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Abstract 

The Input-Output Model is a powerful economic tool used for economic 

structure analysis and extended applications. Economists often adopts the 

Input-Output Model to investigate the changes in economic structures and the 

associated social impacts. Taking China as a case study, this thesis first 

describes the compilation of China’s 2017 Multi-Regional Input-Output table 

and its application in revealing the intensifying geographical inequality of 

China’s carbon emissions. It however exposes some of the most widely 

criticized drawbacks of the Input-Output Model, being the high cost in data 

preparation, the oversimplification of economic symbiosis, and the lack in 

forecast ability. Thus, conventional Input-Output Model is unfortunately 

unsuited to high resolution time-series analysis.  

This thesis hence proposes an innovative regression algorithm on a derivative 

of Input-Output model, the Sequential Interindustry Model, to incorporate high-

frequency time domain into the analysis of the intersectoral interactions of 

economic sectors by regressions on the observations of outputs of different 

economic sectors. To test the efficacy of the innovated algorithm, the electricity 

consumption data of Chongqing municipality is used as a proxy to economic 

activities. The result verifies the validity of the innovated algorithm in time-

lagged analysis of the economic sectors’ interlinkages in the investigated region, 

and hence facilitate short future predictions of the economy under different 

scenario settings. Through the inclusion of investment as a parameter and 

learning from extended Input-Output Model methodological literatures, further 

algorithm innovation is introduced to a dynamic version of SIM to account for 

the indirect cost of 2015 South India flood across different regions.  

Based on the series of venturing in the methodological advancement of Input-

Output Model, this thesis concludes by a literature review and qualitative 

discussion on the directions of interdisciplinary development in Input-Output 

Model, which is the integration of system engineering techniques in the 

exploration of solutions to economic cybernetics. 
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Impact Statement 

This thesis presents a new economic analysis tool developed using innovative 

algorithms for short-term economic system analysis under a general 

disequilibrium assumption based on the Sequential Interindustry Model (SIM), 

a variant of the Input Output (IO) Model. The model is compatible with high 

time-resolution data, such as daily electricity consumption data by sectors, to 

reduce data collection costs. This tool has a wide range of applications beyond 

academia and can benefit policymakers, businesses of all scales, and 

economic planning authorities. 

Specifically, the use of high time-resolution electricity consumption data for 

economic analysis reduces data collection costs as well as provides timely 

analysis with enriched information on chronological interindustry linkages. The 

analysis result using the algorithm developed in this research can thus provide 

cheap and timely decision advice to various stakeholders. For example, 

businesses at all scales can use the analysis result to adjust their production 

and inventory levels accordingly. Economic planning authorities can also use 

this algorithm to identify market trends and adjust intervention strategies in real-

time. In addition, the economic analysis tool developed in this research can be 

useful for policymakers and business leaders to make short-term economic 

scenario predictions for various economic shock events by aiding decision-

making for recovery plan formulation at a macro scale.  

The methodological advancement of IO model proposed in this research 

introduces a hybridization of big data and the economic theory of IO, thus 

providing a new way of thinking about economic analysis that incorporates both 

traditional IO theory and cutting-edge data analysis techniques. The innovative 

algorithms and concepts introduced in this research can inspire new research 

and development in economic cybernetics and data science. It can lead to the 

creation of new research areas and interdisciplinary collaborations between 

economics and other fields such as computer science, engineering, and data 

science, hence promote a more comprehensive understanding of economic 

phenomena and generate new avenues of research for scholars in the field. 

In addition, a 2017 provincial Multi-Regional Input Output (MRIO) table of China 

has been compiled in this research based on official data released by the 

statistic departments of China. The accuracy of the MRIO table has also been 

validated against other sources. This MRIO table of China can be used in future 

research to serve as a database for extended analysis. Upon completion of this 

thesis, two other studies have knowingly adopted the 2017 China MRIO table 

developed in this thesis.  

The skills and knowledge on IO modelling acquired during the PhD have 

contributed significantly to published research that bear substantial policy 

implications. This includes two Lancet Countdown reports that analysed the 
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impacts of climate change on global health and provided policy 

recommendations for addressing the health risks associated with climate 

change  (Romanello et al., 2021, Romanello et al., 2022), one UNDP report that 

summarized the pros and cons for the policy tools in fossil fuel reforming 

(Marcel Alers and Ben-jamin Jones, 2021), one UN policy brief that accounted 

for the impact of Covid-19 pandemic on global carbon emissions (He and Mi, 

2022), and several other peer-reviewed journal articles.  
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Chapter 1: Introduction 

1.1. The Input-Output Method 

Imagine a being from the cosmos gazing upon our tiny blue planet; they would 

be astounded by the complexity and intricacy of our ecosystem. What's 

particularly striking is how humans interact with one another and the 

environment, creating a unique, interdependent system that continually 

fascinates us. This system, referred to as "economics," has captivated scholars 

across civilizations, who dedicate their intellect to understanding its workings in 

the hope of satisfying humanity's ever-growing needs, while grappling with 

limited resources and technology.  

The practice of accounting for economic production activities can be traced 

back to the ancient Babylonian Empire, where people documented the 

efficiency of agricultural activities using ratios. Over the past five thousand 

years, nearly every civilization has developed and adopted some form of 

national accounting system or philosophical concept to assist governing 

authorities in economic planning. Instead of being deemed as a subject to 

manage the king’s treasury, the concept of national accounting started its 

formalization in 1600s as a study on the operation of the economy. As one of 

the pioneers in modern economic theorist and national statistics, William Petty’s 

‘Political Arithmetik’ has consolidated several key theories of classical 

economics, such as interest rate, theory of value, and division of labour (Hoppit, 

1996). Gregory King and Charles Davenant, one generation later, have also 

developed the foundations of price and trade theories (Evans, 1967), which are 

all then included in Adam Smith’s magnum opus work ‘Wealth of Nations’ as 

the beginning of classical economic studies.  

Other than the contributions from thinkers of the United Kingdom, the 

physiocracy theory developments of French philosopher François Quesnay, 

such as laissez-faire and views on labour, have also contributed towards the 

foundation of classical economic theories. Among his various contributions as 

an economist, François Quesnay has also completed the ground-breaking work 

of consolidating the production relationships between the agricultural/mining 

sector and the artisanal/manufacturing sector in eighteenth-century France. He 

developed the tableau économique to represent the flow of goods and services 

between these sectors, providing a comprehensive understanding of the 

economic interdependencies at play. Quesnay's work laid the foundation for 

future developments in economic accounting and analysis, especially in Karl 

Marx’s Das Kapital to explain his theory of economic circulation (Gehrke and 

Kurz, 2002). By mapping the connections between different sectors, Quesnay’s 

tableau économique offered valuable insights into the structure and functioning 
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of the economy, enabling more informed decision-making and policy 

development for the betterment of society of his time (Leontief, 1953, Coffman, 

2021).  

 

Figure 1 The zigzag tableau économique proposed by François Quesnay (Charles, 

2004). 

Building upon the concept of the tableau économique and its further adoption 

in Marxism economics, the Russian-American economist Wassily Leontief, who 

was later awarded the Nobel Prize of Economics, introduced the Input-Output 

(IO) Model in the 1930s as an economic statistical tool designed to elucidate 

the interdependent relationships between various sectors of the United States’ 

economy (Leontief, 1936). Drawing from extensive surveys and governmental 

accounting data, the IO Model bridges the gap between micro-level production 

and macro-level economic flows. This innovative approach provides 

policymakers with a powerful instrument to analyse the functioning of past 

economies, enabling them to develop more targeted macroeconomic strategies. 
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By offering a comprehensive understanding of how different sectors interact 

and influence each other, the IO Model has been proven valuable in shaping 

economic policies that promote growth, stability, and the overall well-being of 

society. 

Since the 1950s, statistical bureaus of governments worldwide have embraced 

the construction of national IO Tables as a primary method for implementing 

the System of National Accounts to quantitatively measure and analyse the 

performance of economies. To facilitate this process, the United Nations 

Statistical Commission has published official standards for compiling IO Tables 

(United Nations Statistical Division, 1999), which are the most reliable data 

widely used in modelling of economic structures and sectorial symbiosis. It 

serves as an alternative to mainstream economic researchers such as the 

Austrian School and Chicago School, who are fundamentally based on 

neoclassic economic theories and focus their research and debate on more 

specific issues such as setting of monetary policies and role of governments 

(Salin, 2023, Murphy, 2011). By combining statistical approach with a model 

theory outside classic economics, the IO model offers economists and policy 

makers a key tool to understand the functioning and well-being of nations, and 

even the global community.  

Through IO analysis, economists can gain insights into economic analysis and 

planning, shedding light on the intricate inter-sectoral connections within an 

economy. It aids policymakers in formulating economic strategies, assessing 

the impact of economic shocks or policy alterations, and understanding 

structural relationships among different sectors. Moreover, it's instrumental in 

regional economic planning, optimizing resource allocation, and evaluating 

environmental impacts of economic activities. The IO model facilitates 

economic contribution and multiplier analysis, supply chain dynamics 

exploration, educational learning about economic interdependencies, 

international trade analysis, and industrial strategy development (Tan et al., 

2019, Miller and Blair, 2009). Its extensive applicability makes it an invaluable 

tool for economists, policymakers, and analysts, allowing for a comprehensive 

examination of complex economic relationships and well-informed decision-

making across diverse economic and policy realms. 

However, due to the labour-intensive and computationally demanding nature of 

compiling IO Tables, the resources and capacity required may be unattainable 

for less developed countries (Bickel, 1987). For countries that regularly compile 

national IO Tables, the feasible intervals between table preparations typically 

range from 5 to 7 years. Even for larger countries with the capacity to produce 

such tables, like China, India, and the United States, the creation of multi-

regional IO Tables for subnational regions can be challenging using the 

recommended accounting process. As a result, scholars often resort to 
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algorithmic estimations to generate the desired data. This highlights the need 

for continued development of more efficient methods and tools to facilitate 

analysis of economic structures for all nations, ensuring that policymakers have 

access to the most accurate and swift information to guide their decision-

making processes. 

In addition to cost of data collection, another significant concern pertains to the 

underlying assumptions of the model (Ackerman et al., 2004). When compiling 

an IO table, it is assumed that an equilibrium state is reached during the 

statistical year, aligning with Walras' general equilibrium theory. As such, the 

IO model can be considered a simplified version of the Walrasian general 

equilibrium model (Akhabbar and Lallement, 2010). As a Walrasian general 

equilibrium model, the IO model simulates a balanced economic structure, 

meaning that the input and output, or supply and demand, are always matched 

(Miller and Blair, 2009). However, the validity of the general equilibrium 

assumption has been called into question, particularly in the context of short-

term economic performance. While it may hold true in the long term as classic 

economic theories has suggested, it is less likely that supply and demand will 

be perfectly balanced within shorter time frames, such as in weeks and months. 

In other words, the economy is in a state of continuous instability and fluctuation 

(Debreu, 1974). These critiques highlight the need for further refinement and 

development of economic models that can more accurately capture the 

nuances and complexities of real-world economic systems. By addressing 

these limitations, economists and policymakers can gain a more 

comprehensive understanding of economic interactions and make more 

informed decisions that contribute to the overall well-being of society. 

On the other hand, modern economic research has evolved from being purely 

theoretical to embracing evidence-based statistical research or econometrics 

(Frisch, 1970), as widely promoted by the Chicago School economists 

(Hamermesh, 2013). Conventional econometric research relies on economic 

data such as Gross Domestic Product (GDP), Manufacturing Index, and others. 

Economists, especially from the Chicago School, typically make extensive use 

of empirical data and mathematical models in their research and theories (Peck 

et al., 2011). They heavily rely on regression calculations on these economic 

parameters as they believe in the efficacy of quantitative analysis to understand 

and predict economic phenomena. This belief is criticised by other economists, 

specifically the Austrian School. Austrian economists tend to be more sceptical 

of the value of econometric models and empirical data, arguing that they can 

often misrepresent the complexity of human economic behaviour (Rosen, 

1997). The IO model, however, is a combination of the two. As a praxeology 

model that accounts for industrial symbiosis, the IO model is built on statistically 

compiled IO tables, which serve as a reliable source of quantitative evidence to 

support IO analysis. If further developed in its data sources, the IO model bears 
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the potential to reconcile the dilemma between the incapability of theoretical 

economics and data insufficiency of empirical economics.  

1.2. Motivation 

To ameliorate the statistical cost barrier of IO modelling and economic 

modelling in general, a possible approach is to integrate techniques in data 

science research, a subject advancing quickly owing to the rapid development 

of information and communications technologies. It is argued by some scholars 

that our increased capability in dealing with data has enabled us to collect and 

analyse empirical evidence at an unprecedented speed to support economic 

research (Varian, 2014). With the convenience of much lowered time and 

labour cost of data, the time resolution of the IO model can be improved to be 

daily or weekly instead of quarterly or annually in conventional economic 

research, thus empower more swift and accurate policy making.  

Meanwhile, the economic system tends to fluctuate more volatilely in shorter 

time span, which further jeopardizes the classic general equilibrium assumption 

of the IO model. Since current focuses of policy formulations are mostly under 

long term settings, researchers generally lack the motivation to create an 

additional quantitative tool that examines the performance of a disequilibrium 

economic system in high time frequency. Hence, for the IO model to take 

advantage of faster data, fundamental revision and improvement are needed 

by the IO model to simulate rapid chronological interactions among economic 

sectors.  

Nevertheless, the methodological development to increase the time resolution 

of IO model is very limited. Avelino (2017) proposed a method to disintegrate 

annual IO tables into intra-year tables by adjusting with intra-year GDP data 

and balance using the T-EURO method, but still limited its time resolution to 

quarterly collected GDP data. Holý and Šafr (2023) approached the same 

objective by using the RAS method, an alternative balancing method for IO 

tables. Zheng et al. (2018) and similar type of works resort to pure mathematic 

algorithms to extend IO tables and thus compensate for the missed data in the 

time series. As representations of their kinds, all approaches aim to intraplate 

or extrapolate annual IO tables and thus conduct analysis at higher frequencies. 

However, such attempts are still based on traditional economic indicator data, 

whose time resolution are fundamentally limited by costs and cannot be 

improved without the support of traditional statistic data (Su and Ang, 2022). 

Other researchers adopt improved versions of IO model that moderately 

considers time dimension in their simulations. For instance, Pagsuyoin et al. 

(2019) applied the Inoperability IO model as an improved IO model to simulate 

the daily impact induced by drought events in Massachusetts of the United 

States. The Inoperability IO model is also applied by Okuyama and Yu (2019) 
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to assess the chronological economic impact of Kobe Earthquake in Japan. 

Hallegatte (2008) developed the Adaptive Regional IO model to simulate the 

monthly economic impacts of Hurricane Katrina into the future. Wang et al. 

(2023) used the average inventory turnover times of Chinese companies as 

auxiliary data to supplement IO modelling and hence assess the time lag effect 

of China’s industry carbon emissions. Nevertheless, these modelling 

improvements and related works are based on strong assumptions. Compared 

to the empirical evidence based praxeological research in the field of data 

science, the IO model needs to be improved so that it can be more strongly 

supported by high time resolution data.  

In the later stages of his research, Leontief emphasized that the IO model is not 

merely an economic method but can also be approached from a technical or 

engineering perspective (Leontief, 1991). The same idea has also been echoed 

among some other scholars (Tan et al., 2017). Building on this insight, it is 

necessary to create a bridge between the theories and models of data science 

and economic IO modelling. 

1.3. Research Aim and Objectives  

This research aims to examine the IO model through the lens of data science 

and system engineering. By incorporating innovative algorithms into the latest 

variant of the IO model, an economic tool based on the IO model capable of 

chronological interindustry analysis in a short-term disequilibrium state will be 

developed and implemented. The innovative model will be compatible with 

high-frequency data, allowing for the determination of cross-sectoral linkages 

over time. This will enable modellers to investigate the chronologically 

accumulated impact among economic sectors and offer a dynamic analysis of 

the economy from a perspective distinct from most current economic research. 

The innovative model will serve as a powerful tool for rapid and short-term 

economic analysis at low statistic cost. Rather than providing an account solely 

for the final state, this model can deliver a description of all sectors at each 

discrete step, better equipping policymakers to diagnose the functioning of an 

economy and make informed decisions.  

Specifically, the following objectives will be achieved in this research:  

• Demonstrate the application of the IO model by compiling the 2017 

China multi-regional IO table. This will reveal the growing inequality of 

CO2 emissions embedded in China's consumption patterns, showcasing 

an extended application of the IO model that is commonly utilized 

(Chapter 2). 

• Develop an algorithm based on the Sequential Interindustry Model (SIM), 

a time domain variant of the IO model, capable of reverse-calculating the 
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IO relationships of economic sectors over a period using output 

observations (Chapter 3). 

• Apply the developed algorithm to a case study of Chongqing, using daily 

sectorial electricity consumption data to demonstrate its feasibility. 

Conduct an analysis of time-delayed economic performance and provide 

short-term predictions for economic performance under various 

economic shock event scenarios (Chapter 4). 

• Integrate the algorithm with the latest advancements in IO 

methodological innovation, ensuring that the impact of capital 

investment is considered. Conduct an analysis of the impact of the 2015 

South India Flood to demonstrate the applicability of the enhanced 

algorithm (Chapter 5). 

• Provide a qualitative discussion on the future development of economic 

cybernetics, drawing insights from this research exercise (Chapter 6).  

Drawing inspiration from Leontief's proposal to establish an alternative 

measurement system (a proxy measurement, material measurement approach) 

alongside the widely adopted price measurement system (Leontief, 1991), 

organized regional electricity consumption data is organized based on a 

creative concept proposed by electrical engineers and IO researchers (Mu et 

al., 2010, Qu et al., 2017, Pasinetti, 2009). Furthermore, the concept of a 

dynamic IO model will be incorporated to enhance the algorithm developed, 

introducing non-linearity and extra parameters, such as capital investment, into 

the improved model. By approaching the IO model from a data science and 

system engineering perspective, this research aims to contribute a novel 

economic analysis tool that not only addresses the limitations of the general 

equilibrium assumption but also adapts to high time-resolution data for more 

efficient and accurate short-term economic predictions, hence potentially 

unlock new insights and applications in the field of economics. 

1.4. Thesis outline 

This thesis has been structured into six chapters. An outline of the thesis is 

given in Figure 2 to provide a clear view on how the chapters are organized to 

answer the research objectives.  

Chapter 1 serves as an introduction to the research and provides a 

comprehensive overview of the research objectives. In this chapter, the 

motivations behind conducting the study and the potential implications of the 

research findings are clearly outlined. This sets the foundation for the rest of 

the thesis, helping readers understand the context and purpose of the study. 

In Chapter 2, the IO model is utilized to examine the growing inequality of 

consumption-based CO2 emissions in China. To achieve this, the conventional 
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method is employed to compile a 2017 multi-regional IO table for China. This 

table is then connected to an emissions database for further environmental 

extension analysis. Throughout the process of compiling the IO table, the 

limitations and weaknesses of the conventional IO modelling are identified and 

summarized, providing insights into the areas where improvements can be 

made. This sets the stage for the development of an innovative approach in the 

subsequent chapters. 

To address the limitations of the traditional input-output (IO) model, Chapter 3 

introduces an innovative algorithm that enhances the SIM model. This 

enhancement allows for the theoretical computation of chronological 

interconnections between various economic sectors, based on the observed 

output and demand levels within an economy. In this chapter, a recursive 

calculation is carried out using the regression results obtained from simulated 

observations, which serves to validate the theoretical viability and robustness 

of the proposed algorithm.  

In Chapter 4, an extensive dataset comprising daily electricity consumption data 

for hundreds of commercial products in Chongqing municipality, China, is 

collected and analysed. The data is then aggregated into eight distinct 

economic sectors, with each product categorized as either a final or 

intermediate product. This organized dataset is subsequently employed to 

calculate chronological interlinkages within the context of the enhanced SIM 

model. To assess the potential impact of sector-specific growth on Chongqing's 

overall economic performance, three distinct scenarios are simulated. Each 

scenario reflects varying growth rates for a selected sector, allowing for the 

evaluation of short-term performance implications for all other sectors within the 

municipality. This approach not only highlights the interconnected nature of 

modern economies but also offers valuable insights into potential policy 

decisions and strategic planning for Chongqing's future economic development. 

Chapter 5 delves deeper into methodological advancements by incorporating 

the influence of capital investment into the enhanced SIM. In this chapter, 

estimated monthly output levels for various regions in India serve as the 

foundation for analysing the chronological impact of the devastating 2015 South 

India Flood on different regions. By comparing the results to a business-as-

usual scenario, the chapter uncovers the chronological indirect costs 

associated with the disaster, providing valuable insights into the far-reaching 

consequences of such events. This innovative approach to assessing the 

impact of natural disasters on regional economies offers a more comprehensive 

understanding of the complex interplay between economic sectors, 

infrastructure investments, and the repercussions of unforeseen calamities. 

Chapter 6 provides a summary and conclusion of the research conducted 
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throughout this thesis. Drawing upon the insights and lessons learned, a 

qualitative analysis is combined with an extensive literature review to explore 

the potential for future advancements in economic modelling. Given that this 

research has adopted an alternative approach, one that aligns with general 

disequilibrium economic theories while also incorporating concepts from control 

system analysis, it could signify a novel direction for economic cybernetics 

research. By reflecting on the findings and methodologies presented in this 

thesis, Chapter 6 highlights the value of interdisciplinary approaches in 

advancing our understanding of complex economic systems. The fusion of 

traditional economic theory with modern control systems analysis has the 

potential to reshape the way we approach economic modelling, offering new 

perspectives and innovative solutions for addressing contemporary economic 

challenges. 

 

Figure 2 Thesis structure 
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Chapter 2: Input-Output Model Application – Carbon 

Emission Inequality in China 

In laying the groundwork for the methodological innovation central to this 

research, this chapter commences by revisiting the foundational principles of 

the IO model. To illustrate the practical applications and the analytical power of 

the IO model, this chapter will delve into a case study focused on the unequal 

distribution of China’s consumption-based CO2 emissions. This case study 

serves a dual purpose. Firstly, it highlights the IO model’s capability in 

dissecting and understanding complex environmental and economic issues. 

Secondly, it provides a real-world example of how the IO model can be 

employed to uncover nuanced insights into the distributional aspects of 

environmental impacts within a large and economically diverse country like 

China. This case study aims to demonstrate not only the utility of the IO model 

in its traditional form but also set the stage for introducing the novel 

methodological enhancements proposed in this research. 

2.1. Fundamentals of Input-Output Model 

2.1.1. The Classic Input-Output Model 

The IO Model has been instrumental in analysing the interdependence between 

various economic sectors since its first proposal by Wassily Leontief in the 

1930s (Leontief, 1936). Initially, Leontief employed the model to examine the 

intricate connections between diverse industrial sectors within the US economy, 

assessing the direct and indirect inputs needed by each sector to function 

efficiently. Over time, the IO Model has seen widespread adoption across 

numerous countries and has been implemented at various scales, ranging from 

global and regional levels to more localized scope. The model's enduring utility 

and adaptability showcase its value as a tool for understanding the complex 

web of relationships that underpin modern economic systems. 

In Leontief’s IO theory, the interdependence of economic sectors in an 

economy can be described by an IO table, shown below in its simple form.  

 Industry Final 

Demand 

(y) 

Total 

Output 

(x) 1 2 … n 

Industry 

1 𝑧11 𝑧12 … 𝑧1𝑛 𝑦1 𝑥1 

2 𝑧21 𝑧22 … 𝑧2𝑛 𝑦2 𝑥2 

… … … … … … … 
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n 𝑧𝑛1 𝑧𝑛2 … 𝑧𝑛𝑛 𝑦𝑛 𝑥𝑛 

Value added (v) 𝑣1 𝑣2 … 𝑣𝑛   

Total Input (x) 𝑥1 𝑥2 … 𝑥𝑛   

Table 1 An illustration of the IO table. Inputs and outputs are recorded in monetary 

units.  

Table 1 represents an Input-Output (IO) table for an economy with 𝑛 sectors, 

illustrating the interactions between these sectors as they collectively strive to 

satisfy the final demand imposed by consumers. In the context of the IO model, 

the production of a product necessitates inputs from all other industries within 

the economy. Given that both inputs and outputs are documented in monetary 

units, the total output of a sector 𝑖 can be easily determined as the row sum, 

which is the sum of all intermediate outputs and final demand for that sector. 

This calculation is expressed as follows: 

𝑥𝑖 = 𝑧𝑖1 + 𝑧𝑖2 + ⋯+ 𝑧𝑖𝑛 + 𝑦𝑖 ( 2.1 ) 

In equation ( 2.1 ) and Table 1, 𝑧𝑖𝑛 is the intermediate output needed by the 𝑛th 

sector from the 𝑖th sector. 𝑦𝑖 is the total final demand in the 𝑖th sector. 𝑥𝑖 is the 

total output by the 𝑖th sector. It also equates to the column sum of the 𝑖th sector, 

suggesting that the total output in sector 𝑖 is equal to the input in sector 𝑖. Under 

a linear assumption, the efficiency of inputs can be expressed as a ratio of input 

to output in equation ( 2.2 ) below: 

𝑎𝑖𝑗 =
𝑧𝑖𝑗

𝑥𝑗
 

 

( 2.2 ) 

In equation ( 2.2 ), 𝑎𝑖𝑗  is known as the technical coefficient, meaning the 

amount of input needed from sector 𝑖 to produce one unit of output in sector 𝑗. 

Hence, equation ( 2.1 ) can be rewritten as a linear system: 

𝑥1 = 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 + 𝑦1 

⋮ 

𝑥𝑖 = 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + ⋯+ 𝑎𝑖𝑛𝑥𝑛 + 𝑦𝑖 

⋮ 

𝑥𝑛 = 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯+ 𝑎𝑛𝑛𝑥𝑛 + 𝑦𝑛 

( 2.3 ) 
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The linear system can be easily rewritten into matrix form as follow:  

𝑋 = 𝑌 + 𝑍 

𝑋 = 𝑌 + 𝐴𝑋 
( 2.4 )  

Applying simple matrix algebra, equation ( 2.4 ) can be converted into ( 2.5 ) 

below to show a proportional relationship between final demand and total 

outputs: 

𝑋 = (𝐼 − 𝐴)−1𝑌 ( 2.5 )  

In equation ( 2.5 ), 𝑥 is the total output in vector form. 𝑦 is the final demand in 

vector form. 𝐴  is the production coefficient matrix. 𝐼  is the identity matrix. 

(𝐼 − 𝐴)−1, or simply 𝐿, is referred to as the Leontief Inverse in IO model. The 

Leontief Inverse describes the sum of direct and indirect input needed from all 

producing sectors. In other words, the IO model depicts an economic system 

that requires not only inputs from itself, but also a coordinated production from 

all sectors in the economy. On the other hand, the efficiency in sectorial 

production of an economy can also be revealed through the technical coefficient, 

thus providing a holistic account for the performance of an economy.  

2.1.2. Multi-Regional Input-Output Model 

The IO Model has undergone continuous refinement and expansion since its 

inception. One of the most significant developments is the formalization of the 

Multi-Regional Input-Output (MRIO) Model (Wiedmann, 2009). In contrast to 

the classic Single Regional IO Model, which concentrates on a single, closed 

economy, the MRIO model is employed to analyse the interdependence 

between various regions and countries within a specific region or across the 

entire world (Stadler et al., 2018b, Wang et al., 2017, Stadler et al., 2018a). The 

MRIO model enables economists to trace the flows of goods, services, and 

factors of production among distinct regions and nations. This comprehensive 

approach allows for the estimation of the impact of changes in production, 

consumption, and trade on the global economy. By capturing the intricate 

connections between different economies, the MRIO model offers valuable 

insights into the dynamics of international and interregional trade and the far-

reaching consequences of economic policies and decisions. 

Table 2 below depicts the MRIO table for a closed world consisting of two 

countries and three industries. It bears a striking resemblance to the classic 

Single Region IO table demonstrated in Table 1 in terms of structure, as it 

retains the key feature of balanced inputs and outputs, or column and row sums. 
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The primary distinction lies in the fact that intermediate outputs are generated 

not solely for domestic production, but also for production in another country. 

Consequently, equation ( 2.1 ) is modified as follows: 

𝑥𝑖 = 𝑧𝑖1
𝑎𝑎 + ⋯+ 𝑧𝑖𝑛

𝑎𝑎 + 𝑧𝑖1
𝑎𝑏 + ⋯+ 𝑧𝑖𝑛

𝑎𝑏 + 𝑦𝑖 ( 2.6 ) 

In equation ( 2.6 ), 𝑧𝑖𝑛
𝑎𝑎, highlighted in yellow with its similar terms in Table 2 

represents the intermediate input needed in sector 𝑖 of country a by sector 𝑛 of 

country a, comprising the domestic intermediate inputs in a MRIO table, 

normally consistent with the Single Region IO table of the specific 

country/region. 𝑧𝑖𝑛
𝑎𝑏 , highlighted in green with its similar terms in Table 2, 

represents the intermediate input needed in sector 𝑖 of country a by sector 𝑖 of 

country b, comprising the foreign intermediate inputs in a MRIO table, which 

are collected from international and interregional trade data available.  

 

Country A Industry Country B Industry Final 

Dem

and 

(y) 

Total 

Outp

ut (x) 1 2 3 1 2 3 

Cou

ntry 

A 

Indu

stry 

1 𝑧11
𝑎𝑎 𝑧12

𝑎𝑎 𝑧13
𝑎𝑎 𝑧11

𝑎𝑏 𝑧12
𝑎𝑏 𝑧13

𝑎𝑏 𝑦1
𝑎 𝑥1

𝑎 

2 𝑧21
𝑎𝑎 𝑧22

𝑎𝑎 𝑧23
𝑎𝑎 𝑧21

𝑎𝑏 𝑧22
𝑎𝑏 𝑧23

𝑎𝑏 𝑦2
𝑎 𝑥2

𝑎 

3 𝑧31
𝑎𝑎 𝑧32

𝑎𝑎 𝑧33
𝑎𝑎 𝑧31

𝑎𝑏 𝑧32
𝑎𝑏 𝑧33

𝑎𝑏 𝑦3
𝑎 𝑥3

𝑎 

Cou

ntry 

B 

Indu

stry 

1 𝑧11
𝑏𝑎 𝑧12

𝑏𝑎 𝑧13
𝑏𝑎 𝑧11

𝑏𝑏 𝑧12
𝑏𝑏 𝑧13

𝑏𝑏 𝑦1
𝑏 𝑥1

𝑏 

2 𝑧21
𝑏𝑎 𝑧22

𝑏𝑎 𝑧23
𝑏𝑎 𝑧21

𝑏𝑏 𝑧22
𝑏𝑏 𝑧23

𝑏𝑏 𝑦2
𝑏 𝑥2

𝑏 

3 𝑧31
𝑏𝑎 𝑧32

𝑏𝑎 𝑧33
𝑏𝑎 𝑧31

𝑏𝑏 𝑧32
𝑏𝑏 𝑧33

𝑏𝑏 𝑦3
𝑏 𝑥3

𝑏 

Value Added 

(v) 
𝑣1

𝑎 𝑣2
𝑎 𝑣3

𝑎 𝑣1
𝑏 𝑣2

𝑏 𝑣3
𝑏   

Total Input 

(x) 
𝑥1

𝑎 𝑥2
𝑎 𝑥3

𝑎 𝑥1
𝑏 𝑥2

𝑏 𝑥3
𝑏   

Table 2 An illustration of the MRIO table of two countries with three industries.  

The application of the MRIO model gained traction during the 1960s and 1970s. 
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In this era, economists began utilizing the MRIO framework to analyse the 

global economy and estimate the interdependence among countries and 

regions concerning trade, production, and consumption. One of the earliest and 

most influential studies employing MRIO analysis was conducted by American 

economist Walter Isard in the 1960s (Isard, 1966). Isard's ground-breaking 

work offered a framework for examining the interdependence between regions 

in terms of trade and production, ultimately laying the foundation for future 

research in this domain. The insights gleaned from his work have contributed 

significantly to our understanding of the complex relationships that exist 

between nations and regions within the global economic system. 

