Computer Methods and Programs in Biomedicine 245 (2024) 108034

Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine

journal homepage: www.elsevier.com/locate/cmpb

ELSEVIER

Check for

A novel mono-physics particle-based approach for the simulation of ol
cardiovascular fluid-structure interaction problems

Alessandra Monteleone *, Sofia Di Leonardo *, Enrico Napoli”°, Gaetano Burriesci "

@ Ri.MED Foundation, Palermo, Italy
Y Engineering Department, University of Palermo, Italy
¢ UCL Mechanical Engineering, University College London, UK

ARTICLE INFO ABSTRACT

Keywords:

Smoothed particle hydrodynamics (SPH)
Fluid-structure interaction (FSI)
Particle-spring system

Aortic valve dynamics

Cardiovascular numerical simulation

Background and objective: Fluid-structure interaction (FSI) is required in the study of several cardiovascular en-
gineering problems were the mutual interaction between the pulsatile blood flow and the tissue structures is
essential to establish the biomechanics of the system. Traditional FSI methods are partitioned approaches where
two independent solvers, one for the fluid and one for the structure, are asynchronously coupled. This process
results into high computational costs. In this work, a new FSI scheme which avoids the coupling of different
solvers is presented in the framework of the truly incompressible smoothed particle hydrodynamics (ISPH)
method.

Methods: In the proposed FSI method, ISPH particles contribute to define both the fluid and structural domains
and are solved together in a unified system. Solid particles, geometrically defined at the beginning of the
simulation, are linked through spring bounds with elastic constant providing the material Young’s modulus. At
each iteration, internal elastic forces are calculated to restore the springs resting length. These forces are added in
the predictor step of the fractional-step procedure used to solve the momentum and continuity equations for
incompressible flows of all particles.

Results: The method was validated with a benchmark test case consisting of a flexible beam immersed in a
channel. Results showed good agreement with the system coupling approach of a well-established commercial
software, ANSYS®, both in terms of fluid-dynamics and beam deformation. The approach was then applied to
model a complex cardiovascular problem, consisting in the aortic valve operating function. The valve dynamics
during opening and closing phases were compared qualitatively with literature results, demonstrating good
consistency.

Conclusions: The method is computationally more efficient than traditional FSI strategies, and overcomes some of
their main drawbacks, such as the impossibility of simulating the correct valve coaptation during the closing
phase. Thanks to the incompressibility scheme, the proposed FSI method is appropriate to model biological soft
tissues. The simplicity and flexibility of the approach also makes it suitable to be expanded for the modelling of
thromboembolic phenomena.

1. Introduction

A number of engineering phenomena are the result of the mutual
interaction between fluid fields and solid bodies, where the solid bodies
deform as effect of the load exerted by the fluid and the resulting
displacement of the structure affects the fluid flow [1,2]. This two-way
fluid-structure interaction (FSI) is crucial in the modelling of cardio-
vascular problems, such as the dynamics of heart valves, where the
mutual interaction of highly deformable soft tissues with pulsatile blood

flows determines the correct physiological functions, and its alterations
result into pathological conditions [3-5]. In this context, computational
FSI methods have established as essential tools to simulate operating
conditions and analyse the system biomechanics, improving the un-
derstanding of complex pathophysiology and supporting the develop-
ment of advanced clinical treatments [6,7]. In fact, despite their higher
numerical complexity, FSI approaches are substantially more accurate
when compared with the single solution for computational fluid and
structural dynamics methods (CFD and CSD, respectively) [8]; and

* Corresponding author at: Room 507A, Malet Place Engineering Building, Torrington Place, London, WC1E 7JE.

E-mail address: g.burriesci@ucl.ac.uk (G. Burriesci).

https://doi.org/10.1016/j.cmpb.2024.108034

Received 16 November 2023; Received in revised form 9 January 2024; Accepted 14 January 2024

Available online 15 January 2024

0169-2607/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.sciencedirect.com/topics/medicine-and-dentistry/pathophysiology
mailto:g.burriesci@ucl.ac.uk
www.sciencedirect.com/science/journal/01692607
https://www.elsevier.com/locate/cmpb
https://doi.org/10.1016/j.cmpb.2024.108034
https://doi.org/10.1016/j.cmpb.2024.108034
https://doi.org/10.1016/j.cmpb.2024.108034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2024.108034&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. Monteleone et al.

become necessary when studying phenomena where the wall shear
stress distribution and profiles are important [9].

