
Towards Better

Generative Models

of Language

GáborMelis

A thesis presented for the degree of

Doctor of Philosophy

at the

Computer Science Department,

University College London,

United Kingdom

April, 2023

I, Gábor Melis, confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, I confirm that this has been
indicated in the thesis.

AB S TRAC T

A man who could afford fifty dollars had a pair of
boots that’d still be keeping his feet dry in ten years’
time, while the poor man who could only afford
cheap boots would have spent a hundred dollars on
boots in the same time and would still have wet feet.

Capt. Samuel Vimes

As language modelling has been progressing immensely towards gen-
uinely useful applications driven by the increased availability of data
and computational resources, our understanding and tools have not

kept pace. On the one hand, it is usual for understanding to lag behind practice;
on the other, often a steep price is to be paid for letting practice race too far
ahead. A trained language model is the product of the interactions of data,
optimization, the training objective, regularization, and the model itself, which
not only provide rich veins for research individually but combine to create
significant complexity, which hampers progress. This thesis pursues advances
along these directions to solidify the footing and our understanding of the model
and the process of its training in hopes of guiding research and applications
towards better solutions.

3

I M PAC T S TAT EMENT

We don’t measure our success by results
but by activity, and the activity is con-
siderable and productive.

Sir Humphrey Appleby

Goals and contributions of this thesis include designing better
recurrent neural networks and new methods of optimization as well as
inference in latent variable models,with a focus on advancing language

models. Recurrent neural networks are state-of-the-art models in small-scale
language modelling and various other domains. We improve them even further,
which has the most direct impact on machine learning practitioners. Ironically,
the practice of language modelling is currently dominated by attention-based
models due to their scalability, optimizability and the importance of training
on large amounts of data. Can recurrent models match them with enough
resources? We take a small step towards answering this question by scaling
recurrent models with the help of our proposed optimization algorithm. We
demonstrate that the improved recurrent models are capable of matching
attention-based models on bigger – but still tiny by today’s standards – datasets.
Finding that the gap between these models is not nearly as large as previously
believed, we turn our attention to other ways of improvement. We hope to
inject structure and useful biases into the model with conditional independence
assumptions and the shaping of the latent space, but posterior collapse gets
in the way. To address this, we introduce a new inference method for latent
variable models, opening the door for this class of generative models to be used
successfully in practice. While the focus of this thesis is very specific, all of our
contributions are applicable beyond language modelling.

4

ACKNOWLEDGEMENT S

First and foremost, I would like to thank my supervisors, Phil Blunsom, Chris
Dyer, and Thore Graepel, for instilling a coherent, deeply probabilistic worldview
in me, for letting me find my own way in research but guiding me through
the PhD process. I thank DeepMind for being a great working environment for
so long and for sponsoring my studies at UCL. I am especially grateful to my
collaborators and colleagues over the years, who furnished me with insight,
valuable feedback, and the Oxford comma.

Végül, de nem utolsósorban, köszönöm szűkebb családomnak a bíztatást, hogy a
doktorit kezdjem el, majd hogy fejezzem be. Legvégül talán köszönöttel tartozom
azoknak, akik értékeiket belém plántálták, és egész biztosan hálával azoknak,
akik megértésükkel, támogatásukkal, tudásukkal segítettek: szüleimnek, Hernádi
Zsuzsa tanárnőnek, és a Toldy Ferenc gimnázium tanárainak.

5

CONT ENT S

1 Concerning Language 11
1.1 Language Modelling 12
1.2 N-gram Models 13
1.3 Recurrent Neural Networks 14
1.4 Feed-Forward Neural Networks 15
1.5 Generating Text 16
1.6 The Case for Small-Scale 17

2 Timid Transformation 19
2.1 Model 20
2.2 Experiments 22

2.2.1 Datasets 22
2.2.2 Setup 22
2.2.3 Results 24

2.3 Analysis 26
2.3.1 Ablation Study 26
2.3.2 Comparison to the mLSTM 27
2.3.3 The Reverse Copy Task 28
2.3.4 What the Mogrifier is Not 29

2.4 Conclusions 30
2.a Hyperparameter Tuning Ranges 32
2.b Hyperparameter Sensitivity 32

3 Optimization Oomph 35
3.1 Background 35
3.2 Related Works 37

3.2.1 Averaging in Pure Optimization 37
3.2.2 Averaging for Generalization 38

3.3 Problem Statement 39
3.4 The Algorithm 40
3.5 Analysis of the Algorithm 41

3.5.1 When Assumptions Fail 45
3.5.2 A Note on Pure Optimization 46

3.6 Experiments 49

6

3.7 Conclusions 51

4 Refining Recurrences 54
4.1 Rewired LSTM 54
4.2 Architecture 57
4.3 Objective 57
4.4 Optimization 58
4.5 Dynamic Evaluation 58
4.6 Experimental Setup 59
4.7 Results 60
4.8 Conclusions 62

5 Lax Latents 64
5.1 Variational Autoencoders and Posterior Collapse 67
5.2 Related Works 70
5.3 CIA and Posterior Collapse 71
5.4 Mutual Information Augmented Objectives 72

5.4.1 The KL Objective 74
5.4.2 The Rényi Objective 76
5.4.3 The Power Objective 80

5.5 Connection to the Representational KL 81
5.6 Connection to the β-VAE 82
5.7 Experiments 83

5.7.1 Experiments with Synthetic Data 83
5.7.2 Language Modelling Experiments 89

5.8 Conclusions 95
5.a Additional Experiments on Synthetic Data 97
5.b Additional Language Modelling Experiments 97

5.b.1 Robustness 97
5.b.2 Asymmetric Samples 97
5.b.3 Experiments with the Power Objective 98

5.c Optimization Settings 99

6 Conclusion 104
Bibliography 106

7

L I S T OF F IGURE S

2.1 Mogrifier with 5 rounds of updates. 21
2.2 No-zigzag Mogrifier for the ablation study. 26
2.3 Perplexity vs the number of rounds 𝑟 in the PTB ablation study. 27
2.4 Cross-entropy vs sequence length in the reverse copy task. 28
2.5 LSTM hyperparameter sensitivity on PTB. 34
2.6 Mogrifier hyperparameter sensitivity on PTB. 34
3.1 Example evolution of the two running averages of weights over optimiza-

tion steps. 37
3.2 Idealized illustration of switching. 43
3.3 Validation losses with Two-Tailed Averaging and baselines. 50
3.4 Length of the long average (𝐿) vs number of evaluations of 2TA. 51
3.5 Raw and 2TA validation loss with overfitting. 52
3.6 Example of optimization entering a new basin. 52
4.1 Schematic of the LSTM cell in the style of https://colah.github.io/

posts/2015-08-Understanding-LSTMs/. All gates are computed from
hprev and x. Differences from the RLSTM cell are colour coded to ease
comparison to Figure 4.2. 55

4.2 Schematic of the RLSTM cell. 1. The forget gate f is computed from i ⊙ j,
2. i is capped at 1 − f, 3. o is computed from c. There is an apparent
loss of parallelization opportunities due to the increased depth of the
computation graph. 56

5.1 Causes of posterior collapse in VAEs. 69
5.2 KL and Rényi objectives on continuous synthetic data with base estimators

ELBO and IWAE. 85
5.3 KL and Rényi objectives on continuous synthetic data with base estimators

ELBO, DReG. 85
5.4 KL and Rényi objectives on continuous synthetic data with base estimator

DReG. 87
5.5 KL and Rényi objectives on discrete synthetic data with base estimator

REINFORCE. 87
5.6 KL and Rényi objectives on discrete synthetic data with base estimator

VIMCO. 88
5.7 KL and Rényi objectives on discrete synthetic data with base estimator

VIMCO. 89

8

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

5.8 KL and Rényi objectives on Penn Treebank with base estimator DReG. 90
5.9 KL and Rényi objectives on PTB with base estimator VIMCO. 91
5.10 Validation NLL with naive dropout using DReG and VIMCO on PTB. 91
5.11 Validation NLL with L2 regularization using DReG and VIMCO on PTB. 92
5.12 Validation NLL with DReG and VIMCO on PTB, using the same dropout

mask. 93
5.13 Training NLL on PTB with KL and Rényi objectives and base estimator

VIMCO. 94
5.14 Validation NLL on PTB with KL and Rényi objectives and base estimator

VIMCO. 94
5.15 VQ-VAE on synthetic data compared to the KL and Rényi objectives. 98
5.16 The effect of batch size with DReG and 128 hidden units on PTB. 98
5.17 The effect of optimization length (40 or 80 thousand optimization steps)

with DReG and 128 hidden units on PTB. 99
5.18 The effect of optimization length with DReG with 256 hidden units on

PTB. 99
5.19 The effect of batch size with VIMCO and 128 hidden units on PTB. 100
5.20 The effect of optimization length with VIMCO and 128 hidden units on

PTB. 100
5.21 The effect of optimization length with VIMCO and 256 hidden units on

PTB. 100
5.22 KL and Rényi objectives on PTB with base estimator DReG. 101
5.23 KL and Rényi objectives on PTB with base estimator VIMCO. 101
5.24 Training NLL on PTB with KL and Rényi objectives and base estimator

DREG. 101
5.25 Validation NLL on PTB with KL and Rényi objectives and base estimator

DREG. 102
5.26 The power objective with DReG on the synthetic data set compared to the

KL and Rényi objectives. 102
5.27 The power objective with VIMCO on the synthetic data set compared to

the KL and Rényi objectives. 102
5.28 The power objective with DReG on PTB compared to the KL and Rényi

objectives. 103
5.29 The power objective with VIMCO on PTB compared to the KL and Rényi

objectives. 103

9

L I S T OF TABL E S

2.1 Word-level perplexities of near state-of-the-art models. 23
2.2 Bits per character on character-based datasets of near state-of-the-art

models. 25
2.3 PTB ablation study validation perplexities with 24M parameters. 27
2.4 Hyperparameter tuning ranges for all tasks except Enwik8. 33
2.5 Hyperparameter tuning ranges for Enwik8. 33
2.6 Hyperparameter tuning ranges for dynamic evaluation. 33
4.1 Word-level perplexities of near state-of-the-art models. 60
4.2 Bits per character on character-based datasets of near state-of-the-art

models. 61
5.1 Best test results for DReG and VIMCO on Penn Treebank. 93
5.2 Hyperparameter tuning ranges. 103

10

1 CONCERN I NG LANGUAGE

So, to you, language is more than
just a means of communication?
Oh, of course it is, of course it is, of
course it is, of course it is.

Fry & Laurie

Language may not be fundamental for intelligence, but it is at the very
least an expression of the higher-level cognitive abilities of humans and
forms the communication substrate of our society. We capture thought

(e.g. knowledge, abstractions, plans) in words, creating projections of our inner
realities, which in turn are affected by sensory input. These projections retain
only the interesting bits – those worth saying – thus we end up with a highly com-
pressed representation of thought. To decode and understand this compressed
form, humans rely on shared syntax and semantics. While the demarcation be-
tween syntax and semantics is fuzzy, they roughly correspond to rules of forming
grammatical sentences and to grounding meaning in sensory experiences.

For machines to assist and interact with humans, it is natural to assume that
they must understand and produce natural language, which after all evolved for
this purpose.1 To address differences between sensory experiences of machines
and people, grounding semantics in real or simulated environments has been
pursued for many years [Winograd, 1973, Hermann et al., 2017]. Clearly, this is
a necessary step towards humanlike intelligence.

On the other hand, addressing the issue of grounding is unlikely to achieve
this goal in itself as there are indications that child language acquisition is
much more efficient [Cristia et al., 2017, Pullum and Scholz, 2002, Shneidman
and Goldin-Meadow, 2012] and robust to sensory deprivation. Furthermore,
machines generalize with low sample efficiency [Hoffmann et al., 2022, Wei et al.,
2022, Belinkov and Bisk, 2017, Jia and Liang, 2017, Iyyer et al., 2018, Moosavi and
Strube, 2017, Agrawal et al., 2016] due to the lack of systematicity [Dziri et al.,
2023, Kuncoro et al., 2018] and their limited ability to chunk input sequences

1This is nonetheless an assumption because other means of human–machine communication
may be possible.

11

into meaningful units [Cao and Rimell, 2021, Bostrom and Durrett, 2020, Wang
et al., 2017].

Sandwiched between the proof of existence of better models in the form of
children’s language acquisition [Cristia et al., 2017, Pullum and Scholz, 2002]
and the evidence for severe shortcomings of our current crop of models is the
reason for focussing on pure language modelling before turning to semantics
and the grounding problem. In this work, we simply ask how generalization
can be improved and what is necessary to create better models of language.
For the most part, our methodology will be highly quantitative: we evaluate
on held-out data in standard language modelling datasets, while providing
theoretical underpinnings where possible.

1.1 language modelling

Modelling language means having an approximate idea of how plausible a
given piece of text is and being able to generate plausible looking text from
scratch or continue from a prompt. Language models (LMs, for short) work
primarily on the symbolic level, and the ones we are considering have no other
perceptual modality.

More formally, statistical language models approximate a possibly unknown
true distribution 𝑝★(𝑥) by assigning probabilities 𝑝(𝑥) to possible utterances
𝑥 ∈ X . The utterances (e.g. sentences or documents) are sequences of tokens
𝑥1, . . . , 𝑥𝑛𝑥 from a finite set of symbols (e.g. words or characters) called the
vocabulary. These models are generative in the sense that they define a data
generating process, from which new data points can be sampled.

In autoregressive LMs, 𝑝(𝑥) is factorized as∏𝑛𝑥
𝑖=1 𝑝(𝑥𝑖 | 𝑥<𝑖). These models can

directly support typeahead prediction and also spell checking when combined
with search. In other tasks, such as image labelling or machine translation,
where additional information is available, the probabilities of utterances are
modelled conditioned on their context (e.g. the image or the source document).

Note that the evaluation of 𝑝(𝑥) need not be tractable for learning and for
some applications. In fact, it is defined only implicitly in GANs [Goodfellow et al.,
2014], which instead rely on samples from 𝑝(𝑥) and approximate expectations
based on them [Huszár, 2017b]. Whether masked language models such as BERT
[Devlin et al., 2018] implicitly define a probability distribution over utterances is
still an open question although Goyal et al. [2021] strongly suggest that they do.

Instead of modelling the probability of utterances 𝑝(𝑥) directly, one may
introduce unobserved variables into the model. The reason for doing so is to

12

gain an explicit representation of some properties of the data – exactly which
properties depends on the choice of prior, the conditional independence assump-
tions made, the biases of the the likelihood, and the details of optimization.
With latent variables 𝑧, the marginal likelihood is 𝑝(𝑥) = 𝐸𝑧∼𝑝(𝑧) 𝑝(𝑥 | 𝑧), and
learning typically involves an approximation to this expectation, which makes
the optimization problem harder. On the other hand, the explicit representation
of the data provided by latent variables may be useful for learning about the
underlying generative process, discovering structure in the data, principled
representation learning, and improving generalization. Unfortunately, in the
domain of language models, latent variable models that extract useful repre-
sentations in the latents have trouble modelling the data. Conversely, latent
variable models that model the data well capture very little information about
data in the latents.

In the following, we introduce some examples of autoregressive models with
tractable likelihoods and no latent variables.

1.2 n-gram models

Recall that autoregressive models decompose the probability of an utterance into
the product of the probabilities of next token predictions given the preceding
ones: 𝑝(𝑥) = ∏𝑛𝑥

𝑖=1 𝑝(𝑥𝑖 | 𝑥<𝑖). A simple choice for 𝑝(𝑥𝑖 | 𝑥<𝑖) is the proportion of
cases when the prefix 𝑥<𝑖 is followed by 𝑥𝑖:

𝑝(𝑥𝑖 | 𝑥<𝑖) = 𝐶(𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖)
𝐶(𝑥1, . . . , 𝑥𝑖−1) ,

where the counts 𝐶 are computed over the training corpus. This corresponds to
taking a maximum likelihood estimate, which is overconfident in general.

More concretely, one problem with the above definition is that in many cases
one or both counts may be zero. The denominator is zero when no documents
in the training corpus start with the prefix 𝑥1, . . . , 𝑥𝑖. To somewhat alleviate
this problem of sparsity, N-gram models assume that a token depends on only
the preceding 𝑁 tokens, that is 𝑝(𝑥𝑖 | 𝑥<𝑖) = 𝑝(𝑥𝑖 | 𝑥𝑖−𝑁 , . . . , 𝑥𝑖−1). Even with
this modification, the sparsity of observations in the training corpus can easily
lead to zero counts especially with large vocabularies. To combat this, various
smoothing techniques may be applied to the raw counts, some of which have
interpretations as introducing a prior and performing MAP inference.

The simplest smoothing method hallucinates some observations by adding 1
to each count in the enumerator and 𝑉 (the vocabulary size) to the denominator
to keep the probabilities normalized:

13

𝑝(𝑥𝑖 | 𝑥<𝑖) = 𝐶(𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖) + 1
𝐶(𝑥1, . . . , 𝑥𝑖−1) + 𝑉 .

In practice, this simplistic method is outperformed by more complex alternatives,
among which the Kneser–Ney method [Ney et al., 1994] is perhaps the most
well-known, and whose Interpolated Kneser–Ney smoothing variant can be
interpreted as performing approximate inference in a hierarchical Bayesian
model consisting of Pitman–Yor processes [Teh, 2006].

Two significant drawbacks of N-gram models are poor generalization and
very high storage requirements for the counts. There are at most 𝑉𝑁 counts
to store, and while this upper bound is overly pessimistic due to the effective
branching factor being much smaller than 𝑉, it is still high enough that storage
becomes a serious concern, hence 𝑁 cannot be very high. For poor generalization
the reason is twofold. One is that the very independence assumption that allows
us to disregard prefixes longer than 𝑁 throws away lots of useful information.
Another reason is simply sparsity: for N-grams to be considered the same, all
tokens in them must match exactly. N-gram models do not leverage similarity of
words; dog returns, collie returns, and Lassie returns are very different bigrams,
never mind more complicated rephrasings such as rough collie comes home.

1.3 recurrent neural networks

Recurrent nets address both of these issues: the length of the context is un-
bounded in theory, and they not only learn word similarities from data but also
smooth over different phrasings and grammatical constructions.

Elman networks [Elman, 1990] are an early example of recurrent networks.
Given an input x𝑡 at time step 𝑡, they maintain and update the hidden state h𝑡
over time, from which the output y𝑡 is computed:

h𝑡 = 𝜎ℎ
(Wℎ𝑥x𝑡 +Wℎℎh𝑡−1 + bℎ

)
y𝑡 = 𝜎𝑦

(W𝑦ℎh𝑡 + b𝑦
)
.

W∗ are weight matrices, b∗ are bias vectors, and 𝜎∗ are activation functions
such as tanh. 2 In their groundbreaking work, Mikolov et al. [2010] apply Elman
networks to language modelling. They assign a fixed-size, learnable vector
to each word in the vocabulary and present this vector as the input x𝑡. The
output is a categorical distribution over the vocabulary whose parameters are
computed by 𝜎𝑦, which is the softmax function, and the network is trained with

2We denote vectors and matrices with lower- and uppercase bold letters, standard and other
sets with blackboard and calligraphic uppercase letters such as ℝ and X , respectively.

14

backpropagation on the cross-entropy loss between the predicted categorical
distribution and the data distribution for each time step.

Elman networks suffer from exploding and vanishing gradients [Philipp
et al., 2017], where the magnitude of the partial derivative of the hidden-to-
hidden transition matrix Wℎℎ either tends to infinity or to zero with more time
steps taken. Exploding and vanishing gradients make training unstable and slow,
respectively. When the spectral radius of Wℎℎ is greater than 1, Elman networks
tend to exhibit exploding gradients, while radiuses less than 1 lead to vanishing
gradients, which make long-range dependencies very difficult to learn. LSTMs
[Hochreiter and Schmidhuber, 1997b] make the vanishing gradients problem
less severe by updating the cell state additively, as in a residual network [He
et al., 2016]. LSTMs also introduce a forget gate [Hochreiter and Schmidhuber,
1997c], which controls the retention policy of the state. This more elaborate
mechanism makes it easier to learn longer-term dependencies.

Many other recurrent networks have been invented. GRUs [Chung et al., 2015]
simplify the gating mechanism of LSTMs, Unitary Evolution RNNs [Arjovsky
et al., 2016] fix the eigenvalues of the hidden-to-hidden transition matrix at 1
to deal with exploding and vanishing gradients. To improve performance on
parallel hardware such as GPUs, quasi-recurrent neural networks [Bradbury
et al., 2016] apply convolutional layers in parallel across time steps and alternate
them with minimalist recurrent pooling layers, making these models almost
entirely feed-forward.

In summary, RNNs promised long-range dependencies, better generaliza-
tion, and reduced storage requirements. Despite the clear advancement in all
three over N-gram models, there remains room for improvement. In particular,
dependencies of over several hundred time steps are still very difficult to learn
due to vanishing gradients along the long paths the gradient has to travel, large
amounts of data are necessary for learning, and recurrent architectures are a
bad match for contemporary parallel hardware.

1.4 feed-forward neural networks

The gated convolutional network of Dauphin et al. [2017] was the first feed-
forward model competitive with RNNs. Since then, Transformers [Vaswani
et al., 2017] forwent both recurrence and convolutions in favour of self-attention
[Bahdanau et al., 2014] over a fixed-size window of tokens. In its simplest form,
self-attention is simply a reweighting of a sequence of input vectors based on
their similarity to the most recent one:

15

a𝑡 =
𝑡∑︁

𝑖=𝑡−𝑁
𝛼𝑖h𝑖.

In the above, the input h is a sequence of vectors, and its most recent 𝑁 + 1
values are reweighted to produce a𝑡 according to 𝛼, which may computed as

𝛼𝑖 =
𝑒h

𝑇
𝑡 h𝑖∑𝑡

𝑖=𝑡−𝑁 𝑒
h𝑇𝑡 h𝑖

,

where the dot products h𝑇𝑡 h𝑖 measure the similarity between h𝑡 and h𝑖.
In a sense, self-attention routes information over data-dependent pathways.

While naive self-attention has a cost that is quadratic in length of the input, its
computation is a better fit for parallel hardware. Ironically, by giving up the
theoretical possibility of unbounded receptive fields, the shortened gradient
paths allow attention-based models to learn dependencies over thousands of
time steps.

1.5 generating text

Although this thesis is not directly concerned with generating text from language
models, we provide a short overview of the topic. Language models assign
a probability 𝑝(𝑥) to utterances 𝑥 ∈ X . These probabilities can be used, for
example, to rerank candidate answers provided by another system according
to their probabilities under the model. In addition to evaluating probabilities,
most language models can generate text, and they do it by sampling from 𝑝.
For an auto-regressive model, ancestral sampling is both natural and easy: the
first token is sampled as 𝑥1 ∼ 𝑝(𝑋1), the second as 𝑥2 ∼ 𝑝(𝑋2 | 𝑥1), the third as
𝑥3 ∼ 𝑝(𝑋3 | 𝑥1, 𝑥2), and so on. While this method samples from 𝑝, our model,
that may not always be desirable. To compensate for the shortcomings of the
model, to control the diversity of a set of samples, or to adapt generation to a
particular task, one may wish to sample from a related distribution.

A basic method to control diversity is tuning the temperature 𝑇 > 0 of the
predictive distribution over the next token:

𝑝(𝑇)𝑖 =
𝑝
1/𝑇
𝑖∑𝑉

𝑖=1 𝑝
1/𝑇
𝑖

,

where 𝑝𝑖 denotes the predicted probability of token 𝑖 in the vocabulary. Here,
𝑇 = 1 leaves the predictions 𝑝𝑖 unchanged. Choosing a large temperature
smooths their distribution towards uniform, while going with a low temperature
hardens it: more probability mass is assigned to the most likely token type at

16

the cost of the rest. In practice, the temperature is often lowered below 1 to
discourage generating from the tails of the distribution. On the surface, this just
trades off diversity for better looking samples, but if model quality is poorer
on the tails of the ground truth distribution, and it often is, then it can be
considered a form of filtering.

When the vocabulary size is big, the temperature may need to be decreased
substantially to reduce the likelihood of generating from the tail, but that may
upset the relative probabilities of non-tail events, which are more likely to
be well-calibrated. A number of methods address this issue by truncating the
predictive distribution over the next token by assigning zero probability to the
least likely events and renormalizing.
• Top-k sampling: only the most likely 𝑘 token types are kept [Fan et al., 2018].
• Nucleus sampling: only the most likely token types with a given total
probability are kept. [Holtzman et al., 2019].

• 𝜂-sampling: a generalization of nucleus sampling, where the total probability
threshold is adjusted based on the entropy of the predictive distribution
[Hewitt et al., 2022].

These methods enjoy empirical success, but they can also be seen to compensate
for model deficiencies. Braverman et al. [2020] take another approach: they
argue that the maximum likelihood objective used to train language models
is equivalent to minimizing the KL divergence of the predicted and empirical
one-step distributions, but multi-step generations from the model can still be
bad because this one-step KL leads to a rather loose bound on the expected
risk over generations. They propose a calibration method to bring the entropy
of generations closer to the entropy of data, and their solution is superficially
reminiscent of temperature tuning but also guaranteed not to make model
perplexity worse. This can be achieved by other means; motivated by observa-
tions from psycholinguistics, locally typical sampling [Meister et al., 2022] also
controls the entropy of generations.

1.6 the case for small-scale

A recurring theme in the history of sequence models is that the problem of model
design is intermingled with optimizability and scalability. Elman Networks are
notoriously difficult to optimize, a property that not only gave birth to the idea
of the LSTM but also to more recent models such as the Unitary Evolution RNN
[Arjovsky et al., 2016] and fixes like gradient clipping [Pascanu et al., 2013]. Still,
it is far from clear – if we could optimize these models well – how different their

17

biases would turn out to be. The non-separability of model and optimization is
fairly evident in these cases.

Scalability, on the other hand, is often optimized for indirectly. Given the
limited ability of current models to generalize, we often compensate by throwing
more data at the problem. To fit a larger dataset, model size must be increased.
Thus the best performing models are evaluated based on their scalability. Today,
scaling up still yields tangible gains on down-stream tasks, and language
modelling data is abundant. However, we believe that simply scaling up will
not solve the generalization problem and better models will be needed. Our
hope is that by choosing small enough datasets, so that model size is no longer
the limiting factor, we get a number of practical advantages:
• Generalization ability will be more clearly reflected in evaluations. 3
• Turnaround time in experiments will be reduced, and the freed up compu-
tational budget can be put to good use by controlling for nuisance factors.

• The transient effects of changing hardware performance characteristics are
somewhat lessened [Hooker, 2020].

On the flipside, we give up the opportunity of studying interesting phenomena
such as emergence [Wei et al., 2022] and in-context learning [Lampinen et al.,
2022] that seem to occur only beyond a certain scale. Despite the obvious
risk this represents, we find the tradeoff worthwhile and complementary to
mainstream contemporary research. Thus, we develop, analyze and evaluate
models primarily on small datasets. Evaluation on larger datasets is included to
learn more about the models’ scaling behaviour and because of its relevance for
applications, but it is to be understood that these evaluations come with larger
error bars and provide less guidance for further research on better models.

3Utterances are generated by a complex, non-stationary process (the world), but empirical
risk minimization requires i.i.d. samples. Disregarding the time component for a minute, we
have only non-independent samples even when considering all the text available on the internet.
Thus, a natural approach to measure generalization ability is in a domain adaptation setting
where we assume i.i.d. samples within a domain and domains being sampled i.i.d. themselves,
but that requires multiple delimited datasets. Time aggravates the problems caused by the i.i.d.
assumption.

18

2 T IM I D TRANS FORMAT ION

I’m disappointed too, but keep
in mind transmogrification is
a new technology.

Calvin &Hobbes

T he domination of natural language processing by neural models
is hampered only by their questionable sample complexity [Hoffmann
et al., 2022, Wei et al., 2022, Belinkov and Bisk, 2017, Jia and Liang, 2017,

Iyyer et al., 2018, Moosavi and Strube, 2017, Agrawal et al., 2016], their lack of
systematicity [Dziri et al., 2023, Linzen et al., 2016, Kuncoro et al., 2018] and
their limited ability to chunk input sequences into meaningful units [Cao and
Rimell, 2021, Bostrom and Durrett, 2020, Wang et al., 2017].

While direct attacks on the latter are possible, in this work, we take a
language-agnostic approach to improving Recurrent Neural Networks (RNN,
Rumelhart et al. [1988]), which brought about many advances in tasks such
as language modelling, semantic parsing, machine translation, with no short-
age of non-NLP applications either [Bakker, 2002, Mayer et al., 2008]. Many
neural models are built from RNNs including the sequence-to-sequence family
[Sutskever et al., 2014] and its attention-based branch [Bahdanau et al., 2014].
Thus, innovations in RNN architecture tend to have a trickle-down effect from
language modelling, where evaluation is often the easiest and data the most
readily available, to many other tasks, a trend greatly strengthened by ULM-
FiT [Howard and Ruder, 2018], ELMo [Peters et al., 2018] and BERT [Devlin
et al., 2018], which promote language models from architectural blueprints to
pretrained building blocks.

To improve the generalization ability of language models, we propose an
extension to the LSTM [Hochreiter and Schmidhuber, 1997c], where the LSTM’s
input x is gated conditioned on the output of the previous step hprev. Next, the
gated input is used in a similar manner to gate the output of the previous time
step. After a couple of rounds of this mutual gating, the last updated x and
hprev are fed to an LSTM. With the addition of more gating, in one sense, our
model joins the long list of recurrent architectures with gating structures of
varying complexity that followed the invention of Elman Networks [Elman,

19

1990]. Examples include the LSTM, the GRU [Chung et al., 2015], and even
designs by Neural Architecture Search [Zoph and Le, 2016].

Intuitively, in the lowermost layer, the first gating step scales the input
embedding (itself a representation of the average context in which the token
occurs) depending on the actual context, resulting in a contextualized repre-
sentation of the input. While intuitive, as §2.3 shows, this interpretation cannot
account for all the observed phenomena.

In a more encompassing view, our model can be seen as enriching the mostly
additive dynamics of recurrent transitions placing it in the company of the
Input Switched Affine Network [Foerster et al., 2017] with a separate transition
matrix for each possible input, and the Multiplicative RNN [Sutskever et al.,
2011], which factorizes the three-way tensor of stacked transition matrices. Also
following this line of research are the Multiplicative Integration LSTM [Wu
et al., 2016] and – closest to our model in the literature – the Multiplicative
LSTM [Krause et al., 2016]. The results in §2.2.3 demonstrate the utility of our
approach, which consistently improves on the LSTM and establishes a new state
of the art on all but the largest dataset, Enwik8, where we match similarly sized
transformer models.

