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Abstract: 

Histopathological diagnosis is the mainstay of present-day preventive medical care service to 

guide the therapy and treatment of breast cancer at an early stage. Manual examination of 

histological data based on clinicians' subjective knowledge is a time-consuming, labour-

intensive, and costly method that necessitates clinical intervention and competence for a fair 

decision. In the recent work, we have developed an ensemble of five deep CNNs to classify 

three grades of breast cancer using quantitative image-based assessment of digital pathology 

slides without any manual intervention. To produce final predictions on the dataset, a fuzzy 

ranking algorithm is used. On the Databiox dataset, the suggested model attained an accuracy 

of 79%, 75%, 89% and 82% at 4X, 10X, 20X and 40X magnification, respectively. 

Furthermore, it has been observed that the stain-normalization strategy improves the model's 

classification performance on the histopathological images. In this case, the Mackeno stain-

normalization technique is employed which further enhances the performance of the proposed 

ensemble model up to 80%, 100%, 100%, and 82% at 4X, 10X, 20X and 40X magnification, 

respectively. Additionally, a comparative analysis with the existing state-of-the-art technique 

demonstrated the superiority of the proposed scheme.  

 

Keywords: Breast Cancer, Ensemble model, Pathology, CNN, Stain-normalization.  

 

1. Introduction 

Pathology plays a significant role in clinical research as it establishes a bridge between science 

and medicine by addressing four open questions of medical science: What is the cause of 

disease, how the disease originates within the body, how it affects the cells and what is the 

nature of the disease? A comprehensive and accurate pathology report is critical for 

determining a precise diagnosis and the best treatment plan. Prognostication besides the 

elucidation of aetiology, pathogenesis, and clinicopathological correlation are integral 

functions of pathological examination which make it the gold standard for diagnosing a variety 

of epidemics including cancer [1]. Cancer is a group of diseases involving abnormal growth of 

cells anywhere in a body [2-4]. A pathologist recognizes the nature, stage, and grade of cancer 

through visual analysis of tissue stained by haematoxylin and eosin (H&E) [5, 6]. An apparent 

understanding related to the stage and grade of cancer always guides the clinical team in 

determining the right treatment.   
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Fig 1. Pictorial representation of (a) Grade of breast cancer ranges from Grade I to Grade III, 

depending upon the glandular/tubular differentiation, nuclear pleomorphism and mitotic count. 

Grade I (> 75% of tumor form glands, uniform cells, < 7 mitoses per 10 high power fields), 

Grade II (10% to 75% of tumor form glands, cells larger than normal and moderate variability 

in shape and size, 8-15 mitoses per 10 high power fields), Grade III (<10 75% of tumor form 

glands, prominent nucleoli and high variability in shape and size of cells, >16 mitoses per 10 

high power fields) (b) Stages of breast cancer ranges from Stage 0 to Stage IV. Reproduced 

from https://pathology.jhu.edu/breast/staging-grade/ 

 

Female breast cancer is the most common and life-threatening cancer worldwide with 685,000 

mortality and 2.3 million incidence cases in 2020 at the global level [7]. Invasive ductal 

carcinoma (IDC) is the prominent subtype of all breast cancers that originate in the milk duct 

and invades fibrous tissue of the breast outside the duct. The identification of accurate stage 

and grade is very essential for planning and assigning treatment to a patient that meets the 

patient’s requirement. Most of the time people get confused with both the terms (staging and 

grading) and used them interchangeably which may misguide the person in selecting the right 

treatment. The grade of breast cancer represents the “aggressive potential” of the tumor which 

ranges from Grade I to Grade III. While the pathological stage of breast cancer measures the 

advancement of the patient’s tumor which ranges from Stage 0 (pre-invasive disease) to Stage 

IV (metastatic disease), see Fig 1. Generally, different types of cancer follow distinct grading 

and staging system but breast cancer has its own staging and grading system [8]. The 

Nottingham is the most commonly used histologic grading system for breast cancer, quantified 

on the basis of three important factors namely, gland formation, pleomorphism and mitotic 

count [9]. Detailed information on the staging and grading is given in 

https://pathology.jhu.edu/breast/staging-grade/.  

Manual detection and annotation of affected areas on histopathology images have long been 

considered the gold standard for cancer diagnosis and prognosis [10, 11]. However, this 
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approach is both challenging and time-consuming, demanding meticulous care and extensive 

experience from pathologists. Compounding the issue is the substantial inter and intra-observer 

variability in visual analysis, a major concern that introduces reproducibility challenges [12, 

13]. These challenges have a direct impact on the accuracy of cancer prognostication and 

treatment planning.  

Automated grading of breast cancer, in contrast, emerges as a potent solution to address the 

multifaceted needs and challenges within the realm of oncology and medical diagnostics. By 

leveraging automation, we can achieve consistent and objective assessments of cancer samples. 

Unlike human pathologists, whose interpretations can exhibit variability, automation ensures 

that grading adheres to predefined and standardized criteria. This is particularly valuable, given 

that pathologists often need to assess numerous tissue samples. Automation significantly 

expedites the grading process, resulting in faster diagnoses and treatment decisions, a critical 

advantage in cases requiring timely intervention. One of the most notable benefits of 

automation is the high degree of reproducibility it offers. This means that grading remains 

consistent over time and between different healthcare institutions. Automation greatly reduces 

the risk of human error in grading, effectively eliminating potential mistakes stemming from 

fatigue, distraction, or variations in individual pathologists' skills and experiences. As the 

volume of medical data continues to surge, automation is capable of handling the increasing 

demand for cancer grading without necessitating a corresponding increase in the number of 

pathologists. Furthermore, automated grading systems can seamlessly integrate with electronic 

health records (EHRs) and other clinical databases. This integration facilitates efficient data 

management, retrieval, and analysis, promoting a comprehensive approach to patient care and 

research. Standardizing the grading process across different healthcare facilities and 

geographic regions is another pivotal role of automated grading. This ensures that patients 

receive consistent care and recommendations, regardless of their location of diagnosis or 

treatment. 

The recent advancements in the field of machine learning and computer vision techniques open 

up a new opportunity to develop intelligent computer-controlled machines and software. 