Several FSI approaches were proposed in the past [4,8,10], which are
generally classified as partitioned and monolithic approaches [10]. In
partitioned approaches the fluid and structure solutions are obtained
from separate well-established methods, independently implemented
for the analysis of fluid dynamics and structural problems, that are
asynchronously coupled at the fluid-structure interface. On the contrary,
in monolithic FSI approaches both fluid and structure governing equa-
tions are solved simultaneously by a unified matrix, automatically
satisfying the conditions at the interface in the solution procedure.
Partitioned approaches allow software modularity, since the most suit-
able solver can be selected for each domain and no mesh matching is
required at the fluid-structure interface. On the other hand, monolithic
approaches are computationally more robust and efficient than the
partitioned counterparts [11-14].

Traditionally, fluid flows are modelled using the Eulerian descrip-
tion, whilst the Lagrangian formulation is long-established for structural
analyses. Hence, appropriate strategies are implemented to combine the
two formulations. In this framework, arbitrary Lagrangian Eulerian (ALE)
[15-18] and immersed boundary (IB) [19-26] techniques are commonly
used, which broadly differ for the discretisation of the fluid domain. In
ALE approaches, originally proposed by Donea et al. [15], the fluid mesh
can deform following the movement of the structure, thus providing a
robust fluid-structure coupling. However, when large deformations of
the structure occur, the remeshing of the fluid domain, essential to avoid
severe distortion of the mesh elements, results in an increase in
complexity and computational costs of the simulation [27]. Moreover,
additional specialised algorithms must be introduced when simulating
phenomena where the fluid domain can be partitioned into two un-
connected regions. Typically, in these cases a minimum threshold dis-
tance needs to be imposed between the structure walls that would
physically get in contact, so as to preserve continuity of the fluid domain
during the whole simulation [8,28] and to prevent highly distorted
meshes [29]. This is a limitation in the simulation of a number of
biomechanical problems, such as peristaltic phenomena or cardiac/ve-
nous valves functioning, as it introduces artefactual leakage.

The IB method was specifically introduced by Peskin [19] to simulate
flow patterns around heart valves, and then widespread for modelling
fluid-structure interaction problems in other fields [21]. In this
approach, the fluid mesh is fixed, whilst the mesh of the structure is free
to deform. Since only the mesh of the structure deforms and no fluid
mesh refinement is required at the fluid-structure interface, IB ap-
proaches have lower computational cost than ALE, and there are no is-
sues related to ill-shaped elements of the fluid mesh. As a result, this
method is usually preferred for FSI problems characterised by large
deformations of immersed thin structures, such as for modelling heart
valve dynamics [23]. Still, as in ALE approaches, a small gap of fluid
cells around the immersed structures is required to allow structures’
separation. Therefore, achieving correct solid contact still remains un-
resolved [30,31]. Moreover, since variables are obtained from interpo-
lation rather than calculated, results at the fluid-structure interface are
less accurate than with ALE approaches.

Other FSI strategies are based on the fictious domain method, where
Eulerian and Lagrangian formulations are employed for the fluid and
solid, respectively, and Lagrange multipliers are used to enforce the
kinematic condition associated to the moving internal boundaries [25,
32,33]. Hsu et al. [34] presented a hybrid ALE/immersed-boundary
technique to simulate a bioprosthetic heart valve implanted in a
deformable artery.

In this context, fully Lagrangian FSI approaches have been proposed,
which lead to a strong coupling between the structure and the fluid.
Khayyer et al. [35] highlight the potential robustness of these advanced
solvers, which are particularly suitable for large deformation problems
[36-38]. In particular, particle-based FSI schemes using the smoothed
particle hydrodynamics (SPH) method are common choices [39-41].
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SPH was originally introduced by Lucy [42] and Gingold & Monahan
[43] in astrophysics, and then expanded to several fields of engineering
and science [44,45], including FSI modelling [46,47]. Several parti-
tioned FSI schemes are based on coupling SPH, which is used for the
fluid modelling, with the accurate and robust finite element (FE)
method, employed for the structure dynamics [48]. Fourey et al. [49]
proposed this type of coupling to model violent FSI problems involving
complex free surface flows with deformable structures. Long et al. [50]
proposed a new ghost particle method to couple FE with SPH. Fuchs
et al. [51] presented a novel SPH-FE formulation with sliding boundary
particles, aiming to achieve an accurate representation of the interaction
forces between fluid particles and structural elements. In the cardio-
vascular area, Mao et al. [27] used a fully-coupled FSI combining SPH
and FE to investigate the aortic and mitral valves structural response and
the intraventricular hemodynamics in a realistic left ventricle model.
Dabiri et al. [52] used SPH coupled with FE to simulate the blood flow
through the tricuspid valve, with and without the MitraClip interven-
tion, aiming at evaluating the procedure impact over tricuspid regur-
gitation. McLoone and Quinlan [53] coupled a mesh-less finite volume
particle method and FE to simulate thin elastic structures, applying the
method to a 2D simulation of an idealised heart valve leaflet. SPH was
also coupled with the element bending group method [54,55]. Zhang
et al. [56] proposed a FSI approach where SPH is coupled with a
smoothed finite element method. This FSI approach was further
improved by Zhang et al. [57] introducing multi-resolution SPH to
simulate complex hydroelastic FSI problems. Shimizu et al. [58] pre-
sented an enhanced particle-based FSI scheme coupling a
truly-incompressible SPH (ISPH) fluid model with a purely Lagrangian
meshfree hydroelastic FSI solver, which allows consistent fluid-
—structure time coupling adopting the equivalent time step sizes in both
phases. Zhang et al. [59,60] combined SPH-based approaches with
smoothed point interpolation method, where the coupling is achieved by
introducing ghost and repulsive particles at the interface to recover the
continuity of the support domain and prevent particle penetration into
structural subdomain. Rahimi et al., 2022 proposed a different FSI
approach that couples SPH with the Peridynamic mesh-free method,
enabling structural damage modelling and tracking [61].