2.1 model

To allow for ease of subsequent extension, we present the standard LSTM
update [Sak et al., 2014] with input and state of size 𝑚 and 𝑛 respectively as
the following function:

LSTM: ℝ𝑛 ×ℝ𝑛 ×ℝ𝑚 → ℝ𝑛 ×ℝ𝑛

LSTM(cprev, hprev, x
)
=
(c, h) .

The updated state c and the output h are computed as follows:

f = 𝜎
(W 𝑓 𝑥x +W 𝑓 ℎhprev + b 𝑓)

i = 𝜎
(W𝑖𝑥x +W𝑖ℎhprev + b𝑖

)
j = tanh(W 𝑗𝑥x +W 𝑗ℎhprev + b 𝑗

)
o = 𝜎

(W𝑜𝑥x +W𝑜ℎhprev + b𝑜
)

c = f ⊙ cprev + i ⊙ j
h = o ⊙ tanh(c) ,

(2.1)

where 𝜎 is the logistic sigmoid function, ⊙ is the elementwise product, W∗∗ and
b∗ are weight matrices and biases.

20

x1

h0

x-1 x3 x5⦁

h2 h4 LS
TM

⦁

⦁⦁

⦁

Figure 2.1: Mogrifier with 5 rounds of updates. The previous state h0 = hprev is
transformed linearly (dashed arrows), fed through a sigmoid and gates x−1 = x in an
elementwise manner producing x1. Conversely, the linearly transformed x1 gates h0

and produces h2. After a number of repetitions of this mutual gating cycle, the last
values of h∗ and x∗ sequences are fed to an LSTM cell. The prev subscript of h is omitted
to reduce clutter.

While the LSTM is typically presented as a solution to the vanishing gradients
problem, its gate 𝑖 can also be interpreted as scaling the rows of weight matrices
W 𝑗∗ (ignoring the non-linearity in 𝑗). In this sense, the LSTM nudges Elman
Networks towards context-dependent transitions and the extreme case of Input
Switched Affine Networks. If we took another, larger step towards that extreme,
we could end up with Hypernetworks [Ha et al., 2017]. Here, instead, we take a
more cautious step and equip the LSTM with gates that scale the columns of
all its weight matrices W∗∗ in a context-dependent manner. The scaling of the
matrices W∗𝑥 (those that transform the cell input) makes the input embeddings
dependent on the cell state, while the scaling of W∗ℎ does the reverse.

As Figure 2.1 illustrates, the Mogrifier1 LSTM is an LSTM where two inputs
hprev and x modulate one another in an alternating fashion before the usual
LSTM computation takes place. That is,

MogrifierLSTM: ℝ𝑛 ×ℝ𝑛 ×ℝ𝑚 → ℝ𝑛 ×ℝ𝑛

LSTM(cprev,mogrify(hprev, x)
)
=
(c, h) ,

where the mogrification operation is the followingℝ𝑛×ℝ𝑚 → ℝ𝑛×ℝ𝑚 function:
mogrify(h, x) = h2⌊𝑟/2⌋ , x2⌊ (𝑟+1)/2⌋−1

x−1, h0 = x, h
x𝑖 = 2𝜎 (Q𝑖h𝑖−1) ⊙ x𝑖−2 for odd i ∈ [1..𝑟],
h𝑖 = 2𝜎 (R𝑖x𝑖−1) ⊙ h𝑖−2 for even i ∈ [1..𝑟].

(2.2)

Here, the number of rounds, 𝑟 ∈ ℕ, is a hyperparameter; 𝑟 = 0 recovers the
identity function. Multiplication with the constant 2 ensures that random-

1It’s like a transmogrifier2 without the magic: it can only shrink or expand objects.
2Transmogrify (verb, 1650s): to completely alter the form of something in a surprising or

magical manner.

21

ly initialized Q𝑖,R𝑖 matrices result in transformations close to identity. To
reduce the number of additional model parameters, we typically factorize
the Q𝑖,R𝑖 matrices as products of low-rank matrices: Q𝑖 = Q𝑖

leftQ𝑖
right with

Q𝑖 ∈ ℝ𝑚×𝑛,Q𝑖
left ∈ ℝ𝑚×𝑘,Q𝑖

right ∈ ℝ𝑘×𝑛, where 𝑘 < 𝑚𝑖𝑛(𝑚, 𝑛) is the rank.

2.2 experiments

2.2.1 Datasets

We compare models on both word and character-level language modelling
datasets. The two word-level datasets we picked are the Penn Treebank (PTB)
corpus by Marcus et al. [1993] with preprocessing from Mikolov et al. [2010]
and Wikitext-2 by Merity et al. [2016], which is about twice the size of PTB with
a larger vocabulary and lighter preprocessing. These datasets are definitely on
the small side, but – and because of this – they are suitable for exploring different
model biases. Their main shortcoming is the small vocabulary size, only in the
tens of thousands, which makes them inappropriate for exploring the behaviour
of the long tail. For that, open vocabulary language modelling and byte pair
encoding [Sennrich et al., 2015] would be an obvious choice. Still, our primary
goal here is the comparison of the LSTM and Mogrifier architectures, thus we
instead opt for character-based language modelling tasks, where vocabulary
size is not an issue, the long tail is not truncated, and there are no additional
hyperparameters as in byte pair encoding that make fair comparison harder.
The first character-based corpus is Enwik8 from the Hutter Prize dataset [Hutter,
2012]. Following common practice, we use the first 90 million characters for
training and the remaining 10 million evenly split between validation and test.
The character-level task on the Mikolov preprocessed PTB corpus [Merity et al.,
2018] is unique in that it has the disadvantages of closed vocabulary without
the advantages of word-level modelling, but we include it for comparison to
previous work. The final character-level dataset is the Multilingual Wikipedia
Corpus (MWC, Kawakami et al. [2017]), from which we focus on the English
and Finnish language subdatasets in the single text, large setting.

2.2.2 Setup

We tune hyperparameters following the experimental setup of Melis et al. [2018]
using a black-box hyperparameter tuner based on batched Gaussian Process
Bandits [Golovin et al., 2017]. For the LSTM, the tuned hyperparameters are

22

Table 2.1: Word-level perplexities of near state-of-the-art models, our LSTM baseline
and the Mogrifier on PTB and Wikitext-2. Models with Mixture of Softmaxes [Yang
et al., 2017a] are denoted with MoS, depth N with dN. MC stands for Monte Carlo
dropout evaluation. Previous state-of-the-art results in italics. Note the comfortable
margin of 2.8–4.3 perplexity points the Mogrifier enjoys over the LSTM.

No Dyneval Dyneval
Val. Test Val. Test

PT
B

FRAGE (d3, MoS15) [Gong et al., 2018] 22M 54.1 52.4 47.4 46.5
AWD-LSTM (d3, MoS15) [Yang et al., 2017a] 22M 56.5 54.4 48.3 47.7
Transformer-XL [Dai et al., 2019] 24M 56.7 54.5
LSTM (d2) 24M 55.8 54.6 48.9 48.4
Mogrifier (d2) 24M 52.1 51.0 45.1 45.0
LSTM (d2, MC) 24M 55.5 54.1 48.6 48.4
Mogrifier (d2, MC) 24M 51.4 50.1 44.9 44.8

W
T2

FRAGE (d3, MoS15) [Gong et al., 2018] 35M 60.3 58.0 40.8 39.1
AWD-LSTM (d3, MoS15) [Yang et al., 2017a] 35M 63.9 61.2 42.4 40.7
LSTM (d2, MoS2) 35M 62.6 60.1 43.2 41.5
Mogrifier (d2, MoS2) 35M 58.7 56.6 40.6 39.0
LSTM (d2, MoS2, MC) 35M 61.9 59.4 43.2 41.4
Mogrifier (d2, MoS2, MC) 35M 57.3 55.1 40.2 38.6

the same: input_embedding_ratio, learning_rate, l2_penalty, input_dropout, in-
ter_layer_dropout, state_dropout, output_dropout. For the Mogrifier, the number
of rounds 𝑟 and the rank 𝑘 of the low-rank approximation is also tuned (allowing
for full rank, too). For word-level tasks, BPTT [Werbos, 1990] window size is
set to 70 and batch size to 64. For character-level tasks, BPTT window size is
set to 150 and batch size to 128 except for Enwik8 where the window size is
500. Input and output embeddings are tied for word-level tasks following Inan
et al. [2016] and Press and Wolf [2016]. Optimization is performed with Adam
[Kingma and Ba, 2014] with 𝛽1 = 0, a setting that resembles RMSProp without
momentum. Gradients are clipped [Pascanu et al., 2013] to norm 10. We switch
to averaging weights similarly to Merity et al. [2017] after a certain number of
checkpoints with no improvement in validation cross-entropy or at 80% of the
training time at the latest. We found no benefit to using two-step finetuning.

Model evaluation is performed with the standard, deterministic dropout
approximation or Monte Carlo averaging [Gal and Ghahramani, 2016] where
explicitly noted (MC). In standard dropout evaluation, dropout is turned off
while in MC dropout predictions are averaged over randomly sampled dropout
masks (200 in our experiments). Optimal softmax temperature is determined
on the validation set, and in the MC case, dropout rates are scaled [Melis et al.,

23

2018]. Finally, we report results with and without dynamic evaluation [Krause
et al., 2017]. Hyperparameters for dynamic evaluation are tuned using the same
method (see §2.a for details).

2.2.3 Results

Table 2.1 lists our results on word-level datasets. On the PTB and Wikitext-2
datasets, the Mogrifier has lower perplexity than the LSTM by 3–4 perplexity
points regardless of whether or not dynamic evaluation [Krause et al., 2017] and
Monte Carlo averaging are used. On both datasets, the state of the art is held
by the AWD LSTM [Merity et al., 2017] extended with Mixture of Softmaxes
[Yang et al., 2017a] and FRAGE [Gong et al., 2018]. The Mogrifier improves the
state of the art without either of these methods on PTB, and without FRAGE on
Wikitext-2.

Table 2.2 lists the character-level modelling results. On all datasets, our
baseline LSTM results are much better than those previously reported for
LSTMs, highlighting the issue of scalability and experimental controls. In some
cases, these unexpectedly large gaps may be down to lack of hyperparameter
tuning as in the case of Merity et al. [2017], or in others, to using a BPTT
window size (50) that is too small for character-level modelling [Melis et al.,
2017] in order to fit the model into memory. The Mogrifier further improves on
these baselines by a considerable margin. Even the smallest improvement of
0.012 bpc on the highly idiosyncratic, character-based, Mikolov preprocessed
PTB task is equivalent to gaining about 3 perplexity points on word-level PTB.
MWC, which was built for open-vocabulary language modelling, is a much
better smaller-scale character-level dataset. On the English and the Finnish
corpora in MWC, the Mogrifier enjoys a gap of 0.033–0.046 bpc. Finally, on the
Enwik8 dataset, the gap is 0.029–0.039 bpc in favour of the Mogrifier.

Of particular note is the comparison to Transformer-XL [Dai et al., 2019],
a state-of-the-art model on larger datasets such as Wikitext-103 and Enwik8.
On PTB, without dynamic evaluation, the Transformer-XL is on par with our
LSTM baseline which puts it about 3.5 perplexity points behind the Mogrifier.
On Enwik8, also without dynamic evaluation, the Transformer-XL has a large,
0.09 bpc advantage at similar parameter budgets, but with dynamic evaluation
this gap disappears. However, we did not test the Transformer-XL ourselves, so
fair comparison is not possible due to differing experimental setups and the
rather sparse result matrix for the Transformer-XL.

24

Table 2.2: Bits per character on character-based datasets of near state-of-the-art models,
our LSTM baseline and the Mogrifier. Previous state-of-the-art results in italics. Depth
N is denoted with dN. MC stands for Monte Carlo dropout evaluation. Once again the
Mogrifier strictly dominates the LSTM and sets a new state of the art on all but the
Enwik8 dataset where with dynamic evaluation it closes the gap to the Transformer-XL
of similar size († Krause et al. [2019], ‡ Ben Krause, personal communications, May
17, 2019). On most datasets, model size was set large enough for underfitting not to
be an issue. This was very much not the case with Enwik8, so we grouped models
of similar sizes together for ease of comparison. Unfortunately, a couple of dynamic
evaluation test runs diverged (NaN) on the test set and some were just too expensive
to run (Enwik8, MC).

No Dyneval Dyneval
Val. Test Val. Test

PT
B

Trellis Networks [Bai et al., 2018] 13.8M 1.159
AWD-LSTM (d3) [Merity et al., 2017] 13.8M 1.175
LSTM (d2) 24M 1.163 1.143 1.116 1.103
Mogrifier (d2) 24M 1.149 1.131 1.098 1.088
LSTM (d2, MC) 24M 1.159 1.139 1.115 1.101
Mogrifier (d2, MC) 24M 1.137 1.120 1.094 1.083

M
W
C

EN

HCLM+Cache [Kawakami et al., 2017] 8M 1.591 1.538
LSTM (d1) [Kawakami et al., 2017] 8M 1.793 1.736
LSTM (d2) 24M 1.353 1.338 1.239 1.225
Mogrifier (d2) 24M 1.319 1.305 1.202 1.188
LSTM (d2, MC) 24M 1.346 1.332 1.238 NaN
Mogrifier (d2, MC) 24M 1.312 1.298 1.200 1.187

M
W
C

FI

HCLM+Cache [Kawakami et al., 2017] 8M 1.754 1.711
LSTM (d1) [Kawakami et al., 2017] 8M 1.943 1.913
LSTM (d2) 24M 1.382 1.367 1.249 1.237
Mogrifier (d2) 24M 1.338 1.326 1.202 1.191
LSTM (d2, MC) 24M 1.377 1.361 1.247 1.234
Mogrifier (d2, MC) 24M 1.327 1.313 1.198 NaN

En
wi

k8

Transformer-XL (d24) [Dai et al., 2019] 277M 0.993 0.940†
Transformer-XL (d18) [Dai et al., 2019] 88M 1.03
LSTM (d4) 96M 1.145 1.155 1.041 1.020
Mogrifier (d4) 96M 1.110 1.122 1.009 0.988
LSTM (d4, MC) 96M 1.139 1.147
Mogrifier (d4, MC) 96M 1.104 1.116
Transformer-XL (d12) [Dai et al., 2019] 41M 1.06 1.01‡
AWD-LSTM (d3) [Merity et al., 2017] 47M 1.232
mLSTM (d1) [Krause et al., 2016] 46M 1.24 1.08
LSTM (d4) 48M 1.182 1.195 1.073 1.051
Mogrifier (d4) 48M 1.135 1.146 1.035 1.012
LSTM (d4, MC) 48M 1.176 1.188
Mogrifier (d4, MC) 48M 1.130 1.140

25

x1

h0

x-1 x3 x5

h2 h4 LS
TM

⦁⦁⦁

⦁ ⦁

Figure 2.2: No-zigzag Mogrifier for the ablation study, whose gating is always based on
the original inputs.

2.3 analysis

2.3.1 Ablation Study

The Mogrifier consistently outperformed the LSTM in our experiments. The
optimal settings were similar across all datasets,with 𝑟 ∈ {5, 6} and 𝑘 ∈ [40..90]
(see §2.b for a discussion of hyperparameter sensitivity). In this section, we
explore the effect of these hyperparameters and show that the proposed model
is not unnecessarily complicated. To save computation, we tune all models using
a shortened schedule with only 145 epochs instead of 964 and a truncated BPTT
window size of 35 on theword-level PTB dataset, and evaluate using the standard,
deterministic dropout approximation with a tuned softmax temperature.

Figure 2.3 shows that the number of rounds 𝑟 greatly influences the results.
Second, we found the low-rank factorization of Q𝑖 and R𝑖 to help a bit, but
the full-rank variant is close behind, which is what we observed on other
datasets, as well. Finally, to verify that the alternating gating scheme is not
overly complicated, we condition all newly introduced gates on the original
inputs x and hprev (see Figure 2.2). That is, in (2.2) the updates are changed to
these no-zigzag variants:

x𝑖 = 2𝜎 (Q𝑖hprev
) ⊙ x𝑖−2 for odd i ∈ [1..𝑟],

h𝑖prev = 2𝜎 (R𝑖x) ⊙ h𝑖−2prev for even i ∈ [1..𝑟].
In our experiments, the no-zigzag variant underperformed the baseline Mogrifier
by a small but significant margin, and was on par with the 𝑟 = 2 model in
Figure 2.3 suggesting that the Mogrifier’s iterative refinement scheme does
more than simply widen the range of possible gating values of x and hprev to
(0, 2⌈𝑟/2⌉) and (0, 2⌊𝑟/2⌋), respectively.

26

0 2 4 6
54
55
56
57

𝑟 rounds

PP
L

Figure 2.3: Perplexity vs the number of
rounds 𝑟 in the PTB ablation study.

Mogrifier 54.1
Full rank 𝑄𝑖, 𝑃𝑖 54.6
No zigzag 55.0
LSTM 57.5
mLSTM 57.8

Table 2.3: PTB ablation study validation
perplexities with 24M parameters.

2.3.2 Comparison to the mLSTM

The Multiplicative LSTM [Krause et al., 2016], or mLSTM for short, is closest to
our model in the literature. Formulating it as

mLSTM(x, cprev, hprev
)
= LSTM(x, cprev, h𝑚prev)

h𝑚prev =
(W𝑚𝑥x) ⊙ (W𝑚ℎhprev

)
,

the differences are readily apparent. First, the mLSTM allows for multiplicative
interaction between x and hprev, but it only overrides hprev, while in the Mogrifier
the interaction is two-way, which – as the ablation study showed – is important.
Second, the mLSTM can change not only the magnitude but also the sign of
values in hprev, something with which we experimented in the Mogrifier, but
could not get to work. Furthermore, in the definition of h𝑚prev, the unsquashed
linearities and their elementwise product make the mLSTM more sensitive to
initialization and unstable during optimization.

On the Enwik8 dataset, we greatly improved on the published results of the
mLSTM [Krause et al., 2016]. In fact, even our LSTM baseline outperformed
the mLSTM by 0.03 bpc. We also conducted experiments on PTB based on
our reimplementation of the mLSTM following the same methodology as the
ablation study and found that the mLSTM did not improve on the LSTM (see
Table 2.3).

Krause et al. [2016] posit and verify the recovery hypothesis that says that
having just suffered a large loss, the loss on the next time step will be smaller on
average for the mLSTM than for the LSTM. This was found not to be the case for
the Mogrifier. Neither did we observe a significant change in the gap between
the LSTM and the Mogrifier in the tied and untied embeddings settings, which
would be expected if recovery was affected by x and hprev being in different
domains.

27

50 100 150 200
0

0.5
1

1.5

sequence length

XE
𝐿𝑆𝑇𝑀

𝑀𝑜𝑔𝑟𝑖 𝑓 𝑖𝑒𝑟

(a) 10M parameters with vocabulary size 1k.

50 100 150 200
0

2

4

sequence length

XE

𝐿𝑆𝑇𝑀
𝑀𝑜𝑔𝑟𝑖 𝑓 𝑖𝑒𝑟

(b) 24M parameters with vocabulary size 10k.

Figure 2.4: Cross-entropy vs sequence length in the reverse copy task with i.i.d. tokens.
Lower is better. The Mogrifier is better than the LSTM even in this synthetic task with
no resemblance to natural language.

2.3.3 The Reverse Copy Task

Our original motivation for the Mogrifier was to allow the context to amplify
salient and attenuate nuisance features in the input embeddings. We conduct
a simple experiment to support this point of view. Consider the reverse copy
task where the network reads an input sequence of tokens and a marker token
after which it has to repeat the input in reverse order. In this simple sequence-
to-sequence learning [Sutskever et al., 2014] setup, the reversal is intended
to avoid the minimal time lag problem [Hochreiter and Schmidhuber, 1997c],
which is not our focus here.

The experimental setup is as follows. For the training set,we generate 500 000
examples by uniformly sampling a given number of tokens from a vocabulary
of size 1000. The validation and test sets are constructed similarly, and contain
10 000 examples. The model consists of an independent, unidirectional encoder
and a decoder, whose total number of parameters is 10 million. The decoder is
initialized from the last state of the encoder. Since overfitting is not an issue
here, no dropout is necessary, and we only tune the learning rate, the l2 penalty,
and the embedding size for the LSTM. For the Mogrifier, the number of rounds
𝑟 and the rank 𝑘 of the low-rank approximation are also tuned.

We compare the case where both the encoder and decoder are LSTMs to
where both are Mogrifiers. Figure 2.4a shows that, for sequences of length 50
and 100, both models can solve the task perfectly. At higher lengths though, the
Mogrifier has a considerable advantage. Examining the best hyperparameter
settings found, the embedding/hidden sizes for the LSTM and Mogrifier are
498/787 vs 41/1054 at 150 steps, and 493/790 vs 181/961 at 200 steps. Clearly, the
Mogrifier was able to work with a much smaller embedding size than the LSTM,

28

which is in line with our expectations for a model with a more flexible interaction
between the input and recurrent state. We also conducted experiments with a
larger model and vocabulary size, and found the effect even more pronounced
(see Figure 2.4b).

2.3.4 What the Mogrifier is Not

The results on the reverse copy task support our hypothesis that input embed-
dings are enriched by the Mogrifier architecture, but that cannot be the full
explanation as the results of the ablation study indicate. In the following, we
consider a number of hypotheses about where the advantage of the Mogrifier
lies and the experiments that provide evidence against them.
E Hypothesis: the benefit is in scaling x and hprev. We verified that data depen-
dency is a crucial feature by adding a learnable scaling factor to the LSTM
inputs. We observed no improvement. Also, at extremely low-rank (less
than 5) settings where the amount of information in its gating is small, the
Mogrifier loses its advantage.

E Hypothesis: the benefit is in making optimization easier. We performed
experiments with different optimizers (SGD, RMSProp), with intra-layer
batch normalization and layer normalization on the LSTM gates. While we
cannot rule out an effect on optimization difficulty, in all of these experiments
the gap between the LSTM and the Mogrifier was the same.

E Hypothesis: exact tying of embeddings is too constraining, the benefit is in
making this relationship less strict. Experiments conducted with untied
embeddings and character-based models demonstrate improvements of
similar magnitude.

E Hypothesis: the benefit is in the low-rank factorization of Q𝑖,R𝑖 implicitly
imposing structure on the LSTM weight matrices. We observed that the full-
rank Mogrifier also performed better than the plain LSTM. We conducted
additional experiments where the LSTM’s gate matrices were factorized and
observed no improvement.

E Hypothesis: the benefit comes from better performance on rare words. The
observed advantage on character-based modelling is harder to explain based
on frequency. Also, in the reverse copy experiments, a large number of
tokens were sampled uniformly, so there were no rare words to speak of.

E Hypothesis: the benefit is specific to the English language. The improvements
observed on the Finnish dataset and the reverse copy experiments, which
did not feature natural language at all, directly contradict this hypothesis.

29

E Hypothesis: the benefit is in handling long-range dependencies better. Ex-
periments in the episodic setting (i.e. sentence-level language modelling)
exhibited the same gap as the non-episodic ones.

E Hypothesis: the scaling up of inputs saturates the downstream LSTM gates.
The idea here is that saturated gates may make states more stable over time.
We observed the opposite: the means of the standard LSTM gates in the
Mogrifier were very close between the two models, but their variance was
smaller in the Mogrifier.

2.4 conclusions

§ Many advances in natural language processing have been based upon more
expressive models for how inputs interact with the context in which they occur.
Recurrent networks, which have enjoyed a modicum of success, still lack the
generalization and systematicity ultimately required for modelling language. In
this work, we proposed an extension to the venerable Long Short-Term Memory
in the form of mutual gating of the current input and the previous output. This
mechanism affords the modelling of a richer space of interactions between
inputs and their context. Equivalently, our model can be viewed as making
the transition function given by the LSTM context-dependent. Experiments
demonstrate markedly improved generalization on language modelling in the
range of 3–4 perplexity points on Penn Treebank and Wikitext-2, and 0.01–0.05
bpc on four character-based datasets. With the Mogrifier LSTM, we establish
a new state of the art on all datasets with the exception of Enwik8, where we
close a large gap between the LSTM and Transformer models.

Our original motivation for this workwas that the context-free representation
of input tokens may be a bottleneck in language models, and by conditioning
the input embedding on the recurrent state some benefit was indeed derived.
While it may be part of the explanation, this interpretation clearly does not
account for the improvements brought by conditioning the recurrent state on
the input and especially the benefits of mogrification on character-level datasets.
Positioning our work on the Multiplicative RNN line of research offers a more
compelling perspective.

To give more credence to this interpretation, in the analysis we highlighted
a number of possible alternative explanations and ruled them all out to varying
degrees. In particular, the connection to the mLSTM was found to be weaker
than expected as the Mogrifier does not exhibit improved recovery (see §2.3.2),
and on PTB the mLSTM works only as well as the LSTM. At the same time, the

30

evidence against easier optimization is weak, and the Mogrifier establishing
some kind of sharing between otherwise independent LSTM weight matrices is
a distinct possibility.

Finally, note that as shown by Figure 2.1 and (2.2), the Mogrifier is a series of
preprocessing steps composed with the LSTM function, but other architectures,
such as Mogrifier GRU or Mogrifier Elman Network are possible. We also
leave investigations into other forms of parameterization of context-dependent
transitions for future work.

31

A PPEND IC E S

2.a hyperparameter tuning ranges

In all experiments,we tuned hyperparameters using Google Vizier [Golovin et al.,
2017]. The tuning ranges are listed in Table 2.4. Obviously, mogrifier_rounds and
mogrifier_rank are tuned only for the Mogrifier. If 𝑖𝑛𝑝𝑢𝑡_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑟𝑎𝑡𝑖𝑜 ⩾ 1,
then the input/output embedding sizes and the hidden sizes are set to equal
and the linear projection from the cell output into the output embeddings space
is omitted. Similarly, 𝑚𝑜𝑔𝑟𝑖 𝑓 𝑖𝑒𝑟_𝑟𝑎𝑛𝑘 ⩽ 0 is taken to mean full rank Q∗, R∗
without factorization. Since Enwik8 is a much larger dataset, we do not tune
input_embedding_ratio and specify tighter tuning ranges for dropout based on
preliminary experiments (see Table 2.5).

Dynamic evaluation hyperparameters were tuned according to Table 2.6.
The highest possible value for max_time_steps, the BPTT window size, was 20
for word, and 50 for character-level tasks. The batch size for estimating the
mean squared gradients over the training data was set to 1024, gradient clipping
was turned off, and the l2 penalty was set to zero.

2.b hyperparameter sensitivity

The parallel coordinate plots in Figure 2.5 and 2.6 give a rough idea about
hyperparameter sensitivity. The red lines correspond to hyperparameter com-
binations closest to the best solution found. To find the closest combinations,
we restricted the range for each hyperparameter separately to about 15% of
its entire tuning range. For both the LSTM and the Mogrifier, the results are
at most 1.2 perplexity points off the best result, so our results are somewhat
insensitive to jitter in the hyperparameters. Still, in this setup, grid search would
require orders of magnitude more trials to find comparable solutions.

On the other hand, the tuner does take advantage of the stochasticity of
training, and repeated runs with the same parameters may give slightly worse
results. To gauge the extent of this effect, on PTB we estimated the standard
deviation in reruns of the LSTM with the best hyperparameters to be about 0.2
perplexity points, but the mean was about 0.7 perplexity points off the result
produced with the weights saved in best tuning run.

32

Table 2.4: Hyperparameter tuning ranges for all tasks except Enwik8.

Low High Spacing
learning_rate 0.001 0.004 log
input_embedding_ratio 0.0 2.0
l2_penalty 5e-6 1e-3 log
input_dropout 0.0 0.9
inter_layer_dropout 0.0 0.95
state_dropout 0.0 0.8
output_dropout 0.0 0.95
mogrifier_rounds (𝑟) 0 6
mogrifier_rank (𝑘) -20 100

Table 2.5: Hyperparameter tuning ranges for Enwik8.

Low High Spacing
learning_rate 0.001 0.004 log
l2_penalty 5e-6 1e-3 log
input_dropout 0.0 0.2
inter_layer_dropout 0.0 0.2
state_dropout 0.0 0.25
output_dropout 0.0 0.25
mogrifier_rounds (𝑟) 0 6
mogrifier_rank (𝑘) -20 100

Table 2.6: Hyperparameter tuning ranges for dynamic evaluation.

Low High Spacing
max_time_steps 1 20/50
dyneval_learning_rate 1e-6 1e-3 log
dyneval_decay_rate 1e-6 1e-2 log
dyneval_epsilon 1e-8 1e-2 log

33

Figure 2.5: Average per-word validation cross-entropies for hyperparameter combina-
tions in the neighbourhood of the best solution for a 2-layer LSTM with 24M weights
on the Penn Treebank dataset.

Figure 2.6: Average per-word validation cross-entropies for hyperparameter combina-
tions in the neighbourhood of the best solution for a 2-layer Mogrifier LSTM with 24M
weights on the Penn Treebank dataset. feature_mask_rank and feature_mask_rounds
are aliases for mogrifier_rank and mogrifier_rounds

.

34

3 OP T IM I Z AT ION OOMPH

It’s not much of a tail, but
I’m sort of attached to it.

A.A.Milne

Mogrification proved surprisingly powerful, but it comes with
a performance penalty. With thorough hyperparemeter tuning (a
prerequisite of reliable model evaluation), this penalty and the

already high base cost of the LSTM must be paid hundreds of times. Scaling to
larger datasets makes this process even more resource intensive.

More generally, when training a single model is expensive, there are fewer
resources left for exploring the design and hyperparameter space, which com-
promises our ability to develop with speed and evaluate with accuracy. The
exploration is difficult if the space is large and wrinkled, thus the number of
hyperparameters and the sensitivity of the results to them is of high practical
importance (see §2.a and §2.b). One particularly important hyperparameter
is the learning rate. Since it often varies during training, the learning rate is
not a single but a bunch of hyperparameters that define its schedule. Tuning
these hyperparameters well is time-consuming yet essential. An alternative to
scheduling the learning rate is averaging iterates of a stochastic optimizer. This
technique was already used to train the Mogrifier, and it worked well but not
without drawbacks that would get into the way of scaling. In the following,
we develop an algorithm that approximates the optimal iterate average and
which can be used with any stochastic optimizer. This will allow us to scale
our models and methodology (including the costly hyperparameter tuning) to
larger datasets in §4.

3.1 background

For the series of iterates produced by Stochastic Gradient Descent (SGD)
[Robbins and Monro, 1985] to converge to a local minimum point of the training
loss, the learning rate must be annealed to zero. Polyak averaging [Polyak and
Juditsky, 1992, Ruppert, 1988] improves on SGD and achieves a statistically
optimal convergence rate by averaging all iterates to produce the final solution.

