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•We prove in genotype-
matched complement-
mediated aHUS cohorts
that C5 inhibition
results in a statistical
improvement in ESKD-
free survival.

•We demonstrate that
biallelic pathogenic
mutations in EXOSC3
cause eculizumab
nonresponsive aHUS.
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Historically, the majority of patients with complement-mediated atypical hemolytic
uremic syndrome (CaHUS) progress to end-stage kidney disease (ESKD). Single-arm
trials of eculizumab with a short follow-up suggested efficacy. We prove, for the first
time to our knowledge, in a genotype matched CaHUS cohort that the 5-year cumulative
estimate of ESKD-free survival improved from 39.5% in a control cohort to 85.5% in the
eculizumab-treated cohort (hazard ratio, 4.95; 95% confidence interval [CI], 2.75-8.90;
P = .000; number needed to treat, 2.17 [95% CI, 1.81-2.73]). The outcome of eculizumab
treatment is associated with the underlying genotype. Lower serum creatinine, lower
platelet count, lower blood pressure, and younger age at presentation as well as shorter
time between presentation and the first dose of eculizumab were associated with
estimated glomerular filtration rate >60 ml/min at 6 months in multivariate analysis. The
rate of meningococcal infection in the treated cohort was 550 times greater than the
background rate in the general population. The relapse rate upon eculizumab with-
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drawal was 1 per 9.5 person years for patients with a pathogenic mutation and 1 per 10.8 person years for those
with a variant of uncertain significance. No relapses were recorded in 67.3 person years off eculizumab in those with
no rare genetic variants. Eculizumab was restarted in 6 individuals with functioning kidneys in whom it had been
stopped, with no individual progressing to ESKD. We demonstrated that biallelic pathogenic mutations in RNA-
processing genes, including EXOSC3, encoding an essential part of the RNA exosome, cause eculizumab nonre-
sponsive aHUS. Recessive HSD11B2 mutations causing apparent mineralocorticoid excess may also present with
thrombotic microangiopathy.
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Learning Objectives
Upon completion of this activity, participants will:
1. Describe clinical and genetic characteristics of individuals with suspected complement-mediated atypical hemolytic uremic syn-

drome (CaHUS) treated with eculizumab, based on a national observational cohort study using data from the National Renal
Complement Therapeutics Centre (NRCTC) in the United Kingdom

2. Describe outcomes of individuals with suspected CaHUS treated with eculizumab, based on a national observational cohort study
using NRCTC data

3. Describe clinical implications of real-world experience of treating individuals with suspected CaHUS with eculizumab, based on a
national observational cohort study using NRCTC data

Release date: October 19, 2023; Expiration date: October 19, 2024
s.org/blood/article-pdf/142/16/1371/2084497/blood_bld-2022-018833r2-m
ain.pdf by guest on 16 January 2024
Introduction
Complement-mediated atypical hemolytic uremic syndrome
(CaHUS) is a rare kidney disease in which complement activa-
tion occurs on endothelial cell surfaces, resulting in thrombotic
microangiopathy.1 It is characterized by the clinical presentation
of thrombocytopenia, microangiopathic hemolytic anemia
(MAHA), and acute kidney injury. In ~50% of individuals, an
inherited (CFH, CFI, CD46, CFB, and C3 mutations) or acquired
(factor H autoantibodies [FHAA]) complement abnormality is
identified.1,2 Historically, management comprised supportive
care with or without plasma exchange, and outcomes were
poor, with end-stage kidney disease (ESKD) or death occurring
at first presentation in a high proportion of individuals, contin-
gent upon the genetic background.3

Small, single-arm trials of eculizumab suggested its efficacy4 in
CaHUS; however, its rarity restricted the ability to power clinical
trials and published follow-up has been relatively short.4-6 In
England, all cases of suspected CaHUS are referred to a single
national specialized center, the National Renal Complement
Therapeutics Centre (NRCTC) (http://www.atypicalhus.co.uk/),7

and a genotyped registry established in the preeculizumab
era allows for comparison.8

In this observational cohort study, we report the real-world
experience of treating individuals with suspected CaHUS with
eculizumab in a national cohort, describe the response to
treatment, and compare outcomes with those of a genotype-
matched cohort who did not receive eculizumab. Here, we
describe novel noncomplement genetic causes of aHUS.

Methods
Study population
All individuals who were referred to the NRCTC with suspected
CaHUS were considered for the study (Figure 1). Renal
2 19 OCTOBER 2023 | VOLUME 142, NUMBER 16
transplantation–associated CaHUS cases were excluded.9 The
control CaHUS cohort comprised individuals referred between
1995 and 2019 with a pathogenic mutation in a gene associated
with CaHUS or positive FHAA not treated with eculizumab.
The treated cohort comprised individuals referred between
2013 and July 2019 with suspected CaHUS who received ecu-
lizumab for native kidney disease (inclusion/exclusion criteria,
supplemental Methods, available on the Blood website). Indi-
viduals referred before 2013 who were treated with eculizumab
either as part of a clinical trial or on compassionate grounds
were included in the treated cohort. FHAA aHUS management
did not include immunosuppression. In the survival analysis,
individuals who were treated with eculizumab at the time of
relapse but not at the first presentation of aHUS (n = 17) were
analyzed in the control cohort until the point at which they
received eculizumab. The minimum follow-up duration was
12 months.

Genetic analysis for known aHUS-associated genes and auto-
antibody analysis were performed as previously described.10-20

Whole-exome sequencing was performed on a research basis
as described,21 the analysis was approved by the Northern
and Yorkshire Multicenter Research Ethics Committee, and
informed consent was obtained in accordance with the Decla-
ration of Helsinki.

Outcomes
The primary outcome in the comparison between eculizumab-
treated CaHUS with complement mutations or FHAA and con-
trol CaHUS cohorts with complement mutations or FHAA was
the 5-year ESKD-free survival. The secondary end points are
described in supplemental Methods.