SPH was also used to analyse computational solid mechanics prob-
lems [62-64] and, in FSI approaches, to describe both fluid and solid
domains, using the weakly-compressible (WCSPH) [65,66] and the ISPH
[67,68] techniques. Zhan et al. [69] implemented an approach coupling
the total Lagrangian and WCSPH method to model 3D FSI problems.
Khayyer et al. [68] developed an enhanced ISPH-SPH method where
structure particles are considered as moving wall boundaries for the
fluid, providing velocity and position boundary conditions in calculation
of the pressure field. This scheme was further improved in Khayyer et al.
[70], where ISPH is used to model fluid flows and Hamiltonian SPH is
employed for the description of laminated composite elastic structures.
Sun et al. [71] developed an FSI-SPH model by combining the
multi-resolution 8+-SPH scheme and a Total Lagrangian SPH method to
model complex 3D FSI problems. O’Connor et al. [72] proposed a
GPU-accelerated SPH method to model FSI problems involving violent
hydrodynamics of free-surface flows interacting with flexible structures.

SPH was also coupled with the discrete element method for the solid
phase, where particles are typically connected via spring-like forces [73,
74]. Ariane et al. [75] developed a fully Lagrangian discrete
multi-physics model to simulate the dynamics of free emboli in double
venous valve systems with flexible walls. Within the context of lattice
spring models [76], several FSI models based on SPH have been pro-
posed in literature to simulate large deformation problems [77-81].
Recently, Monteleone et al. [82] proposed a partitioned 3D FSI
approach, where the ISPH method is employed to simulate the motion of
incompressible fluid flows, whilst a particle-spring systems solver is
used for the structure description.

In the present work, a novel FSI approach is presented, which
overcomes the main drawbacks of traditional FSI strategies in the
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modelling of cardiovascular problems. The model, fully integrated in the
ISPH framework, is implemented in the code PANORMUS (PArallel
Numerical Open-souRce Model for Unsteady flow Simulations) [83].

The method involves the representation of both fluid and solid do-
mains by SPH particles and, in contrast with partitioned methods, em-
ploys a single algorithm to solve the two domains. Moreover, differently
from monolithic approaches, a single physics is employed. This is
possible thanks to the fact that biological soft tissues exhibit incom-
pressibility and similar density to the fluid they interact with [8,84-87].
In order to simulate the structural behaviour, the particles representing
the solid domain are bounded to each other via spring links. The spring
constant is calibrated through a basic relationship to describe the
Young’s modulus of the material.

The proposed method exploits the mesh-less features of SPH to model
FSI coupling without interfaces, domains with complex geometries and
challenging structural contact problems. The strength of the presented
method is related to its simplicity in the handling of FSI coupling, that
allows both fluid and solid particles to follow the same ISPH numerical
scheme. As a result, no interface between solid and fluid domains is
required, avoiding a well-known challenge in partitioned FSI schemes,
where the fluid-solid interface must be handled to obtain sufficiently
accurate matching solutions between the two domains. Modelling fluid
and structure with a unified solver necessitates certain assumptions,
such as uniform discretisation density for both domains, and a material
density equal to that of the fluid, constant during the analysis; which
implies incompressibility and a fixed Poisson’s ratio of 0.5. While these
assumptions may seem restrictive, they are generally accepted for car-
diovascular soft tissues [87,88], and fixed Poisson’s ratios are commonly
employed in classical lattice spring models [76].

The proposed FSI approach is validated with a benchmark compu-
tational test and applied to model the dynamics of the aortic valve,
which is a complex cardiovascular test case.

