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Abstract
Purpose  Artificial intelligence (AI) in the form of automated machine learning (AutoML) offers a new potential breakthrough 
to overcome the barrier of entry for non-technically trained physicians. A Clinical Decision Support System (CDSS) for 
screening purposes using AutoML could be beneficial to ease the clinical burden in the radiological workflow for paranasal 
sinus diseases.
Methods  The main target of this work was the usage of automated evaluation of model performance and the feasibility of 
the Vertex AI image classification model on the Google Cloud AutoML platform to be trained to automatically classify 
the presence or absence of sinonasal disease. The dataset is a consensus labelled Open Access Series of Imaging Studies 
(OASIS-3) MRI head dataset by three specialised head and neck consultant radiologists. A total of 1313 unique non-TSE 
T2w MRI head sessions were used from the OASIS-3 repository.
Results  The best-performing image classification model achieved a precision of 0.928. Demonstrating the feasibility and 
high performance of the Vertex AI image classification model to automatically detect the presence or absence of sinonasal 
disease on MRI.
Conclusion  AutoML allows for potential deployment to optimise diagnostic radiology workflows and lay the foundation 
for further AI research in radiology and otolaryngology. The usage of AutoML could serve as a formal requirement for a 
feasibility study.
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Introduction

Automated machine learning (AutoML) aims to make high-
quality machine learning accessible directly to knowledge 
domain experts (such as physicians) who lack the resources 
to implement a machine learning algorithm [1]. AutoML 
encapsulates the stages of a machine learning and data ana-
lytics pipeline after data collection (data cleaning, feature 
engineering, model discovery, model selection, hyperparam-
eter optimisation, model performance evaluation, and model 
deployment) into a “sealed box” [1].

Only 1% of UK trusts and health boards achieved their 
radiology reporting targets, with a growing backlog of 
12,000 cross-sectional studies and 200,000 plain radiographs 
since 2016 [2]. One way to ameliorate these pressures would 
be to automate elements of the radiologists’ work.
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Convolutional Neural networks (CNNs) are a special-
ised kind of neural network for processing data that has 
a grid-like topology [3]. A CNN consists of several lay-
ers: convolutional, pooling, and fully connected layers [3]. 
Each convolutional layer consists of a certain number of 
trainable parametric filters [3]. Each convolutional layer 
is typically followed by a pooling layer which reduces the 
feature space [3]. Finally, the data are passed to one or 
more fully connected layers and the predicted output is 
produced [3]. CNNs trained on CT-paranasal sinus data 
have shown good diagnostic accuracy in differentiat-
ing anterior ethmoidal artery position at the skull base 
or hanging on a bony mesentery, which has significant 
clinical implications in surgical planning, in minimising 
complications and in optimising patient outcomes [4]. A 
CNN has also been trained to detect pneumatisation of the 
middle turbinate on CT-paranasal sinuses with high accu-
racy, which supports further research in clinically relevant 
anatomical variations in otolaryngology [5]. A CNN for 
automated classification of paranasal sinus opacification 
on CT in a population with a range of sinonasal inflamma-
tions has automatically segmented the paranasal sinuses 
to produce scores that are concordant with Lund-MacKay 
visual scoring, and showed that CNN-based opacification 
scores correlate with asthma diagnoses and chronic rhi-
nosinusitis [6].

The rationale for this study is to show that Vertex AI [7], 
the AutoML platform recently launched by Google Cloud, 
is able to classify the absence or presence of paranasal 
sinus disease on the images from the Open Access Series of 
Imaging Studies (OASIS-3) [8] MRI radiological dataset. 
AutoML can make technical science of AI “clinician-ready” 
and support the development of a potential Clinical Decision 
Support System (CDSS) for screening purposes.

Methods

Setting

The Open Access Series of Imaging Studies (OASIS)-3 
is a retrospective compilation of anonymized neuroimag-
ing data for more than 1000 participants that were gathered 
through the Washington University in St Louis (WUSTL) 
Knight Alzheimer's Disease Research Centre (ADRC) over 
30 years [8]. Participants include 609 cognitively normal 
adults and 489 individuals at various stages of cognitive 
decline ranging from 42 to 95 years of age. All participants 
were assigned a new random identifier, and all dates were 
removed and normalised to reflect days from entry into 
study. The dataset contains 2168 MRI sessions and 1608 
positron emission tomography (PET) sessions.

Dataset

Purposive sampling was used to select 1383 unique 
T2-weighted (T2w), non-turbo spin echo (TSE) MRI head 
sessions. T2w MRI were selected as it displays paranasal 
sinus disease with remarkable clarity [9] and TSE MRI 
sessions were excluded due to the reduced number of inter-
leaved image slices that can be obtained [10]. The coronal 
anatomical imaging plane slice number 180 was selected 
on T2w MRI displaying both the ethmoid and maxillary 
sinuses bilaterally to enable maximum display of informa-
tion of the paranasal sinuses on a single two-dimensional 
(2D) slice of imaging.