35

Tail or suffix averaging [Jain et al., 2018, Rakhlin et al., 2011] takes this further
and improves the non-asymptotic behaviour by dropping a number of leading
iterates from the average, speeding up the decay of the effect of the initial state
while allowing the learning rate to stay constant. Both of these properties are
advantageous in practice, where a finite number of optimization steps are taken,
and because large learning rates may bias optimization towards flatter and
wider minima, which improves generalization [Hochreiter and Schmidhuber,
1997a, Keskar et al., 2016]. Focussing on large learning rates, flat minima, and
generalization, Izmailov et al. [2018] propose Stochastic Weight Averaging
(SWA), which takes the same form as Tail Averaging but is motivated from an
ensembling point of view.

Tail Averaging starts after a given number of optimization steps. Setting
this hyperparameter to minimize the training loss already poses some diffi-
culties, which only become more pronounced and numerous in the context of
generalization, our primary focus in this work.
• Triggering averaging too early is inefficient as the average must grow long
to forget early weights.

• Triggering averaging too late is inefficient as it does not use valuable
information.

• Tuning dependent hyperparameters becomes harder.
• Early stopping is unreliable due to learning curves having a sudden drop at
the onset of averaging.

Motivated by these problems, we propose the Two-Tailed Averaging algorithm
with the following features:
• Anytime: An estimate of the optimal tail is available at all optimization steps.
• Adaptive: It has no hyperparameters. The number of weights averaged
(the length of the tail) is determined adaptively based on the evolution of
generalization performance.

• Optimal once in a while: The tail length achieves near optimality regularly.
The algorithm is very easy to implement. Its principal cost is the storage for a
second running average, and it also performs more evaluations of generalization
performance (e.g. the validation loss). The main idea, sketched in Figure 3.1, is
to maintain two running averages of optimization iterates: a short and a long
one, with the long average being our estimate of the optimal weights.

36

S=L
L
S

L
S

L

S

Figure 3.1: Example evolution of the two running averages of weights over optimization
steps. Line segments indicate running averages whose length (the number of optimiza-
tion iterates averaged) is represented on the y axis. The two averages start out the
same, but after the first evaluation, there is always one short (S) and one long (L)
average, where the long one has more iterates averaged and a better loss. When the
loss with the short one is not worse than with the long average, the long one is reset,
and the short average becomes the long one. These switch points are marked by dotted
lines. In any interval labelled with L, there is at least one point where the length of the
long average is near optimal.

3.2 related works

3.2.1 Averaging in Pure Optimization

Polyak averaging as originally proposed [Ruppert, 1988, Polyak and Juditsky,
1992] computes the equally weighted average

𝜃𝑡 =
1

𝑡 + 1
𝑡∑︁
𝑖=0

𝜃𝑖

of all iterates 𝜃𝑖 from the optimizer up to the current time step 𝑡. The convergence
rate of 𝜃𝑡 was analyzed in the convex case with an appropriately decaying
learning rate. Beyond this strictest interpretation, Polyak (or Polyak–Ruppert)
averaging may refer to using 𝜃𝑡 without the convexity assumption, without a
decaying learning rate, or with another optimizer such as Adam [Kingma and
Ba, 2014].

In practice, where finite budget considerations override the asymptotic
optimality guarantees offered by theory, Polyak averaging may refer to an
exponential moving average (EMA) of the form

𝜃0 = 𝜃0,

𝜃𝑡 = (1 − 𝛽𝑡)𝜃𝑡 + 𝛽𝑡𝜃𝑡−1 (𝑡 ⩾ 1),
(3.1)

where 𝛽𝑡 < 1 may be a constant near 1 or it may be scheduled as in Martens

37

[2020]. The idea here is to improve the rate of decay of the effect of the initial
error by downweighting early iterates.

Tail Averaging (TA) [Jain et al., 2018], also known as Suffix Averaging
[Rakhlin et al., 2011], considers a finite optimization budget of 𝑛 steps with a
constant learning rate. At the cost of introducing a hyperparameter 𝑠 to control
the start of averaging, it improves the rate of decay of the effect of the initial
error while obtaining near-minimax rates on the variance. Tail Averaging is
defined as

𝜃𝑡 = 𝜃𝑡 (𝑡 < 𝑠),

𝜃𝑡 =
1

𝑡 − 𝑠 + 1
𝑡∑︁
𝑖=𝑠

𝜃𝑖 (𝑡 ⩾ 𝑠). (3.2)

Alternatively, the number of iterates to average may change in proportion to
the current time step:

𝜃𝑡 =
1
⌈𝑐𝑡⌉

𝑡∑︁
𝑖=𝑡+1−⌈𝑐𝑡⌉

𝜃𝑖 (𝑡 ⩾ 𝑠),

where 𝑐 ∈ (0, 1) is a hyperparameter. Roux [2019] discusses how to approximate
averages of this form without excessive storage needs but do not consider how
to automatically adjust the length. 1

All in all,we have discussed a few representative averagingmethods intended
for pure optimization but often repurposed for improving generalization by
tuning their hyperparameters. Although there are interesting developments in
this area [Shamir and Zhang, 2013, Lacoste-Julien et al., 2012], we now move on
to the main focus of this work, averaging for improving generalization.

3.2.2 Averaging for Generalization

In work parallel to Tail Averaging, Izmailov et al. [2018] propose Stochastic
Weight Averaging (SWA), an additional stage of optimization with a constant or
cyclical learning rate, which computes an equally weighted average of iterates.
SWA can be motivated heuristically in the following way: with the high learning
rate, it seeks out wider and flatter basins in the training loss surface to improve
generalization, but the high learning rate also prevents it from reaching the
bottom of the basin, so the weights bounce around it, thus taking their average

1Moreover, they frame the problem as finding a weighting of iterates to minimize the
variance of their average while favouring more recent iterates as much as possible to minimize
staleness, but the variance is estimated by implicitly assuming that iterates are i.i.d., precluding
any notion of staleness.

38

should land closer to the minimum point. The SWA algorithm is almost identical
to Tail Averaging (except for a possibly cyclical learning rate and a periodic
subsampling of iterates), but it is motivated from the angle of ensembling and
generalization not of optimization.

If our goal is to improve generalization, the decision of when to start
averaging the weights should depend on generalization performance. Indeed,
Merity et al. [2017] propose an algorithm much like SWA, where averaging
is triggered when the validation loss does not improve for a fixed number of
optimization steps, which trades one hyperparameter for another and is sensitive
to noise in the evaluation of the generalization loss. In other related work,
Guo et al. [2022] investigate the repeated application of SWA. Their method is
not informed by the validation loss and requires the schedule of multiple SWA
stages to be specified. Finally, taking the exponential moving average of iterates
is also sensitive to its hyperparameter, the decay rate.

In summary, existing averaging methods for generalization that behave well
in practice all have one or more hyperparameters to govern the weighting
of early iterates. Tuning these hyperparameters can be costly, particularly in
the presence of other hyperparameters and when training runs take a long
time. Furthermore, even with their hyperparameters, these methods are not
flexible enough to estimate the optimal average at multiple optimization steps
in general. We address these issues in the present work. The rest of this chapter
is structured as follows. In §3.3, we formally define the problem to solve. In
§3.4, we provide a description of the algorithm, whose properties are analyzed
in §3.5. We verify our analysis experimentally in §3.6 and discuss the validity of
our assumptions in §3.5.1.

3.3 problem statement

Let Θ be the parameter (or weight) space, 𝜃𝑡 ∈ Θ (𝑡 ∈ ℕ0) a sequence of
iterates produced by stochastic optimization with 𝜃0 being the initial value, and
𝑓 : Θ→ ℝ the generalization loss function. We may choose the generalization
loss to simply be the validation loss, or it may measure performance on a
down-stream task.

We assume the generalization loss is evaluated periodically, every 𝐸 ∈ ℕ

optimization steps, and it is at these points 𝑛 ∈ [0, 𝐸, 2𝐸, 3𝐸, . . .] where we
would like to know how many of the most recent iterates to average to minimize
it. Here and in the following, 𝑡 and 𝑛 (with or without subscripts) are assumed
to be from ℕ0 and [0, 𝐸, 2𝐸, 3𝐸, . . .], respectively, and loss always refers to 𝑓 .

39

Denoting the average of most recent 𝛿 iterates up to time step 𝑡 with
avg(𝑡, 𝛿) = 1

𝛿

∑𝑡
𝑖=𝑡+1−𝛿 𝜃𝑖, we define the optimal averaging length as

Δ(𝑡) = argmin
𝛿∈[1..𝑡]

𝑓 (avg(𝑡, 𝛿)).

Our task is to approximate Δ(𝑛) and avg(𝑛, Δ(𝑛)) at all evaluation steps 𝑛
during optimization.

The trivial algorithm to find Δ(𝑛), which saves all 𝜃𝑖 and performs a search
over 𝛿 ∈ [1..𝑛] to minimize 𝑓 (avg(𝑛, 𝛿)), has prohibitive storage and evaluation
cost, proportional to 𝑛. Even assuming that 𝑓 improves monotonically in 𝛿 up
to its optimum, the cost is still proportional to Δ(𝑛). Our proposed algorithm
approximates Δ(𝑛) and avg(𝑛, Δ(𝑛)) with a constant cost.

3.4 the algorithm

Algorithm 1 specifies the core of Two-Tailed Averaging (2TA) in pseudocode,
which works as follows. The training loop iterates over weights 𝜃𝑡 produced
by a stochastic optimizer, incorporating them into the short and long running
averages 𝜃𝑆, 𝜃𝐿 with lengths 𝑆 and 𝐿. Then, every 𝐸 steps, the loss is evaluated
with the short average 𝜃𝑆 and with the long average 𝜃𝐿, giving 𝐹𝑆 and 𝐹𝐿. If 𝐹𝑆
is at least as good as 𝐹𝐿, then we switch: the long average is reset, and since that
makes it the shorter of the two averages, we must switch their labels. In other
words, on a switch, the long average continues from the current short average
and the short average is restarted (see Figure 3.1). For time step 𝑡, the estimate
of the optimal averaging length is 𝐿, and 𝜃𝐿 is the corresponding average.

In Algorithm 2, we present two heuristic extensions to the core algorithm.
First, the long and short averages are reset if they have not improved for a
few evaluations. This reset heuristic is intended to handle cases where the
averages become too long, perhaps due to optimization escaping from one
basin of attraction to a better one or due to the loss surface changing in a
non-stationary environment. Second, we defer to the non-averaged weights very
early in training, where 𝑓 (𝜃𝑡) is still improving rapidly enough that averaging
the minimum 𝐸 iterates is worse than not averaging at all.

This algorithm is online as it only accesses the current weights. We analyze
its other properties in the next section.

40

Algorithm 1: The core Two-Tailed Averaging algorithm, without extensions. It has 2
running averages, a short one 𝜃𝑆 and a long one 𝜃𝐿 with 𝑆 ⩽ 𝐿 number of optimization
iterates averaged. If the loss with 𝜃𝑆 becomes lower or equal to the loss with 𝜃𝐿, then
we empty the long average, which becomes the short one.

Require: generalization loss function 𝑓 , opt. iterates 𝜃𝑡, evaluation period 𝐸
1: 𝑆, 𝜃𝑆, 𝐿, 𝜃𝐿← 0, 0, 0, 0 ⊲ The first evaluation will cause a switch.
2:
3: procedure 𝑎𝑑𝑑_𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝜃)
4: 𝑆, 𝜃𝑆 ← 𝑆 + 1, 𝜃𝑆 + (𝜃 − 𝜃𝑆)/(𝑆 + 1) ⊲ Add 𝜃 to the short average
5: 𝐿, 𝜃𝐿← 𝐿 + 1, 𝜃𝐿 + (𝜃 − 𝜃𝐿)/(𝐿 + 1) ⊲ Add 𝜃 to the long average
6:
7: procedure 𝑠𝑤𝑖𝑡𝑐ℎ ⊲ Reset the long average
8: 𝑆, 𝐿, 𝜃𝐿← 0, 𝑆, 𝜃𝑆 ⊲ Must switch short and long to maintain 𝑆 ⩽ 𝐿

9:
10: function 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑎𝑛𝑑_𝑎𝑑𝑎𝑝𝑡(𝜃, 𝑓)
11: 𝐹𝑆, 𝐹𝐿← 𝑓 (𝜃𝑆), 𝑓 (𝜃𝐿)
12: if 𝐹𝑆 ⩽ 𝐹𝐿 then ⊲ Is the short average better?
13: 𝐹𝐿← 𝐹𝑆

14: 𝑠𝑤𝑖𝑡𝑐ℎ()
15: return 𝐹𝐿, 𝜃𝐿, 𝐿

16:
17: for 𝑡 ← 1, 2, . . . do ⊲ Training loop
18: 𝑎𝑑𝑑_𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝜃𝑡) ⊲ 𝜃𝑡 comes from the ongoing optimization
19: if 𝑡 mod 𝐸 = 0 then ⊲ Evaluate 𝑓 every 𝐸 iterates
20: 𝑓𝜃, 𝜃, 𝑙𝑒𝑛← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑎𝑛𝑑_𝑎𝑑𝑎𝑝𝑡(𝜃𝑡, 𝑓)
21: 𝑟𝑒𝑝𝑜𝑟𝑡(𝑡, 𝑓𝜃, 𝜃, 𝑙𝑒𝑛)

3.5 analysis of the algorithm

Our analysis hinges on simplifying assumptions, which follow from, for example,
a monotonically decreasing loss and averaging producing diminishing returns
as the length increases. They represent idealized circumstances; we discuss
their validity and failures in §3.5.1.

Assumption 1. For all 𝑛, as a function of 𝛿 ∈ [0, 𝐸, 2𝐸, . . . , Δ𝐸 (𝑛)], 𝑓 (avg(𝑛, 𝛿))
is monotonically decreasing, where Δ𝐸 (𝑛) = ⌊Δ(𝑛)/𝐸⌋𝐸. That is, for any given
evaluation step 𝑛, averaging more iterates from the past monotonically improves 𝑓
until about the optimum length.

Assumption 2. For all 𝑛 and 𝑛+, such that 𝑛+ ⩾ Δ𝐸 (𝑛), 𝑓 (avg(𝑛, Δ𝐸 (𝑛))) ⩽

41

Algorithm 2: Extensions to Two-Tailed Averaging. This is the version recommended for
use in practice. The parts unchanged from Algorithm 1 are greyed out. There are two
extensions. First, each average is reset if it is stagnating (i.e. it has not improved for
a few evaluations). This reset heuristic makes the algorithm quicker to adapt when
Assumption 4 is violated (see §3.5.1). Second, we defer to non-averaged weights very
early in training.

1: function 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑎𝑛𝑑_𝑎𝑑𝑎𝑝𝑡(𝜃, 𝑓)
2: 𝐹1,𝐹𝑆, 𝐹𝐿← 𝑓 (𝜃), 𝑓 (𝜃𝑆), 𝑓 (𝜃𝐿)
3: if 𝐹𝑆 ⩽ 𝐹𝐿 or 𝐹𝐿 is stagnating then
4: 𝐹𝐿← 𝐹𝑆

5: 𝑠𝑤𝑖𝑡𝑐ℎ()
6: else if 𝐹𝑆 is stagnating then
7: 𝑆← 0
8: if 𝐿 > 1 and 𝐹1 ⩽ 𝐹𝐿 then ⊲ Use the non-averaged weights if better
9: if 𝐿 = 𝐸 then ⊲ If they have always been better so far,
10: 𝑆, 𝐿← 0, 0 ⊲ . . . then reinitialize
11: return 𝐹1, 𝜃, 1
12: return 𝐹𝐿, 𝜃𝐿, 𝐿

𝑓 (avg(𝑛, 𝑛+)), where Δ𝐸 (𝑛) = ⌈Δ(𝑛)/𝐸⌉𝐸. That is, averaging slightly more than
optimal is better than averaging a lot more.

Assumption 3. ∀𝑛 : ∃𝑛𝑠 : Δ(𝑛 + 𝑛𝑠) − Δ(𝑛) < 𝑛𝑠, that is, the optimal average
forgets over a sufficiently long interval.

Assumption 4. Δ(𝑛) ⩽ Δ(𝑛+𝐸), that is, the optimal number of weights to average
is monotonically increasing from one evaluation to the next.

Let 𝑆(𝑡), 𝜃𝑆 (𝑡), 𝐿(𝑡), and 𝜃𝐿(𝑡) stand for the values of variables 𝑆, 𝜃𝑆, 𝐿, and
𝜃𝐿 in Algorithm 1, respectively, after 𝑡 times through the loop. Similarly, let
𝑆′(𝑡), 𝜃𝑆′(𝑡), 𝐿′(𝑡), and 𝜃𝐿

′(𝑡) stand for the values of the same variables at the
same iteration but after Line 18 in Algorithm 1 (i.e. before the possible switch
of the short and long averages). Furthermore, we introduce the shorthands
𝑓 𝑋 (𝑡) = 𝑓 (avg(𝑡, 𝑋 (𝑡))) for 𝑋 ∈ {𝑆, 𝑆′, 𝐿, 𝐿′, Δ} with 𝑓 𝑋 (𝑡) = +∞ if 𝑋 (𝑡) = 0.

Definition 1 (Switch point). We say that 𝑛 is a switch point if at 𝑡 = 𝑛 the switch
procedure is called at Line 14 in Algorithm 1. We denote the most recent switch
point before iteration 𝑡 with SP(𝑡), where SP(𝑡) < 𝑡. If there is no such switch
point, then SP(𝑡) = −1.

42

0 2 4 6

Δ(𝑛)

Δ(𝑛 + 𝐸)

Δ(𝑛 + 2𝐸)

𝑆′(𝑛)

𝑆′(𝑛 + 𝐸)

𝑆′(𝑛 + 2𝐸)

𝐿′(𝑛)

𝐿′(𝑛 + 𝐸)

𝐿′(𝑛 + 2𝐸)

𝛿/𝐸

𝑙𝑜
𝑠𝑠

𝑓 (avg(𝑛, 𝛿))
𝑓 (avg(𝑛 + 𝐸, 𝛿))
𝑓 (avg(𝑛 + 2𝐸, 𝛿))

Optimal averaging length Δ(.)
Length of the short average 𝑆′(.)
Length of the long average 𝐿′(.)

Figure 3.2: Idealized illustration of switching. The three curves show the loss as a
function of averaging length at three subsequent evaluations (at optimization steps 𝑛,
𝑛 + 𝐸, and 𝑛 + 2𝐸). The raw loss keeps improving, hence later evaluations have lower
loss curves. The optimal averaging length increases, Δ(𝑛) ⩽ Δ(𝑛 + 𝐸) ⩽ Δ(𝑛 + 2𝐸), as
per Assumption 4. At 𝑡 = 𝑛 + 2𝐸, where the loss of the short average dips below the loss
of the long average, the long average is reset, and the short average becomes the long
average, so we have 𝑆(𝑛 + 2𝐸) = 0 and 𝐿(𝑛 + 2𝐸) = 𝑆′(𝑛 + 2𝐸).

Assumption 4 states that the optimal averaging length monotonically increases,
so to simplify the analysis, without loss of generality, we assume throughout
that the raw loss 𝐹1 has already been eclipsed by 𝐹𝐿 at the first evaluation.
We also assume that the reset heuristic cannot trigger. In effect, we ignore the
extensions in Algorithm 2 and analyze the core logic in Algorithm 1.

Proposition 1 (Basic properties). ∀𝑡 ⩾ 𝐸 : and ∀𝑛 ⩾ 𝐸 :
(i) 𝐸 | 𝑆(𝑛), 𝐸 | 𝐿(𝑛)
(ii) 𝑆(𝑛) ⩽ 𝐿(𝑛) ⩽ 𝑛

(iii) 𝑓 𝑆 (𝑛) > 𝑓 𝐿(𝑛)
(iv) 𝐿(𝑡) = 𝑆(𝑡) + 𝑆′(SP(𝑡)) if SP(𝑡) ≠ −1 else 𝐿(𝑡) = 𝑆(𝑡)

Item (i) states that the averaging lengths are multiples of the evaluation period
(because 𝑛 ∈ [0, 𝐸, 2𝐸, 3𝐸, . . .]); (ii) follows from that the lengths increase by
1 at every iteration except at switches, where 𝑆 is reset to 0; (iii) is because we
switch if it is not true; and (iv) expresses that all long averages except the first
are continuations of the previous short average.

Proposition 2 (Bounds for the averaging lengths). The lengths of the short and
long averages are bounded as 𝑆(𝑛) < Δ(𝑛) and 𝐿(𝑛) < 2Δ(𝑛) + 𝐸.

43

Proof. We prove 𝑆(𝑛) < Δ(𝑛) by contradiction. Suppose Δ(𝑛0) ⩽ 𝑆(𝑛0) for some
𝑛0. As Δ(𝑛) is monotonically increasing and 𝑆(𝑛) increases by 𝐸, there exists
𝑛 ⩽ 𝑛0 such that Δ𝐸 (𝑛) = 𝑆(𝑛). Since 𝑆(𝑛) ⩽ 𝐿(𝑛) (by (ii) of Proposition 1),
from Assumption 2 and Δ𝐸 (𝑛) = 𝑆(𝑛) ⩽ 𝐿(𝑛), we have that 𝑓 𝑆 (𝑛) ⩽ 𝑓 𝐿(𝑛),
which contradicts (iii) of Proposition 1.

Next, we prove 𝐿(𝑛) < 2Δ(𝑛) + 𝐸. From (iv) of Proposition 1, we have
that at the beginning, when there has not yet been a switch, 𝐿(𝑡) = 𝑆(𝑡), else
𝐿(𝑡) = 𝑆(𝑡) +𝑆′(SP(𝑡)) for all 𝑡. In the first case, 𝐿(𝑛) = 𝑆(𝑛) < Δ(𝑛) < 2Δ(𝑛) + 𝐸,
and we are done.

In the second, usual case, 𝐿(𝑛) = 𝑆(𝑛) + 𝑆′(SP(𝑛)). That is, the length of the
current long average is the sum of the lengths of the current and the previously
finished short average. Since 𝑆(𝑛) < Δ(𝑛) and 𝑆′(SP(𝑛)) = 𝑆(SP(𝑛) − 𝐸) + 𝐸, so
𝐿(𝑛) < Δ(𝑛) + 𝑆(SP(𝑛) − 𝐸) + 𝐸, from which 𝐿(𝑛) < Δ(𝑛) + Δ(SP(𝑛) − 𝐸) + 𝐸.
Finally, from the monotonicity of 𝑂 in Assumption 4, Δ(SP(𝑛) − 𝐸) ⩽ Δ(𝑛), we
get 𝐿(𝑛) < 2Δ(𝑛) + 𝐸.

Proposition 3 (Infinite number of switch points). Switch points keep coming,
that is, ∀𝑛 : ∃𝑛𝑠 ⩾ 𝑛 : SP(𝑛𝑠) ≠ −1.

Proof. Because 𝑆(𝑛) < Δ(𝑛) and 𝑆(𝑛) increases by 𝐸 between switch points, it
must catch Δ(𝑛) at some step 𝑛𝑠 because Δ(𝑛) grows more slowly by Assump-
tion 3. At the point where 𝑆(𝑛𝑠) = Δ𝐸 (𝑛𝑠), 𝑓 𝑆 (𝑛𝑠) ⩽ 𝑓 𝐿(𝑛𝑠) by Assumption 2,
thus there must be a switch.

Proposition 4 (Once-in-a-while optimality). Between any two subsequent switch
points 𝑛1 and 𝑛2, the long average is nearly optimal at least once. Formally,
∃𝑛 ∈ [𝑛1, 𝑛2 − 𝐸] : 𝐿(𝑛) = Δ𝐸 (𝑛) ∨ 𝐿(𝑛) = Δ𝐸 (𝑛).

Proof. Since 𝑆(𝑛) < Δ(𝑛) and 𝐸 | 𝑆(𝑛) for all 𝑛, so 𝑆′(𝑛1) ⩽ Δ𝐸 (𝑛1). Then it is
either that 𝑆′(𝑛1) = Δ𝐸 (𝑛1) or𝑆′(𝑛1) < Δ(𝑛1). Since at switch points 𝐿(𝑛) = 𝑆′(𝑛),
in the former case, we conclude the proof with 𝐿(𝑛1) = Δ𝐸 (𝑛1). Considering
the latter case, 𝐿(𝑛1) = 𝑆′(𝑛1) < Δ(𝑛1), so 𝐿(𝑛1) ⩽ Δ𝐸 (𝑛1). Also, switches
happen when 𝑓 𝑆

′(𝑛) ⩽ 𝑓 𝐿
′(𝑛), but as per Assumption 1 this can happen only if

Δ(𝑛) < 𝐿′(𝑛). Thus for 𝑛2 to be a switch point, it must be that Δ(𝑛2) < 𝐿′(𝑛2) =
𝐿(𝑛2 − 𝐸) + 𝐸, hence Δ𝐸 (𝑛2) ⩽ 𝐿(𝑛2 − 𝐸). Combining it with 𝐿(𝑛1) ⩽ Δ𝐸 (𝑛1), we
get 𝐿(𝑛1) ⩽ Δ𝐸 (𝑛1) ⩽ Δ𝐸 (𝑛2) ⩽ 𝐿(𝑛2 − 𝐸). Therefore, since 𝐿(𝑛) and Δ𝐸 (𝑛) are
monotonically increasing over [𝑛1, 𝑛2 − 𝐸], both take values that are multiples

44

of 𝐸, and 𝐿 overtakes Δ𝐸 while not skipping any such value, there must be a
point 𝑛 where 𝐿 is equal to Δ𝐸.

In short, we have shown that the long average is at most twice as long as optimal,
there are infinitely many switch points, and between any two switch points the
long average gets as close to the optimal length as possible given the periodic
evaluation scheme. Our results are in terms of lengths of averages, and relating
the actual loss with the long average 𝑓 𝐿 to the loss with the optimal length 𝑓 Δ

would be desirable. Here, we informally point out that, all things being equal,
the worse 𝑓 𝐿 gets relative to 𝑓 Δ, the quicker 𝑓 𝑆 is to catch up, making long
periods of highly suboptimal solution less likely. Formalizing this notion requires
making further assumptions about the loss-vs-averaging-length function (of
the kind plotted in Figure 3.2) and would make analysis considerably more
cumbersome.

3.5.1 When Assumptions Fail

To augment the theoretical analysis, which is based on idealized assumptions,
we make the following observations. The strongest assumption by far is As-
sumption 1. It says that increasing the averaging length monotonically improves
𝑓 until the optimum. Since stochastic optimization produces noisy iterates, this
does not hold exactly in practice. However, the length of the shortest average
is one evaluation period, and its variance is inversely proportional to 𝐸. Thus,
the likelihood of noise posing a problem can be very small. In terms of the loss,
the algorithm is fairly robust to when the assumption holds only approximately
because small deviations of 𝑓 (avg(𝑛, 𝛿)) from monotonicity can change switch
times only when 𝑓 𝑆 and 𝑓 𝐿 are close.

Assumption 2 says that averaging slightly more iterates than optimal (i.e.
rounded up to the evaluation period) is better than averaging a lot more. This
is a weak assumption due to subsequent iterates being highly correlated. If it is
violated sporadically, the algorithm can fail to detect when the short average
becomes longer than optimal, which delays the switch.

Assumption 3 failing means that the optimal average incorporates all new
iterates without ever dropping old ones. In this case, the short average, which is
always shorter than optimal, will be a constant number of iterates behind and
its loss will converge to the loss of the optimal average. If the long average is
shorter than optimal, then the same argument applies to it. If the long average

45

is longer than optimal, then eventually a switch will happen. In either case, the
loss of the long average converges to that of the optimal average.

Regarding Assumption 4, Δ(𝑛) ⩽ Δ(𝑛 + 𝐸) can fail if the improvement of the
raw loss accelerates, but that is a rather uncommon and temporary occurrence.
It may also fail if the raw loss has started to worsen due to overfitting or
optimization has escaped from one basin to the next and the average is slowly
climbing the ridge separating them or when the loss landscape changes during
learning in a non-stationary environment. With the exception of accelerating
improvement, these cases are likely to be caught by the reset heuristic, wherein
the long average is reset if its loss does not improve for a few evaluations (see
Algorithm 2).

The reset heuristic can trigger when it should not, i.e. when Assumption 4
holds. Such a spurious reset makes the estimate of the long average worse
either directly or indirectly by delaying the next switch. Either way, without
further violations of this assumption, the algorithm recovers by the next switch.
Note that 2TA cannot in general correct overfitting, although the reset heuristic
may help in the unlikely case that overfitting proves to be transitory.

All in all, we can expect the algorithm to display some degree of robustness
to minor violations of the assumptions. In practice, we recommend choosing
a reasonably large 𝐸 to reduce the noise originating from the stochasticity of
optimization.

3.5.2 A Note on Pure Optimization

Applying 2TA to pure optimization is unlikely to bring about practical benefits
because of the evaluation cost. For example, if 𝑓 computes the loss over the
entire training set and evaluation is performed every epoch, then the cost of
optimization is effectively doubled. Furthermore, as we have pointed out above,
Assumption 1 does not hold exactly with stochastic optimization: the short
average can get lucky and become better than the long one (causing a switch)
but then quickly succumb to variance and become worse as new iterates are
added to it. Thus, the averaged weights of Algorithms 1 and 2 do not converge in
the strict sense, although this point is somewhat moot because in empirical risk
minimization – due to the mismatch between the true and the training losses –
convergence in the training loss is almost never desirable when optimizing for
generalization.

Nevertheless, it is instructive to consider how the algorithm behaves when 𝑓

is the training loss as the limit of the common case where 𝑓 is the validation

46

loss, both the training and the validation sets consist of i.i.d. samples from
the same distribution, and their sizes tend to infinity. Focussing on the setting
where convergence results are available for Polyak and Tail Averaging, we show
in the following that 2TA converges in probability to the optimum in ordinary
least squares regression.

Definition 2 (𝑁th switch point). For all 𝑁 ∈ ℕ, we define three random variables:
• 𝑄𝑁 ∈ [𝐸, 2𝐸, . . .] is the time step corresponding to the 𝑁th switch point.
• 𝐹𝑁 = 𝑓 (𝜃𝑆′ (𝑄𝑁)) is the loss with the 𝑁th short average just before it becomes
the long average.

• 𝑆𝑁 = 𝑆′(𝑄𝑁) is the final length of the 𝑁th short average.

From now on, we use 𝑁 to index switch points or to refer to short averages that
end at that switch point.

Proposition 5. If the generalization loss function 𝑓 is convex, then (𝐹𝑁)𝑁∈ℕ is
monotonically decreasing.

