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Abstract
We propose a flexible nonparametric Bayesian modelling framework for multivariate time 
series of count data based on tensor factorisations. Our models can be viewed as infinite 
state space Markov chains of known maximal order with non-linear serial dependence 
through the introduction of appropriate latent variables. Alternatively, our models can be 
viewed as Bayesian hierarchical models with conditionally independent Poisson distrib-
uted observations. Inference about the important lags and their complex interactions is 
achieved via MCMC. When the observed counts are large, we deal with the resulting com-
putational complexity of Bayesian inference via a two-step inferential strategy based on an 
initial analysis of a training set of the data. Our methodology is illustrated using simulation 
experiments and analysis of real-world data.

Keywords  Dirichlet process · MCMC · Poisson distribution · Tensor factorisation

1  Introduction

We consider a time-index sequence of multivariate random variables of size T, {yt}Tt=1 , tak-
ing values in {0, 1,…} . We build a non-parametric model by (i) assuming that the transi-
tion probability law of the sequence {yt} conditional on the filtration up to time t − 1 , �t−1 , 
is that of a Markov chain of maximal order q, (ii) allowing non-linear dependence of the 
values at the previous q time points and (iii) incorporating complex interactions between 
lags.

We propose a Bayesian model for multivariate time series of counts based on tensor fac-
torisations. Our development is inspired by Yang and Dunson (2016) and (Sarkar & Dunson, 
2016). Yang and Dunson (2016) introduced conditional tensor factorisation models that lead to 
parsimonious representations of transition probability vectors together with a simple, powerful 
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Bayesian hierarchical formulation based on latent allocation variables. This framework has 
been exploited in Sarkar and Dunson (2016) to build a nonparametric Bayesian model for cat-
egorical data together with an efficient MCMC inferential framework. We adopt the ideas and 
methods of these papers to build flexible models for time series of counts. The major differ-
ence that distinguishes our work to Sarkar and Dunson (2016) is that, unlike categorical data, 
we deal with time series that are infinite, rather than finite, state space Markov chains. The 
resulting computational complexity of our proposed model is grown as the observed counts 
become larger, so we propose a two-step inferential strategy in which an initial, training part of 
the time series data, is utilized to facilitate the inference and prediction of the rest of the data.

A common way to analyse univariate time series of counts is by assuming that the con-
ditional probability distribution of yt ∣ yt−1,… , yt−q can be expressed as a Poisson den-
sity with rate �t that depends either on previous counts yt−1,… , yt−q or previous intensities 
�t−1,… , �t−q . For example, one such popular model is the Poisson autoregressive model 
(without covariates) of order q, PAR(q):

where �0, �1,… , �q are unknown parameters; see (Cameron & Trivedi, 2001). Grunwald 
et al. (2000), Grunwald et al. (1997) and (Fokianos, 2011) discuss the modelling and prop-
erties of a PAR(1) process. Brandt and Williams (2001) generalise PAR(1) to a PAR(q) 
process and apply it to the modelling of presidential vetoes in the United States. Kuhn et al. 
(1994) adopt such processes to model the counts of child injury in Washington Heights. 
When we deal with M distinct time series of counts, the PAR(q) model is written, for 
m = 1,… ,M , as

see, for example, Liboschik et  al. (2015). In the above equation, q is fixed for each 
m = 1,… ,M . We will use this model formulation as a benchmark for comparison against 
our proposed methodology. Other approaches to modelling time series of counts include 
the integer-valued generalised autoregression conditional heteroscedastic models (Heinen, 
2003; Weiß 2014) and the integer-valued autoregression processes (Al-Osh & Alzaid, 
1987). We have not dealt with these models here because a proper Bayesian evaluation 
of their predictive performance requires a challenging Bayesian inference task which is 
beyond the scope of our work.

The rest of the paper is organised as follows. We specify our model in Section 2, followed by 
estimation and inference details in Section 3. Simulation experiments and applications are pro-
vided in Section 4 and 5, respectively.

(1)

yt ∼ Poisson(�t),

log(�t) = �0 +

q∑
i=1

�i log(yt−i + 1)

(2)

ym,t ∼ Poisson(�m,t),

log(�m,t) = �0 +

M∑
m=1

q∑
i=1

�i,m log(ym,t−i + 1);
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2 � Model specification

2.1 � The Bayesian tensor factorisation model

2.1.1 � Univariate time series

We build a probabilistic model by assuming that the transition probability law of yt condi-
tional on �t−1 is that of a Markov chain of maximal order q:

for t ∈ [q + 1, T] where the set containing all integers from i to j is denoted as [i, j]. This 
formulation includes the possibility that only a subset of the previous q values affects yt . 
We follow (Sarkar & Dunson, 2016) and introduce a series of latent variables as follows. 
First, let kj denote the maximal number of clusters that the values of yt−j can be separated 
into for predicting yt . To demonstrate the use of kj we present a simple example. Assume 
that yt depends only on yt−1 and the relationship in which the observed values of yt−1 affect 
the density of yt is based on the following stochastic rule: if yt−1 > 1 then yt ∼ Poisson(1) 
and if yt−1 ≤ 1 then yt ∼ Poisson(2) . Then k1 = 2 since the values of yt−1 are separated into 
two clusters that determine the distribution of yt . Note that if kj = 1 the value of yt−j does 
not affect the density of yt . The collection of all these latent variables K ∶= {kj}j∈[1,q] deter-
mines how past values of the time series affect the distribution of yt.