2.1.3. Environmental Extension of Input-Output Model 

In addition to its applications in economic analysis, the IO model has been 

adapted to incorporate emission databases, resulting in the development of the 

Environmentally Extended Input-Output (EEIO) model (Davis and Caldeira, 

2010, Davis et al., 2011). The EEIO model considers the environmental impacts 

of economic activities, broadening the scope of the traditional IO model. By 

integrating data on environmental flows, such as greenhouse gas emissions 

and the use of natural resources, the EEIO model expands upon the economic 

flows of goods and services typically found in the conventional IO model. This 

environmentally conscious approach enables researchers and policymakers to 

gain a more comprehensive understanding of the interplay between economic 

activities and their ecological consequences, supporting the pursuit of 

sustainable development strategies. 

Specifically, the EEIO requires the collection of environmental stress intensities 

in sectors that agrees with the specification of the IO table to be used.   

𝐶𝑐𝑏𝑎 = 𝐸(𝐼 − 𝐴)−1�̂� ( 2.7 )  

In equation ( 2.7 ), 𝐸 is the environmental intensity in vector form, with each of 

its elements representing the environmental intensity of the corresponding 

industry. �̂� is the diagonalized form of 𝑌. The matrix product of the Leontief 

Inverse (𝐼 − 𝐴)−1 and �̂� is the breakdown of total output 𝑋. Thus, the matrix 

multiplication in equation ( 2.7 ) gives 𝐶𝑐𝑏𝑎 , the consumption-based 

environmental footprint as a horizontal vector. 

On the contrary, if 𝐸 is diagonalized instead of 𝑌 in equation ( 2.7 ), the equation 

becomes ( 2.8 ), known as the production-based environmental footprint as a 

vertical vector. 

𝐶𝑝𝑏𝑎 = �̂�(𝐼 − 𝐴)−1𝑌 ( 2.8 ) 

In the context of EEIO analysis, consumption-based accounting (CBA) assigns 
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pollution responsibilities to consumers. Unlike production-based accounting 

(PBA), which records emissions within territorial boundaries, CBA provides a 

perspective that encompasses emissions embedded in the upstream 

processes of products' final destinations (Peters, 2008). Initially, PBA was the 

widely adopted standard for pollution accounting, as it aligned with the 

methodology used in national scale surveys. However, this approach can lead 

to underestimating a country's true environmental impact, as it fails to account 

for emissions produced in one country but linked to the consumption of goods 

in another. Conversely, CBA considers the emissions associated with the 

production of goods and services consumed by a country, irrespective of the 

location of production. This method offers a more comprehensive 

understanding of a country's total emissions and the influence of its 

consumption patterns on the environment.  

2.2. A Case Study of CO2 emission inequality in China 

2.2.1. Consumption Based CO2 Emissions 

In recent years, EEIO modelling and CBA for anthropogenic CO2 emissions 

have been employed in a wide range of research (Beylot et al., 2020, Ivanova 

et al., 2016, He and Hertwich, 2019). These studies underscore the value of 

accounting for the global nature of pollution and the importance of considering 

consumption patterns when assessing a country's environmental impact. As the 

most major source of greenhouse gas, the increased CO2 emission is proven 

to be one of the fundamental causes of earth climate change (IPCC, 2007). The 

catastrophic consequences of climate change include rising temperatures, sea 

level rise, altered weather patterns, and decreased biodiversity. Hence, 

knowing the sources and changing pattern of CO2 emissions can help 

stakeholders to develop strategies for reducing them and mitigate climate 

change to achieve a sustainable future. 

Since anthropogenic CO2 emissions are driven by economic activities, 

countries with different levels of economic development share varied 

responsibility of CO2 emissions, which means that consumption-based CO2 

emissions are distributed unequally across the globe. From the global 

perspective of regional economic development, CO2 emissions have 

increasingly shifted from developed regions to developing regions, whose 

population generally earns lower incomes (Peters Glen et al., 2011). Recent 

studies confirm that CO2 emissions have been relocating to developing regions 

with increasing speed (Lu et al., 2020, Hubacek et al., 2021, Zhang et al., 2019). 

Since the start of the new millennium, the CO2 emissions produced by 

developing regions have drastically increased compared to those produced by 

developed regions (Fernández-Amador et al., 2016). On the other hand, some 

developed regions of the EU and North America have already achieved a 



16 

 

decoupling of CO2 emissions and economic growth (Hubacek et al., 2021). 

However, this much-lauded decoupling has often been achieved at the expense 

of exploiting the emissions embodied in imports from developing regions (Fan 

et al., 2017). Research shows that the emissions embodied in trade from 

developing regions to developed regions have increased drastically from 0.9 Gt 

CO2 in 1996 to its peak of 2.1 Gt CO2 in 2006, although they then quickly 

decreased to 1.5 Gt in 2016 (Wood et al., 2020, Mi et al., 2021). In addition, it 

is likely that poverty alleviation efforts will mean that those newly lifted out of 

poverty and near-poor individuals will increase their demands on energy 

consumption (Wolfram et al., 2012). Thus, poverty alleviation in developing 

regions can inadvertently contribute to intensified CO2 emissions (Hubacek et 

al., 2017, Wan et al., 2022). 

Being the single largest CO2 emitter, China has been studied by many for its 

consumption-based CO2 emissions. As a net exporter of CO2 emissions (Wang 

et al., 2020b, Zhong et al., 2018), China’s success at economic upgrading 

decreased its emissions embodied in exports from 2008 to 2015 (Mi et al., 

2018). Due to its economic and geographical size, China’s provinces remain 

varied in their levels of development. Thus, domestic trade-embodied 

emissions and their associated energy consumption are also considered a key 

research topic (Zheng et al., 2022). Recent research has identified that China’s 

western regions are net domestic exporters of embodied CO2 emissions to 

coastal eastern regions due to the differences in China’s domestic economic 

structure and development (Duan et al., 2018, Zhou et al., 2018, Yang et al., 

2021, Ning et al., 2019). Some lately published research account for the CO2 

CBA of China’s provinces in 2017 (Lei et al., 2022, Dong et al., 2022). However, 

none of the referenced studies emphasise the intensifying domestic inequalities 

in consumption-based CO2 emissions among China’s regions as well as the 

possibility of their further development. Since China entered the so-called 

economic “new normal” in 2012 (Mi et al., 2017), the economic and CO2 

emission structures may have undergone alterations. Economic transformation 

and development in China may also imply that other countries may take up the 

polluting roles in the coming years. Research is thus needed to characterise 

and understand the rationale and scale of these changes, thus formulate further 

policy recommendations in accordance with the widening inequalities and 

overseas outsourcing trend of CO2 emissions in China.  

2.2.2. Compilation of MRIO Table 

The MRIO table used in this case study was compiled using 2017 Chinese 

provincial IO tables published by the National Bureau of Statistics. Excluding 

regions and territories with no data available, 31 regions and 42 economic 

sectors area compiled in the 2017 Chinese MRIO table. It should be noted that 

the 2007 and 2012 Chinese MRIO tables have 30 regions and 30 economic 
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sectors. The missing region in 2007 and 2012 is Tibet due to missing data. 

Since Tibet only composes a very small portion of consumption-based CO2 

emission (0.06%) and final consumptions (0.25%) in China, Tibet is excluded 

in the result of 2017 despite of the inconsistency with past results to maximize 

the information presented in this study. Besides, although the number of 

economic sectors for the year 2007 and 2012 is 30, inconsistent with the 42-

sector specification for the year 2017, all sectors are aggregated and summed 

up into single regions to decrease the data resolution. Hence, in the 

presentation of final result, only a total number of economic output and 

emissions for each province is presented. Thus, the issue of inconsistent 

number of economic sectors is also resolved in this study.  

In the construction of the 2017 Chinese MRIO table, the method utilised by Mi 

et al. (2017) has been taken as the reference, where the gravity model is 

applied to simulate interprovincial and intersectoral trade. The gravity model 

considers the trade between two locations to be directly proportional to the 

economic sizes of and inversely proportional to the distance between the two 

locations. Concretely, it can be expressed by equation ( 2.9 ): 

𝑦𝑖
𝑟𝑠 = 𝑒𝛽0

(𝑥𝑖
𝑟𝑂)

𝛽1
(𝑥𝑖

𝑂𝑠)
𝛽2

(𝑑𝑟𝑠)𝛽3
 ( 2.9 ) 

In equation ( 2.9 ), 𝑦𝑖
𝑟𝑠 represents the economic quantity of item 𝑖 traded from 

location 𝑟 to location 𝑠. 𝑥𝑖
𝑟𝑂 is the quantity of item 𝑖 exported by location 𝑟. 𝑥𝑖

𝑂𝑠 

is the quantity of item 𝑖 imported by location 𝑠. 𝑑𝑟𝑠  is the distance between 

location 𝑟 and 𝑠. In this study, the distances of provincial capitals 𝑑𝑟𝑠 are used. 

𝛽1, 𝛽2, and 𝛽3 are the model coefficients to be obtained through regression. 𝑒𝛽0 

is the error term. To reconcile for linear regression, equation ( 2.9 ) is 

manipulated into equation ( 2.10 ) as shown below 

  (𝑦𝑖
𝑟𝑠) = 𝛽0 + 𝛽1   (𝑥𝑖

𝑟𝑂) + 𝛽2   (𝑥𝑖
𝑂𝑠) − 𝛽3   (𝑑𝑟𝑠) + 휀 ( 2.10 ) 

Having the regressed coefficients, it is thus possible to model the economic 

flow between any two provincial sectors.  

In addition to standard gravity model, impact coefficients are also introduced to 

model cooperation and competition relationships among provincial sectors, 

which is given as 𝑐𝑖
𝑔ℎ

 below in equation ( 2.11 ) 

{
𝑐𝑖

𝑔ℎ
=

𝜇𝑖
𝑔

+ 𝜇𝑖
ℎ

|𝜇𝑖
𝑔

− 𝜇𝑖
ℎ| + 𝑚𝑖𝑛𝑟=1,2,…𝑚𝑛𝜇𝑖

𝑟
          𝑔 ≠ ℎ

𝑐𝑖
𝑔ℎ

= 1          𝑔 = ℎ

 ( 2.11 ) 
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In equation ( 2.11 ), 𝑐𝑖
𝑔ℎ

 is the impact coefficient for item 𝑖 between location 𝑔 

and ℎ for 𝑛 locations. It measures the strength of interaction of item 𝑖. 𝜇𝑖
𝑔
 and 

𝜇𝑖
ℎ are the location quotients of item 𝑖 in location 𝑔 and ℎ.  

Then, trade flow obtained from gravity model is further modified into equation 

( 2.12 ) to reflect cooperative and competitive relationships using impact 

exponents 𝛿̅ − 𝛿𝑖: 

𝑦𝑖
𝑟𝑠′

=
𝑦𝑖

𝑟𝑠

(𝑐𝑖
𝑔ℎ

)�̅�−𝛿𝑖
 ( 2.12 )  

𝛿𝑖 is the proportion of total output of item 𝑖 that it uses as its own intermediate 

inputs, while 𝛿̅ is its average value. Hence, the denominator of equation ( 2.12 ) 

will adjust the trade flow modelled from standard gravity model to reflect 

cooperation and competition. Final MRIO table is performed with RAS algorithm 

to ensure its consistency in column and row sums (Jackson and Murray, 2004). 

For the CO2 emission inventories, the CEADs database (Shan et al., 2020) is 

adopted. The CEADs database (https://www.ceads.net/) is a widely utilised 

database for CO2 emissions in China. It follows IPCC Guidelines for National 

Greenhouse Gas Inventories when compiling its emission inventories 

(Intergovernmental Panel on Climate Change, 2019). It gives a breakdown of 

CO2 emissions across Chinese provinces and sectors. The CEADs emission 

inventory is mapped in accordance with the MRIO table using a method applied 

by previous studies (Mi et al., 2020, Yan and Yang, 2021). The MRIO table is 

compiled from the regional Input-Output tables published by the Bureau of 

Statistics of the respective provinces. Global flow of embodied CO2 emissions 

is calculated using data of EXIOBASE database (Stadler et al., 2018b).  

2.2.3. Emission Gini Coefficient 

Economists often use the Gini coefficient to quantitatively compare income 

inequalities (Dorfman, 1979). Recently, some researchers have altered the 

methodology for calculating Gini coefficients to investigate the CO2 emission 

inequalities across different income groups (Sun et al., 2021, Wiedenhofer et 

al., 2017). Here, in this research, the variables in the Gini coefficient 

calculations are changed to directly show the difference in CO2 emissions 

among Chinese provinces instead of population groups. Originally, Gini 

coefficient is derived from the Lorenz Curve. The larger the Gini coefficient is, 

the more unequally the income is distributed among the population. In a Lorenz 

Curve, the horizontal axis is the fraction of population, while the vertical axis is 

the cumulative share of income. A line of equality indicates perfectly equal 

distribution of income among all the population. Denoting the area between the 

Lorenz Curve and the line of equality as 𝐴 and the area between the Lorenz 
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Curve and the axes as 𝐵, the Gini coefficient is simply given by 𝐴/(𝐴 + 𝐵). The 

emission Gini coefficient in this study changes the horizontal axis to the 

proportion of final consumption in China’s provinces and the vertical axis to the 

cumulative consumption-based CO2 emissions, as shown in Figure 4. Hence, 

the alternative version of the Gini coefficient can be calculated using equation 

( 2.13 ) below: 

𝐺 =
𝐴

𝐴 + 𝐵
 ( 2.13 ) 

In equation ( 2.13 ), 𝐴 is the area between the emission Lorenz Curve and the 

line of equality. 𝐵  is the area between the emission Lorenz Curve and the axes. 

By changing the concept of the Gini coefficient into the format presented in 

equation ( 2.13 ), it is intended to reveal the inequality in emissions embodied 

in consumption activities across Chinese provinces. 

2.2.4. Research Results  

2.2.4.1. The Intensifying Inequality of CO2 Emissions 



20 

 

 

Figure 3 The net flow of CO2 emissions embodied in domestic trade among regions of 

China in (a) 2007, (b) 2012, and (c) 2017.
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The latest result of 2017 suggests that CO2 emissions in China continues to be 

shifted towards the less developed northwest region, create a widening 

inequality of consumption-based CO2 emissions. In Figure 3, China’s provinces 

are organized into the identical 8 regions to show the flow of CO2 emissions. 

The 8 regions are divided in accordance with the widely practiced China 

administrative region specification. Note that not all transregional flows are 

presented in this figure due to artistic constraints. In 2007, 5 regions of China 

were net exporters of embodied CO2 emissions (coloured in blue in Figure 3). It 

decreased to 3 regions in 2017. Specifically, the southwest region first changed 

from net exporter to net importer in 2012 and remained a net importer in 2017, 

although its amount of CO2 emissions net imported has decreased from 54 Mt 

to 22 Mt. Among all trade partners of southwest region, north and central 

coastal regions have changed from net exporters to net importers from 2012 to 

2017, suggesting the strengthened industrial linkages among the newly 

developed regions of China. The same reverse for the north region happened 

later in 2017, with its net export of consumption-based CO2 emissions 

decreased from 60 Mt to -26 Mt. The largest decrease in consumption-based 

CO2 export from north region happened with central coastal region from 2012 

to 2017 (30 Mt to 2 Mt). Although a reverse was yet to be observed in the central 

region, continuous and drastic decrease of CO2 emissions net export can be 

easily seen for the decade of 2007 to 2017. From 2012 to 2017, the net export 

of consumption-based CO2 emissions has greatly decreased from 71 Mt to 10 

Mt. The central coastal region has the largest decrease (24 Mt) in net import of 

CO2 emissions with central region from 2012 to 2017. CO2 emissions export 

was also observed to be on the trend of polarizing towards the northwest region. 

Specifically, after the sharp increase in 2012, northwest region’s net export of 

consumption-based CO2 emissions remained constant at 230 Mt, significantly 

outnumbers the next net exporters, the northeast region (18 Mt) and the central 

region (10 Mt). It makes northwest region the only significant CO2 exporter 

among all eight regions of China, a very different situation than 2007 and 2012 

where north and central regions also played significant roles in producing CO2 

emissions for other regions of China. The northeast region showed an 

exceptional swaying trend, meaning it experienced two reverses in CO2 

emissions net exportation in 2012 and 2017 respectively. Another interesting 

observation is that although Beijing-Tianjin, central coastal and south coastal 

regions remain as the CO2 emission net importers, the quantities of 

consumption-based CO2 imported decreased by 78 Mt, 154 Mt, and 11 Mt 

respectively in 2017 compared to 2007, suggesting their reliance on the 

domestic supply chain for pollution outsourcing has decreased.  
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Figure 4 Lorenz curves of Chinese provincial consumption-based CO2 emissions in 

2007, 2012, and 2017.  
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Since the CO2 emissions of China have been polarised towards the northwest 

region, this phenomenon suggests that the inequality in the geographical 

distribution of emissions is intensifying. a modified emission Gini coefficient is 

thus introduced to quantitatively compare the emission inequalities among 

China’s provinces for the years 2007, 2012, and 2017. Instead of showing the 

distribution of income among populations, the modified emission Gini 

coefficient shows the distribution of consumption-based CO2 emissions among 

final consumption across provinces. Figure 4 shows the Lorenz curves of 

consumption-based CO2 emissions against the proportion of final consumption 

in China’s provinces from 2007 to 2017. The Lorenz curves have been altered 

so that the horizontal axis is the cumulative share of provincial final 

consumption, and the vertical axis is the cumulative share of consumption-

based CO2 emissions. i.e. each bar under the Lorenz curve has its width 

(horizontal axis) representing the amount of the province’s final consumption, 

while the height (vertical axis) representing the amount of emissions produced 

cumulatively added with the emissions produced by provinces positioned on its 

left. Provinces are positioned from left to right in ascending order of emissions 

produced. It is clearly shown that the emission Gini coefficient among China’s 

provinces has drastically increased from 0.134 in 2007 to 0.209 in 2017, or 

+56.0%. In comparison, the change in income Gini coefficient of China was only 

-3.5% from 2007 to 2017. The reason for this change can be attributed to the 

different strength in CO2 emission decoupling between the developed and 

developing regions in China, which is discussed in more detail later in the 

Discussion section. In addition, although an increase in emission inequality 

occurred from 2007 to 2012 (+0.012), it was not tantamount to the 

intensification of emission inequality from 2012 to 2017 (+0.063). It shows that 

the emission inequality is much widened between 2012 to 2017, implying that 

the more developed regions have been gradually reaching emission decoupling. 

It coincides with the emphasis of green development by the Central 

Government of China in more recent years, suggesting that the developed 

regions are more capable in responding to the policy shift as they possess more 

resources to do so. The Lorenz curve for 2017 is distorted towards the right, 

suggesting that CO2 emissions are more concentrated towards the northwest 

region.  
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Figure 5 The shares of consumption-based CO2 emissions versus the shares of final 

consumptions of Chinese provinces in 2007, 2012, and 2017.  

The inequal distribution of emissions in China can also be shown by the 

disparities between final consumptions and consumption-based CO2 emissions 

among provinces. While some developed provinces enjoy high level of 

consumptions, the CO2 emissions associated are disproportionately less. 

Figure 5 is produced for the convenient comparison of the two quantities, where 

the sizes of dots are the consumption-based CO2 emission per capita. In Figure 

5, provinces on the left of the unity line induced relatively more CO2 emissions 

than they consume and vice versa for the provinces on the right of the unity line. 

Observation shows that Inner Mongolia, one of the northwest provinces, is a 

typical province with a disproportionally higher CO2 emission than its 

consumption. The differences between the percentages of consumption-based 

CO2 emissions and final consumptions of Inner Mongolia have increased by 2.8 

percentage point from 2007 to 2017, the largest of all China’s provinces, 

followed by Hebei (2.4), Shanxi (1.4), and Liaoning (1.4). The developed 

provinces of Guangdong, Beijing, and Shanghai etc., on the other hand, have 

higher proportion of final consumptions than consumption-based CO2 

emissions. The differences between the percentage of final consumptions and 

consumption-based CO2 emissions of Guangdong have remained at 3.3 

percentage point from 2007 to 2017, but gradual increases in differences can 

be identified in other developed provinces like Beijing (0.9) and Shanghai (1.0). 

Moreover, increases in disparities between the percentage of final 
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consumptions and consumption-based CO2 emissions can be seen in many 

more provinces. Scattered dots of year 2007 are located closer to the unity line 

compared to year 2017 in Figure 6, meaning that the disparities are less severe 

a decade ago. Another indicator suggesting a widening inequality is the number 

of provinces with higher proportion of consumption-based CO2 emissions than 

final consumptions. In 2007, 17 out of 30 provinces studied have higher 

proportion of consumption-based CO2 emissions than final consumptions (i.e. 

located on the left of the unity line in Figure 6). In 2017, this number has 

decreased to 13 out of 31 provinces studied, among which 4 of them (Hebei, 

Shanxi, Inner Mongolia, and Liaoning) have a disparity higher than 2 

percentage point. Provinces with higher proportion of consumption-based CO2 

emissions than final consumptions generally have higher emission per capita. 

The extent of differences in emission per capita also intensified in 2017 

compared to 2007. It indicates again a polarizing trend of consumption-based 

emissions towards the less developed provinces of China.  
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Figure 6 The final consumptions, consumption-based CO2 emission intensities, and 

net export of consumption-based CO2 emissions of China’s provinces in (a) 2007, (b) 

2012, and (c) 2017.  
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The discrepancy in consumptions and consumption-based CO2 emissions can 

be analysed from the differences in emission intensity and emission embodied 

in domestic trades as shown in Figure 6. Each rectangular bar represents the 

size of consumption-based emissions of the labelled province. Heights and 

widths of the bars show final consumption emission intensities and final 

consumptions of the labelled provinces respectively. Face colour of the bars 

indicates net trades of consumption-based CO2 emissions. Darker green 

means larger net imports of consumption-based CO2 emissions. Darker blue 

means larger net exports of consumption-based CO2 emissions. In general, 

provinces with higher emission intensities export more consumption-based CO2 

emissions to other provinces but consume less consumption-based CO2 

emissions in 2017. The opposite applies for provinces with lower emission 

intensities. In 2017, all 5 provinces with the highest CO2 emission intensities 

are net exporters of consumption-based CO2 emissions. However, having high 

emission intensities before 2017 was not equivalent to being net exporter of 

consumption-based CO2 emissions. Among the 5 provinces with the highest 

CO2 emission intensities in 2007, 3 of them are net importers. Inner Mongolia 

is the only province with an increased CO2 emission intensity, while also 

remains as the largest net exporter of consumption-based CO2 emission from 

2007 to 2017. For developed provinces like Beijing, Shanghai, Tianjin, and 

Zhejiang, the net imports of consumption-based CO2 emissions are 

continuously decreasing, with the decreases counting 48 Mt, 100 Mt, 30 Mt, 

and 78 Mt respectively from 2007 to 2017. On the contrary, net export of 

consumption-based CO2 from developing provinces like Hebei, Henan, Shanxi, 

and Guizhou also drastically decreased from 2007 to 2017, amounting 123 Mt, 

103 Mt, 48 Mt, and 46 Mt respectively. Nevertheless, as the largest net importer 

and exporter of consumption-based CO2 emission in 2017, Guangdong and 

Inner Mongolia (96 Mt imported and 146 Mt exported consumption-based CO2 

respectively) have not undergone much change in their traded consumption-

based CO2 emissions from 2007 to 2017 (differences count 17 Mt and 13 Mt 

respectively). Thus, although the variance of trade embodied CO2 emissions 

has decreased from 3688 Mt2 in 2007 to 1453 Mt2 in 2017, outlying data points 

of Inner Mongolia and Guangdong again indicate a polarizing trend of 

consumption-based CO2 emissions’ distribution among provinces in China. 

This polarizing trend can also be visually deduced from the increased 

concavities of the plots in Figure 6. The tops of the rectangles are straighter in 

2007 than in 2017, suggesting that the differences between emission intensities 

of various provinces increases faster in 2017 than in 2007. It is another indicator 

to show the polarising trend of inequality in CO2 emissions. Detailed results are 

presented in Appendix Table S1. 

2.2.4.2. Uncertainty Analysis 

Same to any research, this study is prone to limitations and weakness. Although 
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economic factor is fundamentally determining to consumption level and hence 

consumption-based emission, there are other factors that play important roles 

in determining the consumption based CO2 emissions across geographical 

locations. For instance, provinces in the north requires more heating in colder 

seasons, which may contribute to higher consumption-based CO2 emissions as 

economic grows and residents’ income increases. As the degree of income 

elasticity varies for different factors, the extent on the non-economic factors’ 

impact on consumption-based emissions and their inequalities may be 

investigated in further studies. 

In addition, due to differences in specifications and data source used for MRIO 

table compilation, uncertainties may also arise between MRIO tables used and 

hence the calculated consumption-based emissions. The same calculation is 

performed for consumption-based CO2 emissions using another recently 

published 2017 China MRIO table compiled by CEADs (Zheng et al., 2021). 

For the consumption-based CO2 emissions of the 31 provinces, the average 

difference is 22%. If the two outlying results are removed, the average in 

differences is further reduced to 14%. It suggests the results in this study are 

generally accurate and reliable, but further investigations may be needed to 

discuss the specific provinces that have larger discrepancies in the CO2 

emissions calculated.  

2.2.5. Case Result Analysis 

In this study, the changing distribution of consumption-based CO2 emissions 

among Chinese provinces from 2007 to 2017 is revealed. The general trend of 

consumption-based CO2 emissions flow is from inner lands to coastal regions, 

same as the most recent study of Dong et al. (2022) has found. Being more 

unique and focused, this result revealed that the unequal geographical 

distribution of CO2 emissions intensified. Emission responsibilities shifted 

towards a few provinces, which were mostly net exporters of embodied 

emissions to other provinces. In other words, less developed provinces are 

becoming the so-called “pollution haven” for the more developed provinces. In 

past studies, the hypothesis of a “pollution haven” has been proven with 

evidence at the international scale (Hoekstra et al., 2016, Malik and Lan, 2016). 

This study quantitatively tells the interesting story that the domestic transfer of 

embodied pollution in China not only exists but has also intensified in line with 

global trends.  

On the other hand, the consumption-based CO2 among provinces in China also 

shows a polarizing trend. More and more consumption-based CO2 emissions 

are now induced by the less developed regions in China, shown by the 

intensifying emission Gini coefficient. In the early 2000s, the coastal regions of 

China economically benefited from globalisation and China’s opening up, 
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constituting the first batch of developed Chinese regions. One possible 

explanation for the observation is the Flying Geese Paradigm proposed by 

Akamatsu (Kasahara, 2004). After acting as the outsourcing hub for other 

developed economies, the lower-end and more polluting industries of the 

coastal regions were phased out and moved to the less developed inland 

regions once industry upgrading was completed (Xu and Ang, 2013, Kanitkar 

et al., 2015, Su and Ang, 2016). This can also be explained by the “carbon 

leakage” phenomenon widely emphasised by the policy and science 

communities (Misch and Wingender, 2021). As a region becomes more 

developed, the cost of pollution increases due to tightened local regulations. 

Businesses will seek alternative locations with laxer pollution restrictions to 

lower the cost of production, causing the shifting of pollution sources to the less 

developed regions, as revealed in this study. In addition to policy drivers, the 

polarization trend between the developed and developing regions may be a 

result structural change, too. Due to technological advancement and change in 

energy sources, the developed regions achieve cleaner production faster than 

their developing counterparts, thus intensifying the polarizing trend of 

consumption-based CO2 emissions.   

2.2.5.1. Lagging in Carbon Decoupling 

The transfer of pollution to less developed regions can also be linked to the U-

shaped relationship between pollution and economic development. Initially, 

pollution continues to increase with progress in economic development. Once 

a region is relatively developed, pollution will start to decline after a tipping point 

due to increased emphasis on environmental welfare. Such a relationship has 

been proven in global studies (Hailemariam et al., 2020). The existence of a 

turning point in China’s CO2 emissions is also proven with Chinese historical 

data (Huang and Zhao, 2018). The decoupling of carbon emissions and 

economic growth in the more developed coastal regions has also been verified 

by Zhou et al. (Zhou et al., 2017b).  

For further analysis, CO2 intensities against consumption per capita are plotted 

in Figure 7. An approximated Environmental Kuznets Curve (EKC) is added as 

an illustration of the hypothetical relationship between environmental 

degradation and economic development. Doing so illustrates an inverted U-

shaped relationship, coinciding with Environmental Kuznets Curve (EKC) 

theory. Although most EKC research adopts production-based accounting, 

some literatures also verify that consumption-based emissions may also follow 

the inverted U-shaped relationship with economic development (Aldy, 2005, 

Gawande et al., 2001). It is shown in Figure 7 that developed regions such as 

Beijing and Shanghai already exhibit a strong decoupling between final 

consumption and per unit emissions, but such a decoupling trend has yet to be 

discovered among less developed regions such as Inner Mongolia and Ningxia. 
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Observation shows that the less developed regions of China still have great 

potential to improve their emission efficiencies. Yet, the EKC theory serves only 

as a potential explanation for the decoupling of CO2 emissions between 

different regions. To determine if the EKC exists in this case, quantitative and 

systematic investigation is needed. 

 

Figure 7. Final consumption emission intensities against final consumption per capita 

for China’s provinces.  

An effective way to achieve CO2 emission mitigation is to target less developed 

and more emission-intensive regions, a strategy that has proven to be one of 

the most effective for CO2 emission mitigation (Wood et al., 2020, Rao and Min, 

2018). In fact, the Central Government of China has already realised the 

challenges in CO2 emission efficiencies faced by the less developed region of 

the northwest (NDRC, 2021). In the upcoming 14th Five-Year Plan, policies 

targeted at the northwest regions of China have been devised to alleviate 

emission intensities to achieve China’s goal of peaking CO2 emissions by 2030 

(Government of Inner Mongolia, 2021). In addition, this study also quantitatively 

shows that the increasing of CO2 emissions embodied in the export from the 

northwest to other regions is a key contributor to the increasing polarization of 

CO2 emissions across China. Besides focused policies on the less developed 
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regions only, the Central Government may also consider formalized 

mechanism to promote coordinated cross regional policies among both 

developing and developed regions. For instance, Clean Development 

Mechanism (CDM) has always been advocated in the international setting, but 

less attention has been diverted for CDM with countries’ borders. The Central 

Government may consider the implementation of similar mechanism to ensure 

more just allocation of emissions responsibilities among domestic players and 

less mitigation resource burden on the Central Government. In addition, 

financial tool may be an alternative for alleviating the inequality in CO2 

emissions. Regulatory easing and subsidies for green bond issuance from less 

developed regions to the developed regions may also be a viable option.  

2.2.5.2. Trends with the World 

However, CO2 emission mitigation is not only a domestic problem but also a 

global challenge that requires international coordination. Pollution transfer 

happens across borders between China and the world as well. Evidence 

supports the observation that the CO2 emissions embodied in China’s net 

exports to developed countries are already decreasing (Hu and Wu, 2021, Mi 

et al., 2017), shifting to the developing world (Wu et al., 2021, Meng et al., 2018). 

Such an observation serves as empirical evidence for the argument that a 

further shifting of the CO2 emissions embodied in exports from the less 

developed regions of China to the world in the near future is impending. Given 

the uncertainties of global geopolitical situations, further supply chain shifts 

from China to the rest of the world will be a very likely and imminent event (Cao, 

2022). 

