence of the two attributes renders many
problems easier to solve, such as probabilistic analysis or multi-attribute utility

functions.
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4.3.5 Security Maturity Models

Security Maturity Models (SMMs) are a tool used by organizations to describe their
security posture in a structured manner. They achieve this by stipulating a framework
on how to group processes and resources related to cyber-security and then assess
how developed, or mature, is the posture of the organization. The application of
security maturity models will be comprehensively demonstrated in Chapter 4. The
exact specification and terminology vary from model to model, but most follow the

basic structure of:

o Practices (p;) describe single security activities and are how maturity is achieved
e Domains (d;) provide a structured set of security practices, grouped by area.

o Objectives (0;) are what the organization must do for a practice to be deemed

as met.

o Maturity (m;) states the developmental state of objectives, usually assigning a

level from a predetermined set.

Any of these elements may be aligned fully or partially with existing cybersecurity
standards. The preeminent global standard is ISO27001, which comprises controls
organised by category. Within the maturity model, practices are equivalent to

controls in the standard and domains are the same as categories.

4.4 Related work

Ruan proposed a framework, cybernomics, comprising a combination of methods for
estimating the value of digital assets [250]. The work suggests risk units as outputs
but has a different focus from the research in our work, as the model of Ruan does
not explicitly aim to capture the precise organizational architecture and structure of
model organizations. Erola et al present a system that calculates cyber value-at-risk
via sequential Monte Carlo simulations [98]. The work includes an example case
study based on data provided by an insurance company using risk factors provided

by a model vendor. The model proposed in our work might be used to structure a
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cyber value-at-risk simulation by identifying relevant facets of a target organization
to inform simulation parameters and as such the model of Erola et al and ours might
usefully be combined. Calvo and Beltran propose a model for adaptive security
controls [50] that is only loosely related to the approach we propose, but may have
relevance for insurers who wish to take an active interest in their customers’ security
posture from a remediative perspective.

The specific literature on security maturity models relevant to this work is not
especially developed. One possible reason for this is that security maturity models
are of significant use to managers and practitioners, but are relatively recent and
therefore it may be too early to expect an empirical literature to have developed.
For completeness, we review a selection of relevant papers here. Mettler provides
insight into the development of maturity models from a design science research
perspective [194]. Rea-Guaman et al introduce a taxonomy for assessing cybersecurity
capability maturity models [240]. Kour et al discuss a cybersecurity maturity model
specifically for the railway sector; however, the chapter provides a useful general
overview of the various cybersecurity maturity models in existence [162]. Couretas
provides a good general introduction to cyber-modelling [69]. Cebula and Young
propose a taxonomy of operational cyber-risks, organized into actions of people,
systems and technology failures, failed internal processes and external events [57].

This may prove useful for the purpose of insurance contract construction.

4.5 Chapter organization

The remainder of this chapter is organized as follows. Section 4.6 introduces the
structure of our proposed modelling framework — that is, a conceptual tool for
constructing models; it is not a model in itself — without providing precise details
of the instantiation of its components. We wish to emphasize that the motivation of
this chapter is to introduce a flexible framework adaptable to a range of modelling
applications and that just a small subset of its potential is explored in this introductory
work. Section 4.7 provides a theoretical overview of the tools that we recommend be

used to deploy the modelling framework, namely entity relationship diagrams, security
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maturity models, and utility functions. Section 4.8 applies the modelling framework
to three prototypical (i.e. fictional) organizations with a diverse range of security
requirements. This provides a demonstration of how the modelling framework might
be applied to real world organizations. Finally Section 4.9 discusses issues pertinent
to real world implementation of the model, its advantages and disadvantages, and

potential further work.

4.6 Modelling framework overview

As discussed in Section 4.1, the aim of the modelling framework introduced in this
chapter is to connect a description of an organization’s structure and systems with
the economic parameters required to price a corresponding cyber-insurance policy via
an assessment of the security posture of the organization using maturity models. This
approach reconciles system-centric and economic treatments of a cyber-insurance
decision problem. It is intended to structure and guide the cyber-insurance assessment
and not to act as a universal model for cyber-insurance pricing.

At this introductory stage, we focus purely on introducing the components of
the modelling framework and the required parameters rather than characterizing
them in detail. The overall aim of the modelling framework is to support making
insurance assessments that take account of both the overall structure of an organi-
zation and the intricacies of its systems. However, it is not our intention that the
precise implementation of the modelling framework should be constrained; different
target organizations and/or insurers may require different parameters. Specifically,
requirements for the detail of an assessment vary across the insurance industry. Firms
writing a large number of small limit policies are far less likely to require a detailed
assessment of an insurance customer than a firm writing multi-million dollar limits
for a select number of multinational organizations.

We aim to contribute a methodology for making insurance judgements and a
set of parameters that are suitably flexible to be relevant across a range of possible
analyses. In due course, full examples of how the modelling framework might be used

will be provided. Section 4.7 will give examples on how our proposed modelling tools
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might be used to construct insurance policies and Section 4.8 will use the modelling
framework to deliver case studies for three hypothetical organizations from separate

industry groups to demonstrate its functioning and relevance.

4.6.1 Preliminaries
Representing organizational structure

We propose representing organizations using three layers: a management layer, a
services layer, and a systems layer. The management layer describes the structure
of the organization — including, but not limited to, what it provides and how it
achieves it. The systems layer depicts the infrastructure used in the organization, such
as servers, databases or other relevant elements such as manufacturing equipment.
The link between the management and systems layers is depicted by service layers.
The amount of detail captured by these layers is an important consideration. A
description of every communication is likely to be unusable, but a simple overview of
management structure too simplistic. The necessary level of detail for an insurance
assessment is likely to vary for different types of organizations and insurer risk
appetites. While the description we propose might be adequately represented in a
table for simple instances, a diagrammatic representation represents a better choice
in terms of legibility and ease of interpretation. With an appropriate schematic
formulation, a well-constructed diagram might fulfil a diverse range of requirements
without needing to be redrawn for different audiences. This work aims to demonstrate
that entity relationship diagrams (ERDs) offer just the right level of abstraction to
fulfil this purpose as their notational flexibility allows the user to implement their
desired level of abstraction rather than prefiguring an organizational description.

ERDs will be fully introduced and explained in Section 4.7.3.

Describing organizational security posture

Having established how to represent an organization and its systems, we now require
appropriate risk metrics. We propose using criticality and sensitivity as measures

for the components of the system that an organizational policymaker may wish to
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protect. The practice of framing security analyses using the categories of phenomena
confidentiality, integrity and availability (often termed the ‘CIA triad’) is common-

place [9, 236]. As illustrated in Figure 4.1, confidentiality, integrity and availability

Criticality Sensitivity

Availability Integrity Confidentiality

Figure 4.1: Relationship between criticality/sensitivity and confidentiality/integri-
ty /availability

can be simplified to criticality and sensitivity. This assumes that availability maps
to criticality; confidentiality to sensitivity; and some aspects of integrity map to
criticality but others to sensitivity. For the purposes of the organizational assessments
in this work, criticality and sensitivity are the simplest possible metrics that permit
description of a wide range of different organizational types and architectures while
achieving consistency with recognized industry norms. However, a wider range of
categories could easily be deployed according to the requirements of the modeller.

As already outlined, it is important to consider how the structure of an organiza-
tion and its systems may create risks of some form of cyber-attack and also how that
attack might be detected. For a very simple organization, some form of ‘fit and forget’
controls might suffice, but for more complex organizations, the security posture is
likely to evolve over time. A framework is accordingly required that is able to capture
the notion of change and describe the communications within an organization and
externally in a rigorous and structured manner. No single approach is likely to
perfectly suit every instance and, consequently, it is probably optimal to settle on a
class of models and choose a specific model for the case under consideration.

The modelling framework introduced in this chapter uses security maturity models
to parametrize the security posture of an organization. The term maturity in this
context means how developed the security controls and monitoring are in relation to
an organization’s processes, objectives and risk tolerance. An analysis of security

maturity needs to produce outputs that can be compared in the context of the
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type of organizational structure, the details of the systems architecture and the
characteristics of internal and external communications. One might construct a
measure of the openness of an organization and its risk of being attacked or another
measure of the desirability of an organization as a target. If correctly developed, a
measure of security can be used to predict and analyze attacks and resultant losses,
which in turn might be used to aid the construction of probability distributions,

which are a key input to actuarial modelling in insurance.

Economic modelling

For the purposes of our modelling framework, an economic model is a function or
framework that maps a number of (ideally parsimonious) parameters to an output.
There are two clear categories of function of relevance to the challenge at hand:
pricing formulae and utility functions. Pricing formulae are a category of functions
that, as the name suggests, output the price for a financial instrument based on a
number of inputs. Perhaps the most famous example in the finance literature is the
Black-Scholes equation [83], which outlines the price for an option (the right but
not the obligation to buy or sell a security). Utility functions stem from seminal
work by von Neumann and Morgenstern! and are broadly speaking a mathematical
description of the preferences of a decision-maker. Utility functions require careful
formulation and evaluations when used in economic modelling. As this work is
intended to outline a conceptual framework for combining systems and economic
modelling, we will demonstrate the use of utility functions for model convenience,
but it is important to be aware that there is a rich risk management literature (see,
for example, Gollier [123] for a starting point) on their use and, for some modelling
applications, there may be alternatives to utility functions that better capture the
modelled trade-offs.

Within the field of security economics, Gordon and Loeb proposed a model
connecting investment in information security and the probability of a security
breach [128]. This spawned a derivative field of literature [209, 131, 267]. Whilst

the Gordon-Loeb model is attractive in its tractability and simplicity, the choice of

1See Section 2.1.1
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parameters is at best subjective and at worst contentious. Consequently, rigour, care
and justification are required for an implementation of the model to have practical
use. The usual technique in economics for populating model parameters is to use
econometrics, which provides mathematical tools for deriving parameters from data
in a broad sense. However, this is difficult for cyber-risk problems as there is a
paucity of publicly available data and that available is other sparse or has a very short
history. This is a significant (and at times valid) criticism of the use of economics in
security and it is hoped that the contributions of this research illustrate a potential

alternative means of deriving useful insights from economic models.

4.6.2 Modelling framework structure and parameters

Figure 4.2 outlines the structure of the modelling framework. The description of
the maturity model draws on the models presented in Table 4.2 and described in
Section 4.7.2. We wish to emphasise that the form of the security maturity model
shown in the specification is not intended to be prescriptive. At these stage, we
simply introduce the parameters that comprise the proposed modelling framework
and to retain flexibility do not constraining their form and range of values. The
aim of the modelling framework is to illustrate how models from different disciplines
might usefully be combined to improve cyber-insurance pricing and not to dictate

the best way to describe organizational security posture.

e The parameters C; and S;, for 1 < i < 3, represent the components of the
operations architecture — organizational structure (1), service layer (2), and
systems architecture (3) — that deliver respectively those aspects of the
operations for which criticality and sensitivity are required by the policy-maker

to be protected.

e The parameters p;, d;, 0;, m; denote respectively representations of the ef-
fectiveness in protecting C; and S; of the practices, domains, objectives, and
maturity of the layers of the architecture as assessed by the chosen maturity

model.

o The key aspects of this system dependency are the following: the interdepen-
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Figure 4.2: Conceptual overview of model

Premium = M P;
1<i<3

88 of 255



4. Pricing Cyber-Insurance Based on System Structure

dencies between the system’s layers and the interdependencies between the
individual components of the system. These interdependencies are represented
explicitly, through relationships and attributes, in the Entity Relationship
Diagrams [59] that we describe in Section 4.7.1. Our proposed use of Entity
Relationship Diagrams in this context is illustrated in the case studies that we

present in Section 4.8.

o The maturity function pu;(p;, 0;, d;, m;) transforms the parameters of the chosen
maturity model into parameters to be input into an economic model. The
form and outputs of the maturity function depend on both the chosen maturity
model and the target economic model. The maturity model may be based on
or aligned with accepted security standards such as ISO27001, though this is

not a requirement.

e A condition on the formulation of our model is that the analysis of the system’s
security posture that is provided by the maturity model must support the

instantiation of the required utility function for the insurance contract.

o The loss-generating function, L;(u;, C;, S;), specifies the monetary losses that
may be incurred by a deviations in C; and/or S; from their values in the
intended operating state specified by the policymaker. The mapping of these

deviations to losses is determined by ;.

o The probability of a loss occurring due to a deviation in C; and/or S; is denoted
by m; € [0,1]. The calculation of the probability may be a function purely of
the properties and/or maturity of the operations architecture component itself
(endogenous factors) or take into account external influences or observations

(exogenous factors).

o Pj(m;, L;) are the components of the premium charged by the insurer from its
assessment of each component of the operations architecture. The premium is
a function of loss, L; and m;, the probability of that loss occurring. The final

premium charged for the contract is P = > F,.
1<i<3

e The utility function for the insurer is defined as

89 of 255



4.7. Setting up the modelling framework

1<i<3

The objective of an economically rational insurer is to set premia that maximize
this utility function. u; is a utility function that describes the risk preferences
of the insurer. Partial utilities are used to allow specific properties of each

architectural component to be captured.

4.7 Setting up the modelling framework

This section provides definitions and examples of the tools deployed in the modelling
framework following the informal introduction of the relevant ideas in the previous
section. The modelling framework uses three tools drawn from the fields of Operations,

Security, and Economics:

Operations Entity Relationship Diagrams describe the organization and its

systems
Security Maturity Models assess the security posture of the organization

Economics Utility Functions price the insurance contract

Before considering each of the three tools in detail, we briefly describe how they
fit together to deliver the model. Entity relationship diagrams provide a description
of three elements of the organization: its organizational structure, its systems
architecture and the service layer that connects the two aforementioned elements.
The complete entity relationship diagram may then be used to ascertain which of
its components are susceptible to degradation in either criticality or sensitivity or
both. With this description established, a maturity model is then used to describe
the security posture of the organization. The maturity model is used to generate
a maturity function, p;(p;,d;, 0;,m;). The parameters practices (p;) and domains
(d;) are provided by the maturity model. Objectives (0;) are determined by a policy-
maker. In simple cases, the insurer might be the sole policy-maker but for more

complex organizations, high-level objectives from the insurer may be more precisely
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implemented by a policy-maker within the organization (for example, a CISO?).
The maturity m; specifies how well the objectives are currently met by the security
practices of the organization.

The set of elements susceptible to degradation in criticality or sensitivity are
potentially loss-generative in a monetary sense. In order to price an insurance policy,
an insurer needs an expected loss for the policy and a probability of loss for that
policy. In the model proposed here, the insurer uses a utility function to price the
premium. It should be noted that the utility function provided for illustration is a
demand-side utility function. Whilst an insurer should be risk-neutral if it has the
ability to pool risk, for pricing purposes, it is assumed that the premium calculated by
correctly applying the modelling framework is fair. Under the assumption that the fair
premium equilibrates supply and demand of insurance in the absence of competition,
then each insurer would charge the fair premium calculated using Equation 4.6.1 in
the first instance. The maturity function provides the parameters needed to estimate
probabilities (m;) and losses (L;) for each element of the organizational structure,
which then generate a respective premium for each element. The sum of these premia
then gives the overall premium for the policy. As an insurer gains experience of losses
over time, it will likely gain insight into the relationship between practices and the
parameters 7m; and L; and thus refine the objectives required to provide insurance
cover or alter its pricing.

The utility function used for illustration of the modelling framework in Equa-
tion 4.6.1 uses partial utilities to allow specific parameters to be deployed for each
layer of the organizational structure. Certain organizations may conduct operations
that pose a high risk of loss from the perspective of the insurer, yet have a high level
of maturity. Using the partial utility approach allows for pricing of cyber-insurance
to be conducted by modification of existing industry group policy factors — this
might be referred to as a modular approach to pricing by a practitioner.

It should be noted that reimbursement of a loss by an insurance company is
not automatic. The holder of the insurance policy must first present a claim to the

insurance company. The insurer then assesses the validity of the claim, and how much

2Chief Information Security Officer

91 of 255



4.7. Setting up the modelling framework

of it to reimburse. Individuals fulfilling this function are known as loss-adjusters.

4.7.1 Entity Relationship Diagrams
Overview

A description of organizational structure and systems architecture requires a language
that is able to express systematically the key components of a structure and their
relationships. There is a rich literature on formal systems modelling, which is too
large and diverse for us to review fully within the scope of this chapter. Examples
of this discipline include the strongly compositional approach to systems modelling
(e.g., among many, [33, 198, 66, 56]), UML [251, 45, 94], and system dynamics [111,
276].

In the model proposed in this research, we contend that the language of entity
relationship diagrams has just the right level of conceptual analysis, abstraction, and
descriptive power to sufficiently characterize the structure of an organization and its
systems so as to support an analysis of its security posture for the purposes of an
insurance assessment. The formal logic associated with the strongly compositional
approach to systems modelling (see, for example, [66]), in which compositionality
extends to the relationship between logical properties of systems and their execution
dynamics, is not necessary for the purposes of insurance assessments. Insurance is
always uncertain and, therefore, the modelling task is to estimate to the best of the
modeller’s ability rather than aiming to prove the properties of a system in this way.
The weaker compositionality of ERDs, which is evidently sufficient to describe the
composite structure of the organizations typically envisaged, will suffice.

The distinction between ERDs and UML is somewhat more subtle. UML is a
language for creating diagrams whereas ERDs are a type of diagram. The nature of
the modelling task for assessing organization structure relationships is a subjective
task and consequently, the use of ERDs is more appropriate for our use case. System
dynamics provides a methodology for rationalizing the behaviour of complex systems;
it has a clear potential application to network modelling but is not particularly

helpful for attempting to describe a diverse range of systems using a common set of
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models and parameters.
The ERD language has a grammar, originally introduced by Chen(1976) [59] for
representing data structure, which describes the connectivity and properties of the

components of the language.

o Entities are ‘things’, which can be distinctly identified. These might, for
example, be organizational departments or assets, network resources, or control
devices such as firewalls or intrusion detection systems (IDSs). Entities may

be either informational or physical.
e Relationships describe associations between entities.

o Attributes are associated with both entities and relationships. They are param-

eters of the entity or relationship they describe.

e A system is described by connecting entities, relationships, and attributes in a
graph. The representation of the connection may describe properties of that

connection, such as cardinality or modality.

The description of a system via this language is known as an entity relationship
diagram (hereafter referred to as an ERD). The components of an ERD map to the

grammatical structure of natural language as depicted in Table 4.1.

ERD Natural Language
Entity Noun
Relationship Verb
Attribute (Entity) Adjective
Attribute (Relationship) Adverb

Table 4.1: Mapping of ERD and natural language grammar

Properties of the connectivity between the different elements of an ERD, such
as cardinality (whether the relationship is one-to-one, one-to-many, many-to-one, or
many-to-many) and modality (whether the relationship is mandatory or optional).
Of course, other logical relationships might be established and depicted as required.

ERD notation was originally developed as a model for data. A key motivation
for its genesis was to reconcile different models for data (see Chen (1976) [59] for a

detailed discussion and references). In this chapter, we aim to demonstrate that there
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is significant potential in using ERDs to describe complex systems more generally with
great flexibility and compatibility with a range of logical requirements. For example,
in formal systems modelling, combining systems diagrams is known as composition.
ERDs deliver this by being readily combinable using appropriate combinators (such
as lines or arrows) to link separate diagrams. This is a way of delivering what, in

common language, is known as scalability.

ERD notation

Having established the motivation for deplying ERDs in this work, we now introduce
their notation. The examples in this work are limited to entities with optional
attributes, relationships without attributes, and lines to represent connectivity

(Figure 4.3).

Entity Relationship Entity

Figure 4.3: A simple entity relationship diagram

This provides the sufficient level of abstraction to apply the model introduced
by this work and exemplified by the case studies in Section 4.8. However, we wish
to re-emphasize that the level of abstraction is a choice and not a prefiguration.
Depending of the desired intricacy of a particular ERD, more detailed notation might
be required. This work makes use of Chen notation [59] to describe the components of
a system. The foundations of this notation have already been outlined in Section 4.7.1

and for completeness we now describe the notation in full.

o FEntities are something distinctly identifiable, such as data, an organizational
department, a server, a firewall. They are the fundamental building blocks of

the ERD language.

o Weak Entities are entities that cannot be identified by their attributes alone;
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they require another entity to constitute a unique identifier. A simple example

is a room, which cannot exist without a building.

Associative Entities® are entities that resolve many-to-many relationships. For
example, in a database of student — class relationships, one could construct
an enrollment entity with a teach relationship to a teacher and which connects

students to classes.

Attributes are properties of entities or relationships. For example, in an

organization, the Finance function might have the attribute ‘department’.

Key Attributes are attributes which uniquely identify an entity, for example,

an employee identification number.

Derived Attributes are calculated from other attributes. For example, an
employee’s age will increase over time but their date of birth remains constant.

Age is therefore a derived attribute.

Multi-valued Attributes are attributes that may have more than one value

associated with the key.
Relationships describe how entities interact.

Weak Relationships are non-identifying relationships; formally the primary key
of one of the related entities does not contain a primary key component of the

other related entities.

The diagrammatic representation of the above components is provided in Figure 4.4.

Chen used a solid line to indicate a mandatory relationship between components and a

dashed line to indicate optional relationships. A richer set of combinators are provided

by Barker [23] notation (Figure 4.5) and Crow’s foot notation [99](Figure 4.6). Both

notations allow for cardinality (number of relationships) and modality (whether the

relationship is optional) to be fully conveyed. Chen notation only allows for a binary

description of modality between two components.

3See [283] for a careful explanation
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. . Associative
Entity Weak Entity Entity
Il “l
Key Attribute | Derived Attribute 1

Weak
Relationship

Multi-valued

Relationship

Attribute

Mandatory relationship

____________ Optional relationship

Figure 4.4: Chen notation

one to many many to many

many to one mandatory relationship

optional relationship

Figure 4.5: Barker notation

Example ERD

Figure 4.7 shows how the payroll function of an organization could be represented
using an ERD. This example has been constructed to illustrate the variety of Chen
notation that could be used to describe a system. It is intended as a stylized example

rather than claiming to be an optimal representation of a payroll function. In the
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many one

i Ot

zZero orone

one and only one

i O
one or many zero or many

Figure 4.6: Crow’s foot notation

example, there are two organizational departments, Finance and Human Resources,
which are entities with an attribute denoting that they are departments. The finance
department is responsible for paying employees, which are an entity with a multi-
valued attribute ‘resource’ to recognize that employees may have multiple attributes.
There is a relationship ‘pays’ between the finance department and the employees.
There is a payroll database, which is a a weak entity with the attribute database;
this database contains the entity records with attribute data. It is classified as a
weak entity here as it exists to fulfill a purpose and without the payroll function,
it would not exist. The contents of the database are delivered via an associative
entity, ‘records’, within the service layer. The service layer in the model is a natural
location for associative entities depending on the nature of the organization or entity
being depicted as the service layer connects the management and systems layers of
the organization in the model. The records have the keyed attribute, ‘Data’, as each
employee record has a unique identifier. The shading in the diagram denotes which
elements are critical and which are sensitive; the use of this will be explained in
detail in Section 4.7.2.

The role of entity relationship diagrams within the model is to

e describe the regions or zones for which different maturities can be assigned,

o show for which of these regions criticality and sensitivity are required to be

protected, and
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Figure 4.7: Payroll model with criticality and sensitivity

e represent the connectivity between different elements of the organizational

structure.

The entity relationship diagrams generated in the organizational assessment could
also potentially be used to identify vulnerabilities arising from connectivity within
the organization and its systems so that an assessment of controls can be undertaken.

We contend that our choice of ERDs to represent the structure of the system is
at the right level of abstraction to be able to capture the different security postures
in different regions of the architecture without introducing complexity or detail that
is not needed for this purpose. Furthermore, we observe that, if required, ERDs can
be used to give more detailed descriptions of specific components of the description
of an organization. This can be done in a manner that is compositional, with a more
complex model of a component replacing a simpler one (or vice versa). Moreover, we

would suggest that our choice of such a minimal representation of the architecture
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of the underlying system supports the scaling of our methodology to larger, more

complex systems.

4.7.2 Security Maturity Models

Security Maturity Models (SMMs) are a tool used by organizations to describe
their security posture in a structured manner. They achieve this by stipulating a
framework on how to group processes and resources related to cyber-security and
then assess how developed, or mature, is the posture of the organization. SMMs
are not just a tool for self-analysis; they are gaining increasing prominence as a
reference for the minimum standards required by external contractors to sensitive
organizations, such as government or the military. There is no one standard SMM
in current use. Table 4.2 lists the SMMs that appear to be in common use based
on web searches. While we believe it to be comprehensive, it is not intended to be

exhaustive. The exact specification and terminology vary from model to model, but

Model Authoring organization
Personnel Security Maturity Model UK CPNI (now part of NCSC)
IoT Security Maturity Model Industrial Internet Consortium
IA Maturity Model (HMG) NCSC

Cybersecurity Maturity Model Certification | US Department of Defense
Community Cyber Security Maturity Model | UTSA CIAS

ICS-SCADA ENISA

C2M2 US DOE

Table 4.2: Currently used security maturity models

most follow the basic structure of:

o Practices (p;) describe single security activities and are how maturity is achieved
o Domains (d;) provide a structured set of security practices, grouped by area.

o Objectives (0;) are what the organization must do for a practice to be deemed

as met.

o Maturity (m;) states the developmental state of objectives, usually assigning a

level from a predetermined set.
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Any of these elements may be aligned fully or partially with existing cybersecurity
standards. The preeminent global standard is ISO27001, which comprises controls
organised by category. Within the maturity model, practices are equivalent to controls
in the standard and domains are the same as categories. We assume here that the
impact on premia of the degree of compliance with standards such as ISO27001
derives from the effect of the level of compliance on the parameters mentioned in the

maturity model (Figure 4.2 and above).