We also define a collection of time-dependent latent allocation random vari-
ables Zt ∶= {zj,t}j∈[1,q] where zj,t specifies which of the kj clusters of yt−j affects yt . We 
will write Zt = H meaning that all latent variables in Zt equal to another collection of 
latent variables H ∶= {hj}j∈[1,q] that do not depend on t. Finally, denote the collection 
� ∶= {hj ∈ [1, kj], j ∈ [1, q]} that depends on K. The connection among Zt , H and � is that 
for any t ∈ [q + 1, T] , Zt is sampled with value H ∈ H.

We are now in a position to define our model. Let �Zt be the Poisson rate for generating 
yt given the random variable Zt . The conditional transition probability law (3) can be writ-
ten as a Bayesian hierarchical model, for j ∈ [1, q] , H ∈ � and t ∈ [q + 1, T] , as

Expressions (4) and (5) imply that

with constraints �H ≥ 0 for any H ∈ � and 
∑kj

hj=1
�
(j)

hj
(yt−j) = 1 for each combination of 

(j, yt−j) . Multinomial([1, k],� ) is a multinomial distribution selecting a value from [1,  k] 
with a probability vector � . The formulation (6) is referred to as a conditional tensor fac-
torisation with the Poisson density PD(yt;�H ) being the core tensor; see (Harshman, 1970; 
Harshman & Lundy, 1994; Tucker, 1966; De Lathauwer et al., 2000) for a description of 
tensor factorisations. It can also be interpreted as a Poisson mixture model with ∏

j∈[1,q] �
(j)

hj
(yt−j) being the mixture weights that depend on previous values of yt.

(3)p(yt ∣ �t−1) = p(yt ∣ {yt−j}j∈[1,q]),

(4)yt ∣ Zt = H ∼ Poisson(�H),

(5)zj,t ∣ yt−j ∼ Multinomial
(
[1, kj],

(
�
(j)

1
(yt−j),… ,�

(j)

kj
(yt−j)

))
.

(6)p(yt ∣ {yt−j}j∈[1,q]) =
∑
H∈�

PD(yt;�H)
∏
j∈[1,q]

�
(j)

hj
(yt−j).
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A more parsimonious representation for our tensor factorisation model is obtained by 
adopting a Dirichlet process for Poisson rates �H . Independently, for each H ∈ � , we use 
the stick-breaking construction introduced by Sethuraman (1994) in which

where �(.) is a Dirac delta function and independently, for l ∈ [1,∞),

where �∗
l
 represents a label-clustered Poisson rate. By letting �∗

Zt
 denote the label of the 

cluster that Zt belongs to at time t ∈ [q + 1, T] , we complete the model formulation as

2.1.2 � Multivariate time series

The model of the previous section can be readily extended to deal with multivariate 
responses {Yt}Tt=1 , where Yt = (y1,t,… , yM,t)

⊤ taking values in ℕ0 . The idea is similar to the 
way the univariate PAR model (1) is generalised to its multivariate counterpart (2). We 
assume that the transition probability for any � ∈ [1,M] and t ∈ [q + 1, T] is

The idea is that each univariate time series may depend on all or some of the q previous 
values of all, or some, univariate time series. Model (9) assumes that conditional on past 
q values of all time series before time t, the M univariate random variables at time t are 
independent. The formulation requires M different latent variables for each dimension but, 
other than that, its specific details have no essential difference from those in the univariate 
case.

2.1.3 � Two‑step inference for large counts

Imagine that based on observed data {yt}Tt=1 , one has to recursively forecast future observa-
tions yT+1, yT+2,… . Clearly, the observed values of {yt}Tt=1 determine the form of our mod-
els in Sections 2.1.1 and 2.1.2 and as a result of this construction we may face the unfortu-
nate situation in which a count that has been unobserved up to time T appears in the future 
observations. This problem can be solved by re-estimating the model but in cases where 
this is not desirable, we propose the following solution. We separate {yt}Tt=1 into two seg-
ments of size T1 and T2 , representing the size of pre-training dataset and training dataset, 
respectively, so {yt}t∈[1,T1] and {yt}t∈[T1+1,T1+T2] are the corresponding observations in these 
sets. We aim to use the pre-training dataset to cluster all the counts in time series and the 
training dataset to model the time series with labelled counts.

(7)�H ∼

∞∑
l=1

�∗
l
�(�∗

l
),

�∗
l
= Vl

l−1∏
s=1

(1 − Vs), Vl ∼ Beta(1, �0), �∗
l
∼ Gamma(a, b)

(8)

p(�∗
H
= l) = �∗

l
, independently for each H ∈ �,

(�H ∣ �∗
H
= l) = �∗

l
,

(�∗
Zt
∣ Zt = H) = �

∗
H
,

(yt ∣ �
∗
Zt
= l) ∼ Poisson(�∗

l
).

(9)p(y�,t ∣ �t−1) = p(y�,t ∣ {ym,t−j}m∈[1,M],j∈[1,q]).
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We first define a collection of latent variables {w1∶c−1,�1∶c, c} that models the pre-train-
ing data {yt}t∈[1,T1] as

for any t ∈ [1, T1] , 0 < wi < 1 , 
∑c

i=1
wi = 1 , �i ≥ 0 . Thus, (10) assumes that any yt in the 

pre-training dataset is distributed as a finite mixture of Poisson distributions with c com-
ponents, weights wi and intensities �i . The usual latent structure for such mixture models 
assumes indicator variables dt representing the estimated label of the mixture component 
that yt belongs to, so p(dt = i) = wi for all i ∈ [1, c].