With the world MRIO table and emission inventory of the EXIOBASE database 

(Stadler et al., 2018b) and the calculation by He and Hertwich(He and Hertwich, 

2019), Figure 8 is produced to show how CO2 emissions embodied in trade 

shifted from 2007 to 2017 across the world (See Appendix Table S2). To ensure 

the discrepancies between different data sources are minimized, the global 

emissions calculated from EXIOBASE are normalized with the domestic CO2 

emissions of China calculated in this study. In general, the CO2 emissions 

embodied in China’s net exports to the world decreased for all regions, which 

is in line with the findings of other studies. However, North America’s (a typical 

developed region) CO2 emissions embodied in its net imports show an increase 

from the world other than China from 2012 to 2017, while the net exports of 

embodied CO2 emissions from emerging economies also show an increase 

from 2012 to 2017. 
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Figure 8. Net export of CO2 emissions from major world economic regions and China 

to the rest of the world other than China in 2007, 2012, and 2017  

Fortunately, the rapid development and deployment of clean technologies that 

were not available a decade ago may help developing countries achieve a clean 

and green reception of supply chains from China. In recent years, the cost of 

renewable energies has drastically decreased (IRENA, 2020). Knowledge of 

the best practices for sustainable investment in energy infrastructures is 

becoming more available and is regarded as a larger priority by global policy 

makers (Grubb et al., 2021). Recent evidence also shows that the exchange of 

clean energy technologies among countries may be able to put a stop to 

pollution outsourcing (Gosens, 2020). In other words, having a variety of green 

technology choices provides us with an alternative future to the past of 

perpetual emission outsourcing. It could be the key for us to achieve an equally 

sustainable future for all countries, regardless of the relative levels of economic 

development and the overall levels of economic well-being. 

2.3. Limitations of Input-Output Method 

The case study demonstrates a typical research conducted using the EEIO 

model. It shows that the IO model is a sufficient and essential tool to answer 

questions not only limited to economic structural analysis but also 

environmental impacts. In many other studies, researchers have also further 
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exploited the potentials of the IO model in more research fields. For instance, 

the IO model can be used to facilitate the optimization of resource allocation 

among different sectors of a system (Liu et al., 2017, Wang et al., 2009). Some 

research uses the IO model to determine the optimal production levels for 

different products given the available resources and market demand (Lin and 

Polenske, 1998). Based on the IO model, some research attempts to optimize 

the performance of complex systems, such as the power grid (Qu et al., 2017), 

by balancing the trade-offs between different objectives. 

Nevertheless, the limitations of the classic IO model have also been raised and 

long-debated by researchers. In this case study of China’s carbon emission 

inequality, following limitations of the IO model has been demonstrated. 

Firstly, the assumptions for the IO model are overly simplified (Munroe and 

Biles, 2005). The IO model assumes a simple linear relationship between input 

and output as shown in equation ( 2.4 ). This practice may be valid when 

accounting for past economic activities as it is only a way of attributing 

economic input and output contributions to different sectors. However, when it 

comes to more complex economic reasoning, the original IO model shows its 

incapability in modelling the nonlinear factors of economies, such as economic 

of scale, bottleneck in production, and elasticities.  

Secondly, the data collection for the IO model is resource intensive (Miller and 

Blair, 2009). It normally needs an economic survey at the national level, which 

is expensive in terms of labour and time resources needed. In this case, the 

2017 provincial IO tables used were only available after 2022. Conventionally, 

most countries publish their IO tables normally by a lag of 3 to 5 years. It thus 

greatly deteriorates the timeliness and accuracy of IO model in analysing 

economic performance. 

Thirdly, the forecast ability of the IO model is limited (Israilevich et al., 1997). 

This study already shows that the economic structure and hence CO2 emission 

pattern of China has undergone tremendous changes for the decade 

investigated. However, due to limited availability of IO tables as data sources, 

the resolution of the time dimension must be limited in annual terms. In other 

words, it is assumed in IO analysis that the technical coefficients remain 

unchanged within each of the investigating years. However, economic structure 

is constantly under change. Trade patterns from one region to another in this 

quarter may be very different to the last quarter as shown in abundantly 

available macro-economic data. Thus, the ability of IO model to provide more 

dynamic analysis and forecasts in a shorter time span is limited.  

Fourthly, the uncertainties in the process of national survey are unavoidable 

(Lenzen et al., 2010). The compilation of 2017 China MRIO table in this case 
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study is based on gravity model, which is sometimes criticized for its strong 

assumption on the interaction of regions and sectors by IO modellers who are 

more convinced with the statistic nature of IO tables. In similar research 

involving the disaggregation of IO tables, no matter in the time domain or in 

sector resolution, various strong assumptions and simplifications must be made, 

contributing to the uncertainties of the IO research result. 

To surmount the limitations of the IO model as elucidated in this case study, 

methodological innovations are not just desirable but essential. Marked by the 

rapid evolution of computational algorithms and the burgeoning field of data 

science, viable alternatives are emerging to address the challenges that 

traditional statistical models encounter nowadays. By innovatively modifying 

the IO model and synergistically integrating it with big data, IO model’s capacity 

can be significantly enhanced to map out more intricate economic 

interdependencies and thus offer more accurate predictions of short-term 

economic outcomes, thereby providing invaluable insights into the dynamic 

economic landscape. Moreover, the process of collecting data for IO tables 

stands to benefit immensely from technological advancements in data science. 

The adoption of automated systems for statistical compilation, leveraging high 

time-resolution economic data or proxy data, promises to drastically reduce 

inaccuracies. Consequently, the limitations highlighted in this case study can 

be substantially mitigated, if not entirely overcome, through these 

methodological advancements and technological integrations. This paves the 

way for a more robust, reliable, and dynamic IO model, tailored to meet the 

analytical demands of modern economics. 
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Chapter 3: The Sequential Interindustry Model and 

Its Improvement  

This chapter commences by revisiting several pivotal methodological 

innovations within the realm of the IO model. As an innovation in the time series, 

this chapter adopts the Sequential Interindustry Model (SIM). This chapter then 

details the development of an algorithm specifically designed to facilitate the 

effective resolution of the SIM model based on observations of economic 

outputs. The subsequent sections of this chapter will delve deeper into the 

technical intricacies of this algorithm and its practical applications in the 

analysis of economic data. 

3.1. Past Development of Input-Output Model 

Since the first proposal of the classic IO Model, economists have made some 

useful advancement in the methodology of IO modelling to tailor for the 

differentiated needs for economic analysis. As demonstrated in Chapter 2, the 

EEIO model is developed based on IO to assess the environmental stresses of 

the economy. Besides environmental accounting, energy (Liang et al., 2010), 

resource (Nakamura and Nakajima, 2005), and even health (Zhang et al., 

2017b) stresses are investigated using EEIO model. Chapter 2 also shows how 

the MRIO model can be used to study trade activities and supply chains among 

regions. With global MRIO tables available, economists can easily conduct 

analysis related to global value chains considering both direct and indirect 

consumptions (Albino et al., 2002, Wang et al., 2020a). In addition to the two 

variants applied in Chapter 2, the IO price model factors in price formation 

mechanism to discuss fiscal and monetary policies concerning inflations 

(Przybyliński and Gorzałczyński, 2022), exchange rates (Duan et al., 2020), 

subsidies (Harun et al., 2018) and more. The following section describes some 

typical examples of most widely adopted variants of the IO model to offer a 

glimpse on the important methodological improvements made for the IO model. 

3.1.1. Structural Decomposition Analysis 

Structural Decomposition Analysis (SDA) is a powerful analytical tool used in 

economics to study the contribution of various factors to changes in economic 

activity. Based on the IO model, it is used to decompose the changes in an 

economy into underlying factors such as sectoral changes, technological 

improvements, and changes in demand. By differentiating the classic IO Model 

given in ( 2.5 ), the changes in total output can be given as follow: 

𝑋 = (𝐼 − 𝐴)−1𝑌 

𝑋 = 𝐿𝑌 
( 3.1 ) 



36 

 

∆𝑋 = 𝐿∆𝑌 + ∆𝐿𝑌 

In equation ( 3.1 ), ∆ means change in the quantity, so that ∆𝑋, ∆𝑌, and ∆𝐿 

represent the changes in total outputs, final demands, and technological 

efficiency in relative sizes. The first term on the right-hand side of the equation 

represents the direct effect of changes of the demand on the economy. The 

second term on the right-hand side of the equation represents the indirect effect 

of changes in the structure of the economy. By decomposing changes in 

economic activity into direct and indirect effects, SDA allows researchers to 

identify the underlying drivers of change in an economy.  

The SDA method is often further enhanced and widely applied in a variety of 

fields, including environmental studies (De Haan, 2001), energy policy 

(Alcántara and Duarte, 2004), and international trade (Xu and Dietzenbacher, 

2014). SDA can provide valuable insights into the drivers of change and can 

inform policy decisions aimed at achieving specific economic or environmental 

objectives.  

Taking the EEIO Model described by equation ( 2.7 ) for instance. Applying the 

same concept of differentiation in equation ( 3.1 ), the change in consumption-

based emission can be rewritten into equation  ( 3.2 ) below:  

∆𝐶𝑐𝑏𝑎 = 𝐸𝐿∆𝑌 + 𝐸∆𝐿𝑌 + ∆E𝐿𝑌  ( 3.2 ) 

In equation  ( 3.2 ), the drivers for consumption-based emission can be 

decomposed into three factors, adding emission intensity as another factor for 

the increase in emissions induced. Under the same rationale, researchers can 

further change the investigating variable into energy consumption, and air 

pollutions etc. They can also further decompose the investigated variables into 

more drivers such as population change, wealth accumulation and so on. 

However, SDA merely provides an accounting tool to tell a story of what 

happened in the past economic performance. Rigorous economic reasoning is 

lacked in SDA and thus limited applications have been extended to more 

complex economic analysis (Rose and Casler, 1996).   

3.1.2. Hypothetical Extraction Method 

In the attempt to measure the interindustry linkages at the comprehensive 

macro level, the Hypothetical Extraction Method (HEM) is proposed as another 

development on IO the model. Based on the classic IO model given in ( 2.5 ), 

HEM first assumes one or multiple industries are removed from the economy. 

Specifically, if the industry 𝑘 is to be removed for investigation, the 𝑘th row and 

column of the 𝐴 matrix and 𝑘th row of the final demand vector 𝑌 are changed 

to zeros accordingly to form the new technical coefficient matrix �̅� and final 
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demand vector �̅�. The new total output �̅� will be given as: 

�̅� = (𝐼 − �̅�)−1�̅� ( 3.3 )  

Hence, the comprehensive impact of industry 𝑘 on the entire economy can be 

simply obtained from the difference between 𝑋  and �̅�  as below in equation 

( 3.4 ). 

𝑋 − �̅� = (𝐼 − 𝐴)−1𝑌 − (𝐼 − �̅�)−1�̅� ( 3.4 )  

The same HEM concept can also be applied to study the interregional linkages 

be removing a region from the MRIO table (Tormo García et al.). Similarly, if 

emission and energy consumption extension are to be studied, the respective 

intensity vectors are multiplied to both sides of the equation (Zhao et al., 2015). 

HEM is thus widely used to investigate the hypothetical impact of a certain 

industry on the entire economy. However, like SDA, HEM is often considered 

limited in its ability to give economic reasoning (Dietzenbacher et al., 2019).   

3.1.3. Hybrid Input-Output  

The hybrid input output model (Jongdeepaisal and Nasu, 2020) is also a useful 

improvement from the classical IO Model, mostly used in techno economic 

studies to assess the interindustry impact of a specific technology on the entire 

economy. Based on life cycle assessment information, the input requirement of 

a certain technology is integrated into the technology coefficient 𝐴 by adding a 

corresponding column and row. Hence, the classic IO Model in equation ( 2.4 ) 

is again changed to construct a new IO relationship as follow: 

[
𝑋𝑝

𝑋
] = [

𝑌𝑝

𝑌
] + [

𝑍𝑝 𝐶𝑑

𝐶𝑢 𝑍
] ( 3.5 ) 

In equation ( 3.5 ), 𝑋, 𝑌, and 𝑍 bear their original meaning of total output, total 

demand, and intermediate input in the classical IO Model. 𝑋𝑝, 𝑌𝑝, and 𝑍𝑝 are 

the output, final demand, and internal intermediate input-output process of the 

investigated product 𝑝. 𝐶𝑢 is the upstream cut-off submatrix that describes the 

upstream inputs taken from the economy. 𝐶𝑑  is the downstream cut-off 

submatrix that describes the downstream outputs delivered for intermediate 

consumptions in the economy. In other words, the new IO relationship in 

equation ( 3.5 ) describes an economy with an additional production sector 

added into the economy. IO analysis can then be applied to the new economic 

system and hence compare the impacts that the added sector has on the entire 

economy. 

However, the limitation for hybrid IO model is obvious - manual assignment of 

intermediate input is prone to high inaccuracy. In hybrid IO research, the 
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determination of intermediate input has to rely on subjective expert judgement 

(Sharrard et al., 2008).  

3.1.4. Input-Output-Based Network Analysis  

A more recent methodological innovation for IO is to combine network analysis 

techniques with IO analysis (He et al., 2021). In network studies, nodal analysis 

is a commonly used technique to investigate the flow of transections among 

different nodes. In an IO economic system, each sector is similar to a node in 

a network, where nodes interact with each other to form a closed loop system. 

Hence, based on the betweenness analysis in network studies, the following 

equation is developed: 

𝐵𝑖 = 𝑇𝐽𝑖𝑇𝑌 ( 3.6 ) 

In equation ( 3.6 ), 𝐵𝑖 means the betweenness of sector 𝑖, which measures the 

importance of the sector in terms of its role in acting as the transmitting point 

for upstream and downstream productions and consumptions. 𝑇 = 𝐴 + 𝐴2 +

𝐴3 + ⋯ = (𝐼 − 𝐴)−1𝐴 represents the infinite extension of interindustry linkages 

towards upstream or downstream consumptions and productions. 𝐽𝑖  is a 

selection vector with 1 registered in the 𝑖th sector and 0s in other sectors. 

Compared to other IO analysis, the IO-based network analysis provides a 

different perspective in quantitatively accounting for the importance of sectors 

in transmitting productions, hence enable policy makers to devise policies 

accordingly.  

IO-based network analysis thus helps us better understand the structure and 

symbiosis of economies. However, the IO-based network analysis only 

provides an account for economic symbiosis over a longer period. The intricacy 

of economic linkages in higher time resolution is unfortunately overlooked (Xu 

and Liang, 2019).  

3.1.5. Improvements of Input-Output Model in the time domain 

In addition to the efforts in extending IO modelling, some efforts are also 

devoted in improving IO model towards time domain analysis and thus 

predictions for economic performances. In fact, Leontief himself delved into the 

realm of the time domain of IO by introducing the dynamic IO model (Leontief, 

1970, Leontief, 1953), attempting to explain the interaction between capital 

investment and production efficiencies on a chronological basis (Duchin and 

Szyld, 1985). Even though some researchers are still working towards the 

perfection and application of the dynamic IO model (Aulin-Ahmavaara, 2000, 

Rocco, 2019) to better factor in the impact of capital formation on productivity 

as a solution for economic prediction, such an approach has been criticized by 

other researchers for a number of reasons, such as omission of production 
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factor constraints and inability to account for labour inputs (Kurz and Salvadori, 

2000). Besides the classic demand driven IO model, attempts have also been 

made to construct a supply-driven IO model in the 1980s (Oosterhaven, 1988), 

but few developments have been fulfilled until its recent emphasis in disaster 

event analysis (Galbusera and Giannopoulos, 2018, Yagi et al., 2020), 

reigniting the discussion on supply-driven IO (Reyes and Mendoza, 2021). 

Skolka (1989) proposed Taylor Expansion on SDA to explain the induced 

intermediate production over time. More recent discussion has proposed the 

temporal Leontief inverse, which compromises between SDA and dynamic IO 

(Okuyama et al., 2006, Avelino et al., 2021). In addition, several other analysis 

tools build on the idea of chronological impact in IO model, such as dynamic 

inoperability (DIIM), supply bottlenecking (ARIO), and hybridization with 

Computational General Equilibrium (CGE) model, to analyse the impact of 

disasters in the long term (Mendoza-Tinoco et al., 2017, Zeng et al., 2019b, 

Zeng and Guan, 2020b, Guan et al., 2020). Such developments normally 

include non-linear characteristics, assuming a final steady state will be reached 

given a long-term general equilibrium.  

Building on this idea, the most well developed and widely applied superset of 

IO model is the CGE model. As discussed by Koks et al. (2015), CGE models 

focuses on the long-run future equilibrium state, contrasting to the nearer future 

focus of IO models. As an economic model widely adopted by governments of 

developed countries, the CGE model uses numerical methods to simulate the 

behaviour and interaction of economic agents. CGE models are often used to 

analyse the impact of various economic policies, such as taxation, trade, fiscal 

and environmental policies, as well as shocks to an economy. It assumes that 

supply and demand in all markets reach a state of balance or equilibrium among 

various economic agents and their interactions across multiple markets. In the 

settings of most CGE model, households maximize utility by consuming goods 

and services, while firms maximize profits by producing goods and services 

using inputs like labour and capital. Governments may set policies and collect 

taxes to provide public goods and services. The modelled economy is also 

further divided into various specific markets, such as goods, services, labour, 

and capital markets, in which prices are determined by the interaction between 

supply and demand. Furthermore, production and consumption functions are 

introduced to quantitatively describe the relationships between inputs and 

outputs in the production process, as well as the preferences of consumers for 

different goods and services. Constraints such as budget constraints for 

households, production constraints for firms, and fiscal constraints for 

governments are introduced on economic agents to factor in more realistic 

interactions in an economy. Depending on the research question, CGE models 

can be static or dynamic, and disaggregated to represent different sectors, 

regions, or countries, hence capturing more detailed economic interactions 
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(Zhou and Chen, 2021).  

However, the expensive human capital investment required for the learning, 

building, and using of CGE remains a significant entry barrier for many scholars. 

This complexity can make it difficult for non-experts to understand and evaluate 

the model's results (Rose, 1995). With large number of parameters based on 

estimations or calibrations, the accuracy of CGE is questioned by many 

(Burfisher, 2021), testified by the empirical evidence, such as its failure to 

forecast the magnitude of economic downturn in 1990s Spain (Polo and Viejo, 

2015). Data limitations, measurement errors, and uncertainty in parameter 

values can also introduce biases and reduce the model's predictive power 

(Babatunde et al., 2017). Although economic theorists may produce logically 

sound modelling frameworks for CGE, the hardest part that directly deteriorates 

its accuracy in real world application is the lack of information on parameters 

setting (Dixon and Rimmer, 2009, Zhou and Chen, 2020). Lou (2016) discussed 

the possibility of using big data in existing economic models such as CGE, a 

complex economic model that factors in multiple economic parameters to 

improve its time-series economic analysis, but also admits that using CGE to 

analyse shorter term economic performance is not possible. A simpler version 

of chronological IO variant that focuses on the nearer future event would thus 

be a great complement to the existing toolbox of economic modelling. 

 

3.2. Sequential Interindustry Model (SIM) 

Jumping out of the general equilibrium assumption, Romanoff and Levine (1977) 

propose the SIM as a new strain of IO model innovation to pollinate the time 

domain analysis into the IO model in a culminative linear interaction. Similar to 

the dynamic material flow analysis (B. Müller, 2006), the SIM hybridises the 

time lag in demand propagation with the IO model by building a direct linear 

linkage between future and past economic activities. Some real-world SIM 

applications have also been made by later researchers. For instance, Okuyama 

et al. (2004) and Okuyama et al. (2000) use the SIM to assess the economic 

impact of natural disasters in Japan by using quarterly disaggregated 

hypothetical data. However, past attempts with the SIM proposed technical 

coefficient changes based only on hypothetical estimations, which greatly 

aggravates the uncertainties of modelling outcomes and limits further 

applications. This is largely because the data demands of the SIM are not easily 

met (Levine et al., 2007), thus hindering the SIM from fulfilling its deeper 

potential. It is also the reason why many IO researches merely mention and 

discuss the SIM in literature reviews but resolve to other IO variations as the 

tool for IO related modelling involving chronological analysis (Barker and 

Santos, 2010, Malik et al., 2014, Mendoza-Tinoco et al., 2017, Yu et al., 2013, 
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Avelino and Hewings, 2019, Avelino, 2017). 

Nevertheless, none of the existing SIM research has extended their time 

domain analysis to a resolution higher than monthly. The reasons that there is 

hardly any advancement in the SIM model towards high time-resolution 

innovation are as follows. 1) Researchers are too convinced that the IO model 

is an economic model that obeys the principle of general equilibrium, so efforts 

are concentrated on introducing more economic concepts, such as inoperability 

(Yu et al., 2013, Barker and Santos, 2010), to build a “perfect economic model”, 

but the fundamental interactions between economic in a physical way are sadly 

overlooked. If SIM is to be applied in a short run disequilibrium setting under 

which macroeconomic structural changes are less influential factors to be 

considered, SIM’s potential in regression with big data can then be further 

exploited. 2) The data requirement for high time-resolution analysis is costly. 

National IO tables are normally produced every 3-5 years. It takes great effort 

from IO scholars to increase the time resolution on a yearly basis (Avelino, 2017) 

to match the annually or quarterly updated economic indicators. Data 

unavailability has disincentivized model builders from working on a theoretical 

model with limited applications. Thus, limited methodological advancement has 

been made based on the concept proposed by SIM. 

As Leontief pointed out at his later stage of research, the IO model is not simply 

an economic method but can also be understood from the technical/engineering 

perspective (Leontief, 1991). This research shares the same spirit of Coluzzi et 

al. (2011) to look at the IO model from the perspective of data science. Through 

an innovative algorithm, this research creatively simplified the complicated 

interactions among economic sectors proposed by SIM into a solvable linear 

system. Then, this research pollinated linear regression technique into the new 

algorithm, so that the best fitted technical coefficient from sectorial demands 

and outputs observations can be reversely calculated across the discrete time 

intervals, instead of hypothetically and less accurately “divide” production 

coefficients along the time domain like past SIM modellers did. A simulation 

based on dummy input has been conducted in this research to show that the 

algorithm proposed can accurately calculate the unknown chronological 

production coefficients based on simply output observations. The innovated 

algorithm will thus offer potential applications both in data science and in 

econometric interdisciplinary research. It opens the “black box” to reveal the 

relationships that cannot be told by conventional big data tools such as machine 

learning algorithms. Thus, scholars could have a new perspective to describe 

the structure of an economy in a chronological way. If the production coefficient 

of SIM is to be changed, it will be possible to investigate the impact of an 

external shock, such as nature disaster, on the economy in a timely dynamic 

way. On the other hand, if inputted with adequate proxy data, the proposed 

algorithm may extensively alleviate the cost associated with IO table 



42 

 

compilation, revolutionizing the way of conducting large scale economic 

analysis. 

To look into the SIM, recall that the classic IO model in equation ( 2.5 ) can be 

rewritten as follow using the Taylor expansion: 

𝑋 = 𝐼𝑌 + 𝐴𝑌 + 𝐴2𝑌 + ⋯+ 𝐴𝑛𝑌     (𝑛 → ∞) ( 3.7 )  

The physical meaning of equation ( 3.7 ) is that the output induced by demand 

takes effect through layers of intermediate productions. SIM then introduces the 

time domain by splitting 𝑥 and 𝑦 into finite discrete time intervals as time series, 

meaning that 𝑥 and 𝑦 can be rewritten as 𝑋(𝑡) and 𝑌(𝑡), respectively. Equations 

( 3.8 ) and ( 3.9 ) illustrate the principle of this conversion. 

𝑋 = ∑ 𝑋(𝑡)

𝑚+𝑛

𝑡=1

 

𝑋 = 𝑋(0) + 𝑋(1) + 𝑋(2) + ⋯+ 𝑋(𝑚) + ⋯+ 𝑋(𝑚+𝑛)               (𝑛 → ∞) 

( 3.8 )  

 

Y = ∑𝑌(𝑡)

𝑚

𝑡=1

 

𝑌 = 𝑌(0) + 𝑌(1) + 𝑌(2) + ⋯ + 𝑌(𝑚) 

( 3.9 ) 

For each of the terms, the subscript denotes the specific demand and output at 

discrete time 𝑡. 𝑚 is the number of discrete time interval investigated. 𝑛 is the 

number of propagation layers that ideally approach infinity, the same as 

demonstrated by Taylor expansion in equation ( 3.7 ). It means that for 𝑚 

observations of 𝑋(𝑡)  and 𝑌(𝑡) , due to productional propagations, changes on 

output 𝑋(𝑡)  will theoretically extend into the infinitely distant future. Hence, 

considering the time lag feature of 𝑋(𝑡) and 𝑌(𝑡), equation ( 2.5 )  will then be 

changed to equation ( 3.10 ) below. 

𝑋(𝑡) = 𝑌(𝑡) + 𝐴𝑋(𝑡−1)          ∀ 𝑡 > 1,     𝑦(𝑡) = 0    𝑡 > 𝑚 ( 3.10 ) 

In equation ( 3.10 ), a recursive algorithm is introduced to obtain the output 𝑋(𝑡) 

at time 𝑡 based on two variables: the current demand 𝑌(𝑡) at time 𝑡 and total 

output 𝑋(𝑡−1) at the previous discrete time of (𝑡 − 1). The rationale is that what 

has been produced “today” will signal intermediate production “tomorrow” and 

propagate into the more distant future recursively. For instance, a hundred cars 

are manufactured and consumed “today”, so that four hundred tyres are used 

in the inventory of car making factories. Thus, receiving the market signal, tyre 

manufacturers will produce four hundred tyres “tomorrow” to respond to the 
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consumption signal sent out “today”. Since SIM discusses the state of economic 

structure in a very short period, it is assumed that the economy will not be able 

to respond by investing in capital equipment or similar means to change its 

structure, but to change production level in the face of differed market signal. 

Although the length of time duration investigated is 𝑚, 𝑛 more discrete time is 

extended into the future as the residue of the outputs induced by demand 

induced by outputs before time 𝑚 takes effect.  

The following equations illustrate equation ( 3.10 ) in its expanded form to help 

understanding the mathematics and the underlying idea. 

 

𝑋(0) = 𝑌(0) 

𝑋(1) = 𝑌(1) + 𝐴𝑋(0) = 𝑌(1) + 𝐴𝑌(0) 

𝑋(2) = 𝑌(2) + 𝐴𝑋(1) = 𝑌(2) + 𝐴𝑌(1) + 𝐴2𝑌(0) 

…… 

𝑋(𝑛) = 𝑌(𝑛) + 𝐴𝑋(𝑛−1) = 𝑌(𝑛) + 𝐴𝑌(𝑛−1) + 𝐴2𝑌(𝑛−2) + ⋯+ 𝐴𝑛𝑌(0) 

…… 

𝑋(𝑚) = 𝑌(𝑚) + 𝐴𝑋(𝑚−1) = 𝑌(𝑚) + 𝐴𝑌(𝑚−1) + 𝐴2𝑌(𝑚−2) + ⋯+ 𝐴𝑛𝑌(𝑚−𝑛) 

𝑋(𝑚+1) = 𝐴𝑌(𝑚) + 𝐴2𝑌(𝑚−1) + ⋯+ 𝐴𝑛𝑌(𝑚−𝑛+1) 

𝑋(𝑚+2) = 𝐴2𝑌(𝑚) + 𝐴3𝑌(𝑚−1) + ⋯+ 𝐴𝑛𝑌(𝑚−𝑛+2) 

…… 

𝑋(𝑚+𝑛−1) = 𝐴𝑛−1𝑌(𝑚) + 𝐴𝑛𝑌(𝑚−1) 

𝑋(𝑚+𝑛) = 𝐴𝑛𝑌(𝑚) 

Since the row-sum of elements of production coefficients in 𝐴 are all smaller 

than 1 as input must not exceed output for any productions, 𝐴𝑛 converges to 

zero as 𝑛 becomes sufficiently large. It can thus be assumed that terms with 

𝐴’s degree powers higher than 𝑛 to be neglected. 

Bearing this concept in mind, the algorithm introduces next the time domain into 

the production coefficient 𝐴 in a similar manner to that of equations ( 3.8 ) and 

( 3.9 ). 𝐴 is thus converted into equation (6) as follows: 

𝐴 = 𝐴(1) + 𝐴(2) + ⋯+ 𝐴(𝑙) ( 3.11 ) 

The reason for splitting 𝐴 is to reflect the time lag that occurs between different 

sectors due to technical constraints (Romanoff and Levine, 1986). Hence, the 

modified production coefficients not only reflect the magnitude of intermediate 

inputs, but also the timing for the intermediate inputs to be fulfilled. For instance, 

tyres in the car manufacturing industry may be made quicker than cars’ control 

chips due to reasons like the nature of engineering process and distances 

among different industry clusters. Such information cannot be captured by 𝐴 in 
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traditional IO models, but its spitted version in SIM as described by equation 

( 3.11 ). An earlier simple attempt by Okuyama (2004a) splits 𝐴 into three 

stages. Equation ( 3.10 ) is thus further modified into equation ( 3.12 ), the 

general form of SIM as follows: 

𝑋(𝑡) = 𝑌(𝑡) + ∑𝐴(𝑖)𝑋(𝑡−𝑖) 

𝑙

𝑖=1

        ∀ 𝑖 < 𝑡     𝑦(𝑡) = 0    𝑡 > 𝑚 ( 3.12 )  

In an early work of Romanoff and Levine (1981), equation ( 3.12 ) is defined as 

the responsive production SIM where productions are responses to demand in 

the past. A further advancement in SIM modelling has been proposed to include 

anticipatory production of demand from the future. Similarly, there is also 

proposal to change the Leontief IO model from demand-driven to supply-driven 

Ghosh model, so that outputs are results of supply for productions instead of 

demand induced productions (de Mesnard, 2007). To avoid unnecessary 

complications, this research will only work with the general responsive 

production form of SIM.   

For the purpose of illustration, the SIM process described in equation ( 3.12 ) 

is shown visually using the schematic diagram given in Figure 9 below. Each 

horizontal row shows how the output 𝑋(𝑡) is comprised at the respective time 𝑡. 

Initially in the first row, it shows the state where 𝐴(𝑡) and 𝑌(𝑡) have not started 

interacting with each other. Until it moves to the second row of 𝑡 = 0, 𝑌(0) is first 

multiplied by the identity matrix 𝐼 to produce 𝑋(0), as highlighted in red on the 

left side. It suggests that output will match the market demand for the first time 

interval. In the next discrete time of 𝑡 = 1, output at the previous discrete time, 

𝑋(0), is multiplied by 𝐴(1) to produce one element that is to be added to the 

product of 𝑌(1) and 𝐼, according to the aforementioned assumption that output 

will match the instant demand. The product of 𝑋(0) and 𝐴(1) indicates that the 

production coefficient on the second discrete time will be applied to the output 

at first discrete time. It is to simulate the time-lagged response of intermediate 

productions to output of previous time discrete. The added sum then produces 

𝑋(1) and is to be used in the next step of 𝑡 = 2. Theoretically, this procedure is 

repeated for infinitely many processes. Essentially, readers may want to 

visualize the process as moving the series of 𝐴(𝑡) and 𝑋(𝑡) towards each other 

to perform a convolution-like operation, as demonstrated in Figure 9. 
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Figure 9 The algorithm process in a visual diagram.  

For easier discussion, we constructed a SIM system with a dummy production 

coefficient matrix 𝐴(𝑡)  with two layers as shown in Table 3 below, where  

𝐴(1) and 𝐴(2) shows the interaction of the two sectors in t=1 and t=2 respectively. 