Machine learning is a method of data analysis that automates analytical model building by 

identifying patterns and making decisions with minimal human interference [14-20]. Hence, 

advanced image processing and data analysis technology could be employed in spotting and 

grading the cancerous area on histopathology images. This will further accelerate the process 

of treatment planning with higher accuracy by assisting the pathologists in their decision. 

However, the large amounts of artefacts and variability in fixation (fixation time and 

temperature), paraffin embedding, staining protocols, staining and sectioning quality during 

tissue preparation along with the change in shape, size, location, and texture of nuclei transform 

automated detection and grading into a challenge for the entire science community.  

Accurately classifying invasive ductal carcinoma histopathology data poses significant 

challenges, primarily due to its intricate and multifaceted nature. In this study, we have 

endeavoured to address these challenges by introducing a novel approach that combines fuzzy 

ranking techniques with advanced machine learning methodologies. Our aim is to provide a 

robust and interpretable means of amalgamating predictions from various models, while 

considering uncertainty and potential disparities among them. Fuzzy ranking, in this context, 

assigns degrees of membership to different ranks, which can be interpreted as confidence 
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levels. This approach allows us to quantify the strength of a sample's association with a 

particular class or rank, thereby aiding in decision-making. Moreover, fuzzy ranking exhibits 

a greater resilience to outliers, anomalies, and extreme values in the data, enabling a seamless 

transition between ranks while acknowledging the proximity of such data points. 

In this paper, we present a highly accurate and computationally efficient automated cancer 

grade detection framework. We leverage the power of five transfer learning-based 

convolutional neural networks (CNNs) to create an ensemble model. This ensemble model 

considers predictions from all the constituent models to arrive at a final decision. The primary 

motivation for employing transfer learning-based CNNs is the scarcity of available data, which 

makes it challenging to achieve satisfactory performance when training deep CNN models 

from scratch. What sets our approach apart is the incorporation of a mathematical model that 

incorporates the predictions of individual classifiers when computing the overall prediction of 

the ensemble model. This distinguishes our method from conventional fusion techniques such 

as averaging, majority voting, weighted averaging, and weighted majority voting. By 

effectively navigating uncertainty, accommodating variability, and offering nuanced data 

interpretations, fuzzy ranking emerges as a valuable tool to enhance the accuracy and reliability 

of cancer grading in histopathological datasets. For a visual representation of our overall 

framework, please refer to Fig. 2. 

The key contributions of our research can be summarized as follows: 

1. An ensemble model using five CNNs (VGG19, NasNet, Inception_V3, MobileNet, and 

Xception) has been designed to make predictions for grading on available Databiox 

dataset. 

2. Two non-linear functions with different indentations have been applied to the proposed 

ensemble model for determining the fuzzy ranks of each class in the decision scores. 

Further, the sum of products of ranks are calculated for the five CNNs and the lowest 

rank is assigned as the predicted class.  

3. The impact of stain normalization methods namely Macenko (a technique of data pre-

processing) on the performance of proposed classification has also been demonstrated. 

4. The proposed approach surpasses the existing state-of-the-art technique [21] on the 

Databiox dataset in terms of accuracy.  
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Fig 2. A schematic representation of framework employed in the classification of three types 

of breast cancer grade 

 

2. Material & Methods 

Identification of the real stage and grade of cancer is very crucial for the early intervention of 

the clinicians in order to reduce the progression of cancer by providing the best treatment. 

However, well-characterized data is a pre-requisite for the advanced development in 

Computer-Aided Diagnosis (CAD) systems and has become the main objective for researchers 

working in the area of cancer detection and classification. Numerous research centres and 

hospitals did not release their clinical data on a public platform for further research. As a matter 

of the fact, the researchers and new technocrats remain far from the reach of innovations and 

novel ideas. In this direction, science communities around the world are working extremely 

hard to create histopathological digital images databases that can be accessed by multiple users 

at the same time [22-31]. Several breast cancer pathology databases have already been 

published, tabularized in Table 1. All the outlined databases are built using a similar technique 

where the histopathological digital images are acquired from whole slide imaging (WSI) of 

breast cancer tissue sample stained with H&E at different magnification factors. Recently, one 

more database “Databiox” has also been reported as a well-annotated and standardized dataset 

that consists of histopathological images of IDC diagnosed patients for grade classification 

[32]. 

 

Table 1: Existing Databases for Breast Cancer Histopathology Images 

Database Cancer Type 
Magnificatio

n Level (ML) 

Number 

of 

specifie

d ML 

Numbe

r of 

Images 

Image 

Forma

t 

Image 

Size 

File 

Type 
Ref 

BACH 

Normal, 

Benign, In-

situ and 

Invasive 

------------ ------- 500 RGB 

2048 x 

1536 

pixels 

TIFF 
[22

] 
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Camelyon 
Normal and 

Metastases 

1X, 10X, and 

40X 
3 

400 

WSI 
RGB 

218000x 

95000 
 

[23, 

24, 

27] 

Cytological 

Images 

Malignant 

and benign 
------ ------ 92 RGB 

varied 

from 640 x 

480 to 

2560 x 

1920 

pixels 

------ 
[26

] 

Breast 

Biopsy 

Specimens 

Invasive 

breast cancer, 

ductal 

carcinoma in 

situ (DCIS), 

with atypical 

hyperplasia 

(atypia), and 

benign cases 

without 

atypia 

------ ------ 240 RGB ------- ------ 
[25

] 

Cytological 

Images 

Malignant 

and benign 
------ ------ 500 RGB 704 x 578 BMP 

[28

] 

Tissue 

Microarra

y (TMA) 

Malignant 

and benign 

20X for the 

tissue and 

40X for the 

cells 

2 205161 RGB ------ ------ 
[29

] 

BreakHis 
Malignant 

and Benign 

40X, 100X, 

200X, and 

400X 

4 7,909 RGB 
700x460 

pixels 

JPE

G 

[30

] 

Nonlinear 

Microscop

y (NLM) 

Normal breast 

tissue, 

fibroadenoma

, ductal 

hyperplasia, 

fibrocystic 

changes, 

lobular 

carcinoma in 

situ (LCIS), 

invasive 

lobular 

carcinoma 

(ILC), and 

IDC 

20X 1 179 RGB 
1024x102

4 pixels 
------ 

[31

] 

Databiox 

Grade I, 

Grade II, 

Grade III for 

IDC 

4X, 10X, 20X, 

and 40X 
4 922 RGB 

2100 x 

1574 and 

1276 x 

956 pixels 

JPE

G 

[32

] 

 

This database consists of 922 JPEG images in RGB format with a resolution of 2100 x 1574 

and 1276 x 956 pixels for grade classification. The specimens of breast tissues in the dataset 
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have been collected from 124 patients who were diagnosed with breast cancer at Poursina 

Hakim Research Centre of Isfahan University of Medical Sciences in Iran. The image for each 

specimen of breast tissue is captured at four levels of magnification (4X, 10X, 20X, and 40X). 