2. SPH basic idea and incompressible scheme

SPH is a Lagrangian mesh-less method where particles are used to
represent the computational domain. Variables at each particle are ob-
tained by means of discrete convolution integrals with filter functions,
known as kernel functions, W. A very important feature of kernel functions
is the characteristic length, known as smoothing length, h, which defines
the influence domain of W. The generic i particle placed at the x; position
has a support domain, Q;, which contains all the surrounding j particles
whose distance from x; is lower than k - h, where k is a specific constant
of W. In this study, the Wendland function [89] was used (where k = 2).
Particles are distributed based on the isotropic initial particle distance
Ay, which is proportional to h. In this study A, was set equal to k - h/2, as
recommended in the literature [83,90-92].

The generic function ¢ at the x; position, ¢;, can be obtained through
the function value at the neighbouring j particles (¢;) laying in Q;, whose
total number is Nj:

Ni

m
¥ = Zp—frefw,y; ¢h)
=17

where m;j and p; are mass and density of j and Wy = W(x; — x;,h).

Two different techniques can be adopted to model fluid flows:
weakly compressible (WCSPH) and truly incompressible (ISPH) ap-
proaches. In WCSPH, an equation of state is introduced to relate pressure
and density; whilst ISPH uses a fractional-step procedure to solve the
momentum and continuity equations. This work is based on the ISPH
algorithm, where the pressure field is obtained implicitly by solving a
system of pressure Poisson equations (PPEs), following the fractional-step
technique of Chorin [93]. The employed fractional-step procedure,
described in detailed in Monteleone et al. [92]. In brief, the momentum
equation is firstly solved removing the pressure gradient term, to obtain
the intermediate velocity u* (predictor-step):
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Fig. 1. 2D Sketch of the identification of the solid particles. Fluid particles: blue
circles; structural domain: orange dashed line; solid particles: yellow circles;
wall-bounded solid particles: red circles; ghost solid particles: empty red circles;
boundary: dashed black line. (for interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article).
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where At is the time step, the index r indicates the time instant, u; is the
intermediate velocity of the i particle, u] is the velocity at time r, f; is the
force per unit mass acting on the i particle, D; is the diffusive term
calculated using the Adams-Bashforth scheme [94], VWj; is the gradient
of W, v; and v; are the kinematic viscosities of particles i and j, and d;; is
the distance between i and j.

In order to correct the intermediate velocity, an irrotational correc-
tive velocity field u® is introduced, whose potential y - At is obtained by
solving the PPEs system:

N, N;
LR AR
/; P d; i W/)im j; P <ui ) ©

where y is the pseudo-pressure.

In this work, the BiConjugate Gradient STABilized method (BiCG-
STAB) proposed by Van der Vorst [95] was employed to solve the PPEs
system using a preconditioning algorithm [96]. The BiCGSTAB is
particularly suitable, due to the non-symmetricity and diagonal domi-
nant of the coefficient matrix of the PPEs system [92].

The updated velocity uﬁ”l) is therefore calculated in the corrector-
step:
N; m:
w =w tul =u - Ay (g, —y) VW 4)

ji=1F

In this work, the use of mirror particles is employed to impose suit-
able boundary conditions and to overcome the truncation of the kernel
function at the walls. This method involves an adequate covering of near
boundary regions through the mirroring of the particles close to the
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Fig. 2. 2D Sketch of the support domain (dashed lines) for two solid particles i and i, with the springs associated to the neighbours solid particles.
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Fig. 3. Geometry and boundary condition for uniaxial tensile test used for the spring constant calibration. Perspective and front views on the top and bottom,
respectively. a) Particles in the reference configuration; b) particles in the deformed configuration.
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wall, enforcing the desired boundary conditions (adherence, free-slip,
wall-law, Neumann, periodic, etc.), even for complex fluid domain ge-
ometries [83,90-92]. For a detailed description of the mirror particle
procedure see Napoli et al. [83]. Moreover, the approach described in
Monteleone et al. [92] is used for the inflow/outflow boundaries
handling.

In order to overcome the tensile instability problem related to the
particle clustering [97], the algorithm proposed by Xu et al. [98] is
employed in this study. This procedure consists in shifting slightly the
particles across streamlines, allowing to maintain an ordered particle
distribution.

3. The proposed FSI method
3.1. Solid particles identification and treatment

As discussed in Section 2, fluid particles are initially arranged at a
constant distance A, in all cartesian directions. The fluid particles lying
within the structural domain are geometrically identified and labelled as
“solid” particles. Although the process is applied to a volumetric 3D
system, in Fig. 1 it is schematised in 2D for simplicity of representation.
The structural domain representative of a volume is drawn as a rectangle
(dashed orange line). The particles within the structural domain are
identified as solid particles (yellow circles), and springs ties are intro-
duced between them. Further, solid particles close to the boundary (red
circles) are also bounded to the wall, introducing a ghost solid particle in
the direction normal to the wall (empty red circles).