 𝐴(1) 𝐴(2) 

Sector A Sector B Sector A Sector B 

Sector A 0.2 0 0 0.7 

Sector B 0 0.375 0.25 0 

Table 3 A simulated production coefficient matrix in time-series of two sectors and two 

layers 

Assuming two unitary demand of 1 happens for Sector A at 𝑡 = 0 and for Sector 

B at 𝑡 = 1  respectively, denoted as vectors 𝑌(0) = [
1
0
]  and 𝑌(1) = [

0
1
] , the 

following output of 𝑋(𝑡) can be then obtained according to equation ( 3.12 ): 

𝑋(0) = 𝑌(0)  = [
1
0
] 

𝑋(1) = 𝑌(1) + 𝐴(1) 𝑋(0) = [
0
1
] + [

0.2 0
0 0.375

] [
1
0
] = [

0.2
1

] 

𝑋(2) = 𝐴(1)𝑋(1) + 𝐴(2)𝑋(0) = [
0.2 0
0 0.375

] [
0.2
1

] + [
0 0.7

0.25 0
] [

1
0
] = [

0.04
0.625

] 

𝑋(3) = 𝐴(1)𝑋(2) + 𝐴(2)𝑋(1) = [
0.2 0
0 0.375

] [
0.04
0.625

] + [
0 0.7

0.25 0
] [

0.2
1

] = [
0.708
0.2844

] 

…… 

By organizing and plotting 𝑋(𝑡) in Figure 10, it is easily observed that under SIM, 

the final output will decay towards zeros, validating the deductions in SIM made 

previously.  
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Figure 10 The decaying output over time as a response to the illustrative unitary 

demands in sector A and B and production coefficients 𝐴(𝑡). 

3.3. Model Innovation 

Nonetheless, the chronological production coefficient 𝐴(𝑡) is often unknown to 

modelers. The conventional approach involves making rough estimations of the 

time delay and the ratios of intermediate inputs at each step (Okuyama et al., 

2004). This method is susceptible to inaccuracies and data insufficiency. If the 

coefficient 𝐴(𝑡)could be obtained through quantitative calculations derived from 

economic output observations, i.e. 𝑋(𝑡) and 𝑌(𝑡), the effectiveness of the SIM 

model could be significantly enhanced, allowing for a more accurate 

representation of the complex interdependencies in economic systems and 

leading to better-informed decision-making and more robust policy 

development. 

The objective of this chapter is to determine the production coefficient 𝐴(𝑡) in a 

time series through extensive observations of total output 𝑋(𝑡) and final demand 

𝑌(𝑡). Although Levine et al. (2007) proposed using Z transformation to address 

the convolution-like problem inherent in the SIM model, there is no 

mathematical solution for applying Z transformation to matrix variables in the 

frequency domain. As a result, no methodological advancements have been 

made to solve the SIM model. Considering the advancements in programming 

capacity developed in recent years, it is natural to explore solving the SIM 

model in the time domain. By leveraging modern computational capabilities, the 

potential for obtaining a more accurate representation of the production 

coefficient 𝐴(𝑡)could lead to improved modelling of economic systems and a 

deeper understanding of the interdependencies between sectors. This in turn 
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could contribute to better-informed policy decisions and more effective 

strategies for economic development. 

Hence, the SIM model is to be solved within the time domain. In the proposed 

algorithm, it assumes that productivity 𝐴(𝑡)  is unchanged, and production 

activity 𝑋(𝑡)  is only signalled by consumption activities 𝑌(𝑡)  as a responsive 

demand. 

To reversely work out 𝐴(𝑡), let us first write out equation ( 3.12 ) as follows: 

𝑋(0) = 𝑌(0) 

𝑋(1) = 𝑌(1) + 𝐴(1)𝑋(0) 

= 𝑌(1) + 𝐴(1)𝑌(0) 

𝑋(2) = 𝑌(2) + 𝐴(1)𝑋(1) + 𝐴(2)𝑋(0) 

= 𝑌(2) + 𝐴(1)𝑌(1) + (𝐴(1)
2 + 𝐴(2))𝑌(0) 

𝑋(3) = 𝑌(3) + 𝐴(1)𝑋(2) + 𝐴(2)𝑋(1) + 𝐴(3)𝑋(0) 

= 𝑌(3) + 𝐴(1)𝑌(2) + (𝐴(1)
2 + 𝐴(2))𝑌(1)

+ (𝐴(1)
3 + 𝐴(1)𝐴(2) + 𝐴(2)𝐴(1) + 𝐴(3))𝑌(0) 

…… 

It can be rewritten again into a linear system in matrix form, as shown in 

equation ( 3.13 ): 

[𝐼 𝐴(1) (𝐴(1)
2 + 𝐴(2)) (𝐴(1)

3 + 𝐴(1)𝐴(2) + 𝐴(2)𝐴(1) + 𝐴(3)) ⋯]

×

[
 
 
 

𝑌(𝑛) 𝑌(𝑛+1) ⋯

𝑌(𝑛−1) 𝑌(𝑛) ⋯

⋮ ⋮ ⋯
𝑌(0) 𝑌(1) ⋯]

 
 
 
 

= [𝑋(𝑛) 𝑋(𝑛+1) ⋯] 

( 3.13 ) 

Let there be 𝑝 sectors. If we take (𝑛 + 1) × 𝑝 observations of 𝑦 to make the 

second matrix on the left a symmetric matrix, then the first term in equation 

( 3.13 ) is solvable by taking an inverse of the second term, as shown in 

equation ( 3.14 ). 

[𝐼 𝐴(1) (𝐴(1)
2 + 𝐴(2)) (𝐴(1)

3 + 𝐴(1)𝐴(2) + 𝐴(2)𝐴(1) + 𝐴(3)) ⋯] 

= [𝑋(𝑛) 𝑋(𝑛+1) ⋯] ×

[
 
 
 

𝑌(𝑛) 𝑌(𝑛+1) ⋯

𝑌(𝑛−1) 𝑌(𝑛) ⋯

⋮ ⋮ ⋯
𝑌(0) 𝑌(1) ⋯]

 
 
 
−1

 

( 3.14 ) 

By observing the term on the left-hand side of the equation, the time subscripts 
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and power degrees of 𝐴(𝑡)
𝑞 in each of the elements all sum up to be the same. 

For instance, the element (𝐴(1)
3 + 𝐴(1)𝐴(2) + 𝐴(2)𝐴(1) + 𝐴(3)) has its terms’ time 

subscripts and power degrees all sum up to 3. Physically, this can be explained 

by the different paths taken by production operations to reach the current layer; 

i.e., in (𝐴(1)
3 + 𝐴(1)𝐴(2) + 𝐴(2)𝐴(1) + 𝐴(3)) , the production sectors that are 

“closer” to each other and linked by 𝐴(1) will be induced three times compared 

to only once by 𝐴(3). The algorithm calculating the combinations that satisfy 

such a requirement is called a partition in number theory, for which plenty of 

well-programmed functions in multiple programming platforms for its realization 

are available. Hence, knowing 𝐴(1) in the beginning, 𝐴(2) can first be obtained 

according to the expression of 𝐴(2) shown in the second row of equation set 

( 3.15 ). Having 𝐴(1) and 𝐴(2), it is then feasible to obtain 𝐴(3) according to the 

third row of equation set ( 3.15 ). Thus, any 𝐴(𝑡) for 𝑡 > 1 can be obtained by 

recursive induction step by step. 

𝐴(1) = 𝐴(1) 

𝐴(2) = (𝐴(1)
2 + 𝐴(2)) − 𝐴(1)

2 

𝐴(3) = (𝐴(1)
3 + 𝐴(1)𝐴(2) + 𝐴(2)𝐴(1) + 𝐴(3))

− (𝐴(1)
3 + 𝐴(1)𝐴(2) + 𝐴(2)𝐴(1)) 

⋯⋯ 

( 3.15 )  

Equations ( 3.13 ) to ( 3.15 ) describe a mathematic algorithm to linearly solve 

for an ideal SIM system. To apply SIM into the real world, it needs to combine 

statistical and econometric research techniques with SIM to compensate for 

uncertainties. Linear regression is thus introduced to minimize the summation 

of square errors, so as to find the best fitted solution to 𝐴(𝑡)  based on 

observations of 𝑦(𝑡) and 𝑥(𝑡). 

First, let the variables in equation ( 3.13 ) become: 

𝐵 = [𝐼 𝐴(1) (𝐴(1)
2 + 𝐴(2)) (𝐴(1)

3 + 𝐴(1)𝐴(2) + 𝐴(2)𝐴(1) + 𝐴(3)) ⋯] 

𝑈 =

[
 
 
 

𝑌(𝑛) 𝑌(𝑛+1) ⋯

𝑌(𝑛−1) 𝑌(𝑛) ⋯

⋮ ⋮ ⋯
𝑌(0) 𝑌(1) ⋯]

 
 
 
 

𝑉 = [𝑋(𝑛) 𝑋(𝑛+1) ⋯] 

So that equation ( 3.13 ) becomes: 

𝐵𝑈 = 𝑉 ( 3.16 )  
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The left-hand side of equation ( 3.16 ) is thus the estimated output based on 

𝐴(𝑡) and 𝑦(𝑡), while the right-hand side is the real output. In equation ( 3.16 ), all 

variables are asymmetric matrices, unlike required by equation ( 3.14 ), to 

include all observations of 𝑥(𝑡) and 𝑦(𝑡) available. The error in estimation is thus 

easily obtained as 𝐵𝑈 − 𝑉. Since all variables are matrices, the sum of squared 

errors is thus given by a simple matrix operation as: 

𝑓(𝑥) = (𝐵𝑈 − 𝑉)𝑇(𝐵𝑈 − 𝑉) ( 3.17 ) 

Where the superscript 𝑇 means transpose matrix. To find the value of 𝐵 that 

minimizes 𝑓(𝑥), the first derivative of 𝑓(𝑥) with respect to 𝐵 is taken, so that 

equation ( 3.17 ) becomes: 

𝛿𝑓

𝛿𝐵
=

𝛿(𝐵𝑈 − 𝑉)𝑇(𝐵𝑈 − 𝑉)

𝛿𝐵
 

=
𝛿(𝑈𝑇𝐵𝑇𝐵𝑈 − 2𝑉𝑇𝐵𝑈 + 𝑉𝑇𝑉)

𝛿𝐵
 

= 2𝑈𝑇𝐵𝑇𝑈 − 2𝑉𝑇𝑈 

( 3.18 )  

Then, equation ( 3.18 ) is set to zero and find the expression of 𝐵 at which 

minimizes the squared error sum given in equation ( 3.17 ). The following matrix 

operations are thus performed.    

0 = 2𝑈𝑇𝐵𝑇𝑈 − 2𝑉𝑇𝑈 

𝑈𝑇𝐵𝑇𝑈 = 𝑉𝑇𝑈 

𝐵𝑈𝑈𝑇 = 𝑉𝑈𝑇 

𝐵𝑈𝑈𝑇(𝑈𝑈𝑇)−1 = 𝑉𝑈𝑇(𝑈𝑈𝑇)−1 

𝐵 = 𝑉𝑈+ 

( 3.19 )  

In equation ( 3.19 ), 𝑈+ denotes the Moore-Penrose pseudoinverse matrix of 𝑈, 

widely used for linear regression problems (MacAusland, 2014). The best fitted 

𝐴(𝑡) can thus be easily obtained. 

3.4. Simulation Results  

To verify the efficacy of the innovative algorithm proposed, this section 

simulated a 𝑋(𝑡) series based on the SIM interaction of a randomly generated 

2-sector 𝑌(𝑡) series of 200 discrete time intervals and the 2-layer production 

system 𝐴(𝑡) described in Table 3. The number of propagation layers is arbitrarily 

set to 40, so that the influence from demands at 𝑌(0) will be negligible after 

output 𝑋(42), i.e. after 40 layers of propagation and 2 layers of production by 

𝐴(𝑡). Starting to take observations from 𝑋(43) (after 40 layers of propagation and 

2 layers of production), 158 observations out of the 200 samples of 𝑋(𝑡) are 

used to construct the 𝑉  matrix in equation ( 3.16 ). 𝑈  matrix and its 
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pseudoinverse are also constructed using all 200 observations of 𝑌(𝑡) according 

to equation ( 3.19 ). Thus, the preliminary form of 𝐴(𝑡) shown as 𝐵 in equation 

( 3.16 ) is easily obtained. Performing the partition algorithm illustrated in 

equation ( 3.15 ) will give us the regressed production coefficient 𝐴′(𝑡). 

 

Figure 11 (a) Simulated total output 𝑥(𝑡) (b) Simulated final demand 𝑦(𝑡).  

Table 4 shows the errors between the 𝐴′(𝑡) obtained and the actual 𝐴(𝑡). In 

terms of percentage error, the relative error level of the estimated production 

coefficient lies between 0.0029% and 0.0007%, minimal enough to be ignored 

and conclude that 𝐴′(𝑡)  and 𝐴(𝑡)  are basically identical, demonstrating the 

effectiveness of the innovated algorithm. 

 𝐴′(1) − 𝐴(1) 𝐴′(2) − 𝐴(2) 
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Sector A Sector B Sector A Sector B 

Sector A -1.43×10-6 -0.11×10-6 -9.96×10-6 -5.75×10-6 

Sector B -1.01×10-6 -7.70×10-6 -7.22×10-6 -2.72×10-6 

Table 4 the errors between regressed production coefficient 𝐴′(𝑡)  and the actual 

production coefficient 𝐴(𝑡). 

To quantitatively measure the squared mean error 𝑒, equation ( 3.20 ) is used: 

𝑒 =
∑ ∑ ∑ (𝑎𝑖𝑗′(𝑙) − 𝑎𝑖𝑗(𝑙))

2𝑡
𝑙

𝑝
𝑗

𝑝
𝑖

𝑞
 ( 3.20 )  

In equation ( 3.20 ), 𝑎𝑖𝑗′(𝑙) and 𝑎𝑖𝑗(𝑙) is the 𝑖th column and 𝑗th row element at 𝑙th 

layer of 𝐴′(𝑡)  and 𝐴(𝑡)  respectively. 𝑝  and 𝑡  are the number of sectors and 

number of production layers respectively. In the simulation exercise, 𝑝 = 2 and 

𝑡 = 2. 𝑞 is the total number of elements in 𝐴′(𝑡) and 𝐴(𝑡), being 2 × 2 × 2 = 8 in 

this case. The squared mean error between 𝐴′(𝑡) and 𝐴(𝑡) is thus 4.66×10-11 as 

calculated from Table 4, sufficiently small to conclude that 𝐴′(𝑡)  is a good 

enough approximation of 𝐴(𝑡). 

To further test the capability of the innovated algorithm for SIM, the squared 

mean errors are calculated under varied number of propagation layers. Figure 

12 illustrates how the mean squared errors change with different number of 

propagation layers set. It is clearly seen that as the number of propagations 

increases, the mean square error between 𝐴′(𝑡)  and 𝐴(𝑡)  exponentially 

decreases, suggesting that 𝐴′(𝑡) approaches the true value of 𝐴(𝑡) as number 

of propagations increases. It makes sense as SIM models infinitely distant past 

demand to still have an impact on the present output, but minimal and negligible 

as propagation extends to the future. Increasing the number of propagations 

set in this algorithm factors in the increasingly minimal effect on output 𝑋(𝑡) from 

demand 𝑌(𝑡), thus producing a more accurate 𝐴′(𝑡) as solution to the system.  

Another important observation is that the squared mean error drastically 

increases to 1×10-2 after the number of propagation layers becomes more than 

64, sufficiently large to invalidate the estimated 𝐴′(𝑡) . The reason is that 

insufficient number of sample available hinders the functioning of linear 

regression algorithm. When the number of propagation layers is 64, the 

dimension of 𝑈 in equation ( 3.16 ) becomes 134-by-134, a symmetric matrix 

just sufficient to solve for 𝐵. As the number of propagation layers increases 

beyond 64, the system described in equation ( 3.16 ) becomes an 

underdetermined system with no unique solution since the number of 
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observations become less than the number of unknowns that needs to be 

solved. 𝐴′(𝑡) thus deviates significantly from the true value 𝐴(𝑡) in this specific 

case shown in Figure 12. If there are more observations available, more 

propagation layers can then be accommodated to improve the accuracy in the 

proposed algorithm further, so that the sudden jump shown in Figure 12 will be 

pushed further to the right. 

 

Figure 12 Mean squared errors of the elements in the timed production coefficient 𝐴(𝑡) 

against varied number of propagation layers taken.   

The simulation exercise in this section works on a system with known layers of 

production in 𝐴(𝑡). In real world applications, the number of layers in production 

is normally unknown. It is thus sensible to vary both the number of production 

layers and number of propagation layers in real world applications to find the 

solution for best fitted 𝐴(𝑡) with the minimum mean squared errors as the best 

approximation for chronological production coefficients.  

3.5. Discussion  

As a unique variation of IO model, SIM offers tremendous potential in economic 

system analysis. Unlike the other IO model variants which keep general 

equilibrium as an underlying assumption, the SIM is by nature a disequilibrium 

model that focuses on the nearer future analysis. Unfortunately, 

disproportionally fewer efforts and achievement in SIM methodological 

advancement have taken place since its first proposal in 1980s. This Chapter 

proposes an innovative algorithm as an important methodological advancement 

for the SIM. It complements with SIM by providing a way to integrate it with 

econometric linear regression analysis. Investigation into the chronologically 
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extended production coefficients can provide temporal information into the 

interlinkages among economic sectors. For instance, although knowing the 

units of steel and the associated time needed to produce one unit of output in 

the manufacturing industry may be possible by conventional life cycle 

assessment methods, the cost of such an assessment will be tremendously 

high if comprehensively conducted at macro-level, not to mention the difficulty 

in constructing the sectorial interlinkages among all the industrial sectors in a 

similar manner as hybrid IO tables. The complementary algorithm to SIM 

provides a cheap and efficient way to quickly draw a comprehensive picture of 

chronological interlinkages based on economic activities in high time-resolution 

among sectors. Being more accurate than hypothetically constructed in 

previous studies, the linearly regressed temporal production coefficients of SIM 

can be reversely used for short future predictions of sectorial outputs given 

unscheduled events such as natural disaster. Also, the temporal production 

coefficients of economic sectors can be used to analyse the time lag between 

industries, as well as predict short future economic outcomes by sectors given 

consumer demands. Such a genuine approach bears great potentials in future 

econometric studies in terms of economic predictions. It will thus fill the gap in 

approaching econometric study with data science tools.  

Extending the improved model beyond economic research, other complex 

networks similar to IO systems with delay characteristics, such as the human 

body metabolism system, can borrow the method presented in this study for 

their unique applications. Unlike macro econometric data, observation data on 

smaller systems are normally much easier to be obtained. Analysis like the 

previously proposed can be conducted to investigate how materials interact 

among themselves in a temporal manner to offer insight into the systems 

investigated.  

Nevertheless, the algorithm proposed in this study does not address some of 

the fundamental limitations of SIM. Firstly, SIM does not deal with the 

“bottlenecking” issue inherent to IO model. This refers to a scenario where 

demand surpasses current production capacity, and industries are unable to 

linearly scale up their production in response. Secondly, SIM does not 

differentiate between changes in capital and consumer goods. Most importantly, 

the algorithmic development for SIM in this Chapter has primarily focused on 

advancing the methodological aspects of the two motivations discussed in 

Chapter 1. This is only part of the solution, and there remains a broader 

challenge to be tackled before the improved model can be used. In particular, 

meeting the data requirement for high-frequency IO data presents a significant 

hurdle that must be overcome to achieve the research objectives. Meeting this 

requirement is a vital next step for this research. 

  



54 

 

Chapter 4: The Application of SIM in Electricity 

Consumptions 

This chapter aims to test the effectiveness of the algorithm designed for the 

SIM using electricity consumption data from Chongqing municipality as a stand-

in for economic outputs. It begins with a review of existing literature on the use 

of electricity consumption data to analyse economic performance. Following 

this, the chapter details the organization of the data and the methodology 

employed. The subsequent section interprets the quantitative findings, 

assessing Chongqing's economic structure and offering short-term economic 

forecasts. The chapter concludes with a discussion on the limitations of the 

current approach and suggestions for future research. 

4.1. Electricity Consumption and Economics 

As illustrated in the simulation in Chapter 3, the time resolutions for demand 

and output observations must be high enough for the algorithm developed to 

induce practical applications. On the other hand, the data set must also be 

classified into economic sectors in a similar way as the IO model. Thus, daily 

or hourly demand and output observations on economic sectors should be 

preferably used for this algorithm. Although online transaction data across 

different sectors in monetary term is ideally the best, it is highly unlikely that 

such data are available due to technical constraints at present. As a sensible 

compromise, proxy data with high chronological resolutions on economic 

activities may be a solution to the stringent data quality requirement.  

Fortunately, with the rapid development of information and communication 

technologies, researchers can now have alternatives to traditional economic 

statistic data for analysis of economic performances. From online purchases to 

utility bills, 2.5 quintillion bytes of data are generated per day (Forbes, 2018). 

Given the name “big data”, many recent works have engaged in the study of 

the values buried in binary registers transmitted and stored in companies’ 

servers. A vast number of studies have utilized big data to investigate human 

behaviours at the microscale (Wang et al., 2018, Yuan et al., 2020). Instead of 

the time-intensive consumption statistics measured in monetary terms, a vast 

number of studies have utilized high time-frequency big data to investigate 

economic activities at the microscale (Wang et al., 2018, Yuan et al., 2020). At 

macroscale, many human activity indicators like night-time lights (Mellander et 

al., 2015), mobile phone usage (Šćepanović et al., 2015), and primary energy 

consumption (Aslan et al., 2014) are also used as proxy to analyse the 

functioning of economics. Compared to classic econometric studies based on 

economic data (i.e. gross domestic production etc.), the emerging big-data 

economic research overcomes the barriers in data collection. Specifically, 
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proxy indicators can be updated much more frequently and covers much higher 

resolution than conventional economic indicators.  

Although big data economic research bears great potentials, the underlying 

economic theories are unproportionally overlooked in the current so-called big 

data economic research, which are mostly found to be still based on 

conventional economic indicators such as GDP (Zhao et al., 2018, Yaacob et 

al., 2021). These research, strictly speaking, are not qualified to be categorized 

as “big data” research widely agreed upon data scientists (De Mauro et al., 

2016). 

Electricity data, nevertheless, are a good exception to be used as a good data 

source for economic studies. Electricity consumption data are a typical genre 

of big data that satisfy the “3 ” requirements ( olume,  elocity, and  ariety). 

Some studies adopt recently popular machine learning (ML) tools such as 

artificial neural networks (Zeng et al., 2019a, Rahman et al., 2016), 

convolutional neural networks (Dong et al., 2017), back propagation neural 

networks (Naimur Rahman et al., 2016), pattern sequence-based forecasting 

(Perez-Chacon et al., 2020, Viloria et al., 2020), and clustering analysis (Zhou 

et al., 2017a) for the purpose of pure prediction and pattern recognition in 

economic studies based on electricity consumption data. However, such an 

approach does not factor in the economic rationales.  

A dozen of other studies have also attempted to use electricity consumption 

data on the analysis of macro-economic performances (Ashraf et al., 2013, Kim, 

2015, Zhang et al., 2017a). In recent literatures, high time-frequency electricity 

consumption data has been widely used in response to study the economic 

impact of COVID-19-related lockdowns (Janzen and Radulescu, 2020, Fezzi 

and Fanghella, 2020, López Prol and O, 2020). Other electricity consumption 

data are used to focus prediction on the electricity market itself. For instance, 

Novan et al. (2020) utilized 158,112 households in Sacramento, California, to 

investigate the household electricity consumption relationship with temperature. 

Unfortunately, no literature on electricity consumption analysis can solidly 

integrate proper economic theories into its modelling. Qu et al. (2015) advanced 

one step further in analysing the patterns recognized through ML regression, 

but the interpretation is still far from being called “economic”. 

Concretely, ML is a group of regression computing algorithms that find the 

statistically optimized solution to a specific question using a large data set. By 

applying flexible criteria to a learning model, machine learning algorithms can 

quickly establish a correlation between input variables and intended prediction 

parameters. In addition to ML’s wide application in the internet industry, more 

econometric research has employed ML in the hope of making economic 

performance predictions. Unlike traditional econometric regression analysis, 
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machine learning research does not require pre-setting of model parameters. 

The number of relevant research has increased drastically in recent years in 

both academia and industries. As summarized by Harding and Lamarche 

(2021), electricity utility bills are a typical form a good source of big data for 

energy economic research. Harding and Lamarche (2021) also listed a few ML 

tools that are commonly used in this kind of research. The least absolute 

shrinkage and selection operator (LASSO), probably the most well-known ML 

tool for economists (Mullainathan and Spiess, 2017), was used to predict 

electricity usage based on weather forecast data (Ludwig et al., 2015). A 

literature review on ML tools to be used in econometrics can be found in Varian 

(2014). Interested readers may refer to Hastie et al. (2009) for advanced 

learning on these tools.  

However, as Crown (2019) has pointed out, a fundamental limitation of ML is 

its inability to provide economic explanations for the interaction processes 

among input variables. While machine learning can uncover relationships and 

make predictions, it often lacks the interpretability that is crucial for 

understanding the underlying economic mechanisms at play. In a few 

exceptional cases, a relationship of some sort may be deduced but cannot be 

supported with economic reasoning (Mullainathan and Spiess, 2017). Einav 

and Levin (2014) argues that the integration of regression ML algorithms and 

economic theory will be a persistent obstacle for data science and economic 

interdisciplinary researchers. The “trial and error” ML applications should be 

thoroughly revised to accommodate economic and engineering reasoning. It 

highlights the need to strike a balance between leveraging advanced 

computational methods and preserving the explanatory power inherent in 

traditional econometric techniques. 

As sufficiently discussed in Chapter 3, the algorithm developed for SIM 

(Romanoff and Levine, 1977) in this thesis is exactly looking for a data source 

that bears the characteristics of electricity consumption big data. In past 

research, the applications of the SIM have been limited to disaster recovery 

analysis (Okuyama et al., 2000, Okuyama et al., 2004). Chapter 3 points out 

that economic sectors interact with each other in response to consumers’ 

demands through a production network – an identical concept inherited from 

the IO model – that carries out production in a step-by-step manner, an 

interaction well modelled by SIM. Under this theory, the economic outputs at 

each discrete time are the result of induced productions signalled by demands 

at previous discrete times. Using a regression algorithm, the chronological 

production coefficients can then be theoretically obtained from ample 

observation of demands and outputs.  

In this Chapter, a data set of daily electricity consumption in Chongqing 

municipality of China is used to investigate the chronological and inter-sectorial 
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linkages of economic sectors. The reason Chongqing is selected as the 

investigated case is because it is the most easily accessible data that meets 

the requirements of this study. Due to the ongoing global pandemic of Covid-

19 at the time of writing, connection to institutions in other regions with the same 

data became extremely difficult. After assessment of the data available for 

Chongqing, it is determined that electricity consumption data in Chongqing can 

be used for this study to reveal the chronological economic symbiosis in this 

mega city of China.  

The chronological interlinkage of economic sectors in Chongqing is thus 

obtained and used for multiple important purposes in this study. First, it can be 

a quantitative indicator helping researchers to understand how much input and 

how much time are needed from one sector to respond to a unitary output in 

another. Second, the interlinkages suggested can be used for disequilibrium 

short-term future predictions, supplementing current economic tools that focus 

on long-run general equilibrium. This application encompasses both the cross-

sectorial lagged induced demand and the multiplier effects from the economic 

perspective. The robustness testing showed that the model predictions have a 

certain degree of reliability. Motivated by the model’s good performance, three 

hypothetical scenarios are further created to simulate how a change in one 

sector quantitatively and chronologically affects all other sectors in the following 

two months, showing the varied multiplier effect of economic demands of 

different sectors. As a good example of fusion between econometrics and data 

science, this study establishes a basis for further investigation between 

economic and engineering theories.  

4.2. Data Collection and Cleansing 

This study used the electricity consumption data of the Chongqing State Grid 

Research Institute. The State Grid is the monopolistic electricity supplier in 

Chongqing, China. Chongqing has a population of 31 million people and an 

area of 82,000 km2. Its GDP was $362 billion in 2020. Every electricity 

consumer, regardless of whether commercial or household in nature, pays their 

electric metre fare to State Grid. When registering the metre reading, the state 

grid also registers commercial customers’ nature of business in accordance 

with the Industrial Classification for National Economic Activities (GB/T 4754-

2017) (UNSD: 2006, International Standard Industrial Classification of all 

Economic Activities, NEQ). Among the 708 sectors listed in GB/T 4754-2017, 

Chongqing data includes 440 sectors. It sampled the daily electricity 

consumption data from 1 March 2018 to 21 November 2020, with 971 data 

points in total across the time dimension. For this research, the data collected 

from all commercially registered electricity metres of Chongqing are 

categorized into eight sectors based on the registration information. 
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As explained previously, electricity consumption data can be and have been 

used as proxy data for economic research. It is because that there is generally 

a positive correlation between electricity consumption and economic activities, 

as both residential and commercial sectors require electricity to function. Higher 

electricity consumption typically signifies increased industrial production, 

business operations, and consumer demand in their respective sectors. Even 

though the unit electricity input needed by sectors differ due to the nature of 

production process, the scale of production is still endogenously proportional to 

the electricity consumption of the sector itself, thus revealing an input-output 

relation different from that measured in monetary term. In addition, electricity 

consumption data is often available on a real-time or near-real-time basis, 

allowing for a quicker analysis of economic trends compared to traditional 

indicators like GDP, which are usually released quarterly or annually.  

However, there are several points to be considered when adopting electricity 

data as a proxy for economic activities. For instance, energy efficiency 

improvements, driven by technological advancements such as mass 

deployment of renewable energy sources like heat pumps and solar panels, 

can result in decreased electricity consumption even when economic activities 

are increasing, leading to an underestimation of economic growth. Hence, like 

inflation and deflation when measuring economic activities in GDP, technical 

factors should preferably be addressed on different sectors if the accounting is 

to be improved. Furthermore, non-electricity-based activities and informal 

economy, such as agriculture and small-scale industries, may not be accurately 

captured by electricity consumption data, even though they can constitute a 

significant part of some regions’ economies. Hence, an important assumption 

made in this research is that the medium and large businesses’ activities 

captured by the electricity consumption data is sufficient to cover most 

economic activities. Based on the rationales provided, the concept of using 

electricity consumption data as economic proxy can also extend to other mega 

cities and regions where the grid possesses the technical capacity to register 

businesses in different sectors.  

To verify the assumption that electricity data can reflect economic clustering, 

this research designed a simple algorithm to look at the extent of sector 

synchronization and thus supply chain integration. By finding the correlations 

between every two sectors, a set of correlations ranging from -1 to 1 is obtained. 

Subtracting the correlations from 1, a set of values from 0 to 2 is obtained, 

where a larger value means less correlation and vice versa. Using the value as 

a distance and each sector as a node, a simple plot is created and shown in 

Figure 13 to see if certain relationships existed. Sectors that belong to the same 

categories are painted in the same colour. The red circles indicate clusters 

formed based on analysis of the sectors’ labels. It is obvious to see that sectors 

of the same categories are located closer to each other to form industrial 
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clusters, proving that these sectors are more correlated to each other and thus 

more concurrent in response to economic demand changes. Hence, it is 

reasonable to aggregate the sectors into larger sectors.  

 

Figure 13 An illustration of sector clustering using electricity consumption data as 

evidence. 

Based on the GB/T 4754-2017 specifications and interpretations, the 440 

sectors are organized into 8 sectors, namely, food, chemical & mining, 

consumer goods, heavy industry, manufacturing, EHGW, construction, and 

service. The specifications are also decoded to decide if the sectors are more 

associated with final or intermediate consumption. In this setting, the total 

production was calculated as final plus intermediate production, similar as the 

construction of IO tables. The organized data are presented in Figure 14, where 

cyclical patterns of electricity consumption can be clearly observed. For 

instance, a drastic and persistent decrease around February 2020 in the total 

consumption of the heavy industry and manufacturing industry can be identified, 

consistent with the lockdown measures imposed in Chongqing due to the 

COVID-19 outbreak. For a sample of detailed specification on sector 

aggregation, please refer to the Appendix Table S3. 
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Figure 14 Plots of chronological electricity consumption in eight sectors.  