Variant classification
The analysis of variants in July 2020 classified those with
definitive evidence of functional significance as pathogenic and
BROCKLEBANK et al
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those without as variants of unknown significance (VUS). Muta-
tions in CFH and CFI were subclassified as type 1 (low plasma
levels) or type 2 (normal plasma levels but with functional
consequences22,23), and mutations in CD46 were subclassified
as type 1 (reduced cell surface expression) or type 2 (normal
expression with reduced function).24

Statistical analysis
Renal survival was examined using Kaplan-Meier analysis and
Cox regression. Significance tests for continuous variables were
analysis of variance for normally distributed data and the
Kruskal-Wallis test for data that were not normally distributed.
Serial creatinine measurements were analyzed using the
Friedman test. Multivariate analysis is described in the
supplemental Methods. Statistical analyses were performed
using the IBM Statistical Package for Social Sciences and R.25

Results
Study population
The control CaHUS cohort included 279 individuals, and the
eculizumab-treated cohort included 243 individuals, of whom
192 had CaHUS and 51 had a subsequent diagnosis identified
(Figure 1; supplemental Table 1). The participant characteristics
are summarized in Table 1.

Genetic analysis
A total of 90 out of 192 (47%) of the eculizumab-treated CaHUS
cohort had an inherited (n = 76) or acquired (n = 11) comple-
ment abnormality or both (n = 3). An additional 24 of 192
(12.5%) patients had a VUS. The control CaHUS cohort
comprised inherited (n = 250) or acquired (n = 29) complement
abnormalities or both (n = 1) (Figure 1). The genetic and
outcome data for each participant are reported in supplemental
Table 2 (control cohort) and supplemental Table 3 (eculizumab-
treated cohort). The genetic variants are demonstrated in
supplemental Figure 1. CFH mutations were the most common
and were predominantly type 2 C-terminal (n = 77, 47%) or type
1 (n = 56, 34%). CFI mutations were predominantly type 1 (n =
21, 84%). Type 1 mutations comprised 94% (n = 79) of the
CD46 mutations. Most of the CaHUS mutations were hetero-
zygous. Homozygous mutations were infrequently identified in
CFH (n = 3; 1.8%), CD46 (n = 7; 8.3%), CFI (n = 1; 4%), and C3
(n = 1; 2.5%), whereas compound heterozygous mutations were
identified in CFH (n = 1; 0.6%), CD46 (n = 3; 3.6%), and CFI (n =
1; 4%). No mutations were detected in THBD.

The proportion of individuals with a family history of aHUS was
10.1% in the treated cohort and 38.9% in the control cohort
(supplemental Figure 2). The genetic causes of 68 pedigrees
with suspected familial thrombotic microangiopathy (TMA) who
were referred to our center are summarized in supplemental
Figure 2.

In 51 individuals who commenced eculizumab, a diagnosis
other than CaHUS was ultimately made (Figure 1). Of these, 8
were found to have a recognized genetic cause of TMA: 6
DGKE, 1 MMACHC, and 1 MTR. Four individuals had patho-
genic variants in nephrotic syndrome-associated genes (INF2,
LMX1B, NPHS2, and ACTN4), 1 had pathogenic variants in
HSD11B2, 1 had pathogenic variants in AGXT (primary
C5 INHIBITION IN aHUS
hyperoxaluria), and 3 had pathogenic variants in RNA pathway
genes (EXOSC3 and POLR3B). Two individuals had inherited
red cell abnormalities (DHFR and G6PD) mimicking aHUS.
Screening of the control cohort also revealed several rare
genetic variants of noncomplement genes (ADAMTS13, DGKE,
TSEN2, INF2, G6PD, COL4A5, CUBN, RNU4ATAC, and GNE).
Clinical characteristics
The clinical and laboratory data for the eculizumab-treated
cohort according to mutation type are reported in Table 2.
The incidence rate of CaHUS was 0.41 per million per year. In
adults, the mean systolic blood pressure was 174 mmHg, and
there was no statistical difference in blood pressure between
mutation types (supplemental Figure 3Ai). Fifty-nine percent of
children were hypertensive at presentation (supplemental
Figure 3Aii). There was no difference in proteinuria between
the mutation groups (supplemental Figure 3B). C-reactive pro-
tein (CRP) was statistically significantly lower in the CaHUS with
mutation and FHAA groups than in the group without CaHUS
(P = .009; Table 2; supplemental Figure 3C). The presenting
complement levels are described (supplemental Figure 3Di-iii).

The median age at presentation of the eculizumab-treated
CaHUS cohort was 25 years (range, 0-80 years), and that for
the control cohort was 22 years (range, 0-79) (Table 1). The age
at presentation according to mutation type is presented in
Table 2 and supplemental Figure 4. The peak presentation is in
the first 4 years of life, with another peak during early
adulthood.

A statistically significant difference was observed in the age of
presentation between FHAA-associated CaHUS, which pre-
dominantly presents in childhood, CaHUS with no mutation
detected (P = .001), and CFI mutation-associated CaHUS (P =
.008). There was a statistically significant increase in incidence
during the years of childbearing potential for females compared
with that in males (supplemental Figure 4J-K).