Proof. The long-averaged weights are a convex combination of the weights of
the current and the previous short averages:

𝜃𝐿
′(𝑛) = 𝛼𝜃𝑆

′(𝑛) + (1 − 𝛼)𝜃𝑆′(SP(𝑛))

𝛼 =
𝑆′(𝑛)

𝑆′(𝑛) + 𝑆′(SP(𝑛)) ∈ (0, 1).

Switching happens when 𝑓 (𝜃𝑆′ (𝑛)) ⩽ 𝑓 (𝜃𝐿′ (𝑛)). Expanding 𝜃𝐿′(𝑛) and using
that 𝑓 is convex, we get

𝑓 (𝜃𝑆′(𝑛)) ⩽ 𝑓 (𝜃𝐿′(𝑛))
= 𝑓 (𝛼𝜃𝑆′(𝑛) + (1 − 𝛼)𝜃𝑆′(SP(𝑛)))
⩽ 𝛼 𝑓 (𝜃𝑆′(𝑛)) + (1 − 𝛼) 𝑓 (𝜃𝑆′(SP(𝑛))),

from which, (1 − 𝛼) 𝑓 (𝜃𝑆′(𝑛)) ⩽ (1 − 𝛼) 𝑓 (𝜃𝑆′(SP(𝑛))). Using 𝛼 < 1, we get
𝑓 (𝜃𝑆′(𝑛)) ⩽ 𝑓 (𝜃𝑆′(SP(𝑛))). This is true at all switch points, hence 𝐹𝑁+1 ⩽ 𝐹𝑁 for
all 𝑁.

Note that in non-convex settings, the above monotonicity property could be
enforced also by changing the switching condition to 𝑓 (𝜃𝑆′(𝑛)) ⩽ min(𝑓 (𝜃𝐿′(𝑛)),
𝑓 (𝜃𝑆′(SP(𝑛))). However, this would make the algorithm less able to adapt to
violations of Assumption 4.

47

Proposition 6. Assume that the loss function is bounded from below, the (𝐹𝑁)𝑁∈ℕ
sequence monotonically decreases, and that (𝜃𝑡)𝑡∈ℕ0 approaches a stationary
distribution with a density. Then, 𝐿(𝑡) 𝑝→∞.

Proof. First, we prove 𝑆𝑁 𝑝→∞ by contradiction. Assume that 𝑆𝑁 ̸ 𝑝→∞.
(i) For some 𝑙0 ∈ ℕ and 𝜖0 > 0, there are infinitely many 𝑁+ ∈ ℕ such that

𝑃(𝑆𝑁+ = 𝑙0) > 𝜖0.
Proof. By the definition of convergence in probability, 𝑆𝑛 𝑝→∞ is equivalent
to ∀𝑙 ∈ ℕ : lim𝑁→∞ 𝑃(𝑆𝑁 ⩽ 𝑙) = 0. Suppose that is false, hence ∃𝑙 ∈ ℕ, 𝜖 >
0: ∀𝑁 ∈ ℕ : ∃𝑁+ > 𝑁 : 𝑃(𝑆𝑁+ ⩽ 𝑙) > 𝜖. Then, we have an infinite number
of short averages 𝑁+ that are at most length 𝑙 with at least 𝜖 probability:
𝑃(𝑆𝑁+ ⩽ 𝑙) > 𝜖. Since 𝑙 is finite, for all such 𝑁+, there exists 𝑙𝑁+ ∈ ℕ such
that 𝑃(𝑆𝑁+ = 𝑙𝑁+) > 𝜖/𝑙. Hence, there must be at least one 𝑙0 ⩽ 𝑙 and 𝜖0 > 0
such that 𝑃(𝑆𝑁+ = 𝑙0) > 𝜖0 for infinitely many 𝑁+.

(ii) The final losses of the short averages converge in probability: 𝐹𝑁
𝑝→ 𝐹∗.

Proof. From the assumption that the loss function is bounded from below
and that all realizations of the 𝐹𝑁 sequence decrease monotonically, all
realizations must converge, which implies almost sure convergence hence
convergence in probability.

(iii) Let 𝐹 𝑙0+𝑁 denote what the loss of 𝑁th short average at length 𝑙0 would be if the
algorithm were modified to perform no switching for this short average only.
Then, 𝑃(𝐹∗ ⩽ 𝐹 𝑙0+𝑁 ⩽ 𝐹𝑁−1) → 0.
Proof. We have assumed that iterates converge to a stationary distribution
with a density. Note that this rules out convergence in the strict sense,
which would require a zero-variance stationary distribution. For any random
variable 𝑋 with a density, 𝑙𝑖𝑚𝛿→0𝑃(𝑎 ⩽ 𝑋 ⩽ 𝑎 + 𝛿) = 0 for all 𝑎 ∈ ℝ. By (ii),
𝐹𝑁

𝑝→ 𝐹∗, so for all 𝜖 > 0, 𝑃(𝐹𝑁 − 𝐹∗ < 𝜖) is close to 1 for all large enough
𝑁. With 𝐹𝑁−1 − 𝐹∗, the size of the interval into which 𝐹 𝑙0+𝑁 must fit, thus
bounded uniformly in probability, we get 𝑃(𝐹∗ ⩽ 𝐹 𝑙0+𝑁 ⩽ 𝐹𝑁−1) → 0.

We assumed that 𝑆𝑁 ̸ 𝑝→ ∞ and in (i) showed that 𝑃(𝑆𝑁+ = 𝑙0) > 𝜖0 for some
𝑙0 ∈ ℕ, 𝜖0 > 0 and infinitely many 𝑁+. Since 𝑆𝑁 = 𝑙0 implies 𝐹𝑁 = 𝐹 𝑙0+𝑁 for
any 𝑁, we have that 𝑃(𝐹𝑁+ = 𝐹 𝑙0+𝑁+) > 𝜖0. However, due to the monotonicity
assumption, 𝐹∗ ⩽ 𝐹𝑁 ⩽ 𝐹𝑁−1 for all 𝑁, hence 𝑃(𝐹∗ ⩽ 𝐹 𝑙0+𝑁+ ⩽ 𝐹𝑁+−1) > 𝜖0, which
contradicts 𝑃(𝐹∗ ⩽ 𝐹 𝑙0+𝑁 ⩽ 𝐹𝑁−1) → 0 from (iii).

Finally, every long average except the first is a continuation of the previous
short average, that is, for all 𝑡 ⩾ 𝐸, 𝐿(𝑡) ⩾ 𝑆′(SP(𝑡)) and 𝑆′(SP(𝑡)) = 𝑆𝑁 for
some 𝑁. Therefore, 𝑆𝑁 𝑝→∞ implies that 𝐿(𝑡) 𝑝→∞.

48

Proposition 7. Consider applying SGDwith a constant learning rate to an ordinary
least squares problem with unique minimum point 𝜃★. Then, for a sufficiently low
learning rate, 𝜃𝐿(𝑡) 𝑝→ 𝜃★.

Proof. The loss function is convex, so 𝐹𝑁 is monotonically decreasing by Propo-
sition 5. It is also bounded from below, and it satisfies Assumptions 2.1-2.3
of Yu et al. [2020], hence – by Proposition 2 therein – SGD iterates admit a
unique stationary distribution for an appropriately bounded learning rate. Thus,
appealing to Proposition 6, we have that 𝐿(𝑡) 𝑝→∞. In the ordinary least squares
regression setting, Jain et al. [2018] prove that Tail Averaging converges to the
optimum with an appropriately bounded learning rate. Hence, by choosing a
learning rate that satisfies both bounds and leveraging the fact that 𝜃𝐿(𝑡) is a
tail average, we get 𝜃𝐿(𝑡) 𝑝→ 𝜃★.

Paralleling strict convergence results for Polyak and Tail Averaging, we have
proved that 2TA converges in probability to the optimum in the ordinary least
squares regression setting when 𝑓 is the training loss. We stress again that
2TA is not intended for pure optimization, and this result is to serve as a
characterization of behaviour in the infinite data case.

With pure optimization very much a secondary consideration, we provide
only weak, anecdotal support for the rate of convergence: the length of the long
average tended to increase exponentially in all experiments described in §3.6 and
also on simple synthetic data. Intuitively, this is to be expected when 𝑓 is locally
convex because at stationarity, every time a short average finishes at length 𝑙, it
halves the probability mass available for subsequent short averages to finish
at that length: 𝑃(𝐹 𝑙𝑁+1 ⩽ 𝐹𝑁 | 𝑆𝑁+1 ⩾ 𝑙, 𝑆𝑁 = 𝑙) → 0.5𝑃(𝐹 𝑙𝑁 ⩽ 𝐹𝑁−1 | 𝑆𝑁 ⩾ 𝑙).
This halving effect is strongest at the same length, but in diminished form, it
extends to longer averages due to the similarity of their distributions.

3.6 experiments

Tail Averaging or Stochastic Weight Averaging have been shown previously to
be beneficial not only in theory and on simulated data [Jain et al., 2018] but
also in language modelling [Merity et al., 2017, Melis et al., 2020] and image
classification [Izmailov et al., 2018] experiments. Hence, in this work we restrict
our attention to experiments in a single domain to corroborate the analysis in
§3.5. Our goals are to i) verify that 2TA is on par with well-tuned TA and EMA,
ii) explore the effect of basing the switching logic on the training loss instead

49

Figure 3.3: Validation loss with Two-Tailed Averaging (2TA, green), Tail Averaging
(TA, orange), and an exponential moving average (EMA, blue) of weights on language
modelling on Penn Treebank. For both TA and EMA, their hyperparameters (the start
time and the decay rate) were tuned to minimize the final loss, so it is not a surprise
that all three have similar optima. 2TA has no hyperparameters and produces much
better early solutions. These two factors make tuning easier and early stopping much
more reliable. Additionally, the noise in the raw loss is effectively smoothed out. Note
that while the 2TA loss decreases monotonically, gentler and steeper slopes are manifest
before and after switch points, respectively.

of the validation loss, iii) demonstrate robustness to the choice of evaluation
period, iv) and check how well the assumptions made in §3.5 hold in practice.

In particular, we trained a recurrent language model with several hyperpa-
rameters on Penn Treebank [Mikolov et al., 2010] using the Rectified Adam
optimizer [Liu et al., 2019], evaluating every 1000 optimization steps. The
hyperparameters were tuned separately for 2TA, TA eq. (3.2), and EMA eq. (3.1).
Figure 3.3 shows that the final validation losses with all methods are very close,
but early losses with 2TA are much better. This is expected because TA and EMA
are not flexible enough to produce optimal averaging lengths at multiple points
along the learning curve despite having an extra hyperparameter. Conversely,
2TA has at least one nearly optimal solution between any two subsequent peaks
(i.e. switch points) in Figure 3.4 despite having no hyperparameters.

We also tried the version of the algorithm where the switching logic was
based on comparison of the training losses of the short and long averages instead
of the validation losses, but the true validation losses were reported. On this
particular language modelling task, the best validation loss with the modified
algorithm worsened moderately (3.93 vs 3.92) and was well below the raw
validation loss (4.02). Results on the test set exhibited the same gap. Since the
modified 2TA was minimizing the training loss, the smoothness of the reported
validation losses observed in Figure 3.3 were lost in the process. Similar results
were obtained by scheduling a learning rate drop without averaging.

50

S

L

Figure 3.4: Length of the long average (𝐿) vs number of evaluations of 2TA in Figure 3.3.
Note how the heights of both peaks and valleys increase almost monotonically. Also,
the correspondence between this figure and the schematic in Figure 3.1 is illustrated
on one of the 𝑆 and 𝐿 intervals.

To explore the effect of the evaluation period 𝐸, we tuned models with
four times larger and four times smaller 𝐸 than in our previously discussed
experiments. As expected, the best final results were very close to each other,
with shorter periods having an advantage early in training as the raw loss 𝐹1
was more quickly eclipsed by 𝐹𝐿.

In addition, we found that the assumptions made in §3.5 held rather well in
practice: the resulting loss 𝐹𝐿 in Figure 3.3 and the averaging lengths tended
to change monotonically (see heights of peaks and valleys in Figure 3.4),
making our length-based theoretical results more closely linked to the actual
loss. When that was not the case, we found that the raw loss 𝐹1 had started
to worsen due to overfitting or, much more rarely, optimization had entered a
new basin, violating Assumption 4. Figure 3.5 and Figure 3.6 demonstrate the
reset heuristic being triggered in these cases. Finally, TA and 2TA having almost
identical final validation losses weakly supports our assumptions, although a
conclusive demonstration would need to plot the results obtained with TA tuned
separately for each evaluation.

3.7 conclusions

§ Tail averaging improves on Polyak averaging’s non-asymptotic behaviour by
excluding a number of leading iterates of stochastic optimization from its
calculations. In practice, with a finite number of optimization steps and a
learning rate that cannot be annealed to zero, Tail Averaging can get much
closer to a local minimum point of the training loss than either the individual
iterates or the Polyak average. However, the number of leading iterates to ignore
is an important hyperparameter, and starting averaging too early or too late leads

51

Figure 3.5: Raw (green) and 2TA (orange) validation loss with overfitting. The averaged
loss bottoms out due to overfitting. Thus when the averages are reset (twice), the
validation loss does not recover. Although the losses reported after the reset are
suboptimal, it does not really matter as a better loss was reported already.

(a) Validation loss with the long average (𝐹𝐿). (b) Length of the long average (𝐿).

Figure 3.6: Example of optimization entering a new basin. At 𝑡 = 40𝐸 the validation loss
bottoms out and starts to slightly worsen. This is detected at 𝑡 = 43𝐸, and both averages
are reset. With the averages now way too short, the loss spikes but then recovers.

to inefficient use of resources or suboptimal solutions. Our work focussed on
improving generalization, which makes setting this hyperparameter even more
difficult, especially in the presence of other hyperparameters and overfitting.
Furthermore, before averaging starts, the loss is only weakly informative of
the final performance, which makes early stopping unreliable. To alleviate
these problems, we propose an anytime variant of Tail Averaging intended for
improving generalization not pure optimization that has no hyperparameters
and approximates the optimal tail at all optimization steps. Our algorithm is
based on two running averages with adaptive lengths bounded in terms of the
optimal tail length, one of which achieves approximate optimality with some
regularity.

In summary, we presented a variant of Tail Averaging and Stochastic Weight
Averaging based on two running averages. Compared to them, Two-Tailed
Averaging requires additional storage for the second running average and relies

52

on periodic evaluation of generalization performance. In return, 2TA removes a
hyperparameter and provides an estimate of the optimal tail at all optimization
steps. This makes hyperparameter tuning easier and early evaluation more
representative of final performance, allowing it to support early and anytime
stopping better. Owing to its simplicity, low implementation cost and adaptivity,
2TA is a practical and widely applicable method for improving generalization.

Looking beyond the scope of this work, exploring the relationship between
iterate averaging and learning rate schedules is a promising direction as
existing [Merity et al., 2017] and our own limited experimental results indicate
that dropping the learning rate and Tail Averaging perform comparably. The
properties of our algorithm are particularly compelling for continual learning: by
allowing the learning rate to remain high and being able to adapt the averaging
length to changing circumstances, 2TA lets the model maintain high plasticity
while reaping the benefits of averaging.

In addition, averaging weights can be viewed as a cheap approximation
to averaging predictions when the averaged weights reside in a region with a
suitable geometry. The combination of averaging weights within such regions
and averaging predictions over regions (each with its own weight average) could
potentially achieve a better loss than weight averaging alone at much lower
storage and evaluation cost than pure prediction averaging. We leave these
avenues for future work to explore.

53

4 R E F I N I NG RECURRENCE S

The proverbial German phenomenon of the “verb-at-the-end”, about
which droll tales of absentminded professors who would begin a
sentence, ramble on for an entire lecture, and then finish up by
rattling off a string of verbs by which their audience, for whom the
stack had long since lost its coherence, would be totally nonplussed,
are told, is an excellent example of linguistic recursion.

Douglas Hofstadter

Reliable model comparison is crucial for continued innovation in lan-
guage modelling. With so much attention on Transformers [Vaswani
et al., 2017], the development of purely recurrent models has ebbed

away. It might be tempting to claim that purely recurrent models are fundamen-
tally worse models of language than attention-based ones, but they seem to have
an edge on small datasets, while on larger datasets their lack of scalability on
current hardware [Hooker, 2020] also plays an important role in their evaluation.
Due to being unfashionable and slow, their fitness might be underestimated
especially on all but the smallest datasets with the exception of S4 [Gu et al.,
2021], a highly parallelizable, long-range model. The purpose of this work is
simply to apply more resources to advancing and evaluating recurrent models
– despite, and to compensate for, their computational inefficiency – to better
represent their performance in future model comparisons.

Starting from the Mogrifier LSTM [Melis et al., 2020], a state-of-the-art
recurrent language model, we introduce several small changes, which involve
not only the design of the recurrent cell but the overall architecture, the
training objective, and optimization. On all datasets, these changes combine to
a significant, and in some cases large, effect.

4.1 rewired lstm

We propose a novel recurrent cell, a slightly tweaked version of the LSTM
[Hochreiter and Schmidhuber, 1997c], as presented in (2.1). To recap, with 𝑚
and 𝑛 being the sizes of the input and the cell state, let the LSTM: ℝ𝑛 ×ℝ𝑛 ×
ℝ𝑚 → ℝ𝑛 ×ℝ𝑛 be a function that computes the updated state c and output h

54

𝜎

𝜎 tanh 𝜎

· +

·

·

tanh

cprev

Prev.
State

hprev

Prev.
Output

xInput

c

State

h

Output

hOutput

𝑓

𝑖 𝑗
𝑜

Figure 4.1: Schematic of the LSTM cell in the style of https://colah.github.io/
posts/2015-08-Understanding-LSTMs/. All gates are computed from hprev and x.
Differences from the RLSTM cell are colour coded to ease comparison to Figure 4.2.

from the previous state cprev, output hprev and the current input x. Concretely,
LSTM(cprev, hprev, x) = (c, h), where

i = 𝜎
(W𝑖𝑥x +W𝑖ℎhprev + b𝑖

)
j = tanh(W 𝑗𝑥x +W 𝑗ℎhprev + b 𝑗)
f = 𝜎(W 𝑓 𝑥x +W 𝑓 ℎhprev + b 𝑓)
c = f ⊙ cprev + i ⊙ j
o = 𝜎(W𝑜𝑥x +W𝑜ℎhprev + b𝑜)
h = o ⊙ tanh(c).

In the above, 𝜎 is the logistic sigmoid function, ⊙ is the elementwise product,
W∗∗ and b∗ are weight matrices and biases. As in Figure 4.1, the parts altered
by the RLSTM (see Figure 4.2) are colour coded.

To accommodate the performance characteristics of parallel hardware, the
activations of i, j, f, o are in practice often computed by tiling the eightW∗∗ into
one large matrix and multiplying it with the concatenated input and recurrent
state [x, hprev].

Intuitively, in c = f ⊙ cprev + i ⊙ j the forget gate f and the proposed update
i ⊙ j depend on each other, and computing them in parallel from the same
inputs may be partially redundant. On the flipside, the parametrization of the

55

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝜎

𝜎 tanh

𝜎

min ·

· +

· ·

tanh

cprev

Prev.
State

hprev

Prev.
Output

xInput

c

State

h

Output

hOutput

𝑓

𝑜

1− 𝑓

𝑖 𝑗

Figure 4.2: Schematic of the RLSTM cell. 1. The forget gate f is computed from i ⊙ j, 2. i
is capped at 1 − f, 3. o is computed from c. There is an apparent loss of parallelization
opportunities due to the increased depth of the computation graph.

proposed update as a product is more expressive than that of the forget gate, so
the overall cell update may lose some of the extra expressivity. Hence, it makes
sense to compute the forget gate from the proposed update instead. Note that
this reduces the opportunities for parallelization and makes cell updates slower.

Further disregarding efficiency on today’s hardware, to reduce parameter
count and to encourage storing more information in the cell state c, we compute
o from c, dropping a potential bypass connection from x to h. Finally, to make
exploding gradients less likely, we cap i at 1 − f to ensure |𝑐𝑢 | ⩽ 1 for all memory
units 𝑢. The update of our Rewired LSTM (RLSTM) cell takes the form

i = 𝜎
(W𝑖𝑥x +W𝑖ℎhprev + b𝑖

)
j = tanh(W 𝑗𝑥x +W 𝑗ℎhprev + b 𝑗

)
f = 𝜎

(W 𝑓𝑢i ⊙ j +W 𝑓 ℎhprev + b 𝑓)
c = f ⊙ cprev +min(i, 1 − f) ⊙ j
o = 𝜎

(W𝑜𝑐c + b𝑜)
h = o ⊙ tanh(c) ,

where the changes from the LSTM are coloured. Based on this altered compu-
tation, we define the RLSTM function similarly to the LSTM above.

56

4.2 architecture

The way recurrent cells are combined can also be improved. Here, we opt to use
residual connections, where previous works have used stacked LSTMs [Merity
et al., 2017] or skip connections [Melis et al., 2020], which feed directly into the
final output. Along with this change, we apply dropout [Hinton et al., 2012] to
the cell output before it is added to the residual branch.

To describe the overall architecture more formally, with time steps 𝑡 ∈
[1, 2, . . .] and layers 𝑙 ∈ [1..𝐿], from the vector of token indices w in a
fixed vocabulary, the probability distribution of the next token 𝑝(. |w<𝑡,M𝑡) is
computed as

c𝑙0, h𝑙0 = 0, 0
x̂0𝑡 = onehot(w𝑡

)Ein ⊙Min
𝑡

x̂𝑙𝑡 = h𝑙𝑡 ⊙Mcell,𝑙
𝑡 (𝑙 > 1)

ĥ𝑙𝑡 = h𝑙𝑡 ⊙Mstate,𝑙

c1𝑡, h1
𝑡 = [R]LSTM

(
c0𝑡−1,mogrify

(
ĥ1
𝑡−1, x̂0𝑡

))
c𝑙𝑡, h𝑙𝑡 = [R]LSTM

(
c𝑙𝑡−1,mogrify

(
ĥ𝑙𝑡−1,

∑︁𝑙−1
𝑖=1 x̂𝑖𝑡

))
𝑝(. |w<𝑡,M𝑡) = softmax

((∑︁𝐿

𝑙=1 x̂
𝑙
𝑡

)
⊙Mout

𝑡 Eout + bout
)
,

where we assume that 𝑚 = 𝑛 to allow for a residual architecture without
projections and use the mogrify function as defined in (2.2). Ein and Eout are
the input and output embedding matrices. For word-based language modelling,
we set Eout to the transpose of Ein [Zoph and Le, 2016, Press and Wolf, 2016].
M𝑡 is the set of individual input, cell, state and output dropout mask matrices
Min

𝑡 ,Mcell,𝑙
𝑡 ,Mstate,𝑙 and Mout

𝑡 . Note that for state dropout, we use the variational
dropout of Gal and Ghahramani [2016], thus Mstate,𝑙 does not depend on 𝑡. In
addition, when an RLSTM is used instead of an LSTM cell, we also apply the
state dropout mask to c in the calculation of o = 𝜎(W𝑜𝑐 (c ⊙Mstate,𝑙) + b𝑜).

4.3 objective

In the objective, we average model predictions over multiple dropout samples:

ln 𝑝(w𝑡

�� w<𝑡
)
= ln

(1
𝐷

𝐷∑︁
𝑑=1

𝑝
(
w𝑡

��� w<𝑡,M𝑑
𝑡

))
,

57

where 𝐷 is the number of samples taken. As pointed out by Noh et al. [2017],
when dropout is interpreted as optimizing a variational lower bound on the
log likelihood [Gal and Ghahramani, 2016], this procedure is an instantiation
of Importance Weighted Autoencoders [Burda et al., 2015], which provide a
bound tighter than the single-sample ELBO.

4.4 optimization

To increase the stability of optimization and allow slightly higher learning
rates, we use Rectified Adam [Liu et al., 2019]. If training diverges, we reset the
weights and the optimization state to the previous best checkpoint and multiply
the learning rate by 0.9.

Merity et al. [2017] switch to averaging weights at a late stage of optimization
when the validation loss has not decreased for a while. A similar procedure,
called Stochastic Weight Averaging (SWA), was also proposed [Izmailov et al.,
2018], and corresponding theory was developed in Jain et al. [2018] under
the name of Tail Averaging. Here, we employ Two-Tailed Averaging [Melis,
2022], which has no hyperparameters and provides a good approximation to
the optimal weight average at every step of optimization. Two-Tailed Averaging
(2TA) thus requires no tuning and is a much better fit with early stopping, which
is what we do on Enwik8 and Text8 [Hutter, 2012]. While easier to work with,
2TA does not improve the final results over well-tuned Tail Averaging, which is
also used by our baseline, the Mogrifier LSTM.

LSTM and RLSTM forget gates are initialized with Chrono init [Tallec and
Ollivier, 2018] as b 𝑓 ∼ ln(U (1, 𝑇max−1)), where 𝑇max is a tuned hyperparameter.
Finally, we just train models longer where it is beneficial.

4.5 dynamic evaluation

Hinton and Plaut [1987] proposed fast weights, wherein parameters have a slow-
and a fast-changing component. Much later, Ba et al. [2016] showed a form of
attention to be an instantiation of fast weights. Similarly, some forms of meta
learning, e.g. few-shot adaptation with gradient updates, can be interpreted
as fast weights. To mimic this setting and gain a particularly general fast
weights implementation, it would be desirable to allow the model weights to
depend on the context as in 𝑝(𝑥𝑖 |𝜃(𝑥<𝑖), 𝑥<𝑖), where the fast weights 𝜃(𝑥<𝑖)
are computed with gradient-based updates to the slow weights 𝜃0. However,
due to the practical difficulties involved in training batches with per-example

58

inner gradient updates, we eschew fast weights at training time but not when
performing evaluation, thus we end up with what is called dynamic evaluation
[Krause et al., 2017]. Here, we present dynamic evaluation results as a proxy
for the gradient-based fast weights model.

As argued heuristically above, attention may be interpreted as a particular
way of adapting the weights to the context (outer product memory), like the
Mogrifier, which has an even more restricted form of update (scaling columns
of weight matrices). Thus, it is not surprising that Melis et al. [2020] found that
Transformers are better at adapting without changing their weights, leaving
less in-context signal for dynamic evaluation to pick up.

4.6 experimental setup

We follow the experimental setup of our baseline [Melis et al., 2020]. In the
following, we list only the most pertinent choices in our experimental setup;
everything else is the same as in the baseline. Note that the baseline’s and our
LSTM implementation already includes the capped input gate (min(1 − f, i))
of the RLSTM. For the black-box hyperparameter tuner [Golovin et al., 2017],
due to the switch to a residual architecture, the baseline’s inter_layer_dropout
hyperparameter is replaced with cell_output_dropout (see Mcell,𝑙 in §4.2). In
addition, the top of the Chrono init range 𝑇max is a new hyperparameter from
the [𝑒2, 𝑒5] range.

For word-level language modelling on Penn Treebank [Marcus et al., 1993]
with preprocessing by [Mikolov et al., 2010], we trained 2-layer models for about
400 epochs with 8 dropout samples. Batch size was 128, and we trained with a
BPTT [Werbos, 1990] window size of 70. Experiments on Wikitext-2 [Merity
et al., 2016] were conducted similarly, with the exception of training for 250
epochs and using 4 dropout samples.

For character-based language modelling on Penn Treebank, we trained
2-layer models for 100 epochs with 4 dropout samples, batch size 128, and a
BPTT window size of 200. On Enwik8 and Text8 [Hutter, 2012], we trained
6-layer models for 200 epochs, whereas the baseline model had 4 layers and was
trained for only 29 epochs. Batch size was 128, and the BPTT window size was
set to 256. Increasing the window size had no discernible effect in agreement
with the findings of Khandelwal et al. [2018]. Due to the long time required
to train these models, the best hyperparameters were selected from a random
pool of 60 candidates. Since preliminary experiments indicated that the benefit

59

Table 4.1: Word-level perplexities of near state-of-the-art models. Names for models
with our new results are in bold. On Wikitext-2, the baseline employed Mixture of
Softmaxes [Yang et al., 2017b], but we found no benefit to that when used in conjunction
with multiple dropout samples.

No Dyneval Dyneval
Val. Test Val. Test

PT
B

Transformer-XL [Dai et al., 2019] 24M 56.7 54.5
Mogrifier LSTM [Melis et al., 2020] 24M 52.1 51.0 45.1 45.0
Mogrifier LSTM 24M 49.9 48.5 43.5 43.3
Mogrifier RLSTM 24M 48.9 47.9 42.9 42.9

W
T2

Mogrifier LSTM MoS2 35M 58.7 56.6 40.6 39.0
Mogrifier LSTM 35M 57.4 55.8 40.0 38.6
Mogrifier RLSTM 35M 56.7 55.0 39.3 38.0

of using multiple dropout samples was less than 0.01 bpc, we refrained from
using more than one dropout sample to save time.

Model evaluation was performed with the standard, deterministic dropout;
we refrained from using the more expensive Monte Carlo averaging [Gal and
Ghahramani, 2016]. The optimal softmax temperature was selected at evaluation
time to maximize the validation log-likelihood [Melis et al., 2018]. Finally, we
report results with and without dynamic evaluation [Krause et al., 2017].

4.7 results

Due to the aforementioned loss of parallelization opportunities, we found that
the RLSTM was about 10%–30% slower than the LSTM on NVIDIA p100 GPUs.
Still, the RLSTM retained a significant advantage over the LSTM even when
trained for the same wall clock time.

On word-level language modelling (see Table 4.1), only training for half the
epochs, our Mogrifier LSTM outperformed the same model in Melis et al. [2020],
the baseline. This was mostly due to the quicker convergence with multiple
dropout samples and, to a small degree, to the initialization of the forget gate.
Note that on 2-layer models, which we used on this task, residual connections
are identical to skip connections, which are employed by the baseline. On top
of these improvements, the RLSTM outperformed the LSTM by a small margin,
and we established a new state of the art on both datasets with and without
dynamic evaluation.

Table 4.2 shows our results on character-based language modelling. On Penn
Treebank, again only training for half the epochs, we significantly boosted the

60

Table 4.2: Bits per character on character-based datasets of near state-of-the-art models.
Names for models with our new results are in bold. The best test results with and
without dynamic evaluation for a given dataset and model size are in bold unless there
is a smaller model with a better result.