Inclusion criteria:

1.	 T2-weighted, non-TSE MRI head sessions in the coronal 
anatomical plane in the OASIS-3 dataset displaying both 
the ethmoid and maxillary sinuses bilaterally.

Exclusion criteria:

1.	 Images with insufficient visual or radiological informa-
tion

2.	 Non-MRI data in the OASIS-3 dataset
3.	 T1-weighted MRI in the OASIS-3 dataset
4.	 TSE MRI sessions.

Any deviation from what is considered a radiologi-
cally normal paranasal sinus from baseline by our expert 
consultant radiologists is labelled as ‘disease’ and this 
includes abnormal mucosal thickening and potential sinon-
asal malignancy. AutoML in the form of the Vertex AI [7] 
image classification model was chosen to automate the 
training, validation, and testing stage of the AI algorithm, 
hyperparameter tuning, and the model performance evalu-
ation to reduce the barrier of entry for physicians.

Measurements

The study used a PC with Intel(R) Core (TM) i7-8750H 
Central Processing Unit (CPU) @ 2.20 GHz processor and 
16.0 GB RAM. The percentage of consensus between the 
three specialised head and neck consultant radiologists and 
the average time spent labelling is automatically measured 
by the Labelbox platform [11]. The consensus labelled 
data set is split into training, validation, and test groups in 
a ratio of 80:10:10, respectively. K-fold cross-validation 
is frequently used method for error estimation and testing 
of the success rate of models used for classification [12]. 
In this study, k-fold cross-validation with a k value of 10 



European Archives of Oto-Rhino-Laryngology	

was selected, as 10 has been shown to be an optimal value 
for error reduction [12].

Procedures and data pre‑processing

The OASIS-3 dataset was accessed after application via the 
website link https://​www.​oasis-​brains.​org/ and subsequently 
available for download through the XNAT Central publicly 
accessible medical imaging data repository on https://​centr​
al.​xnat.​org/ [13]. Image data in Neuroimaging Informatics 
Technology Initiative (NIfTI) format and scan type of MRI 
T2w were selected prior to ZIP download of the dataset. 
The schematic pipeline of the study design is depicted in 
Fig. 1. The feature selection of a single image 2D de-iden-
tified non-TSE T2w MRI in the coronal plane slice number 
180 of pixel dimensions of 176(width) × 256(height) was 
selected and uploaded to the Labelbox platform. Examples 
of the Labelbox interface visualised independently by the 
three specialised head and neck consultant radiologists is 
shown with dropdown selection of labels ‘Classify sinonasal 
disease as present (Yes)’ in Fig. 2 and ‘Classify sinonasal 
disease as present (No)’ in Fig. 3. Images with insufficient 
visual or radiological information were excluded during the 
pre-processing of the dataset and the consensus data label-
ling stage as per the exclusion criteria. Upon completion of 
the consensus data labelling process, all the labelled data 
were exported from the Labelbox platform to a comma-sep-
arated values (CSV) format. A label of either ‘Yes’ or ‘No’ 
is assigned when there is a baseline majority consensus of 

at least 2 out of 3, or full consensus of 3 out of 3 of the inde-
pendent specialised head and neck consultant radiologists 
data labellers. The total combined expert clinician labelling 
time was 4 h and 7 min.

Automated analysis of the consensus data labelling gen-
erates the time taken to complete the data labelling process 
for each of the three head and neck consultant radiologists 
and the consensus percentage. Vertex AI generates model 
evaluation measures, such as the accuracy, sensitivity, and 
precision as a measure of image classification model perfor-
mance [14]. The definition of basic performance metrics can 
be obtained from a standard textbook in machine learning 
(see [15, 16]).

Results

A total of 1383 unique non-TSE T2w MRI head sessions 
were downloaded from the OASIS-3 dataset with 2 sessions 
manually excluded due to insufficient visual or radiologi-
cal information, leaving 1381 single coronal sliced sessions 
which were uploaded onto Labelbox. A further 5 images 
were excluded during the consensus data labelling process 
due to insufficient visual or radiological information, leaving 
1376 consensus labelled data, consisting of 599 ‘No’ sinona-
sal disease labels and 777 ‘Yes’ sinonasal disease labels to 
be used in ratio of 80% (1100 labels) training, 10% (138 
labels) validation and 10% (138 labels) testing. Labelbox 
automatically generated the average consensus percentage 

Fig. 1   Schematic pipeline of study design

https://www.oasis-brains.org/
https://central.xnat.org/
https://central.xnat.org/


	 European Archives of Oto-Rhino-Laryngology

Fig. 2   Labelbox dropdown interface ‘Yes’ sinonasal disease label performed by expert clinician data labellers

Fig. 3   Labelbox dropdown interface ‘No’ sinonasal disease label performed by expert clinician data labellers
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between the three data labellers at 77%. The average time 
taken for a label to be assigned by a head and neck con-
sultant radiologists was 5 s. All ten iterations of the k-fold 
cross-validation consensus labelled datasets each containing 
1376 data labels were successfully trained on the Vertex 
AI image classification (Single-label) model on the Google 
Cloud Platform interface, as shown in Fig. 1.