Other examples of cybersecurity standards include the NIST Cybersecurity
Framework in the USA, Cyber Essentials in the UK, the Essential Eight in Australia
and the BSI IT-Grundschutz in Germany. Cyber-security standards generally need
to have broad applicability and coverage whereas maturity models may be tailored
to a specific use case. The maturity model allows for the same structure and rigour
as the cyber-security standards but may place greater emphasis on certain elements

of security.

To illustrate how this works in practice, we use an example from the CMMC?.
A practice might be to disconnect a user after n minutes of inactivity, which is
AC.1.2-3.1.11 Session Termination in the CMMC. The practice is part of the Access
Control (AC), one of 14 domains within the CMMC, which are aligned with the
NIST standard SP 800-171. An objective to which this practice might belong
could be ‘Ensure unintended users do not gain access to the system’, which might
include other practices from the AC domain relevant to the organizational system.
Within the CMMC, to attain AC Maturity Level 1°, the practices Authorized Access
Control, Transaction & Function Control, External Connections, and Control Public
Information are required to be implemented. A further 18 incremental practices are

required to achieve Level 2 for this domain.

*A good resource for the CMMC is CyberAssist (https://ndisac.org/dibscc/cyberassist), provided
by the US National Defense Information Security and Analysis Center

5The CMMC is, at the time of writing, transitioning from v1 to v2 with the number of maturity
levels reducing to 3. This example uses the v2 specification
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Security maturity model effectiveness parameters

In Section 4.6.2, we stated that the security maturity model is used to produce a
maturity function, u;, which takes as parameters p;, d;, 0;, and m; which denote
respectively representations of the effectiveness in protecting criticality and sensitivity
of the practices, domains, objectives, and maturity of the components of the system
architecture as assessed by the chosen maturity model. At that juncture, we refrained
from giving a general characterization. We now explain how the parameters might
be populated for the purposes of assessing payroll function in Figure 4.7 and the
case studies that follow in Section 4.8. The precise and rigorous population of the
effectiveness parameters for a maturity model is a significant and detailed piece of
work and is intended to be undertaken by a specialist team within an organization

(or, possibly, external consultants).

o p; is a vector with elements taking values across [—1, 1]. The elements represent
whether each practice in the maturity model is not met (-1), not relevant (0)

or met (1).

o d; is a vector with elements taking values across [0, 1] representing the impor-

tance of each domain to the insurer or policymaker for their objectives.

e 0; is a vector with elements taking values across [0, 1] representing how well

the assessed organization meets the stipulated objectives.

o m; states the overall maturity level achieved by the organization across [0, 1].
Different maturity models have different level structures; thus, m; = 0 denotes

complete immaturity and m; = 1 denotes complete maturity.

These parameters would allow an insurer selling a specific insurance policy to quickly
evaluate the maturity level of the security of organizations seeking insurance in a
robust and systematic manner. An insurer might then compile a table or matrix of

premium rates compared with maturity to allow automatic policy pricing.
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Example security maturity assessment of payroll function

In the payroll function depicted in Figure 4.7, there are three entities in the Manage-
ment layer: Finance, Employees and Human Resources. The Finance Department
is defined as critical as without money being directed as required, the organization
cannot function. Human Resources is defined as sensitive, as it is responsible for
confidential data and maintaining its integrity. The service layer compromises records,
which are read by Finance and maintained by HR. The records are stored in the

payroll database, which resides within the systems layer.

Criticality Sensitivity
Management | (C1) Transactions must be | (S1) Employee data must be
processed when required and | kept integral and confidential
recorded
Service | (C2) Records must be avail- | (S2) Records must only be ac-
able cessed or modified by approved
persons
Systems | (C3) The database must be | (S3) The database must have
available except for scheduled | appropriate information secu-
maintenance and must be in- | rity controls
tegral

Table 4.3: Objectives for payroll example

Table 4.3 states objectives for the payroll function that might be determined
by an organizational policymaker. We use the notation C and S to number those
objectives that relate to criticality and sensitivity, respectively. Insurance companies
tend to use some standardized premium rates adjusted for various factors, which
are typically multiplicative [247]. In the initial example payroll example, deviations
from the objectives outlined in Table 4.3 with respect to criticality and sensitivity
might incur losses. However, these might be mitigated by adopting security practices
stated in the maturity model. First, each of the objectives needs to be mapped to
domains from the maturity model (in this case, the CMMC). Table 4.4 shows one

possible choice of d; for the payroll example.

The next step in the procedure for maturity assessment is to populate the matrix

of practices, p;, according to which practices are met. This is clearly highly dependent
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Domain Ccit C2 C3|S1 S2 S3
Access Control (AC)

Audit and Accountability (AU)

Awareness and Training (AT)

Configuration Management (CM)
Identification and Authentication (IA)
Incident Response (IR)

Maintenance (MA)

Media Protection (MP)

Personnel Security (PS)

Physical Protection (PE)

Risk Assessment (RA)

Security Assessment (CA)

System and Communications Protection (SC)
System and Information Integrity (SI)
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Table 4.4: d; parameters for payroll example

on the precise organizational policies and systems implementation and is consequently
difficult to stylize in a meaningful way for the payroll example. However, as an
illustration of how this might be performed, Table 4.5 summarizes the number of
practices required for each domain within the maturity model to achieve either Level
1 or Level 2 within the maturity model. At time of writing, the required practices to

achieve Level 3 within the CMMC had not yet been made publicly available.

For the purposes of the simple payroll example, we limit the scope of the assess-
ment to the 17 practices that comprise Level 1 within the CMMC (Table 4.6). The
reader interested in the detailed description of the practices is referred to the CMMC
Model Overview[52]. Table 4.6 should be read as the necessary set of practices an
organization should meet to achieve an insurance premium pricing of Level 1 in this
example. Some practices apply only to certain layers; for example, AC.L1-3.1.22,
details external connections, which would be specified at the service layer (2) within
the organizational model. The extent to which an organization meets these practices
in the assessment of its maturity will determine how much of a discount it would

receive relative to the baseline premium charged by an insurance company.
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Domain Level 1 Level 2 | Total
Access Control (AC) 4 18 22
Audit and Accountability (AU) 0 9 9
Awareness and Training (AT) 0 3 3
Configuration Management (CM) 0 9 9
Identification and Authentication (IA) 2 9 11
Incident Response (IR) 0 3 3
Maintenance (MA) 0 6 6
Media Protection (MP) 1 8 9
Personnel Security (PS) 0 2 2
Physical Protection (PE) 4 2 6
Risk Assessment (RA) 0 3 3
Security Assessment (CA) 0 4 4
System and Communications Protection (SC) 2 14 16
System and Information Integrity (SI) 4 3 7
Total 17 93 110

Table 4.5: Number of practices for each Domain in the CMMC by Level

CMMC Practice | Description pL P2 P3
AC.L1-3.1.1 Authorized Access Control 1 1 1
AC.L1-3.1.2 Transaction and Function Control | 0 = 1 1
AC.L1-3.1.20 External Connections 0 1 O
AC.L1-3.1.22 Control Public Information 0 0 O
IA.L1-3.5.1 Identification 0 1 1
TA.L1-3.5.2 Authentication 1 1 1
MP.L1-3.8.3 Media Disposal 1 0 0
PE.L1-3.10.1 Limit Physical Access 1 0 0
PE.L1-3.10.3 Escort Visitors 1 0 O
PE.L1-3.10.4 Physical Access Logs 1 1 0
PE.L1-3.10.5 Manage Physical Access 1 0 O
SC.L1-3.13.1 Boundary Protection 1 1 1
SC.L1-3.13.5 Public-Access System Separation 0 0 O
SI.LL1-3.14.1 Flaw Remediation 1 0 0
SI.L1-3.14.2 Malicious Code Protection 0 0 1
SI.L1-3.14.4 Update Malicious Code Protection | 0 =~ 1 1
SI.LL1-3.14.5 System and File Scanning 0 1 1

Table 4.6: p; parameters for payroll example

4.7.3 Pricing cyber-insurance using utility functions

For the purposes of this model, a cyber-insurance policy is a contract that provides
reimbursement for losses, L at a cost of premium, P, which may be expressed as a

percentage premium rate, p. Usually, an insurance buyer will not be able to buy
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unlimited insurance but will be offered cover up to a certain amount. However, the
amount of cover an insurer provides represents a limit on its potential cash premium
income and the optimal maximum limit offered will accordingly be carefully assessed
by the insurer. In this model, we make the simplifying assumption that for the
purpose of pricing premia, cover is ex ante equal to potential losses. The decision of
the insurer is framed in terms of utility maximization in the sense established by
von Neumann and Morgenstern [211]. The utility function, u;, describes the risk
preferences of the insurance company (in this case) and may take a number of forms.
A commonly used utility function describes constant absolute risk aversion (CARA)

preferences and takes the form

1 _ e—OéSC
u(z) = -
The coefficient of risk aversion
1
~u(z) W
u'(z)

for this function, where /(z) and u”(z) are, respectively, the first and second
derivatives of the utility function. The choice of utility function would be important
for real-world deployment of our model, but is a minor consideration for introducing

the model.

A simple means of pricing an insurance contract is to fix the expected utility as
a function of payoffs in two states: loss and no-loss [241]. As stated in Section 4.6.2,

for the insurer in this model, this is
U(mi, Py, Li) =Y mui(Ps — Li) 4+ (1 — mi)ui(P) (4.7.1)
i

where the suffix, 4, represents the different components of the organizational architec-
ture. While Equation 4.7.1 may appear simple, the calculation of m;, the probability
of a loss and L;, the size of the loss are non-trivial. We now proceed to explain how
these may be derived from entity relationship diagrams via security maturity models

using the payroll example in Figure 4.7.

The security maturity model has two key effects on the insurance assessment:
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how likely and how large might losses be given the maturity assessment of the
organizational architecture. Assume that the probability of a loss, m; may be
represented as

i ~ D(ui, Ci, Si) (4.7.2)

where D is a distribution function, relating the expected probability of loss L to
criticality, sensitivity and the maturity function, u; (where ~ denotes ‘is distributed

as’). Losses are given by

Li(pi, Cs, Si) = Ni(pi, AC;, AS;) (4.7.3)

AC; =C; —C;, AS;=8;—S; (4.7.4)

where ); is a function specific to the insurer for estimating economic losses from
deviations in criticality (C;) and sensitivity (.5;) informed by the maturity function,
wi. C; and S; represent, respectively, the intended state of criticality and sensitivity.

These states will vary across industries, with varying emphases on specific risks.

The reason for having different A functions for each insurer is different insurers
may have different information, experience or appetite for particular risks. For
instance, one insurer might be highly exposed to one industry and thus there is
negative utility associated with writing further insurance to that sector; for another,

it might diversify the existing portfolio and thus have positive utility.

It is important to note that L, is not required to be strictly positive for all layers
of the model. The operations of the organization, described by the management
layer, determine the scope of possible losses to the business that may result from
deviations in criticality and sensitivity as previously described. However, it is possible
that additional maturity in terms of practices at the level of the systems layer may
reduce the scope of potential losses. Therefore, it is possible that the ultimate
components of the premium calculated by the insurer related to the service and
systems architecture layers, P, and P; respectively, may be negative depending on
the assessment of maturity. This is consistent with the practice of insurers offering

discounts on baseline policy quotes for meeting certain conditions. However, it may
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be the case that certain elements of the architecture create greater risks (for example,
external connections to a database), and therefore merit charging more premium in
that case. Figure 4.8 illustrates how the organizational representation first introduced
in Figure 4.2 outlines a possible procedure for estimating the parameters L; for the

different layers of the organizational structure.

L,: Estimate potential operating losses due to deviations in
criticality or sensitivity. These reflect the business operations of
the organization, its revenue streams and intellectual property.

Organizational
Structure

O)

Service Layer

©)

Systems
Architecture

®

L,: Identify features of the service architecture supporting
interaction between operations and systems that mitigate (-) or
amplify potential losses (+).

L;:Identify controls that mitigate the scope of potential losses (-)

Identify vulnerabilities that may arise from the structure of the
system (+)

Figure 4.8: Procedure for estimating potential losses

One advantage of the systematic ERD-maturity-utility modelling framework
is that once calibrated by an insurer according to its pricing requirements, the
framework could provide consistent comparisons between different insurance risks.
This allows for its potential use in accumulation modelling, sometimes known as
clash exposures, in the insurance industry [277]. The aim of this modelling is to
determine the risk of correlation in losses if certain categories of event occur. A
well-diversfied insurance portfolio should not contain policies with high levels of
clash risk. This is a potential problem for cyber-insurance in particular as some of
the usual diversification strategies such as insuring organizations in a wide range
of locations, industry groups and annual revenue may be less effective given the
interconnected nature of cyber-space and the concentration of computer operating
systems.

The expected-utility-maximization approach adopted here for pricing premia
is compatible with other established methodology and models in the literature.
The Gordon-Loeb security breach functions [128] could be used as the probability
distribution for losses in Equation 4.7.2. This has precedent in the literature [189,

267]. For the premium pricing model here, one could easily replace investment, z in
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the Gordon and Loeb model with the maturity function g which could be justified
by the notion that increased investment in security should bring increased security
maturity; otherwise, the investment is not a rational activity. Beyond the Gordon
and Loeb Model, Mazzoccoli and Naldi provide a helpful survey of security breach
probability models that might aid a corporate decision-maker or insurer model the
relevant threats [190]. This approach over time could be blended with a distribution
bootstrapped from experience cyber-losses but any available datasets currently have
significant issues with heterogeneity of losses and limited time coverage rendering

meaningful statistical inference difficult.

The means of estimating the distribution of expected losses for each layer is
non-trivial and there are two possible approaches — construct a distribution a priori
or fit one from observed data. The latter is what the actuarial department of an
insurance company specializes in. For expositional simplicity, we will use the security
breach functions (SBF) from the Gordon & Loeb model [128] and specifically, type 1
functions. In the Gordon & Loeb Model, it is assumed that an information set has
an inherent probability of breach or vulnerability, v, which is reduced by investment,

z. The type 1 SBFs take the form

v

Sf(z,’l)) = 7(042 n 1)5

(4.7.5)

« and 3 are measures of the productivity of information security. For the purposes
of populating the utility function, we assume that the probability of a breach follows
the Gordon & Loeb type 1 SBF, but replace investment with the met-objectives
parameter, o;, from the maturity model. This is justified by the assumption that
to achieve objectives, the insurance-seeking firm must have made an investment in

security to implement the practices that allow the objective to be deemed met:

= UG0S (4.7.6)
(vio; + 1)?

The higher the met-objectives parameter, the lower the probability of a breach from

the insurer baseline and the lower the premium. v(Cj, S;) represents the insurer’s best
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estimate of loss probability for the insured component. «; and §; can be adjusted as
required to reflect the insurer’s confidence in the efficacy of the objective, or updated
over time based on experience. This allows the fundamental form of the analysis and
contract to be preserved while allowing for an update on the pricing model based on
experience.

The final component required to be defined is the loss function. To compute the
loss function, we assume that the meeting of practices stipulated in the maturity
model limits the potential for losses to arise via lowering the potential degradation

of criticality and sensitivity. Then

ACIAC; + ABIAS;
(1 +p;)i

)\,-(,ul-, AC“ASO = (477)

A represents the maximum potential estimated loss to the layer from a degradation in
confidentiality or sensitivity, while « is a parameter for the productivity of effectiveness
of practices. This might be aligned to the maturity parameter, m;, for example.
The final step required to populate the utility function is to consider policy
limits and coverage. Until now, we have considered the insurance premium purely in
monetary terms, which is sufficient for a conceptual overview of the utility function.
In reality, the premium is usually decomposed into two components: a premium rate,
r (usually expressed in %) and an amount of coverage (also known as a limit), up
to which losses will be reimbursed. The implementation of the limit may vary; in
this example, we assume that there is a limit for each layer of the organization for
consistency with the model. If we assume that coverage is a function of maturity,

then

PZ' = Tik;Mmy; (4.7.8)

where k; represents the policy limit determined by the insurer for the assessed
component.
For simplicity, let us assume that w;(xz) = z and for this example that utility is

linear.® Taking the above definitions and simplifying Equation 4.7.7, we may now

5Optimizing the commonly used economic utility functions is typically algebraically intractable
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write the utility function

U= Zr‘mn~ D) ACIAC; + ASIAS,;
N i S (o + 1)B (1+ p;)i

(4.7.9)

with the constraint

A 4+ AGD < myr; (4.7.10)

Estimating the loss component of the cyber-insurance premium pricing function
is less well developed in the literature. This is likely in part because this task is very
dependent on the organization in question and the value of its information assets and
thus it is hard to model in generality. Woods et al describe the mapping of questions
on insurer proposal forms with existing ISO security standards [294]; this suggests
that there is some evidence from industry practice that the idea of using security
maturity models for pricing insurance contracts has merit. Likewise, Romanosky et
al, describe how insurance companies tend to use factors and modifiers for policy
pricing based on observations about the insured entity [247]. The use of maturity
models to systematically produce such modifiers would be more objective and if

standardized across insurers might lead to more efficient risk transfer.

It is important to note the following: insurance companies have long experience
of the magnitude and frequency of losses that arise in organizations based on their
size, industry sector, and location. Consequently, their calculations of premia will
start from a baseline determined by these considerations. The contribution of the
methodology proposed here is to provide a framework for calculating the effects
of cyber-based risk on the frequency and magnitude of losses. This is achieved
through a security analysis of the relationship between the operational structure of

an organization and its information systems.

and requires numerical methods.
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4.8 Using the modelling framework

4.8.1 Case studies

This section provides a thought experiment in which we explore how our methodology
applies to a range of organizations with differing threat environments and security
postures. The analysis is structured to correspond to the modeling approach depicted
in Figure 4.2. First, the operations of the prototypical organization are described from
a security perspective. The key elements of security maturity in relation to protecting
the criticality and sensitivity of the operations, service, and systems layers of the
organization are then discussed. Finally, the potential resultant economic losses from
degradation in criticality or sensitivity are considered. In real world examples, two
prominent threats are data breaches and ransomware, which compromise sensitivity
and criticality respectively although some ransomware attacks also involve data
leakage in which case both criticality and sensitivity are compromised.

In this thought experiment, we give an analysis of three prototypical (fictional)

organizations from three different industries:

e Online retail
e Consumer banking

¢ Pharmaceuticals manufacture

These industries have a common basic requirement for information security yet the
emphasis and implementation will be different in each. In online retail, availability of
the elements of the organizational structure that process and fulfil sales is paramount.
For the consumer bank, there is an equal emphasis on confidentiality and integrity;
while availability is important, it arguably cannot come at the expense of risking
loss of customer funds. Within pharmaceuticals manufacture, integrity is of primary
importance in the manufacturing process; in research and development, confidentiality
is also very important. In addition to the specific details relevant to each, all three
industries are customer facing and therefore have external information channels,

which might be exploited by an attacker.
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The intention with the following case studies is to show how the model introduced
in the previous sections might be applied across a range of potential organizations.
This flexibility is important for an insurance company that is likely to insure organiza-
tions from different industries across a single line of coverage such as cyber-insurance.
We make no claim that the analysis that follows represents the optimal security
posture for the different industry groups, which would of course require a thorough
analysis of their precise systems and operational practices. Rather, the following
analyses should be considered as stylized examples. The prototypical organizations
are constrained to three departments which prioritize, respectively, confidentiality,
integrity and availability. As explained in Section 4.6.1, integrity may be considered
as the intersection of criticality and sensitivity. For expositional simplicity, only basic
features of ERD notation are used as they provide sufficient detail for demonstrating
the use of the model in the case studies. This does not preclude the use of richer
notation to describe complex real-world organizations such as those with delicate
intellectual property considerations, for example. The organizational departments
are entities, which sit in the operations layer of the entity relationship diagram. Each
department has an associated entity in the systems layer, connected by an entity in
the service layer. The interaction between each entity is described by relationships.
Attributes convey descriptions or details of the entities or relationships that are
important for the maturity assessment. This allows for potential attack surfaces to

be quickly identified with a cursory read of the ERD for each organization.

In each of the case studies, both a maturity assessment and a computation of
premia is required. We provide these in some, though not complete, detail for the
case of online retail and remark that similar analyses can be established for each
of consumer bank and pharmaceuticals manufacture, the details of which are, for

brevity, elided.
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4.8.2 Online retail

Operations

The online retailer in this example uses a website to market and sell goods to customers.
The operations of the retailer (Figure 4.9) are represented by the entities customer
service operations, stock control, and customer interaction, which respectively require
availability, integrity and confidentiality to be protected. For a retailer, the foremost
security priority is availability /criticality as this presents the greatest potential source
of revenue losses and therefore would be the risk that the retailer would place greatest

emphasis on insuring against. Such insurance is known as business interruption.

Confidentiality is also important for the online retailer given that it handles large
quantities of customer data including payment details that may be required to be
protected by legislation in the countries in which it operates. This places the online
retailer at risk of a regulatory fine for data breaches and also loss of reputation
of customer confidence. However, this risk is secondary in terms of immediate
potential direct losses relative to availability. The customer interaction department
is responsible for dealing with customers. There is a distinction to be made however,

between communications such as marketing and automatic notifications.

Integrity is the lowest security priority for the online retailer. The prototypical
retailer has a stock control department which is responsible for recording the stock
inventory for the retailer. In an optimally run retailer, this would be robust and
in real time, but this provides an illustration of the concept of maturity in this
context. In a retailer with low maturity of stock control, updates of inventory might
be manual and thus there is potential risk of an out-of-stock item being sold to a
customer. By contrast, a high volume, established online retailer will likely have
sophisticated inventory management technologies that aim to prevent such a scenario
from occurring. However, loss of integrity is an isolated business risk in this case

and would therefore likely receive relatively little priority in insurance terms.
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Figure 4.9: Entity relationship diagram for online retailer

Maturity assessment

As stated in Section 4.6.2, a requirement of our model is that the analysis of the

system’s security posture provided by the maturity model must support the instanti-

ating of the required utility function for the insurance contract. The analysis must

deliver parameters representing the maturity of protecting the security parameters

criticality and sensitivity, which as previously described are delivered via practices

organized into domains and objectives. For the online retailer, the most important

security parameter is criticality and specifically the level of safeguards or redundancy

in the system that may keep the operations available. The second most important

output is an assessment of the protection of confidentiality and the scope for loss of

data. The cost of such potential breaches should be treated separately within the
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utility function rather than the maturity model.
For an online retailer, one might start the maturity assessment by identifying
domains as a baseline for calculating the extent to which the security posture is

achieved:

1. Cloud usage

2. Incident response

3. Access control

4. Maintenance

ot

. System and communications protection

(=)

. System and information integrity.

These are intended to provide the necessary set of domains to instantiate the utility
function of the insurer rather than provide a complete description of the online
retailer’s security maturity. For this example, we will not stipulate individual
practices within the domains as these are specific to the precise implementation of
the system and controls. To move from domains to maturity, we will consider a
number of sample objectives, which may also be regarded as insurability criteria. The
extent to which these objectives are met by an insurance client in turn determine the
maturity and thus the discount or premium relative to the insurer’s standard baseline.
Table 4.7 states a few sample objectives, which are intended to serve as examplars
rather than comprising an exhaustive set of objectives. In a full insurance assessment,
a substantive matrix of objectives and assessment criteria would be required.
Within our model, the maturity function is calculated for each layer — Man-
agement /Operations, Services, and Systems — of the organization. One resultant
consideration for the insurer is how to measure the required parameters of the matu-
rity function for each layer and thus calculate them. For the operations/management
layer, this is most likely achieved via asking structured questions of the organization

or inspecting existing policies should the insurance buyer be willing to share them.
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The service layer would require a combination of the approach for the operations/-
management layer and a systematic evaluation of controls. For the systems layer, the
controls can likely be verified more rigorously via, for example, perimeter scanning of
defences. The assessment of the operations/management layer is the most subjective
and therefore most uncertain and that of the systems layer the most objective and
therefore most certain. This uncertainty will be reflected in the formulation of the

utility function in Section 4.8.2.

Criticality Sensitivity
Management | (C1) Incident response plan in place | (S1) Information controls deployed
and tested

(S2) Staff training on handling sen-
sitive information enforced and doc-
umented

Service | (C2) Customer facing services must
have minimal downtime

Systems | (C3) Systems should not have vul- | (S3) Databases must be secured
nerable points of failure against unpermitted modification

Table 4.7: Objectives for online retailer maturity

Table 4.8 provides domain importance (d;) parameters for the objectives listed

in Table 4.7. As described in Section 4.6.2, it is important to understand how the

Domain Cli C2 C3|S1 S2 S3
Cloud Usage

Awareness and Training

Incident Response

Access Control

Maintenance

System and Communications Protection
System and Information Integrity

SO OO = ==
e = SR e R
== oo o
OB O = O O
[eNeNeoNeoNeh S i=
=R S e R

Table 4.8: d; parameters for online retailer maturity

analysis presented above depends upon the specific interdependencies in the system.
In this case, we can see this by considering Table 4.7.