No Dyneval Dyneval
Val. Test Val. Test

PT
B Mogrifier LSTM [Melis et al., 2020] 24M 1.149 1.131 1.098 1.088

Mogrifier LSTM 24M 1.127 1.109 1.085 1.074
Mogrifier RLSTM 24M 1.115 1.096 1.073 1.061

En
wi

k8

Transformer-XL (d24) [Dai et al., 2019] 277M 0.993 0.940
Longformer [Beltagy et al., 2020] 277M 0.97
Transformer-XL (d18) [Dai et al., 2019] 88M 1.03
Longformer [Beltagy et al., 2020] 102M 0.99
Mogrifier LSTM [Melis et al., 2020] 96M 1.110 1.122 1.009 0.988
Mogrifier LSTM 96M 1.057 1.072 0.963 0.946
Mogrifier RLSTM 96M 1.028 1.042 0.952 0.935
Transformer-XL (d12) [Dai et al., 2019] 41M 1.06 1.01
Longformer [Beltagy et al., 2020] 41M 1.02 1.00
Mogrifier LSTM [Melis et al., 2020] 48M 1.135 1.146 1.035 1.012
Mogrifier LSTM 48M 1.083 1.094 0.988 0.969
Mogrifier RLSTM 48M 1.060 1.071 0.986 0.968

Te
xt
8

Transformer-XL (d24) [Dai et al., 2019] 277M 1.08 1.038
Mogrifier LSTM 96M 1.033 1.106 0.977 1.047
Mogrifier RLSTM 96M 1.022 1.096 0.975 1.044
Longformer [Beltagy et al., 2020] 41M 1.04 1.10
Mogrifier LSTM 48M 1.063 1.140 1.005 1.075
Mogrifier RLSTM 48M 1.044 1.119 0.998 1.068

results of the state-of-the-art baseline model by using multiple dropout samples
and to a smaller degree by tuning the forget gate initialization. Our results
were then further improved by switching to the RLSTM.

Our results on Enwik8 and Text8 were boosted greatly. However, some
corners were cut due the high computational cost, thus the results can likely
be improved further e.g. with proper tuning (instead of random sampling), by
training even longer, and by using multiple dropout samples. We heuristically
estimate a 0.015–0.03 bpc suboptimality due to these factors only.

Taking advantage of Two-Tailed Averaging’s (2TA) online estimates and
the fact that hyperparameters were selected randomly, we can estimate the
contribution of training longer (200 vs 29 epochs). For example, in the 48M
parameter setting on Enwik8, we observed that training longer lowered the
validation bpc by about 0.035, leaving another 0.016 bpc for the contributions

61

of residual connections and the forget gate initialization. Finally, the RLSTM
outperformed the LSTM by 0.022 bpc. Similar relative contributions were
observed in all other settings on Enwik8 and Text8.

Some of the changes we made increased primarily the stability of training
and the efficiency of hyperparameter tuning without discernible effect on the
final results. Using Rectified Adam and restarting from a previous checkpoint
on divergence greatly reduced the number of failed runs, and 2TA made tuning
easier by removing a hyperparameter while opening the door for early stopping
due to its online nature.

We found that in the early stages using 𝐷 dropout samples allowed optimiza-
tion to make more progress per step but less than the progress with a single
sample and 𝐷 times the number of steps. On datasets that are on the smaller
side and where dropout rates are high, in the late stages of optimization, the
multi-sample objective proved better in terms of validation perplexity. However,
that was not the case on Enwik8 and Text8, possibly due to being bottlenecked
by other issues such as the length of optimization.

4.8 conclusions

§ Just because some recurrent models suffer from being hard to optimize and
inefficient on today’s hardware, they are not necessarily bad models of language.
We demonstrated this by the extent to which these models can still be improved
by a combination of a slightly better recurrent cell, architecture, objective, as
well as optimization. In the process, we established a new state of the art for
language modelling on small datasets and on Enwik8 with dynamic evaluation.

We strengthened purely recurrent models’ language modelling results on
a varied collection of datasets using various techniques and a slightly novel
recurrent cell. These new baselines better represent the models’ ability but do
not necessarily allow for a fair comparison to previous results. In particular,
while we cited and listed results of the best transformer-based models, we did
not evaluate them ourselves using the same methodology. This is especially
obvious where previous works did not report dynamic evaluation results. The
comparisons we made to recurrent models were also rather targeted: we
focussed solely on the state-of-the-art purely recurrent model, the Mogrifier
LSTM, and ignored both the less performant models and those combined
with attention [Merity, 2019, Lei, 2021]. Nevertheless, the combination of our
strong results and little novelty highlight the extent to which minor details and
computational efficiency on current hardware affect model comparisons.

62

With that in mind, the primary contribution of this chapter is to apply
more resources to designing and evaluating recurrent models and to provide
stronger baselines for model comparisons. Second, the set of improvements
to models of the recurrent cell, overall architecture, training objective, and
optimization that we employed or proposed might inform future practice and
research. In addition, the fact that two quite different architectures (recurrent
and attention-based) appear to perform similarly in terms of perplexity suggests
that bigger changes are necessary to develop data-efficient language models.

63

5 L A X L AT ENT S

All our words from loose using
have lost their edge.

Ernest Hemingway

W e observed that recurrent and attention-based models perform
similarly on small datasets, where differences in model bias should be
more readily apparent than at large scale. As discussed in §1, there are

good reasons to believe thatmuchmore data-efficientmodels exist. These factors
prompted us to take bolder steps towards equipping our models with a stronger
bias. While model biases can be altered in several ways (e.g. by changing
regularization, the optimizer or the data), here we consider adding latent
variables and explicitly structuring our models with conditional independence
assumptions. Our hope is that these two tools provide a rich design space to
explore with very direct effects on model biases. However, as we will see, training
latent variable models at scale is challenging, and the common workhorse, the
variational autoencoder, has a tendency to produce degenerate solutions. So
before we can explore the design space, we must improve the tool.

Taking a broader view, our decision to focus on latent variable models
rests upon their promise in learning about the underlying generative process,
discovering structure in the data, principled representation learning, improved
generalization and controllable generation; all made possible by judicious
choice of model structure, such as the prior, the likelihood, and any conditional
independence assumptions.

Variational autoencoders (VAEs, Kingma and Welling, 2013, Rezende et al.,
2014) provide a general framework for statistical inference in latent variable
models of the form 𝑝𝜃(𝑥, 𝑧) = 𝑝𝜃(𝑥 | 𝑧)𝑝(𝑧), where 𝑥 is the observable data, 𝑧 is
a set of latent variables, and the objective is to learn the parameters 𝜃 so that
the resulting marginal distribution 𝑝𝜃(𝑥) well approximates the empirical data
distribution 𝑝𝐷(𝑥). The generality of VAEs comes at a price though, as their
training objective introduces a new learnt component, the variational posterior
𝑞𝜙(𝑧 | 𝑥), to approximate the true posterior 𝑝𝜃(𝑧 | 𝑥). As we will see, the VAE
objective pulls 𝑞𝜙(𝑧 | 𝑥) towards the prior and also the two posteriors together,
which biases the inference towards oversimplified posteriors relative to what

64

fitting the model 𝑝𝜃(𝑥, 𝑧) to the data would itself require. When having to
match the data distribution does not strongly constrain the model posterior – as
is the case when the decoder 𝑝𝜃(𝑥 | 𝑧) is highly flexible (e.g. a neural network) –
the biases of the inference method are fully on display and have been observed
in the underuse of latent variables, whose extreme case, where the latents are
ignored entirely, is known as posterior collapse [Zhao et al., 2019] and is the
main focus of this chapter. The issue of posterior collapse is especially acute
with auto-regressive decoders, which are capable of modelling the data without
using the latents at all [Yang et al., 2017b]. Bowman et al. [2015] attributed this
to a ‘difficult learning problem’, and dozens of attempts to remedy it followed
[Alemi et al., 2017, Dieng et al., 2017, van den Oord et al., 2017, Kim et al., 2018]
to help VAEs fulfil their promise in representation learning.

We aim to understand and remedy posterior collapse in VAEs with the
long-term goal of facilitating research into latent variable models. While ac-
knowledging that their ultimate evaluation is necessarily in terms of performance
on down-stream tasks or as density models, we demonstrate that suboptimal
inference can present a severe tradeoff between latent variable usage and data
fit. This inefficiency of inference renders the posterior unfit for its purpose as a
representation of the data. Therefore, instead of measuring the performance of
the learned models on down-stream tasks, we evaluate this tradeoff in terms of
their rate-distortion behaviour [Alemi et al., 2017], by measuring the rate as the
mutual information between the observables 𝑥 and the latents 𝑧, and distortion
based on the negative log-likelihood assigned by the model to the data.

Several interacting factors (outlined in §5.1) play a role in posterior collapse,
but the two most pertinent to this work are the looseness of the lower bound
and underspecification. The looseness of the variational lower bound (such as
the ELBO objective) biases solutions found by VAEs away from the theoretical
optimum. Hence, designing tighter lower bounds has been amainstay of research
on variational inference [Rezende and Mohamed, 2015, Kingma et al., 2016,
Tomczak and Welling, 2018], and one approach is to take multiple samples from
a variational posterior distribution 𝑞𝜙(𝑧 | 𝑥) to form an approximation of the
marginal likelihood 𝑝𝜃(𝑥).1 In these so-called Monte Carlo objectives [Mnih and
Rezende, 2016], such as IWAE [Burda et al., 2015], 𝑞𝜙(𝑧 | 𝑥) does not represent
the true posterior 𝑝𝜃(𝑧 | 𝑥) explicitly, but it can be interpreted as a factor in a
more elaborate, implicit approximate posterior [Cremer et al., 2017]. In this
context, it is thus more correct to refer to 𝑞𝜙(𝑧 | 𝑥) as the proposal distribution.

1Throughout, we do not explicitly distinguish between densities and probability mass
functions unless it is necessary; these are naturally dictated by the type (continuous/discrete)
of the underlying variables.

65

The second factorwe consider is underspecification. We use underspecification
in the sense that models that are optimal in terms of marginal likelihood can
differ greatly in their posteriors [Huszár, 2017a], thus the optimization aiming
to fit the data by maximizing the likelihood is underspecified. This issue is
most apparent in that, for VAEs with powerful function classes expressing the
likelihoods, posterior collapse can be an optimal solution in terms of data fit
because the usual evidence lower bound (ELBO) objective is neutral with respect
to the mutual information between the latents and the data. However, as Huszár
[2017a] argues and as we show in §5.3, the marginal likelihood objective leaves
the posterior underspecified, so underspecification is a shortcoming of the ELBO
in only as much as it does not correct for it. Many proposed methods aim to
address underspecification by constraining the mutual information between
the observable and the latent variables [Higgins et al., 2017, Phuong et al., 2018,
Zhao et al., 2019] relying on the availability of a good posterior approximation.
As discussed next, with Monte Carlo objectives we do not have access to a
good posterior approximation, and this must be addressed if we hope constrain
mutual information to reduce underspecification.

When the proposal 𝑞𝜙(𝑧 | 𝑥) is close to 𝑝𝜃(𝑧 | 𝑥), we can approximate the mu-
tual information 𝐼𝑝(𝑋, 𝑍) = 𝔼𝑝𝜃 (𝑥) KL(𝑝𝜃(𝑧 | 𝑥) ∥ 𝑝(𝑧)) (where KL denotes the
Kullback–Leibler divergence) with 𝔼𝑝𝜃 (𝑥) KL(𝑞𝜙(𝑧 | 𝑥) ∥ 𝑝(𝑧)), which features
the proposal 𝑞𝜙. Unfortunately, with Monte Carlo objectives we cannot expect
the proposal to approximate the posterior well [Mnih and Rezende, 2016], and
KL(𝑞𝜙(𝑧 | 𝑥) ∥ 𝑝(𝑧)) (called the representational KL) is a highly biased estimate
of KL(𝑝𝜃(𝑧 | 𝑥) ∥ 𝑝(𝑧)) (the true KL from now on).

Our main contribution is a novel method to constrain the mutual information
between the observable and the latent variables in the context of multi-sample
Monte Carlo objectives, bringing research on loose bounds and underspecifi-
cation together. More specifically, we introduce an optimization objective that
features two terms, one coming from the variational lower bound and another
from the mutual information, where both terms are based on multiple samples
taken from the proposal distribution 𝑞𝜙. Compared to the single-sample case,
we get the benefit of the tighter lower bounds Monte Carlo objectives offer
without having to give up control of the mutual information. At the same time,
our multi-sample estimators for the mutual information are much more efficient
than in the single-sample case and can better tolerate low-quality posterior
approximations. Our mutual information term is computed from the recycled
samples of the Monte Carlo estimator of the marginal likelihood, hence the
method has negligible computational overhead. Combined with best-of-breed

66

gradient estimators, such as DReG [Tucker et al., 2018] and VIMCO [Mnih and
Rezende, 2016] for a multi-sample objective, we train models with continuous
and discrete latents at much improved rate-distortion.

The rest of the chapter is structured as follows.
• §5.1 provides an overview of the known causes of posterior collapse, which
are all shortcomings of the inference method except for underspecification.

• In §5.3,we characterize underspecification as the lack of sufficient conditional
independence assumptions, which may be partially offset by constraining
mutual information.

• §5.4 proposes reusing samples fromMonte Carlo objectives to better estimate
the mutual information, which is the main contribution.

• §5.5 and §5.6 show that the representational KL, which underlies many
mutual information estimates, corresponds to the single-sample case of our
estimators, and the single-sample objectives built on them are equivalent to
the β-VAE objective of Higgins et al. [2017].

• §5.7 experimentally verifies the effectiveness of the proposed methods on
synthetic and language modelling tasks, emphasizing evaluation in terms of
the data fit vs latent usage tradeoff.

5.1 variational autoencoders and posterior collapse

This section introduces variational autoencoders and describes the known causes
of posterior collapse. Contrary to what the name variational autoencoder may
suggest, a VAE is not a model itself but an inference2 mechanism for models
of the form 𝑝𝜃(𝑥, 𝑧) = 𝑝𝜃(𝑥 | 𝑧)𝑝(𝑧) where {𝑝𝜃(𝑥 | 𝑧)} is a parametric family of
conditional distributions [Kingma and Welling, 2013]. VAE training constructs
an approximate maximum likelihood estimate of the model parameters 𝜃 with
the aim of maximizing the probability over the empirical data distribution:
argmax𝜃𝔼𝑥∼𝑝𝐷 (𝑥) [ln 𝑝𝜃(𝑥)]. Since ln 𝑝𝜃(𝑥) has no analytic form in general,
VAEs posit a variational family of distributions Q = {𝑞𝜙(𝑧 | 𝑥)} parameterized
by 𝜙 to approximate the true posterior 𝑝𝜃(𝑧 | 𝑥) and construct a lower bound
on the marginal likelihood 𝑝𝜃(𝑥), also called the evidence:

ln 𝑝𝜃(𝑥) ⩾ ELBO(𝑥, 𝜃, 𝜙) = ln 𝑝𝜃(𝑥) − KL(𝑞𝜙(𝑧 | 𝑥)

 𝑝𝜃(𝑧 | 𝑥)) (5.1)
= 𝔼

𝑧∼𝑞𝜙 (𝑧 | 𝑥)
[ln 𝑝𝜃(𝑥 | 𝑧)] − KL(𝑞𝜙(𝑧 | 𝑥)

 𝑝(𝑧)) . (5.2)

2We use inference in the statistical sense, commonly referred to as training or learning in the
machine learning literature.

67

As evident in its posterior-contrastive form, the ELBO (5.1) is a lower bound
on ln 𝑝𝜃(𝑥) due to the non-negativity of the KL divergence [Kullback and
Leibler, 1951]. In its prior-contrastive form (5.2), both the expectation and the
KL divergence terms can be estimated by taking a single sample from 𝑞, which
forms the basis of its optimization. Alternatively, the KL may be computable
analytically. Gradient-based optimization with VAEs is performed jointly over
parameters 𝜃 of the model and 𝜙 of the approximate posterior as

argmax
𝜃,𝜙

𝔼
𝑥∼𝑝𝐷 (𝑥)

ELBO(𝑥, 𝜃, 𝜙).

In practice, the expectation in (5.2) is approximated with a single sample
from 𝑞𝜙(𝑧 | 𝑥) and the expectation over 𝑝𝐷(𝑥) with a minibatch, which goes
by the name of doubly stochastic variational inference [Titsias and Lázaro-
Gredilla, 2014]. For a broader context, we refer the reader to Zhang et al.
[2018], who provide a comprehensive overview of developments in variational
inference [Jordan et al., 1999]. From this point on, wherever possible we drop
the subscripts in 𝑝𝜃 and 𝑞𝜙 to declutter the notation.

The possibility of posterior collapse (also referred to as over-pruning, Yeung
et al. 2017, or information preference, Zhao et al. 2019) is most evident in the prior-
contrastive ELBO (5.2). If the likelihood 𝑝(𝑥 | 𝑧) is able to model the distribution
of 𝑥 without the latents 𝑧, then the reconstruction term 𝔼𝑞(𝑧 | 𝑥) ln 𝑝(𝑥 | 𝑧) is
just ln 𝑝(𝑥) independently of 𝑞(𝑧 | 𝑥). Since 𝑞 does not affect the reconstruction
term, we can just set it to the prior 𝑝(𝑧), which is often in Q, so that the KL
penalty is zero. In this case, 𝑞(𝑧 | 𝑥) = 𝑝(𝑧 | 𝑥) is also satisfied, but unfortunately
the two posteriors have now collapsed to match the prior 𝑝(𝑧), which renders
the latent variables useless.

The issues in what we observe as posterior collapse (or its milder form, the
underuse of latents) span a number of causes. Figure 5.1 summarizes the main
known contributors to posterior collapse and their interactions. At a glance, the
immediate causes are high-variance gradient estimates, a loose lower bound,
and underspecification.
• Gradient noise: Optimization can be adversely affected by high-variance
gradient estimators [Roeder et al., 2017, Tucker et al., 2018] and minibatch
noise in stochastic gradient descent [Titsias and Lázaro-Gredilla, 2014].
Unlike minibatch noise, sampling noise – the variance induced by the
latents – can be eliminated by ignoring the latents. Because the looseness
of the lower bound is proportional to the sampling variance [Maddison
et al., 2017], coupled with SGD’s preference for flat minima [Hochreiter and
Schmidhuber, 1995], this biases optimization towards posterior collapse.

68

optimiz.
gap

gradient
noise

loose
bound

posterior
collapse

sampling
noise

minibatch
noise

bad post.
approx.

approx.
gap

amortiz.
gap

under-
spec.

p()

q()

1 2 3

4 44

Figure 5.1: Causes of posterior collapse in VAEs. 1. High variance gradient estimates
and SGD’s preference for flat minima exerts pressure to reduce variance by ignoring
the latents. 2. A loose lower bound underestimates the benefits of the latents. 3. Under-
specification can allow posterior collapse to be the theoretical optimum. 4. Posterior
collapse reduces or eliminates all of the gaps and the sampling noise.

• Loose lower bound: As its posterior-contrastive form (5.1) suggests, the
ELBO is tight if 𝑞(𝑧 | 𝑥) matches 𝑝(𝑧 | 𝑥), and the worse the approximation,
the looser the ELBO. However, perfect posterior approximation might be
hard or impossible to achieve, depending on the following factors [Cremer
et al., 2017].
- The approximation gap is the distance of the true posterior from the
variational family Q if 𝑝(𝑧 | 𝑥) ∉ Q [Shu et al., 2018, Razavi et al., 2019].

- The amortization gap is the gap caused by the encoder’s inability to
represent the optimal 𝑞𝜙★ (𝑧 | 𝑥) (which is 𝑝𝜃(𝑧 | 𝑥)) for all 𝑥 with the same
𝜙 [Kim et al., 2018, Shu et al., 2018].

- The optimization gap is caused the suboptimality of 𝑞𝜙(𝑧 | 𝑥) found by
the optimizer relative to 𝑞𝜙★ (𝑧 | 𝑥) [He et al., 2019].

Notably, there is a negative feedback loop: optimization difficulties cause bad
posterior approximation, which increases the variance induced by sampling
the latents, which makes optimization harder.

• Underspecification: As argued by Alemi et al. [2017], the ELBO is neutral
with respect to the mutual information, and even perfect optimization can
land anywhere on the rate-distortion curve (the expected likelihood of the
data as a function of the mutual information of the data and the latents).
More generally, the optimization task for generative models of the form
𝑝(𝑥, 𝑧) = 𝑝(𝑥 | 𝑧)𝑝(𝑧) is often underspecified [Huszár, 2017a], which we
explore in §5.3.

69

Unfortunately, posterior collapse reduces or eliminates all of the gaps and also
the sampling noise, which makes the bound tight. For VAEs to use their latent
variables reliably and optimally, all of the above issues must be addressed. The
direction we take here delegates the problem of dealing with the looseness of
the bound to a Monte Carlo estimator of the marginal likelihood, such as IWAE,
and that of reducing gradient noise to a corresponding gradient estimator, such
as DReG or VIMCO. Importantly, in addition to providing tighter bounds, Monte
Carlo estimators employ multiple samples from 𝑞(𝑧 | 𝑥), which benefits our
efforts to tackle the issue of underspecification by designing better estimators
of the mutual information.

5.2 related works

With several interacting issues to disentangle, the body of work on posterior
collapse has grown large and disparate. Many works aim to make the prior or
the posterior more flexible to tighten the lower bound [Rezende and Mohamed,
2015, Kingma et al., 2016, Tomczak and Welling, 2018]. At the same time, Shu
et al. [2018] argue that while it is tempting to think that the variational family
Q and 𝑞𝜙(𝑧 | 𝑥) should be as large and as flexible possible, a more restrictive
choice can prove useful in performing posterior regularization. Kim et al. [2018]
propose reducing the amortization gap by only initializing the value of the latent
variables according to the encoder, then optimizing their values separately for
each example as in non-amortized variational inference [Jordan et al., 1999].
He et al. [2019] focus on improving the approximation quality of 𝑞𝜙(𝑧 | 𝑥) by
taking several optimization steps on 𝜙 for each update of 𝜃 in 𝑝𝜃. Yang et al.
[2017b] replace an auto-regressive decoder with dilated convolutions to restrict
the available context and to thus enforce the use of the latents. Van den Oord
et al. [2017] introduce categorically distributed latents with a fixed KL cost and
replace the prior with the aggregate posterior, which eliminates any pressure
to ignore the latents.

Instead of completely eliminating the pressure to ignore the latents, con-
trolling the KL term in (5.2) by reducing its cost also received lots of attention.
Downweighting or annealing it during training is common [Bowman et al.,
2015, Higgins et al., 2017, Sønderby et al., 2016, Maalø e et al., 2019, Huang
et al., 2018]. Kingma et al. [2016] flat spot the KL term so that small KL values
are not penalized. Razavi et al. [2019] achieve a similar effect by choosing the
variational family and the approximate posterior such that there is always an
approximation gap.

70

Several works [Alemi et al., 2017, Zhao et al., 2019, McCarthy et al., 2019,
Rezaabad and Vishwanath, 2020, Serdega and Kim, 2020] recognize the issue
of underspecification and propose to constrain the mutual information. All
work with single sample VAEs and the representational KL. In contrast, we
propose combining multi-sample Monte Carlo objectives with estimates based
on the true KL. As we will see, this results in our mutual information estimates
being less tied to the quality of 𝑞(𝑧 | 𝑥), while containing the single-sample,
representational KL scenario as a degenerate case.

5.3 cia and posterior collapse

In this section, we explore why our models are underspecified to better under-
stand whether constraining the mutual information is a good solution. More
specifically, we ask under what conditional independence assumptions (CIA3)
can posterior collapse be an optimal solution for any model to abstract away
from finite capacities and optimization difficulties. The next proposition shows
that the answer is in fact trivial: the independence assumptions can be satisfied
with a model where the latent and the observable variables are independent and
the model matches the data distribution perfectly if and only if the independence
assumptions are compatible with the marginal distribution of the data.

In particular, we consider Bayesian networks, given as

𝑝(𝑥, 𝑧) = 𝑝(𝑧)
𝑛∏
𝑖=1

𝑝
(
𝑥𝑖
�� pa(𝑖), 1[1,𝑘] (𝑖)𝑧) ,

where pa(𝑖) denotes the set of parent nodes of 𝑥𝑖, i.e. those on which it directly
depends, and the first 𝑘 𝑥𝑖 directly depend also on 𝑧.

Proposition 8. Let {𝑥𝑖}, 𝑖 ∈ [1, 𝑛], be a partitioning of 𝑥, and pa(𝑖) ⊆ {𝑥𝑖}. For
any prior 𝑝(𝑧), there exists a distribution4 𝑝(𝑥, 𝑧) satisfying, for all 𝑥 and 𝑧,
(i) 𝑝(𝑥, 𝑧) = 𝑝(𝑥)𝑝(𝑧) (posterior collapse);
(ii) 𝑝(𝑥) = 𝑝𝐷(𝑥) (perfectly modelling the data);
(iii) 𝑝(𝑥, 𝑧) = 𝑝(𝑧)∏𝑛

𝑖=1 𝑝
(
𝑥𝑖
�� pa(𝑖), 1[1,𝑘] (𝑖)𝑧) for some 𝑘 ⩽ 𝑛 (CIA)

if and only if 𝑝𝐷(𝑥) = ∏𝑛
𝑖=1 𝑝𝐷(𝑥𝑖 |pa(𝑖)) (the data distribution is compatible

with the CIA of (iii)).

Proof. If 𝑝𝐷(𝑥) = ∏𝑛
𝑖=1 𝑝𝐷(𝑥𝑖 |pa(𝑖)), then it is easy to check that 𝑝(𝑥, 𝑧) =

3Due to CIA being a collective noun in other contexts, we let its singular form stand also for
its plural.

4Here we consider the set of all distributions and not only the parameterized family {𝑝𝜃}.

71

𝑝𝐷(𝑥)𝑝(𝑧) satisfies the conditions (i)–(iii) with 𝑘 = 0. To prove the other
direction, assume (i)–(iii) hold. Then (i) and (iii) imply that 𝑝(𝑥) = ∏𝑛

𝑖=1 𝑝
(
𝑥𝑖
��

pa(𝑖), 1[1,𝑘] (𝑖)𝑧
) for all 𝑧. Also, from (i) it follows that (pa(𝑖), 𝑥𝑖) ⊥⊥ 𝑧, and

hence for all 𝑧, 𝑝(𝑥𝑖 | pa(𝑖), 𝑧) = 𝑝(𝑥𝑖, pa(𝑖) | 𝑧)/𝑝(pa(𝑖) | 𝑧) = 𝑝(𝑥𝑖 |pa(𝑖)),
giving 𝑝(𝑥) = ∏𝑛

𝑖=1 𝑝(𝑥𝑖 |pa(𝑖)). Finally, from (ii) we have that the two joints,
𝑝𝐷(𝑥) and 𝑝(𝑥) are the same, therefore their marginals and conditionals are
the same too, which implies 𝑝𝐷(𝑥) = ∏𝑛

𝑖=1 𝑝𝐷(𝑥𝑖 |pa(𝑖)).

The proposition says that just by specifying CIA for otherwise dependent parts
of the data, any model that suffers posterior collapse (in the sense that 𝑥 and 𝑧
are independent) will be suboptimal in terms of the model evidence 𝑝(𝑥). This
gives a degree of assurance that given such a structure, a well-optimized model
with high enough capacity will not suffer posterior collapse. Latent variable
image models, which model pixels or patches conditionally independently given
the latents fall into this category, which explains while posterior collapse is not
so prevalent in that case.

Conversely, in theory and in the absence of CIA, there is a trivial latent
variable model 𝑝(𝑥, 𝑧) = 𝑝𝐷(𝑥)𝑝(𝑧) that is optimal in terms of the marginal
likelihood 𝑝(𝑥) but does not use the latents. The prototypical example for this
case is auto-regressive likelihoods, such as RNN language models.

To summarize, CIA must be made to guarantee that latents are used given
powerful enough models and inference methods. On the other hand, lacking the
necessary CIA, we can still bias solutions by changing the objective. One such
change to compensate for the lack of model structure is adding a constraint on
mutual information.

5.4 mutual information augmented objectives

Mutual information is often used as a measure of latent variable usage in
trained models or as part of the training objective to control latent usage and
reduce underspecification. First, as a measure of latent usage, it is a diagnostic
of the inference method. In this role, it is but a proxy for the generalization
ability of the model or for the performance on down-stream tasks. Second,
as a constraint during training, it can be seen as compensating for the lack
of structure in the model. However, its role is not essential in either of these:
evaluating representations without the down-stream tasks is fraught with
peril, and equipping the model with structure sounds a rather more appealing
direction to pursue. Still, finding a good model structure is easier said than

72

done, and in practice mutual information is useful both as a diagnostic for
inference and as a tool for model specification. Thus, we augment the marginal
likelihood objective with a mutual information term and maximize

𝔼
𝑝𝐷 (𝑥)

ln 𝑝(𝑥) + 𝜆𝐼𝑝(𝑋, 𝑍), (5.3)

where 𝑝𝐷(𝑥) is the data distribution and 𝜆 ∈ ℝ, 𝜆 ⩾ 0. Throughout, we
assume that 𝐼𝑝(𝑋, 𝑍) is bounded, which is satisfied by any model for which the
optimization of 𝑝(𝑥) is well-posed and hence its 𝑝(𝑥 | 𝑧) is bounded for all 𝑧.
Also note that for any given 𝐼𝑝(𝑋, 𝑍), the model achieves its global maximum
when 𝑝(𝑥) = 𝑝𝐷(𝑥), and we can reasonably expect models that suffer from
posterior collapse to effectively balance data fit and mutual information.

Motivated by the identity 𝐼𝑝(𝑋, 𝑍) = 𝔼𝑝(𝑥) KL(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧)), the mutual
information term can be estimated by the average KL divergence. While this
true KL is hard to compute in general due to the intractable posterior, the
availability of the variational posterior offers the compelling alternative of
estimating 𝐼𝑝(𝑋, 𝑍) with

𝐼𝑞,𝑝𝑝𝐷 (𝑋, 𝑍) := 𝔼
𝑝𝐷 (𝑥)

KL(𝑞(𝑧 | 𝑥)

 𝑝(𝑧)) .
Note the shortcut of sampling from 𝑝𝐷(𝑥) instead of 𝑝(𝑥). If we plan to use
the representations obtained from the variational posterior 𝑞(𝑧 | 𝑥) on some
task, then 𝐼𝑞,𝑝𝑝𝐷 is a natural quantity to track [Zhao et al., 2019, Rezaabad and
Vishwanath, 2020]. However, in this work, our primary concern lies not with
artifacts of variational inference but with the model 𝑝(𝑥, 𝑧) and its ability to
capture information in the latents. Moreover, employing 𝐼𝑞,𝑝𝑝𝐷 as a proxy objective
is problematic because it overestimates 𝐼𝑝 as 𝑞 tends to underestimate the
variance of the true posterior.5 Even worse, with 𝐼𝑞,𝑝𝑝𝐷 the quality of 𝑞(𝑧 | 𝑥)
would influence our conclusions about latent variable usage. Monte Carlo
objectives, whose 𝑞(𝑧 | 𝑥) in itself is no longer a direct approximation to 𝑝(𝑧 | 𝑥)
[Mnih and Rezende, 2016], exacerbate the problem with latent usage estimation.
Experimentally, we found that, for models trained with Monte Carlo objectives,
𝐼𝑞,𝑝𝑝𝐷 can wildly under- or overestimate 𝐼𝑝. Thus, to form a better estimate of 𝐼𝑝,
we replace 𝑞(𝑧 | 𝑥) with 𝑝(𝑧 | 𝑥) in 𝐼𝑞,𝑝𝑝𝐷 :

𝐼 𝑝𝑝𝐷 (𝑋, 𝑍) := 𝔼
𝑝𝐷 (𝑥)

KL(𝑝(𝑧 | 𝑥)

 𝑝(𝑧)) . (5.4)

This ‘cross’ mutual information 𝐼 𝑝𝑝𝐷 is the average true KL over the data dis-
tribution 𝑝𝐷. Averaging over 𝑝𝐷(𝑥) instead of 𝑝(𝑥) is common practice as it

5For VAEs, this follows from the properties of the KL divergence, while for Monte Carlo
objectives in general, it follows from how the looseness of the lower bound relates to the
variance of the estimator [Maddison et al., 2017].