We exploit this finite mixture clustering of the pre-training dataset to build our model 
for the training dataset. We define another collection of latent variables as Dt = {dj,t}j∈[1,q] 
and by setting dj,t = dt−j for all j ∈ [1, q] and t ∈ [T1 + 1 + q, T1 + T2] . We then build a 
probabilistic model for the training dataset by assuming that the transition probability law 
of the sequence {yt}t∈[T1+1+q,T1+T2] conditional on �t−1 is that of a probabilistic model of this 
target sequence conditional on Dt . That is, we have

The conditional transition probability law (11) can then be written as a Bayesian hierarchi-
cal model, for j ∈ [1, q] and t ∈ [T1 + 1 + q, T1 + T2] , as

(12) and (13) immediately imply that

with constraints �H ≥ 0 for any H ∈ � and 
∑kj

hj=1
�
(j)

hj
(dj,t) = 1 for each combination of 

(j, dj,t) . It is clear that (14) is equivalent to (12) and (13). From (14) the expectation of yt 
conditional on Dt is

The rest of the model which utilises the stick-breaking process for �H is similar to the one 
used in Sect. 2.1.1.

2.1.4 � Priors

We assign independent priors on �(j)(dj,t) as

with �j = 0.1 . Also, we follow (Sarkar & Dunson, 2016) and set priors

(10)p(yt ∣ w1∶c−1,�1∶c, c) =

c∑
i=1

wiPD(yt;�i)

(11)p(yt ∣ �1∶t−1) = p(yt ∣ Dt).

(12)yt ∣ Zt = H ∼ Poisson(�H),

(13)zj,t ∣ dj,t ∼ Multinomial
(
[1, kj],

{
�
(j)

1
(dj,t),… ,�

(j)

kj
(dj,t)

})
.

(14)p(yt ∣ Dt) =
∑
H∈�

PD(yt;�H)
∏
j∈[1,q]

�
(j)

hj
(dj,t).

(15)�(yt ∣ Dt) =
∑
H∈�

�H

∏
j∈[1,q]

�
(j)

hj
(dj,t).

�(j)(dj,t) = {�
(j)

1
(dj,t),… ,�

(j)

kj
(dj,t)} ∼ Dirichlet(�j,… , �j),
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where j ∈ [1, q] , � ∈ [1, c] . Notice that � controls p(kj = �) and the number of impor-
tant lags for the proposed conditional tensor factorisation; for all our experiments 
throughout this paper, we set � = 0.5 . Following (Viallefont et  al., 2002), we place for 
the Gamma density of �∗

l
 parameters a as the mid-range of yt in the training dataset 

a =
1

2
[max({yt}t∈[T1+1+q,T1+T2]) −min({yt}t∈[T1+1+q,T1+T2])] and b = 1 . We set �0 = 1 for the 

Beta prior to Vl . Finally, we truncate the series (7), by assuming

and we set L = 100.

3 � Estimation and inference

The joint density of the general model of Section  2.2.3 can be expressed as 
p(y,Z,�∗,D, �∗,�∗,�K) , where D = {Dt}t∈[T1+1,T1+T2] and K = {kj}j∈[1,q] . The Poisson 
mixture model in the pre-training set is estimated with the MCMC algorithm of Marin 
et al. (2005). For any t > T1 we then estimate dt = argi maxPD(yt,�i) , i ∈ [1, c] . Our BTF 
model has a finite number of mixture components with an unknown number of compo-
nents due to the randomness of the random variable matrix K. We follow (Yang & Dunson, 
2016) and estimate K separately through a stochastic search variable selection (George & 
McCulloch, 1997) based on approximated marginal likelihood. As (Yang & Dunson, 2016) 
point out, such an approach is helpful since it fixes the numbers of inclusions of the tensor 
and the sampling process of K can indicate whether a predictor is important. The rest of the 
inference proceeds by sampling all other random variables conditional on K and D through 
MCMC.

3.1 � MCMC for finite Poisson mixtures

We follow the procedure in Marin et al. (2005). {yt}t∈ℤ[1,T1 ]
 is a mixture of c univariate Pois-

son distributions with density 
∑c

i=1
wiPD(yt;�i) , {wi}i∈ℤ[1,c]

 are weights with 
∑c

i=1
wi = 1 

and {�i}i∈ℤ[1,c]
 are the corresponding Poisson rates. By setting the priors as 

�i ∼ Gamma(1, 1) , {wi}i∈ℤ[1,c]
∼ Dirichlet(1,… , 1), the corresponding Gibbs sampler is as 

follows: (i) Generate the label of yt , �t , for t ∈ ℤ[1,T1]
 , i ∈ ℤ[1,c] as 

p(�t = i) ∝ wi

(
�i

)yt exp (−�i

)
 and set ni =

∑
t∈ℤ[1,T1 ]

1�t=i
 and �i =

∑
t∈ℤ[1,T1 ]

1�t=i
yt (ii) Gen-

erate {wi}i∈ℤ[1,c]
∼ Dirichlet(1 + n1,… , 1 + nc) and (iii) for i ∈ ℤ[1,c] , generate 

�i ∼ Gamma(1 + �i, 1 + ni).

p(kj = �) ∝ exp(−�j�),

�H ∼

L∑
l=1

�∗
l
�(�∗

l
),
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3.2 � Important lags selection

Important lags are inferred by the variable K = {kj}j∈ℤ[1,q]
 . The basic calculations are as fol-

lows. Following (Sarkar & Dunson, 2016), the posterior of K = {kj}j∈ℤ[1,q]
 can be sampled 

as

with kj = max
(
{zj,t}t∈ℤ[T1+1+q,T1+T2 ]

)
,… , c and nj,� =

∑
t∈ℤ[T1+1+q,T1+T2 ]

1{dj,t = �.} The levels 
of dj,t are partitioned into kj clusters {Cj,r ∶ r = 1,… , kj} with each cluster Cj,r assumed to 
correspond to its own latent class hj = r . With independent Dirichlet priors on the mixture 
kernels �H ∼ Gamma(a, b) marginalised out, the likelihood of our targeted response 
{yt}t∈�∗