In each of the components of Table 4.7, the C' and S values are determined
not only by the entities directly concerned but also by the relationships of these
entities to other entities as specified by the ERD for the online retailer’s system

(see Figure 4.9). For example, the criticality assessment of the ‘Presentation Server’,
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in the System Layer, is dependent on the criticality assessment of ‘Delivery’ in the
Service Layer and, also in the Service Layer, on the sensitivity assessment of the
‘Customer Database’, and the integrity assessment of the ‘Stock Database’; and so

on.

Economic losses

The online retailer will primarily require coverage for losses from business interruption.
In an insurance policy this might be specified as coverage up to a certain number of
business days with an initial deductible. Coverage may also be required for potential
legal and investigative costs associated with a data breach and loss of customer data.
In order for the insurer to compute a premium for the policy, as per Equation 4.7.1,
there are two variables needed for each layer, i, of the ERD representation for
the online retailer (Figure 4.9): m;, the probability of a loss, and L;, the expected
magnitude of a loss. As emphasized in Section 4.7.3, the maturity model is expected
to deliver the potential deviation from the baseline assumptions of the insurance

company for the firm in question.

Computing premia

As discussed in Sections 4.6.2 and 4.7.3, the utility equation for the insurer takes the

form

- v(Cy, 8;)  ACDAC; + ASIAS,
v= 21: H T o+ 1B (14 p;)

(4.8.1)

To populate the utility function parameters, the approach discussed here will
require the maturity, m; of components; the extent to which practices, p;, in the
maturity model are met; and the extent to which objectives, o0;, specified by the
insurer in the maturity model are met. For simplicity in this example, we assume
that C; = S; = 1 and that both C; and S; take values across [0,1]. This provides
a simple means of combining these parameters with a potential maximum loss or
policy limit.

Table 4.9 illustrates the parameters that might be used to populate Equation 4.8.1.
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The following assumptions are made:

e Simulations would be run to estimate deviations in criticality and sensitivity
under various scenarios. A starting point would be Lloyd’s of London realistic

disaster scenarios (RDS) for cyber incidents.

e The values for maturity, practices, and objectives are purely indicative in this
example. For simplicity, in this example, the parameters representing maturity,
practices met, and objectives met are set to the same values for each assessed
component. As discussed in Section 4.8.2, the objectivity of assessment and
accordingly ability to deem practices met increases from the operations layer,
through the services layer, to the systems layer. The illustrative values for

mq < meo < mg are deliberately chosen to reflect this.

e The maximum potential loss per layer is purely illustrative and the policy limit

for each layer in the example is set to this.

e The loss probabilities are purely illustrative; an insurer would either estimate

these using actuarial methods or based on real loss experience.

e The productivity parameters are set to 1 for simplicity. The online retailer
operates a fairly open system that prioritizes criticality and thus the efficacy of

controls may be reduced relative to a more closed system.

e The premium rate would be solved for using standard numerical methods of
choice. The focus of this discussion is to illustrate how to produce an assessment,

not to estimate specific premia.

The preceding analysis is intended only to provide an indication of how a utility
function might be constructed. However, the broad form should be applicable across
the case studies. The equation could potentially be solved analytically using readily
available software; for more complex formulations, Monte Carlo simulations of losses

would be an acceptable strategy.
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4.8. Using the modelling framework

4.8.3 Consumer Bank

We represent the prototypical consumer bank via the entities records, payments and
customer interaction, for which respectively availability, integrity and confidentiality
are required to be protected. The basic operation of the bank is as follows: customers
register transactions either withdrawing or depositing funds. These transactions are
mandated via interfaces, such as banking cards or online banking facilities. The
transactions are processed by the payments department and, if validated, records are
then updated.

In terms of security objectives, integrity of the payments system is marginally
most important as manipulation of this entity places the bank at greatest financial
risk. Confidentiality of customer data is also of high priority, in particular appropriate
protocols need to be in place to ensure customer accounts are resistant to misuse.
This is typically achieved through the use of password mechanisms and other means
of verifications that have become more sophisticated over time. Finally, availability
of the records system need to be protected. While this is something a bank would
strive to achieve, it is not uncommon of for banks to implement system downtime
for maintenance while allowing routine payment processing to continue to take place.
Further, in many banking systems, there is a lag between a payment being taken and

its being recorded; for credit card transactions, this can be several business days.

Maturity assessment

We proceed to outline the maturity assessment process for the consumer bank in
a similar fashion to Section 4.8.2 for the online retailer, though with a lesser level
of detail. The issue of banking security is complex and well-studied, and in this
relatively brief discussion it is not possible to conclusively cover the issue. Chapter
12 of [11] provides a lively discussion of both the history of security models used in
banking and contemporary methodology. The priority of the assessment is to deliver
how susceptible the banking system is to integrity attacks. A formal model applicable
to the security policy of a bank was proposed by Clark and Wilson [61]. In brief, the

model describes how an unconstrained data item (UDI) may be transformed into a
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Figure 4.10: Entity relationship diagram for consumer bank

constrained data item (CDI). The integrity of a CDI must be preserved, which is
validated through integrity verfication procedures (IVPs). Modification of CDIs is
effected via a transformation procedure (TP), which under some circumstances may
transform a UDI into a CDI.

Handling and mitigating losses is routine activity for a consumer bank; the role
of cyber-insurance is to cover losses outwith the ordinary course of business that are
generated either by a failure in technology or circumvention of controls. Effectively,
the relevant parameters the maturity model for the consumer bank ought to deliver

are:

o How likely is a catastrophic event?

e What might it cost?
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As noted in the aforementioned discussion by Anderson, malicious insider risk
is one of the foremost potential loss generators for a consumer bank. One area of
insurance coverage that is relevant for a bank is technology errors and omissions
coverage. This would deliver compensation for damages caused by coding or system
configuration errors. Such an assessment would need to be kept highly confidential
as it otherwise might provide a ‘how-to manual’ for potential attackers. Referring to
Figure 4.10, the Customer Interfaces are a potential point of weakness. If sensitivity
of these is not properly protected, a malicious insider might be able to impersonate a
customer to misdirect funds. In the event the malicious insider has sufficient access
to credentials, it may be hard for the bank to separate fraudulent from genuine
activity. This suggests that the maturity model domain ‘Personnel Security’ would
be of high priority for all three Department entities within the bank.

Within the systems layer, preservation of the Accounts Database is of the utmost
importance. A potential avenue of attack would be for an employee in Bookkeeping to
manipulate the back-end interface to divert funds from accounts in modest quantities
(‘skimming’). In the service layer, criticality of Payment Infrastructure must be
preserved. As seen in Figure 4.10, Payment Infrastructure has the relationships
writes to with Ledger, updates with Back-end Interface, and send and receive with
Customer Interfaces. 1t is clear from these relationships that a failure of Payment
Infrastructure would cause significant issues across the organization. Therefore, it

would need to be given high priority in the maturity assessment of the bank.

Economic losses

The largest risk the consumer bank faces on a regular basis is cyber-enabled fraudulent
activity. This may be direct or indirect — using the bank’s customers as a conduit.
The elements of the bank with significant exposure to criticality are likely to be closed
systems; interbank systems are usually not directly exposed to the internet and are
will be rigidly firewalled. Given the importance of availability of such systems, banks
will usually invest in infrastructure such as uninterrupted power supplies, multiple
data centres and disaster recovery sites. The major economic losses a consumer bank

might seek coverage against would be disaster recovery beyond that already budgeted
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for in its operating model; fraud in excess of a certain threshold; recovery from a

significant incident causing a material loss of revenue.

Computing Premia

This analysis follows Section 4.8.2, but rather than providing a full utility function,
we discuss a few relevant considerations an insurer may wish to consider. Recall that

the form of the insurer utility function is
U(mi, P, L) = ZWZUZ(PZ — L)+ (1 — m)ui(Fy) (4.8.2)

We now briefly sketch some considerations for populating m; and L;.

ACi ASi

Customer redress

Layer I

Ops/Mgmt

Incidence of management
failures

Failure of Payment Infras-
tructure

Services Incidence of insured losses | Extortion or ransomware Strength of controls in
due to fraud customer interfaces
Systems Incidence of system failures | Ledger controls Customer data controls

Table 4.10: Utility function parameters for the consumer bank

The methodology used for parametrizing the online retailer maturity is arguably
too general for the case of the consumer bank. It should be remembered that in
many jurisdictions, banks are subject to rigorous stress tests and regulation. In the
United Kingdom, for example, there already exists a protocol for testing the maturity
of cyber-security for banks, CBEST [22]. Stress test parameters could be used to
populate the utility function; these have the advantage of being measured both in the
spaces of probability and losses. One potential insurance strategy might be for the
insurer to offer coverage against losses of a probability below a specified threshold
(for example, 1%). An excess-of-loss policy, covering losses Lyin < L < Lyyq, might
be the best starting point for constructing the utility function. Based on the maturity
assessment, the other required parameters such as maximum available coverage could

then be populated and the premium rate calculated.
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4.8.4 Pharmaceuticals
Operations

We represent the operations departments of the prototypical pharmaceutical man-
ufacturer via the entities logistics, factory and research € development, for which
respectively availability, integrity and confidentiality are required to be protected.
The foremost priority for the pharmaceutical manufacturer is the integrity of the
factory and manufacturing processes as compromise of this potentially places lives at
risk. The research and development department will hold sensitive information, both
commercial and personal, about potential drug candidates and clinical trials, which
must be protected. The availability of the logistics entity is the lowest priority for
the pharmaceutical manufacturer compared with the risks of compromise of integrity
or confidentiality. The ERD for the pharmaceutical manufacturer is presented in

Figure 4.11.

Maturity assessment

A relevant security model for the pharmaceutical manufacturer is due to Biba [31].
The Biba model is essentially a read up, write down model. By means of illustration,
consider a drug, which has a specific chemical structure. The goal of pharmaceutical
manufacturing is to reliably produce that chemical structure from a range of chemicals
according to a specified synthetic procedure. It is evident that the elements of the
process responsible for manufacture need to be able to read the synthetic procedure,
but there is no reason why such elements should be able to modify the procedure.
Relative to the other two organizations we have analysed, the pharmaceutical
manufacturer operates a relatively closed system. Accordingly, an established ‘off-
the-shelf” model of maturity such as the CMMC would arguably be sufficient for
assessing the pharmaceutical manufacturer from an insurance perspective. Particular
attention should be directed at the controls in place to protect the sensitivity of
the sensitive data database. There is also an integrity objective in terms of the
interaction between the manufacturing processes and the database. Many of the risks

faced by the pharmaceutical manufacturer will be covered by traditional insurance
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Figure 4.11: Entity relationship diagram for pharmaceutical manufacturing

policies and therefore the scope of the maturity assessment for the cyber-insurance
policy will be very specific. An example is the criticality of the systems and service
infrastructure supporting the logistics function. If there is disruption in this area as
a result of a cyber-incident, it may cost the company revenue and inflict reputational

damage.

Economic losses

The pharmaceutical manufacturer has the most closed information systems of the
three prototypical organizations considered and also has the greatest potential to
put in place rigid controls without meaningfully impeding business operations. From
an insurance perspective, it is unlikely that the pharmaceutical manufacturer will

experience regular losses that it cannot contain itself and the company itself would
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most likely want to insurer against rare, catastrophic events with potential to seriously

damage its business.

Computing Premia

The computation of premia would follow a similar analysis to Section 4.8.2 for
the online retailer. We refrain from giving a parametrized utility function for the
pharmaceutical manufacturer as the procedure and process have been thoroughly
demonstrated in the other case studies. The utility function for the pharmaceutical
company would involve instantiating the probability of losses for each layer, m;, and
the expected magnitude of losses, L;. Pricing of the pharmaceutical policy would
likely be most efficient using a deductible — an amount of losses the company itself
bears before the insurance company begins to reimburse losses. This would result in a
lower upfront premium, which would be rational for a pharmaceutical company which
is the most able to protect itself from threats of the three prototypical organizations

we have considered.

4.8.5 Reflecting on the Case Studies

e Our chosen case studies illustrate the applicability of our proposed methodology

across a variety of industries, with varying risk profiles and security postures.

e They also illustrate how the varying risk profiles and security postures give rise

to premia that differ from the baseline of sector profile.

e Finally, the parametrization of maturity illustrates how domains and practices
within a sector can give rise to sector-specific accumulation risk. For example,
it may be the case that a specific system is widely used in an industry for access
control. Should an authentication bypass vulnerability arise, then multiple
insured firms in that industry could potentially be affected. This is commonly

termed ‘supply chain risk’.
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4.9 Discussion

4.9.1 Real world considerations for using the modelling framework

In Section 4.8, we explained how to deploy the model for prototypical organizations.
Here, we outline some considerations for a real-world insurance assessment. Im-
plementing the model for an insurance assessment of an organization requires the

following steps:

e Construct the Entity Relationship Diagram
e Choose the maturity model and parameters

o Identify and assemble relevant data to perform the maturity assessment and

compute required inputs (probabilities and losses) for the utility function

o Estimate the utility function.

Briefly, most insurance companies have some form of baseline premium relative to
a company’s size and risk [247, 298], which is then adjusted for various stated
factors such as policy limit, controls in place, prior claims history, and so on.
The company may use a questionnaire to gather information that can be used
to determine which factors to apply. The actuarial department of an insurance
company is responsible for determining the required probability distributions to be
used in policy pricing. These will usually be derived from prior claims experienced,
but also may reference appropriate external parameters and/or forecasts. Ultimately,
the modelling framework proposed in this chapter is intended to help assist this
process, not replace it, and to help address some of the difficulties in mapping data
of past cyber-insurance losses to potential future losses. These include issues such as
technological evolution and the dynamic nature of cyber-threats; for example, the
emergence of ransomware over the past few years, which prior loss data could not
have predicted.

The first step in the insurance assessment is to construct the Entity Relationship
Diagram per Section 4.7.1, containing only the information that is necessary to

guide the maturity assessment and insurance pricing. Categorizing risks in terms of

127 of 255



4.9. Discussion

criticality and sensitivity allows for the security posture of the organization, its layers,
services, and systems to be quickly interpreted. The choice of maturity model should
be such that it allows for meaningful comparison between similar organizations for
the purposes of policy pricing. It can also be deployed to be aligned with the factors
in existing insurance assessments, but with greater depth, structure, and specificity
than some questionnaires available in the public domain. Structuring the assessment
in this way also allows for any required data to be clearly identified. Finally, the
utility function should be framed so that the probability of expected losses and their
expected magnitude can be computed based on the maturity model outputs.

It is worth reiterating that the primary determinants of potential losses for an
organization are the disruption to its revenue generating activities or costs incurred by
a cyber-incident rather than a generic estimation of ‘cyber-damages’. Our modelling
framework is thoroughly grounded in the structure of an organization and therefore
ensures that the treatment of cyber-losses is proportional and appropriate relative to
the organization under consideration. At present, there appears to be disagreement
between ex ante and ex post estimates of cyber-losses [279, 298, 91]. One factor
worth considering in relation to ex ante losses is the extent of employee training and
engagement with organizational security policy. This is covered under the ‘awareness
and training’ domain of the CMMC maturity model, and belongs to a set of security
considerations commonly termed ‘human factors’ As malicious emails are a common
means of malware delivery by threat actors, the extent to which human factors form
a risk of insurance losses arising should be given due consideration when using the
modelling framework.

We would stress that there is no one correct way to deploy the modelling framework
and that it has been developed with the aim of being flexible and adaptable to different

use cases while providing some consistency of overall approach.

Compatibility with existing cyber-security standards

Our model is compatible with existing cyber-security standards, which as discussed
in Section 4.7.2 form the basis of many maturity models. However, these standards

are not perfect, as discussed in Chapter 28 of Anderson [11]. Anderson contends that
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standards such as ISO27001 for security management are deficient in engendering
improved security outcomes. The reason for this is that firms are audited and supply
the auditors with information regarding the controls. This usually relies on the
principle of ‘good faith’, but a misunderstanding or lack of knowledge about the
efficacy of controls can have catastrophic consequences. As Anderson points out,
many firms with large data breaches have been ISO27001 certified, yet the breach
still occurs. There are third party firms, such as Bitsight, who offer scanning services,
which are popular in the cyber-insurance industry. Yet the security score they provide
is only applicable to the systems layer of the model we have proposed, and standards
if self-certified by management cover only the operations layer. The model we have
suggested provides an integrated approach across the three layers of an organization:
operations/management, service, and systems. The model allows for an insurance
company to identify potential risks and price the premium appropriately. A company
might be motivated to consider the benefits of investment in security to reduce its

insurance premium following a maturity assessment.

4.9.2 Weaknesses

Developing the Entity Relationship Diagrams

The Entity Relationship Diagrams for an organization could quickly become complex
and careful consideration must be given in a real-world deployment as to how much
information to include. A requirement for the model to be realistic is that sufficient
data be available to populate the maturity assessment and utility function. We have
also negated the risks of asymmetric information and/or moral hazard in our model.

These are important considerations for pricing of insurance.

Subjectivity in Choice of Maturity Model

The choice of maturity model determines the pricing outputs of our model. It is
possible that a particular maturity model could be chosen to attempt to move pricing
in a particular desired direction by an insurer, or a company might use a maturity

model that deliberately covers suspected weaknesses in its own controls.
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4.9.3 Extensions and refinements

Cloud usage

In the systems assessment, one potential avenue of investigation is the interaction
between cloud systems and insurance. The extent of cloud usage is potentially
important as some of the potential criticality issues that insurance might be sought to
mitigate may be covered by the service level agreement (SLA) with the cloud provider.
In the event that the online retailer is fully reliant on cloud-based infrastructure for
its systems layer, then a specialized form of insurance cover may also be available.
(Table 4.11). A cloud provider is uniquely positioned to assess the maturity of its
customer base, subject to the relevant consents and establishes a synergy with the

cyber-insurer.

Cloud Provider | Insurer Reference
Google Allianz/Munich Re [206]
Microsoft At-Bay [196]
AWS Cowbell/Swiss Re [70]

Table 4.11: Cloud provider and cyber-insurer collaborations

Extending the systems modelling

A potential extension of the work would be to integrate the model based on ERDs,
maturity models, and utility with a strongly compositional approach to systems
modelling (again, e.g., among many, [33, 198, 66, 56]). Such an extension would

support the scaling of our approach to larger, more complex systems.

ERDs as an insurance template

There is potential for an insurance company to use ERDs as a template for an
insurance assessment along the lines of what has been described in this chapter.
The nuances of ERD notation could be used to depict what perils an insurance
company is willing to cover and which they are not. The approach to constructing
such a template is not trivial and is likely to be a considerable research and practical

endeavour in its own right.
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Cyber-Insurance Market
with Risk Transfer via

Relnsurance

Cyber-insurance has attracted considerable attention in the literature as a research
topic and is now a significant insurance market in its own right, with $7.2bn of direct
written premium in 2022 in the US domestic market alone[13] while reinsurance
brokers estimate the global market may total $14bn[134]. Commercial estimates
suggest that up to 45% of premium is ceded to reinsurers in the cyber-insurance
market [3][118]. Yet the interaction between insurers and reinsurers in the cyber-
insurance market has received surprisingly little attention in theacademic cyber-
insurance literature in comparison to industry publications [119, 134, 46, 221].
This chapter aims to help partially address this gap by considering the asymmetry
of information exchange and the uncertain time profile of damage revelation in
relation to the cyber-insurance market and its interaction with reinsurers. It is
then questioned whether reinsurers are sufficiently incentivised to participate in
the cyber-insurance market on a long-term basis given the significant difficulties in
achieving ez-post efficient information exchange. Cyber risks are a relatively new
multi-faceted phenomena and the type of attacks and their impact may change in an
unanticipated manner. It is therefore important to understand the resultant issues
that may arise and the ability of the market to absorb unexpected losses as otherwise

the sustainability of the market is threatened.
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5.1 Background

5.1.1 Insurance market structure

We now briefly review the structure of the insurance market and the interaction of its
various associated entities and parties. A thorough analysis of the cyber-insurance
market requires the role and function of the different participants in the market to

be defined.

We assume here that the insurance buyer is a firm who buys insurance coverage
via an insurance broker. The broker obtains quotes from different insurance firms
provided by their underwriters. An underwriter is responsible for managing a book of
insurance policies to deliver specified performance targets. These may vary according
to the experience and skill of the underwriter (underwriters with a proven track record
may be permitted to write either more premium or cover riskier entities than less
experienced colleagues), the markets they cover and the risk tolerance of the provider
of the insurance capital. Contrary to what might be expected, underwriting is not
purely a statistical exercise. The dynamics of the exchanges between underwriters and
brokers are complex, in particular with respect to information exchange which may
be highly asymmetric. The job of the underwriter is to make a subjective judgement
on the likelihood of the risks (prospective policyholders) they are presented with
experiencing a loss and whether these can be underwritten at a premium rate which
the underwriter believes is likely to be profitable. This judgement requires a certain
amount of skill as while a high insurance rate is more profitable, it will attract less
demand than a more attractive rate. The key objective is to price the policy such that
the desired mix of risk characteristics is obtained by the insurance firm. Underwriters

are assisted by actuaries, who provide mathematical to assist the underwriting .

While the underwriter is the key decision maker at each insurance company in
our model, insurance companies usually have multiple underwriters with different
areas of expertise in terms of peril and geography - by writing policies covering
different perils, insurance companies can reduce their average expected loss by

diversification. Insurance brokers act as the intermediary between the insurance
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company and its underwriters and the end-user of the insurance. For corporate
insurance, companies will typically ask their broker to prepare an insurance proposal
covering a range of potential losses; these are known as lines in the insurance industry.
Property, Casualty & Professional (Liability), Aerospace, and Maritime are well-
known examples. The role of the broker is to obtain the best possible terms for its
clients - both in terms of premium and depth of coverage. This requires the broker
to have an excellent knowledge of the different insurance firms in the market and
their reputation. Underwriters will aim to build a strong business relationship with
leading brokers in the hope that they will receive a strong allocation of available

premium.

Reinsurance companies provide insurance to insurance companies. The main
reason for their existence, informally, is to smooth the potential loss profile of insur-
ance companies who otherwise might only be able to write more modest quantities
of premium or hold greater capital reserves to cover potential rare outsize losses.
Reinsurers also act as a potential clearinghouse for information within the market
as the reinsurer will have visbility over the portfolio contents of a range of insurers
(known as cedents, which rival insurance companies in the market cannot directly

observe.

Cyber-insurance presents a particularly interesting case of insurance market
dynamics. The nature of the insured is particularly important as a large firm with
high turnover is likely to present a more interesting and economically lucrative target
for attackers, but may have better defences than a smaller firm. However, barring
a systemic vulnerability the risks of significant losses in a well diversified portfolio
of numerous low-limit small-medium enterprise policy may be a more profitable
undertaking for a firm. An insurance company will usually obtain reinsurance to
manage either tail risks associated with its portfolio (excess of loss) or to reduce its

overall exposure (quota share).
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5.1.2 Technological advancement, information deficiency and cyber-

insurance

One particular issue for understanding loss risks stemming from cyber-incidents is the
difficulty in framing the potential future scope of losses. Kurz (2023) [167] provides
a very readable account of the attendant challenges for economic reasoning related
to advances in technology. Estimates of significant loss are usually calculated by
the exposure management department of an insurance company and may be either
probabilistic or deterministic (based on stated realistic disaster scenarios). Exposure
management traditionally is used to ascertain the risks from a natural catastrophe.
In this scenario, the attacker is nature and the vectors are either wind (hurricane)
or water (flooding). The questions the model for premium calculation must address
are the geographical scope of the damage which determines the expected frequency
of claims and the ferocity of the natural disaster which determines the expected
severity. While nature is inherently unpredictable, nevertheless past experience
of weather patterns gives some basis for modelling expected future losses. The
relatively brief (at least in the history of insurance) history of cyber-risks and the
constant evolution of technology, its integration in an ever increasing number of
processes and the sophistication and capability of attackers makes such comparative
predictions regarding potential losses extremely difficult. When designing cyber-
insurance policies, it is important for the insurer to be highly specific in terms of the
coverage and for the reinsurer to have a clear understanding of the risk dynamics it
assumes if these policies are ceded. Figure 5.1 outlines a range of possible cyber losses
organised by frequency and severity. This relatively simple graphic encapsulates the
potential modelling challenges associated with cyber-insurance and reinsurance. The
scope for cyber-losses is determined by the evolution of technology; at the time of
writing, generative artificial intelligence and quantum computing are examples of

two emerging technologies that have significant security implications.
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Figure 5.1: Categorisation of cyber losses by frequency and severity

5.1.3 What claims might arise in relation to cyber-insurance?

Barely a day passes without news of an emerging cyber-attack or other risk. It is
important to realise that while these may be extremely disruptive for individuals,
companies or societies, not every cyber-attack results in an insurance loss. An
insurance loss may be defined as a loss resulting in a claim being paid by an insurer,
whereas an economic loss is the total loss to an insured from the peril.