At the start of the simulation, the list of the support domain used for
the particle approximation is created per each particle (Eq. (1)) and then
updated at each time step after the particles displacement. For each solid
particle, an additional list of neighbour solid particles and resting dis-
tances is generated and kept unchanged during the simulation. This
defines the solid domains and its unloaded configuration. In the example
shown in Fig. 2, the support domain of the solid particle i encompasses n
= 8 neighbour solid particles (j; to jg) with initial resting distance do;_j, -
These particles are linked to particle i with springs.

Springs that experience tension or compression respond by applying
internal elastic forces in the attempt to restore their unloaded length.
The total internal force per unit mass acting on the generic solid particle
i, fi, can be expressed as:

ke Ay & -
m Zl(do-fj — dy)%y; (5)
=

fi=

where the summation is extended to the total number N of solid
(effective and ghost) particles connected to i (eight particles in Fig. 2), ke,
is the spring constant normalised over the initial distance (A,), and ¥
= (x; —x;)/dy is the unit vector directed from i to j.

This force is added in the momentum equations as a mass force.
Considering the fractional-step scheme used in this work, f; is included
in the predictor-step (Eq. (2)).

It is important to note that the FSI coupling is achieved inherently
within the modelling framework, as both fluid and solid particles are
solved simultaneously within a unified ISPH numerical scheme, without
the need to explicitly define interfaces.

3.2. Elastic constant calibration

Springs connecting solid particles have a normalised elastic constant
k., whose value controls the stiffness of the structure. The calibration of
the law associating k, with the Young’s modulus of the homogenised
material was carried out by simulating uniaxial tensile tests on a solid
cube, as described in Monteleone et al. [82] and Monteleone et al. [99].
The cube, of side 0.1 m, consisted of 8000 solid particles, with k - h equal
to 0.01 m. The solid block was stretched by imposing a pressure load
equal to 0.01 MPa on the top and bottom surfaces (see Fig. 3), and zero
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Fig. 4. Relationship obtained from the spring constant calibration, where E = A
- k. and A = 3.23.

pressure on the other faces.

A set of simulations was performed, measuring the Young’s modulus
E and the Poisson’s ratio v; for a range of normalised spring constants k.
ranging from O to 3.1 MPa. A basic linear law was identified (in Fig. 4),
where E = A - k,; with A = 3.23. It was verified that, coherently with the
material incompressibility condition commonly accepted for soft tissue
constitutive models [87,88], vs remains constant and equal to 0.5. In
order to verify the influence of the starting particle distance, the analysis
was repeated with k - h = 0.005 m. Results confirmed that the variation
in k - h did not produce any change in the relation identified between E
and k.

3.3. Flow-chart of the proposed method

The sequence of actions of the proposed FSI algorithm is reported
below:

e ACTION 1 - Identify solid and wall-bound particles. The solid particles
are geometrically identified based on the solid domain boundaries.
Moreover, the solid particles having a distance less than A, are linked
to the wall introducing ghost solid particles;

e ACTION 2 - Create solid particles neighbour list. For each solid particle,
the list of the neighbour solid particles at a distance inferior to k - h is
created and recorded for the whole simulation;

e ACTION 3 - Create support domain and mirror. The support domain of
each particle is created including all the surrounding particles (fluid
and solid) with distance lower than k - h. Moreover, to overcome the
truncation of the support domain at the boundaries, the mirror
particles procedure is used. Specifically, the particles having distance
from the boundaries shorter than k - h generate mirror particles along
the directions normal to the boundary. Mirror particles have the
same physical properties of the generating particles, while the ve-
locity is imposed to ensure that boundary conditions are satisfied;

e ACTION 4 - Calculate internal solid forces. For each solid particle, the
total force resulting from the system of neighbouring springs
(effective and ghost) is calculated through Eq. (5).

e ACTION 5 - Predictor-step. The intermediate velocity u* is calculated
through Eq. (2), including for the solid particles the force calculated
at ACTION 4;

e ACTION 6 — PPE system. The pseudo-pressure \ is calculated solving
the system made of one PPE (Eq. (3)) per each particle;

e ACTION 7 — Corrector-step. Eq. (4) is used to correct u*, obtaining the
updated velocities u” * 1;

e ACTION 8 - Update particle position. Particles are moved in the
updated position X" © ! using the mean value of the new and old

velocities (u*! and uf, respectively);
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Fig. 5. Flow-chart of the proposed FSI algorithm. Actions specifically for the solid particles treatment are highlighted in orange. The actions inside the dashed
rectangle are performed only once at the beginning of the simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article).

no-slip

H

no-slip

Fig. 6. Benchmark test case — Channel and beam dimensions and boundary conditions. H = 0.3 m.

e ACTION 9 - Update support domain and mirror. After calculating the
updated particle position, the particle support domain and the mirror
particles are updated (see ACTION 3).

After ACTION 9, the simulation time is advanced by one time step (t
= t+ At), and the procedure is reiterated from ACTION 4. Fig. 5 shows a
flow-chart of the proposed FSI algorithm.