2
 conditional on the cluster configuration C = {Cj,r ∶ j ∈ ℤ[1,q], r ∈ ℤ[1,kj]

} is given 
by

where � = 1{d1,t ∈ C1,h1
,… , dq,t ∈ Cq,hq

} . Then the MCMC steps for j ∈ ℤ[1,q] are: (i) If 
1 ≤ kj ≤ c , we propose to either increase kj to (kj + 1) or decrease kj to (kj − 1) . (ii) If an 
increasing move is proposed, we randomly split a cluster of dj,t into two clusters. We accept 
this move with an acceptance rate based on the approximated marginal likelihood. (iii) If a 
decrease move is proposed, we randomly merge two clusters of dj,t into a single cluster. We 
accept this move with an acceptance rate based on the approximated marginal likelihood. If 
K∗ and C∗ are the updated model index and cluster, �(⋅;⋅) is the Metropolis-Hastings accept-
ance rate, L(⋅) is the likelihood function and q(⋅ → ⋅) is the proposal function, we obtain

p(kj|…) ∝ exp(−�jkj)

c∏
�=1

Γ(kj�j)

Γ(kj�j + nj,�)

p({yt}t∈ℤ[T1+1+q,T1+T2 ]
∣ C) =

�
H∈�

∫
∞

0

f ({yt}t∈ℤ[T1+1+q,T1+T2 ]
∣ �H)p(�H ∣ C)d�H

=
�
H∈�

∫
∞

0

⎛⎜⎜⎝
�

t∈ℤ[T1+1+q,T1+T2 ]

(yt�)!

⎞⎟⎟⎠

−1

exp

⎛⎜⎜⎝
−(

�
t∈ℤ[T1+1+q,T1+T2 ]

�)�H

⎞⎟⎟⎠
⋅

�

∑
t∈ℤ[T1+1+q,T1+T2 ]

yt�

H

1

(1∕b)aΓ(a)
�a−1
H

exp(−�Hb)d�H

=
�
H∈�

1

(1∕b)aΓ(a)

⎛⎜⎜⎝
�

t∈ℤ[T1+1+q,T1+T2 ]

(yt�)!

⎞⎟⎟⎠

−1

Γ

⎛⎜⎜⎝
a +

�
t∈ℤ[T1+1+q,T1+T2 ]

yt�

⎞⎟⎟⎠
⋅

⎛
⎜⎜⎝

�
t∈ℤ[T1+1+q,T1+T2 ]

� + b

⎞
⎟⎟⎠

−(a+
∑

t∈ℤ[T1+1+q,T1+T2 ]
yt�)

,

�(K,C;K∗,C∗) =
L({yt}t∈ℤ[T1+1+q,T1+T2 ]

,K∗,C∗)q(K∗,C∗
→ K,C)

L({yt}t∈ℤ[T1+1+q,T1+T2 ]
,K,C)q(K,C → K∗,C∗)

.
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3.3 � Full conditional densities

For given D and K, denote by � a generic variable that collects the variables that are not 
explicitly mentioned, including y. Then the corresponding Gibbs sampling steps are

•	 Sample �
∗
H

 for each H ∈ � from p(�∗
H
= l ∣ � ) ∝ �∗

l
(�∗

l
)n

∗
H exp

(
−nH�

∗
l

)
 where 

n∗
H
=
∑

t∈ℤ[T1+1+q,T1+T2 ]
1{Zt = H}yt and nH =

∑
t∈ℤ[T1+1+q,T1+T2 ]

1{Zt = H}.

•	 Sample Vl for l ∈ ℤ[1,L] from Vl ∣ 𝜁 ∼ Beta
�
1 + �

∗
l
, 𝛼0 +

∑
l�>l �

∗
l�

�
 where 

�
∗
l
=
∑

H∈� 1{�∗
H
= l} , and update �∗

l
 accordingly.

•	 Sample each �∗
l
 with l ∈ � from �∗

l
∣ � ∼ Gamma

(
a + N∗

H
(l), b + NH(l)

)
, where 

N∗
H
(l) =

∑
H∈� 1{�∗

H
= l}n∗

H
 and NH(l) =

∑
H∈� 1{�∗

H
= l}nH .

•	 For j ∈ ℤ[1,q] and � ∈ ℤ[1,c] , sample 

 where nj,�(hj) =
∑

t∈ℤ[T1+1+q,T1+T2 ]
1{zj,t = hj, dj,t = �}.

•	 Sample zj,t for j ∈ ℤ[1,q] and t ∈ ℤ[T1+1+q,T1+T2]
 from 

 where H…∕j=h is equal to H at all position except the j-th position taking the value h.

4 � Simulation experiments

We tested our methodology with simulated data from designed experiments against the 
Poisson autoregressive model (1) through the log predictive score calculated in an out-of-
sample (test) dataset � of size T̃  . For each model the log predictive score is estimated by

where p̂(i)(yt) denotes the one-step ahead estimated transition probability of observing yt∈� 
calculated using the parameter values at the i-th iteration of MCMC with total N iterations. 
It measures the predictive accuracy of the model by assessing the quality of the uncertainty 
quantification. A model predicts better when the log predictive score is smaller; see, for 
example, Czado et al. (2009). For each designed scenario, we generated 10 datasets with 
5, 000 data points and out-of-sample predictive performance for all models was tested by 
using either the first 4, 000 or 4, 500 data points as training datasets and calculating the log 
predictive scores approximated via the MCMC output at the rest 1, 000 or 500 test data 
points respectively. The resulting mean log predictive score that is reported in Tables 1, 
2, 3 is the average log predictive score across the 10 generated datasets. The pre-training 
dataset for the BTF model has been chosen to be the first 3, 000 points. All MCMC runs 
were based on the following burn-in and posterior samples respectively: 2, 000 and 5, 000 
for fitting the Poisson mixtures on the pre-training dataset; 1, 000 and 2, 000 for selecting 
the important lags and their corresponding number of inclusions; and 2, 000 and 5, 000 for 
sampling the rest of the parameters. Bayesian inference for Poisson autoregressive model 