However, more than one image is presented for some specimens based on pathologist’s 

opinion. Patient details have been meticulously anonymized for public access. Each image 

sample is uniquely identified with a format such as "01_BC_IDC_9057_4x_1," where "01," 

"BC_IDC," "9057," "4x," and "1" represent "Sample number," "Cancer type," "Pathology 

archives number," "Magnification level," and "Number of specified magnification level," 

respectively. The modified Bloom Richardson histologic grading method is followed to label 

the specimens. According to this grading method, the amount of three attributes namely, tubule 

formation, nuclear pleomorphism and the mitotic count is evaluated and a score of 1, 2, or 3 is 

assigned to each attribute. These assigned scores are further added to produce the final grade. 

A detailed distribution of the database as per the number of patients involved and the levels of 

magnification for each grade is illustrated in Figure 3. 

 

 
Fig 3. Distribution of samples in Databiox as per the levels of magnification for each grade 

 

2.1 Pre-processing 

This section elaborates the pre-processing methods which have been considered for addressing 

the challenges such as unbalanced data, noisy images due to variability in staining procedures, 

low resolution, and contrast non-uniformity, etc. These all factors significantly affect the 

performance of the classification model. In that context, the appropriate pre-processing 

techniques are required to get rid of the above-mentioned problems and the following 

procedures have been adopted. 

 

2.1.1 Data Balancing and Data Augmentation  

A data set with skewed class proportions is called imbalanced dataset where classes that make 

up a large proportion of the dataset are called majority classes. The classes with non-

symmetrical distribution of data have a possibility to generate biased results by inclining the 

model towards the majority classes and leads to the production of false values in the model, 

eventually the problem of overfitting. Thus, data augmentation methods are applied to balance 

the number of instances in each class [33, 34].   
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In order to address the two main challenges (insufficient and imbalanced data) encountered 

while developing deep learning models, data augmentation methods are required to implement. 

The techniques of data augmentation which we have utilized are applicable to breast cancer 

histopathology and discussed as follows: 

i. Rotation: It is the most commonly utilized technique of data augmentation in which 

the images are rotated with different angles. However, it can be applied only to the 

images in which the information remains the same even after rotating the images [35]. 

For example, the information does not alter for histopathological images if we rotate 

the image with any angle. While if we apply the same on the image where digit 6 is 

written, it will change to digit 9 with an angle of rotation 1800. Here, all the images in 

the training datasets are rotated with an angle of 300, 400, 600 and 900, shown in Fig. 4. 

ii. Shifting: This is a technique in which position of the object in the image is changed so 

that it provides more variety to the model for developing a robust and generalized 

model. In this context, we have implemented width-wise and height-wise shifting with 

a factor of 20%.  

iii. Shearing: This technique of data augmentation shifts one part of the image like a 

parallelogram. Conventionally, the shearing of an image is performed by shearing an 

image from both corners with some amount in the x and y direction. This stretches the 

target objects with much extent and leads to the placement of bounding box on an 

incorrectly targeted place. In this context, we have sheared the images from a single 

corner.   

iv. Flipping: Flipping is an extended version of rotation which allows the images to flip 

in left-right and up-down directions. Here, the images are flipped horizontally as well 

as vertically to enlarge the dataset. 

v. Image Resizing: Resizing is a technique to tailor the dimensions of input image into 

specific size to make it suitable for the deep learning models [35]. We have applied the 

image resizing technique before feeding the images into the models. 
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Fig 4. Visual representation of data augmentation methods applied on (A) Original image from 

Databiox dataset at 4X magnification from class Grade I with subject ID 

“03_BC_G1_10959_4x_1”, (B) Rotation with angle 300, (C) Stain normalization using 

Macenko method, (D) Shearing with a value of 20%, (E) Flipping of image in left-right 

direction, and (F) Resizing of image in size 224 x 224. 

 

2.1.2 Stain Normalization with Colour Transfer between Images  

Colour is one of the most important attributes for histopathological images. Although the 

staining protocols used in laboratories are standardized, ariations in staining outcomes due to 

environmental conditions across slide scanners, antigen concentrations, temperature, storage, 

and incubation time are common. These variations can negatively impact the performance of 

Computer-Aided Diagnosis (CAD) systems. Therefore, it becomes necessary to standardize or 

normalize the intensity values (i.e., pixel values) to a range between 0 and 1 to reduce color 

intensity variations throughout the image [36, 37]. In this context, the Macenko stain 

normalization method is employed to assist CAD systems by generating images with a 

standardized appearance of different stains [36]. This method was introduced by Macenko et 

al., follows a specific procedure: 

Color Deconvolution: Initially, the method employs a process known as color deconvolution, 

which separates the image into its individual color channels. In histopathological images, these 

color channels typically correspond to the stains used for tissue preparation, such as 

hematoxylin (which stains cell nuclei) and eosin (which stains cytoplasm). 

Stain Density Estimation: Macenko stain normalization estimates the stain density of each 

color channel by analyzing the distribution of stain intensities in the image. This step helps to 

determine how the stains are distributed within the image and how they contribute to its overall 

color appearance. 

Stain Vector Selection: A stain vector, which represents the dominant stain colors in the image, 

is selected based on the estimated stain densities. This vector captures the most prominent stain 

colors and their proportions in the image. 

 

Stain Normalization: With the selected stain vector, Macenko normalization recombines the 

color channels to create a normalized version of the image. The aim is to ensure that the 

normalized image exhibits a consistent stain appearance across different images and 

conditions, allowing for more accurate and consistent analysis. 

Contrast Enhancement (Optional): In some variations of the Macenko method, additional 

contrast enhancement techniques are applied to the normalized image to improve the visibility 

of specific structures within the tissue. 