, a ransomware attack (without data exfiltration) would largely result in first
party claims for network interruption and recovery costs. In contrast, a large data
breach can incur significant third party costs. It is worth noting that such third party
claims might arise several years after the policy is written. This is an important
feature in cyber-insurance; a prominent relatively recent example was large hotel
chain Marriott suffered a cyber-attack commencing in 2014 that was undetected until

September 2018, which has been one of the largest cyber-insurance claims seen thus

'This data breach is widely documented on the WWW from a variety of sources; for an insurance
perspective see, for example, [4]
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far. A reinsurer might have expected to retain the bulk of cedent premium income,
only to find large claims emerging later.

As cyber-risk is such a nascent class of business, the insurance industry is still
adapting to understanding how to price the risks, which sectors are most vulnerable
and how best to assess underwriting standards. This creates a risky environment
to the reinsurer, particularly as cyber is likely to be a relatively small line in their
overall business and they may therefore lack the requisite technical expertise to truly
evaluate the risks. An interesting example is Solarwinds vulnerability?, which proved
very widespread. However, it appears that the main motivation of the attackers was
espionage rather than financial gain and consequently, bar investigative costs, there

is little likelihood of significant cyber-claims as a result.

5.1.4 What is the motivation for reinsurance involvement in the

cyber-insurance market?

A possible motivation for early entrants to the cyber-reinsurance market is to build
market share and hope to capture premium rate increases as the market becomes more
popular. Gallagher Re (2022) [119], a leading reinsurance broker with a specialist
focus on cyber, have argued that reinsurers, technological solutions and cyber-security
practice may converge to create a ‘virtuous cycle of capital protection’. As insurers
gain more knowledge about the likely distribution of losses, underwriting standards
may be tightened. There is nevertheless a clear information advantage possessed
by the ceding insurer about the ‘quality’ of their insurance portfolio relative to the
reinsurer, which raises the issue of adverse selection. A rational reinsurer will pay
extremely close attention to the information they are given by the cedent with the
past loss history of the portfolio often a key feature. The fact that so much premium
is ceded suggest also that insurance carriers are themselves nervous of the quantity
of risks insured relative to the likelihood of losses. This begs the question as to why
reinsurers would rationally increase capital allocations to the cyber-insurance market
if the originating insurer is not comfortable with the risks. One possibility is that

the reinsurer may have extended scope to absorb losses from cyber-risks more readily

2See, for example, Devanny et al (2021)[78]
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in a diversified portfolio and may further be able to charge elevated premia if the
cedent insurer is desperate to offload the risk.

developing a model of a cyber-insurance market, which is stylized yet aims to
be representative of the existing cyber-insurance market. . A key argument of this
chapter is that there may be a diverse range of beliefs among market participants
about the dynamics of cyber-risk and resultant losses. We demonstrate via simulations
that under this assumption, reinsurance is only sometimes optimal for insurers.
Economic theory on efficiency is consistent with this conclusion. This implies
that insurers may need to rely on external sources of risk-tolerant capital (such
as insurance-linked securities (ILS, which are sometimes called catastrophe bonds).
Further, there is societal benefit in better information sharing on cyber-losses, which

should see convergence in beliefs.

5.1.5 Relation to existing literature

This chapter applies well-established economic theory to the cyber-insurance market
in a novel manner. Its contribution is that it is the first attempt, to the best
of our knowledge, to consider the specific interaction of reinsurance capital and

cyber-insurance via simulations that are representative of the existing market.

5.2 Economic Theory on Efficiency

We now consider how to relate well-established economic arguments on efficiency to
insurance of cyber-risks. A rational buyer of insurance will likely aim to purchase
a policy via a market in order to achieve a price they deem acceptable (ideally
optimal). The aim of a well functioning market is to match buyers and sellers of a
particular good and to establish a fair price for that good. Efficiency is often used
as a measure for the efficacy of risk transfer in a market and can be defined in two
ways: ex-ante (before the transaction) or ez-post (after the transaction). Ex-ante
efficiency requires conditions, that we shall demonstrate are extremely hard to satisfy.
Ex-post efficiency can be realised but requires an exchange of information. It should

be noted that an efficient ex-post premium if realised would be considered a (i.e.
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an actuarially fair premium); this is distinct and different from a premium that
meets customer expectations and is subjectively viewed as acceptable based on risk
tolerance or beliefs. A lack of efficiency does not mean that transactions will not
take place, but creates a comparative advantage for the party with greater access to,

or possession of less noisy, information.

5.2.1 Ex-ante efficiency

According to the Arrow-Debreu model[14][77], a complete market has:

1. Negligible transaction costs and therefore perfect information

2. Every asset has a price in every possible state of the world

Both of these assumptions are highly unlikely to be valid for cyber-insurance
markets. For an asset such as a stock or bond, which may be continually traded,
price is a legitimate marker of information. However, commercial insurance contracts
are struck at discrete time periods and are valid for a specific length of time only.
These typically operate on a yearly basis with key renewal points throughout the year
dictated by market convention. Further, there is a significant cost of operating for
the insurance company that is typically passed onto the customer via the premium.
Most insurance contracts are non-fungible and non-transferable, unlike many publicly
traded financial instruments such as stocks or bonds. . This is a fundamental feature
of insurance markets and implies that the first condition of completeness within
the Arrow-Debreu model is unlikely to be satisfied. The second assumption that
every asset has a price in every possible state of the world is equally not realistic
as in reality insurance companies may decline to quote for a particular policy if the

insuring party considers the risks outside of their tolerance.

5.2.2 Ex-post efficiency

Starr suggests that a set of valuation decisions is ex-post efficient if that there be
no redistribution that will increase some traders realized utility while decreasing no

traders realized utility [275]. Alternatively, as interpreted by Feiger, there exists
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no alternative feasible set which is sure to be Pareto improving, looking back from
the state which actually occurs. [105]. The Arrow interpretation of states of the
world is convenient for an insurance analysis as certain states of the world are
loss-triggering. There are a diverse range of possibilities for attempting to frame
these states omne possible utility driven approach is to model the utility of the
protector of an information set using confidentiality, integrity and availability and
constructing potential attacks degrading these properties in terms of deviations from
their preferred state. A cyber-insurance policy can cover a wide range of potential
losses, an interesting case being costs of specialist I'T consultants to help diagnosis
and recovery after a data breach, for example. A data breach confidentiality but if
the system from which the data is taken is somehow modified by a malicious actor to
facilitate the theft, then it is also an attack on integrity. Recently, ransomware attacks

have become a prominent cyber-threat adding a further risk of loss of availability.

A particular issue for cyber-insurance is the risk of a catastrophic cyber event. A
problem with establishing distributions for catastrophic events is that the sample
space is often sparse as these events tend not to occur too often. Despite computer
systems and networks being societally ubiquitous in most developed countries, public
data about cyber-incidents and computer mishaps of the standard required to properly
price cyber-insurance contracts remains lacking. Returning to the definitions of Starr
and Feiger, these require careful interpretation in the context of cyber-insurance.
Consider the scenario in which an entity suffers a loss as a result of a cyber-attack,
which is deemed ‘with high confidence’ by relevant National Cybersecurity Agencies
to have been state sponsored. In an efficient market, it ought to be the case that
a loss is experienced and thus constitutes a valid claim. However, . . In the
event of a significant cyber-attack, the world reaches a state whereby losses are
generated. These claims ought to be paid, yet there is a clear potential . Wolff
(2023) [292] has produced an extensive survey that relates existing literature on the
role of insurance in forming de facto regulation to the development of war exclusions
in cyber-insurance, concluding that industry leading this development may have

far-reaching consequences.
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5.2.3 Rational belief equilibria

Kurz compares rational expectations equilibria, in which all agents know the true
probability distribution of prices, with rational belief equilibria, in which no one
knows the true distribution of prices and each agent must form their own belief
about it [166]. Even at first sight, it appears intuitive that the latter category of
equilibrium is likely to better characterise cyber-insurance decisions given that a
claim to know the path of future technological development with even a degree of
confidence is almost certainly fallacious. Kurz’s theory of rational belief equilibria
relies on the system being stationary for the purposes of agents generating forecasts.
The theory identifies a set B(Q) of beliefs compatible with the data generated under
@, which cannot be rejected by the data. At first sight, this may appear a significant
issue for analysis of cyber-risk. However, one possibility is that there exists a brittle
equilibrium for a finite period of time, subject to shocks. Eventually a shock, or
paradigm shift in the sense of Kuhn [163], may perturb the market from its state
of equilibrium. This causes market participants to abandon their beliefs but then
upon stabilisation a new set of beliefs may be formed. For example, the ransomware
epidemic post-WannaCry makes for an interesting case study. This introduced a
hitherto less well considered generator of potential losses, which insurers had to
adjust for in their policies and subsequently triggered a marked increase in premiums

charged to the market .

5.3 Model

We now introduce a model for describing the dynamics of a reinsurance market. We
use standard results in the microeconomic theory of insurance without derivation for
brevity. The motivation for this is to outline in formal economic terms the structure
of an insurance market with reinsurance, from which theoretical simulations may be

developed.
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5.3.1 Insurance buyer

Before formulating the model for a market, we establish the baseline decision of a
buyer of insurance facing two states — loss and no loss — with probability = and

1 — m, respectively. The corresponding utility function is
ElU]=(1-mu(W —P(C)) +mu(W — P(C)— L+C — D) (5.3.1)

u is the constant absolute risk aversion (CARA) utility function,

1 _ efCM’LU

- (5.3.2)

u(w)

where « is a constant. For the purposes of this research, we chose CARA as it is
a commonly used utility function and sufficiently captures the trade-offs we wish
to model. Other forms of the utility function might be deployed to represent more
complex buyer preferences. The parameters in Equation 5.3.1 are W, representing
the initial wealth of the insurance buyer; P(C'), the premium paid for an amount of
insurance coverage, C; and D, the deductible? set by the insurer. We shall assume
that

P(C) =pC (5.3.3)

where p represents a premium rate. We emphasise that the customer chooses the
coverage amount C', up to a limit permitted by the insurer and observes the premium
rate, p, from different insurance companies. L is the loss experienced in the loss
state. In the event that there are multiple loss states, denoted by s, we assume
that these belong to a finite and countable set of states, S, such that s € S, with
a corresponding loss for that state, L. Specifying an initial endowment, Wy, and

representing the total cash premium paid as P, Equation 5.3.1 may be restated

EU]= (1= m)u(Wy—P)+ > mu(Wo — P — Ly + Cs — Dy) (5.3.4)

3The amount of losses which must be borne by the insurance buyer
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Both Equations 5.3.1 and 5.3.4 are equivalent and for the unsophisticated cyber-
insurance buyer, Equation 5.3.1 is a sufficient formulation of the problem. However,
when considering the supply dynamics of the cyber-insurance and reinsurance markets,
it would be expected that the insurance company consider the different states that
may be loss generating. We assume that the objective of the insurance buyer is to

maximise their utility.

Assumption 1 The insurance buyer aims to mazimize their utility

5.3.2 Supply of insurance

Having established the theoretical decision framework for the insurance buyer, we
now establish a formal model determining the supply of cyber-insurance. Following

Hammond (1981)[136], we consider the actions of consumers in the economy:

a'(s) = [z}, 27,1 ()] (5.3.5)

1 represents an individual consumer of a total I consumers in the marketplace. As
before, s represents a contingent state of the world, and it is assumed that the
set of possible states, S is finite. The vector of total insurance demand, x; =
c1, ez, c.

We assume that there are J insurers in the market, each with a supply of insurance

¥/ (5,%) = [y7 (%), 711 (8, %11)] (5.3.6)

y{ is an i-length vector of the units of insurance sold by insurer j to customer 7 at
time ¢ and consequently, which, expressed in monetary terms is identical to cover, C.
It is assumed that each customer ¢ has an exclusive policy with its chosen insurer j.

Each insurer has a premium vector,

P/ =[P, P,,..., P (5.3.7)
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representing the premium it charges to each customer. This vector may be time
dependent. For conciseness of presentation, we will henceforth drop time subscripts

as the analysis in this chapter is restricted to a single period.

Insurer objectives

We assume the insurer formulates its decisions on insurance supply, y’ (s, x) via the

following parameters (see Chapter 3.5 of[242]):

K the reserve capital held by each insurer.

P: the total premium income for each insurer.

X: the claim costs (losses) experienced, described by probability function F'(X)

with differentiable density f(X) defined over the interval [0, Xiax]-

D: the total deductible enforced by the insurer.

Wy: the initial wealth of the insurer - this may be thought of as shareholder

equity, for example, or syndicate (non-regulatory) capital.

o W: the residual wealth the insurer has after paying claims. If the amount of

claims is greater than A = P + K + W), the insurer faces ruin.

r: the risk-free interest rate for the relevant period.

We assume that each insurer has zero utility condition and its objective is to maximise

its wealth
W, = Wy + Py — /0 "y X{;fdej(X) (5.3.8)
subject to the constraint
W;+K; >0 (5.3.9)

The intuition underpinning Equation 5.3.8 is that the insurer has a trade-off between
the amount of premium it collects and the risk of claim associated with that premium.
It may also set a deductible to mitigate moral hazard. Accordingly, the insurer
should assess the probable maximum loss of claims according to its distribution and
ensure that it has sufficient capital to pay the claims. The claims are discounted by

the risk-free rate, r, as it is assumed that the insurer will earn interest on its earned
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premium over the period. The optimal set of allocations for the insurer would be to

policies that maximise the wealth/capital ratio W;/K.

Assumption 2 Insurers aim to mazimise their wealth

Assumption 3 The probability distribution, F;j(X) is subjective to each insurer

in the sense of de Finetti (1974) [76]. This will be justified in Section 5.5.4.

5.3.3 Introducing reinsurance

In order to reduce risk exposure, the insurer may also seek to purchase reinsurance.
There are two categories of reinsurance considered in this work: quota share and
excess-of-loss. Reinsurers are consequently concerned with determining the prob-
ability of two types of extreme events: those resulting in single large losses from
a particular client (concentrated losses and those resulting in widespread repeated
claims across cedents (contagion/). In the event that this distribution is objective,
then this would lead to a universal fair price for insurance. Reinsurers in turn will
have their own subjective distributions and charge the expected value of their own
distributions to clients. While this may be commercially reasonable, such prices
are not fair in a strict economic sense. The existence of reinsurance serves to allow
insurers to smooth their subjective expected loss distributions, which clearly implies
risk aversion as opposed to neutrality. In short, intermediation implies imperfection®.

Including reinsurance, Equation 5.3.8 becomes:

A]'Xj—Dj—

W, = Wo + (P, — R;) — / L r, (x) (5.3.10)

0 1+4+r

where the parameters are as above, with the addition of R, which represents the
cost of reinsurance to the insurer and I;, which is the amount of losses indemnified
by the reinsurance policy purchased. The constraint W; + K > 0 continues to

apply. Notation-wise, in similar fashion to Section 5.3.2; we use vectors to describe

*Skiadas (2013) [270] presents an interesting analysis on this topic
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reinsurance supply. We assume that there are k reinsurers, who charge r* rates to

insurer j and denote the supply vector of reinsurance as z*.

For a simple quota share policy,

R =pP

where p is the proportion of the portfolio ceded and then

I(L) = pL

However, in cases involving excess of loss or other reinsurance treaties, the calculation
is more involved. Miccolis (1977) [195] provides an exposition of some standard
mathematical techniques for describing excess of loss calculations. In the case of

excess of loss, the indemnification equation becomes:

I(L)=(L-N)*—(L-N-M)" (5.3.11)

M and N are parameters for an excess of loss policy covering $M(mn) of losses
in excess of $N(mn). For simplicity, it is assumed that each insurer can purchase
only a single excess-of-loss policy from each reinsurer. It would seem rational for
the purposes of our discussion that the insurers seek to buy reinsurance above the

aforementioned value A, losses above which the firm becomes insolvent.

The reinsurance market

We assume that there are K reinsurers in the market who provide reinsurance
capacity. The reinsurer aims to maximise wealth in similar fashion to the insurer

(Equation 5.3.8), but does not include a deductible:

I(X)
1+r

A
Wi, = Wo + Ry — / dFL(X) (5.3.12)
0

Ry, is the total reinsurance premia received and I;(X) denotes expected reimburse-

ments paid out to cedents. The reinsurer is subject to the capital constraint
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Wi + K > 0. Note that we allow for the reinsurer and insurer to have differ-
ent beliefs about the expected distribution of losses. As with the insurers, A,
represents the amount of reinsurance payouts above which the reinsurer would be

insolvent.

Assumption 4 The reinsurer may have a different belief from the insurer re-

garding the distribution of risks.

5.3.4 Modelling cyber-risks

We have thus far considered losses related to cyber-risk in an abstract sense as
setting up the theoretical framework for evaluating the interaction between buyers,
insurers, and reinsurers does not require the functions dictating these losses to be
instantiated. However, simulating the decision making to analyse the potential for
efficiency in the market does require some sample distributions. We use standard
results in probability theory without derivation (the reader wishing to understand the
background more thoroughly is referred to any standard statistical text on probability
theory; Williams (1991) [289] is a particularly accessible and carefully explained
introduction). While using formal probability theory is not essential for simulating
the results in this chapter, it is beneficial to apply theoretical rigour as this helps
to highlight some features specific to cyber-risk that are potentially problematic for
formulating traditional actuarial insurance assessments.

We start by defining a probability triple (©2,F,P). € is a set representing the
sample space of all events. w represents a sample point of the sample space. The
o-algebra®, F, on , is known as the family of events®. Denoting an event by A, we
may write

F={AACQ,AcT) (5.3.13)

The intuitive explanation in relation to cyber-insurance is that F is the collection of

5The definition of a o-algebra is a collection of subsets of a set that is closed (stable) under any
countable number of set operations. This is important for working with probabilities, where the
probabilities of all possible outcomes must sum to 1.

6See Chapter 2 of [289]
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events covered by a policy that may trigger a claim and then, possibly, a loss to the
insurer. If F is the Borel” o algebra on the set of real numbers, then there exists a
unique probability measure on F for any cumulative distribution function. Letting
X be a random variable on (2, F, P),

0 5R

B (5.3.14)
0,1] & F&—B

Informally, this means that so long as there is a collection of events that obeys
certain mathematical properties, it is possible to assign a probability to an event
using a probability distribution function. One interesting outcome is that a key
assumption of probability theory is that the system is stable. This is a potentially
problematic assumption for cyber-risk as there have been clear examples of previously
unconsidered threats developing. However, insurance policies comprise a set of event
definitions as part of the policy, which are contractually binding (albeit open to
legal dispute). The importance of careful policy wording is consequently readily
apparent. As will shortly be explained, underwriting cyber-insurance policies requires
an assumption of subjective, temporary stationarity in distributions. This is a realistic
assumption in the context of industry practice, where (re)insurance policies last
for a year and then are re-priced based on updated distributions resulting from

supply-demand dynamics and claims experienced.

Why use subjective probabilities to model cyber-risks

Assumption 3 in Section 5.3.2 stated that the probability distributions that govern
insurance supply are subjective in the sense of de Finetti [76]. We now provide the
intuition behind and justification for this assumption before moving to consider the
form of distribution that might be used to model cyber-insurance decisions.

In Section 5.2.2, we outlined the conditions required for ex-post efficiency. Con-
sidering these in the context of cyber-insurance, we conclude that ex-post efficiency
is unlikely to hold and almost certainly cannot be implemented at the time when the

underwriting decision is made. Unless of course, the true probability distribution

"The Borel o-algebra, B(R), is the smallest g-algebra containing all open intervals in R
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attached to the known and finite states of nature is known and shared by all partici-
pants. Such condition is the foundation of the theory of rational expectations. This
is synonymous with the existence of a stationary distribution. One way of defining a
stationary process is to say that its moments are time-independent, which means
that the average value of the measurements is a constant. Such distributions are
foundational for the existence of efficient equilibria under risk.

It is usual in macroeconomics to depict technological progress as a Markov
chain [173, 48]. If the depicted process has started far from its invariant distribution,
then it is also non-stationary, but easy to predict as it will approach the limiting
distribution that is ultimately stationary. However, in a short epoch, it will appear as
non-stationary. Whether technological progress has such a limiting distribution is an
unresolved question. Over the long-run it appears to have exhibited a definite trend,
with some downwards transitions attributable to natural disasters, wars epidemics
etc. In the short run, local approximations can be derived, and expectations can be
formed, however agents will splice different segments depending upon their horizons
and discount rates. The imposition of rational expectations restrictions upon this
structure can only be justified if all agents have identical preferences and endowments,
a condition that by construction does not hold. For Markov chains with non-stationary
transition probabilities, no steady-state typically exists and almost nothing in the
non-stationary setting is computable in closed-form.

It is hard to imagine that there is any way to truly predict an arbitrary non-
stationary process. This is because as soon as one postulates a future path another
can always reverse it, without creating any problems of consistency with earlier data.
In a more general case one might lower expectations, not to actually predicting well,
but to predicting with low regret. To this effect agents can choose their most suitable
approximations selecting the time span and use their best computational algorithms.

In the absence of a universally accepted probability distribution, ez-post efficiency
is almost impossible to attain. Of course, there are opportunities which can best
utilised only with ez-ante knowledge of the state of nature. In its simplest form, it is
the choice of technique in production/product that depends upon the expected state.

However, a more interesting situation arises when the expected state conditions
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the preferred level of production. Expecting the cyber-insurance market to quote
premia at all levels that are consistent with ex-post efficiency is rather unrealistic.
The very nature of the underlying processes does favour the existence of a generally
accepted stationary distribution. Rational agents will behave as if they are ez-ante
efficient using their own expectations of losses based on their subjective probability
distributions taken over their own sample spaces.

The evolution of cyber-threats will be conditioned of the path of technological
improvements in both elements of information and communications technology,
software and hardware. The future path of such advances may be partly predictable
based on well-established empirical regularities, such as Moores law that famously
predicted that the number of transistors on integrated circuits would double every
two years, i.e. at an annual rate of about 40% [202]. Others®, looking at related data
came to the conclusion that predictions of particular technological I'T innovations,
such as hard drives may be approximated using exponential functions. A very useful
exposition of this attempt, using smooth functions the predict technological progress
is Farmer and Lafond (2016) [103].

Yet technological advances undergo structural breaks, where both the level of
technology in terms of some of its main characteristics and its future direction change.
A prominent example at present is the introduction of quantum computing, which
will alter radically reduce computational time and thus has implications for the
robustness of cryptographic protocols that are currently infeasible to attack on a
realistic timeframe.

Technological progress is achieved by the complex interactions of two main hu-
man pursuits. The organised knowledge as it appears in scientific papers, submitted
patents, recipes, protocols, routines and probably informal know-how, acquired
through ‘learning by doing’ in a long process of imitation and repetition. The devel-
opment of science, technology, innovation and production require both codification
and knowledge.

It seems unlikely that such dual processes can be tamed into a smooth parametric

function with time invariant parameters, shared by all participants. If anything, in

8For example, [27, 114, 208]
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the absence of such shared beliefs, it is expected that for market participants whose
welfare depends upon such developments, their decision making will be based on
arbitrarily diverse anticipations. These are individually efficient decision makers
because they act on the basis of all the information available at the time. It is clear
therefore that by and large insurance contracts on expected losses based of future
technological developments, that are subject to structural changes, cannot be written
on generally accepted parameters, to deliver Arrow-Debreu type ex-ante efficient
premia. All the participants are efficient in terms of fully exploiting their private
anticipations of losses, but the quoted premia at the two levels will not result in fully

efficient in the Pareto sense economic outcomes.

Probability Distributions

For the simulations in Section 5.4, we separate the expected distribution of losses into
the number of expected claims (frequency) and the average expected loss per claim
(severity). This is a very common method for actuarial modeling and is described
in most standard texts, for example Panjer (2006) [227]. Its appropriateness to
categorising cyber-risks was described in Section 5.1.3 and summarised in Figure 5.1.
We assume that frequencies follow a Poisson distribution and severities a log-normal
distribution. The Poisson distribution is a standard starting point for frequency
modelling (see, among many, [197]). There is no clear consensus in the empirical
literature on which distribution is most appropriate for describing the severity of
cyber-losses (see in particular [91, 298]). We use the log-normal distribution as a
starting point as it is well-understood and straightforward to configure. We use
simulated rather than empirical distributions as the aim of the simulations is to
examine whether efficiency is theoretically possible, whereas markets in practice are
very unlikely to be efficient. The probability of k events occurring in a unit of time
represented by the Poisson distribution is

Aee=A
k!

f(k,A) = (5.3.15)
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where A is the expected number of events. The log-normal distribution assumes

In(X) ~N(y, o) (5.3.16)

that is the natural logarithm of variable X is normally distributed with mean, p,

and standard deviation, o, which are defined as

% o2
p=——=2—— and o’=In <1 + ‘f) (5.3.17)
NG W

px and ag( are the mean and variance, respectively, of the variable X. The proba-
bility density functions and cumulative distributions functions for the log-normal
distribution are readily available in any standard resource on statistics and are

omitted for brevity.

Combining probability distributions

Cyber-insurance policies cover a diverse range of first- and third-party risks and
consequently, there is probably no one distribution that actually covers all relevant
risks. Accordingly, it is desirable to consider a combination of possible risks. Un-
fortunately, probability distribution functions are rather difficult to combine with
a closed-form solution (see, for example, Nadarajah et al (2018) [207]) and require
analytical solutions. A common strategy is to use a package such as Mathemat-
ica [293]. However, there is an alternative approach which is to use Monte Carlo-type
simulations. Section 5.4 will show how these can be deployed to yield useful insights
on insurance decisions, the results of which do not require sophisticated mathematics

to formulate or interpret.