73

allows the mutual information to be estimated based on the current minibatch
without sampling from the model in the typical doubly stochastic optimization
setting [Titsias and Lázaro-Gredilla, 2014]. The price for efficiency is a possible
generalization problem: the average KL may be different over 𝑝𝐷(𝑥) and 𝑝(𝑥).
Generalization may eventually become a pressing issue, but as our experiments
in §5.7 will demonstrate, we first have to deal with underfitting. In addition
to being expedient, as we will show in §5.5 and §5.6, this choice makes the
single-sample case of our estimators correspond to the representational KL and
the β-VAE [Higgins et al., 2017].

Definition 3 (Mutual information augmented objective). Themutual information
augmented objective, which is a combination of the usual marginal likelihood
objective and 𝐼 𝑝𝑝𝐷 , is defined as

O(𝜆) = 𝔼
𝑝𝐷 (𝑥)

ln 𝑝(𝑥) + 𝜆𝐼 𝑝𝑝𝐷 (𝑋, 𝑍). (5.5)

Furthermore, the pointwise version of the objective is defined as

O(𝜆, 𝑥) = ln 𝑝(𝑥) + 𝜆 KL(𝑝(𝑧 | 𝑥)

 𝑝(𝑧)) , (5.6)

which in turn satisfies O(𝜆) = 𝔼𝑝𝐷 (𝑥) O(𝜆, 𝑥).

In the following, we propose estimators of O(𝜆, 𝑥) and the true KL within it to
estimate O(𝜆) and the mutual information in a manner suitable for the doubly
stochastic optimization setting.

5.4.1 The KL Objective

To find the maximum ofO(𝜆) in 𝜃, both of its terms must be estimated well. We
delegate the task of estimating the marginal log-likelihood ln 𝑝(𝑥) to a ‘base’
Monte Carlo estimator of the form 𝑆𝐾 (𝑥, 𝑧1:𝐾) = ln (1

𝐾

∑𝐾
𝑖=1 𝑓 (𝑥, 𝑧𝑖)

), where
𝑧1:𝐾 = (𝑧1, . . . , 𝑧𝐾) are independent samples from the proposal distribution
𝑞(𝑧 | 𝑥), and 𝑓 is some function of the observable and latent variables [Mnih
and Rezende, 2016]. Ideally, 𝑆𝐾 is chosen to have low bias and low variance,
allowing optimization to strike a better balance with mutual information. For
our first contribution, the KL objective, we rewrite the true KL in a form more
amenable to importance sampling:

KL(𝑝(𝑧 | 𝑥)

 𝑝(𝑧)) = 𝔼
𝑝(𝑧 | 𝑥)

ln 𝑝(𝑧 | 𝑥)
𝑝(𝑧)

= 𝔼
𝑝(𝑧 | 𝑥)

[
ln 𝑝(𝑥 | 𝑧)] − ln 𝑝(𝑥)

74

= 𝔼
𝑞(𝑧 | 𝑥)

[
𝑝(𝑧 | 𝑥)
𝑞(𝑧 | 𝑥) ln 𝑝(𝑥 | 𝑧)

]
− ln 𝑝(𝑥)

=
1

𝑝(𝑥) 𝔼
𝑞(𝑧 | 𝑥)

[
𝑝(𝑥, 𝑧)
𝑞(𝑧 | 𝑥) ln 𝑝(𝑥 | 𝑧)

]
− ln 𝑝(𝑥).

Plugging this into the definition of O(𝜆, 𝑥) in (5.6) and grouping the ln 𝑝(𝑥)
terms, we get

O(𝜆, 𝑥) = (1 − 𝜆) ln 𝑝(𝑥) + 𝜆 1
𝑝(𝑥) 𝔼

𝑞(𝑧 | 𝑥)
𝑝(𝑥, 𝑧)
𝑞(𝑧 | 𝑥) ln 𝑝(𝑥 | 𝑧).

In this form of the mutual information augmented objective, the first term,
(1 − 𝜆) ln 𝑝(𝑥), can be estimated with the base Monte Carlo estimator 𝑆𝐾, so
we only have the task of dealing the second term

1
𝑝(𝑥) 𝔼

𝑞(𝑧 | 𝑥)
𝑝(𝑥, 𝑧)
𝑞(𝑧 | 𝑥) ln 𝑝(𝑥 | 𝑧). (5.7)

Here, 𝑝(𝑥) could be estimated with the simple 𝐾-sample importance sampling
estimator

𝑝𝐾 (𝑥, 𝑧1:𝐾) := 1
𝐾

𝐾∑︁
𝑖=1

𝑝(𝑥, 𝑧𝑖)
𝑞(𝑧𝑖 | 𝑥) . (5.8)

However, combining 𝑝𝐾 with an importance sampling estimate of the expecta-
tion in (5.7) using different samples begot very high variance in preliminary
experiments. Instead,we approximate (5.7) with the self-normalized importance
sampling estimator

𝑈𝐾 (𝑥, 𝑧1:𝐾) := 𝑝𝐾 (𝑥, 𝑧1:𝐾)−1 1
𝐾

𝐾∑︁
𝑖=1

𝑝(𝑥, 𝑧𝑖)
𝑞(𝑧𝑖 | 𝑥) ln 𝑝(𝑥 | 𝑧𝑖), (5.9)

which uses the same samples for estimating 1/𝑝(𝑥) and the expectation. This
leads to our first estimator for O(𝜆, 𝑥).

Definition 4 (KL objective). Let 𝑆𝐾 be any 𝐾-sample Monte Carlo estimator of
ln 𝑝(𝑥). Then the augmented objectiveO(𝜆, 𝑥) can be estimated by the KL objective

OKL(𝑆, 𝐾, 𝜆, 𝑥) = 𝔼
𝑧1:𝐾∼𝑞(𝑧 | 𝑥)

𝑂̂KL(𝑆, 𝐾, 𝜆, 𝑥, 𝑧1:𝐾), (5.10)
where

ÔKL(𝑆, 𝐾, 𝜆, 𝑥, 𝑧1:𝐾) = (1 − 𝜆)𝑆𝐾 (𝑥, 𝑧1:𝐾) + 𝜆𝑈𝐾 (𝑥, 𝑧1:𝐾). (5.11)

Note that ÔKL(𝑆𝐾 , 𝐾, 𝜆, 𝑥, 𝑧1:𝐾) uses the same samples 𝑧1:𝐾 ∼ 𝑞(𝑧 | 𝑥) to estimate
both terms of the augmented objective (5.6). Grouping the terms differently,
we can separate out the estimate of the KL:

75

ÔKL(𝑆, 𝐾, 𝜆, 𝑥, 𝑧1:𝐾) = 𝑆𝐾 (𝑥, 𝑧1:𝐾)︸ ︷︷ ︸
≈ln 𝑝(𝑥)

+𝜆 (
𝑈𝐾 (𝑥, 𝑧1:𝐾) − 𝑆𝐾 (𝑥, 𝑧1:𝐾)

)︸ ︷︷ ︸
≈KL(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧))

. (5.12)

We assume throughout that the estimators 𝑆𝐾 (𝑥, 𝑧1:𝐾) and𝑈𝐾 (𝑥, 𝑧1:𝐾) have finite
variance. The estimators ÔKL(𝑆𝐾 , 𝐾, 𝜆, 𝑥) ofO(𝜆, 𝑥) and𝑈𝐾 (𝑥, 𝑧1:𝐾)−𝑆𝐾 (𝑥, 𝑧1:𝐾)
of KL(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧)) have the following properties:

Proposition 9 (properties of the KL objective).
(i) If 𝑆𝐾 converges in probability or almost surely to ln 𝑝(𝑥) as 𝐾 →∞, then so

do ÔKL and 𝑈𝐾 − 𝑆𝐾 to O(𝜆, 𝑥) and KL(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧)), respectively.
(ii) If 𝔼𝑧1:𝐾∼𝑞(𝑧 | 𝑥) 𝑆

𝐾 (𝑥, 𝑧1:𝐾) ⩽ ln 𝑝(𝑥), then
𝔼

𝑧1:𝐾∼𝑞(𝑧 | 𝑥)
[𝑈𝐾 (𝑥, 𝑧1:𝐾) − 𝑆𝐾 (𝑥, 𝑧1:𝐾)] ⩾ KL(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧)).

That is, the estimator is biased upward.
(iii) The bias of the self-normalized importance sampling estimator 𝑈𝐾 is bounded

if 𝑝(𝑥, 𝑧) is bounded as shown in Proposition 7 of Metelli et al. [2020].
(iv) The variance of 𝑈𝐾 decays with 𝐾, but unlike in non-normalized importance

sampling, for any given 𝐾, there is no proposal distribution with which the
variance is zero unless 𝑈𝐾 is constant for all 𝑧1:𝐾 with probability 1.

Proof. These follow from the properties of self-normalized importance sampling
[Owen, 2013] except where noted.

Note that although the objective is biased upwards, its bias is decreased with
more samples and is bounded if 𝑝(𝑥, 𝑧) is bounded. It can be assumed that
𝑝(𝑥, 𝑧) is bounded, else the optimization of ln 𝑝(𝑥) is ill-posed even without
the mutual information term. Consequently we may be able to rely on 𝜆 to
counteract the bias thus bounded. Importantly, the computation of 𝑈𝐾 imposes
minimal overhead as it needs to evaluate only 𝑝(𝑥 | 𝑧𝑖), 𝑝(𝑧𝑖) and 𝑞(𝑧𝑖 | 𝑥): the
same quantities and same 𝑧𝑖 as needed for computing 𝑆𝐾. Referring back to
(5.3), we argue that this KL objective allows for effective interpolation between
fitting the data and capturing information in the latent variables.

5.4.2 The Rényi Objective

In this section, we introduce a second estimator of the augmented objective
O(𝜆, 𝑥) (5.6), based on the Rényi divergence, to address a potential issue with
the KL objective’s estimate (5.11). This issue lies in the fact that the KL objective

76

linearly combines two estimators (𝑆𝐾 and 𝑈𝐾) of different quantities. How their
biases and variances relate deserves some consideration. As we have seen, with
𝑆𝐾 that underestimate ln 𝑝(𝑥) (e.g. IWAE), 𝑈𝐾 − 𝑆𝐾 overestimates the true KL.
Luckily, both biases can be reduced with more samples.

However, taking more samples may not help if the two estimators have very
different variances, in which case optimizing the objective may be difficult. This
issue could be addressed by designing a 𝑈𝐾 for every 𝑆𝐾, but this would limit
the applicability of our method in practice. Instead, we apply 𝑆 not only to
estimate ln 𝑝(𝑥) but a second time too to estimate the Rényi divergence, itself a
biased estimate of the true KL. As we will see later, this works surprisingly well
in practice despite the presence of the bias.

The Rényi divergence between two distributions 𝑓 (𝑥) and 𝑔(𝑥) is defined
as 𝐷𝛼(𝑓 ∥ 𝑔) = 1

𝛼−1 ln𝔼𝑔 (𝑥) 𝑓 (𝑥)𝛼𝑔(𝑥)−𝛼, where 𝛼 is a positive real number.
For 𝛼 < 1, 𝐷𝛼(𝑓 ∥ 𝑔) ⩽ KL(𝑓 ∥ 𝑔), while for 𝛼 > 1, 𝐷𝛼(𝑓 ∥ 𝑔) ⩾ KL(𝑓 ∥ 𝑔).
Since lim𝛼→1 𝐷𝛼(𝑓 ∥ 𝑔) = KL(𝑓 ∥ 𝑔)), 𝐷𝛼(𝑓 ∥ 𝑔) can approximate KL(𝑓 ∥ 𝑔)
arbitrarily closely when 𝛼 is sufficiently close to 1. This latter property motivates
the use of 𝐷𝛼(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧)) as an approximation to the true KL. To construct
an estimator, we first rewrite the Rényi divergence as:

(𝛼 − 1)𝐷𝛼
(
𝑝(𝑧 | 𝑥)

 𝑝(𝑧)) = ln 𝔼
𝑝(𝑧)

𝑝(𝑧 | 𝑥)𝛼
𝑝(𝑧)𝛼

= ln 𝔼
𝑝(𝑧)

[
𝑝(𝑧 | 𝑥)𝛼𝑝(𝑥)𝛼

𝑝(𝑧)𝛼
]
− 𝛼 ln 𝑝(𝑥)

= ln 𝔼
𝑝(𝑧)

[
𝑝(𝑥 | 𝑧)𝛼] − 𝛼 ln 𝑝(𝑥)

= ln 𝑝𝛼(𝑥) − 𝛼 ln 𝑝(𝑥), (5.13)
where 𝑝𝛼(𝑥) := 𝔼𝑝(𝑧) 𝑝(𝑥 | 𝑧)𝛼.

We note in passing that 𝑝𝛼(𝑥) has an intuitive interpretation, particularly
when 𝛼 ∈ ℕ. Consider the task of modelling the distribution of discrete data
over some discrete set X duplicated 𝛼 times, that is 𝑝𝛼𝐷(𝑥, . . . , 𝑥) := 𝑝𝐷(𝑥).
That is, 𝑝𝛼𝐷 is a probability distribution over X 𝛼, whereas 𝑝𝐷 is over X , and
𝑝𝛼𝐷(𝑥1, . . . , 𝑥𝛼) = 0 unless all 𝑥𝑖 are identical. On this task, 𝛼 ln 𝑝(𝑥) = ln 𝑝(𝑥)𝛼
acts as the uninformed baseline, in which a separate set of latents is used for
each branch 𝑝(𝑥𝑖 | 𝑧), thus the cost of information in the latents must be paid
𝛼 times. This means that, based on its alternative form ln 𝑝𝛼(𝑥) − 𝛼 ln 𝑝(𝑥) in
(5.13), we can interpret the Rényi divergence as a measure of how much better
the 𝛼-duplicated model 𝑝𝛼(𝑥) does at modelling the duplicated data compared
to the worst-case solution 𝑝(𝑥)𝛼, which does not use the latents to amortize
the cost of encoding the data multiple times.

77

We now derive a biased approximation to O(𝜆, 𝑥):

O(𝜆, 𝑥) = ln 𝑝(𝑥) + 𝜆 KL(𝑝(𝑧 | 𝑥)

 𝑝(𝑧))
≈ ln 𝑝(𝑥) + 𝜆𝐷𝛼

(
𝑝(𝑧 | 𝑥)

 𝑝(𝑧))
= ln 𝑝(𝑥) + 𝜆

𝛼 − 1
(ln 𝑝𝛼(𝑥) − 𝛼 ln 𝑝(𝑥))

=
𝜆

𝛼 − 1 ln 𝑝𝛼(𝑥) −
(
𝜆𝛼

𝛼 − 1 − 1
)
ln 𝑝(𝑥).

Definition 5 (Rényi objective). Let 𝜆, 𝛼 > 0, and let 𝑆𝐾 (𝑥, 𝑧1:𝐾) and 𝑆𝐾𝛼 (𝑥, 𝑧1:𝐾)
be 𝐾-sample Monte Carlo estimators for ln 𝑝(𝑥) and ln 𝑝𝛼(𝑥), respectively. Then
the augmented objective O(𝜆, 𝑥) can be estimated by the Rényi objective

O𝑅 (𝑆, 𝐾, 𝜆, 𝛼, 𝑥) = 𝔼
𝑧1:𝐾∼𝑞(𝑧 | 𝑥)

Ô𝑅 (𝑆, 𝐾, 𝜆, 𝛼, 𝑥, 𝑧1:𝐾), (5.14)
where

Ô𝑅 (𝑆, 𝐾, 𝜆, 𝛼, 𝑥, 𝑧1:𝐾) = 𝜆

𝛼 − 1𝑆
𝐾
𝛼 (𝑥, 𝑧1:𝐾) −

(
𝜆𝛼

𝛼 − 1 − 1
)
𝑆𝐾 (𝑥, 𝑧1:𝐾). (5.15)

Separating out the estimate of the Rényi divergence yields the alternative form

Ô𝑅 (𝑆, 𝐾, 𝜆, 𝛼, 𝑥, 𝑧1:𝐾) = 𝑆𝐾 (𝑥, 𝑧1:𝐾)︸ ︷︷ ︸
≈ln 𝑝(𝑥)

+𝜆
(1
𝛼 − 1

(
𝑆𝐾𝛼 (𝑥, 𝑧1:𝐾) − 𝛼𝑆𝐾 (𝑥, 𝑧1:𝐾)

))
︸ ︷︷ ︸

≈𝐷𝛼 (𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧))

.

(5.16)

Our goal was to address the mismatched biases and variances of the KL
objective’s 𝑆𝐾 and 𝑈𝐾 . Having eliminated 𝑈𝐾 , we are left with only 𝑆𝐾 and 𝑆𝐾𝛼 ,
estimating two closely related quantities, ln 𝑝(𝑥) and ln 𝑝𝛼(𝑥). Note that 𝑆𝐾𝛼 can
be obtained with a slight modification of 𝑆𝐾 , as explained in the next section. In
§5.7, we validate experimentally that the benefits this scheme affords outweigh
the obvious drawback of additional bias in the Rényi objective.

Estimating 𝑝𝛼(𝑥) with IWAE

From ln 𝑝(𝑥) = ln (
𝔼𝑝(𝑧) 𝑝(𝑥 | 𝑧)

) and ln 𝑝𝛼(𝑥) = ln (
𝔼𝑝(𝑧) 𝑝(𝑥 | 𝑧)𝛼

), we have
that if 𝑆𝐾 (𝑥, 𝑧1:𝐾) is computed explicitly in terms of 𝑝(𝑥 | 𝑧), then 𝑆𝐾𝛼 (𝑥, 𝑧1:𝐾)
can be derived simply by replacing 𝑝(𝑥 | 𝑧) with 𝑝(𝑥 | 𝑧)𝛼 in 𝑆𝐾 (𝑥, 𝑧1:𝐾). All base
estimators considered here have this property and we elucidate the derivation
through the example of the IWAE.

78

The ELBO of variational autoencoders can be rather loose, and the variance
of the resulting approximate posterior is usually smaller than that of the true
posterior. To tackle these issues, Burda et al. [2015] proposed the importance
weighted autoencoder (IWAE). Whereas the ELBO is single-sample, the IWAE
bound is based on 𝐾 ∈ ℕ samples:

ln 𝑝(𝑥) = ln 𝔼
𝑝(𝑧)

𝑝(𝑥 | 𝑧) = ln 𝔼
𝑧1,...,𝑧𝐾
∼𝑞(𝑧 | 𝑥)

1
𝐾

𝐾∑︁
𝑖=1

𝑝(𝑥 | 𝑧𝑖)𝑝(𝑧𝑖)
𝑞(𝑧𝑖 | 𝑥)

⩾ 𝔼
𝑧1,...,𝑧𝐾
∼𝑞(𝑧 | 𝑥)

ln 1
𝐾

𝐾∑︁
𝑖=1

𝑝(𝑥 | 𝑧𝑖)𝑝(𝑧𝑖)
𝑞(𝑧𝑖 | 𝑥) .

In importance sampling terms, 𝑝(𝑥 | 𝑧) is the integrand, the function whose
expectation we want to compute with respect to 𝑝(𝑧). While 𝑝(𝑥 | 𝑧) here is a
probability mass function, importance sampling does not require this. In fact,
we can estimate the expectation of 𝑝(𝑥 | 𝑧)𝛼 analogously:

ln 𝑝𝛼(𝑥) ⩾ 𝔼
𝑧1,...,𝑧𝐾
∼𝑞(𝑧 | 𝑥)

ln 1
𝐾

𝐾∑︁
𝑖=1

𝑝(𝑥 | 𝑧𝑖)𝛼𝑝(𝑧𝑖)
𝑞(𝑧𝑖 | 𝑥) . (5.17)

To estimate the expectation in the above lower bound, we can recombine
𝑝(𝑥 | 𝑧𝑖), 𝑝(𝑧𝑖) and 𝑞(𝑧𝑖 | 𝑥), quantities already computed for the base estimator,
with negligible computational overhead.

Note that there is an optimal proposal distribution 𝑞opt(𝑧 | 𝑥) = 𝑝(𝑥 | 𝑧)𝛼𝑝(𝑧)/
𝑝𝛼(𝑥) that leads to exactly computing ln 𝑝𝛼(𝑥) (i.e. estimating it with zero bias
and variance). On the other hand, the other term in the Rényi objective is
best estimated using, in general, a different proposal distribution. One solution
would be to apply separate proposal distributions, another is to choose 𝜆 and 𝛼
such that in ln 𝑝(𝑥) + 𝜆𝐷𝛼 the ln 𝑝(𝑥) term is cancelled out, which we explore
briefly in §5.4.3 below.

Other Estimators

In the interest of space, we omit re-derivations of further estimators of ln 𝑝𝛼(𝑥)
and their gradient estimators. As in the IWAE case, all we need to show is
that the estimators do not depend on properties of 𝑝(𝑥 | 𝑧) that 𝑝𝛼(𝑥 | 𝑧) does
not have, and for performance, that 𝑝(𝑥 | 𝑧) is explicitly computed so that
computing 𝑝(𝑥 | 𝑧)𝛼 is cheap. These are true for the estimators used in our
experiments: REINFORCE [Williams, 1987, Mnih and Gregor, 2014], VIMCO
[Mnih and Rezende, 2016], STL [Roeder et al., 2017] and DReG [Tucker et al.,
2018].

79

5.4.3 The Power Objective

Notice that, in the Rényi estimator (5.15), if 𝜆 is set to (𝛼 − 1)/𝛼, then the
coefficient of the ln 𝑝(𝑥) term becomes zero, yielding a simpler form.

Definition 6 (Power objective). We call the Rényi objective with 𝜆 = (𝛼 − 1)/𝛼
the power objective:

Ô𝑃 (𝑆, 𝐾, 𝛼, 𝑥, 𝑧1:𝐾) = 𝛼−1𝑆𝐾𝛼 (𝑥, 𝑧1:𝐾). (5.18)

Note that for optimization the constant 𝛼−1 can be dropped from the objective
and that if 𝛼 = 1, the power objective is equal to the log-likelihood ln 𝑝(𝑥). Next
we show that if 𝛼 > 1, maximizing 𝑝𝛼(𝑥) optimizes a lower bound on 𝑝(𝑥), and
this lower bound is tight when the latents fully determine the observables.

Proposition 10. Assume that 𝑋 is concentrated on the countable set X , 𝛼 > 1,
and let 𝑥 ∈ X be arbitrary. Then 𝑝𝛼(𝑥) ⩽ 𝑝(𝑥) with equality for all 𝑥 ∈ X if
and only if 𝐻𝑝(𝑋 | 𝑍) = 0. Second, 𝑝(𝑥)𝛼 ⩽ 𝑝𝛼(𝑥) and ln 𝑝𝛼(𝑥) − 𝛼 ln 𝑝(𝑥) =
(𝛼 − 1)𝐷𝛼(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧)).

Proof. Since 𝑋 is countable, 𝑝(𝑥 | 𝑧) is discrete, hence 𝑝(𝑥 | 𝑧) ⩽ 1 for all 𝑥
and 𝑧. Therefore, since 𝛼 > 1, 𝑝(𝑥 | 𝑧)𝛼 ⩽ 𝑝(𝑥 | 𝑧) with equality if and only
if 𝑝(𝑥 | 𝑧) ∈ {0, 1}. Thus, 𝑝𝛼(𝑥) = 𝔼𝑝(𝑧) 𝑝(𝑥 | 𝑧)𝛼 ⩽ 𝔼𝑝(𝑧) 𝑝(𝑥 | 𝑧) = 𝑝(𝑥), with
equality if and only if 𝑝(𝑥 | 𝑧) ∈ {0, 1} for all 𝑥, for almost all 𝑧. The latter holds
if and only if 𝑋 is a deterministic function of 𝑍 with probability 1, which is
equivalent to 𝐻𝑝(𝑋 | 𝑍) = 0. The second statement of is a direct consequence of
(5.13) and both 𝛼 − 1 and the Rényi divergence being non-negative.

So the power objective with 𝛼 > 1 is an upper bound on the KL (and 𝐼 𝑝𝑝𝐷 when
averaged over 𝑥), but this upper bound nevertheless becomes tight when the
latents determine the observable variables (i.e. when 𝐻𝑝(𝑋 | 𝑍) = 0).

In summary, the power objective has three important differences from the
Rényi objective, of which it is a special case. First, with 𝛼 > 1, it is guaranteed
to be a lower bound on ln 𝑝(𝑥). Second, since there is only a single quantity,
ln 𝑝𝛼(𝑥), being estimated, the question of using separate 𝑞(𝑧 | 𝑥) proposal dis-
tributions to estimate the different terms does not arise. Third, 𝜆 and 𝛼 are
tied, so it may be harder to find a good balance between ease of optimization

80

and low bias. Whether the power objective’s benefits outweigh its downsides is
investigated in §5.b.3.

5.5 connection to the representational kl

Proposition 11 (Single-sample KL estimate). In the single-sample case with
𝑆1(𝑥, 𝑧1) = ln 𝑝(𝑥,𝑧1)

𝑞(𝑧1 | 𝑥) , the KL objective’s estimate of the true KL in (5.12) is the
representational KL in expectation:

𝔼
𝑧1∼𝑞(𝑧 | 𝑥)

[
𝑈1(𝑥, 𝑧1) − 𝑆1(𝑥, 𝑧1)

]
= KL(𝑞(𝑧 | 𝑥)

 𝑝(𝑧)) .

Proof. With 𝑝1(𝑥, 𝑧1) = 𝑝(𝑥, 𝑧1)/𝑞(𝑧1 | 𝑥) from (5.8), we have that

𝑈1(𝑥,𝑧1) − 𝑆1(𝑥, 𝑧1)

= 𝑝1(𝑥, 𝑧1)−1 𝑝(𝑥, 𝑧1)
𝑞(𝑧1 | 𝑥) ln 𝑝(𝑥 | 𝑧1) − ln 𝑝(𝑥, 𝑧1)

𝑞(𝑧1 | 𝑥)
= ln 𝑝(𝑥 | 𝑧1) − ln 𝑝(𝑥, 𝑧1)

𝑞(𝑧1 | 𝑥) = ln 𝑞(𝑧1 | 𝑥)
𝑝(𝑧1) .

So not only are the expectations the same, but our single-sample estimate is
the same as the trivial single-sample estimate of the representational KL. We
now prove a similar result for the Rényi objective.

Proposition 12 (Single-sample Rényi estimate). In the single-sample case with
𝑆1(𝑥, 𝑧1) = ln 𝑝(𝑥,𝑧1)

𝑞(𝑧1 | 𝑥) , the Rényi objective’s estimate of 𝐷𝛼𝑝(𝑧 | 𝑥)𝑝(𝑧) in (5.16) is
the representational KL in expectation:

𝔼
𝑧1∼𝑞(𝑧 | 𝑥)

[1
𝛼 − 1

(
𝑆1𝛼(𝑥, 𝑧1) − 𝛼𝑆1(𝑥, 𝑧1)

)]
= KL(𝑞(𝑧 | 𝑥)

 𝑝(𝑧)) .

Proof. Let us rewrite the expression in the expectation.
1

𝛼 − 1

(
𝑆1𝛼(𝑥, 𝑧1) − 𝛼𝑆1(𝑥, 𝑧1)

)
=

1
𝛼 − 1

(
ln 𝑝(𝑥 | 𝑧1)𝛼𝑝(𝑧1)

𝑞(𝑧1 | 𝑥) − 𝛼 ln 𝑝(𝑥, 𝑧1)
𝑞(𝑧1 | 𝑥)

)
=

1
𝛼 − 1

(
ln 𝑝(𝑧1)
𝑞(𝑧1 | 𝑥) − 𝛼 ln

𝑝(𝑧1)
𝑞(𝑧1 | 𝑥)

)
= ln 𝑞(𝑧1 | 𝑥)

𝑝(𝑧1)

81

In the single-sample case, where 𝑞(𝑧 | 𝑥) approximates the true posterior much
better compared to the multi-sample Monte Carlo estimators, the representation-
al KL approximates the true KL with a relatively small bias. This bias is, however,
asymptotically eliminated by our KL estimator as the number of samples 𝐾
grows (and reduced for our Rényi estimator), which significantly improves the
usage of the latent variables. This is demonstrated in our experiments (e.g.
Figures 5.4 and 5.7) where we compare methods using KL estimates based on
different number of samples from 𝑞(𝑧 | 𝑥).

5.6 connection to the β -vae

In parallel to the single-sample case of our estimators, we now show that the
β-VAE [Higgins et al., 2017] objective defined as

O𝛽-VAE(𝛽, 𝑥) = 𝔼
𝑧1∼𝑞(𝑧 | 𝑥)

[
ln 𝑝(𝑥 | 𝑧1)

] − 𝛽 KL(𝑞(𝑧 | 𝑥)

 𝑝(𝑧)) (5.19)

is equal to the KL, Rényi and power objectives with suitably chosen parameters.

Proposition 13 (β-VAE equivalence). In the single-sample case with 𝑆1(𝑥, 𝑧1) =
ln 𝑝(𝑥,𝑧1)

𝑞(𝑧1 | 𝑥) , the β-VAE and our single-sample objectives are equal with a suitable
choice of 𝜆 or 𝛼:

O𝛽-VAE(𝛽, 𝑥) = OKL(𝑆, 1, 1 − 𝛽, 𝑥) (𝜆 = 1 − 𝛽)
= O𝑅 (𝑆, 1, 1 − 𝛽, 𝛼, 𝑥) (𝜆 = 1 − 𝛽)
= O𝑃 (𝑆, 1, 𝛽−1, 𝑥) (𝛼 = 𝛽−1).