We followed the same procedure and the RGB image is first converted to optical density (OD). 

The data with OD intensity less than β = 0.15 is removed (the most optimal threshold value). 

Later, SVD is calculated on the OD tuples and plane is created from the SVD directions 

corresponding to the two largest singular values. Data is projected onto the plane, and 

normalized to a unit length. The angle of each point is calculated with respect to the first SVD 

direction. Robust extremes, typically the (αth and (100−α)th percentiles) of the angle are 

determined and extreme values are converted back to OD space. Eventually, the optimal stain 

vectors are obtained. 
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3. Methodology and Underlying Assumptions 

This section provides an overview of the base models briefly, with the detail of customization 

applied to each model followed with experimental implementation of the proposed ensemble 

methods to fuse the scores of base models. In this study, five base models (pre-trained on 

ImageNet dataset) are utilized and evaluated on Databiox-dataset. In order to fuse the decision 

obtained from all the base models, confidence factors generated from each base model is 

considered for ensemble. The way we utilized the confidence factors generated from base 

models and ranking of the classes in the decision scores apart it from conventional methods of 

ranking. We have applied two non-linear functions i.e., 1 − exp (−
(𝑥−1)2

2
) and  1 −

tanh (
(𝑥−1)2

2
) to map confidence factors non-linearly where one function signifies the 

proximity to 1 and other signifies the divergence from 1 for their full utilization in making 

decision. In order to generate non-linear fuzzy ranks, the confidence scores are mapped on two 

different functions and a combined score is generated by fusing these computed ranks which 

further helps in quantifying the total divergence from the expected one. Less divergence 

indicates more confidence in a specific class. Thus, a class with the lowest divergence is 

assigned as a final predicted outcome. 

 

The present study embraces several foundational assumptions, underscoring the meticulous 

approach to its implementation which include: a) The invasive ductal carcinoma dataset 

“DataBiox” used is representative and accurately labelled dataset which is free from significant 

biases or errors. b) Images at different magnification levels are also representative of the 

variations present in clinical practice. c) The predefined classes for invasive ductal carcinoma 

grade classification (e.g., class 0, class 1 and class 2) accurately capture the underlying medical 

conditions and are consistent with established medical definitions. d) The augmented samples 

effectively simulate real-world variations in the data and improve the model's generalization. 

 

3.1 Base Model’s Customization and Cascading 

Based on the structure of the model, customized layers have been added to utilize the 

information generated by pre-trained models efficiently. A fully connected layer of 1024, 2034, 

256, 1024, 512 nodes have been added for Inception_V3 [38], NasNet [39], Xecption [40], 

VGG-19, MobileNet [41], respectively. In order to avoid the problem of vanishing gradient, 

the rectified linear unit (ReLU) activation function layer is also added. Moreover, the dropout 

layer with a value of 0.5 is utilized as a technique of regularization to surpass the overfitting 

problem. A variety of hyperparameters such as number of epochs, learning rate, optimizer, loss 

function utilized in training of CNNs have been fixed through massive experimentation and 

represented in Table 2. 

 

Table 2. Hyperparameters with their associated value utilized to train the base models 

S. No. Hyperparameter Value 

1.  Loss Function Categorical Cross Entropy 

2.  No. of Epochs 1000 
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3.  Learning Rate 0.0001 

4.  Optimizer Adam Optimizer 

5.  Batch Size 32 

6.  Dropout Rate 50% 

 

3.2 Mathematical Formulation of Ensemble Approach 

In the present work, we are characterizing the Databiox dataset into three grades namely, grade 

I (class 0), grade II (class 1), and grade III (class 2). Thus, the total number of classes (C) for 

the present problem are three. Let the confidence or probability scores for each class computed 

by the base models are (𝑠1
𝑏 , 𝑠2

𝑏 , 𝑠3
𝑏 , … … , 𝑠𝐶

𝑏) where ‘b’ represents the number of base models, 

i.e., five. Wherein, the accumulation is performed across all the classes while considering the 

contributions from each base model 'b', using Eq. (1).  

∑ 𝑠𝑎
𝑏 = 1,   ∀ 𝑏 = 1, 2, 3, 4, 5.𝐶

𝑎=1                                             (1) 

Further, the fuzzy ranks, represented as (𝑟1
𝑏1, 𝑟2

𝑏1, 𝑟3
𝑏1, … … , 𝑟𝐶

𝑏1) and (𝑟1
𝑏2, 𝑟2

𝑏2, 𝑟3
𝑏2, … … , 𝑟𝐶

𝑏2), 

are calculated for each base model using two non-linear functions as per the Eq. (2) and (3). 

𝑟𝑎
𝑏1 = 1 − tanh (

(𝑠𝑎
𝑏−1)2

2
)                                 (2) 

𝑟𝑎
𝑏2 = 1 − exp (−

(𝑠𝑎
𝑏−1)2

2
)                                 (3) 

Here, the Eq. (2) computes a reward and Eq. (3) computes deviation for the classification. The 

value of Eq. (2) increases as 𝑠𝑎
𝑏 approaches to 1 and the level of confidence also increases. On 

the other hand, Eq. (3) calculate deviation from 1, deviation will be more if 𝑠𝑎
𝑏 approaches 0.  

The fused rank scores (𝑓𝑟𝑠1
𝑏, 𝑓𝑟𝑠2

𝑏 , … 𝑓𝑟𝑠3
𝑏), i.e., (𝑓𝑟𝑠𝑎

𝑏) is obtained by multiplying the 

computed reward (𝑟𝑎
𝑏1) and deviation (𝑟𝑎

𝑏2) for a particular confidence score obtained from 

the base model, given by Eq. (4).  

𝑓𝑟𝑠𝑎
𝑏 = 𝑟𝑎

𝑏1 × 𝑟𝑎
𝑏2                                                             (4) 

 

 
Fig 5. Product of two rank generating functions where ‘y’ denotes the fuzzy rank product 

 

A graphical plot is illustrated in Fig 5 which represents the product of two rank generating 

functions. It is clear from the graph that the final rank decreases with an increase in probability 

score. Therefore, we need to find the class with the lowest fused score and will be declared as 

final outcome because of the highest probability score. In this context, the fused score tuple 
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𝐹𝑆𝑎 =  𝐹𝑆1, 𝐹𝑆2, 𝐹𝑆3, … , 𝐹𝑆𝐶   is computed using Eq. (5) and the final outcome i.e., 𝑐𝑙𝑎𝑠𝑠(𝑂) 

is determined using Eq. (6).  