5.4 Simulations

We consider simulations of a cyber-insurance market with reinsurance over a single
period. We assume that losses arise in the period of the insurance policy and are
recorded at the time they arise. Policy data is confidential to insurance companies

and consequently, the simulations are established for model convenience but are
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constructed to replicate real-world insurance market dynamics. We use Poisson
distributions for the frequency of losses and log-normal distributions for the severity
of losses (details of these distributions and their associated functions may be found
in any standard statistical text). The Poisson distribution is a common choice for
modelling claim frequencies in insurance (see, among many excellent references,
[228][197]). There is no clear consensus in the literature on the optimal distribution
for modelling the severity of cyber-related claims, but the log-normal distribution
has been shown to be a reasonable approximation in the limited empirical studies
to date (e.g. Eling et al (2019) [91], Woods et al (2021)[298]. The use of the joint
frequency-severity distribution approach follows Panjer (2006) [227]. We assume a
common set of contracts across insurers varying in limit size.

The analysis considers only variation in coverage and premium. We assume arbi-
trarily a market size of $500mn total coverage. The simulations were computed using
the Julia programming language. We found the Distributions.jl[175], QuadGK[152],
and Plots.jl[60] packages particularly useful in facilitating the presentation analysis.
Unless otherwise specified, Monte Carlo type simulations were run 100,000 times.

The goal of the simulations is to illustrate how capital supply from the reinsurance
market to the insurance market and then to buyers is inherently inefficient as pricing
is influenced by the diversity of opinions regarding the frequency and severity of
losses even with relatively simple standard distributions. The simulations might be
applied to a variety of insurance markets, but they have been constructed to be
representative of the existing cyber-insurance market based on the authors’ interaction

with insurance market professionals.

5.4.1 Preliminaries

Familiarity with the insurance market is not a prerequisite for understanding and
interpreting the simulations that follow. We have taken care to explain the terms
used and ensure parameters are fully defined and explained. However, the reader
unfamiliar with corporate insurance may find the following definitions helpful as a
reference. These may be safely skipped for those experienced in either the practice

or study of insurance.
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wr: The average expected loss in monetary (cash) terms.
or: The standard deviation of losses in monetary (cash terms).

F~Y(p): The loss value that occurs with probability p according to the cumu-
lative distribution function F. If p = 0.95, then in 95% of cases, the loss is

expected to be less than or equal to the output of this function.

Loss ratio: the percentage of cash premiums collected by an insurance company

for a specified period (usually a year) paid out as losses.
Frequency: the number of claims in a period.
Severity: the average loss per claim.

Cover/Exposure: the total maximum losses that could result from a policy/-

portfolio respectively.
Expected loss: the mean loss from a policy /portfolio.

Technical premium: the cash premium or premium rate (calculated as the ratio
Expected Loss/Cover) corresponding to the expected loss. This is the premium

income at which the insurer can be expected to break even.

Simulated loss: the average loss from running N simulations based on random
sampling of the expected loss distribution. This can only be computed once
the portfolio is formed, so we assume that premiums are calculated based on

expected loss values.

Ceding commission: the percentage premium paid back to a cedent by a

reinsurer to cover underwriting expenses and other costs.

It is important to note the sequencing of the insurance transactions in the market.

The insurance buyers observe a premium rate and based on this decide how much

cover to buy. The insurance provider then has obtained a portfolio. Based on the

risk characteristics of that portfolio, the insurer may look to enter into a reinsurance

contract to eliminate some potential risk. The simulations assume that insurers and

reinsurers target a specific loss ratio ex ante to determine pricing.
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5.4.2 Simulation Strategy

We consider three simulations:

1. A benchmark simulation.

2. One reinsurer, five insurers with different portfolios comprised of different

weights of five common contracts, buyers not considered.

3. One insurer, one reinsurer, different buyer price sensitivities.

These simulations are distinct from each other, though have broadly consistent
parameters where possible. The aim of the benchmark simulation is to demonstrate
the approach used to generate loss distributions and also to instantiate buyer utility
functions to show that if the buyer has a different expectation of loss severity from

the insurer, then full insurance coverage may not be utility maximising.

The second simulation starts with a reinsurer who has a range of distributions
its actuaries consider acceptable. The reinsurer attempts to offer reinsurance to
achieve a target loss ratio and so quotes a reinsurance rate to the market. The
market consists of five insurers who have portfolios that range from a large number
of small loss risks (called Insurer Alpha) to a small number of large loss risks (called
Insurer Echo) with Insurers Beta, Charlie and Delta having portfolios that move
progressively between the two extremes. This aims to replicate the structure of the
cyber-insurance market in a stylised form and contrast the appropriate reinsurance

strategy for the different types of insurer.

It should be noted that the premia in the simulations may vary from those
witnessed in the market and in some cases appear very large. The simulations
are intended to guide the reader through an application of the economic theory
and market model from a theoretical perspective and demonstrate the difficulty
of establishing efficiency rather than aiming to be a simulation of the real-world

cyber-insurance market.
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5.4.3 Simulation 1: Benchmark simulation

We first consider a simple simulation before starting to examine the effects of varying

market structure and pricing variables. This simulation assumes the following:

e There is only one insurance policy offered in the market, with a limit of $1mn.
« for each policy is $500k, with standard deviation $250k.

e The frequency of losses is simulated under two scenarios where 10% and 50%of

policies are expected to experience a loss, respectively.

e There are 100 buyers, five insurers and one reinsurer in the market. For
simplicity, we model total losses for the market and assume they are evenly

distributed.

e Losses are simulated with 100,000 runs and random sampling of the severity

and frequency distributions.

o Distributions are shared by all market participants.

Figure 5.2 plots the probability distribution functions of the severity distribution
and the two frequency distributions. The severity distribution is log-normal with
parameters p = 13.0 and o = 0.22; the two frequency distributions are Poisson with
A of 10 and 50, respectively. The PDF values for the severity distribution are very
small because of the units of the loss; the integral of the PDF across the function
domain must sum to 1. Running a simulation, the expected loss distribution for the
two frequency distributions can be obtained. This is presented in Figure 5.3. The
values on the y-axis of Figure 5.3 simply represent the number of times each loss value
range in the histogram appears in the simulation. Each bar in the histogram has a
width of $0.5mn. This is simply chosen for aesthetic reasons. The main emphasis
is on the shape of the distributions rather than the precise frequency count in the
histogram.

Having examined the distributions, we now consider the pricing of the policies.

Table 5.1 shows the expected and simulated losses for the distributions in Figure 5.3.
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Figure 5.2: Benchmark severity (LHS) and frequency (RHS) distributions

Note that

Expected Loss = Expected Frequency x Expected Severity x Number of polices

The ratio of the Expected Loss and the Exposure ($100mn in this example) gives
what is known in insurance as the technical premium rate. Accordingly, the technical
premium would be 5% for the 10% frequency scenario and 25% for the 50% frequency
scenario. The simulated losses are lower than the expected (mean) losses because of

the skew of the log-normal distribution.

Frequency | Expected Loss Simulated Loss
10% $5mn $4.6mn
50% $25mn $22.9mn

Table 5.1: Expected versus simulated benchmark distribution losses

To simulate reinsurance pricing, we first fit a log-normal distribution to the
joint distribution with 50% loss frequency as previously described. . We consider
reinsurance only for the 50% loss frequency distribution as guided by the reported
loss ratios in Table 5.17, which suggest relatively high frequencies of losses have been
experienced by the actual market. Using the fit functions in Distributions.jl, we
obtain a log-normal distribution with ¢ = 16.9 and ¢ = 0.27. Under this distribution,
the cumulative probability of a loss exceeding $50mn is extremely small, therefore we

price the reinsurance policies using excess-of-loss of $50mn. Using the cumulative
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Figure 5.3: Simulated loss distributions

probability functions for the estimated distribution, we can then obtain premium
rates for the reinsurance, which, multiplied by the amount of reinsurance required,
gives the cost of reinsurance. We then re-run the simulations of losses for the insurer
assuming no losses are incurred above the threshold at which reinsurance cover binds.

We can then obtain the simulated loss with reinsurance. The results are presented in

Table 5.2.
. Remsu%rance Reinsurance T.echmcal Simulated Net
Reinsurance Premium Reinsurance
Cover . Loss
Rate Premium
$25mn xs $25mn 32.2% $25mn $8.1mn $13.1mn
$20mn xs $30mn 12.5% $20mn $3.8mn $18.7mn
$15mn xs $35mn 4.2% $15mn $0.6mn $21.3mn
$10mn xs $40mn 1.3% $10mn $0.1mn $22.4mn

Table 5.2: Reinsurance premia for excess-of-loss policies on the 50% chance of claim
distribution.

This reinsurance pricing may be considered efficient because both the reinsurer
providing coverage and the insurer seeking reinsurance have the same expected loss

distribution.
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5.4.4 Simulation 2: Reinsurance supply and price

Having considered the case where all parties agree on the same distribution, we relax
this assumption and start to consider divergence in distributions of expected losses.
We begin by considering the objective of the reinsurer. We assume a log-normal
distribution of total losses. This is the distribution the reinsurance company believes
represents the losses experienced from a pool of cedents. The reinsurance company
needs to model different potential loss ratios. Initially, we assume cover is fixed at
a maximum of $500mn. Table 5.3 presents a number of log-normal distributions.
These are purely for illustrative purposes; in a real world situation, the reinsurer
would model the distribution based on experience and data. However, it is helpful to
consider a range of distributions to understand how the shape of the distribution

may affect pricing.

L or m o | F710.995)

$10mn | $10mn | 15.8 | 0.69 $42mn
$20mn | $20mn | 16.5 | 0.69 $84mn
$30mn | $30mn | 16.9 | 0.69 | $126mn
$40mn | $40mn | 17.2 | 0.69 | $169mn

Distributions
0 H O Q W o

$50mn | $50mn | 17.4 | 0.69 $211mn
$60mn | $60mn | 17.6 | 0.69 $253mn

Table 5.3: Table of reinsurance distributions

Within this table, F~1(0.995) represents the maximum loss with 99.5% certainty
within the distribution. This is the probability value used under the Solvency
IT insurance regulation to determine the required capital a firm must hold. The
probability density function and cumulative distribution functions for the distributions
in Table 5.3 are plotted in Figure 5.4. Note that the scale of the loss axis is shortened
to $100mn as the probability density function returns extremely low values beyond
this point.

To estimate the premium rate, we consider the following. The reinsurer targets a
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Figure 5.4: Reinsurer loss distributions

loss ratio (a common performance metric in the insurance industry). Total losses

from the portfolio are then written

L=LR.x> r;Cy (5.4.1)
J

Losses experienced are also given by

L= FE[I] (5.4.2)
J

We assume there is a single rate for reinsurance such that rj; = rVJ. Then,

>g B[]

= —— .4.
"TLR.x>,C; (543)

Denoting C' = >°;Cy and noting that 3°; E[l;] = foé If(I)dI where f(I) is the

probability density function of an appropriate distribution, we obtain

¢
r= m (5.4.4)

This integral can be evaluated numerically, for example using QuadGK in Julia.

Suppose the reinsurer believes that Distribution C best describes expected losses
to the portfolio and targets a loss ratio of 50%. The rate of reinsurance charged is

then 11% (Table 5.4). Premium income for the reinsurer will be $55mn. Note that
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Premium rates

Loss ratios— | 0.1 02 03 04 05 06 07 08 0.9
0.18 0.09 0.06 0.04 0.04 0.03 0.03 0.02 0.02
0.36 0.18 0.12 0.09 0.07 0.06 0.05 0.04 0.04
0.54 0.27 0.18 0.13 0.11 0.09 0.08 0.07 0.06
0.72 036 0.24 0.18 0.14 0.12 0.1 0.09 0.08
09 045 03 022 0.18 0.15 0.13 0.11 0.1
1.08 0.54 0.36 0.27 0.22 0.18 0.15 0.13 0.12

Distributions

HEHOOQWE

Table 5.4: Tlustrative premium rates for target loss ratios under different distributions
at cover fixed at $500mn

per Table 5.3, in Distribution C, the 99.5% upper bound for losses is $126mn.

Insurance supply

We assume for simplicity that there are five insurance contracts in the market with
different limits: $500k, $1mn, $2mn, $5mn, $10mn. We assume that there is a uniform

individual and independently distributed probability of loss for each contract: The

Expected .
Limit 159 oL Frequency (7r) Loss Premium (Exp.
Loss/Limit)
(mr-pr)
$500k $200k $125k 0.1 $20k 4%
$1mn $400k $350k 0.15 $60k 6%
$2mn | $lmn $1mn 0.16 $160k 8%
$5mn | $2.5mn | $1.25mn 0.2 $500k 10%
$10mn | $4mn $4mn 0.3 $1.2mn 12%

Table 5.5: Insurance contracts in the market

expected severity in the above contracts is assumed to be log-normally distributed
per Table 5.5 and the frequency ~ Poisson(m;k) where k is the number of contracts.
Table 5.6 contains a sample portfolio for a panel of 5 insurers for illustrative purposes
to run a loss simulation. The technical premium is the premium income that equates
to the expected loss. Equivalently, this is the premium written at which the insurer
would expect to break even.

In reality, insurers do not attempt to break even but rather aim to produce a

profit to provide a return on investment to the source of their capital. One simple
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Policy count grouped by policy limit

Insurer | $500k $1mn $2mn  $5mn  $10mn | Total Exposure | Technical Premium
Alpha 200 0 0 0 0 $100mn $4.0mn

Beta 100 50 0 0 0 $100mn $5.0mn
Charlie 50 20 15 5 0 $100mn $7.1mn
Delta 30 0 5 5 5 $100mn $9.9mn

Echo 0 0 0 0 10 $100mn $12.0mn
Total 380 70 20 10 15 $500mn $38.0mn

Table 5.6: Insurance policies written by insurance panel

objective might to not exceed a target loss ratio. This is achieved via an additional
charge to the insurance buyer over the technical premium known as a loading®. The

loading is calculated:

Loading =
1 (Technical Premium Technical Premi > (5.4.5)
— Technical Premium
Total Exposure Target Loss Ratio

The variation between loading and loss ratio for the insurance portfolios in
Table 5.6 is plotted in Figure 5.5. The variation in target loss ratios may occur for a
number of reasons, such as rate of return on capital demanded by the capital source
(as discussed in Section 5.1.1, prior loss experience, or other variable expenses. The
loading also may aim to capture any skew in the actuarial distribution.

Table 5.7 shows the calculated loadings for each insurer in the simulation assuming
a target loss ratio of 50%. For ease of comparison, we keep the target loss ratio

constant across the insurer panel and also the overall exposure.

Weighted

Technical | Target Loss Techn'lcal . Average

Insurer . . Exposure Premium | Loading Charged

Premium Ratio -
Rate Premium
Rate

Alpha $4.0mn 50% $100mn 4.0% 4.0pp 8.0%
Beta $5.0mn 50% $100mn 5.0% 5.0pp 10.0%
Charlie $7.1mn 50% $100mn 71% 7.1pp 14.2%
Delta $9.9mn 50% $100mn 9.9% 9.9pp 19.8%
Echo $12.0mn 50% $100mn 12.0% 12.0pp 24.0%

Table 5.7: Calculating premium loading rates for insurance companies based on
simulated losses. The loading rate is expressed in percentage points.

9See, for example, Benjamin (1986) [26] for a discussion.
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Figure 5.5: Loading versus target loss ratio for different insurance portfolios

Interaction between insurance and reinsurance

The total expected losses for the cyber-insurance market depicted in Table 5.7 are
$38.0. The technical premium is equal to the expected losses in monetary terms. In
Section 5.4.4 we stated that for a log-normal distribution with mean and standard
deviation of $40mn and target loss ratio of 0.5, the premium charge would be 14%
for the reinsurer (distribution D). The usual process of reinsurance in quota share is
that the reinsurer assumes a stated percentage of portfolio losses. The reinsurance
contract (or treaty) is priced!® via a ceding commission and reinsurance margin.
In this case, the reinsurance margin is already accounted for in the 14% premium
rate as this was calculated to give the required reinsurer loss ratio. The ceding
commission is paid back to the ceding insurer to compensate them for underwriting
expenses. The ceding commission is defined as the average premium rate (Table 5.7)
less the cost of reinsurance (14%). Inspecting Table 5.7 once more, we can see for
insurers Charlie, Delta, and Echo, the average premium rate of the portfolio exceeds
the reinsurance cost. Therefore, the ceding commission for these insurers would be
positive. However, for insurers Alpha and Beta, their weighted average premium

rate is below that charge for reinsurance, implying a negative ceding commission. If

10Clark (2014) [62] is a highly approachable introducing to reinsurance pricing
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Alpha or Beta believe that their assumed distributions are correct, this would not
be rational behaviour. For the other insurers, purchasing reinsurance would reduce
profits for expected losses. However, the value of reinsurance will become apparent
once we consider the effect of capital.

Having established the target pricing for each insurer ex ante, we now consider

simulating ex post losses. The profit equation for the insurer, may be written:

$Profit(L) = $Premium Written x (1 — p)

+ ($Exposure x p x %Ceding Commission) (5.4.6)
—L
Loss(1 — p) ifD=0
L= { Loss if D> 0,Loss < D (5.4.7)

D+ (1—-p)(Loss— D) if D> 0,Loss > D

p is the fraction of the portfolio ceded to the reinsurer and D is a deductible. We
restrict our analysis in this simulation solely to policies without deductibles, but

provide for their inclusion for completeness.

Simulation Procedure

For each insurance portfolio in Table 5.5 we simulate losses via the following procedure.

1. Set severity distribution for each contract as in Table 5.5.

2. Set frequency distribution as per Table 5.5 — Poisson ~ 7r.k where k is the

number of each contract contained in the portfolio.

3. Randomly sample the frequency of expected losses for each contract in the

portfolio, to generate a number of losses for each contract, Nyoss.

4. Randomly sample from the severity distribution for each contract Nj.s times,

sum and record the losses.

5. Run the above process 100,000 times.
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The results of the simulations are presented in Table 5.8 (histograms of the generated
loss distributions are provided in Figure 5.6). The table contains the premium income
for each insurer as previously determined, a capital level assumed to be held by the

insurer equal to the average baseline loss in the simulation and reserves defined,

Reserves = Premium Written + Capital (5.4.8)
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Figure 5.6: Insurer Simulated Loss Distributions (Section 5.4.4)
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Along with the simulated loss values, we also calculate loss values for a ‘stress
test’ type scenario, calculating the maximum loss in 95% and 97.5% of cases'!. This
is done via using the quantile function of Distributions.jl to calculate the respective
frequency and severity at F~1(0.95) and F~1(0.975). The required values are then
readily obtained. With these values obtained, we may now proceed to consider the

interaction between reinsurance and the insurance portfolios.

Assets Losses
. Simulation . . 95% 97.5%
Premium . . Simulation
Insurer Capital | Reserves Baseline . Stress Stress
Income Baseline SD
Average Test Test
Alpha $8.0mn $3.6mn | $11.6mn $3.6mn $0.8mn $8.2mn | $9.4mn
Beta $10.0mn $4.4mn | $14.4mn $4.4mn $1.3mn $13.6mn | $17.4mn
Charlie $14.2mn $6.4mn | $20.6mn $6.4mn $3.0mn $28.0mn | $36.6mn
Delta, $19.8mn $8.9mn | $28.7mn $8.9mn $6.2mn $51.2mn | $64.9mn
Echo $24.0mn $10.8mn | $34.8mn $10.8mn $7.9mn $53.1mn | $77.0mn

Table 5.8: Simulated Losses

Considering the effect of capital

Suppose, as per Table 5.8 that the insurer has a capital buffer, which initially, is
equal to the simulated average losses on its portfolio. We now examine the optimal
reinsurance fraction which means the insurer would remain solvent in the event of
losses of a specified magnitude. We consider p values for both the 95% and 97.5%
stress tests. This means calculating the value of p which would set $Profit(L) = — K

(Equation 5.4.6). The required expression is

ﬁ(Lstress) -
(Lstress — $Premium Written — K)
Lgtress — $Premium Written + ($Exposure x %CC)

(5.4.9)

where %CC is the percentage ceding commission.

The solvency threshold for the insurer is Reserves = Lgjess. If Reserves > Lgtress
then we set p = 0 as the insurer does not need reinsurance at this stress test loss
level as it would remain solvent without it. For insurer Alpha, reserves exceed
the stress test losses at both thresholds, while for Beta, reserves exceed only the

95% stress test loss. Figure 5.7 and Table 5.9 show the complete results of the

11
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analysis. Starting with Table 5.9, it appears that neither Alpha nor Beta should
buy reinsurance. In the 97.5% stress-test, Beta is insolvent even with reinsurance.
This suggests that Beta would need to implement a higher loading than that initially
calculated to pass the stress test. For Charlie, Delta, and Echo, there is benefit in
purchasing reinsurance as a quota share policy, though the optimal fractions appear
fairly high. Consequently, the insurers might decide to buy less than the optimum
but set capital higher. However, this then means that the market is not efficient.
Table 5.9 also shows the profit each insurer would receive if ex post losses equal the

095 fraction; and

simulated baseline with no reinsurance; with reinsurance at the p
with reinsurance at the p®?™ fraction. For Charlie, given that its weighted average
premium rate is close to the reinsurer objective, it receives a scant ceding commission.
Consequently, there is an opportunity cost of $4.0-5.2mn of purchasing quota share
at the optimum relative to baseline simulated profit of $7.8mn. In a market where
information is shared, there should not be an opportunity cost. For Delta and Echo,
the purchase of quota share appears more attractive because of the more generous
ceding commission. These are deliberately extreme examples, but in practice suggest

that bargaining may occur between different insurers and reinsurers over the ceding

commission, which introduces inefficiency into the market.

Profit if Losses=Simulation Baseline ($mn)
Insurer Corcner(rillizfion po95 | [0 p=0 p = 0% p = poo7
Alpha -6.0% 0.00 | 0.00 4.4 4.4 4.4
Beta -4.0% 0.00 | 0.87 5.6 5.6 -2.7
Charlie 0.2% 0.53 | 0.71 7.8 3.8 24
Delta 5.8% 0.60 | 0.71 10.9 7.8 7.3
Echo 10.0% 0.47 | 0.67 13.3 11.7 11.1

Table 5.9: Reinsurance ceding fractions that maintain insurer solvency at different
stress-test values

Figure 5.7 presents a more detailed picture of the simulations that yield the
optimal p. For each insurer portfolio, we plot the insurer profit (Equation 5.4.6)
as a function of losses for values of p between 0 and 1. The capital held (i.e. the
average simulated loss as already discussed) is represented as a horizontal line and

the average simulated losses for the 95% and 97.5% stress tests are represented as
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vertical lines. The intersection of the average simulated loss and the stress test allows
for the optimal $rho to be read from the graphs. In the case of Alpha, it can be
seen that on the p = 0 profit line, at the two stress test loss values (Points A and
B), the profit exceeds the capital held. For reinsurance to be worth purchasing, the
p = 0 profit line must be less than the capital horizontal lines at the stress test
losses. Taking Echo as an example, with stress test loss of 95%, we can see that the
horizontal capital and vertical loss lines intersect between the profit lines for p = 0.4
and p = 0.6 (Point C) As may be verified from Table 5.9, the reinsurance fraction
for this case is 0.47. The comparable intersection for the 97.5% stress test (Point D)

is at p = 0.67.
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. Probability of | Technical XL . QS
XL Reinsurance . Reinsurance
Insurer Loss > Cash Reinsurance .
Coverage . . Premium at
Premium Premium 0975
Alpha $1.4mn xs $8.0mn 0.0% $0.0mn $0.0mn
Beta $7.4mn xs $10.0mn 0.0% $0.0mn $8.3mn
Charlie | $22.4mn xs $14.2mn 1.6% $0.4mn $5.4mn
Delta | $45.1mn xs $19.8mn 5.9% $2.7mn $3.6mn
Echo | $53.0mn xs $24.0mn 6.6% $3.5mn $2.2mn

Table 5.10: Excess of Loss Pricing Example

Excess of Loss

Having considered the quota share case, it is worth considering the case of excess-of-
loss insurance as an alternative to quota share for the insurers. Rather than using
the capital buffer approach, we consider a simpler objective: that the insurer rather
than holding a capital buffer buys insurance from a reinsurer to cover losses in excess
of its cash premium income up to the limit of the 97.5% stress test loss value. To
calculate the required parameters, we can use the simulated baseline losses already
calculated in Section 5.4.4. From these, we compute the number of instances of losses
in the vector of generated losses that exceed the cash premium income but are less
than the 97.5% stress test loss value.

The results are contained in Table 5.10. The portfolios of Alpha and Beta generate
expected losses well below the level of cash premium income (see Figure 5.6) and
accordingly there is little benefit in excess-of-loss insurance. For Charlie, Delta,
and Echo, it is interesting to note that the combined technical premium is $7mn.
Recall that in Section 5.4.4, Distribution A in Table 5.4 gives the loss ratios for the
reinsurer versus quoted premium for an expected $10mn of losses. If we assume that
the reinsurer requires a loss ratio of 0.5 or better, then the minimum premium it
will charge is 4%. For the insurance buyers, only for Echo is buying excess-of-loss
reinsurance cheaper than buying quota share. Consequently, for each insurance
portfolio, there is a different optimal reinsurance contract from the perspective of
the insurance company seeking reinsurance.