4.3. Methodological Algorithm 

In the case of our research, 𝑥(𝑡) and 𝑦(𝑡) are vector sets with 8 elements that 

correspond to the 8 sectors investigated. 𝐴(𝑡) is a set of 8-by-8 matrices that 

describes how inputs from the 8 sectors induce output in the 8 sectors 

themselves, an identical concept to the IO model (Leontief, 1953). To better 

illustrate the concept of SIM in equation ( 3.12 ), we produced Table 5 to show 

how a single final demand at 𝑡 = 0  produces ripple impacts in the future. 

Referring to both equation ( 3.12 ) and Table 5  we can hence interpret the 

outputs of the economic system as described by SIM. On the first day where 

𝑡 = 0, purchases are made by consumers to fulfil their demand. Producers thus 

supply the consumers with products from their inventory stock. The purchase 

thus sends out a market signal to the economy to initiate some intermediate 

productions at 𝑡 = 1, given as 𝐴(1) ∙ 𝑥(0). On the next day where 𝑡 = 2, market 

signal from 𝑡 = 0 propagates to the second layer of production coefficient to 

give a term 𝐴(2) ∙ 𝑥(0). At the same time, output or intermediate purchases that 

happened at 𝑡 = 1 also signal some other products to be produced in the first 

layer of production coefficient to give a term 𝐴(1) ∙ 𝑥(1). Hence, the total output 

level at 𝑡 = 2 is thus given as 𝑥(2) = 𝐴(2) ∙ 𝑥(0) + 𝐴(1) ∙ 𝑥(1). The Sankey diagram 

in Figure 16 is drawn to show the broken-down impacts across time and sectors 

if 1 unit of final demand in the heavy industry occurs at 𝑡 = 1 based on Table 

5’s illustration. Each column shows the composition of output x at time t from 

all past time discrete. Each row shows induced outputs of output x at time t in 

the future. 

Layer no. 𝑥(0) 

= 𝑦(0) 

𝑥(1) 

= 𝐴(1) ∙ 𝑥(0) 

𝑥(2) 

= 𝐴(2) ∙ 𝑥(0) 

+𝐴(1) ∙ 𝑥(1) 

𝑥(2) 

= 𝐴(3) ∙ 𝑥(0) 

+𝐴(2) ∙ 𝑥(1) 

+𝐴(1) ∙ 𝑥(2) 

…… 
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Induced 

output of 

𝑦(0) 

𝐼 ∙ 𝑦(0)    

Induced 

output of 

𝑥(0) 

 𝐴(1) ∙ 𝑥(0) 𝐴(2) ∙ 𝑥(0) 𝐴(3) ∙ 𝑥(0) 

Induced 

output of 

𝑥(1) 

  𝐴(1) ∙ 𝑥(1) 𝐴(2) ∙ 𝑥(1) 

Induced 

output of 

𝑥(2) 

   𝐴(1) ∙ 𝑥(2) 

…… 

Table 5 Illustration of SIM interactions.  

As explained by He et al. (2022), since 𝑥(𝑡) can be expressed in terms of 𝐴(𝑡) 

and 𝑦(𝑡), equation ( 3.12 ) can be linearized into equation ( 4.1 ) 

[𝐼 𝐴(1) (𝐴(1)
2 + 𝐴(2)) (𝐴(1)

3 + 𝐴(1)𝐴(2) + 𝐴(2)𝐴(1) + 𝐴(3)) ⋯]

× [

𝑦(𝑛) 𝑦(𝑛+1) ⋯
𝑦(𝑛−1) 𝑦(𝑛) ⋯

⋮ ⋮ ⋯
𝑦(0) 𝑦(1) ⋯

] 

= [𝑥(𝑛) 𝑥(𝑛+1) ⋯] 

( 4.1 ) 

We let the variables in equation ( 4.1 ) become: 

𝐵 = [𝐼 𝐴(1) (𝐴(1)
2 + 𝐴(2)) (𝐴(1)

3 + 𝐴(1)𝐴(2) + 𝐴(2)𝐴(1) + 𝐴(3)) ⋯] 

𝑈 = [

𝑦(𝑛) 𝑦(𝑛+1) ⋯
𝑦(𝑛−1) 𝑦(𝑛) ⋯

⋮ ⋮ ⋯
𝑦(0) 𝑦(1) ⋯

] 

𝑉 = [𝑥(𝑛) 𝑥(𝑛+1) ⋯] 

So equation ( 4.1 ) becomes: 

𝐵𝑈 = 𝑉 ( 4.2 ) 

Since 𝑈 consists of 𝑦(𝑡) and 𝑉 consists of 𝑥(𝑡), the observations from the 

electricity consumption data can be reorganized. We can use a least square 

error regression algorithm with constraints to change 𝐵 to minimize the error 
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of (𝐵𝑈 − 𝑉)2. It should be noted that the elements of the 𝐴 matrix should 

also be in the range of 0 to 1 since the electricity inputs from other sectors 

to produce 1 kWh output of a certain sector cannot exit 1 kWh. For obvious 

reason, the electricity inputs of a sector can neither be negative. Hence, 

elements 𝑏𝑖𝑗 of the 𝐵 matrix, the products of elements of  𝐴 matrix, is set to 

be in the range of 0 to 1. It is because This is expressed as follows: 

 

Find the 𝐵 

That minimizes (𝐵𝑈 − 𝑉)2 

Subject to 0 < 𝑏𝑖𝑗 < 1 where 𝑏𝑖𝑗 is any element of 𝐵 

 

Thus, the best fitted 𝐵  as the sum of 𝐴(𝑡)  matrices’ power terms can be 

calculated. The recursive algorithm shown below in equation ( 3.15 ) is then 

used to unwarp each term in 𝐵 and to obtain 𝐴(𝑡). Some terms in 𝐴(𝑡) may be 

smaller than 0 due to error propagated from regression. They are treated as 

errors and omitted in the analysis and the Sankey illustration in Figure 16. 

In addition, since there is no knowledge of the optimum values of production 

layers and induction layers, the values of 𝑙 and 𝑛 are varied to minimize the 

total error (𝐵𝑈 − 𝑉)2. The total absolute error is minimal at 𝑙 = 8 and 𝑛 = 12. 

For 𝑛 > 12, our computer ran out of calculation memory. If hardware could 

support, it might be possible to attempt higher power terms 𝑛  to further 

minimize regression errors.  

It should be noted that the input-output relationship revealed here using 

electricity consumption is not necessarily proportional to monetary input from 

this industry for the output sector as described by the production coefficient 𝐴 

in conventional Input-Output Model. For example, considering the case that 

making one bicycle requires 1 kilogram of metal and 1 kilogram of rubber, if the 

prices are 2 dollar/kg for metal and 1 dollar/kg for rubber, then the input output 

relation in the bicycle industry would be 2:1 in monetary term. At the same time, 

if the electricity input is 5 kWh/kg for metal and 1 kWh/kg for rubber, then the 

input output relation in the bicycle industry would be 5:1 in electricity term. Table 

6 quantitatively compares the difference between the production coefficients of 

the 8 sectors in Chongqing obtained both from this research using the SIM 

algorithm developed and from the 2017 Input-Output Table of Chongqing. 

Although apparent differences can be seen in the results from the two methods, 

some identical key facts can be easily spotted. For instance, the intermediate 

output from Heavy Industry (the row of Heavy Industry) is significantly larger 
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than other sectors in both results. Besides, the contribution from EHGW sector 

is significantly higher than monetary IO table, possibly as a result of the 

adoption of electricity consumption as the indicator for all production activities. 

Unit: kWh Food 

Chemical 

& Mining 

Consumer 

Goods 

Heavy 

Industry 

Manufact

uring EHGW 

Constructi

on Service 

Food 0.07 0.07 0.00 0.00 0.02 0.00 0.06 0.00 

Chemical&Mining 0.08 0.02 0.00 0.04 0.02 0.01 0.08 0.00 

Consumer Goods 0.07 0.04 0.03 0.02 0.01 0.01 0.07 0.00 

Heavy Industry 0.17 0.30 0.48 0.71 0.56 0.00 0.01 0.00 

Manufacturing 0.00 0.00 0.25 0.15 0.39 0.00 0.05 0.00 

EHGW 0.00 0.82 0.00 0.58 0.00 0.16 0.11 0.00 

Construction 0.07 0.04 0.11 0.07 0.00 0.01 0.09 0.01 

Service 0.10 0.05 0.16 0.11 0.01 0.02 0.05 0.04 

(a) Production coefficient of Chongqing obtained in this research from electricity 

consumption data 

Unit: Yuan Food 

Chemical

&Mining 

Consume

r Goods 

Heavy 

Industry 

Manufact

uring EHGW 

Constructi

on Service 

Food 0.06 0.00 0.04 0.00 0.00 0.00 0.01 0.00 

Chemical&Mining 0.00 0.01 0.01 0.01 0.00 0.12 0.05 0.00 

Consumer Goods 0.05 0.00 0.19 0.00 0.02 0.00 0.01 0.02 

Heavy Industry 0.05 0.00 0.03 0.06 0.12 0.01 0.44 0.03 

Manufacturing 0.01 0.00 0.01 0.00 0.31 0.01 0.06 0.02 

EHGW 0.01 0.00 0.01 0.01 0.01 0.18 0.01 0.03 

Construction 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 

Service 0.09 0.01 0.08 0.02 0.08 0.07 0.15 0.18 

(b) Production coefficient of Chongqing obtained from its 2017 Input-Output Table 

Table 6 The input-output production coefficient obtained (a) from the electricity 

consumption data in this research and (b) from the 2017 Input-Output Table of 

Chongqing 
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4.4. Analysis of Lagged Economic Structure 

4.4.1. Robustness Testing 

500 days of the 971 total days observed in the data set were sampled to 

conduct model training. By comparing the outputs simulated with the trained 

model and the remaining 471 observations of the total outputs of the eight 

sectors, Figure 15 is produced, showing the errors of both the regression 

trainings and predictions in percentages. To the left of the red dotted lines are 

the errors of the regressed model based on 500 historical observations. To the 

right of the red dotted lines are the errors of the predicted outcomes compared 

with actual remaining 471 observations. No significant change in error levels 

occurs after the training-prediction boundary, suggesting that the model is 

generalizing well to unseen data and accurately capturing the underlying 

relationship between the input variables and the target variable. In technical 

terms, overfitting occurs when the model learns the noise in the training data 

as patterns, leading to high accuracy on the training set but poor performance 

on the test set. Underfitting, on the other hand, happens when the model fails 

to capture the underlying patterns in the data, resulting in poor performance on 

both the training and test sets. The result suggests that the regressed model is 

neither overfitting nor underfitting, indicating the model is likely to perform well 

on new and unseen data. Some spikes can be seen across all eight sectors, 

which correspond exactly to abnormal spikes in the actual data, as shown in 

Figure 14, suggesting that the model is able to filter out outliers in actual 

observations. This reinforces the robustness of this model and analysis. 

In addition, the error level is contained within -30% to 30% for most sectors, a 

tolerable value in comparison with other electricity output forecasting models 

(Ahmad et al., 2020). Among all eight sectors, the service sector has the lowest 

error level, while the food sector has the highest error level. A possible reason 

for the high error level of the food sector may be its significantly lower level of 

electricity consumption compared to other sectors. Throughout the 3-year 

observation period, the daily electricity consumption of the food sector never 

surpassed 0.5% of the daily total electricity consumption of eight sectors. An 

unproportionally higher value of electricity consumption means that a higher 

level of noise more likely corrupts the information from the food sector. As 

proposed in signal process engineering, more advanced engineering may be 

needed to filter out the noise and improve the pattern recognition (Tuzlukov, 

2018). In contrast, the sudden shock of electricity demand plunge created by 

Covid-19 in early 2020 is also recorded by this simulation. As the pandemic 

containment measures such as lockdown do not create capacity change, the 

production interlinkages are assumed to remain constant and used for future 

predictions. Instead of a source of error, the Covid-19 demand shock serves as 

a good sample to boost the model’s resilience. 
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Figure 15 The eight diagrams show the differences between the simulated outputs and 

actual outputs of the eight sectors in percentages.  

4.4.2. Chronological Interlinkages of Sectors 

The SIM models how the production today will induce further production in the 

future. From the electricity consumption data of Chongqing, this research 

manages to reveal the chronological interaction of eight sectors of Chongqing. 

To better depict the underlying concept, a Sankey diagram is plotted to 

quantitatively illustrate the time lags in the induced productions from one unit 

demand (1 kWh in this case study) in the heavy industry sector, shown in Figure 

16. A detailed explanation of the derivation and construction of the Sankey 

diagram can be found in Figure 16 and the corresponding paragraphs. From 

left to right, each of the 8 columns in varied colours represents one calendar 

day as a production layer. The grey transparent bands connect the intermediate 

outputs and later outputs induced by them, with their widths proportional to the 

induced quantities. In total, 7.73 units of output are generated throughout the 

eight sectors as a response to 1 unit of demand in the heavy industry sector. 

This magnifying effect of demand can be inferred as the multiplier for the heavy 

industry sector. The induced quantities decrease as the production layers 

extend into the future, in accordance with the logic that the multiplier impacts of 

the demand signal decay over time. In addition, it can be easily seen that heavy 
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industry induced the largest production in the EHGW sector throughout all 8 

chronological layers (2.13 units), which further induced a large proportion of 

outputs from the heavy industry sector (1.68 units), illustrating the close 

connection between EHGW and heavy industry. In comparison, the food sector 

is the least associated with the heavy industry sector, with 0.08 units of output 

induced by the 1 unit of demand from the heavy industry sector. The impact of 

the food sector output in layer 1 does not extend far into the future, with only 

0.01 units of output induced in layer 2 of heavy industry as the largest of all 

other induced outputs. Furthermore, it can be observed that the consumer 

goods sector induced outputs into the more distant future, a feature that is not 

seen in other sectors. The 0.03 output units of the consumer goods sector in 

layer 1 induced 0.01 output units in layer 8 of the heavy industry sector, 

equivalent to the induced output in layer 2 of the heavy industry sector. This 

may be a result of the longer logistic chain and thus longer duration of demand 

signal propagation in the consumer goods sector, an interesting takeaway of 

the analysis. 

The size of the vertical bars in Figure 16 also conveys valuable insights derived 

from the trained model. In the first layer, a total output of 1.67 kWh was 

produced. However, in the second layer, the output decreased to a mere 0.76 

kWh. Interestingly, none of the layers following the first layer exhibit sizes larger 

than that of the second layer. This observation suggests that the required 

electricity outputs by 1kWh demand in heavy industry decrease as time 

progresses into the future, a phenomenon that is consistent with the physical 

performance of the economic system. 

Since the information from the Sankey diagram is too abundant to be fully 

analysed here, the data used to construct Figure 16 is aggregated into days 

and attached in Appendix Table S4. Each column of bars in different colour 

codes indicates the scale of electricity consumption and hence economic 

outputs in the respective chorological production layer (e.g., Service_L_3 

means the chorological production layer 3 of the service sector). The bands 

connect the intermediate outputs and later outputs induced by them. The scale 

of the bands and columns are proportional to the scale of electricity 

consumption/economic outputs induced. However, it should be noted that the 

chronological lag here between sectors should not be considered equivalent to 

the transportation time needed from one sector to another. It is because the 

time needed for one sector to respond to the demand change in another may 

be a result of interaction by multiple factors, including nature of industries, size 

of business, and availability of effective communication channel etc. Depending 

on the context, transportation may not play its role in determining the time delay 

as business can react to market signal with their inventories to conduct 

productions. On the other hand, service sector, for instance, may naturally 

adjust its production level much quicker in response to market signals as they 
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rely less on inventory build-up.   

 

 

Figure 16 Sankey diagram showing the chain of responses to one unit of demand in 

heavy industry in all eight sectors.  

4.5. Predictions under scenarios 

4.5.1. Rationales 

In the analysis with the electricity consumption data of Chongqing, only the first 

500 samples of the 971 data points are used in the data set for model training 

to obtain 𝐴(𝑡) as described in equations ( 3.15 ) and ( 3.16 ). Substituting 𝐴(𝑡) 

into equation ( 3.12 ), the robustness of the model is further investigated and 

the chronological linkages of productions are thus analysed. Based on the 

mean and standard deviation of the growth rate of the 8 sectors in the data set, 

this research also simulated three scenarios of changed growth rate in the 

consumer goods final demand two months into the future. As described in 
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equation ( 4.3 ), for the investigated sector: 

�̅� = ( √
𝑦(𝑛)

𝑦(1)

(𝑚−1)

− 1) ( 4.3 ) 

where �̅� is the daily average growth rate. 𝑚 is the number of samples observed, 

971 in this case. Finding the value located at the 2.5 percentile over and below 

�̅�, the higher and lower daily growth rates, 𝜇ℎ and 𝜇𝑙, of the observed samples 

are estimated, which were used for forecasting scenarios. Using 1000 

simulations of normally distributed daily growth rates as described below in 

equation ( 4.4 ), a Monte Carlo simulation for future total consumption 

predictions across the entire 8 sectors is created. 

𝑦(𝑡) = 𝑦(𝑡−1) (1 + 𝑔)  𝑤ℎ𝑒𝑟𝑒 𝑔~𝑁(𝜇, 𝜎2) 

𝑥(𝑡) = 𝑓(𝑦(𝑡), 𝐴(𝑡)) 

( 4.4 ) 

in equation ( 4.4 ),  𝑔 represents the growth rates for all three scenarios. 𝜎2 is 

the variance of the observed samples in 𝑦. 

4.5.2. Predictions Results 

The chronological coefficients obtained, as discussed in the previous section, 

can be used for predictions of the multiplier effects on all sectors given forecasts 

on the final demand changes in one sector. The daily growth rate of consumer 

goods final demand is varied, and forecasts are made for the daily outputs of 

all eight sectors for the coming 80 days. The reason that 80 days is chosen as 

the prediction boundary is to avoid systematic uncertainties that may not be 

captured by this modelling. For instance, this model cannot capture the impact 

of sudden change to capital equipment, such as disaster events, as the 

regression is based only on observations in the past.  

Figure 17 effectively illustrates the prediction results for various scenarios. The 

daily growth rates of sectors are estimated based on historical means and 

variances, but the mean growth rate of the consumer goods sector is varied to 

simulate the changes across all sectors under three scenarios. To the right of 

the red dotted lines, the coloured areas show the error ranges, while the black 

solid lines show the predicted mean outputs. In each of these scenarios, the 

historical observations are located on the left of the distinct red dotted lines, 

while the predictions extending 80 days into the future are displayed to the right 

of these same red dotted lines. As part of the scenario setting process, we have 

altered the forecast of daily growth of final consumption in the consumer goods 

sector, ranging from an increase of 0.41% to a decrease of -0.40% for the 

surging and plunging scenarios respectively. These adjustments are based on 
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the careful calculation of past data variances. For the baseline scenarios, the 

mean growth rates of final demands for all sectors are derived by meticulously 

analysing historical calculations. Upon reaching the end of the 80-day 

prediction period, the calculated model predicts a difference of 3.5 GWh/day in 

the mean value of total electricity consumption within the consumer goods 

sector. Intriguingly, while the final consumption levels in the surging and 

plunging scenarios remain unchanged, the heavy industry (with a difference of 

18.8 GWh/day), manufacturing (with a difference of 6.8 GWh/day), and EHGW 

(with a difference of 11.7 GWh/day) sectors exhibit more significant differences 

in the mean value of their forecasted total electricity consumption on the 80th 

day as compared to the consumer goods sector. From this observation, it can 

be deduced that any fluctuations in the final consumption of consumer goods 

tend to have a more pronounced impact on these three sectors.  

On the other hand, when comparing the differences in total electricity 

consumption across various sectors under the plunging and surging scenarios 

in percentages relative to the baseline scenario, the trained model reveals that 

the most substantial relative difference in total electricity consumption occurs 

within the consumer goods sector itself at 43%. Heavy industry and 

manufacturing both record the second and third largest relative differences 

under these scenarios, at 21% each. In contrast, the EHGW sector, with a 13% 

relative difference, becomes the sector with the second smallest relative 

difference, rather than the third largest absolute difference. The disparity 

between absolute and relative measurements may be attributed to the varying 

energy intensities present in different sectors. For instance, the EHGW sector 

is naturally energy-intensive, while other sectors, such as service sectors, 

utilize less energy in their production processes. As a result, the absolute 

measurement may be more appropriate for predicting the electricity 

consumption required in each respective sector. Conversely, relative 

measurements can serve as a better indicator of the changes in economic 

activity levels. 
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Figure 17 The simulated outputs/electricity consumption of eight sectors under three 

scenarios of growth in the consumer goods sector.  

4.6. Discussion 

In this study, the SIM is used to explore the possibility of reconciling modelling 

and regression, a long-debated topic in economic research. Since electricity 

consumption is a good approximation of economic activities, the promising 

result in this research implies direct application in local economic planning. For 

instance, the revealed chronological interconnections among sectors can help 

us better understand the industrial symbiosis among sectors, thus helping to 

predict the impacts of external shocks on the final demands. In future studies, 

some more technical means may be possible to reinforce the algorithm. 
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Specifically, the number of layers for production propagation is set to 8 due to 

constrain in computational power. Upgrading computer hardware may further 

improve the accuracy of this modelling. In addition, it may be useful to integrate 

real-world surveys on supply chains for reference in determining the number of 

layers. In addition, the classification of the final demand and intermediate output 

is based on empirical judgement in this research. For instance, due to possible 

misinterpretations and misinformation provided by consumers, systematic error 

may be embedded in this research and thus deteriorate model performance. 

Technical signal processing means, such as noise filtering, may be a way to 

improve the accuracy of data organization and thereby enhance model 

performance. 

In addition, the SIM is an oversimplified economic model in which the nonlinear 

effects of variables such as capital constraints and price elasticity are not 

considered. Although the simple and linear feature of the SIM provides a more 

efficient estimation for production coefficients in the short run, nonlinearity 

should be considered for the development of the SIM to incorporate more 

economic theories in the next stage. Unlike other model frameworks which have 

factored in the relationships between changes of capital goods and productivity, 

SIM is not able to well model the impact on capital changes as an endogenized 

parameter. Later research on SIM methodological improvement can take the 

momentum of this study to overcome the weakness of SIM by exploring its 

integration with other IO variant, such as dynamic IO analysis. That being said, 

it may also be interesting to look at the hybridization of control system 

engineering and economic modelling. The nonlinear modules in the control 

system are good ways to model the nonlinear feedback effects of certain 

sectors in the whole economy. In that regard, the SIM would then evolve into a 

multi-input multi-output (MIMO) system identification model, but with the black 

box open to research and analysis on chronological processes. 

  



72 

 

Chapter 5: Theory Advancement in SIM – A 

Dynamic Model 

In this chapter, the SIM is enhanced by integrating production capacity into its 

parameters. A complementary algorithm, akin to the one developed earlier, is 

applied using this improved model to assess the direct and indirect economic 

losses resulting from the 2015 South Indian Flood. The chapter concludes with 

a critical analysis of the study's limitations. 

5.1. Dynamic Input-Output Model 

The original IO model explains how the economic functions under a condition 

of unchanged structure. However, the economic structure is constantly evolving 

due to changes in production capacity. While the IO model provides valuable 

insights into the interdependence of industries and the flow of goods and 

services within an economy, its limitations make it less suitable for analysing 

economic structural change due to changes in production capacity. Alternative 

models, such as CGE models, can provide a more comprehensive 

representation of the economy and address some of the limitations of the IO 

model and encompass economic theories from the IO framework.  

In consideration of capital stock building and its influence on production 

capacity, dynamic IO model has been proposed by Leontief himself in his later 

stage of research (Leontief, 1970, Leontief, 1953). In a dynamic IO model, time 

steps are introduced into the analysis, allowing for the examination of economic 

interactions across multiple periods. This enables the model to capture the 

evolution of the economy and the effects of time-dependent policies or events 

(Doraszelski and Pakes, 2007). Investment and capital formation, which links 

current production decisions to future productive capacity, are factored into 

dynamic IO model to capture the accumulation of capital over time and its 

impact on economic growth and structural change (Johnson, 1985). Some 

dynamic IO models also incorporate endogenous technological change to 

reflect the fact that technological progress can lead to changes in production 

processes, input requirements, and productivity over time (Gurgul and Lach, 

2018). This is important for capturing the effects of innovation and technological 

advancements on the economy's structure. Furthermore, final demand is often 

specified to change over time, accounting for shifts in consumer preferences, 

population growth, and other factors that influence the demand side of the 

economy. More importantly, dynamic IO models incorporate lagged adjustment 

processes, reflecting the fact that economic agents may take time to respond 

to changes in the economy. For example, firms may take time to adjust their 

production levels or investment decisions in response to changes in demand or 

other economic conditions. Feedback effects that occur over time, such as the 
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impact of changes in one industry on other industries through supply chain 

linkages, are also captured in dynamic IO models.  

In a dynamic IO model, the relationship between production capacity and 

investment is generalized into the following form. 

𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵[𝑥(𝑡+1) − 𝑥(𝑡)] + 𝑦(𝑡) ( 5.1 ) 

At a certain time step 𝑡, the output level 𝑥(𝑡) becomes the sum of intermediate 

production 𝐴𝑥(𝑡), final demand 𝑦(𝑡), and an additional capital stock compilation 

term 𝐵[𝑥(𝑡+1) − 𝑥(𝑡)]. In the capital stock compilation term, the future output 

level 𝑥(𝑡+1) is linked to present state. Difference in future production 𝑥(𝑡+1) and 

present production 𝑥(𝑡) is production capacity expansion, which is multiplied 

with the investment coefficient 𝐵 to denote the outputs produced at present 

state for the purpose of capacity expansion. 𝐵 in a sense also measures the 

efficiency in investment activities. If the discrete time form is converted into 

continuous time form, the dynamic IO model will become the following. 

𝑥 = 𝐴𝑥 + 𝐵�̇� + 𝑦 ( 5.2 )  

Although it lacks explicit price mechanisms and market-clearing conditions 

when compared to CGE models, dynamic IO model still provides a valuable 

and easier tool for understanding the evolution of economic structures, the 

interdependence of industries, and the impact of policies and shocks over time. 

An innovative approach is integrating linear programming techniques to solve 

for economic optimization questions (Duchin and Szyld, 2006). In applied 

studies, economists have implemented the dynamic IO model to evaluate 

longer term economic growth scenarios (Cruz Jr et al., 2009). The role of capital 

investment and utilization in the production process can also be assessed with 

dynamic IO model (Blair and Miller, 2022). In more recent application of 

dynamic IO model, Ryaboshlyk (2006) proposed disaggregating old and new 

technologies in the time dimension to model technological change in a time 

span less than a year, better simulating the effects of technological impulses 

and their diffusion throughout the economy in discrete time steps. 

In the assessment of economic shocks, the disaster footprints are also 

analysed using the variant of Dynamic Inoperability Input-Output Model (DIIM), 

a combination of the dynamic IO model and inoperability IO model (Barker and 

Santos, 2010). The DIIM model allows for the analysis of various recovery 

strategies, such as investments in infrastructure repair, alternative production 

methods, or temporary imports to replace lost production. By simulating these 

strategies, the DIIM can be used to assess the effectiveness of different 

recovery options and inform policy decisions. Based on the interindustry 

relationships revealed, the DIIM can also be used to analyse the resilience of 
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the economy to disruptions, both in terms of its ability to withstand the initial 

shock and its capacity to recover over time. Hence, the DIIM is often used to 

estimate disruptions in disasters like floods, in which case industries are ranked 

on the basis of inoperability and economic losses to point out critical industries. 

Policy makers are thus enabled to allocate budget accordingly to critical sectors 

after disaster events (Yaseen et al., 2020). 

5.2. Dynamic Sequential Interindustry Model 

Since the first proposal of the dynamic IO Model, researchers have put 

continuous efforts into the methodological advancement. Aulin-Ahmavaara 

(1990) has made a comprehensive literature review on the methodological 

advancement of the dynamic IO Model so far. Among all innovations presented 

in Aulin-Ahmavaara’s review, Johansen (1978) is one of the most significant 

contributions by providing a specific solution to the differential form ( 5.2 ) of the 

dynamic IO Model under a balanced growth rate scenario. In this case, the 

increase in demand is exactly matched with the increase in supply. In the further 

improvement of dynamic IO Model, Ten Raa (1986) has taken one step further 

to disaggregate production and investment activities into multiple discrete time 

steps, thus proposing a multiperiod model. Ten Raa’s model has been applied 

and tested in some practical case studies (Fu and Chen, 2009). It is given below 

in ( 5.3 ): 

𝑥(𝑡) = ∑𝐴(𝑠)𝑥(𝑡+1−𝑠)

𝑙

𝑠=1

+ ∑𝐵(𝑠)[𝑥(𝑡+𝑠) − 𝑥(𝑡+𝑠−1)]

𝑚

𝑠=1

+ 𝑦(𝑡) ( 5.3 ) 

If referring back to the SIM model proposed in Chapter 3, it can be easily noted 

that Ten Raa’s Model approaches the multiperiod concept in a very similar way 

of SIM, except that a capital building term of 𝐵�̇� is included. The capital term in 

Ten Raa’s Model, like in the classic dynamic IO Model ( 5.1 ), links production 

capacity expansion and investment through the investment coefficient 𝐵 . 

However, it should be noted that it is controversial to use the dynamic model in 

analysis demolishing or retirement of production capacity. When production 

decreases in the next time interval, it may be a result of either reduced or idle 

capacity. If capacity is only idle, investment would not be necessary to expand 

production in the future so that the dynamic relationship modelled by 𝐵 would 

not be valid.  

In ( 5.3 ), 𝐵 is given as a three-dimension matrix like in SIM model, with its third 

dimension accounts for the discrete time steps. Hence, the impact of 

investment on production capacity expansion is modelled to take effect with 

time lags. If the capital building term is to be included in SIM, the new model 

will look like ( 5.4 ). 
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𝑥(𝑡) = ∑𝐴(𝑠)𝑥(𝑡−𝑠)

𝑙

𝑠=1

+ ∑𝐵(𝑠)[𝑥(𝑡+𝑠) − 𝑥(𝑡+𝑠−1)]

𝑚

𝑠=1

+ 𝑦(𝑡) ( 5.4 )  

Ten Raa’s Model is also different from SIM as it assumes production for outputs 

starts instantly with zero lags in time instead of one discrete time step later. For 

the consistency with past research and more convenient reference for 

concerned researchers, Ten Raa’s Model is adopted in this chapter and given 

the name Dynamic SIM (DSIM) model.  

5.3. Model Algorithm Innovation 

Initially, the same recursive algorithm in Chapter 3 was attempted, in hope to 

obtain both production coefficient 𝐴(𝑡)  and investment coefficient 𝐵(𝑡) . 

However, the recursive algorithm can only work with the case with a single 

unknown of 𝐴(𝑡). If an extra unknown of 𝐵(𝑡) is to be included in the DSIM 

model, an alternative algorithm will be needed to solve for the unknown 

variables and thus conduct an analysis on the operation of the economic.  

Similar to the linearization concept practiced in ( 3.13 ) of Chapter 3, this section 

is inspired by the “dynamic inverse” proposed by Steenge and Reyes (2020) to 

develop an linear algebra algorithm to solve for 𝐴(𝑡) and 𝐵(𝑡) in the DSIM 

model. In the work of Steenge and Reyes (2020), the capital coefficient 𝐵 is 

added to production coefficient 𝐴, so that the traditional Leontief inverse in IO 

model is modified to the “dynamic inverse”. Following this practice, DSIM model 

in ( 5.3 ) is reorganized, so that the final demand 𝑦(𝑡) is expressed as a function 

of 𝐴(𝑡), 𝐵(𝑡), and 𝑥(𝑡) in ( 5.5 ). 