{
�
(j)

1
(�),… ,�

(j)

kj
(�)

}
|� ∼ Dirichlet{�j + nj,�(1),… , �j + nj,�(kj)}

p(zj,t = h|zj�,t = hj� , j
� ≠ j, � ) ∝ �

(j)

h
(dj,t)

(
�∗
�
∗
H…∕j=h

)yt

exp

(
−�∗

Z∗
H…∕j=h

)
,

−
∑

t∈�

∑N

i=1
log p̂(i)(yt)

T̃N
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Table 1   Mean log predictive scores (with standard deviations in brackets) for Bayesian Poisson autoregres-
sive models and our Bayesian tensor factorisations model (BTF) based on 10 Poisson autoregression gener-
ated data sets for each one of 6 Scenarios

AIC and BIC columns indicate that the best model has been chosen with the corresponding criterion. Mod-
els with the best performance are highlighted in bold

Scenarios Data sizes Bayesian Poisson autoregres-
sion

BTF

AIC BIC

(A) :  �0 = 1, �1 = 0.5 4000 : 1000 2.436(0.024) 2.436(0.024) 2.443(0.022)
4500 : 500 2.441(0.031) 2.441(0.031) 2.450(0.030)

(B) :  �0 = 1, �7 = 0.5 4000 : 1000 2.450(0.019) 2.449(0.019) 2.458(0.022)
4500 : 500 2.454(0.028) 2.452(0.031) 2.463(0.030)

(C) :  �0 = 1, �29 = 0.7 4000 : 1000 3.126(0.018) 3.126(0.018) 3.108(0.014)

4500 : 500 3.123(0.024) 3.123(0.024) 3.106(0.021)

(D) :  �0 = 1, �1 = −0.5, �7 = 0.5 4000 : 1000 1.870(0.016) 1.870(0.016) 1.882(0.024)
4500 : 500 1.876(0.020) 1.876(0.020) 1.885(0.017)

(E) :  �0 = 1, �19 = −0.5, �29 = 0.5 4000 : 1000 1.873(0.015) 1.873(0.015) 1.857(0.017)

4500 : 500 1.869(0.018) 1.869(0.018) 1.852(0.020)

(F) :  �0 = 1, �1 = −0.5, �7 = −0.5, �19 = 0.5 4000 : 1000 1.683(0.013) 1.683(0.013) 1.631(0.009)

4500 : 500 1.689(0.017) 1.689(0.017) 1.635(0.012)

Table 2   Mean log predictive scores (with standard deviations in brackets) for Bayesian Poisson autoregres-
sive models and our Bayesian tensor factorisations model (BTF) based on 10 nonlinear generated data sets 
for each one of 6 Scenarios

AIC and BIC columns indicate that the best model has been chosen with the corresponding criterion. Mod-
els with the best performance are highlighted in bold

Scenarios Data sizes Bayesian Poisson autoregression BTF

AIC BIC

(A) :  �+ = 30 , �− = 50 4000 : 1000 3.860(0.032) 3.860(0.032) 3.956(0.251)
Important lag: yt−1 4500 : 500 3.869(0.029) 3.869(0.029) 3.982(0.181)
(B) :  �+ = 30 , �− = 50 4000 : 1000 3.892(0.056) 3.890(0.055) 3.691(0.155)

Important lag: yt−7 4500 : 500 3.897(0.064) 3.897(0.064) 3.724(0.173)

(C) :  �+ = 20 , �− = 100 4000 : 1000 3.615(0.207) 3.615(0.207) 3.437(0.078)

Important lags: yt−3, yt−7 4500 : 500 3.665(0.225) 3.668(0.222) 3.448(0.113)

(D) :  �+ = 20 , �− = 100 4000 : 1000 3.857(0.172) 3.858(0.172) 3.489(0.088)

Important lags: yt−7, yt−9 4500 : 500 3.822(0.192) 3.820(0.187) 3.470(0.102)

(E) :  �+ = 20 , �− = 100 4000 : 1000 3.426(0.030) 3.426(0.030) 3.380(0.057)

Important lags: yt−3, yt−7, yt−9 4500 : 500 3.440(0.023) 3.441(0.024) 3.396(0.089)

(F) :  �+ = 20 , �− = 100 4000 : 1000 5.338(0.092) 5.338(0.092) 3.772(0.130)

Important lags: yt−7, yt−8, yt−9 4500 : 500 5.270(0.120) 5.270(0.120) 3.692(0.164)
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was obtained by ’rjags’ (Plummer et al., 2016) package based on 5,000 burn-in and 10,000 
MCMC samples respectively. We first chose the order q of the model by choosing among 
all models with maximum order up to q + 2 using the AIC and BIC criteria. We set the pri-
ors for parameters as �0 ∼ N(0, 10−6) and �i ∼ N(0, 10−4) for any i ∈ [1, q].

Table  1 presents the results of out-of-sample comparative predictive ability based on 
six generated Poisson autoregressive models based on (1). Notice that when the order q is 
high and there are only a few true coefficients, as in cases C, E and F, the maximal order 
Markov structure of the BTF model achieves a comparative, satisfactory predictive perfor-
mance. Given that the data generating process is based on Poisson autoregressive models 
these results are very promising.