In the eculizumab-treated CaHUS cohort, a trigger was identi-
fied in 31%, most commonly, infection (16%) and pregnancy
(10%) (Table 2; supplemental Figure 5). The trigger identified by
mutation type is shown in supplemental Figure 5A. A non-
bloody diarrheal prodrome (Shiga toxin–producing Escherichia
coli [STEC] polymerase chain reaction–negative) was recorded
in 25% of those with CaHUS (Table 2; supplemental Figure 5B).
Extrarenal manifestations (Table 2; supplemental Figure 5C-D)
were reported in 19% of the cohort, more frequently in children
(23%) than in adults (16%), most commonly, neurological
(11.6%; adult 10%, and children 15%) and cardiac (4.2%). The
reported prodromal symptoms were numerous and variable
(supplemental Figure 5E-F). Fewer presentations occurred
during the summer months (supplemental Figure 5G).
Primary outcome: long-term prognosis
The 5-year cumulative estimate (Kaplan-Meier) of ESKD-free
survival was 39.5% in the control CaHUS cohort and 85.5% in
the eculizumab-treated CaHUS with a mutation or FHAA cohort
subgroup (hazard ratio [HR]. 4.95 [95% confidence interval [CI],
2.75-8.90]; P = .000; number needed to treat [NNT], 2.17 [95%
CI, 1.81-2.73]; Table 3; Figure 2A).
19 OCTOBER 2023 | VOLUME 142, NUMBER 16 1373
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Figure 1. Patient selection. All individuals referred to the NRCTC with suspected aHUS were considered for study entry. Individuals referred between 1995 and 2012 (before
the approval of eculizumab) and those not treated with eculizumab were retrospectively identified. Those with a pathogenic mutation in a gene associated with aHUS or a
positive factor H autoantibody were included in the control cohort. Individuals referred to the National Service between 2013 and July 2019 with suspected aHUS who received
eculizumab for native kidney disease were prospectively identified and included in the treated cohort. Recipients who had undergone kidney transplantation were excluded.
Individuals referred after 2013 but who did not receive eculizumab, were included in the control cohort. THBD and VTN mutations have been reported in aHUS but were not
detected in our cohort, and the PLG susceptibility variant c.1481C>T42 was identified in 1 individual who had compound heterozygous DGKE mutations. «Twenty-two
individuals were treated with eculizumab between 2010 and 2012, before regulatory approval, either as part of a clinical trial or on compassionate grounds. ¥Excluding
individuals treated preemptively during kidney transplantation or posttransplantation. In addition to eculizumab, treatment could have comprised supportive management,
renal replacement therapy, and plasma exchange. ¢Management determined by the treating physician could have comprised supportive management, renal replacement
therapy, and plasma exchange. ¤Of the 40 individuals, 24 recovered renal function, 15 developed/presented with ESKD, and 1 died. See supplemental Table 1 for genetic and
clinical details. ꬸFor survival analysis, 17 individuals were analyzed in the control CaHUS group until the point at which they received eculizumab for relapse and were then
analyzed in the treated CaHUS group. CFH, n = 8; CD46, n = 7; C3, n = 1; combined, n = 1. ‡For 2 individuals (nmd) in the treated CaHUS cohort and 13 individuals in the
control CaHUS cohort (CFH, n = 5; CFHR1 hybrid, n = 1; CFI, n = 1; CD46, n = 4; C3, n = 1; and FHAA, n = 1), survival data were not available. ¶Thrombotic thrombocytopenic
purpura is excluded before treatment with eculizumab: treatment is not commenced if ADAMTS13 <10%. Other secondary TMAs may be identifiable before the initial
decision to commence eculizumab based on clinical history or initial laboratory testing: disseminated intravascular coagulation; malignancy-associated TMA; bone marrow
transplantation–associated TMA; de novo TMA after solid organ transplantation; and drug-induced TMA. Some secondary TMAs may not be identified until further genetic or
serological tests or kidney biopsies are available: Shiga toxin HUS (STEC-HUS); pneumococcal HUS; HIV; cobalamin C deficiency TMA; glomerular disease–associated TMA;
and autoimmune disease–associated TMA. #No complement mutations and no FHAA were identified in any of those with a secondary cause identified. §PLG screened only for
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ESKD-free survival was worse in individuals presenting for the
first time as adults than in those presenting from childhood. For
those with CaHUS and a mutation or autoantibody in the con-
trol group HR for adults vs children was 1.73 (95% CI, 1.25-2.40;
P = .000), and in the treated group HR for adults vs children, it
was 7.99 (95% CI, 1.03-61.93; P = .013; Figure 2B).

Prognosis varied according to mutation type in the control
cohort, with a worse 5-year ESKD-free survival observed for
those with mutations in CFH (17%), CFHR1:CFH hybrid (15%),
CFI (16%), and C3 (25%) than for those with a mutation in CD46
(87.5%) or FHAA (71%) (Table 3; Figure 2C).

In the treated cohort, the 5-year cumulative estimate (Kaplan-
Meier) of ESKD-free survival was 78% for individuals with a CFH
mutation and 95.6% for those with a CD46 mutation (Table 3;
Figure 2D).

For individuals with a CFH mutation, ESKD-free survival was
significantly better in the eculizumab-treated group (HR, 4.58
[95% CI, 2.12-9.91]; P = .000; NNT, 1.64 [95% CI, 1.30-2.22];
Figure 2E). For individuals with a CD46 mutation, ESKD-free
survival was not significantly better in the eculizumab-treated
group (P = .274; Figure 2F). ESKD-free survival was signifi-
cantly better in the eculizumab-treated group for individuals
with a CFI mutation (HR, 5.75 [95% CI, 0.75-44.24]; P = .004;
NNT, 1.48 [95% CI, 0.98-3.02]) and for individuals with a C3
mutation (HR, 4.48 [95% CI, 1.06-19.88]; P = .007; NNT, 1.82
[95% CI, 1.22-3.55]), but there was no statistically significant
difference for individuals with FHAA (P = .061; supplemental
Figure 6F-I).

A subanalysis of the CFH pathogenic variant groups revealed
that there was a significantly poorer outcome in the 5-year
cumulative estimate (Kaplan-Meier) of ESKD-free survival in
the type 2 C-terminal/CFH hybrid mutations in the control
group than in the type 1 CFHmutations (P = .049; supplemental
Figure 6E).

The outcome data for all individuals in the eculizumab-treated
cohort are presented in supplemental Tables 4 and 5.
Twenty-one treated individuals died during the study period: 9
with CaHUS and ESKD, 7 with CaHUS and functioning kidneys,
and 5 who did not have CaHUS (supplemental Table 5). For the
eculizumab-treated CaHUS cohort, renal prognosis based on
the estimated glomerular filtration rate (eGFR) range is pre-
sented in Figure 3A (at 6 months) and supplemental Figure 7 (at
the most recent follow-up). At presentation, 54% had an eGFR
of <15, 8% had an eGFR of ≥60, and at 6 months after pre-
sentation, 21% were on dialysis, 1% had chronic kidney disease
(CKD) stage 5 (eGFR of <15, nondialysis), and 51% had an eGFR
of ≥60 (CKD stage 1-2).