4. Results and discussion
4.1. Benchmark test case - Elastic beam immersed in a channel flow

An elastic beam immersed in a channel was used as a benchmark case
to validate the code. Fig. 6 shows the channel and beam dimensions and
the boundary conditions. The channel was designed with height H = 0.3
m and length 3H. An elastic beam of height H/3 and width H/20 was
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Table 1

Benchmark test case — parameters of the simulation.
Parameter Value
Channel height (H) 0.3 m
Fluid density (p) 1000 kg/m®
Dynamic viscosity (1) 1Pas
Inlet mean velocity (@) 0.5 m/s
Reynolds number (Re) 150
Structure density (p;) 1000 kg/m>
Young’s modulus (E) 0.7 MPa
Poisson’s ratio” (vs) 0.4999

* used for ANSYS simulation.

positioned at a distance H from the channel inflow section. The beam
was fully constrained at the channel bottom surface.

Adherence boundary condition was imposed on the top and bottom
walls of the channel, while inflow and outflow boundary conditions
were employed at the left and right sides of the fluid domain, respec-
tively. Specifically, zero pressure was imposed at the outflow section,
while a parabolic velocity was prescribed at the inlet as follows:

1.5%% %fort< r
u(x,t) = (6)
1.5ﬁ%ﬁ)rt> r

where tis the time, i was set equal to 0.5 m/s and t* = 1. Hence, the inlet
mean velocity increases linearly from zero to 0.5 m/s in the first second

0.0

0.2

velocity x [m/s]
04

b)

Computer Methods and Programs in Biomedicine 245 (2024) 108034

(from Oto t*), and then stabilises to the value of 0.5 m/s.

Fluid and solid densities are imposed both equal to ps= p; = 1000 kg/
m® and the fluid dynamic viscosity is imposed equal to p = 1 Pa's. The
resulting Reynolds’ number is Re = uH p;/u = 150. The Young’s
modulus of the beam material was set equal to 0.7 MPa. The parameters
of the simulation are summarised in Table 1.

The commercial software ANSYS (Ansys® Academic Research Me-
chanical, Release 2022 R2) was used for comparison. Specifically, the
structural domain was analysed using the ANSYS Transient Structural
module, whilst the fluid dynamics simulation was performed with the
ANSYS CFX package. For the structural domain, due to the inability of
finite element methods to handle incompressible materials, a Poisson’s
ratio vs;= 0.4999 was imposed. The structural and fluid solutions were
coupled by means of the System Coupling available in Ansys workbench,
which handles the data transfer between individual physics solvers
[100].

A smoothing length of 3.75 x 10~ m was selected for the SPH
domain, resulting into 19,200 particles. A linear structured mesh with
identical element size (3.75 x 1073 m) was used for the ANSYS
discretisation.

In the SPH simulation, the particles lying within the beam region
were defined as solid, linking the beam particles in contact with the
lower wall of the channel by introducing ghost solid particles, as dis-
cussed in Section 3.1.

Fig. 7 shows the velocity field at time instant t =1 s, obtained with
the proposed FSI algorithm and with the ANSYS System Coupling
approach. As it can be observed, results appear in very good agreement.

Fig. 7. Benchmark test case — Streamwise velocity at t = 1 s: a) SPH; b) ANSYS. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 8. Benchmark test case — Comparison of beam position on the left: ANSYS fluid domain (blue region) and SPH solid domain (red particles); velocity profiles at x
= 0.4 m on the right: ANSYS (dashed black line) and SPH (continuous red line). Considered time instants: a) t = 0.2s; b) t =0.4s;¢c) t=0.65;d) t =0.8s;e) t =15; f)
t = 3 s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

In order to provide a quantitative comparison, the beam deformation
is compared for the two solvers at six different time instants, as shown in
Fig. 8. For clarity of representation, the ANSYS fluid domain (blue re-
gion) is superposed with the SPH solid domain (red particles). The ve-
locity profiles computed downstream of the beam, at position x = 0.4 m
(indicated with a black line in the figure) are reported. Differences in the
velocities at each location are less than 3 %, confirming the accuracy of
the proposed FSI algorithm.

A comparison of the computational costs was also performed,
running the simulation on an AMD EPYC 7402 — 2.8 GHz processor with
2 sockets and 24 cores per sockets. Considering one CPU, the proposed
FSI approach results 6.5 times more efficient than the method used for
comparison. Still, thanks to its simplicity, the proposed FSI algorithm is
fully integrated in the parallel computing scheme of Monteleone et al.
[101], allowing further improvement of efficiency by increasing the
number of CPUs.