Next, we generated data in which past values affect current random variables in a non-
linear fashion as follows. There are � important lag(s) {yt−i1 ,… , yt−i

�
} and, for given �+ , 

�− , if 
∑�

j=1
yt−ij ≥ ��+ , then yt ∼ Poisson(�+) ; else yt ∼ Poisson(�−) . We designed 6 sce-

narios and the results are shown in Table 2. Our proposed modelling formulation outper-
forms the Bayesian Poisson autoregressive model in all but one scenario.

Finally, we replicated the last exercise by testing the models in a more challenging 
data generation mechanism in which the response is multivariate. We designed 6 different 

Table 3   Mean log predictive scores (with standard deviations in brackets) for Bayesian Poisson autoregres-
sive models and our Bayesian tensor factorisations model (BTF) based on 10 nonlinear generated data sets 
for each one of 6 Scenarios

AIC and BIC columns indicate that the best model has been chosen with the corresponding criterion. Mod-
els with the best performance are highlighted in bold

Scenarios and non-zero coefficients Data sizes Bayesian Poisson autore-
gression

BTF

AIC BIC

(A) :  M = 2 ; �− = 20 , �+ = 10; 4000 : 1000 3.225(0.029) 3.225(0.029) 3.013(0.037)

Non-zero coefficients for y1,t : y1,t−1 , y2,t−1;
No non-zero coefficient for y2,t 4500 : 500 3.243(0.057) 3.243(0.057) 3.110(0.033)

(B) :  M = 2 ; �− = 20 , �+ = 10; 4000 : 1000 2.993(0.030) 2.993(0.030) 2.705(0.033)

Non-zero coefficients for y1,t : y1,t−3 , y2,t−5;
No non-zero coefficient for y2,t 4500 : 500 3.002(0.058) 3.003(0.058) 2.711(0.040)

(C) :  M = 2 ; �− = 20 , �+ = 10; 4000 : 1000 3.488(0.047) 3.487(0.47) 2.877(0.021)

Non-zero coefficient for y1,t : y2,t−1;
Non-zero coefficient for y2,t : y1,t−2 4500 : 500 3.452(0.059) 3.452(0.059) 2.843(0.024)

(D) :  M = 2 ; �− = 20 , �+ = 10; 4000 : 1000 3.207(0.039) 3.206(0.039) 2.855(0.026)

Non-zero coefficients for y1,t : y1,t−3 , y2,t−4;
Non-zero coefficients for y2,t : y1,t−1 , y2,t−3 , y2,t−5 4500 : 500 3.159(0.044) 3.159(0.044) 2.797(0.029)

(E) :  M = 3 ; �− = 20 , �+ = 10; 4000 : 1000 3.632(0.052) 3.632(0.052) 2.903(0.033)

Non-zero coefficient for y1,t : y2,t−1;
Non-zero coefficient for y2,t : y3,t−2; 4500 : 500 3.622(0.044) 3.622(0.044) 2.772(0.030)

Non-zero coefficient for y3,t : y1,t−3
(F) :  M = 3 ; �− = 60 , �+ = 20; 4000 : 1000 6.117(0.149) 6.117(0.149) 3.508(0.227)

Non-zero coefficients for y1,t : y1,t−3, y2,t−4, y3,t−1;
Non-zero coefficients for y2,t : y1,t−1, y2,t−2, y3,t−5; 4500 : 500 6.306(0.202) 6.306(0.202) 3.574(0.173)

Non-zero coefficients for y3,t : y1,t−3, y2,t−2, y3,t−5



Machine Learning	

1 3

scenarios by generating an M-dimensional time series {ym,t}m∈[1,M] and assuming that we 
are interested in predicting y1,t . For t ≤ 10 , we generated ym,t from Pois(�− ) for each m; for 
t > 10 , if 

∑�

i=1
ymi,t−ji

≥ �− we generate y1,t ∼ Poisson(�+) , else y1,t ∼ Poisson(�−) . We fit-
ted an M-dimensional multivariate Poisson autoregressive model of order q that predicts 
y
�,t with covariates {ym,t−1}m∈M,m≠� as

where �
�,0, ��,i and �

�,m are unknown parameters. Table 3 shows that for all 6 Scenarios, the 
Bayesian tensor factorisation model achieves impressively better predictive performance 
than the Bayesian Poisson autoregressive model.

(16)

y
�,t ∼ Poisson(�

�,t),

log(�
�,t) = �

�,0 +

q∑
i=1

�
�,i log(y�,t−i + 1) +

∑
m≠�

�
�,mym,t−1

Fig. 1   Trace plot of 514 time-series data points counting flu cases in Norway, Aargau as well as Bern in 
Switzerland and five regions in eastern Spain including Andalusia, Castilla-La Mancha, Illes Balears, 
Region de Murcia and Valencian Community counted by each week from 09-Oct-2005 to 09-Aug-2015
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The times needed to run the MCMC algorithms for Bayesian Poisson autoregressive 
and BTF models are comparable. For 1000 iterations we needed, on average, 20 s for the 
BTF model implemented with our matlab code and 25 s for the Bayesian Poisson autore-
gressive models implemented with rjags.

5 � Applications

5.1 � Univariate flu data

We compared our Bayesian tensor factorisation model to Bayesian Poisson autoregressive 
model with two datasets from Google Flu Trends that refer to 514 Norway, Switzerland 
and Castilla-La Mancha weekly flu counts in Spain, see Fig. 1. We chose the maximum 
lag q to be 10 for all models we applied to the data. We examined the sensitivity to the size 
of the pre-training data by considering three scenarios. We used 103(20%), 154(30%) and 
206(40%) pre-training sizes and compared their predictive ability against the best models 
for Bayesian Poisson autoregression formulations based on AIC and BIC criteria. The last 
103 and 52 data points were chosen for out-of-sample test comparison for each dataset. To 
demonstrate how our methodology works, we will present MCMC results for the Norway 
dataset based on 154 training points; results for both datasets and for all training sizes are 
given at the end of the Section.