Secondary outcomes: response to treatment
For the eculizumab-treated CaHUS cohort, the response to
treatment is presented in Figure 3. The eGFR and platelet count
at presentation based on the mutation type are summarized in
Figure 1 (continued) the susceptibility variant c.1481C>T rs4252128; identified in 1 indivi
biopsy specimen showed severe chronic damage, no TMA detected with a renal biopsy
with a renal biopsy specimen; died before definitive diagnosis made. *Analysis of varian
pathogenic and those without as VUS. GN, glomerulonephritis; IgA, immunoglobulin A;

C5 INHIBITION IN aHUS
supplemental Figure 8A. The median time to platelet normali-
zation for individuals with CaHUS was 4 days, although the
range was beyond 28 days and there was no statistically sig-
nificant difference between the mutation groups Figure 3B.

The renal response to eculizumab in the CaHUS cohort is
summarized in Figure 3C-F. The mean change in serum creat-
inine as a percentage of creatinine for individuals with recov-
ered renal function is shown in Figure 3C (all CaHUS) and
Figure 3D (based on the mutation type). Most renal recovery
occurred within the first 30 days, although there was a statisti-
cally significant difference between all time points recorded up
to 12 months after the first dose of eculizumab. The recovery
from dialysis dependency is presented in Figure 3E (all CaHUS)
and Figure 3F (based on the mutation type). Most individuals
who recovered renal function having been dialysis-dependent
at presentation did so within the first 30 days after starting
eculizumab treatment, although recovery was observed for up
to 9 months.

The factors associated with response to eculizumab in the
treated CaHUS cohort were evaluated using multivariate anal-
ysis (supplemental Figure 9). Lower serum creatinine, lower
platelet count, and younger age at presentation were associ-
ated with ESKD-free survival at 6 months. A lower serum
creatinine, lower platelet count, younger age at presentation,
and shorter time between presentation and the first dose of
eculizumab were associated with eGFR >60 ml/min at 6
months. A lower platelet count and younger age at presenta-
tion were associated with a renal response (defined in
supplemental Methods) at 6 months. High blood pressure at
presentation was also associated with worse outcomes in all 3
analyses when the subgroup with blood pressure data were
analyzed.

Stopping eculizumab
Of 243 individuals in the treated cohort who started eculizu-
mab, 145 discontinued it during the study period (Figure 4) with
48 stopping because of an alternative diagnosis. In 29 cases,
eculizumab was stopped because of a lack of renal recovery.
For 49 individuals with CaHUS who stopped eculizumab
because of patient or clinician choice or for a clinical reason
(supplemental Table 4), the relapse rate was calculated. The
median time to cessation of eculizumab in this group was 165
days (range, 7-1460 days).

The relapse rate was 1 per 9.5 person years without eculizumab
for those with a pathogenic mutation and 1 per 10.8 person
years without eculizumab for those with a VUS, and there were
no relapses recorded in 67.3 person years without eculizumab
in those without a rare genetic variant in a complement gene.
Eculizumab was restarted in 6 individuals with functioning kid-
neys in whom it had been stopped, with no individual pro-
gressing to ESKD. Five of the 6 individuals who relapsed upon
cessation of eculizumab had no change in their eGFR upon
reintroduction of eculizumab, whereas in 1 individual, the CKD
stage progressed from stage 2 to stage 3. Of the 29 individuals
dual (with compound heterozygous DGKE mutations). ꬸOther diagnoses, n = 4: renal
specimen; renal biopsy specimen showed acute tubular necrosis; no TMA detected
ts in July 2020 classified those with definitive evidence of functional significance as
PNH, paroxysmal nocturnal hemoglobinuria.

19 OCTOBER 2023 | VOLUME 142, NUMBER 16 1375



Table 1. Participant characteristics

Characteristic
Eculizumab-treated cohort

(n = 243), n (%)
Control cohort
(n = 279), n (%)

Age at first presentation, y

Median 25 22

Range 0-80 0-79

Sex

Male 98 (41) 135 (48)

Female 145 (59) 144 (52)

Plasma exchange

Yes 130 (53) 114 (38)

No 94 (39) 67 (23)

Data not available 20 (8) 116 (39)

Complement gene mutation 90 (37) 279 (100)

CFH 33 (37*) 131 (47)

CFHR1:CFH hybrid 1 (1*) 11 (4)

CFI 6 (7*) 19 (7)

CD46 23 (26*) 61 (22)

C3 10 (11*) 24 (9)

CFB 1 (1*) 0

Factor H autoantibody positive 11 (12*) 29 (10)

Combined mutation(s)/autoantibody 5 (6*) 4 (1)

No complement mutation/autoantibody 102 (42); 24 (10) with VUS 0

Not CaHUS 51 (21) NA

Eculizumab-treated CaHUS cohort
(n = 192), n (%)

Trigger, n = 189† 59 (31)

Infection 31 (16)

Pregnancy 18 (10)

Other 12 (6)

None 128 (68)

Extrarenal manifestations, n = 191†

Neurological§ 22 (12)

Cardiac|| 8 (4)

Pancreatitis 4 (2)

Other¶ 2 (1)

None 155 (81)

Prodromal diarrhea, n = 180† 45 (25)

Laboratory variables at presentation
mean (range)

Serum creatinine (μmol/L), n = 187† 488 (18-2435)

eGFR (ml/min per 1.73 m2) 21 (2-118)

Hemoglobin (g/L), n = 175† 80 (38-142)

*Percentage of those with CaHUS and a mutation or FHAA.

†n refers to number of individuals for whom data were available.

‡Hypertension defined by >140mmHg systolic in adults and >95th centile in children, according to the fourth report on diagnosis, evaluation, and treatment of high blood pressure in
children and adolescents.