Proof. We prove the KL objective case from (5.12) and Proposition 11:

𝔼
𝑧1∼𝑞(𝑧 | 𝑥)

ÔKL(𝑆, 1, 𝜆, 𝑥, 𝑧1)

= 𝔼
𝑧1∼𝑞(𝑧 | 𝑥)

[
𝑆1(𝑥, 𝑧1)

] + 𝜆 𝔼
𝑧1∼𝑞(𝑧 | 𝑥)

[
𝑈1(𝑥, 𝑧1) − 𝑆1(𝑥, 𝑧1)

]
= 𝔼

𝑧1∼𝑞(𝑧 | 𝑥)

[
ln 𝑝(𝑥, 𝑧1)
𝑞(𝑧1 | 𝑥)

]
+ 𝜆 KL(𝑞(𝑧 | 𝑥)

 𝑝(𝑧))

= 𝔼
𝑧1∼𝑞(𝑧 | 𝑥)

[
ln 𝑝(𝑥 | 𝑧1)

] + (𝜆 − 1) KL(𝑞(𝑧 | 𝑥)

 𝑝(𝑧)) .
The proof for the Rényi case follows a similar route, starting from (5.16) and
using Proposition 12. Finally, for the power objective, 𝜆 = (𝛼 − 1)/𝛼, so 𝛼 = 𝛽−1

recovers 𝜆 = 1 − 𝛽.

82

5.7 experiments

The goal of our experiments is to demonstrate the difficulty of inference with
VAEs and Monte Carlo objectives and to evaluate the proposed methods. Our
results indicate the presence of a severe tradeoff between data fit and latent
variable usage. We emphasize that, for progress to be made, the choice of
evaluation method must acknowledge the existence of this tradeoff. In this
work, evaluation is performed in terms of Pareto frontiers of data likelihood vs
latent usage curves; reporting a single, best data likelihoodwould always pick the
point with zero latent usage. Results with our proposed estimators, either with
continuous latents and DReG or discrete latents and the VIMCO base estimator,
markedly improve on their baselines, which do not have multiple samples or
cannot use them as efficiently. The improvement is especially significant with
discrete latents.

Instead of trying to improve the predictive performance directly, first we
demonstrate the difficulty of inference on a simple, synthetic data set and
a model to which posterior collapse comes easy. These experiments focus
exclusively on data fit to highlight the tradeoff against latent usage. After
the experiments on synthetic data, we move on to language modelling with
recurrent networks, a very hostile application for VAEs [Bowman et al., 2015].

5.7.1 Experiments with Synthetic Data

Every data point is a single symbol drawn from a discrete uniform distribution
over a vocabulary of 10000 symbols. The optimal solution is to assign probability
1/10000 to each symbol, which can be trivially satisfied by a simple model that
ignores the latents. Note that 𝜆 > 0 makes such solutions suboptimal. In fact,
for all priors such that 𝐻 (𝑍) ⩾ 𝐻 (𝑋), the optimal solution must capture all
information in the latents (i.e. 𝐼(𝑋, 𝑍) = 𝐻 (𝑋)). Our goal with these experiments
is to demonstrate the difficulty of fitting the data while using the latents.

Model Architecture

The encoder implementing 𝑞 assigns an embedding [Mikolov et al., 2013] to each
word in the vocabulary, feeds the embedding to a two-layer, densely connected
neural network with tanh non-linearities. For continuous latents, 𝑞(𝑧 | 𝑥) follows
an isotropic normal distribution N (𝑓 (𝑜), diag(exp(𝑔(𝑜)))), where 𝑓 and 𝑔 are
affine transformations parameterized as densely connected layers, and 𝑜 is the

83

output of the last encoder layer for a given 𝑥. For categorical latents, 𝑞(𝑧 | 𝑥) is
proportional to exp(𝑜) (i.e. it is a categorical distribution parameterized with
softmax(𝑜)). The decoder is similar to the encoder but with a final softmax
layer. In the decoder, values of continuous latents are fed directly as input to the
first layer, but values of categorical latents are first embedded. To compensate
for this discrepancy, decoders with categorical latents have only one hidden
layer. All embeddings and hidden layers are of size 128.

Evaluation Methodology

Since there is no single number to summarize the tradeoff between latent usage
and the quality of the model, we plot the model’s latent usage and the expected
negative log-likelihood (NLL). The NLL of optimal solutions is the entropy
of the data distribution, ln 10000 ≈ 9.210. The models’ NLLs are estimated
using IWAE with 100 samples. We quantify latent variable usage as the mutual
information 𝐼𝑝(𝑋, 𝑍), estimated as the average 𝑈𝐾 (𝑥, 𝑧1:𝐾) − ln 𝑝𝐾 (𝑥, 𝑧1:𝐾) (5.9)
with 𝐾 = 100 samples. We validated empirically that the variance of these
estimates is small (< 0.01) over all feasible latent usage values. Zero latent
usage corresponds to posterior collapse.

These plots (like Figure 3b in Alemi et al. 2017) carry the same information
as rate-distortion curves, which can be recovered by subtracting the rate 𝐼𝑝
from the NLL. Only the measurements on the Pareto frontier are shown, and
we tune hyperparemeters, such as the learning rate and 𝜆, of the augmented
objective (5.5) to push the Pareto frontier towards more efficient latent usage.
See §5.c for details.

Overview of Results

Results for continuous and discrete latents are presented in separate sections,
following a similar progression:
• We first show that the choice of base estimator matters: the variance issues
of IWAE and REINFORCE limit the potential of the proposed method.

• Next, with DReG and VIMCO we present clear improvements over the
single-sample baselines.

• Finally, as an ablation study, we verify that using multiple samples in both
the marginal likelihood and the mutual information terms of the objective
is necessary for best performance.

We also note that without augmenting the objective with a mutual information

84

0 1 2 3 4 5 6 7 8 99.2

9.3

9.4

average KL

Tr
ain

in
gN

LL KL Rényi
ELBO
IWAE 1
IWAE 16
IWAE 64

Figure 5.2: KL and Rényi objectives (empty and full markers) on continuous synthetic
data with base estimators ELBO and IWAE N, where N is the number of samples used for
estimating both 𝑝(𝑥) and KL(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧)). Here and in the following plots, without
augmenting the objective with the mutual information term, models tend to fit the
data perfectly with negligible latent usage. These degenerate curves consisting of a
single point are omitted from the plots. Also, with base estimators ELBO and IWAE 1,
our estimators are equivalent to a β-VAE with analytical and estimated KL (see §5.6),
respectively.

0 1 2 3 4 5 6 7 8 99.2

9.3

9.4

average KL

Tr
ain

in
gN

LL KL Rényi
ELBO
DReG 1
DReG 16
DReG 64

Figure 5.3: KL and Rényi objectives on continuous synthetic data with base estimators
ELBO, DReG.

term, our model tends to fit the data perfectly with negligible latent usage.
These degenerate curves consisting of a single point are omitted from the plots.

Continuous Latents

With 40 continuous latents and an isotropic standard normal prior, the base
estimator is either the standard ELBO, IWAE or IWAE-DReG. In the ELBO, the
KL term (5.2) is computed analytically, while in IWAE 1, the single sample
from the latents is used to estimate it. An improvement to IWAE 1 is the STL
estimator from Roeder et al. [2017], which removes a zero-expectation term
from the objective and whose gradients have zero variance when the variational
approximation is exact. IWAE–DReG, whose objective is also identical to that of

85

IWAE, is a generalization of STL to multiple samples, fixing the signal-to-noise
problem of gradient estimates of IWAE [Rainforth et al., 2018], wherein the
magnitude of the gradient decreases faster with more samples than the variance
of the gradient estimates. Although DReG can also be applied to Reweighted
Wake-Sleep [Bornschein and Bengio, 2014] and Jackknife Variational Inference
[Nowozin, 2018], we only use IWAE–DReG in our experiments and let DReG
stand for IWAE–DReG without ambiguity.

Our results in Figures 5.2 and 5.3 are in agreement with these previous
works. In the context of this work, our findings can be summarized as follows.
• Compared to the theoretical optimum, a horizontal line at ln 10000 ≈ 9.210,
all Pareto curves slope increasingly upwards with more latent usage.

• Higher-variance estimators have steeper curves than lower variance estima-
tors, which is most apparent in the contrast between two of our baselines,
IWAE 1 and DReG 1.

• The single sample estimators ELBO, IWAE 1, DReG 1 – which are equivalent
to a β-VAE (§5.6) – are less efficient in their latent usage than our proposed
multi-sample estimators.

• The Rényi objective performs slightly better than the KL objective with the
same base estimator.

In more detail, Figure 5.2 shows that both of our estimators perform much
worse with IWAE 1 as the base estimator than with the ELBO. As the number of
samples grows, this is reversed, although with a high number of samples we do
see the predicted degradation [Rainforth et al., 2018].

Next, Figure 5.3 confirms DReG’s advantage over the IWAE, performing
more efficiently than the ELBO even with a single sample. Our multi-sample
objectives both improve on the stronger baseline DReG 1 represents. The Rényi
objective outperforms the KL objective by a small but consistentmargin before all
estimators start degenerating quickly nearing the maximal average KL possible.

In Figure 5.4, we take a closer look at the best performing DReG 16 base
estimator to determine whether the improvements are due to a better estimate
of the marginal likelihood ln 𝑝(𝑥), or the mutual information term 𝐼 𝑝𝑝𝐷 (𝑋, 𝑍) in
(5.5). DReG 16/1 and DReG 1/16 (which use multiple samples to estimate only
the marginal likelihood or the mutual information, respectively) are less efficient
than DReG 16, sometimes being outperformed even by DReG 1. Out of the two,
DReG 1/16 performs better, indicating that the variance of the base estimator
DReG 1 is low and the problem lies with the mutual information estimate. These
results support not only our observations in §5.4 on the unsuitability of 𝐼𝑞,𝑝𝑝𝐷 as
an estimate of 𝐼𝑝 in the multi-sample case (DReG 16/1), when 𝑞(𝑧 | 𝑥) is not a

86

0 1 2 3 4 5 6 7 8 99.2

9.3

9.4

average KL

Tr
ain

in
gN

LL KL Rényi
DReG 1
DReG 16/1
DReG 1/16
DReG 16

Figure 5.4: KL and Rényi objectives on continuous synthetic data with base estimator
DReG. DReG 1 uses a single sample to estimate both 𝑝(𝑥) and KL(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧)). DReG
16/1 uses 16 samples to estimate 𝑝(𝑥) and 1 sample for the KL. DReG 1/16 uses 1 sample
to estimate 𝑝(𝑥) and 16 samples for the KL. Finally, DReG 16 uses the same 16 samples
for both terms.

0 1 2 3 4 5 6 7 8 99.2

9.3

9.4

average KL

Tr
ain

in
gN

LL KL Rényi
REINFORCE 1
REINFORCE 16
REINFORCE 64

Figure 5.5: KL and Rényi objectives on discrete synthetic data with base estimator
REINFORCE.

good approximation of 𝑝(𝑧 | 𝑥), but also demonstrate that 𝐼𝑞,𝑝𝑝𝐷 can be improved
by taking multiple samples even when ln 𝑝(𝑥) is estimated with a single sample
and 𝑞(𝑧 | 𝑥) better approximates the true posterior 𝑝(𝑧 | 𝑥).

Discrete Latents

Next we performed experiments with 8 categorical latent variables, each with
a uniform prior over 10 categories. Using the high-variance REINFORCE base
estimator (Figure 5.5), we could only get a small improvement over the single-
sample case with 16 samples and a similar degradation with 64.

However, with the much lower variance VIMCO estimator, we achieved
almost perfect results (see Figure 5.6) with 16 samples. For our purposes, it
suffices to think of VIMCO as IWAE applied to discrete latents with lower
variance gradients. It may be surprising that these results are even better than
with continuous latents, especially at near-maximal latent usage. To intuit why,

87

0 1 2 3 4 5 6 7 8 99.2

9.3

9.4

average KL

Tr
ain

in
gN

LL KL Rényi
REINFORCE 1
VIMCO 16
VIMCO 64

Figure 5.6: KL and Rényi objectives on discrete synthetic data with base estimator
VIMCO. The single-sample VIMCO is equivalent to REINFORCE.

consider the minimum variance posterior achievable for a given level of average
KL. For discrete latents, a hard posterior (i.e. of zero variance) is possible
depending on the number of latents and categories. For continuous latents, the
posterior can never be hard: the mutual information determines a lower bound
on the average variance of the posterior.

Increasing the number of samples further to 64 made results much worse,
indicating a potential issue with VIMCO, which may be similar to the signal-to-
noise issue that DReG addresses, but this is beyond the scope of the present
work. Note that there is no single-sample VIMCO since its baseline for the
contribution of a sample is computed as the average over the rest of the samples,
which is undefined. Assuming a zero baseline, we recover REINFORCE 1, which
we use for comparison wherever VIMCO 1 would be needed.

Similarly to Figure 5.4 in the continuous case, in Figure 5.7, we try to tease
apart the contributions of using multiple samples for estimating the marginal
likelihood and mutual information terms of (5.5). The results are much more
pronounced here. Both VIMCO 16/1 and VIMCO 1/16 improve significantly on
REINFORCE 1 but only with the Rényi objective. Still, both fall way short of
VIMCO 16, which employs multiple samples for both terms. Again, these results
support not only our observations in §5.4 on the unsuitability of 𝐼𝑞,𝑝𝑝𝐷 as an
estimate of 𝐼𝑝 in the multi-sample case (DReG 16/1), when 𝑞(𝑧 | 𝑥) is not a good
approximation of 𝑝(𝑧 | 𝑥), but also demonstrate that 𝐼𝑞,𝑝𝑝𝐷 can be improved by
taking multiple samples even when ln 𝑝(𝑥) is estimated with a single sample
and 𝑞(𝑧 | 𝑥) better approximates the true posterior 𝑝(𝑧 | 𝑥).

In §5.a, we also present results for the VQ-VAE [van den Oord et al., 2017]
without augmenting its objective with a mutual information term. Since the KL
cost in VQ-VAEs is determined by the latent space and is fixed during training,
we tune the number of latent variables and the number of categories to control

88

0 1 2 3 4 5 6 7 8 99.2

9.3

9.4

average KL

Tr
ain

in
gN

LL KL Rényi
REINFORCE 1
VIMCO 16/1
VIMCO 1/16
VIMCO 16

Figure 5.7: KL and Rényi objectives on discrete synthetic data with base estimator
VIMCO. REINFORCE 1 (standing in for VIMCO 1) uses a single sample to estimate
both 𝑝(𝑥) and KL(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧)). VIMCO 16/1 uses 16 samples to estimate 𝑝(𝑥) and 1
samples for the KL. VIMCO 1/16 uses 1 sample to estimate 𝑝(𝑥) and 16 samples for the
KL. Finally, VIMCO 16 uses the same 16 samples for both terms.

the mutual information. Results of the VQ-VAE are better than REINFORCE but
much worse than VIMCO 16 with either the KL or the Rényi objective.

5.7.2 Language Modelling Experiments

One of the most challenging applications of variational autoencoders is language
modelling with per-sentence latents, as found by Bowman et al. [2015]. They
recognize the generality of the underspecification issue and attribute the
increased difficulty to ‘the sensitivity of the LSTM to subtle variations in its
hidden state as introduced by the sampling process’. In this section, we first
show that the data fit vs latent usage tradeoff is even more pronounced in
the language modelling case than on the synthetic task, then confirm that
the proposed estimators improve validation set results in terms of the Pareto
frontiers. Once again, the improvement is strongest with discrete latents.

Data Set

We do sentence-level language modelling on the Penn Treebank (PTB) corpus
by Marcus et al. [1993] with preprocessing from Mikolov et al. [2010]. Our
goal here is to compare inference methods, not to establish a new state of the
art, so to reduce the computational burden brought about by hyperparemeter
tuning, we truncated sentences to 35 tokens in both the training and validation
sets, with a reduction of 3% in the total number of tokens. This truncation is
non-standard.

89

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.4
2.6
2.8
3

3.2

per-token KL

Tr
ain

in
gN

LL KL Rényi
DReG 1
DReG 16
DReG 64

Figure 5.8: KL and Rényi objectives (empty and full markers, respectively) on Penn
Treebank with base estimators DReG N, where N is the number of samples used for
estimating both 𝑝(𝑥) and KL(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧)).

Model Architecture

The model architecture is like in the synthetic case except the encoder embeds
the input tokens and feeds them to a one-layer, bidirectional LSTM [Hochreiter
and Schmidhuber, 1997b] and the output 𝑜 (from which the parameters of the
variational posterior 𝑞(𝑧 | 𝑥) are computed) is the average of the last states of
LSTMs corresponding to the two directions. There is a fixed number of latents
for all sentences, regardless of their length. The decoder is a unidirectional
LSTM whose input is the embedding of the previous token plus the values of
the latent variables. Unless stated otherwise, the embedding and hidden sizes
are all 128. Similarly to the synthetic case, we use either 40 real-valued latents
with an isotropic standard normal prior or 8 categorical latent variables, each
with a uniform prior over 10 categories.

Evaluation Methodology

Following previous works, both the reported NLL and the average KL values are
averages over tokens in the data set. Since there is only a single set of latents
per sentence, this means that the average sentence-level KL is about 21 (the
average number of tokens per sentence) times larger. For expediency, only the
base estimators that performed best on the synthetic data set are considered,
leaving us with DReG for continuous, and VIMCO for discrete latents. Training
and validation NLLs are estimated using IWAE with 100 samples. Test NLLs in
Table 5.1 are estimated using IWAE with 500 samples.

90

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.4
2.6
2.8
3

3.2

per-token KL

Tr
ain

in
gN

LL KL Rényi
REINFORCE 1
VIMCO 16
VIMCO 64

Figure 5.9: KL and Rényi objectives on PTB with base estimator VIMCO.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4.6
4.8
5

5.2
5.4

per-token KL

Va
lid

at
ion

NL
L

DReG VIMCO
1 K
16 K
16 R

Figure 5.10: Validation NLL with naive dropout using DReG and VIMCO on PTB. The
row with 16 K refers to 16-sample DReG or VIMCO with the KL objective, while R stands
for the Rényi objective.

Training Fit

In terms of training fit, the language modelling results are similar to those of
the synthetic case. In Figure 5.8, there is improvement in the continuous case
with multiple samples, initially with both the KL and the Rényi objectives but
only with the Rényi at high latent usage.

Figure 5.9 shows the discrete latents case. Once again, with either the KL or
the Rényi objective, the results improve markedly, outperforming the continuous
models. Note that the KL range is limited by the entropy of the latent space
at around ln(108)/21 ≈ 0.87. Furthermore, as §5.b.2 shows, improvements in
training fit require multiple samples in both terms, even more so than in the
experiments on the synthetic data earlier.

Validation and Test Results

Our initial results on the validation set were not very positive. We tuned
hyperparameters on the validation set, where following Melis et al. [2017],

91

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4.6
4.8
5

5.2
5.4

per-token KL

Va
lid

at
ion

NL
L

DReG VIMCO
1 K
16 K
16 R

Figure 5.11: Validation NLL with L2 regularization using DReG and VIMCO on PTB.

we introduced three additional hyperparameters in the decoder: the rate of
dropout applied to the input embedding, the recurrent state, and the output
embedding. As Figure 5.10 shows, with this strong form of regularization, the
multi-sample results brought no improvement with continuous latents. With
discrete latents, the results improved but not nearly to the extent observed on
the training set, and discrete latents performed considerably worse than their
continuous counterparts.

We suspected that the stochasticity from dropout may accentuate the prob-
lems of variational inference. To verify, we repeated the validation experiment
with L2 regularization instead of dropout (see Figure 5.11). In this setting, the
validation results are more consistent with training fit. As before, multiple
samples significantly improve efficiency. Unlike the training fit though, vali-
dation NLL with discrete latents degrades faster than with continuous ones.
These results suggest that the additional stochasticity of dropout indeed poses
a challenge. On the other hand, with only L2 regularization, the best NLL is
higher than with dropout. This translates to a few perplexity points, which may
seem small on the graphs presented here, but in language modelling, kingdoms
have been won or lost on such differences [Merity et al., 2017].

To have the best of both worlds, the best NLL of dropout and the Pareto
curves of L2 regularization, we went back to dropout, but this time we tried
using the same dropout mask for all latent samples belonging to the same
sentence in a minibatch. As Figure 5.12 shows, this change was successful,
and we observed that our proposed estimators improve latent usage for both
continuous and discrete latents, and discrete and continuous latents are on
par up to an average KL of about 0.5. This constitutes a significant advance in
modelling with discrete latents.

Contrary to results of Pelsmaeker and Aziz [2019], we did not find that intro-
ducing latent variables significantly improves outright perplexity. As Table 5.1

92

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4.6
4.8
5

5.2
5.4

per-token KL

Va
lid

at
ion

NL
L

DReG VIMCO
1 K
16 K
16 R

Figure 5.12: Validation NLL with DReG and VIMCO on PTB, using the same dropout
mask for all latent samples belonging to the same sentence in a minibatch.

Table 5.1: Best test results for DReG and VIMCO with 1 or 16 samples and the KL or
the Rényi objective in the continuous and discrete cases, estimated with IWAE and
500 samples. These optima are at low (or, in the single-sample case, mostly negligible)
latent usage.

DReG VIMCO
1 16 1 16

K / R K R K / R K R

hs
=
128

Perplexity 92.5 91.7 91.6 94.6 92.1 92.5
NLL 4.527 4.518 4.517 4.549 4.523 4.527
Per-token KL 0.047 0.131 0.126 0.000 0.164 0.120

hs
=
25
6 Perplexity 83.9 82.8 82.2 84.7 83.4 83.1

NLL 4.429 4.416 4.409 4.439 4.424 4.420
Per-token KL 0.000 0.140 0.138 0.001 0.167 0.094

shows, the best test perplexity improves only slightly with more samples for
this combination of a small model and strong regularization.

We also performed experiments with the power objective (§5.b.3) to better
understand the tradeoff it represents. We found that its trivial implementation
cost comes at the price of decreased efficiency relative to the general Rényi
objective, of which it is a special case.

In closing, we would like to emphasize the importance of the results in
Figure 5.12. It is not only that small and large improvements have been made,
but that the evaluation throughout focussed on the apparent tradeoff between
data fit and latent usage. Every point on the Pareto curves is the result of tuning
several hyperparemeters: the learning rate, 𝜆, 𝛼 for the Rényi objective, and
three different dropout rates. These curves capture and communicate what
most published experiments do not and what single numbers (e.g. in Table 5.1)

93

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

2.2
2.4
2.6
2.8

per-token KL

Tr
ain

in
gN

LL KL Rényi
VIMCO 1
VIMCO 1 T×16
VIMCO 1 bs×16
VIMCO 16

Figure 5.13: Training NLL on PTB with KL and Rényi objectives and base estimator
VIMCO. VIMCO 1 T×16 is trained 16 times longer. VIMCO 1 bs×16 has a 16 times larger
batch size. While their best NLL at very low latent usage is lower than that of VIMCO
16, they lose this advantage at higher latent usage.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4.6
4.8
5

5.2
5.4

per-token KL

Va
lid

at
ion

NL
L KL Rényi

VIMCO 1
VIMCO 1 T×16
VIMCO 1 bs×16
VIMCO 16

Figure 5.14: Validation NLL on PTB with KL and Rényi objectives and base estimator
VIMCO. VIMCO 1 T×16 is trained 16 times longer. VIMCO 1 bs×16 has a 16 times larger
batch size. VIMCO 16 performs better than either.

cannot: a reliable comparison of a latent variable model to a strongly regularized
baseline over a wide range of latent usage.

Single- vs multi-sample at the same computational budget

The argument for using more samples in Monte Carlo objectives is that their
lower bound is tighter, resulting in a better data fit vs latent usage tradeoff.
Having equipped multi-sample Monte Carlo objectives with mutual informa-
tion constraints, we have indeed demonstrated improvements in this tradeoff.
Here, we present additional experiments to answer whether performing more
computation with a single-sample estimator can compensate the advantages of
multiple samples. To this end, we compare 16-sample to single-sample estima-
tors, where the latter are trained for 16 times more optimization steps (T×16) or
with a batch size that is 16 times larger (bs×16) to make the computational cost
more equal. In fact, these perform an equal number of gradient calculations

94

but more forward computation as they evaluate 𝑞(𝑧 | 𝑥) 16 times more than the
16-sample Monte Carlo estimator.

In Figure 5.13, we observe that with more computation, the best training fit
of VIMCO 1 improves beyond that of VIMCO 16, but the tradeoff remains severe,
as evidenced by that the shapes of the Pareto curves hardly change from the
single-sample baseline.

With regards to validation results, we expected the strong regularization
provided by tuning three different dropout rates to compensate for possible
regularization effects of fewer optimization steps and smaller batch sizes.
Consequently, all single-sample estimators shall exhibit similar validation results
at zero latent usage. Figure 5.14 confirms this, and shows that the steeper
training curves translate to steeper validation curves, indicating that increasing
the computation does not address the inefficiency of the inference method, and
the apparent improvement in training comes at the cost of more overfitting. In
§5.b.1, Figure 5.24 and Figure 5.25 tell a similar story for DReG, but the results
are less conclusive there since the curves are much closer.

5.8 conclusions

§ Posterior collapse is a common failure mode of density models trained as
variational autoencoders, wherein they model the data without relying on their
latent variables, rendering these variables useless. We focussed on two factors
contributing to posterior collapse, which have been studied separately in the
literature. First, the underspecification of the model, which in an extreme but
common case allows posterior collapse to be the theoretical optimum. Second,
the looseness of the variational lower bound and the related underestimation
of the utility of the latents. We weaved these two strands of research together,
specifically the tighter bounds of multi-sample Monte Carlo objectives and
constraints on the mutual information between the observable and the latent
variables. The main obstacle was that the usual method of estimating the
mutual information as the average Kullback–Leibler divergence between the
easily available variational posterior 𝑞(𝑧 | 𝑥) and the prior does not work with
Monte Carlo objectives because their 𝑞(𝑧 | 𝑥) is not a direct approximation to
the model’s true posterior 𝑝(𝑧 | 𝑥). Hence, we constructed estimators of the
Kullback–Leibler divergence of the true posterior from the prior by recycling
samples used in the objective, with which we trained models of continuous
and discrete latents at much improved rate-distortion and no posterior collapse.
While alleviated, the tradeoff between modelling the data and using the latents

95

still remains, and we urge for evaluating inference methods across a range of
mutual information values.

We showed that the representational KL, often used in mutual information
constraints, corresponds to the single-sample version of our estimators. Taking
more samples both tightens the lower bound and reduces the variance of the
estimate of the true KL. Our experimental results support these theoretical
predictions and underline the need to use multiple samples for both terms of
the objective.

Recognizing that the problem of underfitting becomes more acute with
increased latent usage, we emphasized evaluating estimators on the training set,
where regularization does not cloud the picture, instead of going outright for
improvements in held-out performance. In addition, evaluation was performed
in terms of the Pareto frontier of negative log-likelihood vs latent usage curves
since reporting a single number cannot capture the tradeoff between the two
quantities.

The results demonstrated increased efficiency in latent usage on both the
synthetic and language modelling tasks. For discrete latent spaces in particular,
the improvements have been dramatic: from a very weak baseline, data fit
improved beyond that of models with continuous latents on both data sets. In
terms of validation results on Penn Treebank, the best continuous and discrete
models and estimators are closely matched up until a significant, per-token KL
of 0.5 (about 10.5 as a per-sentence KL).

This work is towards opening the door to making the latents truly useful. We
believe that substantial gains in generalization and utility in down-stream tasks
can be achieved by shaping the latent space. It also remains to be explored how
to best encode the true posterior as the representation for use in down-stream
models since the approximate posterior is no longer a suitable choice in the
context of Monte Carlo objectives.

In summary, our Mutual Information constrained Monte Carlo Objectives
(MICMCOs) help achieve a better tradeoff between modelling the data and
using the latent variables to drive the generative process: a prerequisite for
fulfilling the promise of generative modelling. This tradeoff is still quite severe
though, and there is a lot of room for improvement.

96

A PPEND IC E S

5.a additional experiments on synthetic data

Since the KL cost in VQ-VAEs is determined by the latent space and is fixed
during training, we tune the number of latent variables and the number of
categories to control the mutual information. As Figure 5.15 shows, the VQ-VAE
is generally better than REINFORCE 1 but quite far from the optimum and much
worse than VIMCO 16 with either the KL or the Rényi objective.

5.b additional language modelling experiments

5.b.1 Robustness

We performed additional experiments to verify that our results about the relative
merits of the estimators are robust to different choices of batch size, number of
parameters and optimization length. With continuous latents, we focussed on
DReG, the best performing base estimator and varied the batch size (Figure 5.16),
the length of optimization (Figure 5.17), and the length of optimization again
at two times the model size (Figure 5.18). For VIMCO, the best performing base
estimator for the discrete latents, Figures 5.19 to 5.21 tell a similar story. In most
cases, we observed that varying these nuisance factors only shifted the Pareto
curves downwards or upwards, leaving their relative positions the same. The
exception is Figure 5.18, DREG with 256 hidden units, where the differences
between the three estimators are very small.

Finally, similar to those in §5.7.2, we present experiments with single-sample
DReG at an increased computational budget. As training (Figure 5.24) and
validation (Figure 5.25) results show, the overall picture may be the same as for
VIMCO, (that is, steeper training curves translate to steeper validation curves),
but it is harder to assess this since the curves are closer.

5.b.2 Asymmetric Samples

We now investigate whether the improvements are due to a better estimate
of the marginal likelihood ln 𝑝(𝑥), or the mutual information term 𝐼 𝑝𝑝𝐷 (𝑋, 𝑍)
in (5.5). Figures 5.22 and 5.23 show that improvements in training fit require

97

0 1 2 3 4 5 6 7 8 99.2

9.3

9.4

average KL

Tr
ain

in
gN

LL REINFORCE 1 R
VQ-VAE
VIMCO 16 K
VIMCO 16 R

Figure 5.15: VQ-VAE on synthetic data with tuned latent sizes compared to REINFORCE
1 and VIMCO 16 with the KL and Rényi objectives.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 22

2.5

3

3.5

per-token KL

Tr
ain

in
gN

LL

bs64 bs256 bs1k
DReG 1
DReG 16 K
DReG 16 R

Figure 5.16: The effect of batch size with DReG and 128 hidden units on PTB.

multiple samples in both terms, even more so than in the experiments on the
synthetic data earlier (Figures 5.4 and 5.7).