4.2. Aortic valve simulation

The simulation of the heart valves function remains one of the most
challenging FSI case studies in cardiovascular engineering, where the
limits of the different FSI approaches commonly become evident. In
particular, the aortic valve is one of the most relevant clinical compo-
nents, as this valve is subjected to the severe operating conditions
experienced in the left heart and is more prone to be affected by
congenital or acquired diseases [102]. The aortic valve is a trileaflet
valve located between the left ventricle and the aorta, which regulates
the unidirectionality of the oxygenated blood flow ejected from the left
ventricle to feed the body tissues. In particular, during systole (ven-
tricular contraction) the valve is opened by the ejected flow and its
leaflets should hamper the flow as little as possible. During diastole,
when the ventricular muscle relaxes, the valve leaflets are driven into
contact by the flow returning from the aorta to the left ventricle,
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Fig. 9. Aortic valve simulation — Geometry of the Valsalva sinuses and leaflets. Sagittal and transversal views.

solid particles

Fig. 10. Aortic valve simulation — Solid particles defining the valve leaflets:
blue, green and magenta circles; red circles: constrained solid particles at the
commissures. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.).

resulting in the valve closure and arresting the backflow. During normal
functioning, the valve is subjected to large transvalvular pressure dif-
ferences up to about 120 mmHg.

The modelling of such problem is very challenging due to the large
deformations experienced by the structural components (the leaflets) as
effect of their interaction with a pulsatile blood flow, and the periodical
contact between the valve leaflets during coaptation [5].

In the test case presented, geometries of the aortic root and the valve
are taken from Tango et al. [103]. In particular, the aortic annulus and
sino-tubular junction (region where the aortic root returns circular after

Table 2

Aortic valve simulation — parameters.
Parameter Value
Fluid density (pp 1060 kg/m*
Dynamic viscosity (y) 0.0035 Pa s
Inlet maximum pressure during opening 8 mmHg
Inlet maximum pressure during closing 120 mmHg
Structure density (p;) 1060 kg/m>
Young’s modulus of leaflets during opening (E,) 0.02 MPa
Young’s modulus of leaflets during closing (E.) 0.20 MPa

bulging out at the level of the leaflets) have identical diameter, equal to
25 mm. The leaflets geometry is based on the description of the idealised
healthy human aortic valve proposed by Thubrikar [104] and
pre-expanded to a semi-opened reference configuration. The Valsalva
sinuses, that are the three pouches at the base of the aortic root facing
each of the valve leaflets (see Fig. 9), are assumed identical in shape and
size. Their maximum cross section is defined by an epitrochoid cir-
cumscribed to a circle of diameter equal to 25 mm and inscribed into a
circle of diameter equal to 36.44 mm. The root inner volume (blood and
leaflets) was discretised with a smoothing length of 0.325 mm, resulting
in a total number of 583,000 particles. The leaflets were modelled with a
thickness of 1 mm, comprising three layers of particles.

Fig. 10 shows the computational domain of the root and the valve.
Leaflets are modelled as separate solids (represented in magenta, blue
and green), in order to allow the valve whole opening. Moreover, solid
particles close to the aortic wall (indicated in red) are constrained by
introducing ghost particles, as discussed in Section 3.1.

Blood was treated as an incompressible Newtonian fluid, which is a
common assumption [24,27,33,103,105-107], with dynamic viscosity
of 0.0035 Pa's and density of 1060 kg/m?>.

The material properties of the native aortic leaflets are reported to be
non-linear, incompressible and anisotropic [108-111]. This behaviour is
the result of the biomechanical synergy between elastin and collagen
fibres, and supports the valve function by optimising the leaflets me-
chanical response during the cardiac cycle. In fact, during valve open-
ing, when the level of membrane strain is reduced, collagen fibres
maintain a coiled configuration, which confers to the material high
flexibility [112]. When the valve closes and leaflets coapt to retain the
returning blood flow, fibres are uncoiled by the increasing transmural
pressure, resulting in substantially higher tissue rigidity. This non-linear
behaviour is neglected in the present study, where leaflets are modelled
as linear elastic. Hence, in order to account for the described change in
response of the material in the different phases of the valve cycle,
different Young’s moduli are set for the valve opening and closing
stages, equal to 20 kPa and 200 kPa, respectively. These values allow to
obtain similar flexural rigidities as reported in the literature for the
healthy aortic leaflets [31,113-115].

The aortic root walls are modelled as rigid with no-slip boundary
conditions (aortic compliance is neglected). A pressure corresponding to
the physiological transvalvular pressure difference is applied at the
ventricular side of the domain, while pressure at the aortic outlet is kept
equal to zero. Specifically, a maximum of 8 mmHg was imposed with a
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Fig. 11. Aortic valve simulation — Velocity field and leaflet position at four time instants. a) Sagittal section; b) transversal cross section at the sino-tubular junction

(STJ) indicated as dashed white line; c) transversal cross section at the Valsalva sinuses maximum expansion (SME) indicated as continuous white line; d) leaflets
position; e) perspective view. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Aortic valve simulation — Velocity vectors at different instants of the closing phase. a) Full open valve configuration; b, ¢ and d) partial closure; e) full
closure. All vectors are represented with identical length, and their magnitude is indicated by their colour, as described in the colour bar on top of the figure. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

linear ramp during valve opening; then the gradient inverts during
closing, imposing a maximum transvalvular pressure difference of 120
mmHg. Parameters used in the simulation are reported in Table 2.