§Extrarenal manifestations: Neurological manifestations reported were seizures, n = 12; stroke, n = 7; hemiparesis, n = 3; agitation/confusion, n = 3; encephalopathy, n = 2; cortical
blindness, n = 1; and reduced conscious level, n = 1 (in some individuals >1 was reported).

||Cardiac manifestations were left ventricular systolic dysfunction, n = 5, and cardiomyopathy, n = 2.

¶Other manifestations reported were liver failure and retinopathy.
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Table 1 (continued)

Eculizumab-treated CaHUS cohort
(n = 192), n (%)

Platelet count (×109/L), n = 185† 69 (4-329)

Lactate dehydrogenase (IU), n = 177† 2373 (290-19130)

C-reactive protein (mg/L), n = 140† 44 (0.5-309)

Urine protein:creatinine ratio (mg/mmol), n = 90† 1381 (0-17520)

C3 (g/L) n = 182† 0.93 (0.04-2.31)

Presenting blood pressure

Adults: systolic blood pressure, mean (range), mmHg, n =
92†

175 (100-262) (88% hypertensive‡)

Children: % hypertensive, n = 51† 30 (59%‡)

*Percentage of those with CaHUS and a mutation or FHAA.

†n refers to number of individuals for whom data were available.

‡Hypertension defined by >140mmHg systolic in adults and >95th centile in children, according to the fourth report on diagnosis, evaluation, and treatment of high blood pressure in
children and adolescents.

§Extrarenal manifestations: Neurological manifestations reported were seizures, n = 12; stroke, n = 7; hemiparesis, n = 3; agitation/confusion, n = 3; encephalopathy, n = 2; cortical
blindness, n = 1; and reduced conscious level, n = 1 (in some individuals >1 was reported).

|| Cardiac manifestations were left ventricular systolic dysfunction, n = 5, and cardiomyopathy, n = 2.

¶Other manifestations reported were liver failure and retinopathy.
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with ESKD who stopped eculizumab because there was no
recovery of renal function, the drug was restarted in 2: an
individual with a CFH/CFHR1 hybrid gene because of hyper-
kalemia on dialysis with hematological evidence of MAHA and
an individual with no mutation because of local clinician choice,
owing to gastrointestinal symptoms with no evidence of
hemolysis or thrombocytopenia.
371/2084497/blood_bld-2022-018833r2-m
ain.pdf by 
Eculizumab side effects
The time on treatment and incidence of meningococcal infec-
tion in the eculizumab-treated cohort are summarized in
supplemental Figure 10. Three individuals had meningococcal
infection during the study period (incidence 550 per 100 000
person years, compared with a background national incidence
of 1 per 100 00026; supplemental Figure 10); 2 were not
adherent to prophylactic antibiotics, and 1 had a penicillin-
resistant strain. All 3 survived without significant morbidity.
One individual stopped eculizumab because of headaches, but
no other adverse effects of the drug were reported.
guest on 16 January 2024
Discussion
To our knowledge, this is the first description of the impact of
eculizumab treatment on renal and patient survival in genotype-
matched cohorts with CaHUS. CaHUS is rare (incidence, 0.41
per million per year in England), with a bimodal distribution of
age at presentation.3 There is an equal ratio of male-to-female
peak in early childhood and a female predominance in the years
of childbearing potential, reflecting the triggering effect of
pregnancy or the possibility of hormonal influence.27,28 A
trigger was identified in 31% (59/189), a lower proportion than
previously reported,3 principally, viral infections and pregnancy,
with pregnancy triggering the CaHUS presentation in 15% of
those in the treated cohort with CFH mutations. Nineteen
percent with CaHUS were reported to have an extrarenal
manifestation of TMA, which is a much lower proportion than
has been reported in clinical trials.29,30
C5 INHIBITION IN aHUS
Historically, management comprised supportive care with or
without plasma exchange, and outcomes have been poor.3

Clinical trials of eculizumab have been small, single-arm ones,
with limited follow-up4-6 but suggested efficacy.31 In this
national cohort observational cohort study, we report a signifi-
cant improvement in 5-year ESKD-free survival in individuals
with CaHUS with mutations or FHAA treated with eculizumab
compared with those who were not (85% vs 39.5%). In keeping
with previous reports,3,32 the outcome in the control cohort was
contingent on the genetic background; thus, a genetically
matched analysis was performed.

In the treated cohort, a difference remained among mutation
subgroups, with a better 5-year ESKD-free survival observed in
those with CD46 mutations (95.5%) compared with that in those
with CFH mutations (78%), suggesting that previously observed
differences in disease natural history are not completely abro-
gated by complement-inhibiting therapy, possibly reflecting
late presentation. ESKD-free survival was the worst in those with
no complement mutation (65.2%), which may represent the
noncomplement-mediated disease in this heterogeneous
group. For those with CFH, CFI, and C3 mutations, ESKD sur-
vival was significantly better in the treated cohort, but there was
no statistically significant difference between the treated and
control groups for those with a CD46 mutation or FHAA. Given
that CD46- and FHAA-mediated aHUS are both complement-
mediated, it may be considered surprising that there was no
statistically significant improvement with eculizumab. For CD46,
the lack of significant improvement likely reflects good out-
comes before the availability of eculizumab. For FHAA, a
smaller sample size affected the statistical power. These find-
ings should not alter practice at initial presentation when the
underlying etiology of CaHUS is not known, but in the case of
CD46-mediated disease, it should provide reassurance if ecu-
lizumab withdrawal is to be considered.