The best-performing image classification model achieved 
a sensitivity of 91.3%, specificity (precision) 92.8%, and 
accuracy of 92%. The frequency of true positives, true nega-
tives, false positives, and false negatives are: TP 63, TN 64, 
FN 6, and FP 5. The Vertex AI image classification model 
trained on the consensus labelled open access OASIS-3 data-
set for paranasal sinus disease on MRI had an average train-
ing time of 158.5 min. The final trained model is available 
as an exported file upon request.

Discussion

In its current state and form, the Vertex AI MRI paranasal 
sinus disease image classification model could serve as a 
screening tool and clinical decision support system (CDSS) 
to streamline radiological workflows by filtering MRI scans 
detected as having paranasal sinus disease for a human radi-
ologist to review, whilst excluding MRI scans classified as 
not having paranasal sinus disease. This improvement in effi-
ciency could allow radiologists to focus their expertise on 
MRI scans that require their attention, thereby reducing their 
workload [17]. More judicious use of rare and expensive 
human machine learning expertise [18] will allow knowl-
edge domain experts such as otolaryngologists to focus more 
on identifying problems of high clinical value that are cur-
rently less amenable to AI solutions.

The ‘Deploy Model’ function available within the Google 
Cloud platform can allow the trained Vertex AI model to be 
deployed into low- and middle-income countries (LMIC) 
where access to radiology resources is restricted [19].

A high average consensus rate of 77% between the 
most specialised and experienced human data labellers has 
resulted in a robustly labelled, high-quality dataset that 
could be used as a radiological education tool in regions 
with limited access to the expertise of specialised head and 
neck consultant radiologists.

A clinical limitation of the study is that although an 
appropriately selected single coronal 2D slice of MRI can 
display significant views of the maxillary and ethmoidal 
sinuses, it does not encompass all the remaining axial and 
sagittal anatomical planes and less commonly affected 
frontal and sphenoid sinuses. A potential technical limi-
tation to generalizability at the deployment stage is the 
tolerance of variation in data structure and form of the 
real-world MRI scans presented as inputs to the trained 

algorithm, which will be different to the machine-readable 
format of the OASIS-3 dataset. A further clinical limita-
tion is that although potentially valuable in terms of radio-
logical screening and detection of severe paranasal sinus 
pathology, incidental inflammatory paranasal sinus disease 
on radiological imaging such as MRI may not correlate 
strongly with clinical severity of patient symptoms [20].

To ensure a more comprehensive review of the MRI 
scans, further studies in multi-slice [21] and multi-label 
[22] model training of the Vertex AI image classification 
model with more specific radiological data labels of para-
nasal sinus diseases, such as inverted papillomas, fungal 
sinusitis, and sinonasal malignancies incorporating the 
axial and sagittal anatomical planes will be the next con-
sideration. Further work in the form of saliency mapping 
will also be considered to identify areas of an input MRI 
scan used by AutoML to make its decisions [23].

Clinically, this study demonstrates the feasibility and 
high performance of the Vertex AI image classification 
model to detect the presence or absence of sinonasal dis-
ease on MRI, and this conclusion shows promise for poten-
tial deployment to optimise diagnostic radiology work-
flows. In addition, the machine-readable, standardised, 
de-identified MRI dataset with expert consensus labelled 
data on the presence or absence of sinonasal disease is of 
considerable value when shared with the AI and machine 
learning community.

A key technical feature of the approach used was the 
saving in time: developing, coding, and implementing a 
similar ML pipeline in a programming language, such as 
Python or R, would have required substantial effort and 
incurred considerable cost. AutoML could thus serve as 
an agile means of assessing whether a project is funda-
mentally feasible before a further allocation of resources 
follows.

The clinical quality of the outputs and the nature of the 
platform on which they were achieved serve to demon-
strate the feasibility of partitioning the healthcare machine 
learning task, such that it is the clinical domain experts 
who undertake the primary work with advice from ML 
experts and not vice versa. This lays a foundation for fur-
ther domain-expert-led AI research across healthcare.

Data availability  The datasets derives from a public repository 
OASIS-3 MRI radiological dataset [8].
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