Fig. 11 shows the results at four different time instants corresponding
to: partial and full closing, partial and full opening. The velocity field at
the sagittal plane is reported in Fig. 11a, while the cross-sections at the
sino-tubular junction (STJ) and at the sinuses maximum expansion
(SME) are shown in Fig. 11b and c, respectively. Moreover, the valve
configuration is displayed in Fig. 11d.

Leaflets configurations appear to realistically reproduce the opening
and closing of the aortic valve. In fact, in the closing phase, leaflets
approach each other until complete coaption at the diastolic phase.
Then, during the opening phase, leaflets move apart allowing a central
jet. A perspective view is provided in Fig. 11e. Although only a quali-
tative comparison can be made due to the simplifications in the material
properties, results are coherent to those reported in Tango et al. [103].
In fact, leaflets expand widely into the Valsalva sinuses when open,
minimising their interference with the ejecting flow (Fig. 12a). This
effect allows to maximise the valve geometric orifice area and, as a
consequence, the effective orifice area, which is a parameter descriptive
of the systolic valve performance [116].

This result appears to be coherent also with the experimental study
from Di Leonardo et al. [117], where leaflets of an ex vivo porcine aortic
root show the same opening mechanism. In the closing phase, the back
flow that forms along the aortic wall drives the leaflets from their fully
open configuration towards the centre (Fig. 12b), and then separates
producing a vortex into the Valsalva sinuses (Fig. 12c). This progres-
sively expands and moves the leaflets centripetally (Fig. 12d), until
complete closure is achieved (Fig. 12e). These washout vortices, already
described by Tango et al. [103], are believed to form and propagate to
prevent blood stagnation.

The analysis confirms that the proposed SPH method is able to
capture complex cardiovascular problems such as the aortic valve dy-
namics, avoiding the main limitations of current competing approaches.
In fact, thanks to the mesh-less nature of the SPH method, no issues
associated with the remeshing procedure, which characterise ALE ap-
proaches, are present. On the other hand, contrary to IB methods, the
unique solution obtained by solving a single system requires no addi-
tional coupling procedures nor interpolation at the interface. Further-
more, contact between coapting structures (e.g. in valve closing
simulations) is intrinsically permitted, requiring no artefactual gaps or
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complex contact algorithms. This implies additional saving in compu-
tational time to what already discussed in Section 4.1. Furthermore, the
proposed FSI algorithm is suitable to incorporate non-Newtonian and
thrombogenic models, such as that recently proposed by Monteleone
et al. [99], to investigate the thrombogenicity associated with different
operating conditions or devices.

A limitation of the method is the basic description of the material
constitutive laws, which neglects non-linearity, viscoelasticity and
anisotropy. This is common to current FSI solvers based on particle
methods, although continuous advances are being made to improve the
material description [35,118]. The implementation of non-linear re-
sponses based on strain energy, viscoelastic and anisotropic behaviours
will be the next steps of development. Also, the particle density must be
sufficient to model thin wall structures, such as the valve leaflets
(although the possibility to use multi-domain approaches with variable
smoothing lengths [91] may address this issue).

Finally, the method may not be accurate when modelling phenom-
ena involving structure and fluid with very different densities, subjected
to highly dynamic motion.

5. Conclusions

A novel FSI technique is proposed using the Lagrangian mesh-less
SPH method. In this approach, both fluid and structural domains are
represented by particles. In order to model the structural behaviour,
spring bounds are introduced between neighbouring solid particles and
elastic forces are determined aiming at restoring the springs resting
length. The calculated forces are introduced in the fractional-step pro-
cedure used in the ISPH scheme.

Despite the simplicity in the structural modelling, the proposed
approach shows good accuracy when compared with benchmark test
cases typically used to validate FSI models. Moreover, the method was
successfully applied to model a complex cardiovascular problem, con-
sisting in the analysis of the aortic valve dynamics.

The approach has shown the ability to overcome the typical issues
related to this type of simulations, obtaining results in agreement with
the literature. Since the approach is integrated in a truly incompressible
method, it is particularly suitable to model soft tissues which exhibit an
incompressible behaviour. However, material properties of the soft tis-
sues are still simplified and incorporating non-linear behaviours, based
on strain energy, and anisotropy will be the next step of development.
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