In our treated CaHUS cohort, the median time to platelet
normalization was less than 1 week after treatment. In individ-
uals who did not require dialysis, most renal recovery occurred
within the first 30 days, although a statistically significant
19 OCTOBER 2023 | VOLUME 142, NUMBER 16 1377



Table 2. Characteristics of the eculizumab-treated cohort

Mutation/autoantibody

All CaHUS CFH CFHR1 CFI CD46 C3 CFB FHAA Combined Nmd Not CaHUS

n = 243 192 33 1 6 23 10 1 11 5 102 51

Incidence rate (per million per y) 0.41 0.06 0.003 0.01 0.04 0.02 0.003 0.02 0.008 0.24 NR

Age at presentation, y; median (range) 25 (0-80) 21 (1-50) NR
25

42 (4-67) 20 (1-47) 16 (1-51) NR
1

16 (1-69) 16 (2-28) 33 (1-80) 23 (1-76)

Sex (% female) 61 70 NR (F) 71 52 70 NR (F) 36 100 59 51

Trigger, n (%) 59 (31.1) 13 (39) 0 1 (17) 7 (30) 1 (10) 1 6 (55) 0 30 (29) NR

Infection 29 (15.1) 4 0 1 4 1 0 5 0 14 NR

Pregnancy 18 (9.5) 5 0 0 1 0 0 0 0 12 NR

Diarrheal prodrome, n (%) 45 (25) 8 (24) 0 0 1 (4) 4 (40) 0 1 (9) 1 (20) 30 (29) 12 (27)

Extrarenal manifestations, n (%) 54 (19) 4 (12) 0 1 (17) 3 (13) 1 (10) 0 2 (18) 0 25 (24) 18 (40)

Neurological 22 0 0 0 0 0 0 1 0 21 13

Cardiac 8 4 0 1 1 1 0 0 0 1 2

Pancreatitis 4 0 0 0 2 0 0 1 0 1 1

Platelet count at presentation, ×109/L;
mean (range)

69 (4-329) 104 (31-329) NR
35

76 (25-112) 43 (9-116) 60 (19-157) NR
112

53 (6-96) 67 (26-109) 65 (4-197) 73 (12-336)

Creatinine, μmol/L; mean (range) 488 (18-2435) 660 (50-1989) NR
630

366 (86-652) 470 (79-1377) 465 (37-1709) NR
59

292 (61-1131) 625 (94-1172) 466 (18-2435) 386 (19-1859)

CRP, mg/L; mean (range) 44 (0.5-309) 31 (1-246) NA 38 (5-160) 34 (3-182) 45 (1-136) NR
13

10 (1-34) 18 (7-28) 48 (0.5-309) 83 (1-366)

C3, g/L; mean (range) 0.93 (0.06-2.31) 0.78 (0.06-2.31) NR
0.94

0.88 (0.63-1.09) 1.02 (0.55-1.54) 0.64 (0.08-1.02) NR
0.85

0.75 (0.06-1.23) 1.07 (0.28-1.67) 1.0 (0.22-1.99) 1.0 (0.36-1.79)

Adult systolic blood pressure, mmHg;
mean (range)

174 180 (117-229) NR 194 (157-230) 165 (110-220) 168 (145-180) NR 152 (144-160) 147 (140-153) 176 (137-262) 167 (165-270)

Children; % hypertensive 59 67 NR NR 67 40 NR 38 NR 62 70

CRP, C-reactive protein; NR, not relevant (missing or insufficient data).
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Table 3. Long-term outcomes

Outcome

Eculizumab-
treated

cohort (%)
Control

cohort (%)
P

value

Five-year ESKD-free
survival

Total CaHUS 78 39.5 .000

Total CaHUS with
mutation or FHAA

85.5 39.5 .000

CFH mutation 78 17 .000

CFHR1 hybrid NR* 15 na

CFI mutation 83.5 16 .004

CD46 mutation 95.6 87.5 .274

C3 mutation 80 25 .007

CFB mutation NR* NR na

Factor H
autoantibody

100 71 .057

Combined
mutation(s)/
autoantibody

75 20 .005

VUS 79 NR na

No mutation 65 NR na

Not CaHUS 57 NR na

Duration of follow-up,
median (range) d

1514 (2-3720)
= 4.2 y

Renal function at last
follow-up, number
(%) n = 153 CaHUS

CKD stage G1 52 (34)

CKD stage G2 30 (20)

CKD stage G3a 14 (9)

CKD stage G3b 9 (6)

CKD stage G4 10 (7)

CKD stage G5 3 (2)

CKD stage G5D 23 (14)

Underwent
transplantation

13 (9)

Preemptive
eculizumab

10 of 13

Functioning
transplantation

12 of 13

P value refers to the log-rank (Mantel-Cox) comparison.

CKD based on Kidney Disease Improving Global Outcomes grade (G).

na, not applicable; NR (not relevant; insufficient number).

*Single patient free from ESKD.
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improvement between time points was observed for up to 1
year. Similarly, in individuals who did require dialysis, most who
recovered function did so within the first 30 days, although
recovery continued to be observed for over 9 months. Given
the difficulty in diagnosing CaHUS, failure to normalize platelets
or recover function within these time frames should prompt a
reevaluation of the diagnosis.

Factors associated with a response to eculizumab in those with
CaHUS were evaluated using multivariate analysis. Lower serum
C5 INHIBITION IN aHUS
creatinine, lower platelet count, and younger age at presenta-
tion as well as shorter time between presentation and the first
dose of eculizumab were associated with a better response. An
association between serum creatinine, a marker of renal insult,
and outcome would be expected. A possible explanation for
the association between a higher platelet count and worse
outcome is that it could reflect chronicity and thus late pre-
sentation, with platelet consumption predicted to resolve when
the disease progresses to the point of the kidneys no longer
being perfused. The impact of age could be related to the
degree of existing chronic damage, response to renal insult,
and late presentation. Blood pressure at presentation was also
associated with poor outcomes, which makes mechanistic sense
as a marker of worse renal injury. A post hoc multivariate
analysis of trial data found that treatment with eculizumab
within 1 week of presentation resulted in better renal outcomes,
as defined by the mean eGFR change from baseline at 1 year,33

and our data demonstrated that a shorter time interval from
presentation to treatment with eculizumab was associated with
eGFR >60 at 6 months. In our treated cohort, >50% had an
eGFR >60 ml/min at 6 months; the trajectory of an AKI episode
is a key outcome when considering the impact on quality of life,
long-term morbidity, and prognosis.34