The pre-training results are illustrated in Fig. 2. There are barely significant differences 
among 6 of the 10 clusters in the left panel so we fix the number of clusters to be 5, see 

Fig. 2   Fitting of a mixture of Poisson distributions. The dataset used is the pre-training data from flu cases 
in Norway counted by each week from 09-Oct-2005 to 09-Aug-2015. Panels a and b indicate that the out-
come for a total number of clusters c are 10 and 5 respectively. The top panels illustrate the Poisson rates of 
their corresponding label of clusters, whilst the bottom panels show their corresponding log weights
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Fig. 2. Figure 3 shows some MCMC results for the rest of our Bayesian tensor factorisation 
model. With 411 training data points, Panels (a),(b) and (c) provide strong evidence that 
there are two important predictors, 6 possible combinations of (h1, ..., hq) and 6 unique 
�h1,…,hq

 . Similarly, when the length of the training dataset is 462 panels (d),(e) and (f) indi-
cate that there is evidence for only one important predictor, the total number of possible 
combinations of (h1, ..., hq) is either 3 or 4, and that there are 3 unique �h1,…,hq

.
Model selection results for the Poisson autoregression models are illustrated in Fig. 4. 

MCMC was based on 5,000 burn-in and 10,000 runs by using ’rjags’, see (Plummer et al., 
2016). For the resulting parameter estimates see Table 4.

Table  5 indicates that in all pre-training size scenarios BTF outperform, in terms of 
predictive ability expressed with log predictive scores, Bayesian Poisson autoregression 
models. There is clearly a trade-off between good mixture estimation and adequate training 
size that is expressed in small and large pre-training sizes respectively. In our small empiri-
cal study it seems that there is evidence for some robustness in the inference procedure 
when the pre-training size is small, since 103 points outperform 206 points with the 154 
points being the best performing pre-training size. The predictive means and 95% credible 
intervals of BTF and of the PAR(5) model that had one of the best predictive performances 
based on 103 test data are depicted in Fig. 5.

The average run times for the MCMC algorithms for BTF and the Bayesian Poisson 
autoregression models are comparable. For the former, 1000 iterations take approximately 

Fig. 3   MCMC frequency results. In all panels, the x-axis represents the number and the y-axis does the rel-
ative frequency.Top three panels: 411 training data points; bottom three panels: 462 training data points. a, 
d: The relative frequency distributions for the number of important predictor(s). b, e: The relative frequency 
distributions of 

∏q

j=1
kj , or the total number of possible combinations of (h1,… , hq) . c, f: The relative fre-

quency distributions of the number of unique �h1,…,hq
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20 s with our code written in matlab, whereas the latter takes approximately 25 s for 1000 
iterations in the R package ‘rjags’.

5.2 � Multivariate flu data

We revisit the flu data of the previous subsection by jointly modelling flu cases in (i) the 
adjacent Swiss cantons of Bern and Aargau and (ii) in five neighbouring regions in south-
eastern Spain, namelyAndalusia, Castilla-La Mancha, Illes Balears, Region de Murcia and 
Valencian Community. The data are depicted in Fig. 1 and consist of 514 weekly counts 
from 09-Oct-2005 to 09-Aug-2015.

We chose the maximum lag q to be ten for all multivariate BTF models we applied to 
the data. The sizes of training against the testing dataset are 411 : 103 and 462 : 52 respec-
tively. Our BTF considered the first 154 data points as the pre-training dataset.

Fig. 4   AIC and BIC scores given by PAR(q) models with q labelled in the x-axis for flu cases in Norway 
counted by each week from 09-Oct-2005 to 09-Aug-2015. a: The AIC scores for the scenario with 411 
training data points and 103 testing data points; b: The BIC scores for the scenario with 411 training data 
points and 103 testing data points; c: The AIC scores for the scenario with 462 training data points and 52 
testing data points; d: The BIC scores for the scenario with 462 training data points and 52 testing data 
points
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Figures 6, 7, 8, 9 illustrate how lags were selected in each real data application. Note 
that a lag is considered to be important, and thus is selected, when its corresponding rela-
tive frequency distribution is higher than 0.5.

The predictive ability of the models compared to the Bayesian Poisson autoregres-
sion models are given in Tables  6 and 7. In the Swiss cantons it seems that the BTF 
model underperforms when Aargau flu cases are predicted from past flu cases of Aargu 
and Bern, whereas it outperforms when we predict Bern cases based on past data from 
Aargau and Bern. An informal justification of this behaviour is that from the data it 
seems that the two series have very high positive contempoaneous and lag-one correla-
tions so naturally the model (16) that captures very well these linear dependencies out-
performs our model. Such situations are expected when a general non-parametric model 
is compared to a linear model with the corresponding data generating mechanism to be 
primarily linear-based.