The excess-of-loss premia calculated in Table 5.10 are computed using the in-

dividual joint distributions of frequency and severity for each of the five insurance
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companies. These are known only to each of those insurance companies alone and
are not visible to the reinsurer. Consequently, there are information asymmetries
between the insurers seeking reinsurance and the reinsurer. Insurers Delta and Echo
know that the fair insurance premium rate for the excess-of-loss contracts specified
in Table 5.10 are 5.9% and 6.6%, respectively. However, the reinsurer would offer
these contracts at 4% premium rate based on its own distribution. Consequently,
the insurers can, under these assumptions, buy reinsurance cheaper than its fair
cost based on their avantageous knowledge of the ‘true’ distribution rather than the
reinsurer’s distribution which assumes simple log-normal distribution of a set of risks
at a particular expected loss value. This illustrates how inefficiency and therefore
financial imbalances between insurance and reinsurance may emerge as a consequence
of different expected loss distributions, unlike in Table 5.2 where the reinsurer and

insurer(s) had the same distribution of expected losses.
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5.4.5 Simulation 3: Insurance buyers of variable risk

We now consider a simulation in which buyers have heterogeneous preferences and
risk tolerance. The interactions of the real insurance market are hard to model as
insurance customers interact with insurance companies via insurance brokers who act
as an intermediary. The flow of business is directed therefore partly by relationships
(and so is not efficient in a traditional economic sense). However, it is possible to
construct some simulations of insurance demand based on different characteristics

and illustrate the utility demand model and how this may affect reinsurance pricing.

The insurance buyer faces a single utility maximization decision: for a given
premium rate, how much cover does the agent with to purchase. This could be
formalised in terms of expected utility (Equation 5.3.4) via variation of the risk
aversion parameter, «, but this is not necessary for the example presented here. The
insurance company must choose premium rates that it believes will not excessively
deplete its capital for a certain level of risks, or plan to cede premium to reinsurance
to cover that risk as demonstrated in the previous section. We will retain the contract
limit structure from Table 5.5 for this analysis, meaning that insurance buyers choose

one of the five contracts.

We will now assume that the more coverage the buyer takes, the more sophisticated
its assessment of the risks are. This places a constraint on the amount of loading
the insurer can apply to the higher limit contracts. We will, as previously, fix the
total potential cover available in the market at $500mn and consider how this may
be allocated among buyers. However, as will be illustrated, the risks associated
with some contracts make them commercially unviable even if theoretically priceable.
Table 5.11 sets out some arbitrary premia based on the subjective beliefs of the
respective buyers, and the maximum number of contracts available in the market
based on the overall capacity of $500mn. We wish to stress that these numbers are
established purely for model convenience and to illustrate the further difficulties to
establishing efficiency under heterogeneous buyer beliefs. The assumption of market

size is required to price potential reinsurance on insurer policies.

For this analysis, we set the expected severity loss mean equal to a quarter of
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the policy limit and the standard deviation to half the mean. Unlike in the previous
section, we will allow the distribution of expected losses to vary with different clients
and have a mixture of buyers considered low-, medium-, and high-risk with different
distributions accordingly. We assume that the variation in risk characteristics of the

three buyer groups is expressed through variation in frequency.

Highest premium rate at which a buyer takes full coverage Maximum number of customers
Limit | Low risk | Medium risk High risk Low risk | Medium risk | High risk
$500k 14% 20% 26% 46 46 46
$1mn 13% 18% 23% 32 32 32
$2mn 12% 16% 20% 16 16 16
$5mn 11% 14% 17% 8 8 8
$10mn 10% 12% 14% 4 4 4

Table 5.11: Insurance buyer premium ceilings

We assume that reinsurers consider the risks involved for the three different risk
categories and apply distributions A, C, and E (Table 5.3) to low, medium and high
risks effectively, and target loss ratios of 0.3, 0.5, and 0.7 respectively. This means
that the reinsurance charges for the portfolios are 6%, 11% and 13%.

We now consider the distributions associated with the different contracts. Ta-
ble 5.12 shows the severity and frequency distributions for each policy. We have fixed
the severity on each contract and assumed that riskier clients have a higher expected
frequency of claims. This assumption could, of course, be varied further, but this
approach suffices for the purposes of this example. From this, we simulate the losses
with 100,000 runs and derive the expected loss for the entire set of possible contracts.

This is shown in Table 5.13 along with the expected average loss per contract derived

Severity Frequency, Poisson(\)
Limit WL or Distribution Low risk | Medium risk | High risk
$500k $125k $62.5k | LogNormal(11.6,0.22) 4.6 11.5 23
$1lmn | $250k $125k | LogNormal(12.3,0.22) 6.4 12.8 19.2
$2mn | $500k $250k | LogNormal(13.0,0.22) 4 8 12
$5mn | $1.25mn | $625k | LogNormal(13.9,0.22 2 4 6
$10mn | $2.5mn | $1.25mn | LogNormal(14.6,0.22) 1 2 3

Table 5.12: Distribution specification for insurance contracts offered to buyers

With this calculated, we can then derive the technical premium for each contract,

which is shown in Table 5.14. Comparing with Table 5.11, we can see that for
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Expected Loss (Total, $mn)

Expected Loss per Contract ($k)

Limit | Low risk | Medium risk | High risk | Low risk | Medium risk | High risk
$500k 0.53 1.32 2.63 11 29 57
$1mn 1.47 2.93 4.40 46 92 138
$2mn 1.84 3.67 5.50 115 229 344
$5mn 2.28 4.59 6.89 285 574 861
$10mn 2.30 4.59 6.86 574 1,147 1,716

Table 5.13: Expected losses for policies

the $5mn and $10mn limits, the high risk technical premium is higher than what
customers are willing to pay. It may be possible in this case for the insurer to
instigate a deductible and reduce the premium. Otherwise, margin is very limited

for medium-risk $5mn and $10mn limits, which might also motivate introducing a

deductible.
Technical Premium (%)
Limit | Low risk | Medium risk | High risk
$500k 2.3 5.7 11.5
$1mn 4.6 9.2 13.8
$2mn 5.7 11.5 17.2
$5mn 5.7 11.5 17.2
$10mn 5.7 11.5 17.2

Table 5.14: Technical premium for insurance contracts

We now consider the capital requirements associated with the insurance policies.
Table 5.15 shows the expected losses for F~1(0.995) and F~1(0.5) for frequency and
severity respectively for both the whole set of contracts and also per contract. Each
insurer must decide how to allocate its available capital and how much reinsurance
to purchase. Rather than calculating sample portfolios, we will simply calculate the

reinsurance fraction that is optimal based on Equation 5.4.6.

Stress Test Loss (Total, $mn) Stress Test Loss per Contract ($k)
Limit | Low risk | Medium risk | High risk | Low risk | Medium risk | High risk
$500k 1.2 2.3 4.0 27 51 87
$1mn 3.1 5.1 6.9 98 161 217
$2mn 4.5 7.2 9.8 280 447 615
$5mn 6.7 11.2 14.5 839 1,398 1,817
$10mn 8.9 13.4 17.9 2,236 3,354 4,472

Table 5.15: Stress Test losses for policies, with Frequency set at F~1(0.995), Severity
at F~1(0.5)
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Based on the Stress Test loss values, and assuming that the insurer writing
each contract holds capital equal to the expected value of losses for the contract
(Table 5.13), we can then derive the optimal reinsurance fraction for each contract.
As in the prior section (Table 5.9), this is calculated by calculating the reinsurance
fraction that sets the profit to the insurer equal to —K, i.e. at the level of loss given
in the Stress Test, the insurer breaks even if it holds this proportion of reinsurance.
As the buyers of the smaller contracts are less knowledgeable and will accept a
higher premium, the reinsurance fraction is lower as the insurer writes more premium.
However, the reinsurance fraction increases from an average of 20% for the $500k
limit contract to as high as 64% for the medium-risk $10mn limit contract. It is
clear from this analysis that while it is possible to achieve risk transfer between
insurance buyer, insurance company and reinsurer, for a simulated market, achieving
convergence of distributions is extremely unlikely as each party is incentivized to

maximize their profit rather than target efficiency.

Optimal reinsurance fraction for each contract
Limit | Low risk | Medium risk High risk
$500k 0.23 0.23 0.20
$1mn 0.31 0.30 0.25
$2mn 0.41 0.40 0.36
$5mn 0.51 0.53 0.48
$10mn 0.63 0.64 0.60

Table 5.16: Optimal reinsurance purchase fraction for each contract implied by stress
test values

We have stopped short of simulating the allocation of policies to individual insurers
as to model competitive market dynamics under uncertainty with heterogeneous
beliefs is a complex problem that in itself might fill multiple papers. However,
it is hoped that the simulation presented illustrates the additional dynamics that
heterogeneous buyer beliefs brings to the challenges of modelling cyber-insurance and
re-insurance. To place the simulation results in context with the US cyber-insurance
market, in 2020, according to the NAIC [210], there were approximately 4 million
cyber-insurance policies written in the US market, with the top 20 insurers taking
68% market share. The report for 2021 does not provide a policy number, but notes

that almost 50% of cyber-insurance premia were ceded.
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5.5 Discussion

The simulations show the difficulty of achieving economic efficiency in an artificial
cyber-insurance market even using relatively standard distributions and contract
structures. However, as has been stressed, just because a market is not efficient does
not mean that transactions cannot take place. We now consider some of the further
informational barriers to facilitating smooth transfer of cyber-risk. Issues of data
transparency, attack measurement, and reporting — making relevant data publicly
available — are particularly crucial in enabling agents to make informed pricing

decisions.

5.5.1 Information asymmetry

By and large insurance and reinsurance companies operate in environments where
high quality precision signals about loss risks exist. For example, in the case of natural
catastrophes, their frequencies are well known and established over many periods.
Further, there are enough tail events to help construct reasonable approximations
of extremes. When it comes to events regarding human interactions, such as crime,
illness, death or accidents, these are reported by statute to the relevant central
authorities. This data is publicly available. In both these cases agents at all levels
share the public signals and can condition their private expectations on good quality
evidence. Of course, there may be variability in the accuracy of private expectations
based on individual interpretation of the data or circumstances. This set-up allows
the buyers of insurance the calculate their expected loss in a well informed manner
and the insurance companies, based on the public information, can quote a premium.
In turn the reinsurers share the same beliefs as no further information is available to
them regarding the likelihood of the different states of nature.

When it comes to cyber-risk and cyber-insurance, the state of data curation and
sharing is far more nascent than for other insurance perils and it is reasonable to
argue that there is no high quality public signal to inform all agents’ priors. In the
regulation of the aviation industry, it is standard to require reporting of ‘near misses’

so that lessons can be learnt and procedures updated to lessen the risk of future
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accidents. It is possible that this might be addressed by vendor telemetry — an
insurer might have a series of recommended cyber-security solution providers that
their clients could sign up for as part of their insurance package who would share

data with the insurer. This raises potential issues of confidentiality.

5.5.2 Cyber-insurer loss experience

The United States National Association of Insurance Commissioners publishes an
annual report on the cyber-insurance market derived from its Property/Casuality
Annual Statement [210]. Table 5.17 presents this information for the four years
currently available. In 2018 and 2019, the data was presented separately for standalone
and package policies but in 2020 and 2021 was presented for combined policies. We
have adjusted for this to present the data on a consistent basis.

It is notable that the ransomware epidemic from 2020 to 2021 had a marked
effect on experienced loss ratios for some insurers'?. However, there are pockets of
differentiation. For example, the Hartford Insurance Company specialises in insurance
for smaller companies, creating a fairly well diversified portfolio of insurance contracts
where the holders are unlikely to fall victim to sophisticated, targeted ransomware
attacks given the potential revenue available. For these companies, basic defences
and security software should help mitigate against losses.

Figure 5.8 plots the losses experienced in the underwriting year versus the
premium written and a linear trend line with intercept fixed at 0. The slope of the
fitted trend line is then the loss ratio. The average loss ratio remained fairly stable
across the two years, but it is striking that less than 30% of premia received was,
on average, retained by the underwriting insurer. The aforementioned NAIC report
states that some 50% of premia for cyber-insurance was ceded to the reinsurance

market.

12This has been widely reported in the trade press — see, for example, [65]

176 of 255



5. Modelling the Cyber-Insurance Market with Risk Transfer via Reinsurance

SUOT)R[NO[RD ISTDIRISAY ‘DHIYN :02IN0G
(dMA Aq o3eroae pojysom sejouapl)

jos[IeW G O} Ul 92USLIodXa SSO[ IINSUI-I9GAD) :LT°G SR,

%eIT  %V'ST  %9TE %FOT | 9T°€T 98°C0T  FL6F  0L6E | IUD SVD L HUId AIOATLMVH
%I08  %T'6S %6TE %FOT | FOCGET 8598  909L 0569 d9D SNI S04
%EFS  UTFIT %E6C %L9S | CSEET  6SCL  T1L6F  SO¥E 49D OdINOS
%ES6 %008  %UEET %6'SE | CE8ET  9%'TF  8E€'89 0S99 494D LAN ATHddIT
%6°9L  %VOF %698 %TST | L8TST  €FF9  L9€V  TEEY d9D SNI HOIUN7Z
%G GOT  %T 9  %S8T  %&L | 90°6ST  SSEET  T€L6 00794 4D TVLIAVD SIXV
%&"6 — — — | V6L — — — d9D SNI HOUV
%GL8  ULGOT %TEE %697 | SCIST  T96IT  TLF6  9£7€8 d9D SNI VND
%L8E  %U6'LY  %0TT  %SL | 88°00¢ SLLLT F6°0ST  S6OTT ONI 0D SNI AdTZvdd
%LTL  %SSS  UTTE %VTT | 8TTET T890C €G8LT €T IFT d9D SYATIAVYL
%9°06T  %9°00T %¥'SS %I9¢ | 190F¢ ¢F'8cec 009%¢ 1£7CET d9D TINI NVDIUAINY
%S Er  %UTTS  %UTLT %90¢ | 6L°6FV¢ 91'8L 1697 6SFF | SONIATOH ANTIVIN OISIOL
%G9  %E'86  %LGY %TLS | 10°TCh  €0°€6C 8963 L8'SGST d9D SNI VXV
%6'TS  %LSS  %ITS %FET | ST9EF  69°80T  T0°G9 SIS d9D NIA XVAIIvVA
%6°9L  %0T9  %LLE %98 | LO'ELVY FIVOV 8T'SSE  €L°0GE JdUD AT 9dNHD
1205 020z 1610c  1810% | 120z  020c 610 810G ULIT
o1yey sso (utg) wnmuerd Us)ILIA 19911(]

177 of 255



5.5. Discussion

There is some evidence to support the premise of a disconnect between expected
and experienced losses in cyber-insurance pricing. Woods et al (2021) [298] develop a
distribution of cyber-losses based on insurance company filings in the United States.
They note that their model significantly under-predicts losses in relation to ex-post

losses reported in other literature. The under-pricing of premia implies that either

e Insurers believe they can diversify loss risk.

e Customers were not willing to pay the technical premium and insurers are

pursuing a ‘loss-leader’ strategy.
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Figure 5.8: US cyber-insurer losses vs premium written

The entry of Arch Insurance also merits comment. Arch insurance provides
capacity'? to a relatively new managing general agent (MGA), Coalition Inc., pro-
viding ‘active cyber-insurance’. Active cyber-insurance is a relatively new product,
which merges the roles of an outsourced security provider and a traditional cyber-
insurer. This reduces some of the risks of asymmetric information transfer associated

with cyber-insurance from the perspective of the insurer. The trade-off between

3https://www.coalitioninc.com/en-ca/announcements/Arch-Insurance-Backs-Coalition
-With-Long-term-Capacity-Across-Cyber-Insurance-Programs
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cyber-insurance and security investment has been modelled by Mazzoccoli and Naldi

(2020) [189] and Skeoch (2022) [268].

Comparison to simulated results

Comparing the experienced losses by insurance companies, our assumption regarding
the adoption by re-insurance firms of their own private distributions for both severity
and frequency of successful cyber-attacks and subsequently losses at this stage of
development of this nascent market seems well-grounded on the available evidence.

The evolution of proportional losses across 15 major insurance companies over the
period 2018-2021 presented in Table 5.17 reveals a somewhat unstable path. Both
the average loss and its distribution exhibits both wide variability and an increasing
trend. Specifically in 2018, average losses were 25.3% of the premia collected and
this measure has monotonically increased to 68.3% by 2021. At the same time
the maximum losses have more than doubled from 57% to 130% by 2021. The
cross-sectional standard deviations exhibit the same monotonic trended pattern.

Attempting to fit a log-normal distribution over the whole period for the companies
in the sample using the same methodology for fitting such distributions in the
simulations shows that the kernel'* of the empirical distribution deviates significantly
from the normal and reveals slight bi-modality (Figure 5.9). It is also notable that
the fitted distributions underestimates the tail of large losses, which is arguably a
significant consideration for reinsurance companies.

Faced with such movements of the cross sectional distributions, meaningful
aggregation of the losses experienced by individual insurance companies does not
seem effective. In the light of this (admittedly cursory) review of the statistical

evidence presented in this paper, Assumption 4 in Section 5.3.3 seems justified.

5.5.3 Loss transparency

We consider what happens if agents only selectively claim on losses from an insurer.
In an insurance analysis, it is usually assumed that every agent is aware of the

attacks they experience. This is a reasonable assumption for some categories of

1See Epanechnikov (1969) [96]
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Figure 5.9: Epanechnikov kernel versus fitted log-normal distribution for NAIC
reported cyber-insurance loss ratios, 2018-2021

cyber-incidents, such as ransomware, although other cyber-incidents such as data
breaches might not be detected until some time after the event. Agents report some
attacks to an insurer and thus a claim is made; some attacks go undisclosed (in
insurance, this is known as IBNR — incurred but not reported). More formally, at
time ¢, the agent may be aware of the attack and its damage so the state of the
world in which the attack occurs, s is known to them. The agent might inform the
insurer about the state so the insurance knowledge of the state s is conditional on
the revelation of the agent. Now, the insurer knows that their distribution is not
the objective one but only a partial revelation due to the agents selectively choosing
to report losses. The insurer then tries to approximate the objective distribution
but it will be with error. In the event that reinsurers know that different insurers
have different approximations of the true distribution, they will use some kind of
averaging across these approximations to quote reinsurance premiums. The results

are:

e No insurer is offered a fair premium given their approximation of the true

distribution.

e No agent is offered a fair premium as the insurance offer is based on a distribu-
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tion different to their own.

¢ Objectively measured data is absent at all levels because reporting is a choice.

5.5.4 Consistency of reference

There is a significant problem with the standard actuarial modelling cycle approach
to cyber-insurance: the evolution of systems over time, which is quite unique in
its complexity in relation to other perils. Calibration of models using events such
as WannaCry have poor future predictive power as the security vulnerabilities it
exploited have been patched, Windows XP is less widespread than it was and the
operating systems that replaced it have better, though of course not perfect, security
by design. In economics, this can be couched in clients’ Bayesian updating of
their distributions; they do not and cannot observe attacks on other clients (other
than indirectly via media reports) so there is no need to converge to a stationary
distribution at the client level. The consequence of this is that the insurers and
reinsurers may have a better understanding of the fair price of risk, but buyers do
not share the same concern and thus are not willing to pay the demanded premium

for the insurance.

5.5.5 Supply and demand

In the insurance industry, it is common to describe the state of the market as ‘hard’
or ‘soft’ In a soft market, supply exceeds demand placing downward pressure on
premium, whereas in a hard market the converse is true. Often the experience of
losses in a particular class of business will result in a market hardening. This has
important implications for the pricing of cyber-insurance by a vendor. In a soft
market, the insurer must charge the lowest premium it can actuarially justify to
build market share. In a hard market, the insurer should charge the highest realistic
premium possible. If the market were efficient, it would converge to some form of
equilibrium but if not it may swing between financial imbalances. There is evidence
that in the early stages of the cyber-insurance industry, some insurers operated a

very experimental approach to pricing. Woods (2023) [297] provides an account
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of one large US insurer, , whose Chief Operating Officer admitted that their early
cyber-insurance models were a “complete guess”. The same insurer then suffered loss
ratios of 100% and 130% in 2020 and 2021, respectively (Table 5.17), suggesting that
even if refined and updated, the pricing models may have underestimated the claim

frequency or severity.

5.5.6 Further Work

We have considered simulations in which losses are uncorrelated. An interesting
next step would be to consider the correlation of losses and implement the modeling
strategy presented in this chapter using more complex loss-generating functions, such
as those reviewed in Section 2.3.2, than the simple joint distributions of severity and
frequency used in this chapter. It would also be instructive to compare the results
of simulations of distributions proposed by Eling et al (2019) [91] and Woods et al
(2021) [298], with insurer loss data. Claims data is deeply confidential to insurance
companies, however, so the results of such analysis would unlikely be able to be
widely disseminated unless extensively anonymised.

In the simulations, we focused on the supply dynamics of insurance and in
particular the interaction between insurers and reinsurers. The model provides for
consideration of buyer preferences, which at this stage we have explored only briefly
in the first simulation to illustrate how buyer utility can affect coverage. A further
piece of work would be to explore the price sensitivity of buyers of insurance coverage

and how these preferences propagate through the information chain to reinsurers.

5.5.7 Conclusions

This chapter has developed an artificial yet realistically structured model of the
cyber-insurance market considering all three levels of agent interactions. The model
incorporates the demand choices of the consumers/buyers of cyber-insurance, their
suppliers — insurance companies offering contracts — and reinsurance companies
providing additional underwriting capacity.

The extent to which an insurance market facilitates smooth risk transfer is linked

to the sharing of information by participants regarding the distribution of losses.
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We argue that this condition is very unlikely to hold in the cyber-insurance market.
Disagreements on loss expectations means that cyber-insurance contact pricing will
be considered inefficient at both the retail and wholesale levels, leading to lower
societal benefit. The purpose of this chapter was to quantify such inefficiency within
the confines of a three-tier market under miscellaneous types of disagreements in loss
expectations among the participants at each tier.

To establish a benchmark to gauge the extent of inefficiency, we have simulated
a simple market where all agents share a distribution of losses based on two loss
frequencies. From this simulation, we obtained the efficient measures of reinsurance
premium and the proportional participation of reinsurers. We found that simulated
loss reduction to the insurers is almost identical to the cost of reinsurance (bar small
statistical errors), as expected. This case represents the economically efficient market
outcome.

Maintaining all the behavioural parameters from the first simulation, we then
proceeded to compute expected losses and reinsurance premiums based on diverse
distributions held by insurance companies and reinsurers. Both insurers and reinsurers
independently price premiums to meet target loss ratios based on distinct and
subjective distributions. Under conditions where losses are close to the modal
simulated value, insurers are typically not incentivised to buy reinsurance. However,
when considering relatively extreme losses under a ‘stress test’ type scenario, the
value of reinsurance emerges to some insurers whose distributions are relatively heavy
tailed in comparison to others. For such insurers, the upfront cost of such reinsurance
is justified by the avoidance of ruin under high loss scenarios.

Even within the confines of this simple example, the divergence in distributions,
expectations and objectives demonstrates that efficient pricing is hard to achieve.
It should be noted that whilst there are specialists in cyber-insurance operating
within the reinsurance market, cyber-insurance itself competes with other lines of
insurance for allocation of specialty reinsurance capital. Based on this, we used a
uniform cost of reinsurance in the second of our two simulations. This is the outcome
of the reinsurer holding a private loss distribution. This condition may reduce the

reinsurance capital allocated to cyber-insurance.
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Our findings suggest that the cyber-insurance market will continue to face poten-
tial financial imbalances. That is, it will be highly profitable for some participants
and costly for others. This is already evident in data on cyber-insurer loss data
(Table 5.17). There has been considerable progress in the academic literature on
theoretical modelling of cyber-losses and on empirical analysis. However, access
to reliable and transparent data remains a problem for researchers as insurance
claims data is confidential and highly guarded. Braun et al have noted that an
insurance-linked securities market to support cyber-insurance may struggle to develop
without better cyber-modelling [43]. . Without a means of accessing reliable data
on cyber-losses, insurance buyers will have to continue to form highly subjective
probability distributions. In a recent paper, Bajoori et al argue for the creation of
an official registry of cyber-security experts with a duty to report [19], which has
also been proposed by the UK Government!®.

The cyber-insurance market is still at as stage of relative infancy. The current
institutional setup does not appear fully conducive to the delivery of efficient market
outcomes at this juncture. Achieving efficiency requires commonly held beliefs
and stationary loss distributions. Whether such conditions can be achieved and
maintained is questionable given the dynamic nature of cyber-threats. Our provisional
conclusions are that the most likely market structure will involve firms specialising
in particular insurance contracts covering different ranges of loss limits, with varying
access to reinsurance based on these contracts. The overall outcome will be that
the capital capacity of this market will be below its optimal size under shared

informational conditions.