Of the 1956 individuals with suspected aHUS referred to our
center, 243 were treated with eculizumab. Ninety of the 192 (47%)
individuals with CaHUS had a pathogenic complement gene
mutation or FHAA and only 5 had mutations in multiple comple-
ment genes or a mutation and FHAA. An additional 24 of the 192
(12.5%) had a VUS in a known aHUS complement gene. Among
the 51 patients with an alternative diagnosis, 8 were found to have
a recognized noncomplement genetic cause of TMA: 6 DGKE and
2 with disorders of cobalamin metabolism. Individuals with
nephrotic syndrome genes presenting with an aHUS phenotype
were also detected. TMA has previously been associated with
nephrotic syndrome and is thought to be a secondary phenom-
enon.21,35 One patient who presented with features of aHUS, a
renal biopsy specimen demonstrating predominant arteriolar
TMA, and severe hypertension had recessive HSD11B2mutations,
a known cause of apparent mineralocorticoid excess (OMIM
218030), which likely resulted in a TMA secondary to hyperten-
sion. Given the response of HSB11B2 hypertension to spi-
rolonactone,36 the genetic causes of hypertensive-driven TMA
should be sought, especially in pediatric presentations.

Two children under 1 year with a background of pontocere-
bellar hypoplasia (OMIM: 614678) presented with MAHA,
thrombocytopenia, and AKI and were commenced on eculizu-
mab for presumed CaHUS (supplemental Figures 11-12). One
child received a single dose of eculizumab; however, because
of the underlying severity of their neurological disorder, palli-
ative care was initiated, and no response to eculizumab was
observed. The condition of the other child initially appeared to
improve with eculizumab; however, they presented 4 months
later with aHUS despite eculizumab treatment and died shortly
thereafter. Both children were demonstrated to have biallelic
pathogenic variants of EXOSC3, an essential component of the
RNA exosome. The RNA exosome is a ubiquitously expressed
complex responsible for processing and modifying all forms of
intracellular RNA. In the absence of a normally functioning RNA
exosome, there is an accumulation of RNA species, resulting in
the activation of proapoptotic pathways secondary to ribosomal
19 OCTOBER 2023 | VOLUME 142, NUMBER 16 1379
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Figure 2. Five-year cumulative estimates (Kaplan-Meier) of end-stage kidney disease–free survival. HRs and 95% CIs calculated using the Cox proportional hazard
regression model, P values calculated using the log-rank test, and the NNT are shown where appropriate. (A) Treated vs control, CaHUS with mutation or FHAA. (B) Children vs
adults, CaHUS with mutation or FHAA. (C) Control group based on the mutation type. (D) Treated group, based on the mutation type. (E) Treated vs control, individuals with
CFH mutation subgroup. (F) Treated vs control, individuals with CD46 mutation subgroup.
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Figure 3. Hematological and renal responses to eculizumab. (A) Renal function 6 months after eculizumab commenced in the treated CaHUS cohort compared with that at
presentation. Not available for 6 individuals; 4 individuals died. (B) Hematological response to eculizumab, defined by the number of days from the first dose of eculizumab to
platelet normalization (>150 × 109/L). Median, interquartile range, 1.5× interquartile range, and outliers are shown. There were no statistically significant differences between
the mutation types. Three extreme outliers are not shown in the chart: 70 and 90 days (CFH) and 96 days (CD46). Twenty-nine percent already had normal platelets at the time
of the first eculizumab dose. In 11 individuals, the platelet count did not normalize; 8 out of 11 had no mutation detected, 2 had VUS (1 had hypersplenism), and 1 had FHAA
(and von Willebrand Disease). Of the 17 individuals with a response time of >2 weeks (range, 15-96 days), 3 had a CFHmutation, 1 had a CFImutation, 2 had a CD46mutation,
3 had a C3mutation, 1 had FHAA, 4 had a VUS, and 3 had no mutation detected; 4 out of 17 developed ESKD, 2 of whom died. Fifty-eight percent received plasma exchange
before the first dose of eculizumab (supplemental Figure 8B). The subgroup analysis of hematological response in those who received eculizumab but not plasma exchange is
shown in supplemental Figure 8C, the median time to platelet normalization in individuals with CaHUS was 5 days. (C) Renal response to eculizumab in the treated CaHUS
cohort. Changes in creatinine as a percentage of creatinine in patients with CaHUS (this includes only those who recovered renal function and not those who remained
dialysis-dependent) at 1 week, 2 weeks, 1 month, 3 months, 6 months, and 12 months after commencing eculizumab treatment. The complete data set is available for n = 101.
Solid circles with a connecting line, mean; bars, 95% CI; x, median. A Wilcoxon Signed Ranks Test demonstrated that there was a statistically significant difference in the mean
change in creatinine between all the time points recorded (P value shown). (D) Renal response to eculizumab in the CaHUS cohort. The mean change in creatinine as a
percentage of creatinine in patients with CaHUS by mutation type (this includes only those who recovered renal function, not those who remained dialysis-dependent) at 1
week, 2 weeks, 1 month, 3 months, 6 months, and 12 months after commencing eculizumab treatment. (E) Recovery from dialysis dependency in the CaHUS cohort. The
proportion of patients with CaHUS on dialysis in the first year after commencing eculizumab. At presentation, 66.7% received dialysis, and at 6 months, 65.7% became dialysis-
independent, with 22.9% remaining on dialysis. (F) Recovery from dialysis dependency in the CaHUS cohort. The proportion of patients with CaHUS on dialysis for the first year
after commencing eculizumab according to mutation type.
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Figure 4. Eculizumab withdrawal. Reasons for restarting eculizumab in patients with functioning kidneys in whom it was stopped but restarted. Individuals who entered the
SETS clinical trial are excluded. For 49 individuals with CaHUS who stopped eculizumab because of patient or clinician choice, the median time to relapse following ecu-
lizumab withdrawal was 244 days (range, 104-1095 days). ∞Two patients with CFH pathogenic mutations were noncompliant with eculizumab and died because of refusal to
undergo dialysis. ¥One patient with CD46 VUS who moved overseas. ¤Three patients with no mutation detected were lost to the follow-up.