 

𝑦(𝑡) = 𝑥(𝑡) − ∑𝐴(𝑠)𝑥(𝑡+𝑠−1)

𝑙

𝑠=1

− ∑𝐵(𝑠)[𝑥(𝑡+𝑠) − 𝑥(𝑡+𝑠−1)]

𝑚

𝑠=1

 

𝑦(𝑡) = 𝑥(𝑡) − ∑𝐴(𝑠)𝑥(𝑡+𝑠−1)

𝑙

𝑠=1

− ∑𝐵(𝑠)𝑥(𝑡+𝑠)

𝑚

𝑠=1

+ ∑𝐵(𝑠)𝑥(𝑡+𝑠−1)

𝑚

𝑠=1

 

𝑦(𝑡) = 𝑥(𝑡) − ∑𝐴(𝑠+1)𝑥(𝑡−𝑠)

𝑙−1

𝑠=1

− 𝐴(1)𝑥(𝑡) − ∑ 𝐵(𝑠)𝑥(𝑡+𝑠)

𝑚−1

𝑠=1

+ ∑ 𝐵(𝑠+1)𝑥(𝑡 + 𝑠)

𝑚−1

𝑠=1

− 𝐵(𝑚)𝑥(𝑡+𝑚) + 𝐵(1)𝑥(𝑡) 

( 5.5 )  
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𝑦(𝑡) = −∑𝐴(𝑠+1)𝑥(𝑡−𝑠)

𝑙−1

𝑠=1

+ [𝐼 − 𝐴(1) + 𝐵(1)]𝑥(𝑡)

+ ∑[𝐵(𝑠+1) − 𝐵(𝑠)]𝑥(𝑡+𝑠)

𝑚−1

𝑠=1

− 𝐵(𝑚)𝑥(𝑡+𝑚) 

As a linear system, equation ( 5.5 ) can easily be converted into matrix form as 

follow in equation ( 5.6 ) to show the final demand of the economy at time 𝑡. 

𝑦(𝑡)

= [−𝐴(𝑙) ⋯ −𝐴(2) 𝐼 − 𝐴(1) + 𝐵(1) 𝐴(2) − 𝐵(1) ⋯ 𝐵(𝑚) − 𝐵(𝑚−1) −𝐵(𝑚)]

×

[
 
 
 
 
 
 
 
𝑥(𝑡−𝑙+1)

⋮
𝑥(𝑡−1)

𝑥(𝑡)

𝑥(𝑡+1)

⋮
𝑥(𝑡+𝑚−1)

𝑥(𝑡+𝑚) ]
 
 
 
 
 
 
 

 

( 5.6 )  

Hence, if the linear system is expanded to show the final demand happened in 

the economy at all 𝑛  discrete time steps observed, a matrix multiplication 

equation ( 5.7 ) can be obtained. 
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[
 
 
 
 
 
 
 
 
 
 
𝐼 − 𝐴(1) + 𝐵(1) 𝐵(2) − 𝐵(1) ⋯ −𝐵(𝑚) 0 ⋯ ⋯ 0

−𝐴(2) 𝐼 − 𝐴(1) + 𝐵(1) ⋯ 𝐵(𝑚) − 𝐵(𝑚−1) −𝐵(𝑚) ⋯ ⋯ 0

⋮
−𝐴(𝑙) ⋯ 𝐼 − 𝐴(1) + 𝐵(1) 𝐵(2) − 𝐵(1) ⋯ −𝐵(𝑚) ⋯ 0

⋮
0 ⋯ −𝐴(𝑙) ⋯ 𝐼 − 𝐴(1) + 𝐵(1) ⋯ 𝐵(𝑚) − 𝐵(𝑚−1) −𝐵(𝑚)

⋮
0 ⋯ −𝐴(𝑙) −𝐴(𝑙−1) ⋯ 𝐼 − 𝐴(1) + 𝐵(1) −𝐵(1)

0 ⋯ 0 −𝐴(𝑙) ⋯ −𝐴(2) 𝐼 − 𝐴(1)]
 
 
 
 
 
 
 
 
 
 

×

[
 
 
 
 

𝑥(1)

𝑥(2)

⋮
𝑥(𝑛−1)

𝑥(𝑛) ]
 
 
 
 

=

[
 
 
 
 

𝑦(1)

𝑦(2)

⋮
𝑦(𝑛−1)

𝑦(𝑛) ]
 
 
 
 

 

( 5.7 )  

 

Let  
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𝐵 =

[
 
 
 
 
 
 
 
 
 
 
𝐼 − 𝐴(1) + 𝐵(1) 𝐵(2) − 𝐵(1) ⋯ −𝐵(𝑚) 0 ⋯ ⋯ 0

−𝐴(2) 𝐼 − 𝐴(1) + 𝐵(1) ⋯ 𝐵(𝑚) − 𝐵(𝑚−1) −𝐵(𝑚) ⋯ ⋯ 0

⋮
−𝐴(𝑙) ⋯ 𝐼 − 𝐴(1) + 𝐵(1) 𝐵(2) − 𝐵(1) ⋯ −𝐵(𝑚) ⋯ 0

⋮
0 ⋯ −𝐴(𝑙) ⋯ 𝐼 − 𝐴(1) + 𝐵(1) ⋯ 𝐵(𝑚) − 𝐵(𝑚−1) −𝐵(𝑚)

⋮
0 ⋯ −𝐴(𝑙) −𝐴(𝑙−1) ⋯ 𝐼 − 𝐴(1) + 𝐵(1) −𝐵(1)

0 ⋯ 0 −𝐴(𝑙) ⋯ −𝐴(2) 𝐼 − 𝐴(1)]
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𝑈 =

[
 
 
 
 

𝑥(1)

𝑥(2)

⋮
𝑥(𝑛−1)

𝑥(𝑛) ]
 
 
 
 

 

𝑉 =

[
 
 
 
 

𝑦(1)

𝑦(2)

⋮
𝑦(𝑛−1)

𝑦(𝑛) ]
 
 
 
 

 

So that equation above becomes: 

𝐵𝑈 = 𝑉 

Hence to obtain output 𝑈, multiplying the inverse of 𝐵 on both sides we get 

𝑈 = 𝐵−1𝑉 ( 5.8 )  

In equation ( 5.7 ), the linear system of DSIM is transformed into a matrices 

multiplication process by setting an unchanging vector of 𝑥(𝑡) and forming a 

matrix of varying coefficients 𝐴(𝑡)and 𝐵(𝑡). Similarly, if the matrix of 𝐴(𝑡) and 

𝐵(𝑡) is held as the unchanging vector and elements in the matrix of 𝑥(𝑡) are 

varied to form a matrix, the identical output of final demand 𝑦(𝑡)  can be 

obtained as shown in equation ( 5.9 ). 

[−𝐴(𝑙) ⋯ −𝐴(2) 𝐼 − 𝐴(1) + 𝐵(1) 𝐴(2) − 𝐵(1) ⋯ 𝐵(𝑚) − 𝐵(𝑚−1) −𝐵(𝑚)]

×

[
 
 
 
 
 
 
 
 

0 ⋯ 0 𝑥(1) 𝑥(2) ⋯ 𝑥(𝑙)

⋮
0 ⋯ 𝑥(𝑛−𝑙−3) 𝑥(𝑛−𝑙−2) 𝑥(𝑛−𝑙−1) ⋯ 𝑥(𝑛)

𝑥(1) ⋯ 𝑥(𝑛−𝑙−2) 𝑥(𝑛−𝑙−1) 𝑥(𝑛−𝑙) ⋯ 0

𝑥(2) ⋯ 𝑥(𝑛−𝑙−1) 𝑥(𝑛−𝑙) 𝑥(𝑛−𝑙+1) ⋯ 0

⋮
𝑥(𝑚−1) ⋯ 𝑥(𝑛−2) 𝑥(𝑛−1) 𝑥(𝑛) ⋯ 0

𝑥(𝑚) ⋯ 𝑥(𝑛−1) 𝑥(𝑛) 0 ⋯ 0 ]
 
 
 
 
 
 
 
 

= [𝑦(1) ⋯ 𝑦(𝑛−𝑙−1) 𝑦(𝑛−𝑙) 𝑦(𝑛−𝑙+1) ⋯ 𝑦(𝑛)] 

( 5.9 )  

Again, let ( 5.9 ) be 𝐵𝑈 = 𝑉, so that a unique solution of 𝑦(𝑡) can be obtained if 

𝑈 is just symmetric. However, in real world situation, observations for 𝑥(𝑡) and 

𝑦(𝑡) are normally more than required for a unique solution. Thus matrices 𝑈 

would be asymmetric. The inverse of 𝑈 is hence impossible to be calculated.  
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Sharing the same idea of equation ( 3.19 ), the Moore Penrose Inverse is again 

introduced to find the best fitted solution. The Moore Penrose Inverse of 𝑈 is 

taken and multiplied on the right-hand side of ( 5.9 ) to calculate matrix 𝐵. 

Truncated at (𝑛 − 𝑙) observations, a similar concept similar to the recursive 

induction technique as shown in ( 3.15 ) can be applied. By taking the minus of 

the 𝑚 terms of the right-side of 𝐵,  we have a series that looks like: 

𝐴(1) − 𝐵(1) − 𝐼 𝐵(1) − 𝐵(2) ⋯ 𝐵(𝑚−1) − 𝐵(𝑚) 𝐵(𝑚) ( 5.10 ) 

So that all investment coefficients 𝐵(𝑚) are solved by the following recursive 

steps: 

𝐵(𝑚) = 𝐵(𝑚) 

𝐵(𝑚−1) = [𝐵(𝑚−1) − 𝐵(𝑚)] + 𝐵(𝑚) 

⋮ 

𝐵(1) = [𝐵(1) − 𝐵(2)] + 𝐵(2) 

𝐴(1) − 𝐼 = [𝐴(1) − 𝐵(1) − 𝐼] + 𝐵(1) 

( 5.11 ) 

Taking the minus of the 𝑙 terms of the left-side of 𝐵, the following series of 

elements can be obtained which directly gives the series of 𝐴(𝑡). 

𝐴(𝑙) ⋯ 𝐴(2) 𝐴(1) − 𝐵(1) − 𝐼 ( 5.12 ) 

Finally, the term 𝐴(1) can be calculated as follow. 

𝐴(1) = [𝐴(1) − 𝐵(1) − 𝐼] + 𝐵(1) + 𝐼 ( 5.13 ) 

The proposed algorithm makes it feasible to work out the production and 

investment coefficients through an ample amount of observations on the 

outputs and final demands in an economy. Knowing these parameters permits 

the analysis on the operations of the economy investigated and thus make fair 

predictions for its performance in the short future.  

5.4. Case of 2015 South India Flood 

5.4.1. Background 

In November 2015, a devastating rainfall has battered the Southern India States 

of Tamil Nadu and Andhra Pradesh. Most heavy damage was suffered by 

Chennai. 60% of Chennai was inundated (Johnsy and Schirinzi, 2019). The 

2015 South India Flood stands as one of the most devastating natural disaster 

events to have struck India in recent memory, with its catastrophic 
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consequences arising from an intricate interplay between various natural and 

manmade factors. On the one hand, the higher-than-normal precipitation levels 

can be attributed to the warming global climate, which in turn intensified the El 

Nino effect. This phenomenon facilitated the transportation of moisture from the 

Bay of Bengal, culminating in extremely heavy precipitation within an alarmingly 

short timeframe (Dhana Lakshmi and Satyanarayana, 2019). Geographically 

speaking, the coastal regions of southeast India, including cities like Chennai 

and its surrounding suburbs, are particularly susceptible to flooding hazards 

due to their relatively flat terrain. This vulnerability is further exemplified by the 

2004 Indian Ocean Tsunami, which caused widespread flooding and resulted 

in 7,793 direct fatalities in the state of Tamil Nadu alone (Network of Emergency 

Physicians, 2007). On the other hand, the human element cannot be 

disregarded in the exacerbation of the flood's deadly impacts. Prior to the 

heaviest precipitation, residents of Chennai had been warned about the 

increased risk of flooding. However, the true severity of the impending flood 

remained largely unknown and unanticipated. Consequently, negligence 

emerged as a key human factor contributing to the disastrous outcome (Jobin 

et al., 2018). Moreover, the rapid expansion and development of Chennai's 

suburbs have also been implicated in the heightened impact of the 2015 flood 

(Samraj, 2017). The rampant urbanization and lack of proper urban planning 

led to encroachments on natural drainage systems, compromising the region's 

ability to effectively manage the excessive rainfall.  

As evidenced by various research studies, Tamil Nadu is frequently regarded 

as one of the most developed regions in India, boasting extensive supply chains 

that stretch across numerous other regions throughout the country (Huang et 

al., 2021). Hence, as one of India's most significant economic centres, the 

extensive damages inflicted upon Chennai by the 2015 flood reverberated 

throughout the entire nation, causing widespread disruption (Rajan and 

Sridharan, 2016). In response to the catastrophe, vigorous discussions have 

been initiated on how to effectively recover from the disaster and mitigate future 

risks disaster (Mariaselvam and Gopichandran, 2016, Bremner, 2020). The 

Tamil Nadu State Government has estimated the direct financial loss resulting 

from the flood to be approximately Rs. 8,481 crore (one crore equals ten million 

in Indian numbering system). However, quantifying the indirect costs incurred 

both locally and throughout the rest of India presents a significant challenge. 

Accurately estimating the indirect losses from such disastrous events has 

proven to be a difficult task in numerous studies due to the complex nature of 

the interconnected economic systems and the far-reaching consequences of 

such calamities. This chapter will endeavour to apply real economic data to the 

DSIM in order to assess the indirect economic losses incurred over time. This 

method aims to provide a more comprehensive understanding of the overall 

impact of the 2015 South India Flood on the Indian economy. By utilizing this 
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model, we can gain valuable insights into the cascading effects of the disaster 

and better inform policy decisions related to disaster recovery, urban planning, 

and risk management. Furthermore, the evaluation of indirect losses will shed 

light on the broader implications of natural disasters on economic activities, 

employment, and social well-being. By incorporating these findings into future 

planning and policy-making efforts, Authorities can enhance their resilience to 

the adverse effects of such disasters and emerge better prepared to face the 

challenges posed by an increasingly volatile global climate. 

Interestingly, the topic of disaster footprint has emerged as a vital area of 

interest within the field of IO modelling. IO modelers have consistently 

dedicated their efforts to applying IO models for analysing the indirect costs 

associated with natural disasters. The most prevalent approach, such as the 

Adaptive Regional Input-Output (ARIO) model (Hallegatte, 2008), involves 

assuming a damage ratio that imposes a bottleneck effect on production 

capacity. This assumption is intended to simulate the production constraints 

resulting from a disaster event (Mendoza‐Tinoco et al., 2020, Zeng and Guan, 

2020a). In more sophisticated modelling studies, researchers have integrated 

the dynamic IO model (Leontief, 1970, Leontief, 1953) with the concept of 

interoperability (Santos and Haimes, 2004, Haimes and Jiang, 2001). This 

innovative modelling practice was subsequently formalized and dubbed the 

Dynamic Inoperability Input-Output Model (DIIM). The applicability of the DIIM 

has been extended to cover various disastrous events, including terrorism risks 

(Lian and Haimes, 2006, Los, 2001). By incorporating the IO economic model 

and its variants into disaster footprint analysis, researchers can achieve a more 

nuanced understanding of the intricate relationships and dependencies 

between various sectors of the economy in the aftermath of a catastrophe. This, 

in turn, enables the development of more effective strategies for mitigating the 

indirect costs of natural disasters and fostering a more resilient economy. The 

continuous advancements in IO modelling and the incorporation of dynamic 

elements in these models demonstrate the ongoing efforts of scholars to better 

comprehend and quantify the far-reaching impacts of natural disasters on 

economic systems. 

Nonetheless, the aforementioned approaches are not without their significant 

drawbacks. In the research referenced earlier, there exists an underlying 

assumption that an equilibrium state is reached at each discrete time step. As 

we have argued in previous chapters of this thesis, while the equilibrium state 

assumption might hold true for longer periods, it is unlikely to accurately reflect 

the dynamics of shorter time spans. Furthermore, given that items are recorded 

in monetary units, outputs from different sectors are assumed to be 

interchangeable, with no distinctions made between them. This assumption 

implies that a decrease in output in one sector will result in an identical decrease 

in total outputs. In reality, however, a reduced amount of intermediate input in 
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one sector could render inputs from another sector redundant in the production 

of the final product. This discrepancy between the model's assumptions and 

the actual complexities of economic systems highlights the limitations of the 

current modelling approaches. 

To address these shortcomings, it is crucial to develop more nuanced and 

sophisticated models that can accurately capture the complex 

interdependencies between sectors and account for the varying degrees of 

substitutability between outputs. By incorporating these refinements into the 

existing models, we can achieve a more precise understanding of the dynamics 

at play within an economy in the aftermath of a disaster. By enhancing our 

modelling capabilities in these ways, we will be better equipped to assess the 

indirect costs of natural disasters and develop more effective strategies for 

mitigating their impacts on economies. Ultimately, this increased understanding 

will inform policy decisions and resilience-building measures, helping societies 

to better prepare for, adapt to, and recover from the challenges posed by 

natural disasters. 

5.4.2. Method and Data 

In stark contrast to existing IO modelling tools used for disaster footprint 

analysis, which typically model impacts based on a hypothetical inoperability 

ratio, the algorithm proposed in this study adopts a reverse approach. In line 

with the research presented in Chapters 3 and 4 of this thesis, this Chapter 

aims to investigate the disaster footprint of the 2015 South India Flood by 

employing a regression analysis of historical economic data, as explained in 

the previous section. By calculating the chronological production and 

investment coefficients, the DSIM constructs a "what-if" scenario that envisions 

the economic landscape had the disaster not occurred. Consequently, an 

estimation for local and national outputs unaffected by the shock can be 

obtained by adding back the direct damage to Tamil Nadu's (TN) final demand. 

Comparing the differences in total and final outputs between the modelled and 

actual scenarios will reveal the chronological impacts of the disaster event on 

the entire economic system of India. The DSIM also addresses the drawbacks 

of conventional disaster footprint analysis identified earlier. As an enhancement 

to IO-based disaster footprint analysis tools, DSIM incorporates the efficiency 

of investment into its modelling, offering an additional dimension for 

consideration when making policy decisions regarding recovery strategies. 

Furthermore, since the DSIM does not assume an equilibrium state at each 

time step like other IO and CGE models do, it circumvents inaccuracies that 

may arise when modelling disequilibrium settings over short periods. By 

embracing this innovative approach, the DSIM analysis carried out in this 

research can provide a more comprehensive and accurate understanding of 

the true economic consequences of the 2015 South India Flood. This deeper 
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insight will enable policymakers to develop more effective recovery strategies 

and better allocate resources to mitigate the far-reaching effects of such 

catastrophes on economies and societies in the future.  

As outlined in the previous section, in order to perform a regression analysis on 

the relationships among regions and sectors within a MRIO model, a series of 

observations on final demands and total outputs is required. However, obtaining 

accurate measurements of these two indicators for shorter statistical periods 

can be challenging due to the high costs associated with data collection and 

processing. In order to investigate the economic symbiosis among Indian 

regions and subsequently reveal the impact induced by the disastrous event, 

an approximation of the final demand and total output for TN and the Rest of 

India (RoI) is necessary. In this section, we utilize the monthly Index of Industrial 

Production (IIP) for manufacturing as an estimation of the intermediate 

production levels, while considering the total IIP as a representation of the total 

output levels for both TN (Evaluation & Applied Research Department, 2020) 

and RoI (OECD, 2022) during January 2015 and March 2016. These indices 

are subsequently employed to disaggregate the corresponding quantities from 

the 2015 India MRIO table. 

Regrettably, with only 15 monthly observations available over a 15-month 

period, the data points provided are insufficient for an analysis for longer period. 

To effectively conduct a regression algorithm in a modelling system with n 

unknowns, it is necessary to have more than n observations on other 

parameters, such as final demands and total outputs in this case. Consequently, 

certain compromises must be made, such as aggregating the detailed 

economic sectors in the 2015 Indian MRIO table compiled by the CEADs 

database (Huang et al., 2021) into a single sector for both TN and RoI. This 

simplification results in a 2-by-2 dimensional MRIO matrix. By measuring the 

economic outputs of TN and RoI in identical monetary units, it can be 

reasonably assumed that they serve as substitutes for each other. Utilizing the 

algorithm developed in Equation ( 5.9 ), it becomes feasible to ascertain the 

production and investment coefficients for TN and RoI. To ensure the validity 

of the model, constraints and estimations are imposed on the regression 

process. Given that the time resolution in this study is restricted to a monthly 

basis, it is assumed that this duration provides economic agents with adequate 

time to respond to any market signals. Consequently, the layers of production 

and investment coefficients are set at 2, indicating that the time delay for the 

Indian economy to react to any market signal concludes in the second month.  

Nonetheless, this study faces a comparable challenge to that encountered in 

Chapter 4 when utilizing the regression algorithm outlined in equation ( 5.9 ). It 

is evident that the elements of 𝐴(𝑡)  and 𝐵(𝑡)  must be constrained to non-

negative values and less than one for practical reasons. However, imposing 
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constraints on the objective variable during a regression algorithm using Moore-

Penrose Inverse calculations is not feasible. To address this issue, linear 

programming techniques, combined with some simplifications, are introduced 

to the case study. 

To begin with, our initial step involved making the most accurate estimation of 

𝐴(𝑡) by computing the static production coefficient 𝐴 using the formula derived 

from the classical input-output (IO) model, as illustrated in the equation ( 5.14 ) 

below: 

𝐴 = 𝑍./𝑋 ( 5.14 )  

Where 𝑍 is the intermediate consumption matrix obtained from the 2015 India 

MRIO table. 𝑋 is the total output vector for TN and RoI. In this research, it is 

assumed that domestic consumptions sitting on the diagonal happens within 

the first time discrete (month). The traded flow of consumptions across regions 

occurs one time discrete later. The estimation of production delay follows the 

practice from many other similar studies (Okuyama et al., 2004). Hence, an 

initial estimation on 𝐴(𝑡) is obtained. 

The initial guess of 𝐴(𝑡) is then substituted into the DSIM Model ( 5.3 ) to make 

a first guess before calculating the chronological investment coefficient 𝐵(𝑡). 

Manipulation of equation ( 5.3 ) offers an equation with 𝐵 on the left to be 

determined, as shown below in equation ( 5.15 ).  

𝐵[𝑥(𝑡+1) − 𝑥(𝑡)] = 𝑥(𝑡) − ∑𝐴(𝑠)𝑥(𝑡+1−𝑠)

𝑙

𝑠=1

− 𝑦(𝑡) ( 5.15 )  

The left-hand side of the equation represents the investment in capital stock 

accumulation, which has a direct linear relationship with the increase in total 

outputs up to the subsequent discrete time interval. Examining the right-hand 

side of the equation, we can also compute the expenditure on capital stock by 

subtracting the intermediate input and final consumption from the total output. 

To achieve the most accurate estimate of the coefficient 𝐵, it is essential to 

minimize the discrepancy between the two sides of the equation. Consequently, 

an optimization system is established as follows to accomplish this goal. 

Find the 𝐵 

That minimizes 

𝐵[𝑥(𝑡+1) − 𝑥(𝑡)] − [𝑥(𝑡) − ∑𝐴(𝑠)𝑥(𝑡+1−𝑠)

𝑙

𝑠=1

− 𝑦(𝑡)] 

Subject to 0.01 < 𝐵𝑖𝑗 < 1.00  where 𝑏𝑖𝑗 is any element of 𝐵 
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In this optimization framework, the boundaries for 𝐵 are set between 0 and 1 to 

represent the principle that investments are consistently positive and efficient. 

This implies that injecting one unit of capital into the economy will yield an 

output greater than one unit. Upon obtaining an initial static value for 𝐵, the 

same assumption used in 𝐴(𝑡) calculation is employed: domestic consumption 

occurs within the same time interval, while inter-regional consumption takes 

place one time interval later. Consequently, an adjusted  𝐵(𝑡) is derived, serving 

as the initial estimate of the investment coefficient 𝐵(𝑡). 

With the knowledge of the production coefficient 𝐴(𝑡) and investment coefficient 

𝐵(𝑡), it becomes possible to simulate the economic symbiosis between TN and 

RoI in 2015. If an economic shock event impacts the final demand of any region, 

the model can simulate the resulting changes—both direct and indirect—across 

regions in a chronological manner. Specifically, the reduced demand caused 

by the shock event, such as the direct loss from flooding, is reintroduced to the 

final demand. The total output changes are then computed in reverse and 

compared with the actual outcomes to estimate the direct and indirect impacts 

on the economy. In this case study, the official estimation of Rs. 8,500 crores 

by the TN state government is chosen to represent the direct loss from TN's 

final demand. This number is selected over other estimates as it is the most 

authoritative source and best aligns with the trend of TN's monthly growth. 

Furthermore, to prevent an unrealistic growth rate in this simulation, a cap of 

0.6% on the monthly growth rate is imposed by adjusting the 8.0% annual GDP 

growth rate of India in 2015. 

5.4.3. Result Analysis 

The regressed production coefficient 𝐴(𝑡) and investment coefficient 𝐵(𝑡) shed 

light on vital information concerning the chronological interaction between TN 

and RoI in 2015. Table 7 is subsequently generated to display the 𝐴(𝑡) and 𝐵(𝑡) 

values obtained in this study. Regarding 𝐴(𝑡) , a smaller value signifies that 

fewer resources and inputs are required to produce a unit output for the target 

region, indicating a higher efficiency in production. Similarly, a smaller value in 

𝐵(𝑡) implies that less resources and inputs are needed to increase output by 

one unit in the subsequent time interval, suggesting a higher efficiency in 

investment. 

 𝐴(1) 𝐴(2) 

Tamil Nadu Rest of India Tamil Nadu Rest of India 

Tamil Nadu 0.2467 0 0 0.0152 

Rest of India 0 0.4459 0.2040 0 
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 𝐵(1) 𝐵(2) 

Tamil Nadu Rest of India Tamil Nadu Rest of India 

Tamil Nadu 0.0100 0 0 0.0158 

Rest of India 0 0.0911 0.5770 0 

Table 7 Simulated result of A(t) and B(t) for the economic activity interactions of Tamil 

Nadu Pradesh and Rest of India in the year of 2015. 

In the context of production efficiency, TN's intermediate production exported 

to RoI (0.0152) represents the most efficient industrial linkage, being 29.3 times 

more efficient than the domestically produced inputs from RoI itself (0.4459). 

This occurs despite the exports from TN taking a longer time to reach RoI due 

to various barriers, such as geographical distance. In contrast, the difference 

between domestic (0.2467) and imported (0.2040) production efficiencies for 

TN is relatively small. This reveals TN's role as an economic hub, as its 

products are more advantageous for RoI compared to those from other regions. 

A similar comparative advantage is not observed for TN's domestic production 

over its imports from RoI, further emphasizing the competitiveness of TN's 

products over imports from RoI in domestic economic activities.  

The lower domestic (0.0100) and interregional (0.0158) investment coefficients 

for TN also demonstrate that its investment efficiency significantly surpasses 

that of RoI. In contrast, the considerably higher values of domestic (0.0911) and 

interregional (0.5770) investment coefficients for RoI indicate a clear 

comparative disadvantage when it comes to investing and stimulating output 

growth. The model developed in this study estimates that investments from TN 

to RoI are 36.5 times more efficient, in quantitative terms, than those from RoI 

to TN. This further reinforces the conclusion that TN serves as India's economic 

hub, playing a pivotal role in driving economic growth across all regions. The 

implications of this finding are far-reaching, as it highlights the importance of 

nurturing and supporting the development of such economic hubs to ensure 
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sustained and balanced growth throughout the nation. 

 

Figure 18 Sensitivity analysis for output simulations of TN and RoI. 

In order to assess the accuracy of the developed model, a comparison is made 

between the simulated outputs for both TN and RoI and the actual outputs 

observed during the period from April 2015 to April 2016. This comparison is 

visually presented in Figure 18. Area shaded in red means that the simulated 

value for output is larger than the actual sample. Area shaded in green means 

that the simulated value for output is smaller than the actual sample. The 

number on the horizontal axis means number of months from January 2015, 

e.g. 6 indicates June 2015. One lakh is one hundred thousand in Indian 

numbering system. The model's production and investment coefficients are 
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configured to have extended influences over a period of two discrete time steps, 

or months. The time step in which the final demand has a direct impact on the 

economy has also been taken into consideration. Within this context, the first 

three data points on the time dimension have not yet been completely affected 

by the model's mechanisms. Consequently, data points prior to April 2015 are 

excluded from this sensitivity analysis. The results of the analysis reveal that 

the percentage errors for TN range from 0.2% to 2.1%, while for RoI, the errors 

lie between 0.0% and 2.0%. These relatively low error levels serve as evidence 

that the constructed model provides an accurate representation of the 

economic symbiosis between TN and RoI. As a result of this accurate portrayal, 

scenario simulations can be employed more effectively to capture the 

comprehensive impacts stemming from an economic shock event.  

5.4.4. Responding to Demand Change 

To estimate the total cost of the 2015 South India Flood, an unaffected demand 

for TN is incorporated into the DSIM model to simulate a business-as-usual 

(BAU) scenario. The direct damage of Rs. 8,500 crore is added to the reduced 

final demand of TN in November 2015, assuming that the flood had not 

occurred. A monthly growth rate of 0.6% is presumed, based on the discounted 

annual growth rate (Evaluation & Applied Research Department, 2020). 

Furthermore, an additional constraint is implemented to restrict the growth of 

TN's final demand under the hypothetical BAU scenario from surpassing its 

actual level. The primary objective of this approach is to recreate a scenario in 

which the economy functions normally, without the disruptions caused by 

unexpected shock events such as the flood.  

The economic outputs of both TN and RoI in time series are illustrated in Figure 

19, providing a direct comparison of the flood's impact on not only TN but also 

other parts of the country over an extended period. Error band widths are 

estimated based on the percentage error obtained in the previous section. The 

number on the horizontal axis means number of months from January 2015, 

e.g. 6 indicates June 2015. A noticeable difference is observed in TN's output 

after November 2015 when comparing the outputs under the BAU scenario to 

the actual economic output of the flooded scenario (as seen in the left plot of 

Figure 19). For TN, the actual total economic output nearly aligns with the 

simulated BAU scenario by April 2016, considering a 2.1% error level based on 

the sensitivity analysis in the previous section. The discrepancy between the 

two scenarios can be interpreted as the total direct and indirect costs generated 

by the flood. From November 2015 until April 2016, the total cost borne by TN 

gradually decreased from Rs. 11,500 crore per month to Rs. 1,400 crore per 

month, reflecting the typical characteristics of economic recovery following 

disastrous events. The cumulative economic output loss for TN during the five 

months after the flood amounts to Rs. 30,100 crores, which is remarkably 
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consistent with the Rs. 30,000 crore estimation from insurance firms 

immediately after November 2015 (Vencatesan, 2021). This demonstrates the 

model's effectiveness in capturing the overall economic impact of the flood. 

 

Figure 19 The actual monthly economic outputs of TN and RoI from April 2015 to April 

2016 vs simulated bau scenario using DSIM.  