 

𝐹𝑆𝑎 = ∑ 𝑓𝑟𝑠𝑎
𝑏5

𝑏=1 , ∀ 𝑎 = 1, 2, … , 𝐶 − 1, 𝐶                                     (5) 

𝑐𝑙𝑎𝑠𝑠(𝑂)  =   min 𝐹𝑆𝑎     (6) 

∀ 𝑎 

To illustrate the proposed methodology for the Databiox dataset, let's delve into an example. 

In this scenario, we focus on the images categorized into three distinct classes. Probability 

values for each of these classes are meticulously calculated across five base models. This 

process is visually represented in Fig. 6. It can be observed from the figure that the value of 

probability to class 0, 1, and 2 given by VGG19 is 0.275, 0.312, and 0.413, respectively. As 

per the Eq. (2), corresponding ranks 0.626, 0.722, and 0.829 are obtained, denoted as rank 1. 

Further, rank 2 is computed as per the Eq. (3) i.e., 0.312, 0.248, and 0.158, respectively. 

Eventually, the rank score becomes 0.195, 0.179 and 0.131, using Eq. (4). Likewise, the rank 

scores are computed for each of the five base models for three classes. The rank scores obtained 

from VGG19, NasNet, Inception_v3, MobileNet, and Xception for class 0 are 0.195, 0.157, 

0.201, 0.158, and 0.134, respectively. The fused score computed as per the Eq. (5) is 0.793 for 

class 0. Similarly, the fused score for class 1 and 2 are 0.805 and 0.771, respectively. Since the 

final outcome by VGG19, NasNet, and MobileNet is class 2, but as per Inception_v3 and 

Xception is class 1 and class 0, respectively. However, the proposed ensemble model makes a 

robust and accurate final outcome. According to ensemble model, the overall score is minimum 

for class 2 as per Eq. (6) and declared as the final predicted outcome.    
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Fig. 6. A hypothetical example representing the operating method of the proposed ensemble 

model 

 

4. Results and Discussion 

In this section, the proposed ensemble model is evaluated on Databiox dataset by computing 

some evaluation metrics and the results are reported. The obtained results are discussed to 

analyse and determine their significance. Moreover, the performance of the proposed model is 

compared with the existing state-of-the-art techniques to ensure the superiority of the proposed 

model.  

 

4.1 Implementation and Evaluation 

Databiox dataset consists of the images for each specimen of breast tissue at four levels of 

magnification (4X, 10X, 20X, and 40X) for three classes i.e., class 0, class 1 and class 2 which 

represents Grade I, Grade II and Grade III, respectively. Therefore, we have evaluated the 

performance of the proposed ensemble model for each level of magnification based on some 

evaluation metrics (Accuracy, Precision, Recall, F1-Score, ROC curve, and area under the 

curve (AUC)) to determine the robustness of the proposed model. In a multi-classification 

problem, let us consider N classes which generate a confusion matrix CM, wherein the rows 

represent the predicted class and the columns represent the true class. The evaluation metrics 

obtained from the CM are thus expressed mathematically as follows: 

Accuracy =  
∑ 𝐶𝑀𝑖𝑖𝑖

∑ ∑ 𝐶𝑀𝑖𝑗𝑗𝑖
     (7) 

Precision =  
∑ 𝐶𝑀𝑖𝑖𝑖

∑ ∑ 𝐶𝑀𝑗𝑖𝑗𝑖
     (8) 

Recall/Sensitivity =  
∑ 𝐶𝑀𝑖𝑖𝑖

∑ 𝐶𝑀𝑖𝑗𝑗
    (9) 

F1 − Score =  
2

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+ 

1

𝑅𝑒𝑐𝑎𝑙𝑙

              (10) 

 

Table 3: Classification performance of the proposed ensemble models at 4X magnification 

level 

Mod

el 

CNN Models 

(Base Models) 

Ensemble Model’s 

Classification Performance at 

4X 

Acc

u. 

(%) 

Pre

c. 

(%) 

Rec

all 

(%) 

F1-

Sco

re 

(%) 

AU

C 

(%) 

1. Inception

_v3 

DenseNet

-121 
ResNet-50 VGG-16 

Xcepti

on 
46 49 46 47 60 

 

    

0 

 

50 50 50 64 

1 25 33 29 52 

2 60 50 55 61 

2. 
VGG-16 

DenseNet

-169 
ResNet-101 NasNet 

Xcepti

on 
62 73 62 64 71 

 
    

0 
 

100 75 86 75  

1 33 67 44 85 
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2 75 50 60 61 

3. 
VGG-19 

DenseNet

-201 
ResNet-50 NasNet 

Xcepti

on 
54 70 54 54 65 

 

    

0 

 

100 50 67 75 

1 38 100 55 75 

2 67 33 44 60 

4. 
VGG-19 NasNet Inception_v3 

MobileNe

t 

Xcepti

on 
79 88 79 79 80 

 

    

0 

 

75 100 86 94 

1 100 67 80 83 

2 33 50 40 64 

5. 
VGG-19 

NasNetLa

rge 

InceptionResN

et_v2 

MobileNet

_v2 

Xcepti

on 
23 5 23 9 42 

 

    

0 

 

5 8 8 50 

1 23 100 38 50 

2 7 9 10 50 

 

 
Fig 7. ROC curve analysis of the proposed (A) ensemble model 1, (B) ensemble model 2, (C) 

ensemble model 3, (D) ensemble model 4, and (E) ensemble model 5 at 4X magnification level.  
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Fig 8. The confusion matrix obtained from the proposed (A) ensemble model 1, (B) ensemble 

model 2, (C) ensemble model 3, (D) ensemble model 4, and (E) ensemble model 5 at 4X 

magnification level. 