5.b.3 Experiments with the Power Objective

Recall that the power objective (5.18) is a special case of the Rényi objective
(5.15) with the choice of 𝜆 = (𝛼 − 1)/𝛼. With this 𝜆, the objective simplifies
to 𝔼𝑝𝐷 (𝑥) ln 𝑝𝛼(𝑥). Since ln 𝑝𝛼(𝑥) = ln(𝑝(𝑥 | 𝑧)𝛼𝑝(𝑧)) = 𝛼 ln 𝑝(𝑥 | 𝑧) + ln 𝑝(𝑧),
implementing the power objective is as easy as upweighting the log-likelihood
term ln 𝑝(𝑥 | 𝑧). Here we investigate whether at the same time, by tying 𝜆 and
𝛼, we can maintain parity with the Rényi objective in terms efficiency of latent
usage. As Figures 5.26 to 5.29 show, the power objective is often better than the
KL objective but lags the Rényi objective as 𝛼 determines both 𝜆, the weight of
the mutual information term and its bias with respect to the KL.

98

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 22

2.5

3

per-token KL

Tr
ain

in
gN

LL
T40 T80

DReG 1
DReG 16 K
DReG 16 R

Figure 5.17: The effect of optimization length (40 or 80 thousand optimization steps)
with DReG and 128 hidden units on PTB.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.6
0.8
1

1.2
1.4

per-token KL

Tr
ain

in
gN

LL

T40 T80
DReG 1
DReG 16 K
DReG 16 R

Figure 5.18: The effect of optimization length (40 or 80 thousand optimization steps)
with DReG with 256 hidden units on PTB.

5.c optimization settings

In all experiments, we use the Adam optimizer [Kingma and Ba, 2014] with
𝛽1 = 0, 𝛽2 = 0.999, and 𝜖 = 1𝑒−8. We tune hyperparameters using a black-box
hyperparameter tuner based on batched Gaussian Process Bandits [Golovin
et al., 2017]. Hyperparameters and their ranges are listed in Table 5.2. The
learning rate is the only hyperparameter tuned in all experiments. The rest only
apply in specific circumstances. Input and output dropout are the dropout rates
applied to the inputs and outputs of the LSTM, respectively, while state dropout
is the dropout rate for the LSTM’s recurrent state from the previous time step
[Gal and Ghahramani, 2016]. For a description of the VQ-VAE parameters see
van den Oord et al. [2017].

99

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 22

2.5

3

3.5

per-token KL

Tr
ain

in
gN

LL

bs64 bs256 bs1k
VIMCO 1
VIMCO 16 K
VIMCO 16 R

Figure 5.19: The effect of batch size with VIMCO and 128 hidden units on PTB.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 22

2.5

3

per-token KL

Tr
ain

in
gN

LL

T40 T80
VIMCO 1
VIMCO 16 K
VIMCO 16 R

Figure 5.20: The effect of optimization length (40 or 80 thousand optimization steps)
with VIMCO and 128 hidden units on PTB.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.6
0.8
1

1.2
1.4

per-token KL

Tr
ain

in
gN

LL

T40 T80
VIMCO 1
VIMCO 16 K
VIMCO 16 R

Figure 5.21: The effect of optimization length (40 or 80 thousand optimization steps)
with VIMCO and 256 hidden units on PTB.

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.4
2.6
2.8
3

3.2

per-token KL

Tr
ain

in
gN

LL KL Rényi
DReG 1
DReG 1/16
DReG 16/1
DReG 16

Figure 5.22: KL and Rényi objectives on PTB with base estimator DReG. DReG 1 uses a
single sample to estimate both 𝑝(𝑥) and KL(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧)). DReG 16/1 uses 16 samples
to estimate 𝑝(𝑥) and 1 samples for the KL. DReG 1/16 uses 1 sample to estimate 𝑝(𝑥)
and 16 samples for the KL. Finally, DReG 16 uses the same 16 samples for both terms.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.2
2.4
2.6
2.8
3

per-token KL

Tr
ain

in
gN

LL KL Rényi
VIMCO 1
VIMCO 1/16
VIMCO 16/1
VIMCO 16

Figure 5.23: KL and Rényi objectives on PTB with base estimator VIMCO. VIMCO 1
uses a single sample to estimate both 𝑝(𝑥) and KL(𝑝(𝑧 | 𝑥) ∥ 𝑝(𝑧)). VIMCO 16/1 uses
16 samples to estimate 𝑝(𝑥) and 1 samples for the KL. VIMCO 1/16 uses 1 sample to
estimate 𝑝(𝑥) and 16 samples for the KL. Finally, VIMCO 16 uses the same 16 samples
for both terms.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

2.2
2.4
2.6
2.8

per-token KL

Tr
ain

in
gN

LL KL Rényi
DREG 1
DREG 1 T×16
DREG 1 bs×16
DREG 16

Figure 5.24: Training NLL on PTB with KL and Rényi objectives and base estimator
DREG. DREG 1 T×16 is trained 16 times longer. DREG 1 bs×16 has a 16 times larger
batch size. While their best NLL at very low latent usage is lower than that of DREG 16,
they lose this advantage at higher latent usage.

101

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4.6
4.8
5

5.2
5.4

per-token KL

Va
lid

at
ion

NL
L KL Rényi

DREG 1
DREG 1 T×16
DREG 1 bs×16
DREG 16

Figure 5.25: Validation NLL on PTB with KL and Rényi objectives and base estimator
DREG. DREG 1 T×16 is trained 16 times longer. DREG 1 bs×16 has a 16 times larger
batch size. DREG 16 generalizes better than either.

0 1 2 3 4 5 6 7 8 99.2

9.3

9.4

average KL

Tr
ain

in
gN

LL DReG 16 K
DReG 16 R
DReG 16 𝛼

Figure 5.26: The power objective with DReG on the synthetic data set compared to the
KL and Rényi objectives.

0 1 2 3 4 5 6 7 8 99.2

9.3

9.4

average KL

Tr
ain

in
gN

LL VIMCO 16 K
VIMCO 16 R
VIMCO 16 𝛼

Figure 5.27: The power objective with VIMCO on the synthetic data set compared to
the KL and Rényi objectives.

102

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.4
2.6
2.8
3

3.2

per-token KL

Tr
ain

in
gN

LL
DReG 16 K
DReG 16 R
DReG 16 𝛼

Figure 5.28: The power objective with DReG on PTB compared to the KL and Rényi
objectives.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.4
2.6
2.8
3

3.2

per-token KL

Tr
ain

in
gN

LL

VIMCO 16 K
VIMCO 16 R
VIMCO 16 𝛼

Figure 5.29: The power objective with VIMCO on PTB compared to the KL and Rényi
objectives.

Table 5.2: Hyperparameter tuning ranges.

min max scale
learning rate 0.0001 0.01 log
𝜆 -0.05 0.9999 KL and Rényi only
𝛼 0.86 16.0 log power objective only
input dropout 0.0 0.9 validation only
state dropout 0.0 0.8 validation only
output dropout 0.0 0.95 validation only
L2 penalty coefficient 5e-6 1e-3 log validation only
number of latents 1 8 VQ-VAE only
number of categories 2 20 VQ-VAE only
VQ 𝛽 0.01 20.0 log VQ-VAE only
VQ decay 0.9 0.99999 log VQ-VAE only

103

6 CONC LUS ION

It is at this point that normal language
gives up, and goes and has a drink.

Terry Pratchett

Our journey towards better generative models of language ends here.
On this long and winding road, it was easy to lose sight of the end goal.
Throughout, our aim was simply to enable building better language

models, whether it be by designing architectures, optimization or inference
methods. As it turns out, our contributions in these areas stand on their own
beyond the field of language modelling and even natural language processing.
The motivation for the Mogrifier was to contextualize input embeddings in
language modelling, but its benefits were shown to extend beyond that setting,
and it has already seen applications in unrelated fields [Zhang et al., 2022, Cui
et al., 2022]. Two-Tailed Averaging is a technique for making optimization for
generalization more efficient. It is an easy to use extension on top of stochastic
optimization, which we hope will prove to be widely applicable in practice.
Finally, MICMCO explores the causes of posterior collapse in the context of
variational autoencoders and how to address them. It brings great improvements
in the discrete latent case, opening the door for designing latent variable models
in which the latents are less of a hindrance and can be employed to shape the
model’s bias. We hope to see each of these contributions flourish individually.

As to the results, we take them to indicate that recurrent and attention-based
architectures are not too different, and further innovation will be needed. Latent
variable models and conditional independence assumptions offer a principled
approach to injecting structure into the model. Building upon MICMCO, we
plan to pursue this avenue of research further. That said, there are other ways of
shaping the biases: regularization, tweaking the optimizer, data augmentation
and selection, to name just the most obvious ones.

Stepping back, the field of language modelling has changed unrecognizably
during the last few years. Scaling models to billions of parameters and humon-
gous amounts of data is now routine. In that context, recurrent architectures
can be seen as irrelevant. While it is true that typical recurrent models are
considerably slower on contemporary parallel hardware than attention-based

104

ones, decoupling transient hardware characteristics from model evaluation
is a worthy goal that serves to further our understanding and inform future
research. As to the evaluation itself, we have shown that recurrent models are
underestimated by simply training longer and better with some help from the
Rewired Mogrifier LSTM, outperforming or matching transformers on the small
datasets considered. But do model biases matter, or is it enough to have lots of
data? The importance of data is hard to overstate, but we still manage. Suppose
that our goal is to solve every possible task encodable in language. If data and
scaling are enough to achieve this goal, then model biases are unimportant.
In other words, if we can solve an extremely rich class of problems just by
overfitting a huge dataset, then model biases do not matter. As unlikely as that
sounds, we are currently making great advances with just scaling. When that
stops, research into memory, planning, reasoning, and situated agents will see
a resurgence. At the same time, model biases will become a pressing concern,
and we will once again need to turn back to the fundamental question of model
design to push the frontiers.

105

B I B L IOGRA PHY

Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. Analyzing the behavior of visual
question answering models. arXiv preprint arXiv:1606.07356, 2016.

Alexander A Alemi, Ben Poole, Ian Fischer, Joshua V Dillon, Rif A Saurous, and Kevin
Murphy. Fixing a broken elbo. arXiv preprint arXiv:1711.00464, 2017.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural
networks. In International Conference on Machine Learning, pages 1120–1128. PMLR,
2016.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using
fast weights to attend to the recent past. Advances in neural information processing
systems, 29, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Trellis networks for sequence modeling.
arXiv preprint arXiv:1810.06682, 2018.

Bram Bakker. Reinforcement learning with long short-term memory. In Advances in
neural information processing systems, pages 1475–1482, 2002.

Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural
machine translation. arXiv preprint arXiv:1711.02173, 2017.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document
transformer. arXiv preprint arXiv:2004.05150, 2020.

Jörg Bornschein and Yoshua Bengio. Reweighted wake-sleep. In International Conference
on Learning Representations, 2014.

Kaj Bostrom and Greg Durrett. Byte pair encoding is suboptimal for language model
pretraining. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pages 4617–4624, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.findings-emnlp.414. URL https://aclanthology.org/2020.
findings-emnlp.414.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, AndrewM Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349,
2015.

106

https://aclanthology.org/2020.findings-emnlp.414
https://aclanthology.org/2020.findings-emnlp.414

James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent
neural networks. arXiv preprint arXiv:1611.01576, 2016.

Mark Braverman, Xinyi Chen, Sham Kakade, Karthik Narasimhan, Cyril Zhang, and
Yi Zhang. Calibration, entropy rates, and memory in language models. In International
Conference on Machine Learning, pages 1089–1099. PMLR, 2020.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
arXiv preprint arXiv:1509.00519, 2015.

Kris Cao and Laura Rimell. You should evaluate your language model on marginal
likelihood over tokenisations. In Proceedings of the 2021 Conference on EmpiricalMethods
in Natural Language Processing, pages 2104–2114, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.emnlp-main.161. URL https://aclanthology.org/2021.emnlp-main.161.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated feedback
recurrent neural networks. In International Conference on Machine Learning, pages
2067–2075, 2015.

Chris Cremer, Quaid Morris, and David Duvenaud. Reinterpreting importance-weighted
autoencoders. arXiv preprint arXiv:1704.02916, 2017.

Alejandrina Cristia, Emmanuel Dupoux, Michael Gurven, and Jonathan Stieglitz. Child-
directed speech is infrequent in a forager-farmer population: A time allocation study.
Child development, 2017.

ShaoDong Cui, YiLa Su, Ren Qing dao er ji, and YaTu Ji. An end-to-end network for
irregular printed mongolian recognition. International Journal on Document Analysis
and Recognition (IJDAR), pages 1–10, 2022.

Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell, Quoc V Le,
and Ruslan Salakhutdinov. Transformer-XL: Attentive language models beyond a
fixed-length context. arXiv preprint arXiv:1901.02860, 2019.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling
with gated convolutional networks. In International conference on machine learning,
pages 933–941. PMLR, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint arX-
iv:1810.04805, 2018.

Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David Blei. Varia-
tional inference via 𝜒 upper bound minimization. In Advances in Neural Information
Processing Systems, pages 2732–2741, 2017.

107

https://aclanthology.org/2021.emnlp-main.161

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin,
Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal,
Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and
fate: Limits of transformers on compositionality, 2023.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv
preprint arXiv:1805.04833, 2018.

Jakob N Foerster, Justin Gilmer, Jascha Sohl-Dickstein, Jan Chorowski, and David Sussillo.
Input switched affine networks: An rnn architecture designed for interpretability. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1136–1145. JMLR. org, 2017.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout
in recurrent neural networks. In Advances in Neural Information Processing Systems,
pages 1019–1027, 2016.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and
D Sculley. Google Vizier: A service for black-box optimization. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1487–1495. ACM, 2017.

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Frage: frequency-
agnostic word representation. In Advances in Neural Information Processing Systems,
pages 1334–1345, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014.

Kartik Goyal, Chris Dyer, and Taylor Berg-Kirkpatrick. Exposing the implicit energy
networks behind masked language models via metropolis–hastings. arXiv preprint
arXiv:2106.02736, 2021.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with
structured state spaces. arXiv preprint arXiv:2111.00396, 2021.

Hao Guo, Jiyong Jin, and Bin Liu. Stochastic weight averaging revisited. arXiv preprint
arXiv:2201.00519, 2022.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Confer-
ence on Learning Representations, 2017. URL https://openreview.net/forum?id=
rkpACe1lx.

108

https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx

Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. Lagging
inference networks and posterior collapse in variational autoencoders. In International
Conference on Learning Representations, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer,
David Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, et al.
Grounded language learning in a simulated 3d world. arXiv preprint arXiv:1706.06551,
2017.

John Hewitt, Christopher D Manning, and Percy Liang. Truncation sampling as language
model desmoothing. arXiv preprint arXiv:2210.15191, 2022.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. Beta-VAE: Learning basic visual
concepts with a constrained variational framework. In International Conference on
Machine Learning, 2017.

Geoffrey E Hinton and David C Plaut. Using fast weights to deblur old memories. In
Proceedings of the 9th annual conference of the cognitive science society, pages 177–186,
1987.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat
minima. In Advances in neural information processing systems, pages 529–536, 1995.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42,
1997a.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997b.

Sepp Hochreiter and Jürgen Schmidhuber. LSTM can solve hard long time lag problems.
In Advances in neural information processing systems, pages 473–479, 1997c.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai,
Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan
Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae,
Oriol Vinyals, and Laurent Sifre. Training compute-optimal large language models,
2022.

109

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of
neural text degeneration. arXiv preprint arXiv:1904.09751, 2019.

Sara Hooker. The hardware lottery. CoRR, abs/2009.06489, 2020. URL https://arxiv.
org/abs/2009.06489.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text
classification. arXiv preprint arXiv:1801.06146, 2018.

Chin-Wei Huang, Shawn Tan, Alexandre Lacoste, and Aaron C Courville. Improving
explorability in variational inference with annealed variational objectives. In Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Ferenc Huszár. Is maximum likelihood useful for representation learning? URL
http://web.archive.org/web/20190704042553/https://www.inference.vc/maximum-
likelihood-for-representation-learning-2/, 2017a. Accessed: 2020-04-15.

Ferenc Huszár. Variational inference using implicit distributions. arXiv preprint arX-
iv:1702.08235, 2017b.

Marcus Hutter. The human knowledge compression contest, 2012. URL http://prize.
hutter1.net.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word
classifiers: A loss framework for language modeling. CoRR, abs/1611.01462, 2016. URL
http://arxiv.org/abs/1611.01462.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. Adversarial exam-
ple generation with syntactically controlled paraphrase networks. arXiv preprint
arXiv:1804.06059, 2018.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. arXiv
preprint arXiv:1803.05407, 2018.

Prateek Jain, Sham Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford.
Parallelizing stochastic gradient descent for least squares regression: mini-batching,
averaging, and model misspecification. Journal of Machine Learning Research, 18, 2018.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension
systems. arXiv preprint arXiv:1707.07328, 2017.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An
introduction to variational methods for graphical models. Machine learning, 37(2):
183–233, 1999.

Kazuya Kawakami, Chris Dyer, and Phil Blunsom. Learning to create and reuse words in
open-vocabulary neural language modeling. arXiv preprint arXiv:1704.06986, 2017.

110

https://arxiv.org/abs/2009.06489
https://arxiv.org/abs/2009.06489
http://prize.hutter1.net
http://prize.hutter1.net
http://arxiv.org/abs/1611.01462

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap
and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky. Sharp nearby, fuzzy far away:
How neural language models use context. arXiv preprint arXiv:1805.04623, 2018.

Yoon Kim, Sam Wiseman, Andrew C Miller, David Sontag, and Alexander M Rush.
Semi-amortized variational autoencoders. arXiv preprint arXiv:1802.02550, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improved variational inference with inverse autoregressive flow. In Advances
in Neural Information Processing Systems, pages 4743–4751, 2016.

Ben Krause, Liang Lu, Iain Murray, and Steve Renals. Multiplicative LSTM for sequence
modelling. CoRR, abs/1609.07959, 2016. URL http://arxiv.org/abs/1609.07959.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation
of neural sequence models. arXiv preprint arXiv:1709.07432, 2017.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation
of transformer language models. arXiv preprint arXiv:1904.08378, 2019.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yogatama, Stephen Clark, and Phil
Blunsom. LSTMs can learn syntax-sensitive dependencies well, but modeling structure
makes them better. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1426–1436, 2018.

Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach to obtaining
an o (1/t) convergence rate for the projected stochastic subgradient method. arXiv
preprint arXiv:1212.2002, 2012.

Andrew K. Lampinen, Ishita Dasgupta, Stephanie C. Y. Chan, Kory Matthewson,
Michael Henry Tessler, Antonia Creswell, James L. McClelland, Jane X. Wang, and
Felix Hill. Can language models learn from explanations in context?, 2022. URL
https://arxiv.org/abs/2204.02329.

Tao Lei. When attention meets fast recurrence: Training language models with reduced
compute. CoRR, abs/2102.12459, 2021. URL https://arxiv.org/abs/2102.12459.

111

http://arxiv.org/abs/1609.07959
https://arxiv.org/abs/2204.02329
https://arxiv.org/abs/2102.12459

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of LSTMs to
learn syntax-sensitive dependencies. Transactions of the Association for Computational
Linguistics, 4:521–535, 2016.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,
and Jiawei Han. On the variance of the adaptive learning rate and beyond. arXiv
preprint arXiv:1908.03265, 2019.

Lars Maalø e, Marco Fraccaro, Valentin Liévin, and Ole Winther. Biva: A very deep
hierarchy of latent variables for generative modeling. In Advances in Neural Information
Processing Systems, volume 32, 2019.

Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi,
Andriy Mnih, Arnaud Doucet, and Yee Teh. Filtering variational objectives. In Advances
in Neural Information Processing Systems, pages 6573–6583, 2017.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large
annotated corpus of English: The Penn Treebank. Computational linguistics, 19(2):
313–330, 1993.

James Martens. New insights and perspectives on the natural gradient method. The
Journal of Machine Learning Research, 21(1):5776–5851, 2020.

Hermann Mayer, Faustino Gomez, Daan Wierstra, Istvan Nagy, Alois Knoll, and Jürgen
Schmidhuber. A system for robotic heart surgery that learns to tie knots using recurrent
neural networks. Advanced Robotics, 22(13-14):1521–1537, 2008.

Arya DMcCarthy, Xian Li, Jiatao Gu, andNing Dong. Improved variational neuralmachine
translation by promoting mutual information. arXiv preprint arXiv:1909.09237, 2019.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Typical decoding for
natural language generation. arXiv preprint arXiv:2202.00666, 2022.

Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in
neural language models. arXiv preprint arXiv:1707.05589, 2017.

Gábor Melis, Charles Blundell, Tomáš Kočiskỳ, Karl Moritz Hermann, Chris Dyer, and
Phil Blunsom. Pushing the bounds of dropout. arXiv preprint arXiv:1805.09208, 2018.

Gábor Melis. Two-tailed averaging: Anytime adaptive once-in-a-while optimal iterate
averaging for stochastic optimization, 2022. URL https://arxiv.org/abs/2209.
12581.

Gábor Melis, Tomáš Kočiský, and Phil Blunsom. Mogrifier LSTM. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=SJe5P6EYvS.

112

https://arxiv.org/abs/2209.12581
https://arxiv.org/abs/2209.12581
https://openreview.net/forum?id=SJe5P6EYvS
https://openreview.net/forum?id=SJe5P6EYvS

Stephen Merity. Single headed attention rnn: Stop thinking with your head. arXiv
preprint arXiv:1911.11423, 2019.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. CoRR, abs/1609.07843, 2016. URL http://arxiv.org/abs/1609.
07843.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing
LSTM language models. arXiv preprint arXiv:1708.02182, 2017.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural language
modeling at multiple scales. arXiv preprint arXiv:1803.08240, 2018.

Alberto Maria Metelli, Matteo Papini, Nico Montali, and Marcello Restelli. Importance
sampling techniques for policy optimization. J. Mach. Learn. Res., 21:141–1, 2020.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur.
Recurrent neural network based language model. In Interspeech, volume 2, page 3,
2010.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief
networks. arXiv preprint arXiv:1402.0030, 2014.

Andriy Mnih and Danilo J Rezende. Variational inference for monte carlo objectives.
arXiv preprint arXiv:1602.06725, 2016.

Nafise Sadat Moosavi and Michael Strube. Lexical features in coreference resolution: To
be used with caution. arXiv preprint arXiv:1704.06779, 2017.

Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilistic dependences
in stochastic language modelling. Computer Speech & Language, 8(1):1–38, 1994.

Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bohyung Han. Regularizing deep
neural networks by noise: Its interpretation and optimization. Advances in Neural
Information Processing Systems, 30, 2017.

Sebastian Nowozin. Debiasing evidence approximations: On importance-weighted
autoencoders and jackknife variational inference. 2018.

Art B. Owen. Monte Carlo theory, methods and examples. 2013.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International conference on machine learning, pages
1310–1318, 2013.

113

http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843

Tom Pelsmaeker and Wilker Aziz. Effective estimation of deep generative language
models. arXiv preprint arXiv:1904.08194, 2019.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018.

George Philipp, Dawn Song, and Jaime G Carbonell. The exploding gradient problem
demystified-definition, prevalence, impact, origin, tradeoffs, and solutions. arXiv
preprint arXiv:1712.05577, 2017.

Mary Phuong, Max Welling, Nate Kushman, Ryota Tomioka, and Sebastian Nowozin.
The mutual autoencoder: Controlling information in latent code representations, 2018.
URL https://openreview.net/forum?id=HkbmWqxCZ.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by
averaging. SIAM journal on control and optimization, 30(4):838–855, 1992.

Ofir Press and Lior Wolf. Using the output embedding to improve language models.
CoRR, abs/1608.05859, 2016. URL http://arxiv.org/abs/1608.05859.

Geoffrey K Pullum and Barbara C Scholz. Empirical assessment of stimulus poverty
arguments. The linguistic review, 18(1-2):9–50, 2002.

Tom Rainforth, Adam R Kosiorek, Tuan Anh Le, Chris J Maddison, Maximilian Igl, Frank
Wood, and Yee Whye Teh. Tighter variational bounds are not necessarily better. arXiv
preprint arXiv:1802.04537, 2018.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent
optimal for strongly convex stochastic optimization. arXiv preprint arXiv:1109.5647,
2011.

Ali Razavi, Aaron van den Oord, Ben Poole, and Oriol Vinyals. Preventing posterior
collapse with delta-VAEs. In International Conference on Learning Representations,
2019.

Ali Lotfi Rezaabad and Sriram Vishwanath. Learning representations by maximizing
mutual information in variational autoencoders. In 2020 IEEE International Symposium
on Information Theory (ISIT), pages 2729–2734. IEEE, 2020.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing
flows. arXiv preprint arXiv:1505.05770, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backprop-
agation and approximate inference in deep generative models. arXiv preprint arX-
iv:1401.4082, 2014.

114

https://openreview.net/forum?id=HkbmWqxCZ
http://arxiv.org/abs/1608.05859

Herbert Robbins and Sutton Monro. A stochastic approximation method. In Herbert
Robbins Selected Papers, pages 102–109. Springer, 1985.

Geoffrey Roeder, Yuhuai Wu, and David K Duvenaud. Sticking the landing: Simple,
lower-variance gradient estimators for variational inference. In Advances in Neural
Information Processing Systems 30, 2017.

Nicolas Le Roux. Anytime tail averaging, 2019.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representations
by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

David Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process.
Technical report, Cornell University Operations Research and Industrial Engineering,
1988.

Hasim Sak, Andrew W. Senior, and Françoise Beaufays. Long short-term memory based
recurrent neural network architectures for large vocabulary speech recognition. CoRR,
abs/1402.1128, 2014. URL http://arxiv.org/abs/1402.1128.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. arXiv preprint arXiv:1508.07909, 2015.

Andriy Serdega and Dae-Shik Kim. Vmi-vae: Variational mutual information maxi-
mization framework for vae with discrete and continuous priors. arXiv preprint
arXiv:2005.13953, 2020.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes. In International conference on
machine learning, pages 71–79. PMLR, 2013.

Laura A Shneidman and Susan Goldin-Meadow. Language input and acquisition in
a mayan village: How important is directed speech? Developmental science, 15(5):
659–673, 2012.

Rui Shu, Hung H. Bui, Shengjia Zhao, Mykel J. Kochenderfer, and Stefano Ermon.
Amortized inference regularization. In NeurIPS, pages 4398–4407, 2018.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole
Winther. Ladder variational autoencoders. Advances in neural information processing
systems, 29:3738–3746, 2016.

Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent
neural networks. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 1017–1024, 2011.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

115

http://arxiv.org/abs/1402.1128

Corentin Tallec and Yann Ollivier. Can recurrent neural networks warp time? arXiv
preprint arXiv:1804.11188, 2018.

Yee Whye Teh. A Bayesian interpretation of interpolated Kneser-Ney. Technical Report
TRA2/06, School of Computing, National University of Singapore, 2006.

Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational bayes for
non-conjugate inference. In International Conference on Machine Learning, pages
1971–1979, 2014.

Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on
Artificial Intelligence and Statistics, pages 1214–1223. PMLR, 2018.

George Tucker, Dieterich Lawson, Shixiang Gu, and Chris J Maddison. Doubly reparame-
terized gradient estimators for monte carlo objectives. arXiv preprint arXiv:1810.04152,
2018.

Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In
Advances in Neural Information Processing Systems, pages 6306–6315, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Chong Wang, Yining Wang, Po-Sen Huang, Abdelrahman Mohamed, Dengyong Zhou,
and Li Deng. Sequence modeling via segmentations. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 3674–3683. JMLR. org,
2017.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,
Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori
Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent
abilities of large language models, 2022. URL https://arxiv.org/abs/2206.07682.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550–1560, 1990.

R Williams. A class of gradient-estimation algorithms for reinforcement learning in
neural networks. In Proceedings of the International Conference on Neural Networks,
pages II–601, 1987.

Terry Winograd. Understanding natural language, 1973.

Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan R Salakhutdinov.
On multiplicative integration with recurrent neural networks. In Advances in neural
information processing systems, pages 2856–2864, 2016.

116

https://arxiv.org/abs/2206.07682

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the
softmax bottleneck: a high-rank RNN language model. arXiv preprint arXiv:1711.03953,
2017a.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. Improved
variational autoencoders for text modeling using dilated convolutions. In International
conference on machine learning, pages 3881–3890. PMLR, 2017b.

Serena Yeung, Anitha Kannan, Yann Dauphin, and Li Fei-Fei. Tackling over-pruning in
variational autoencoders. arXiv preprint arXiv:1706.03643, 2017.

Lu Yu, Krishnakumar Balasubramanian, Stanislav Volgushev, and Murat A Erdogdu. An
analysis of constant step size SGD in the non-convex regime: Asymptotic normality
and bias. arXiv preprint arXiv:2006.07904v2, 2020.

Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in
variational inference. IEEE transactions on pattern analysis and machine intelligence,
41(8):2008–2026, 2018.

Yiyuan Zhang, Sanyuan Zhao, Yuhao Kang, and Jianbing Shen. Modality synergy comple-
ment learning with cascaded aggregation for visible-infrared person re-identification.
In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XIV, pages 462–479. Springer, 2022.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Balancing learning and
inference in variational autoencoders. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 5885–5892, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning.
CoRR, abs/1611.01578, 2016. URL http://arxiv.org/abs/1611.01578.

117

http://arxiv.org/abs/1611.01578

	Concerning Language
	Language Modelling
	N-gram Models
	Recurrent Neural Networks
	Feed-Forward Neural Networks
	Generating Text
	The Case for Small-Scale

	Timid Transformation
	Model
	Experiments
	Datasets
	Setup
	Results

	Analysis
	Ablation Study
	Comparison to the mLSTM
	The Reverse Copy Task
	What the Mogrifier is Not

	Conclusions
	Hyperparameter Tuning Ranges
	Hyperparameter Sensitivity

	Optimization Oomph
	Background
	Related Works
	Averaging in Pure Optimization
	Averaging for Generalization

	Problem Statement
	The Algorithm
	Analysis of the Algorithm
	When Assumptions Fail
	A Note on Pure Optimization

	Experiments
	Conclusions

	Refining Recurrences
	Rewired LSTM
	Architecture
	Objective
	Optimization
	Dynamic Evaluation
	Experimental Setup
	Results
	Conclusions

	Lax Latents
	Variational Autoencoders and Posterior Collapse
	Related Works
	CIA and Posterior Collapse
	Mutual Information Augmented Objectives
	The KL Objective
	The Rényi Objective
	The Power Objective

	Connection to the Representational KL
	Connection to the -VAE
	Experiments
	Experiments with Synthetic Data
	Language Modelling Experiments

	Conclusions
	Additional Experiments on Synthetic Data
	Additional Language Modelling Experiments
	Robustness
	Asymmetric Samples
	Experiments with the Power Objective

	Optimization Settings

	Conclusion
	Bibliography