Table 4   Means of coefficients 
(with standard deviations in 
brackets) based on 5,000 burn-in 
and 10,000 MCMC runs

Two scenarios with different sizes of training against testing data are 
shown in each columns with their corresponding selected models indi-
cated

Sizes 411 : 103 462 : 52
Model selected PAR(10) PAR(9)

Coefficient
�0 0.252(0.035) 0.225(0.033)
�1 1.472(0.016) 1.547(0.023)
�2 −0.395(0.019) −0.634(0.038)
�3 −0.172(0.027) −0.048(0.029)
�4 −0.005(0.022) 0.071(0.021)
�5 −0.006(0.028) 0.103(0.021)
�6 0.050(0.023) −0.204(0.017)
�7 −0.111(0.028) 0.018(0.021)
�8 0.168(0.029) 0.196(0.018)
�9 0.111(0.029) −0.105(0.014)
�10 −0.179(0.025)

Table 5   Log predictive scores for Bayesian Poisson autoregression models and our Bayesian tensor factori-
sations model (BTF) for flu counts datasets in Norway and Castilla-La Mancha, Spain

The BTF model has performed with 103, 154 and 206 pre-training data points (PTDPs). AIC and BIC col-
umns indicate that the best model has been chosen (in brackets) with the corresponding criterion. Training 
and testing data sizes appear in the second column. Models with the best performance are highlighted in 
bold

Country/region Data sizes Poisson autoregression BTF

AIC BIC 103 PTDPs 154 PTDPss 206 PTDPs

Norway 411 : 103 7.560(10) 7.560(10) 6.054 5.846 6.440
462 : 52 7.805(9) 7.805(9) 6.110 6.079 6.289

Castilla-La Mancha, Spain 411 : 103 12.295(10) 12.607(5) 5.667 5.416 6.760
462 : 52 15.073(9) 15.073(9) 5.858 5.664 6.268
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Fig. 5   Out of sample predictive means and 95% highest credible regions (HCRs) of Bayesian tensor fac-
torisations (BTF) and Poisson autoregressive models (PAR) compared against the Castilla-La Mancha data. 
The sizes of training and testing data are 411 and 103 respectively

Fig. 6   Lag selection for the Norway (left pair) and the Castilla-La Mancha (right pair) flu datasets. Each 
pair of figures represents (i) the inclusion proportions (y-axis) of different lags (x-axis) for the scenario with 
411 training and 103 testing data points and (ii) the inclusion proportions (y-axis) of different lags (x-axis) 
for the scenario with 462 training data points and 52 testing data points

Fig. 7   Important lag selection for the Swiss flu dataset. Y-axis represents the inclusion proportions of dif-
ferent lags in x-axis
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Table 7 presents the five-dimensional example of Spanish regions in which the counts 
of each region are predicted from past counts of all five regions. Here, in eight out of ten 
cases BTF outperforms the Poisson autoregression model and in particular the log-predic-
tive scores are dramatically lower in all cases with smaller training (462) and higher test 
(103) sizes. This is not surprising since our model is capable of capturing the complicated 
five-dimensional dependencies created in these Spanish regions.

Fig. 8   Important lag selection for the south-eastern Spain flu dataset. Y-axis represents the inclusion pro-
portions of different lags in x-axis for the scenario with 411 training data points and 103 testing data points. 
A: Andalusia; CLM: Castilla-La Mancha; IB: Illes Balears; RM: Region de Murcia; VC: Valencian Com-
munity
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Fig. 9   Important lag selection for the south-eastern Spain flu dataset. Y-axis represents the inclusion pro-
portions of different lags in x-axis for the scenario with 462 training data points and 52 testing data points. 
A: Andalusia; CLM: Castilla-La Mancha; IB: Illes Balears; RM: Region de Murcia; VC: Valencian Com-
munity

Table 6   Log predictive score 
between Bayesian Poisson 
autoregressive model and 
Bayesian tensor factorisations 
model (BTF) for multivariate flu 
counts datasets

Multiple datasets include flu counts in two cantons in Switzerland, 
Aargau and Bern. AIC and BIC columns indicate that the best model 
has been chosen (in brackets) with the corresponding criterion. Mod-
els with the best performance are highlighted in bold

Region Data Sizes Bayesian Poisson autoregres-
sion

BTF

AIC BIC

Aargau 411 : 103 4.574(10) 4.574(10) 5.719
462 : 52 5.001(10) 5.041(4) 5.836

Bern 411 : 103 6.155(10) 6.155(10) 5.328

462 : 52 6.632(10) 6.632(10) 6.103
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Table 7   Log predictive score 
between Bayesian Poisson 
autoregressive model and 
Bayesian tensor factorisations 
model (BTF) for multivariate flu 
counts datasets

Multiple datasets include flu counts in Andalusia, Castilla-La Mancha, 
Illes Balears, Region de Murcia and Valencian Community. AIC and 
BIC columns indicate that the best model has been chosen (in brack-
ets) with the corresponding criterion. Models with the best perfor-
mance are highlighted in bold

Region Data Sizes Bayesian Poisson 
autoregression

BTF

AIC BIC

Andalucia 411 : 103 9.097(10) 9.296(4) 17.205
462 : 52 17.550(4) 17.550(4) 14.006

Castilla-La Mancha 411 : 103 14.589(7) 14.467(5) 5.760

462 : 52 23.765(10) 23.708(9) 5.992

Illes Balears 411 : 103 14.334(10) 14.297(3) 4.335

462 : 52 6.788(10) 7.019(5) 5.178

Region de Murcia 411 : 103 25.593(10) 25.379(8) 10.665

462 : 52 5.771(10) 5.771(10) 15.078
Valencian Community 411 : 103 13.760(10) 14.601(8) 5.997

462 : 52 21.532(10) 21.532(10) 6.450

6 � Discussion

We have introduced a new flexible modelling framework for that extends Bayesian tensor 
factorisations to multivariate time series of count data. Extensive simulation studies and 
analysis of real data provide evidence that the flexibility of these models offers an impor-
tant alternative to other multivariate time series models for counts.

An important aspect of our proposed models is that direct MCMC inference cannot 
avoid an increased computational complexity as observed counts grow. We have dealt with 
this issue with a two-stage inferential procedure that successfully deals with large observed 
counts.
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