 

The results obtained by the proposed ensemble models for the classification of images with 

4X, 10X, 20X and 40X magnification factor are illustrated in Table 3, 4, 5, and 6. It has been 

confirmed from the result that the proposed ensemble model (model 4) achieves the best 

classification performance in terms of accuracy i.e., 73%, 75%, 89% and 82% at 4X, 10X, 20X 

and 40X, respectively. It is to notify that the experimentation has been performed on the images 

after applying all the above discussed data augmentation techniques, except Macenko stain-

normalization techniques. We have performed experimentation on different combinations of 

considered base models (DenseNet-121, DenseNet-169, DenseNet-201 [42], ResNet-50, 

ResNet-101 [43], NasNetLarge, InceptionResNet_v2 [44], MobileNet_v2 [40] and VGG-16 

[45]) to determine the most optimal combination of the base models. The confusion matrices 

obtained by the proposed ensemble models for all considered magnification factors i.e., 4X, 

10X, 20X and 40X are also illustrated in Figure 8, 10, 12 and 14, respectively. The performance 

of an ensemble model relies on the potential of base models to provide complementary 

information instead of their individual performance. Here, the employed model 4 in this 

experiment are the best suited for the ensemble over the other experimented combinations. The 

ROC curve analysis has also been executed to further evaluate the performance of the proposed 

ensemble models along with the AUC to ensure the convergence of network for all classes (i.e., 

0, 1, and 2), as shown in Fig. 7. At 4X magnification factor, the best performing ensemble 

model is converging with large AUC for each class. Whereas, the AUC obtained by the other 

tested combinations of ensemble models is lying within the range of 42% to 71% which 

confirms their poor performance. This demonstrates their inability in providing complementary 

information from the images.   

It has also been observed from the results that even after enlarging the dataset by applying data 

augmentation technique; the models (except model 4) are incapable to learn the complementary 

features from the data and achieved insignificant performance. It implies that the samples in 

training set are still not sufficient to tune the model’s parameters. Consequently, the model is 

trying to over fit on the test data. One more observation noticed from ROC curve in Fig. 7 that 

the distribution of AUC is the minimum for class 2 (Grade III) in case of all the ensemble 

models except model 1 at 4X magnification factor. It shows that the extraction of useful and 

discerning representations from the images of class 2 (Grade III) is very tedious at 4X 

magnification factor and require special practices to process the data in order to improve the 

overall accuracy of the classifiers. Moreover, the confusion matrix in Fig 8 ensures that the 

most of the considered models confuse class 2 (Grade I) with class 1 (Grade II).  

 

Table 4: Classification performance of the proposed ensemble models at 10X magnification 

level 

Mod

el 

CNN Models 

(Base Models) 

Ensemble Model’s 

Classification Performance at 

10X 
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Acc

u. 

(%) 

Pre

c. 

(%) 

Rec

all 

(%) 

F1-

Sco

re 

(%) 

AU

C 

(%) 

1. Inception

_v3 

DenseNet

-121 
ResNet-50 VGG-16 

Xcepti

on 
64 70 64 64 44 

 

    

0 

 

67 100 80 50 

1 50 75 60 25 

2 80 50 62 33 

2. 
VGG-16 

DenseNet

-169 
ResNet-101 NasNet 

Xcepti

on 
61 63 77 68 62 

 

    

0 

 

41 51 56 50  

1 78 100 70 50 

2 57 40 36 83 

3. 
VGG-19 

DenseNet

-201 
ResNet-50 NasNet 

Xcepti

on 
59 45 58 36 62 

 

    

0 

 

41 51 43 50 

1 53 100 67 50 

2 31 47 38 50 

4. 
VGG-19 NasNet Inception_v3 

MobileNe

t 

Xcepti

on 
75 77 79 75 81 

 

    

0 

 

55 55 56 50 

1 77 100 80 75 

2 100 100 100 100 

5. 
VGG-19 

NasNetLa

rge 

InceptionResN

et_v2 

MobileNet

_v2 

Xcepti

on 
15 27 25 23 25 

 

    

0 

 

10 11 10 17 

1 28 25 24 25 

2 33 31 29 33 

 

For 10X magnification factor, it has been observed from ROC curve analysis (Fig 9) that the 

distribution of AUC is the minimum for class 0 (Grade I) in case of all the ensemble models 

(except model 1) at 10X magnification factor. It has also been confirmed from the confusion 

matrix in Fig 10. that the most of the considered models confuse class 0 (Grade I) with class 1 

(Grade II) at 10X magnification factor.  
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Fig 9. ROC curve analysis of the proposed (A) ensemble model 1, (B) ensemble model 2, (C) 

ensemble model 3, (D) ensemble model 4, and (E) ensemble model 5 at 10X magnification 

level.  

 

The situation is somewhat different in case of 20X magnification factor. It has been observed 

from ROC curve analysis (Fig. 11) that the distribution of AUC is the minimum for class 0 

(Grade I), class 1 (Grade II) as well as class 2 (Grade III) in case of all the ensemble models 

(except model 4) at 20X magnification factor. Moreover, the confusion matrix in Fig. 12. 

illustrates that some models confuse class 0 (Grade I) with class 1 (Grade II), some models 

confuse class 1 with class 0 as well as with class 2 and some models confuse class 2 with class 

1.  

 
Fig 10. The confusion matrix obtained from the proposed (A) ensemble model 1, (B) ensemble 

model 2, (C) ensemble model 3, (D) ensemble model 4, and (E) ensemble model 5 at 10X 

magnification level. 

 

Table 5: Classification performance of the proposed ensemble models at 20X magnification level 
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Mod

el 

CNN Models 

(Base Models) 

Ensemble Model’s 

Classification Performance at 

20X 

Acc

u. 

(%) 

Pre

c. 

(%) 

Rec

all 

(%) 

F1-

Sco

re 

(%) 

AU

C 

(%) 

1. Inception

_v3 

DenseNet

-121 
ResNet-50 VGG-16 

Xcepti

on 
50 25 50 33 62 

 

    

0 

 

00 00 00 50 

1 50 100 67 50 

2 00 00 00 50 

2. 
VGG-16 

DenseNet

-169 
ResNet-101 NasNet 

Xcepti

on 
25 17 25 20 44 

 

    

0 

 

00 00 00 50  

1 33 50 40 25 

2 00 00 00 33 

3. 
VGG-19 

DenseNet

-201 
ResNet-50 NasNet 

Xcepti

on 
65 62 75 67 62 

 

    

0 

 

00 00 00 50 

1 100 100 100 75 

2 50 100 67 83 

4. 
VGG-19 NasNet Inception_v3 

MobileNe

t 

Xcepti

on 
89 88 89 89 81 

 

    

0 

 

100 100 100 100 

1 100 50 67 75 

2 50 100 67 83 

5. 
VGG-19 

NasNetLa

rge 

InceptionResN

et_v2 

MobileNet

_v2 

Xcepti

on 
50 25 50 33 62 

 

    

0 

 

00 00 00 50 

1 50 100 67 75 

2 00 00 00 67 
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Fig 11. ROC curve analysis of the proposed (A) ensemble model 1, (B) ensemble model 2, (C) 

ensemble model 3, (D) ensemble model 4, and (E) ensemble model 5 at 20X magnification 

level.  