ˇ

One individual with pancreatitis
and a pathogenic CD46 mutation had no renal involvement but no hematological improvement. Nmd, no mutation detected.
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dysfunction.37 We hypothesized that this RNA accumulation
induces ribosomal dysfunction in endothelial cells, resulting in
apoptosis and eculizumab nonresponsive aHUS. Shiga toxin is a
C5 INHIBITION IN aHUS
ribosomal toxin that causes ribosomal depurination, protein
synthesis arrest, and upregulation of apoptosis,38 suggesting a
common underlying mechanism of HUS. Additionally, 1 patient
19 OCTOBER 2023 | VOLUME 142, NUMBER 16 1383
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with biallelic mutations in POLR3B, encoding an essential sub-
unit of RNA polymerase III, and 2 affected siblings with biallelic
splice-site variants in TSEN2, encoding an essential subunit of
the tRNA spliceosome, presented with aHUS. Together, these
data suggest a previously unrecognized role for disorders in
RNA processing in the pathogenesis of aHUS.

Two individuals had inherited red cell abnormalities (DHFR and
G6PD), presenting with a clinical phenotype indistinguishable
from CaHUS,39 and 1 had another genetic disorder (AGXT,
primary hyperoxaluria), presenting with an aHUS phenotype.

Screening of the control cohort identified aHUS-associated
complement genes, most commonly CFH (49%), as previously
reported.40 In the prospectively identified CaHUS cohort,
10.1% were familial, predominantly those with a CFH or CD46
mutation. This is much lower than that in our control cohort
(38.9%) and other historical ascertainment cohorts enriched for
genetic studies,41 suggesting that penetrance is lower than
previously reported.

In the control cohort, the next-generation sequencing studies also
revealed several rare genetic variants in noncomplement genes
(ADAMTS13, DGKE, TSEN2, INF2, G6PD, COL4A5, CUBN,
RNU4ATAC, and GNE), demonstrating their utility in aHUS-like
presentations, especially in eculizumab nonresponsive cases. In
15% of familial cases of TMA referred to our center, no mutations
were identified, suggesting that other aHUS-associated genes
remain undiscovered. We did not detect THBD mutations, in
keeping with previous reports42,43 that failed to replicate the
association between THBD and aHUS.44

Severe hypertension is common, although not universal, among
patients with CaHUS,45 and clinical and pathological factors have
not been shown to be helpful in distinguishing between severe
hypertension that causes TMA and CaHUS associated with
hypertension.46 In our treated CaHUS cohort, the mean systolic
blood pressure in adults was 175 mmHg, with no statistical dif-
ference in blood pressure between mutation types, and 59% of
the children were hypertensive, which is consistent with previous
findings that presenting blood pressure is not helpful in diagnostic
evaluation. Proteinuria has been reported to characterize the
DGKE nephropathy phenotype.11,47 However, in this study, we
observed proteinuria in all causes of TMA, and there was no dif-
ference between the mutation groups. Individuals with non-
CaHUS had significantly higher CRP at presentation than those
with CaHUS but we did not identify a diagnostically useful cutoff.

Eculizumab is currently licensed for lifelong use in individuals
with CaHUS; however, meningococcal sepsis is 550-fold higher
in these patients despite mandatory meningococcal vaccination
and long-term prophylactic antibiotics. The STOPECU study,48

the first of a series of 3 prospective trials of eculizumab with-
drawal in CaHUS,48-50 has recently reported that eculizumab
withdrawal can be performed, although 2 patients had worse
renal function, with 1 progressing to ESKD despite eculizumab
reintroduction.48 The CUREiHUS study reported safe withdrawal
in 18 patients with relapse in 4 patients with rapid eculizumab
reintroduction, preventing any clinically significant conse-
quences.50 Other real-world studies have described safe with-
drawal of eculizumab.51,52 Of the 243 individuals in our treated
cohort, 145 discontinued eculizumab primarily because an
1384 19 OCTOBER 2023 | VOLUME 142, NUMBER 16
alternative diagnosis to CaHUS was ultimately made, although a
significant number also stopped for clinical reasons or because
they chose to do so. The relapse rates in those with a patho-
genic variant or a VUS were 1 per 9.5 and 1 per 10.8 person
years off treatment, whereas nobody without a rare comple-
ment genetic variant had a relapse in 67.3 person years off
treatment. In both reported studies of eculizumab withdrawal in
aHUS and herein, it is notable that relapse was not observed in
those without complement mutations or FHAA.48,50,51 No
individual with a relapse progressed to ESKD or had a marked
decline in renal function in this study. Thus, patients may be
able to discontinue eculizumab if prospective trials confirm this
data that relapses can be recognized and treatment can be
restarted promptly without adverse outcomes.

In summary, in this national observational cohort study, we
report a significant improvement in 5-year ESKD-free survival in
individuals with CaHUS treated with eculizumab compared with
those who were not. Lower serum creatinine, lower platelet
count, younger age at presentation, and shorter time between
presentation and the first dose of eculizumab were associated
with eGFR >60 ml/min at 6 months. The rate of meningococcal
infection in the treated cohort was 550 times greater than the
national rate. A large proportion of the treated cohort dis-
continued eculizumab and no relapses were observed in indi-
viduals without a rare complement genetic variant; however,
given the observational study design, these findings should be
considered preliminary, and eculizumab withdrawal trial data
are required. We demonstrated that biallelic pathogenic
mutations in the RNA-processing genes (EXOSC3, TSEN2, and
POLR3B) cause aHUS. Our hypothesis that the accumulation of
aberrant RNA species in the endothelium results in the activa-
tion of proapoptotic pathways secondary to ribosomal
dysfunction requires further mechanistic studies.
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