Moreover, the flood's impact extends beyond local regions. The total economic 

output loss borne by RoI is estimated to be Rs. 16,400 crores in the month of 

November 2015 alone by this model, even larger in absolute terms when 

compared to the loss experienced by TN at the same time. If the accumulated 

loss from November 2015 to April 2016 is calculated, the total economic loss of 
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TN (Rs. 30,100 crore) surpasses the total economic loss of RoI (Rs. 18,300 

crore), considering simulated outcomes that are lower than actual outputs. It is 

worth noting that the simulated BAU economic level of RoI converges with the 

actual level after December 2015, suggesting that although a spillover impact 

exists for RoI, it lasts for a relatively shorter period than in TN. Additionally, 

when comparing the sizes of the economies, RoI has undoubtedly suffered less 

from the 2015 South India Flood. The average loss accounts for only about 1.0% 

of the total economic output of RoI. In contrast, the model estimates an average 

loss of 3.2% to the economic output of TN, indicating a significantly higher 

impact compared to RoI. Most importantly, if the estimated economic loss from 

RoI is also included in the damage estimation, the total economic loss of the 

2015 South India Flood would amount to Rs. 48,400 crores, about 1.6 times of 

the highest estimation (Rs. 30,000 crore) made by existing studies. This 

highlights the ability of the model built in this study to carry out comprehensive 

assessments that consider not only direct losses but also the wider ripple 

effects that disasters may have on interconnected economies. 
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Figure 20 A comparison of the BAU scenario economic outputs of TN and RoI 

simulated by DSIM and SIM model.  

In addition to simulation using the DSIM model, the BAU scenario is also 

simulated using the SIM model to compare the differences between the two 

models, as illustrated in Figure 20. The DSIM model can be easily converted to 

the SIM simulation by setting the investment coefficient 𝐵(𝑠) in equation ( 5.4 ) 

to zero. This implies that no portion of the final demand fulfilled is intended to 

increase economic output capacity in the future. For BAU scenarios simulated 

by DSIM and SIM models, larger differences in both TN and RoI are observed 

for the months preceding the flood event in November 2015. This is because 

the DSIM model has factored in preloaded investment in capacity expansion, 
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leading to a lagged increase in output that is clearly observed in TN before 

November 2015. For TN outputs occurring after November 2015, since both 

simulations are responding to an identically reconstructed increase in final 

demand, differences in simulated outputs are much smaller compared to earlier 

months. On average, the DSIM output level in TN is 0.14% higher than the SIM 

simulation, with a standard deviation of 0.25%. Similarly, outputs in RoI respond 

to the reconstructed demand in TN by preloading investment in capacity 

expansion into earlier months. A clear flattening trend can be observed when 

comparing the DSIM and SIM simulations for RoI outputs. On average, the 

DSIM output level in RoI is 0.18% higher than the SIM simulation, with a 

standard deviation of 0.34%. These comparisons highlight the ability of DSIM 

to consider the role of investment in capacity expansion when modelling 

economic interdependencies s. 

All numbers produced for Figure 18, Figure 19, and Figure 20 are included in 

Table S5 of the Appendix. 

5.5. Discussion 

In this chapter, the algorithm developed for DSIM is applied to real data from 

India in an effort to assess the total indirect economic cost of the 2015 South 

India Flood. It is discovered that the economic cost, inclusive of potential 

economic growth forgone, is significantly larger than any available estimations 

made to date. Additionally, rather than a short-term impact, the DSIM model 

simulates a prolonged and spilled-over economic effect on the nation's 

economy. The results demonstrate that the economic output of TN only catches 

up with the simulated output level in April 2016, five months after the flood 

occurred in November 2015. Moreover, the simulation conducted in this chapter 

uncovers the collateral impacts induced in RoI, which are as large as those in 

TN when the flood first hit in November 2015. The simulated results in DSIM 

tend to flatten over the time investigated, illustrating the difference in adaptation 

from capital stock investment and its consequences on output levels if the 

shock event was known. Compared to other flood footprint studies, this 

research expands the accounting scope from direct and indirect economic 

losses to lost economic output growth. This approach provides a more 

comprehensive modelling tool for quantifying the economic losses and delay 

impacts associated with disaster events, shedding light on the full extent of their 

consequences and informing more effective disaster management strategies. 

Despite the insights provided by the simulation algorithm in this study, it is 

important to acknowledge its limitations. As discussed in Okuyama (2004b), 

there is a distinction between anticipatory and responsive demands. All 

simulations conducted in this study assume responsive demands, implying that 

intermediate production only reacts to demands that have already occurred. In 
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real-world situations, this assumption may not always hold true, as production 

activity changes can occur prior to actual demand shifts due to market forecasts 

and speculation. For instance, instead of a shock event like natural disaster, 

producers may respond to a policy announcement of carbon tax and reduce the 

production of carbon emission intensive products before the policy is 

implemented. In this case, anticipatory demand would be a more appropriate 

simulation for the interactions of economic sectors. Furthermore, the outputs in 

this simulation are not differentiated by economic sectors, which assumes that 

all outputs are substitutable for one another. In reality, economic outputs are 

recorded according to sectors, and outputs from each sector are not easily 

substitutable. Integrating sectorial information is a necessary compromise due 

to data source and quality limitations, which may result in oversimplification 

within the modelling exercise. Despite these limitations, the study still provides 

valuable insights into the indirect economic costs of disasters and their spill-

over effects. Future research could address these limitations by incorporating 

anticipatory demands and sectorial differentiation into the model, leading to 

even more accurate and nuanced assessments of the economic impacts of 

disasters. 
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Chapter 6: Conclusions 

Ever since the first proposal of the IO model, an ample number of 

methodological innovations have been attempted to improve and tailor the IO 

model for various research objectives. Noting the insufficient effort in advancing 

the IO model towards time series analysis, this PhD thesis presents an 

innovation on the IO model that enable it for high-frequency time series analysis. 

In the innovated model, consumption and production activities are well 

formulated to incorporate delays and their accumulated impacts across the time 

domain. Complementary algorithms are also developed for the innovated 

model, so that instead of massive-scale economic surveys, alternative 

economic data with much higher time resolution can be applied as the 

observations to reconstruct an economic system that has its sectors 

dynamically interacting with each other in response to social demands. This 

research hence offers a new economic modelling tool to investigate the 

behaviours of an economic system over a shorter span and under a 

disequilibrium assumption.  

Across all civilizations, human beings have explored science fundamentally in 

two ways – either theoretical science or experimental science. In theoretical 

science, researchers seek to explain natural phenomena through mathematical 

and conceptual models rather than direct empirical observation. It involves the 

use of theoretical frameworks, mathematical models, and computational 

simulations to develop hypotheses and predict the behaviour of complex 

systems. Theoretical science is an essential part of scientific research and is 

crucial to understanding the fundamental laws of the universe. On the contrary, 

experimental science is a field of scientific research that involves conducting 

experiments and making direct observations to gain a better understanding of 

natural phenomena. It involves the design, execution, and analysis of 

experiments to test hypotheses and investigate the behaviour of systems under 

controlled conditions. Experimental science is critical to advancing our 

knowledge of the world and plays a significant role in the development of new 

technologies and applications. Theoretical science and experimental science 

often work in tandem to create a complete picture of the natural world. 

Nevertheless, there are barriers in both end for the study of economics. 

Theoretical economists often make simplification, such as the general 

equilibrium assumption that demands always match supply, since the economic 

system is a complex system that our knowledge is limited about. As discussed 

in the chapters before, such simplification assumptions may not hold true if the 

economic models established are to be expanded over the time domain. On the 

other hand, experimental economics involves conducting experiments to test 

economic theories and hypotheses by controlling settings to observe how 

people behave in economic scenarios and collect data to test economic 
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theories. For obvious reasons, conducting experiments on our economy may 

not be a good idea under most circumstance. It thus raises a dilemma for future 

economic research – economic system is too complex to be accurately 

described by current models, and there are limited ways to robustly test our 

models. 

This research potentially points to a new direction in the study of economic 

science. Rapid advancements in technology for information collection and 

processing have paved the way for a third approach to scientific exploration: 

computational science. Characterized by the development and deployment of 

machine learning applications, computational science is quickly becoming 

prevalent in various critical fields, impacting our day-to-day lives. From weather 

forecasting to mechanical designs, computational science has proven to be 

incredibly useful in providing effective solutions at a significantly reduced cost. 

Some scientists advocate for the inclusion of computational science as a third 

pillar in our scientific knowledge structure, as illustrated in Figure 21. The 

availability of massive datasets and computational power now supports 

scientific research by providing validations for theories and models, as well as 

enabling analyses that were previously impossible without emerging 

computational tools. This thesis research exemplifies the successful application 

of computational science in the field of economics, showcasing the potential of 

harnessing advanced technology to gain deeper insights into complex 

economic systems and inform decision-making processes. 

 

 

Figure 21 The structure of science knowledge.  
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6.1. Summary of Works  

This thesis addresses directly to the gap between economic modelling and 

computational techniques with big data. Methodological innovation is 

conducted on the IO model in this thesis to tackle with economic system 

analysis and simulation under a non-Walrasian equilibrium setting, that 

supplies and demands are not set to equate each other at every time step in 

the investigated economic system. Specifically, this thesis proposes an 

innovative algorithm to combine regression algorithms with the SIM model, a 

variant version of IO model that considers the chronological interlinkages 

between economic sectors. Based on high time-frequency economic data, the 

proposed algorithm can reveal the chronological symbiosis of economic system, 

thus make nowcasting for the impact of shock events on the entire economy. 

As described in the section below, the research objectives listed at the 

beginning of this thesis are met accordingly.  

6.1.1. Input-Output Model Application and Its Limitations 

In Chapter 2, the concept and history of IO model have been comprehensively 

revised. Based on the classic IO model, Chapter 2 further introduced the most 

successfully developed and widely applied MRIO model and EEIO model. To 

demonstrate the capability of the two variant of IO model, a case study on the 

inequal distribution of consumption-based CO2 emissions in China and 

changing CO2 emissions embodied in domestic trade has been conducted in 

Chapter 2. The result shows that from 2007 to 2017, the consumption-based 

CO2 emissions in China has been shifting from the more developed coastal 

region towards the less developed northwest inland region. Inner Mongolia is 

the only province with an increased CO2 emission intensity, while also remains 

as the largest net exporter of consumption-based CO2 emission from 2007 to 

2017. For developed provinces like Beijing, Shanghai, Tianjin, and Zhejiang, 

the net imports of consumption-based CO2 emissions are continuously 

decreasing, with the decreases counting 48 Mt, 100 Mt, 30 Mt, and 78 Mt 

respectively from 2007 to 2017. On the contrary, net export of consumption-

based CO2 from developing provinces like Hebei, Henan, Shanxi, and Guizhou 

also drastically decreased from 2007 to 2017, amounting 123 Mt, 103 Mt, 48 

Mt, and 46 Mt respectively. Nevertheless, as the largest net importer and 

exporter of consumption-based CO2 emission in 2017, Guangdong and Inner 

Mongolia (96 Mt imported and 146 Mt exported consumption-based CO2 

respectively) have not undergone much change in their traded consumption-

based CO2 emissions from 2007 to 2017 (differences count 17 Mt and 13 Mt 

respectively). This observation can be explained by the latency of provinces 

CO2 decoupling with economic development. 

The study further extends its analysis to CO2 emissions embodied in trade 
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between China and the world. It reveals that CO2 emissions are not only 

migrating to the less developed parts of China, but also the less developed 

countries in other regions of the world. In general, the CO2 emissions embodied 

in China’s net exports to the world decreased for all regions. However, 

developed region’s CO2 emissions embodied in its net imports show an 

increase from the world other than China from 2012 to 2017, while the net 

exports of embodied CO2 emissions from emerging economies also show an 

increase from 2012 to 2017. Hence, Chapter 2 brings up an alarming message 

to policy maker that other emerging economies may take over China’s role of 

pollution haven and produce the emission intensive products for the rest of the 

world. On the other hand, this study has also exposed the weakness of 

conventional IO model: the resources, be it labour, time, or finance, needed for 

IO table compilation is tremendous. IO model is thus better suited to analyse 

economic performance in the past. 

6.1.2. Theoretical Improvement for the Input-Output Model  

Given the weakness of IO model, Chapter 3 starts with an account for some of 

the most successful methodological innovation for the IO model. In the literature 

review section of Chapter 3, Structural Decomposition Analysis, Hypothetical 

Extraction Method, Hybrid IO Model, and IO-based Network Analysis have 

been introduced in detail in terms of their rationales, derivations, and 

applications. In response to the weakness exposed in the previous Chapter, 

Chapter 3 then particularly introduced the SIM model in more details as it 

specifically tackles incompetency of IO model in chronological analysis. 

Chapter 3 then identify the new direction for SIM model’s development to be 

the integration with computational tools and the availability of adequate data. 

The SIM model is reorganized into a linear matrix system and then solved with 

a regression algorithm to find the best fitted production coefficients from an 

ample number of observations for outputs and final consumptions.  

To verify the efficacy of the proposed algorithm, over 200 discrete time steps of 

total outputs are simulated based on a set of given levels of final demand and 

a chronological interindustry coefficient matrix. The regressive algorithm is then 

applied to obtain the coefficient matrix. Comparison between the coefficient 

matrix obtained and the actual matrix shows that the difference between the 

two quantities is minimal (10-6), so it can be safely concluded that the regressive 

algorithm is mathematically capable in solving the system simulated by SIM 

mode. Discussion is also provided in the end on the scenarios that the algorithm 

based on SIM can be used. 

6.1.3. Electricity Data in Economic Analysis 

To put the methodological advancement into real application, Chapter 4 
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investigated the economic symbiosis of Chongqing municipality of China using 

the algorithm developed in Chapter 3.  In order to fulfil the requirement on high 

time-resolution and sector specific data, the daily electricity consumption data 

of Chongqing for more than two consecutive years is obtained and reorganized 

to form a series of observations on the daily outputs and demands in different 

sectors. Since electricity consumption is a fair reflection of economic activities, 

this data set is used as a proxy for economic analysis and aggregated into eight 

sectors. The first 500 observations are used to obtain the chronological 

production coefficients using the innovated regression algorithm on SIM model 

in Chapter 3. Validation using the remaining data set shows that the 

interindustry relationships obtained can predict the economic performance 

pretty accurately if given a certain demand level, containing the error levels 

within 30%. Compared to other economic prediction studies, this exercise 

demonstrates a relatively low error level, hence concluding the real-life efficacy 

of the methodological development of this research.  

As a demonstration of application, three growth scenarios of demand in 

consumer goods are simulated to show the holistic and chronological impacts 

on all economic sectors in Chongqing 80 days into the future. In the scenario 

setting, the forecast of daily growth of final consumption of the consumer goods 

sector is varied from 0.41% to -0.40% for the surging and plunging scenarios, 

respectively. The trained model predicts a 3.5 GWh/day difference in the mean 

value of the total consumption of electricity in the consumer goods sector. In 

contrast, although the final consumption is kept unchanged in the surging and 

plunging scenarios, the heavy industry (18.8 GWh/day), manufacturing (6.8 

GWh/day), and EHGW (11.7 GWh/day) sectors interestingly show larger 

differences in the mean value of forecasted total electricity consumption than 

the consumer goods sector, probably due to the multiplier effect of demands 

and outputs across sectors. This Chapter thus effectively shows the 

applicability of the proposed algorithm in Chapter 3 in the analysis of real 

economic research question.  

6.1.4. Introducing Capital Change into Economic Modelling 

In Chapter 5, the effects of capital formation and deterioration on production 

changes across sectors are considered in the SIM model in a differential form. 

Essentially, an additional capital coefficient is introduced and linked to the 

changes of production level, so that the new model becomes a nonlinear 

system. By creating an improved algorithm, the new model can be solved in a 

similar manner as shown in Chapter 3. The new model is then applied to assess 

the indirect economic loss of the 2015 South India Flood. Using the 2015 

monthly industrial production index and manufacturing index of Indian regions 

and the 2015 Indian MRIO table, a number of observations on the output levels 

and final demand are simulated and used to solve for the chronological 
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production coefficients. Due to constraints on data availability, the MRIO table 

of India is aggregated into two region (Tamil Nadu Pradesh and Rest of India) 

and one single sector with time resolution set to one month, so that the solved 

model suggests the chronological economic interactions between Tamil Nadu 

and Rest of India. Comparing with the actual outputs from April 2015 to April 

2016 shows that the percentage errors ranged as 0.0%-2.1% respectively, 

suggesting the robustness of the model trained. 

Under a business-as-usual scenario that assumes the direct loss of the 

disastrous event is added back to the final demand of Tamil Nadu Pradesh, 

Chapter 5 analyses the indirect losses induced in not only Tamil Nadu but also 

the rest of India. In comparison to the available estimation of lost due to 2015 

South India Flood, this study estimates the direct and indirect costs induced 

across the whole India to be more than double. This result hence demonstrates 

a case that the innovated SIM model can be applied without more stringent data 

requirement.  

6.2. Methodological Innovations 

The most critical contribution of this study is its innovation in methodologies. 

Specifically, it proposes an effective way to incorporate data science with the 

classic IO model through a creative algorithm application. Along with other 

development on the IO model illustrated in Figure 22, the methodological 

innovation in this research advanced the SIM model and Dynamic IO model, 

thus enabled it to be used for high time-frequency big data analysis on the 

chronological interindustry linkages among regions and economic sectors. The 

implications are explained below. 
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Figure 22 A review on the development of the IO methods and their applications. 

Highlighted in red are the potential contributions of this thesis. 

• Providing a way of integration for data research tools and economic 

studies. In past research practices, data research tools that utilizes big 

data sets, such as machine learning approaches under heated attention 

recently, treats the system studies as a “black box” in return for higher 

prediction performance. Economic study, on the other hand, attempts to 

incorporate more and more economic theories and build a Grand Unified 

Theory, such as CGE modelling, for our economic system. The 

methodological contribution of this research blurs the distinct boundary 

of the two research directions by proposing a regressive algorithm for 

the SIM model, so that economic reasoning is provided for big data 
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research to analyse how an investigated economic system performs 

under high time frequency.  

• Enabling more dynamic scenario prediction. The current toolbox for 

economists in economy performance prediction is limited. Most of 

available economic modelling tools assumes a long-term general 

equilibrium condition, which is not always met in short term scenarios. 

On the other hand, short term future prediction involves the use of 

statistical models and machine learning algorithms to analyse large 

amounts of data and identify patterns and trends. The algorithm 

proposed in this research demonstrates a new economic modelling tool 

that can be utilized to, at an acceptable degree of accuracy, predict the 

short-term future performance of an economic system under demand 

shock events of a certain sector.  

• Alerting production to demand signal. The proposed method can reveal 

the delayed economic impacts across different sectors under an 

economic shock event in a selected sector. Hence, the understanding of 

the chronological impacts across the economic system can be used to 

build an alerting system for economic impact. For instance, if a known 

demand shock signal is detected in the economic system, a quick 

analysis can be formulated to quantitatively understand which and when 

another sector will be affected by the shock event. Policy maker can thus 

use the result to react with more precise counter actions.  

• Combining with available economic modelling tools. As shown in Figure 

22, this research is one of the many directions in the development of IO 

modelling. Same as in other research, the methodological development 

of this research can be pollinated with other modelling tools. For instance, 

the economic activities can be directly linked to environmental stresses 

to dynamically account for the delay in economic consequences. Other 

economic theories such as elasticities and utility functions can be 

modelled into the model in this research to further expand the research 

scope of this method, hence answering a wider range of economic 

research questions.  

• Applying to system modelling. The analogy of economic system to other 

systems is not uncommon. Thus, there are instances where modelling 

tools are shared between economic and other fields of research. The 

chronological model developed in this research may hence be applied in 

other research that features the functioning of a balanced system, the 

ecological system for instance.  

6.3. Future Potentials  

With the research conducted in this thesis laying the foundation for further 

investigations, it is important to consider future developments in the field of 
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economic system modelling. As proposed and demonstrated by this research, 

it is crucial to borrow methodological development in other sciences. As such, 

it is essential to identify areas where the research on economic system 

modelling can be expanded upon, as well as potential challenges and 

limitations that may arise.  

6.3.1. An Alternative Research Direction to General Equilibrium 

As briefly touched in the previous chapters of this thesis, general equilibrium 

and general disequilibrium are two different concepts in economic research that 

describe different states of an economy. The basis of the SIM model and 

algorithm developed in this research is the general disequilibrium assumption.  

General equilibrium refers to a state of the economy where all markets are 

simultaneously in balance, meaning that the supply of goods and services 

equals the demand for them, and all prices are at their equilibrium levels. In this 

state, there is no excess demand or supply in any market, and there is no 

incentive for market participants to change their behaviour. A classic example 

of the general equilibrium theory is the classic IO model. 

On the other hand, general disequilibrium refers to a state of the economy 

where one or more markets are out of balance, leading to excess supply or 

demand and price distortions. In this state, market participants have incentives 

to adjust their behaviour to restore equilibrium, leading to changes in prices and 

quantities in various markets. General disequilibrium is often used to analyse 

the dynamics of market adjustment and the implications of market frictions. The 

SIM model applied in this research can be deemed as a demonstration of 

general disequilibrium theory.  

In 20th century research of economic theories, neoclassical economists deeply 

believe in the general equilibrium, but consider Keynes’ disequilibrium 

adjustment a fundamental stray from the domain of economics (Foster, 2006). 

On the contrary, the general disequilibrium theory disagrees with many of the 

assumptions made by Walrasian equilibrium. It argues that the process of the 

economy adjusting itself towards an equilibrium should be the focus of 

economic study since that is most of the cases for the states of our economies 

(Grossman, 1971). Disappointedly, economists gradually lost their interest in 

the disequilibrium theory ever since its first proposal in the 1970s. In the most 

recent discussions of economic theorists, the study of “non-equilibrium 

economics” has been re-proposed by a few economists (Berger, 2009). It 

relates to the alternative field of economic research, such as complexity 

economics.  

The study of economic phenomena through the lens of complex systems theory 

is a new and burgeoning field known as complexity economics (Arthur, 2021). 
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It aims to comprehend the workings of economic systems, viewing them as 

intricate adaptive systems characterized by agents that engage in interaction 

and learning from one another. Macro-level economic phenomena are seen to 

arise from the intricate interactions of numerous agents at the micro-level. 

Complexity economics explores various intriguing topics such as network 

formation, the emergence of market structures, the dynamics of financial 

markets, and the evolution of economic institutions. To investigate these 

phenomena, researchers in this field employ a diverse array of mathematical 

and computational tools, enabling them to model, simulate, and scrutinize the 

properties of economic systems. Complexity economics research has a wide 

range of potential applications. It could contribute to the improvement of 

economic policies and the creation of innovative techniques for financial 

regulation. Additionally, it could provide valuable analysis on the influence of 

technological advancements on the economy. This field of study offers unique 

perspectives on the behaviour of economic systems and the difficulties faced 

in economic policy-making. A fundamental insight of complexity economics is 

the presence of non-linear feedback loops, path-dependence, and emergent 

properties that defy explanation within traditional economic theory. 

6.3.2. Similarity with Control Theory 

Interestingly, the study on the oscillation of a system with feedback and time 

delay is a well-studied topic in the control theory of engineering, including the 

causes of delay, the magnitude of delay, and the methods of compensation for 

delay. Control system researchers explore how delay affects different types of 

control systems, such as linear and nonlinear systems, and investigate various 

techniques to mitigate the negative effects of delay. Some of the applications 

of delayed feedback research include improving the stability and performance 

of communication networks, enhancing the control of mechanical systems, and 

optimizing the performance of industrial processes.  

In its applications, control theory uses mathematical models to describe the 

process of a system over time. By writing a state equation, it describes the 

system's internal behaviour as a function of its current state, inputs, and time. 

Furthermore, the state space representation diagram in the control theory 

includes vectors representing the system's state and input. It also utilizes a 

state transition matrix describing the system's dynamics, very similar to the 

production coefficient matrix in IO model and SIM model. In fact, the similarities 

and potential synergy between control theory and IO model have been 

identified in earlier discussion by Livesey (1971), which also emphasized the 

importance of time lag and fluctuations when integrating IO models with control 

theory concepts. However, limited development has been consolidated along 

this path.  
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In control theory studies, state space representation diagrams are widely used 

to provide a convenient and systematic way to analyse the behaviour of a 

system. They can be used to design controllers that regulate the system's 

behaviour and optimize its performance, and to simulate the system's 

behaviour under different conditions. To illustrate the overlap between control 

theory and IO modelling, a state space block representation diagram below 

(Figure 23) is constructed for equation ( 5.2 ) in Chapter 5.  

 

Figure 23 A state space diagram representation of the dynamic IO system described 

in equation ( 5.2 ) 

It is thus appropriate to conclude that there is great potential in interdisciplinary 

methodological innovations between IO modelling and control theory. In fact, 

the limitation of productivity cap mentioned in the previous section can be 

tackled with some techniques straight away. In control theory modelling, caps 

on the transfer process are typically modelled by adding saturation or limit 

functions to the transfer function of the system. Saturation functions limit the 

output of the system to a certain range or "cap," which is often specified by the 

modeller. For example, in a motor control system, the output torque may be 

limited to a certain maximum value to prevent the motor from overheating or 

causing damage. 

In recent economic research, the borrowing of control theory concepts and 

technics into economic modelling is no longer an unusual practice. Recent 

Nobel Economic laureate Lars Peter Hansen has demonstrated in his work that 

how robust control theory can be introduced to facilitate macroeconomic 

decision (Hansen and Sargent, 2016). Many more research has applied control 

theory in the study of financial market performance (Lo, 1988, Geanakoplos, 

1992). Hence, introducing control theory into IO modelling may bring about a 

potential breakthrough in macroeconomic research.  

6.3.3. Economics Research amid Machine Learning Fanaticism 

In the writing of this thesis, breakthroughs on artificial intelligence are being 
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made.  Other than the trending release of Generative Pretrained Transformer 

(GPT) that recently exhibits extraordinary ability in natural language processing, 

another key principle of artificial intelligence study is machine learning. Machine 

learning involves the training of models to learn from data and improve their 

predictive performance over time through recognition of data patterns. In that 

aspect, machine learning shares a handful similarity with economic modelling 

such as econometric studies as they 1) are both concerned with analysing data 

to understand the relationships between variables; 2) both make use of 

statistical methods and techniques to analyse data, including regression 

analysis, hypothesis testing, and model selection; 3) Both can be used to make 

predictions and forecast future trends based on historical data.  

However, machine learning and economic modelling are yet to be understood 

as the same thing. The focus of machine learning is making predictions for 

decisions based on so-called applied statistics. In contrast, economic modelling 

investigates the relationships and understand the impact of different variables 

based on economic theories. While machine learning is more focused on 

identifying patterns and relationships in the data, economic modelling emphasis 

more on the reasoning underlying the data. Besides, economic models often 

apply economic variables such as GDP, inflation, and interest rates, while 

statistical learning models can be applied to a wide range of fields, including 

electricity consumption data utilized in Chapter 4 of this thesis. 

Although the machine learning approach has gained much more attention due 

to its terrific performance in making predictions, some have reiterated the 

importance of reasoning in our understanding of the world. In the recent release 

of ChatGPT 4, scientists have raised the concern on the application of machine 

learning tools. Although violently upgrading training hardware settings can 

improve models’ performance, it simply overlooks the reasoning behind models 

and treats an investigated system as a “black box”. The relationships revealed 

by machine learning algorithms can be highly complex and impossible to 

interpret economically. Thus, the opacity of machine learning algorithms makes 

it difficult to evaluate the accuracy or validity of their outputs. Policymakers may 

also miss out the important information to understand how to adjust or refine 

economic policies based on the results. 

This research sets a new direction for the interdisciplinary research between 

the state-of-art machine learning tools and IO economic modelling. On the one 

hand, this research proposed an innovative path to apply commonly used 

machine learning big data (daily electricity consumption data by sectors) to the 

economic IO model for high-time frequency analysis and short future 

performance prediction through machine learning style regression algorithms. 

Such feature greatly improved the analysis capability and predictive 

performance of the model. On the other hand, economic reasoning is offered 
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to supplement the regression algorithm, so that compromise on the explanatory 

capability of the model is mitigated. Policy makers can thus infer more 

meaningful results from the regressed relationship and facilitate decision 

making.  

6.3.4. Compatibility of Economic Cybernetics 

Building on the discussion of this research's algorithmic contributions and its 

connections to control theory and machine learning, the term "economic 

cybernetics" has emerged as an apt descriptor for the expected outcomes of 

this integration. 

Economic cybernetics is the field of study that applies cybernetic principles and 

methods to analyse and manage economic systems. The term "cybernetics" 

refers to the study of communication and control in complex systems, based on 

the idea that systems can be modelled and analysed as feedback-controlled 

systems. Economic cybernetics aims to optimize economic systems by creating 

models and algorithms to analyse the behaviour of economic agents such as 

producers and consumers, as well as the dynamics of markets and financial 

systems. 

One of the key principles of economic cybernetics is feedback control (Lange, 

2014), which involves using information from the output of a system to adjust 

its inputs and achieve desired outcomes. This can include designing policies 

and interventions to stabilize markets, regulate financial systems, and improve 

economic performance. In this view, the research method of economic 

cybernetics overlaps with the methodological contribution of this thesis.  

Additionally, recent developments in economic cybernetics have focused on the 

application of advanced computational and machine learning techniques to 

economic modelling analysis and future economic trends predictions (Cope and 

Kalantzis, 2022). These developments have been driven by the availability of 

large amounts of high frequency economic activity data and the increasing 

computational power of modern computers, which have made it possible to 

develop more complex and sophisticated models of economic systems. To that 

end, the principal and objective of economic cybernetic study coincide with this 

thesis. 

6.3.4.1. The History of Economic Cybernetics 

In 1948, Norbert Wiener published "Cybernetics: Or Control and 

Communication in the Animal and the Machine" (Wiener, 1961) simultaneously 

in the United States and France, marking the establishment of the science of 

cybernetics. In the mid-1950s, Herbert A. Simon (Simon, 1997, Newell and 

Simon, 1956) was one of the prominent social scientists who studied the 
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optimal control problem of macroeconomics. Along with his colleagues in the 

United States, Simon contributed to the development of the study in computer 

science, economics analysis, and cognitive psychology in the attempt to 

improve the stability of economic policies. Simon's contributions helped to 

shape the understanding of economic cybernetics. 

Meanwhile, the Soviet Union and some Eastern European countries regarded 

cybernetics as pseudoscience and initially criticized it. However, by the late 

1950s, they shifted their stance and began to allocate resources to pioneer the 

study of economic cybernetics. Since the 1950s, Soviet scientist Nikolai Veduta 

had worked closely with scientists from the Central Economic Mathematical 

Institute (CEMI) to develop mathematical models for economic planning. His 

book “Economic Cybernetics” published in 1971 advocated for the widespread 

use of cybernetic methods in planning the production, management, and overall 

organization of the Soviet economy (West, 2020). In 1975, Soviet economist 

Leonid Kantorovich won the Nobel Prize in Economics for his proposal of linear 

programming, which contributed to the theory of optimal resource allocation in 

economic planning. With much support from Kantorovich, the economist-

mathematician Vasily Nemchinov played a key role in the development of the 

Soviet school of economic cybernetics. In 1958, he founded the first laboratory 

of economic-mathematical modelling in Moscow, which laid the groundwork for 

the establishment of the CEMI within the Academy of Sciences in 1963 (West, 

2020). 

Poland scientists have also contributed significantly to the early development 

of economic cybernetics. In 1955, the Polish Cybernetics Society was founded 

to act as one of the first cybernetics societies in Europe. The Polish Academy 

of Sciences established Poland's Central National Economic Plan System 

Model using applied control theory. In the early 1960s, they introduced the basic 

principles of economic cybernetics, publishing monographs and textbooks, and 

offering courses on the topic in higher financial and economic institutions. Oskar 

Lange, a Polish economist, was one of the pioneers of economic cybernetics. 

He believed that cybernetic methods could be used to design self-regulating 

control systems for a real-time planned economy and published his famous 

work Introduction to Economic Cybernetics (Lange, 2014). 

In addition, the study on economic cybernetics has received attention from the 

Romanian regime since it was first introduced into Romania in the 1960s. The 

Romanian government showed interest in embracing cybernetics to improve 

the country's centralized planning system. Some Romanian economists, 

academics, and engineers had devoted into the study of economic cybernetics. 