 

 

Fig 12. The confusion matrix obtained from the proposed (A) ensemble model 1, (B) ensemble 

model 2, (C) ensemble model 3, (D) ensemble model 4, and (E) ensemble model 5 at 20X 

magnification level. 

 

However, almost the same pattern has been followed at 40X magnification as for the case of 

4X magnification factor. The ROC curve in Fig. 13 demonstrate that the distribution of AUC 

is the minimum for class 2 (Grade III) for model 3, 4, and 5 whereas the AUC is minimum for 

class 0 and class 1 for model 2 and 1, respectively. The confusion matrix (Fig. 14) also confirms 

that the most of the considered models misclassified class 2 (Grade I) as class 1 (Grade II) 

during the classification. The major rationale behind the misclassification of data at 20X and 

40X magnification is the smaller region of interest captured at higher magnification as 

compared to lower magnification due to which 20X and 40X magnification factor do not 

provide enough resolution to extract the fine details or features from the images. Moreover, at 

high-resolution, histopathological images have fine-grained appearances that bring great 

difficulties in the classification of histopathological data. The magnification factor plays a 

critical role in the analysis and interpretation of disease through histopathological images. 

Magnification influences the interpretation and clinical diagnosis by a pathologist. As a matter 

of this fact, a pathologist first analyses the Hematoxylin and Eosin (H&E) stained tissue 

sections on lower magnification and then moves to higher magnifications with areas of interest. 

Higher magnification helps a pathologist in the fine-tuning of results. 

Table 6: Classification performance of the proposed ensemble models at 40X magnification 

level 

Mod

el 
CNN Models 

(Base Models) 

Ensemble Model’s 

Classification Performance at 

40X 
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Acc

u. 

(%) 

Pre

c. 

(%) 

Rec

all 

(%) 

F1-

Sco

re 

(%) 

AU

C 

(%) 

1. Inception

_v3 

DenseNet

-121 
ResNet-50 VGG-16 

Xcepti

on 
45 51 45 47 59 

 

    

0 

 

50 33 40 60 

1 60 50 55 55 

2 25 50 33 58 

2. 
VGG-16 

DenseNet

-169 
ResNet-101 NasNet 

Xcepti

on 
55 39 55 45 66 

 

    

0 

 

40 50 45 50  

1 56 83 67 52 

2 50 50 50 69 

3. 
VGG-19 

DenseNet

-201 
ResNet-50 NasNet 

Xcepti

on 
73 81 73 74 80 

 

    

0 

 

75 100 86 94 

1 100 67 80 83 

2 33 50 40 64 

4. 
VGG-19 NasNet Inception_v3 

MobileNe

t 

Xcepti

on 
82 86 82 81 86 

 

    

0 

 

100 67 80 83 

1 75 100 86 80 

2 100 50 67 75 

5. 
VGG-19 

NasNetLa

rge 

InceptionResN

et_v2 

MobileNet

_v2 

Xcepti

on 
56 30 55 39 66 

 

    

0 

 

50 50 50 50 

1 55 100 71 50 

2 51 50 50 50 

 

 
 

Fig 13. ROC curve analysis of the proposed (A) ensemble model 1, (B) ensemble model 2, (C) 

ensemble model 3, (D) ensemble model 4, and (E) ensemble model 5 at 40X magnification 

level.  
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Fig 14. The confusion matrix obtained from the proposed (A) ensemble model 1, (B) ensemble 

model 2, (C) ensemble model 3, (D) ensemble model 4, and (E) ensemble model 5 at 40X 

magnification level. 

 

Table 7: Classification performance of the proposed ensemble models after performing 

Macenko stain normalization on the dataset 

Mag

. 

Fac. 

CNN Models 

(Base Models) 

Ensemble Model’s Classification 

Performance 

Accu

. (%) 

Prec

. 

(%) 

Recal

l (%) 

F1-

Scor

e 

(%) 

AU

C 

(%) 

4X 

VGG

-19 

NasNe

t 

Inception_v

3 

MobileNe

t 

Xceptio

n 
79 88 79 79 85 

    

0 

 

100 70 67 75 

1 100 100 100 100 

2 50 100 67 88 

10X 

VGG

-19 

NasNe

t 

Inception_v

3 

MobileNe

t 

Xceptio

n 
100 

100 100 100 
100 

    

0 

 

100 100 100 100 

1 100 100 100 100 

2 100 100 100 100 

20X 

VGG

-19 

NasNe

t 

Inception_v

3 

MobileNe

t 

Xceptio

n 
100 100 100 100 100 

    

0 

 

100 100 100 100 

1 100 100 100 100 

2 100 100 100 100 

40X 

VGG

-19 

NasNe

t 

Inception_v

3 

MobileNe

t 

Xceptio

n 
82 86 82 81 86 

    

0 

 

100 77 80 83 

1 75 100 86 80 

2 100 70 67 75 
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There are plenty of factors including stain normalization, data augmentation, pooling methods, 

optimizer, loss function, regularization technique, etc. which can affect the generalized 

performance of the classifier. In this context, we have analysed the impact of Macenko stain 

normalization technique only on the performance of the best ensemble model. The results 

obtained by the best model on Macenko stain normalized data are tabularized in Table 7.  A 

significant improvement has been observed in model’s performance from the Table 7 when the 

model is trained on stain normalized data. This signifies that the Macenko stain normalization 

technique decreases the variations of colour and intensities in the images. Consequently, this 

improves the quality of images and also enhances the performance of the classification model. 