Bhttps://www.ncsc.gov.uk/information /ncsc-assured-cyber-security-consultancy
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Threat Modelling
Ransomware Attacks on

Enterprise Networks

Threat modelling is a useful exercise for risk analysis on cyber-insurance policies, for
as discussed in Chapter 5, the lack of public reporting of cyber-security incidents and
evolving nature of technology complicates traditional actuarial modelling of risks.
NIST SP800-53 defines threat modelling as, “a form of risk assessment that models
aspects of the attack and defense sides of a logical entity, such as a piece of data, an

application, a host, a system, or an environment” [214].

In insurance, there are typically two commonly used forms of risk assessment:
deterministic and probabilistic assessments [221]. These may be complementary;
usually the deterministic assessment is used specifically to determine capital limits
for insurers via ‘realistic disaster scenarios’ while the probabilistic assessment is used

more broadly for both pricing individual policies and risk analysis.

As demonstrated in Table 5.17 in Chapter 5, 2021 saw significant losses to cyber-
insurance companies, much of which is likely due to the emergence of ransomware.
This chapter introduces a model for evaluating the potential impact of different
ransomware attacks on a model network, which could be of use to an insurer in
formulating loss estimates for insured risks based on the structure of the insured’s

network and defences.
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6.1 Background

Ransomware is a commonly used term for computer code that uses encryption to
compromise the availability of files and/or a system with the aim of extracting
a ransom from the victim. The concept of ransomware has been discussed in the
literature since 1996 when Young and Yung introduced the concept of ‘cryptovirology’
where they envisaged encryption being used offensively to extort money from a system
owner [304]. The literature on ransomware spans the fields of computer science, crime
science and economics. Ransomware was largely of theoretical interest until relatively
recently owing to the difficulty for criminal enterprises to extract payments from
victims. Legitimate financial institutions are in general prohibited from engaging
in or facilitating criminal transactions and this rendered cross-border extraction
of ransom payments problematic. However, the development of crypto-currencies
has facilitated pseudonymous monetary transactions outside conventional financial
channels. This has proved to be an effective enabler of cyber-dependent [285] crime

such as ransomware.

A Trend Micro white paper in conjunction with Osterman Research in 2021
reported that 50% of surveyed firms lacked the capability to prevent ransomware
attacks [244]. The increased use of cyber-insurance by firms risks transferring the
burden of costs from the attacked business to the insurer depending on the exact
terms of insurance coverage. The ability to model the extent to which an individual
risk! may be affected by ransomware is of critical importance to a responsible insurer’s
underwriting strategy in determining the expected frequency of claims and also the
severity?. Use of economic models such as the one presented in this research may help
insurers better understand how to price the risks of ransomware and thus provide

better coverage for firms.

1 . . . .
In insurance, it is common to refer to policyholders as risks
2 Average loss per claim

186 of 255



6. Threat Modelling Ransomware Attacks on Enterprise Networks

6.1.1 Modelling ransomware requires a clear, disciplined approach

The potential costs of a ransomware attack may be mapped using the confidentiality-
integrity-availability (CIA) framework. Assuming the encryption process is perfectly
reversible with the appropriate key, the integrity of the information may be unaffected,
though there is always the risk of corruption. If the ransomware allows the attacker
access to or exfiltration of information, then there is a potential for breach of
confidentiality. The encryption methodology can vary in sophistication, but even a
relatively rudimentary encryption methodology would prove hard to crack within
a limited timeframe given to pay the ransom (unless the ransomware is a common
variant using a key that has already been cracked). The interaction between the
attacker and defender is potentially nuanced and complex in a ransomware attack
relative to other cybercrimes [252]. In ransomware, there may be direct interaction
and bargaining between an attacker and defender, whereas other malware such as
spyware, keyloggers and so on may compromise the confidentiality of information or

its integrity, but the interaction between attacker and defender is usually indirect.

The motivation for the research depicted in this chapter is to develop a model
for ransomware infections and defence that has broad accessibility and applicability.
It is important, however, to ground this against an established and well-studied class
of models to allow for a range of existing techniques to be used to study the model
output. This approach is inherently vulnerable to the criticism of abstraction from
real world cases. However, a model that perfectly replicates every detail of a system
is likely to be difficult to efficiently solve. Thus, there is a balance to be struck
between choosing a set of sufficiently sparse parameters to depict the problem and

losing practical significance.

A particular challenge in modelling ransomware is finding a framework to capture
the intricate architecture of different networks and different attackers. Partially
Observable Markov Decision Process models appear to be particularly useful for
describing a ransomware infection as they can capture uncertainty about the state
of a system from the perspective of the observer. Further the transition structure

allows for either deterministic or stochastic outcomes or a mixture of both. Whilst
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the representation of a network system within such models is relatively simple
compared with the complex structure of protocols, privileges and interaction that
comprise a network, a POMDP model at least captures the core features of the
system architecture in a way that most conventional game theory based models may

not.

6.1.2 Distinguishing different ransomware attacks

For the purposes of this research, ransomware is considered to take two forms:
worm-like malware without attacker interaction and malware launched by a strategic
attacker [137, 220]. The former automated threat can be countered by antivirus
companies updating detection signatures and software vendors patching known
exploited vulnerabilities [230]. This type of ransomware is economically similar to a
mass marketing effort, where a criminal enterprise hopes to gain large numbers of
small ransoms. This has been well researched and documented, with backup of data
often used as the key defensive strategy. The wide availability of secure (in so far
as anything can be) cloud storage mitigates to some extent against risks of the loss
of information availability but does not solve the risk of a breach of confidentiality.
For individuals, ransomware insurance may be of value in covering the costs of a
replacement device should an expensive piece of equipment be rendered inoperable
(especially if a backup of data is available).

Backup is however only partially effective for the latter type of ransomware, which
targets enterprise networks. Typically, this type of ransomware is introduced via
either a malicious email attachment; via direct unauthorised network access (Remote
Desktop Protocol, for example); or by exploiting a vulnerability in a system. Under
the assumption that the main objective of such an attack is to render key network
nodes unavailable in the hope of extracting a ransom, if a prior backup exists it
will be of a de facto vulnerable configuration that if restored may be immediately
compromised again. There may be a mitigating patch or configuration alteration
available, but this is not guaranteed. In the event that the attacked organization
places most weight on pure information, a backup is useful. However, this may not

solve the potentially significant financial risk of a loss of business operations. The
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most significant public example of this is the shipping conglomerate, Maersk, who

suffered a global logistics outage as a result of the NotPetya malware?.

6.1.3 Ransomware may incur reparative costs

Once an organization is aware it has been compromised, it may enlist the help of
a specialist company providing ‘post-breach services’ [68]. This may be paid for
either by the victim itself, or increasingly commonly by an insurer as part of a
cyber-insurance policy. The trade-offs between the cost and benefits of these services
is an emerging but potentially fruitful area of research. The decision process following
a ransomware infection ranges from attempting only the minimum remedial actions
needed to clear the immediate ransomware infection (including paying the demanded
ransom) to a complete replacement of all information technology infrastructure
including a ‘clean install’ of all operating systems and software. A rational firm
paying for the clean-up itself would choose the minimum cost needed to contain its
eventual potential loss. Losses include potential third party claims in case of data
leakage, loss of turnover due to business interruption and direct expenses related
to combatting the ransomware infection. An interesting question emerges when an
insurer is paying for the cost of the clean-up. In this case, subject to the limits of
policy and the risks of affecting future premia, there is a potential incentive to spend
more than the minimum amount if the firm is not paying for the post-breach costs
itself. It is clearly in the interests of the post-breach specialist to maximise its income

from such an operation.

6.2 Theory

The model introduced in this chapter is based on partially observable Markov decision
processes (POMDPs) (see Kélbling et al [153]), which are a class of stochastic models

for decisions based on partial observation of the state of a system. POMDPs are

3See, for example, [133] for an interesting account.
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generalisations of Markov Decision Processes* and are characterised as a 7-tuple

(S’ A7 T7 R? Q) 07 r)/)

where

e S : Set of states

e A: Actions

e T : Conditional transition probabilities between states
e R:SxA— R (reward function)

e : Observations

e O : Conditional observation probabilities

e 7 : Discount function

POMDPs may be implemented in the Julia language using the POMDPs.jl pack-
age [85]. Julia has several advantages for this type of work: legibility of code and
outputs via using symbols to represent key parameters, speed of computation and
finally the ability to define custom types. A POMDP where observations are known
with certainty is a Markov Decision Process (MDP). Section 6.4.2 carefully walks

through the construction of the POMDP used in this chapter in detail.

6.2.1 Solutions

Once a problem has been characterised using a POMDP, simulations can be run to
evaluate the range of reward outputs based on different actions. POMDPs have a
wide range of applications, most notable in fully or partially autonomous decision-
making in fields such as robotics or air traffic control [165, 180]. In these instances,
the future potential states and actions need to be evaluated to determine the best
possible outcome, or reward. The algorithms that are used to calculate (where
an exact solution is possible) or best estimate the maximum reward are known as

solvers [260, 286, 164]. Without perfect foresight, a decision-maker needs to react to

1See, for example, [235] for an introduction to MDPs
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the state which they observe, which is known as a belief [249, 172]. The set of actions
corresponding to a particular belief is termed a policy [55]; a policy represents the
decisions to be taken under different scenarios, or states of the system. The aim of a

POMDP solver is to derive or estimate the optimal policy.

6.3 Related work

6.3.1 Game theory models of ransomware infection

A small but high quality body of literature around the economics of ransomware has
developed, chiefly organised around a game theoretic treatment of bulk ransomware
attacks. Laszka et al model ransomware as a multistage, multidefender game with
mitigation via backup [169]. In the game, the first stage is organizations and attackers
choosing their backup and attack efforts respectively. In stage two, each organization
becomes compromised; those falling victim decide whether to pay the ransom. August
et al provide an extremely thorough economic treatment of the problem of software
with vulnerabilities potentially exploitable to deliver ransomware [16]. They examine
a downstream endogenous recovery decision that influences an upstream security
decision. They note that a limitation of prior literature is that the possibility of
negative security externalities is not captured. The work is particularly focused
around the trade-off between software pricing and potential for ransom, which while
of theoretical interest is practically less intuitive as the monetary cost of software is
just one factor governing its adoption or utilization.

Cartwright et al develop two prior game theoretic models® of kidnapping to
ransomware [54]. Their set of payoffs comprises: criminal does not infect computer;
release of files for ransom & not caught; files destroyed & not caught; criminal caught
after release of files; criminal caught after destroying files. Li and Liao consider a
multi-stage game [174]. In stage 1, the attacker launches ransomware attacks on N
victims. In stage 2, after observing random, R, victims decide whether or not to pay
it. In stages 3 & 4, the attacker follows up with decision making. An interesting

innovation by Li and Liao is the introduction of a reputation score for the ransomware

5Selten’s game [258] and Lapan & Sandler [168]
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originator, which guides the decision of the defender on whether to pay the ransom.

Ryan et al consider how the development of targeted ransomware has affected
the dynamics of ransomware negotiations, concluding that imperfect information
results in a non-trvial optimal strategy for the attacker [252]. Galinkin frames the
ransomware defence problem as a lottery and considers how best to remove the
incentives based on data from actual ransomware attacks, concluding that off-site
backups incentivised by governments are the strongest deterrents [117]. Yin et al
conduct a game-theoretic analysis of ransomware via attacker-defender and defender-
insurer games [303]. They find that backup strategies are abandoned when recovery

becomes too expensive and that the introduction of insurance leads to moral hazard.

6.3.2 POMDP models of penetration testing

There is a reasonably developed, though arguably fairly concentrated, body of litera-
ture on the use of partially observable Markov decision process models (POMDPs)
for penetration testing. POMDPs will be fully introduced in Section 6.4.2. In brief,
they are a class of models that guide structured decision making under uncertain
observations. The decision-maker receives a belief regarding the state of a system,
from which they may take certain actions. The decision-maker then receives a reward
that is a function of the next state reached, which is determined via a set of transi-
tions. The work applying POMDPs to penetration testing is organised around the
identification of potential attack paths within a system from a defensive perspective.
However, this methodology is equally applicable to the decisions of an attacker albeit
the attacker may be more risk averse with regard to potential detection. One possible
reason why this study is not more popular is that vulnerabilities in systems can be
esoteric and the POMDP model therefore both too general and abstract to usefully
model the cases. However, for a broad economic analysis of systems vulnerability,
these models may yield useful insights.

Some of the literature is inconclusive regarding the efficacy of POMDPs to model
attack chains. Sarraute et al represents an early use of POMDPs for modelling
penetration testing by considering the planning of attacks under uncertainty [254],

which was later refined to conclude that in general penetration testing is not POMDP
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solving, for the reason that the specificity of the models is inherently limiting
set against the continually evolving information security landscape [255]. Hoffman
provides a taxonomy of models in respect of the previous research, but again highlights

the limitations of decision models in fully capturing human behaviour [143].

Mehta et al discuss how POMDPs can be used to inform resilient systems design,
which is clearly of relevance to understanding how to defend against ransomware
attacks [192]. Ghanem and Chen highlight the value in using automated reinforcement
learning to replicate and analyzing complex penetration tests far faster than even an
expert human might be able to [121]. Schwartz et al present two different POMDP-
based penetration testing models [19]. The work appears relatively abstract but the

introduction of a discount factor is interesting.

6.3.3 Incident response and recovery

An interesting consideration in cyber-insurance policies is coverage of incident re-
sponse services, providers of which may be called upon to assist a company respond
to a ransomware attack. Woods and Bohme conduct (to the best of our knowledge)
the first survey of how insurers address this particular problem [295]. They find that
insurers tends to nominate a panel of firms to provide services to insured parties,
split between legal, forensics and communications experts. The panel sizes range
from just 5 firms (Allianz) to 50 (AIG) within the top 20 US cyber-insurance carriers
who make such information public. Woods and Bohme highlight that the question as
to whether insurers have resulted in a worsening of the 2021 ransomware epidemic
is an empirical one to which they are not aware of any answers. Further, they fail
to distil any stylised facts about ransom procedures finding “considerable variation
across insurers and providers”. Without such information, it is arguably difficult for
firms to plan a strategy ex ante and it is this decision making process that our model
aims to assist with. Filiz et al conduct an interesting study into the effectiveness
of ransomware decryption tools [108]; the malware in this study is largely of that
encountered in the wild rather than the targeted strains covered by the research in

this paper.
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6.3.4 Business continuity insurance

Business continuity insurance is a long-standing line of insurance, which traditionally
covered computer systems and data records under the ‘all other contents’ definition
under ‘property damage’ [122]. Glynn et al also note that “commercial combined
policies have generally sought to exclude hacking attacks and losses flowing from
viruses, corruption of data, etc” [122] This clearly therefore excludes ransomware

attacks, which are arguably better covered under a cyber-insurance policy.

6.3.5 Network malware models

Jacob et al present an interesting treatment of the issues that might need to be
addressed in an automata model of malware, in particular interaction and concur-
rency [149]. Dalla Preda and Di Giusto offer a formalization of this thinking via
the k-calculus [73]. Cam develops a combined POMDP /logistic regression model for
minimising the impact of a malware infection [51]. Liu presents a thorough theoretic
analysis of ransomware spreading across a network incorporating its specific topology
using an adjacency matrix [179]. The model assumes that the dynamic state of each
network node is statistically dependent on the states of its neighbouring nodes. Hu
et al use Bayesian attack graphs to model the interactions between a multi-stage

attacker and a network, formulating the defence problem as a POMDP [145].

6.4 Model

6.4.1 Problem statement and economic considerations

We define a ransomware attack as the introduction of a malicious process that uses
encryption to compromise the availability of a system by attacking the integrity
of the system, manipulating existing processes and resources, potentially with loss
of confidentiality as well. Confidentiality, integrity and availability are harder to
represent mathematically than monetary costs. The economic concept of utility is
helpful in this situation as it provides a way to describe the preferences of a decision-

maker (often called an agent in the economics literature). A so-called multi-attribute
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utility function [2] can be defined to represent the preferences of the decision-maker
in this problem:

Udefender = U(Kw Ly Oé) (641)

where k represents confidentiality, ¢ integrity and « availability. U(k,¢,«) is a
multi-attribute utility function, which may vary according to the preferences of
the defender. We assume for simplicity that this takes the value of 1 for a system
operating according to its specified parameters. This framework accounts for the
expected benefits of security investment including insurance coverage in a rigorous
manner. It also allows for a decision-maker placing greater weight on the security

parameters in formulating choices over the immediate monetary costs of an attack.

The concept of integrity is important in the attack as for a large-scale ransomware
attack to be effective, a process needs to be introduced into the target system with
sufficient privileges to effect encryption of key files beyond the privileges of the
initially compromised user. Targeted resources may include credentials (passwords,
keys etc), configuration files (for access control or firewalls). Manipulation of firewalls
is particularly important if the attacker seeks to exfiltrate data from the attacked
system, though this is not likely to be the primary motivation of a ransomware
attack but rather a strategy by the attacker to increase the likelihood of ransom
payment. Table 6.1 summarises the utility impact of various different types of attack.

It is important to note that the parameters governing behavioural response to a

Attack | Confidentiality | Integrity | Availability
Data Breach X X
Locker Ransomware X X
Double-extortion X X X

Table 6.1: Attack impact on utility

ransomware attack may not just be limited to the direct financial costs of a ransom or
business interruption, but also to the impact of an attack on confidentiality of data.
If an attacker can encrypt a file, then they can likely also exfiltrate it and companies
may need to verify data either decrypted or restored from backups. Accordingly,

the model developed in the subsequent sections takes account not only of monetary
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costs, but also confidentiality, integrity, and availability from a utility perspective.

6.4.2 POMDP Model Structure

The set of states® for the POMDP model are

S = {: clean, : infected, : locked, : offline}

The rationale for choosing these states is that when a machine is compromised, it is
not certain that the files contained on it will immediately be encrypted or that it will
be locked”. In a targeted ransomware attack, the attacker may wish to compromise
multiple systems within the network before attempting to extort a ransom. The
model states may apply to the system as a whole in the case of a single machine, or
to individual machines in the multi-machine cases contained within a vector. The
‘offline’ state is a terminal state for the single machine case and if a systemically
critical machine such as a domain controller is offline in the multi-machine case.

The overall set of available actions is defined as

A = {: observe, : repair, : shutdown, : pay}

Within each state, only certain actions are available (Figure 6.2). The actions apply
to the system as a whole rather than individual machines. This sacrifices some
potential realism but has the benefit of significantly reducing potential dimensional
complexity in the model transition structure. For the purposes of this work, the
actions {: shutdown,: pay} are assumed to be terminal. Thus, paying the ransom

restores the system to its original clean state without possible reinfection. The

State Observe Repair Shutdown Pay

Clean X (x)

Infected X X

Locked X X
Offline

Table 6.2: Model actions

In Julia, the : prefix denotes a symbol
"This could be thought of as analogous to an incubation period in viruses targeting living
organisms
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monetary reward structure for the model is depicted in Table 6.3. In addition to
monetary rewards, the reward function can also update the utility function, Ugefender

based on the action taken and the resultant state, s’. The set of observations, 2 € S,

Parameter Description

Tobserve Cost of observation

Cost of successful repair
repair Cost of unsuccessful repair

T shutdown, Cost of shutting down system
Transom Cost of ransom payment

repair
T_

Table 6.3: Model reward structure

are equivalent to the model states. These are accompanied by an observation accuracy
parameter, pops = [0 — 1]. A key assumption is that there is ambiguity only as
to whether a machine is infected with the attacking malware. This means that for
o € : clean,: locked, : offline pyps = 1 (i.e. the observer sees the current state) but
for s = : infected the observer receives observation :infected with probability pops
or :clean with probability 1 — pops. The intuition behind this is that some strains
of ransomware may initially be stealthy and therefore hard to observe before the
ransomware starts to encrypt files. pops could equivalently be interpreted as the level
of competence of malware detection defences.

Figure 6.1 depicts the transition probability structure of the model for a sin-
gle machine. It should be noted that the actions {Shutdown,Pay Ransom} are
deterministic whereas other actions cause the Julia program to return a probability
distribution of potential states, which can then be sampled. While the transition
structure represents a simplification of the progress of an attack, the aim of the model
is to capture the broad dynamics of an attack rather than to model each individual
stage intricately.

An important feature of the transition model structure is the two-stage process
of ransomware infecting and then encrypting a machine. The justification for
this is that in sophisticated ransomware attacks, the attackers may spend time
implementing command and control infrastructure and attempting to gain privileges
before attempting to launch the ransomware and making demands. It is also not a

given that ransomware will prove effective at encrypting data on a given machine. It
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l‘pcompromise

Pcompromise Pay ransom

Observe

DPrepair

bserve V Repair
pencryptv -

Infected Locked

(1 - prepair) -Pencrypt

Shutdown

Figure 6.1: Stylised transition probability structure for a single machine

may be possible for an attacker to launch malicious code on a machine or network,
but there is a risk that the code fails to execute as expected due to insufficient
privileges, active defences or a combination of measures. This failed attempt would
likely be spotted by monitoring personnel, who would then trigger the ‘repair’ action

and attempt to remove the attackers and/or malware from the system.

Expanding the model to a network of machines

The ability to define custom types in Julia allows for a ready extension of the single-
machine model to a network of machines via a pseudo-objected oriented approach.
Each machine within a network is represented by the constructor NetworkedMachine
with fields:

name, category > {Workstation, Fileserver, DomainController}, boolean ini-
tial_vector, boolean isCritical and importance > {: low,: medium,: high}.

The properties of each different type of machine in this specific model are outlined
in Table 6.48: A function, ModelNetwork, takes as arguments the number of each

type of machine, and then constructs a vector of NetworkedMachines. Each machine

8These could of course be altered as needed for modelling of a specific use case
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Machine Category Name Initial Vector Critical Importance

:workstation WS true false low
fileserver fs false false :medium
:domaincontroller dc false true ‘high

Table 6.4: Machine Specification

is automatically assigned a name corresponding to the abbreviations in Table 6.4
and an integer number. By setting up the problem in this fashion, the POMDP
simulations can interact with the network in a manner that is realistic. The inclusion
of the initial vector property is particularly important as this allows for fine control
of infection modelling with respect to the network topology and privilege structure.
For example, the typical initial vectors for ransomware infections are either spear
phishing of malware or credential theft for remote access [238]. In a well-managed
network, file servers and domain controllers should not arguably be readily internet
facing. This distinction allows the POMDP model to simulate the lateral movement
phase of a ransomware attack, which is important for realism.

The states and observations are contained within N-length vectors, s and o,
where N represents the total number of machines in the network. The vectors are
ordered in strictly ascending numerical order dc — fs — ws?. The set of actions is
applied to the system as a whole. There is an argument for having the repair action
target individual machines, but it is assumed that a repair action could be scripted
and deployed rapidly across the whole network to affected machines (via Powershell
or other administrative tools). It is possible that an attacker could attempt to
disable this type of administrative control. This is a motivation behind including
the probability of repairing an infection failing within the model. However, in an
enterprise network, the early stage privileges granted will likely be limited solely to
those of the user of that machine who ordinarily should not have such privileges.
The available actions are similar to that of the single-machine model: if any machine
in the network is observed infected, the repair action becomes available. If a machine
is locked, then the shutdown or pay ransom actions become available. In the special

case where a domain controller becomes locked, rendering the network unusable,

9The vector of states for a single domain controller, single fileserver, three workstation network
would thus be [dcl, fs1, wsl, ws2, ws3]
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the defender faces an ultimatum of either paying the ransom or shutting down the
network.

Within the transitions, it is assumed that once a low importance machine is
infected, then the attackers move to infect machines within the network. Separate
probabilities are included for low, medium and high importance machines (Table 6.5)
to allow for different ransomware strategies to be considered. These probabilities
are assumed initially to be independent, but this assumption could be relatively
easily refined if required for a particular case of interest. There is an argument
for considering a network infection model rather than using simple probabilities.
However, this would be most justified for a case in which the aim of the attacking
malware is to indiscriminately infect as many possible machines and the dynamics of
a ransomware attack may be more nuanced. In terms of simulations, the transition
probabilities could be parameterised based on the number of infections, but this

would add significant complexity to the model.

Probability

Pcompromise Probability ransomware initially infects low importance machines

Dspread_low Probability ransomware spreads to other low importance machines

Dspread_medium ~ Probability the ransomware spreads across the network to a medium-importance machine
Dspread_high Probability the ransomware spreads across the network to a high-importance machine
Prepair Probability network cleansed of ransomware before it is locked/files are encrypted
Pencrypt Probability that once a machine is infected with ransomware, it becomes locked

PDobs Probability of observations being correct

Table 6.5: Network transition probabilities

6.4.3 Pricing ransomware insurance

As discussed in Section 2.3.6, insurance carriers collect summary data regarding the
networks of those looking to purchase cyber-insurance. Realistically, an individual
underwriter is likely to have a time constraint in terms of fully evaluating this
data. This is especially the case for relatively small policy limits or small/medium
enterprise (SME) firms, where a firm may have written thousands of policies or the
potential premium intake is modest. The POMDP model presented in this research
allows for a representation of a network based on summary data about the number of
the machines and is complementary to an underwriting strategy based on mapping

specific firm characteristics to past claims. It may also help cyber-insurance firms
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evaluate policy restrictions - what a firm must do for a claim on an insurance policy
to be valid.