In 1965, Nicolae Ceausescu, then general secretary of the Romanian 

Communist Party, emphasized the need to seriously study control theory and 

other fields that Romania was relatively backward at the time. Ceausescu 
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wanted to modernize Romania's economy and reduce its dependence on the 

Soviet Union. In the 1970s, governments began to implement cybernetic 

methods in various sectors of the economy, including energy, transportation, 

and agriculture. The Central Commission for Computing and Informatics was 

created to oversee the development and application of computer technology 

and cybernetics. In 1979, Manea Mănescu, a renowned expert in economic 

control theory and former Prime Minister of Romania, published "Economic 

Cybernetics" (Mănescu, 1980). In the book, he defined economic control theory 

as "a management tool that enables the economy to achieve optimal, balanced, 

and proportional growth" and as "an extremely important branch of control 

theory." While there were some successes, the centralized and autocratic 

nature of the regime, coupled with economic challenges, ultimately limited the 

impact of cybernetics on Romania's economy. In the early 1970s, the socialist 

government of President Salvador Allende turned to economic cybernetics in 

order to nationalize industries, implement agrarian reforms, and redistribute 

wealth to address social inequalities. The most notable example of economic 

cybernetics in Chile during this period was Project Cybersyn (Samothrakis, 

2021), a ground-breaking and ambitious project developed under the guidance 

of British cybernetician Stafford Beer. The aim of the project was to create a 

real-time computer-based control system for the Chilean economy, allowing the 

government to make rapid decisions and adjustments to optimize production 

and distribution. Despite its innovative nature, Project Cybersyn faced several 

challenges, including limited resources, outdated technology, and a lack of 

complete data from all industries. The project was never fully implemented or 

operational, as it was interrupted by the military coup in September 1973. 

Following the coup d’état, Project Cybersyn was dismantled as Chile's 

economic policy was shifted towards a more market-oriented and neoliberal 

approach. Although the project was a groundbreaking and ambitious initiative, 

it was never fully realized due to the political instability and the eventual military 

coup that led to a dramatic shift in Chile's economic policy. 

The study of economic cybernetic has also raised interest in China too. For 

instance, Qian Xuesen was a prominent Chinese scientist who made significant 

contributions to the fields of rocket science, aerospace engineering, and 

systems engineering. He is widely regarded as the founding father of China's 

space program and is credited with helping to launch China's first satellite, 

among other achievements. At later stage of his research career, Qian 

developed his interest in systems engineering and system science, which has 

some overlap with economic cybernetics. In the 1970s and 1980s, Qian 

advocated for the application of systems engineering and system science 

principles to guide China's economic and technological development. Qian 

believed that systems engineering could provide a holistic and interdisciplinary 

approach to solving complex economic and technological problems. He 
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emphasized the importance of considering the interrelationships between 

different components of an economic system and promoted the idea of 

optimization and efficient resource allocation. One of Qian's notable 

contributions to the field of systems engineering is his development of the 

"systems methodology," which he introduced in a series of lectures in 1980. 

This methodology emphasizes the importance of understanding complex 

systems, such as economies, from a holistic perspective and provides a 

framework for analysing the relationships between the various components of 

a system. Although Qian Xuesen's work was not specifically focused on 

economic cybernetics, his advocacy for systems engineering and system 

science principles has influenced the way China has approached economic 

planning and development. His work has inspired generations of Chinese 

scientists and engineers to apply systems thinking to various fields, including 

economics (Qian et al., 1993). 

6.3.4.2. Future Development 

In recent years, economic cybernetics has undergone significant evolution due 

to advances in technology, data availability, and computational methods. The 

accessibility of vast amounts of data has empowered researchers to explore 

economic systems more thoroughly. Data analytics techniques are employed 

to identify patterns, trends, and relationships within large datasets. Agent-

based modelling has also progressed due to the theoretical development of 

economic research. This computational method simulates the interactions of 

autonomous agents, such as producers and suppliers, within an economic 

system. These models aid researchers in understanding the behaviour of 

complex economic systems by examining individual agent interactions and the 

emergence of macro-level patterns. Artificial intelligence and machine learning 

techniques have become increasingly vital in the field of economic cybernetics. 

They enable researchers to analyse complex economic systems, make 

predictions, and optimize decision-making processes. Applications of AI and 

machine learning in economics encompass forecasting, risk assessment, and 

algorithmic trading. Moreover, network theory has been applied to economic 

cybernetics to study the relationships between various economic agents and 

the structure of economic systems, investigating the connections between 

different agents. Complexity economics has also emerged as an 

interdisciplinary approach to studying economic cybernetics. It highlights the 

importance of understanding the complex, adaptive, and nonlinear nature of 

these systems by incorporating ideas and methods from other scientific fields. 

Complexity economics has contributed to the development of new tools and 

techniques for analysing economic systems, including agent-based models and 

network theory.  
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The research conducted in this thesis can be considered a contribution to the 

methodological toolbox of economic cybernetics, expanding the field's capacity 

to analyse and model complex economic systems. As thoroughly discussed in 

the previous section, the algorithm developed in this thesis, designed to 

complement and enhance the SIM model, shares numerous similarities with the 

most recent advancements in the realm of economic cybernetics. This cutting-

edge methodological approach brings forth a new dimension to the study of 

economic systems. The innovative method is capable of handling high time-

frequency economic activity big data, utilizing a machine learning-inspired 

regression algorithm to uncover the intricate chronological interactions among 

different industries within an economic system. By doing so, it allows for a 

deeper understanding of the relationships, dependencies, and influences 

between various industrial sectors, ultimately resulting in a more 

comprehensive and accurate representation of the entire system. Moreover, 

the implementation of this novel method has the potential to greatly improve the 

accuracy and predictive capabilities of economic cybernetics models. With the 

ability to process and analyse electricity consumption big data, the newly 

developed algorithm can effectively identify patterns within the complex web of 

economic interactions, thus leading to more informed policy decisions to 

develop more targeted and effective strategies for economic growth and 

sustainability. In addition to the direct benefits for the field of economic 

cybernetics, the innovative algorithm presented in this thesis may also have 

broader implications for other disciplines within the social sciences. By 

providing a robust, flexible, and adaptable methodological framework for 

analysing large-scale, high-frequency data, this research could potentially 

serve as a springboard for further advancements and interdisciplinary 

collaborations in areas such as econometrics, computational sociology, and 

data-driven public policy analysis. 

Specifically, the future potential of this research may include the following. 

Firstly, the algorithm's ability to process and analyse large volumes of high-

frequency economic data enables policymakers and central planners to make 

better-informed decisions, thus central planners can develop more targeted and 

effective strategies for resource allocation, production, and distribution. 

Secondly, the lack of flexibility and adaptability to changing circumstances has 

been a key challenge in macro-level economy planning. The algorithm 

developed in this research can be utilized to analyse high-frequency data and 

allow for real-time monitoring of economic indicators, thereby increasing the 

overall efficiency of the planned economy. Thirdly, the machine learning-

inspired regression algorithm can help forecast economic trends and potential 

disruptions with greater accuracy, allowing central planners to be better 

prepared for potential challenges and ensuring more resilient economy 

planning. Fourthly, this algorithm enables a chronological economic model that 
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has a deepened understanding of the relationships, dependencies, and 

influences between various industrial sectors. This information can be utilized 

to optimize resource allocation and facilitate better coordination between 

different industries. Lastly, the innovation in this study method can also help 

central planners to develop and evaluate different policy scenarios and their 

potential impacts on the economy. By simulating various short-term policy 

alternatives, central planners can identify the most effective strategies for 

achieving desired economic goals with less cost in policy development time. 

6.4. Limitations 

As an inaugural attempt on a hybridization of data science and IO modelling, 

this research is of course limited in various aspects. 

Firstly, the quality of data used in this study may bear limitations and adversely 

affect the performance of the model. In the exercise conducted in Chapter 4, 

electricity data is used for the proposed algorithm, assuming that they are good 

representation of economic activities by sectors. However, this assumption has 

not been extensively verified and supported by peer research. In addition, due 

to limited capability on signal processing skills, the electricity consumption data 

applied to the model has not been professional cleaned to filter out abnormity 

data points. Thus, the result obtained from this data set may be prone to 

systematic errors. In Chapter 5, economic indices are used to estimate 

economic activities, which is an oversimplification and a compromise have to 

be made due to unavailability of higher quality data. In future applications, a 

necessary step would be to validate the model with multiple data sources, such 

as monetary transection at high frequencies.  

The model itself is neither a perfect reflection of economic activities, so a series 

of new endeavour on disequilibrium economic modelling would be needed to 

further improve the model. In many other IO-based time series analysis of 

economic performances and disastrous shocks, many researchers have 

mentioned the need to consider bottleneck effect (Mendoza‐Tinoco et al., 2020, 

Zeng and Guan, 2020a). By bottleneck effect, researchers point out that 

economic production may not always be linearly scaled up by intermediate 

inputs, since any economic structure has a limit on its capacity. As production 

expands towards its limits, a cap, or diminishing economic to scale, will be 

applied and distorts the linear relationship in production. In future developments, 

researchers may need to factor in the capacity limit into the SIM model. 

Techniques from signal processing, such as sigmoid damage function, may be 

a possible solution to address this issue.  

Lastly, the application demonstrated in this research is limited by the hardware 

installation used. As mentioned in Chapter 4, the number of propagation layers 
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solvable with available computing resources is limited to 12, meaning that the 

model built in Chapter 4 assumes demand signals that occurred in day one only 

extends its impact on all the other sectors 12 days into the future. This 

assumption may not hold true, but there are insufficient computational 

resources for validation or disproval. Beyond 12 layers, the personal computer 

used for this thesis research ran out of memory. In the practice of more recent 

commercial machine learning applications, much more advanced super 

computational hardware with tens and hundreds petaflops/sec. Since such 

computational power is not reachable on a personal computer’s setting, 

exploration on the performance of this model in a more advanced hardware 

setting may further improve the capability of this model. 

In the popular book "Homo Deus: A Brief History of Tomorrow," Yuval Noah 

Harari explores the role of data and data science in shaping our future (Harari, 

2016). One key idea presented by Harari is the concept of Dataism, which 

posits that the world is increasingly being driven by the flow of data and the 

ability to process and analyse that data. The importance of data science and its 

ability to transform various aspects of our lives, including economic systems, 

cannot be understated. The contribution of this thesis can undoubtedly be 

linked to the points made by Harari in "Homo Deus" regarding the significance 

of data science. The development of algorithm in this thesis for handling high-

frequency economic activity data is a prime example of how data-driven 

approaches can potentially revolutionize our understanding and management 

of complex systems like economies, although it may be just a starting point of 

this field of research. It aligns with the principles of Dataism by enabling 

economic planners to make more informed, data-driven decisions in for an 

economy. As Harari argues in his book that the increasing reliance on data and 

algorithms could lead to a shift in power dynamics. Algorithms can potentially 

take on a more prominent role in decision-making processes. The 

advancements in economic cybernetics, as demonstrated by the algorithm 

developed in this thesis, showcase how data science can augment economic 

decision-making capabilities in the realm of production planning and resource 

allocation. Along the course set by this research, future endeavour could 

explore the scalability of this method to other chronological economic system 

models. As the IO model can be closely linked to the physical process of 

manufacturing, modellers may also consider the feasibility of using units other 

than monetary terms to denote interactions among economic sectors 

(Dietzenbacher et al., 2009), hence carry on perfecting the knowledge on our 

economy.  
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Appendices 
Table S1. The flow of carbon emissions embodied in the trade among China’s provinces.  

Province Region 2007 2012 2017 

CBA 
CO2 
emission 
intensity 
(kg/yuan) 

 Final 
Consum
ption 
(trillion 
Yuan)  

 CBA 
CO2 (Mt)  

 CO2 net 
export 
(Mt)  

CBA 
CO2 
emission 
intensity 
(kg/yuan) 

 Final 
Consum
ption 
(trillion 
Yuan)  

 CBA 
CO2 (Mt)  

 CO2 net 
export 
(Mt)  

CBA 
CO2 
emission 
intensity 
(kg/yuan) 

 Final 
Consum
ption 
(trillion 
Yuan)  

 CBA 
CO2 (Mt)  

 CO2 net 
export 
(Mt)  

Beijing Beijing–
Tianjin 

0.14 1011.10 140.72 -75.51 0.08 1684.52 134.34 -68.98 0.04 2468.53 95.41 -27.04 

Tianjin Beijing–
Tianjin 

0.23 443.49 102.74 -42.20 0.12 1423.99 167.38 -48.11 0.09 1626.10 142.55 -12.70 

Hebei North 0.24 991.39 236.22 128.18 0.17 2612.91 436.10 119.52 0.22 3068.88 681.08 4.90 

Shanxi Central 0.31 514.27 161.53 92.10 0.21 1357.85 279.07 101.85 0.31 1388.66 426.84 44.29 

Inner Mongolia Northwest 0.24 448.71 108.01 159.18 0.16 1713.50 280.64 191.08 0.33 1462.93 481.50 145.58 

Liaoning Northeast 0.24 866.60 204.97 54.98 0.13 2509.36 330.67 37.88 0.22 2110.59 458.58 2.94 

Jilin Northeast 0.30 596.29 179.26 -45.69 0.16 1397.17 221.11 -17.68 0.14 1499.25 211.47 -13.58 

Heilongjiang Northeast 0.26 596.98 153.55 -5.95 0.16 1527.04 248.12 -25.86 0.13 1749.95 230.49 28.63 

Shanghai Central 
Coast 

0.18 1090.13 192.79 -105.72 0.08 1721.43 140.91 -9.37 0.07 2628.55 182.71 -5.28 

Jiangsu Central 
Coast 

0.16 1885.69 294.81 -11.45 0.10 4383.65 443.10 -6.74 0.10 7199.65 754.06 -36.68 

Zhejiang Central 
Coast 

0.19 1628.96 305.64 -117.87 0.10 2989.16 296.03 -64.96 0.10 4133.27 403.58 -39.17 

Anhui Central 0.20 717.07 143.59 1.08 0.11 1740.69 194.48 47.53 0.15 2389.38 364.86 -9.33 

Fujian South Coast 0.15 758.38 113.51 -19.96 0.10 1570.33 150.98 1.01 0.08 2687.65 225.37 -0.85 

Jiangxi Central 0.26 578.59 148.80 -55.38 0.11 1276.76 139.02 -19.55 0.12 1769.35 218.44 -2.83 

Shandong North 0.22 2079.36 449.32 -4.32 0.15 4506.05 662.76 -59.63 0.13 6405.16 805.59 -31.26 

Henan Central 0.18 1303.70 229.89 79.65 0.12 3491.38 416.41 -4.41 0.11 4664.91 496.45 -23.11 

Hubei Central 0.20 882.58 172.17 14.74 0.14 2223.17 313.39 -24.44 0.09 3303.09 298.91 6.53 

Hunan Central 0.19 843.42 159.72 4.57 0.11 2256.86 250.48 -30.35 0.10 3122.67 296.83 -5.79 

Guangdong South Coast 0.13 2306.41 297.22 -78.55 0.08 4934.63 381.46 -99.79 0.08 7447.30 596.81 -95.61 

Guangxi Southwest 0.16 565.59 90.39 -3.57 0.11 1579.41 176.00 -22.47 0.12 1741.86 211.86 2.87 
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Hainan South Coast 0.13 124.90 16.18 -0.43 0.11 334.88 36.70 -8.32 0.07 493.05 32.76 7.93 

Chongqing Southwest 0.21 437.59 92.36 -16.21 0.14 1172.53 168.18 -36.59 0.10 1718.51 171.57 -23.16 

Sichuan Southwest 0.16 1019.53 167.69 -12.57 0.11 2412.50 264.17 -24.16 0.08 3288.96 275.74 10.26 

Guizhou Southwest 0.26 307.98 79.37 42.58 0.17 809.99 135.87 42.71 0.17 1452.80 241.59 -3.45 

Yunan Southwest 0.18 483.49 88.07 12.47 0.12 1477.14 178.75 -13.17 0.09 2203.69 191.49 -7.47 

Tibet Southwest - - - 
 

- - - 
 

0.03 194.38 6.10 -1.28 

Shaanxi Northwest 0.23 476.41 107.58 -1.90 0.14 1602.89 220.51 -30.05 0.12 2079.60 244.06 6.35 

Gansu Northwest 0.22 279.89 61.40 7.94 0.15 684.14 102.75 20.09 0.18 751.97 133.88 7.51 

Qinghai Northwest 0.28 90.70 25.15 -6.75 0.15 263.02 39.32 -4.43 0.15 342.95 51.42 -1.67 

Ningxia Northwest 0.35 118.85 41.63 9.98 0.27 261.38 70.95 44.42 0.28 569.53 162.22 11.03 

Xinjiang Northwest 0.27 347.30 94.27 -3.43 0.19 1001.14 190.17 12.97 0.21 1559.74 328.03 61.43 
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Table S2. The flow of carbon emissions embodied in the trade among major 

world regions. 

 

CO2 Net Export (Mt) to RoW to China to RoW to China to RoW to China

Europe -601          -384         -439         -209         -356         -167         

North America -301          -514         -221         -345         -429         -325         

East Asia 39              -154         -3              -93           22             -50           

China 1,707        -           1,424       -           1,013       -           

BRICS w/o China 599            -79           457           -79           513           -26           

Rest of Asia Pacific 168            -328         102           -426         108           -244         

Latin America -1               -81           -27           -107         3               -90           

Africa -91            -46           -145         -65           -189         -60           

Middle East 189            -121         277           -101         329           -50           

2007 2012 2017
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Table S3. An illustration of the aggregation for electricity sectors of Food, 

Chemical & Mining, and Consumer Goods.  
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1 Agriculture, forestry, animal 
husbandry and fisheries 

A000 1 0 0 0 0 0 0 0 

1 Agriculture 0100 1 0 0 0 0 0 0 0 

1 Forestry 0200 1 0 0 0 0 0 0 0 

1 Animal husbandry 0300 1 0 0 0 0 0 0 0 

1 Fishery 0400 1 0 0 0 0 0 0 0 

2 Agriculture, forestry, animal 
husbandry, fisheries and 
ancillary activities 

0500 1 0 0 0 0 0 0 0 

2 Among them: drainage irrigation 05A0 1 0 0 0 0 0 0 0 

1 Mining industry B000 0 1 0 0 0 0 0 0 

1 Coal mining and washing 
industry 

0600 0 1 0 0 0 0 0 0 

1 Soot and anthracite mining 0610 0 1 0 0 0 0 0 0 

1 Lignite mining wash 0620 0 1 0 0 0 0 0 0 

1 Other coal mining 0690 0 1 0 0 0 0 0 0 

1 Oil and gas extraction 0700 0 1 0 0 0 0 0 0 

1 Oil extraction 0710 0 1 0 0 0 0 0 0 

1 Natural gas extraction 0720 0 1 0 0 0 0 0 0 

2 Service activities related to oil 
and gas extraction 

0790 0 1 0 0 0 0 0 0 

1 Black metal mining industry 0800 0 1 0 0 0 0 0 0 

1 Iron ore mining 0810 0 1 0 0 0 0 0 0 

1 Manganese ore, chromium ore 
mining 

0820 0 1 0 0 0 0 0 0 

1 Other ferrous metal ore mining 0890 0 1 0 0 0 0 0 0 

1 Non-ferrous metal mining 
industry 

0900 0 1 0 0 0 0 0 0 

1 Common non-ferrous metal 
mining 

0910 0 1 0 0 0 0 0 0 

1 Precious metal mining 0920 0 1 0 0 0 0 0 0 

1 Rare earth metal ore mining 0930 0 1 0 0 0 0 0 0 

1 Non-metallic mining 1000 0 1 0 0 0 0 0 0 

1 Sandstone mining 1010 0 1 0 0 0 0 0 0 

1 Chemical mining 1020 0 1 0 0 0 0 0 0 

1 Salt mining 1030 0 1 0 0 0 0 0 0 

1 Asbestos and other non-metallic 
mining 

1090 0 1 0 0 0 0 0 0 

1 Other mining activities 1100 0 1 0 0 0 0 0 0 
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2 Service activities related to oil 
and gas extraction 

1110 0 1 0 0 0 0 0 0 

2 Coal mining and washing 
professional and auxiliary 
activities 

1120 0 1 0 0 0 0 0 0 

2 Other mining professional and 
ancillary activities 

1130 0 1 0 0 0 0 0 0 

1 Other mining industries 1190 0 1 0 0 0 0 0 0 

1 Manufacturing industry C000 0 0 0.
26

3 

0.
26

3 

0.
47

4 

0 0 0 

2 Agricultural and side food 
processing industry 

1300 0 0 1 0 0 0 0 0 

1 Grain milling 1310 0 0 1 0 0 0 0 0 

1 Feed processing 1320 0 0 1 0 0 0 0 0 

1 Vegetable oil processing 1330 0 0 1 0 0 0 0 0 

1 Sugar industry 1340 0 0 1 0 0 0 0 0 

1 Slaughter and meat processing 1350 0 0 1 0 0 0 0 0 

1 Processing of aquatic products 1360 0 0 1 0 0 0 0 0 

1 Vegetables, fungi, fruits and 
nuts are processed 

1370 0 0 1 0 0 0 0 0 

1 Other agricultural and side food 
processing 

1390 0 0 1 0 0 0 0 0 

2 Food, beverage and tobacco 
manufacturing 

13AA 0 0 1 0 0 0 0 0 

2 Food manufacturing 1400 0 0 1 0 0 0 0 0 

2 Baked goods are manufacturing 1410 0 0 1 0 0 0 0 0 

2 Candy, chocolate and honey 
manufacturing 

1420 0 0 1 0 0 0 0 0 

2 Convenient food manufacturing 1430 0 0 1 0 0 0 0 0 

2 Dairy products are 
manufacturing 

1440 0 0 1 0 0 0 0 0 

2 Canned food manufacturing 1450 0 0 1 0 0 0 0 0 

2 Condiments, fermented 
products manufacturing 

1460 0 0 1 0 0 0 0 0 

2 Other food manufacturing 1490 0 0 1 0 0 0 0 0 

2 Wine, beverage and refined tea 
manufacturing 

1500 0 0 1 0 0 0 0 0 

2 Alcohol manufacturing 1510 0 0 1 0 0 0 0 0 

2 The manufacture of wine 1520 0 0 1 0 0 0 0 0 

2 Beverage manufacturing 1530 0 0 1 0 0 0 0 0 

2 Refined tea processing 1540 0 0 1 0 0 0 0 0 

2 Tobacco products industry 1600 0 0 1 0 0 0 0 0 

2 The leaves are roasted again 1610 0 0 1 0 0 0 0 0 

2 Cigarettes are made 1620 0 0 1 0 0 0 0 0 

2 Other tobacco products 
manufacturing 

1690 0 0 1 0 0 0 0 0 

2 Among them: agricultural and 
side food processing industry 

16A0 0 0 1 0 0 0 0 0 

1 Textiles 1700 0 0 1 0 0 0 0 0 

1 Cotton textile and printing and 
dyeing finishing 

1710 0 0 1 0 0 0 0 0 

1 Wool textile and dyeing finishing 1720 0 0 1 0 0 0 0 0 
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1 Hemp textile and dyeing 
finishing 

1730 0 0 1 0 0 0 0 0 

1 Silk textile and printing and 
dyeing finishing 

1740 0 0 1 0 0 0 0 0 

2 Household textiles 
manufacturing 

1750 0 0 1 0 0 0 0 0 

1 Knitting or crochet weaving and 
the manufacture of its products 

1760 0 0 1 0 0 0 0 0 

1 Chemical fiber weaving and 
printing and dyeing finishing 

1770 0 0 1 0 0 0 0 0 

1 The industry is made of textiles 1780 0 0 1 0 0 0 0 0 

2 Textile and clothing, apparel 
industry 

1800 0 0 1 0 0 0 0 0 

2 Weaving clothing manufacturing 1810 0 0 1 0 0 0 0 0 

2 Textile fabric shoes 
manufacturing 

1820 0 0 1 0 0 0 0 0 

2 Hat manufacturing 1830 0 0 1 0 0 0 0 0 

2 Knitted or crocheted garments 
are manufacturing 

1840 0 0 1 0 0 0 0 0 

2 Clothing manufacturing 1850 0 0 1 0 0 0 0 0 

2 Clothing shoes and hats, leather 
down and its products industry 

1A00 0 0 1 0 0 0 0 0 

1 Leather, fur, feathers and their 
products and footwear 

1900 0 0 1 0 0 0 0 0 

1 Leather tanning processing 1910 0 0 1 0 0 0 0 0 

2 Leather products manufacturing 1920 0 0 1 0 0 0 0 0 

1 Fur tanning and product 
processing 

1930 0 0 1 0 0 0 0 0 

1 Feather velvet) processing and 
product manufacturing 

1940 0 0 1 0 0 0 0 0 

2 Shoe industry 1950 0 0 1 0 0 0 0 0 

1 Wood processing and wood, 
bamboo, rattan, brown, grass 
products industry 

2000 0 0 1 0 0 0 0 0 

1 Wood processing 2010 0 0 1 0 0 0 0 0 

1 Artificial plate manufacturing 2020 0 0 1 0 0 0 0 0 

1 Wood products manufacturing 2030 0 0 1 0 0 0 0 0 

1 Wood and wood components 
are processed for construction 

2031 0 0 1 0 0 0 0 0 

1 Wood containers manufacturing 2032 0 0 1 0 0 0 0 0 

1 Cork products and other wood 
products manufacturing 

2039 0 0 1 0 0 0 0 0 

2 Bamboo, rattan, brown, grass 
and other products 
manufacturing 

2040 0 0 1 0 0 0 0 0 

2 Furniture manufacturing 2100 0 0 1 0 0 0 0 0 

2 Wood furniture manufacturing 2110 0 0 1 0 0 0 0 0 

2 Bamboo, rattan furniture 
manufacturing 

2120 0 0 1 0 0 0 0 0 

2 Metal furniture manufacturing 2130 0 0 1 0 0 0 0 0 

2 Plastic furniture manufacturing 2140 0 0 1 0 0 0 0 0 

2 Other furniture manufacturing 2190 0 0 1 0 0 0 0 0 

2 Among them: light industry 21A0 0 0 1 0 0 0 0 0 
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2 Wood processing and products 
and furniture products industry 

2A00 0 0 1 0 0 0 0 0 

1 Paper and paper products 
industry 

2200 0 0 1 0 0 0 0 0 

1 Pulp manufacturing 2210 0 0 1 0 0 0 0 0 

1 Paper 2220 0 0 1 0 0 0 0 0 

1 Paper products manufacturing 2230 0 0 1 0 0 0 0 0 

2 Printing and recording media 
reproduction industry 

2300 0 0 1 0 0 0 0 0 

2 Printing 2310 0 0 1 0 0 0 0 0 

2 Binding and other printing 
service activities 

2320 0 0 1 0 0 0 0 0 

2 Copy of the recording medium 2330 0 0 1 0 0 0 0 0 

1 Culture, education, work and 
beauty, sports and 
entertainment supplies 
manufacturing 

2400 0 0 1 0 0 0 0 0 

1 The manufacture of cultural and 
educational office supplies 

2410 0 0 1 0 0 0 0 0 

2 Sporting goods manufacturing 2420 0 0 1 0 0 0 0 0 

2 Musical instruments are made 2430 0 0 1 0 0 0 0 0 

2 Toy manufacturing 2440 0 0 1 0 0 0 0 0 

1 Entertainment equipment and 
entertainment supplies 
manufacturing 

2450 0 0 1 0 0 0 0 0 

1 Arts and crafts and etiquette 
supplies manufacturing 

2460 0 0 1 0 0 0 0 0 

1 Oil, coal and other fuel 
processing industries 

2500 0 0 1 0 0 0 0 0 

… 
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Table S4. The delayed consumption of electricity from 1 kWh of electricity consumed 

on the first day. Simulated for Chongqing municipality using SIM model. 

kWh 
To 
Day 0 

To 
Day 1 

To 
Day 2 

To 
Day 3 

To 
Day 4 

To 
Day 5 

To 
Day 6 

To 
Day 7 

To 
Day 8 

From Day 
0 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

From Day 
1 0.000 0.833 0.415 0.229 0.093 0.132 0.083 0.054 0.022 

From Day 
2 0.000 0.000 0.469 0.182 0.095 0.049 0.051 0.044 0.048 

From Day 
3 0.000 0.000 0.000 0.451 0.192 0.103 0.052 0.054 0.043 

From Day 
4 0.000 0.000 0.000 0.000 0.440 0.182 0.094 0.044 0.051 

From Day 
5 0.000 0.000 0.000 0.000 0.000 0.388 0.168 0.091 0.045 

From Day 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.378 0.172 0.093 

From Day 
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.362 0.159 

From Day 
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.371 
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Table S5. The monthly economic outputs of Tamil Nadu (TN) and Rest of India (RoI) in crore (107) Rupees, both simulated for 

business as usual (bau) scenarios using DSIM and SIM models and the actual value.  

Monthly 
Economic 
Output/Rs. Crore 

DSIM bau TN DSIM bau RoI SIM bau TN SIM bau RoI SIM flooded 
TN 

SIM flooded 
RoI 

Actual TN Actual RoI 

Jan-2015        
14,209,221  

       
171,999,244  

       
14,154,123  

       
170,316,160  

       
14,154,123  

       
170,316,160  

       
17,563,742  

       
177,616,774  

Feb-2015        
17,529,393  

       
176,028,959  

       
17,472,691  

       
176,474,967  

       
17,472,691  

       
176,474,967  

       
17,385,377  

       
179,014,777  

Mar-2015        
18,509,554  

       
176,556,104  

       
18,500,300  

       
176,140,577  

       
18,500,300  

       
176,140,577  

       
18,361,140  

       
177,779,158  

Apr-2015        
17,978,437  

       
177,021,910  

       
17,952,947  

       
176,386,674  

       
17,952,947  

       
176,386,674  

       
17,679,155  

       
177,650,544  

Jun-2015        
18,283,926  

       
178,232,051  

       
18,195,782  

       
178,193,551  

       
18,195,782  

       
178,193,551  

       
18,161,791  

       
179,103,121  

Jul-2015        
18,699,667  

       
178,856,359  

       
18,654,846  

       
178,073,834  

       
18,654,846  

       
178,073,834  

       
18,812,300  

       
179,232,061  

Aug-2015        
18,629,035  

       
182,195,277  

       
18,601,676  

       
181,860,540  

       
18,601,676  

       
181,860,540  

       
18,843,776  

       
181,887,231  

Sept-2015        
18,822,154  

       
184,346,717  

       
18,704,153  

       
184,094,181  

       
18,704,153  

       
184,094,181  

       
18,896,237  

       
183,657,549  

Oct-2015        
18,788,039  

       
184,777,682  

       
18,874,075  

       
183,341,409  

       
18,874,075  

       
183,341,409  

       
19,064,110  

       
182,506,308  

Nov-2015        
18,952,857  

       
190,120,238  

       
18,921,171  

       
190,871,798  

       
18,921,171  

       
190,871,798  

       
19,053,618  

       
187,265,544  

Dec-2015        
19,446,897  

       
185,656,996  

       
19,465,343  

       
185,579,982  

       
18,336,986  

       
185,579,982  

       
18,298,188  

       
184,016,429  

Jan-2016        
19,460,336  

       
185,473,139  

       
19,452,288  

       
185,418,626  

       
18,715,623  

       
185,003,160  

       
18,864,760  

       
184,934,453  

Feb-2016        
19,552,136  

       
185,307,487  

       
19,543,286  

       
185,159,792  

       
19,050,271  

       
184,888,548  

       
19,064,110  

       
185,520,394  
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Mar-2016        
19,637,178  

       
185,559,821  

       
19,632,883  

       
185,504,487  

       
19,046,043  

       
185,322,957  

       
19,001,157  

       
185,013,218  

Apr-2016        
19,736,339  

       
185,876,529  

       
19,735,223  

       
185,874,948  

       
19,701,729  

       
185,658,871  

       
19,599,206  

       
186,557,018  

 

 