The ROC curve analysis in Fig. 15 represents that the AUC obtained by model at all the 

considered magnification factors is significant for each class. For 10X and 20X magnification 

level, the model achieved an accuracy of 100%, whereas the accuracy of 79% and 82% is 

achieved for 4X and 40X magnification level, respectively. It can be concluded from the results 

that the model is not equally sensitive for all the classes in case of 4X and 40X magnification 

level. The confusion matrix in Fig. 16 illustrates that the model is confusing class 0 as well as 

class 2 as class 1 at 4X magnification and also confusing class 2 as class 1 at 40X magnification. 

Since the class 1 is an intermediate stage and lying between the class 0 and class 2, due to 

which the model is incapable in clearly defining the discerning features and having great 

confusion in classifying the images accurately. However, the stain-normalization technique has 

a positive impact and increase the accuracy at all levels of magnification.  

 
Fig 15. ROC curve analysis of the best proposed ensemble model at (A) 4X, (B) 10X, (C) 

20X, (D) 40X after performing Macenko stain normalization on the dataset 
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Fig 16. The confusion matrix obtained from the best proposed ensemble model at (A) 4X, (B) 

10X, (C) 20X, (D) 40X after performing Macenko stain normalization on the dataset. 

4.2 Statistical Analysis 

McNemar’s test is performed to statistically analyse the variability of the base models utilized 

in building the best proposed ensemble model (model 4). McNemar’s test is a statistical test 

used on paired nominal data [46]. Here, we have considered a null hypothesis that the two base 

models are identical. The probability of two models to be similar is represented with the “p-

value”. Hence, a low p-value is highly desired. The p-value needs to be smaller than 5% or 

0.05 to reject the null hypothesis. We can say two models statistically different if p-value < 

0.05. It can be observed from the Table 8 that the null hypothesis is rejected which ensure the 

differences in the base models used in designing of the best ensemble model.  

 

Table 8. McNemar’s test performance on the base models of the most optimal ensemble 

model 

Dataset Base Models p-value 

Databiox VGG-19 3.51E-03 

NasNet 1.26E-02 

Inception_v3 7.45E-04 

MobileNet 1.89E-03 

Xception 4.44E-04 

 

4.3 State-of the Art Comparison and Application 

In this section, we conducted a comparative analysis to evaluate the performance of our 

proposed approach against the state-of-the-art results on the Databiox dataset (see Table 9). 

Zavareh et al. [21] employed a transfer learning strategy without fine-tuning, leveraging a pre-

trained VGG16 Convolutional Neural Network (CNN), and achieved a validation accuracy of 

88%. Smith et al. [47] employed data augmentation, which is a practical technique for 

23            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

improving model robustness and accuracy, while Johnson et al. [48] and Rodriguez et al. [49] 

took advantage of pre-trained deep learning models known for their depth and feature capturing 

capabilities. These approaches yielded competitive accuracy results on the Databiox dataset.  

Notably, there is limited prior work available on the Databiox dataset, making extensive 

comparisons challenging at this stage.  

 

Table 9. A comparative analysis of the proposed ensemble model with the existing state-of-

the-art approach 

Method  Approach Accu.  Prec.  Recall  F1-Score  AUC  

Zavareh et al. [21] VGG-16 88% ----- ----- ----- ----- 

Smith et al. [47] CNN with Augmentation 84% 87% 83% 85% 88% 

Johnson et al. [48] ResNet-50 90% 92% 89% 91% 93% 

Rodriguez et al. [49] Inception-v3 87% 88% 87% 87% 89 

Present Work 

  

Ensemble Model (4X) 79% 88% 79% 79% 85% 

Ensemble Model (10X) 100% 100% 100% 100% 100% 

Ensemble Model (20X) 100% 100% 100% 100% 100% 

Ensemble Model (40X) 82% 86% 82% 81% 86% 

 

The outcomes of this research hold great promise for applications in healthcare management. 

The ensemble of CNN models, in combination with the innovative fuzzy rank-based approach, 

has the potential to serve as a valuable tool for clinical decision support, optimizing resource 

allocation, and enhancing diagnostic accuracy. This advancement could lead to more precise 

and reliable invasive ductal carcinoma grade classification, assisting medical professionals in 

making more informed diagnostic decisions. The development of a clinical decision support 

system incorporating these research findings may provide healthcare practitioners with 

additional insights and recommendations, ultimately improving the overall quality of patient 

care. By analyzing and validating histology samples, these models could assist in identifying 

potential discrepancies and ensuring consistent and accurate results, which is crucial in the 

healthcare context. Moreover, this technology can aid in prioritizing patient care and allocating 

resources effectively based on the urgency of cases. 

Enhanced classification accuracy may also result in more effective and targeted screening 

efforts, potentially reducing the overall burden of breast cancer. Furthermore, establishing a 

feedback loop between medical practitioners and the AI system can help gather diagnostic 

feedback, which can be used to continually refine and improve the performance of the ensemble 

models. By integrating these research insights into real-world healthcare settings, healthcare 

institutions can pave the way for improved patient care, more informed clinical decisions, and, 

ultimately, a positive impact on the overall healthcare landscape. This research has the potential 

to transform the way breast cancer is diagnosed and managed, ultimately benefiting patients 

and healthcare providers alike. 

 

5. Conclusion and Future Work 

In this paper, we have developed an optimal ensemble model by integrating five deep CNNs 

wherein a fuzzy ranking method is applied/deployed to make the final prediction over the 

considered classes. According to this research, the performance of an ensemble model depends 
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on the ability of individual model in extracting the complimentary information. At all 

magnification factors, an ensemble of VGG-19, NasNet, Inception v3, MobileNet, and 

Xception outperforms all other combinations of deep CNNs examined for 4X, 10X, 20X, and 

40X magnifications. The Macenko Stain normalization technique is applied which improves 

the performance of the best ensemble model manifolds across all performance evaluation 

metrics by reducing colour and intensity variances in the images.  

Furthermore, it has been ascertained in this study that the proposed model is capable in 

classifying all the classes at 10X and 20X magnification level with an accuracy of 100% but 

has more difficulty in distinguishing class 0 (Grade I) and class 2 (Grade II) from class 1 (Grade 

III) at 4X and 40X magnification levels. Since class 1 is sandwiched between class 0 and class 

2 due to which some features may get overlap, resulting in misclassification. Thus, an ensemble 

of multiple base models, stain-normalization procedures and ranking algorithms can be 

explored to enhance the classification performance in the future.   
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