Some rudimentary mathematical details of a simple insurance pricing model
follow. An insurer writes a policy, P(p,t,C(¢)) where p is the premium rate, ¢ is
the period of coverage (usually a year), C' is the amount of coverage (in monetary
units) and e represents the terms of coverage (exclusions, details, sublimits etc.).
A policy holder may make claims on losses, [ experienced during that year. The
insurer will determine whether the claim is valid or not; the policyholder may contest
the findings at which point the matter enters the legal rather than purely economic
domain. The aim of the insurance company is to ensure that > p;C; > > [;. A
rational policyholder will only buy the policy if pC < > E[l;\;] where )\; is the
expected probability of that loss occurring.

The insurance company and buyer compete on information with respect to the
decision. The insurance company will have knowledge of the market and risks but
the insured may have greater understanding of its own risks. The time dynamic of
losses is particularly important for cyber-insurance. In a data breach, costs may be
claimed for multiple years after the event, which is problematic for the insurance
company who may have by that stage considered the premium intake from the year
in question as profit.

In respect of ransomware, for the purposes of this research

€ O BusinessInterruption, RansomCosts, BreachlnvestigativeCosts

Within the model, each of these heads of cover has its own separate sub-limit,
which will be agreed by the carrier and insured. The POMDP model actions can be

mapped to insurance claim states:

: shutdown — BusinessInterruption
: pay — RansomCosts

: repair — BreachInvestigativeCosts
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One can then run simulations of the POMDP with different reward (cost) values
and probabilities with different confidence weightings to aim to derive the optimal

premium.

6.5 Simulations

An initial sensitivity analysis is presented varying different parameters within the
model. Two simulations are then introduced: a simple stepwise simulation of the
POMDP using three different policies to familiarise the reader with the model
structure, and a simulation demonstrating the insurance pricing strategy described
in Section 6.4.3. Within these simulations, it is assumed that payment of the ransom
restores the system to its original uncompromised state with no risk of reinfection.

In reality, this outcome is not guaranteed.

6.5.1 Sensitivity analysis
Varying transition probabilities and network size

The simplest sensitivity analysis is to vary each of the different probabilities within
the transaction structure separately, while holding the others constant at p = 0.5.
The size of the network is initially set at 10 machines, comprising 1 domain controller,
1 fileserver and 8 workstations. This is arbitrary, but seems a reasonable starting
point. Separate POMDPs are constructed in Julia varying p = 0.1 — 0.9 in 0.1
step intervals for each probability depicted in Table 6.6. The output variable is
average number of simulation steps taken until all domain controllers in the network
are locked, which effectively represents the problem absolute terminal state. The
simulations were run 10,000 times; this value was chosen as it yielded a good balance
of convergence and relatively modest computation time (< 10s). Unsurprisingly, only
varying the probability that the infection spreads to a high importance machine or
the probability that once infected a machine is locked have significant bearing on the
number of steps for which the simulation runs before reaching a terminal state. This
simply verifies that the transition probability structure is operating as designed.

Next, the effect of the size of the network on the number of steps before all high
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p Pcompromise  Pspread_low  Pspread_medium  Pspread_high  Pencrypt
0.1 6 5 5) 13 13
0.2 ) ) ) 8 8
0.3 ) 5 ) 6 6
0.4 ) 5 ) ) 6
0.5 ) ) ) ) )
0.6 ) 5 ) 4 )
0.7 ) ) ) 4 4
0.8 ) 5 ) 4 4
0.9 ) ) ) 4 4

Table 6.6: Sensitivity analysis: number of simulation steps until terminal state
reached varying single probability variable, holding others constant at 0.5

importance machines are locked are investigated. Table 6.7 shows the results of this
simulation, again with 10,0000 runs. In this simulation, the probabilities are all fixed
at a specific value. The transition probabilities determine the ultimate speed with
which ransomware can lock a network, so one would expect the number of steps
before a terminal state is reached to be inversely proportional to the probabilities.
Increasing the network size modestly increases the number of average steps, which a

simulation runs.

#(high, medium, low) importance machines
p | (LL8) (2.2,16) (3,3.24) (4,4,32) (5,5,40)
0.1 22 28 33 36 38
0.2 11 14 16 18 19
0.3 8 10 11 12 13
0.4 6 7 8 9 10
0.5 5 6 7 7 8
0.6 4 ) 6 6 6
0.7 4 4 5 5 5
0.8 4 4 4 4 4
0.9 3 3 3 3 4

Table 6.7: Sensitivity analysis: number of simulation steps until terminal state
reached varying all probabilities to p with different network sizes.

Finally, the effect on varying the number of domain controllers (i.e. high im-
portance machines) in the network is tested (Table 6.8). As in the prior analysis,
all transition probabilities are set at value p and the simulations are run 10,000
times. It is found that increasing the number of domain controllers in the network

generally increases the amount of steps before a terminal state is reached except for
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at extremely high probabilities of infection/spread/encryption. This suggests that
for a network with reasonable defences, there is economic benefit to having multiple

domain controllers, perhaps in a failsafe-type configuration.

# Domain Controllers
p 1 2 3 4 5
01121 28 33 36 38
0211 14 16 18 19
03] 8 10 11 12 13
06416 7 8 9 9
055 6 7 7 8
06| 4 5 6 6 6
0714 4 5 5 5
0814 4 4 4 5
0913 3 3 4 4

Table 6.8: Sensitivity analysis: number of simulation steps until terminal state reached
varying number of domain controllers in network, 5 fileservers, 100 workstations.

Effect of transition probability variation on utility

The next simulation run is to check how the utility parameters evolve as an infection
spreads without intervention (i.e. the POMDP action is held at :observe). A network
of 5 domain controllers, 5 fileservers and 40 workstations is used. This is an arbitrary
choice but using a large network allows for variation to be more readily observed as
demonstrated by the results in Table 6.7

The utility components are defined as follows:

o C:1- (%medium and high importance machines infected or locked)
o I: 1 - (%machines infected)

o A:1- (%machines locked)

First peperypt is varied, holding all other probabilities constant at 0.5 (Figure 6.2).
As expected, because availability is solely a function of encryption, there is divergence
only in this parameter. This provides a useful test that the simulations are running
as expected. Next, all probabilities are held constant except for pcompromise and
Pspread._low, Which should have an effect particularly on integrity and availability (in

this simulation, there is a 50% chance that an infected machine become locked in
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the following step). As shown in Figure 6.3, there is no variation in confidentiality

but both integrity and availability decrease rapidly as a function of pcompromise and

DPspread_low-

Confidentiality Integrity Availability
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Figure 6.2: Utility versus number of simulation steps. peperypt = p; all other

probabilities set to 0.5
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Figure 6.3: Utility versus number of simulation steps. peomrpomises Pspread_low = Pi
all other probabilities set to 0.5

Finally, pspread medium and Dspread high are varied (Figure 6.4). This has the
largest impact on confidentiality as expected given its definition, but also some
impact on integrity and availability though to a lesser extent given that there are
40 low importance machines in the sample network but only 5 medium and 5 high
importance ones.

These results are designed to illustrate how simple utility metrics can be used to
gain a picture of the evolution of a moderately complex and uncertain simulation
and the variation of key parameters. Such plots could be used to simulate the
impact of complex technical defences and present the results to non-technical key

decision-makers. The subsequent simulations in this chapter will demonstrate some

205 of 255



6.5. Simulations
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Figure 6.4: Utility versus number of simulation steps. pspread mediums Pspread_high =
p; all other probabilities set to 0.5
applied cases of the effect of different defence strategies against various strains of

ransomware with divergent characteristics.

6.5.2 Ransomware infection

Specification

This simulation considers defence against three different ransomware strain attack

scenarios:

o Rare/Sophisticated
o Common/Unsophisticated

¢ 50-50 Baseline

Table 6.9 provides a full specification for each scenario. The first of these is designed
to replicate a targeted strain of highly effective ransomware, which is not commonly
observed in the wild but once inside a system proves very effective at facilitating
lateral movement and ultimately conferral of domain administrator privileges. The
probability of initial infection is set relatively low at 0.1, but if a low importance
machine is compromised then it spreads quickly to other machines. The probability
of successfully infecting medium and high importance machines are set lower at 0.6
and 0.5 respectively to reflect the fact that these servers may be actively monitored
and likely have some more sophisticated defences and/or policies aimed to prevent
them being susceptible to malicious activity. pencrypt = 0.7 for this strain. The

second strain studied is commonly observed, self-propagating ransomware such as

206 of 255



6. Threat Modelling Ransomware Attacks on Enterprise Networks

WannaCry, which is readily eliminated by appropriate tools. Here, the probability of
initial infection is set at a very high 0.9, but the probability of repair is set at 0.8;
thus there is a decent, but not certain, chance that this strain might be cleared from
any workstation it infects. It is assumed that its locking/encrypting methodology is
not that sophisticated, expressed by pencrypt = 0.3. Finally, as the name suggests,
the 50-50 baseline scenario sets all probabilities in the model to 0.5. Observation
accuracy is set at 70% initially to create the possibility of inaccurate observations
and consequent policy errors. For completeness, a simple discount factor of 0.95 is
set, though this is not required for simulations but would be used if applying a solver

to the system.

Rare/Sophisticated Common/Unsophisticated 50-50
Rewards
Tobserve -1 -1 -1
T;’:?pair -2 -2 -2
T;epair -10 -10 -10
T shutdown -150 -150 -150
Transom -50 -50 -50
Probabilities
DPin fection 0.1 0.9 0.5
Dspread_low 0.8 0.3 0.5
DPspread_medium 0.6 0.1 0.5
Pspread__high 0.5 0.1 0.5
Drepair 0.2 0.8 0.5
Pencrypt 0.7 0.3 0.5
Other
Obs. Acc. 0.7 0.7 0.7
Disc.Fac. 0.95 0.95 0.95

Table 6.9: Simulation Specifications

The reward parameters selected are intended to be largely illustrative and are
arguably the most transparent component of the model. There is a small penalty

for observation, which is designed to represent the cost of monitoring a network.

+

repair and r

Separate rewards are included for successful and failed repairs (r repair

respectively). Intuitively, an unsuccessful repair means likely further investigative
costs or expense to attempt to remove the ransomware for the network, such as

hiring specialist help. The costs of shutting down the network are deliberately set as
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higher (i.e. more negative in reward terms) than paying the ransom. The aim of this
simulation is to investigate how defensive actions affect the resultant outcomes and
consequently, the rewards are simply a means of ‘keeping score’. While abstract in
relation to real world costs, this approach is consistent with conventions within the
game theory and decision model literature.

The three strains are tested on a sample network containing 1 domain controller, 2
fileservers and 10 workstations. This network size was chosen to provide a reasonably
sized attack surface but to be of a manageable size for debugging purposes. When
aiming to solve, or at least simulate a POMDP, it is conventional to evaluate the
effect of different policies. A policy in this context is a specification of actions
corresponding to a belief (in this model, the belief is simply the observations). Three
policies are evaluated: the ‘cautious policy’, the ‘gambler policy’ and the ‘random

policy’.
e Cautious policy: attempt repair if infected; shut down if domain controller

encrypted/locked; never pay ransom.

o Gambler policy: observe until a system becomes encrypted/locked at which

point pay ransom.

e Random policy: take random action from set of available actions correspond-

ing to received observation.

The simulations are run in step-wise fashion:

1. Initial vector of states s and observations o set fully clean
2. Receive optimal action a from policy p based on o

3. Determine next state s’ from transition ¢(s, a)

4. Compute reward r(s,a, s')

5. Record s, a, s, r

6. If action is terminal, terminate simulation

7. Set s = s’ and compute observations o(s)
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8. Repeat from (2) until maximum number of steps reached or terminal action

taken

Results

For each POMDP and policy, the simulations were run 10,000 times and the history
recorded. A maximum of 15 steps was permitted in each individual simulation - per
Table 6.7, this is likely to be sufficient to fully capture the simulation steps in most

outcomes. As expected, the average reward (Table 6.10) for the cautious policy is

Rare/Sophisticated | Common/Unsophisticated | 50-50
Cautious Policy -146 -68 -136
Gambler Policy -53 -52 -52
Random Policy -111 -112 -111

Table 6.10: Simulation Results - average wealth

much lower than the gambler policy, given that the cautious policy prohibits ransom
payment and the cost of shutting down the system is higher than the ransom. This
is particularly apparent for the rare but dangerous strain of ransomware. However,
for the common but benign strain, as it is far less likely that the key network
infrastructure is locked, the difference between average rewards is much smaller.
The conclusion of these simulations is that paying the ransom is the best economic
strategy.

Figures 6.5, 6.6, and 6.7 show the distribution of the number of simulation steps
before the simulation terminates across the 10,000 runs. This provides an insight
into the variability of the length of the simulation and the impact of the policy
chosen. For the rare/sophisticated ransomware strain, the cautious policy shows
the greatest variability. This is likely because the probability of repair is low, and
thus the chances of the domain controller becoming locked are relatively high, as
suggested by the average reward returned being close to the cost of shutting down
the system. The gambler policy in contrast results in much shorter run times. For
the common/unsophisticated strain, there is almost a deterministic distribution of
outcomes, which makes sense given that the probability of a repair is much higher

than the probability of the infection spreading.
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Figure 6.6: Simulation step distribution for common/unsophisticated strain
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Figure 6.7: Simulation step distribution for 50/50 strain

utility for each state in the simulations was calculated (as in Section 6.5.1).

6.8, 6.9 and 6.10 show the average components of the utility for each

ransomware strain and each policy. The x-axis of each subplot represents the number

of simulation steps and the y-axis the numerical utility, ranging from 0 to 1. For each

of the 10,000 runs, the number of simulation steps taken was recorded and transformed

into a vector so that the average is correctly calculated. For the rare/dangerous

strain, the gambler policy maximises utility whereas the cautious policy drastically
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underperforms the benchmark random policy. For the common/unsophisticated

strain, however, the cautious policy performs notably better, with the domain

controller locked in only 25% of simulations and on average fewer than 50% of

network machines either infected with ransomware or locked. The 50/50 strain is

intended as a control; the gambler policy has notably less potential for randomness

in the outcomes whereas in the cautious policy, the repair action proves ineffective

at stemming the spread and progress of the ransomware.
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Figure 6.10: Utility evolution for 50/50 strain
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It is relatively straightforward to assess the effect of varying the parameters within
the different POMDPs on the average rewards received for the different policies.
Figure 6.11 shows the average reward for the cautious/unsophisticated strain POMDP
varying the probability that an infection spreads to the domain controller once in the
system (Dspread high)- This illustrates that the crossover point between the gambler
policy being the optimal strategy that the cautious policy occurs at a fairly low
probability of overall domain controller locking. This is largely because the gambler
policy immediately pays the ransom thus preventing the infection from spreading to
the domain controller.

A useful experiment is to investigate the effects of varying the probability of a
repair being successful on the reward (Figure 6.12) for the common /unsophisticated
ransomware strain where this probability should have greatest impact. This provides
a useful check as to the robustness of the policies as only the cautious policy reward
should vary with prepeir. While in a real world decision, the evaluation of defences
would not be undertaken purely on the basis of probabilities, this nevertheless
illustrates the sort of cost-benefit analysis that might be undertaken when planning
security investments. For a real world problem, a POMDP could be constructed
and solved for the optimal policy to help determine an incident response plan, for

example.
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6.5. Simulations

6.5.3 Insurance pricing

This section considers a simple insurance pricing example against ransomware based
on the POMDP model introduced. An insurer is considering pricing ransomware
insurance for an organization. The organization has a network of 1,000 workstations,

10 fileservers and 5 domain controllers. The policy has the following features:

e Ransom paid up to $1mn only if all domain controllers locked.

e Repair costs paid. A successful repair costs $10,000 and an unsuccessful one

$50,000 each time.

o Business interruption costs of $10mn in the event of more than 50% machines

in network locked by ransomware.

For this example, it is assumed that the insurer is aware of six different strains
of ransomware with differing characteristics. For consistency with the simulations
discussed in Section 6.5.2, three variants of the rare/sophisticated and common/unso-
phisticated strains are considered. The parameters for POMDPs representing these

different strains are given in Table 6.11.

R/S() R/SGI) R/SGi) C/UG) C/UGH C/U()
Rewards

Tobserve 0

T epair -10,000

Trepair -50,000

T shutdown -10,000,000

Transom -1,000,000

Probabilities

Pinfection 0.1 0.1 0.1 0.9 0.9 0.9
Pspread_low 0.8 0.7 0.6 0.3 0.2 0.1
Dspread_medium 0.8 0.7 0.6 0.3 0.2 0.1
Dspread._high 0.8 0.7 0.6 0.3 0.2 0.1
Prepair 0.1 0.2 0.3 0.7 0.8 0.9
Pencrypt 0.8 0.7 0.6 0.3 0.2 0.1
Other

Obs.Acc. 0.7

Disc.Fac. 0.95

Table 6.11: POMDP specifications for insurer-specified ransomware strains
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Suppose that an insurance company has appetite for writing 1000 policies insuring
against ransomware attacks. Then, assume that the insurance company has an
expected distribution of claims resulting from each strain, the arrival of which is
Poisson distributed with A parameters given in Table 6.12. The Poisson distribution
gives the frequency of expected claims and the POMDP simulation the severity of
the claim. This approach is similar to that used in the simulations developed in

Chapter 5.

Strain | R/S() R/S(i) R/S(i) C/UG) C/U() C/U(i)
) 10 15 20 %5 30 35

Table 6.12: Poisson parameters for ransomware strains

A simulation may then be run according to the following protocol:

1. For each ransomware strain, randomly sample the appropriate Poisson distri-

bution to obtain number of ransomware attacks, n to simulate.
2. Simulate n attacks per the protocol outlined in Section 6.5.2 and record rewards.

3. Repeat 1000 times (equal to the maximum number of policies the insurer is

willing to write), and take average.

The results of this simulation are presented in Table 6.13. The total expected
losses to the portfolio are $722.2mn, or $722,200 per contract. Accordingly this would
be the actuarially fair premium the insurance company would quote for insuring per
the policy terms and conditions. This poses an interesting decision for the insurance
buyer; the cost of insurance is only half that of a ransom demanded under stringent
conditions but is only 0.7% of the total possible business interruption cover available

under the policy.

6.6 Further work

The simulation demonstrates a proof-of-concept of a POMDP approach to modelling
ransomware. Ideally, the next steps in the work would be to use the framework to

evaluate decision making in specific scenarios and systems architecture and feedback
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Ransomware Strain | Average Loss per attack ($mn) | Total Simulated Loss ($mn)

R/S(i) 9.2 92.0
R/S(i) 10.0 146.8
R/S(iii) 10.0 201.0
C/U() 9.4 235.0
C/U (i) 0.8 22.8
C/U (i) 0.7 24.5

Sum 722.2

Table 6.13: Results of insurance claim simulation

is welcomed as how this might be most usefully achieved. The representation of the
network was constructed with the aim of replicating sample networks such as an
Active Directory network and the demonstration of its usage in this work is fairly
simple. A potentially interesting expansion of the simple approach would be to
introduce labelled transitions to formally describe the privilege structure between
machines. This might allow for incorporating user accounts and privilege structures
within the communications and may be of use in threat modelling to describe various
different potential attack vectors from unintended use of privileges (for example from
compromise of service account credentials). It should be noted that the construction
of the model potentially allows for separate model networks to be constructed,
representing an Active Directory Forest, for example.

There is the potential to introduce significant complexity into models such as
the one presented in this work. For simplicity, it is assumed that a ransom payment
results in full decryption and restoration of the system to its original state. This
may not be the case in reality and there would be potential scope to incorporate this
into future model simulations. Equally, it is assumed that once a machine is infected,
if not repaired, it is encrypted or locked with fixed probability. If an attacker is able
to gain introduce command and control (C2C) functionality, then this might not be
the case.

The model presented within this research focused on a single POMDP and
assumes no costs to the criminal actor. An interesting expansion of the model may be
to simulate such costs on the criminal actor (for example, resource constraints, risk
of discovery within a network etc.). The criminal actor might also be simulated as a

reinforcement learning (RL) agent; one could also potentially introduce a defender
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(RL) agent as well.

6.7 Summary

This chapter has introduced a POMDP model for simulating ransomware attacks
either on a single machine or a network of machines of varying importance. The
results of a simple simulation of different types of ransomware attack highlight that
economically the least costly financial outcome is usually to pay the ransom at
the first chance, although this is a scenario that is unlikely to be encouraged by
governmental authorities or insurers. It is hoped that this model may be useful
for helping frame simulations of complex attacks and in developing optimal defence
strategies. The applicability of such model results to a simple insurance pricing
example has also been demonstrated, highlighting how cover could be adapted based

on risk perception.
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Conclusion

7.1 Closing remarks

This thesis deploys economics to tackle several different problems in modelling
information security, resulting in three separate models and one modelling framework.
Chapter 3 expands the well-established Gordon-Loeb model to include cyber-insurance
as part of the security investment decision problem. This introduces an important
dimension to the problem: the decision-maker can invest to reduce the probability of a
breach and/or insure the risk. This is arguably a more complete model for a corporate
decision-maker compared with the standalone Gordon-Loeb Model. Chapter 4
provides a modelling framework that covers all parts of the insurance assessment
procedure for a cyber-insurance policy: describing the company seeking insurance,
assessing its security posture, and assisting guide the policy pricing. This framework
is arguably a much richer vehicle for facilitating discussions between an insurance
buyer and seller than the simple, standard questionnaire that is commonplace in the
insurance industry. It is hoped that the framework makes a contribution towards
helping companies better describe their own security posture should they lack the

resources or expertise so to do.

In the language of Economists, Chapter 4 introduces a ‘bottom-up’ or microscopic
analysis of the cyber-insurance problem, focusing on the specific detail of individual
components of an ecosystem and describing how these might be aggregated and
scaled. Chapter 5 in contrast takes a ‘top down’ view of cyber-insurance, considering
the necessary conditions for a sustainable market at a macroscopic level. Even on

a cursory analysis of economic efficiency arguments, it is clear that at present it
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is almost impossible for the cyber-insurance market to be efficient. However, it
is not beyond reason that one day it might be. The key question to address is
whether technological growth might reach or even at least trend to a terminal state.
Additionally, the threat landscape may evolve to a point where greater international
coordination and enforcement diminishes the frequency of cyber-incidents. At the
time of writing, this appears to be wishful thinking. Should the status quo persist, it
appears that better coordination and data sharing is the first step towards smoothing
the frictions in the cyber-insurance market. Alongside this, with reinsurance capacity
heavily used already, cyber-insurers are likely to need to find other sources of external,
risk-tolerant capital to grow underwriting capacity.

Chapter 6 considers how to model ransomware attacks using a model based on
Markov Decision Processes. While highly abstract as introduced in the thesis, the
model could very easily be adapted for use in calculating the effect of different ran-
somware strains on real-world organizations. The challenge is to find an organization
that is willing to share such details and spend the time working on producing models.
Initially, it was hoped that this thesis would be far more empirical in nature than has
transpired. There are two reasons for this: first, publicly available useful quantitative
data on cyber-incidents is hugely lacking and most studies to date have relied upon
proprietary or external information. Second, companies remain apparently reluctant
to share data on cyber-security incidents. There are tentative signs that regulatory
pressure may change this, for example, the Securities and Exchange Commission in
the United States has introduced rules on mandatory disclosure of cyber-incidents for
public companies [284]. This may allow the academic community to start to garner
and curate information appropriately and thereby advance the empirical security
economics field.

The ultimate conclusion from the work presented in the thesis is: modelling
problems in information security is indeed hard. It often requires novel thinking
and there is occasionally relatively little in terms of literature to guide endeavours,
especially when approaching a problem from a multi-disciplinary angle. Approaches
will often be criticised as too abstract by practitioners or as too generic by those in

the research community more used to granular modelling as opposed to the language
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of economics. Yet, it appears that using economics for information security problems
is worthwhile. In particular, the insurance industry is becoming increasingly keen
to refine its approach to exposure management for cyber-risk and in modelling
catastrophe risk. Simply being able to ascribe a number to the worst possible
outcomes of cyber-events is a starting point in creating boundaries to the problem.
These might then spur discussions that clarify thinking on the modelling of cyber-risk
and deliver better outcomes and resilience for society at large, which is now heavily
reliant on technology and has delegated great responsibility to those who control it

in terms of security and privacy.

7.2 Further work

The ERD-SMM-utility modelling framework introduced in Chapter 4 has significant
potential to be applied to real-world case studies. A particularly interesting exer-
cise would be to compare an assessment delivered via the framework to insurance
questionnaires and examine whether it might price an insurance policy differently.
The simulations in Chapter 5 could be expanded to include dynamic behavioural
adjustments based on the information endowed to the various agents. This is a
complex piece of work, but one that might yield fruitful insights on the behaviour of
participants in the cyber-insurance market.

Finally, the ransomware model in Chapter 6 might be combined with the de-
scriptions of system structure in Chapter 4 to provide a richer model than the
simple network structure used for ransomware modelling in the thesis. All these
outputs might then be combined to populate the Gordon-Loeb Model expanded with
cyber-insurance introduced in Chapter 3 to produce an organizational decision model
for specific security investments versus cyber-insurance in contrast to the relatively
abstract setup used to introduce the model.

All of these suggestions would require significant collaboration with an insurance
carrier and/or broker and the data required to deliver these is, in many cases,
proprietary and confidential. In time, better public databases and incident reporting

might help spur more empirical research endeavours along the lines discussed.
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