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Abstract 23 

Late Cenozoic changes in the intensity of the East Asian Summer Monsoon (EASM) are reconstructed 24 
using both terrestrial and marine proxy records; however, proxies from terrestrial (loess, pollen, and 25 
pedogenic isotopes) and marine environments (foraminifer assemblages, clay minerals, and magnetic 26 
properties) commonly display large discrepancies both in the direction and timing of changes in the 27 
EASM. In part, these discrepancies reflect long-term changes in paleogeography that are independent of 28 
climate variations. We assess the influence of a rapidly uplifting orogen on EASM records by comparing 29 
gamma-ray, δ13Corg, hematite/goethite, and magnetic susceptibility records from Upper Miocene–Lower 30 
Pleistocene strata of the Taiwan Western Foreland Basin to time-equivalent EASM proxy records in the 31 
South China Sea (SCS).  32 

Prior to the emergence of modern Taiwan (~6.27–5.4 Ma), sediment in the SCS was largely derived from 33 
Eurasia. Following southwest migration of the collision zone and emergence ~5.4 Ma of proto-Taiwan the 34 
orogen became a major sediment source to the SCS. The uplift and southwest migration of Taiwan and 35 
northwest migration of Luzon resulted in the formation of southwest-flowing deep- and bottom-water 36 
currents and the SCS Branch of the Kuroshio Current. Together these currents transported sediment from 37 
Taiwan towards the SCS. The increased sediment input from Taiwan is recorded as a decline in 38 
hematite/goethite values in sediment records from the northern and central SCS. By ~3.2 Ma, continued 39 
southwest migration and growth of the Taiwan orogen resulted in the formation of the Taiwan Warm 40 
Current, which remobilized some sediment from Taiwan towards the East China Sea. Despite 41 
strengthening of deep-water currents during the Late Pliocene–Early Pleistocene, relative sediment input 42 
from Taiwan to the wider SCS decreased, with a relative increase in contributions from Eurasia and 43 
Luzon. In the southern SCS, where the Mekong River has dominated sedimentation since the Late 44 
Miocene, proxy records show no influence from the Taiwan orogen and instead reflect environmental 45 
changes in Mainland Southeast Asia driven mainly by monsoon variability. While the sedimentary records 46 
reflect tectonic- and geodynamic-driven changes in the sedimentary system from ~5.4–3.2 Ma, after ~3 47 
Ma, proxy records show increased oscillation amplitudes, and this is consistent with the onset of Northern 48 
Hemisphere glaciation that weakened the EASM and enhanced its variability. 49 
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Our results show that a rapidly uplifting orogen has the potential to significantly impact paleoclimate 50 
records >1000 km away from the collision zone. This highlights the influence of shifting sediment sources 51 
on paleoclimate proxy records, which must be considered in interpreting past climate change from the 52 
sedimentary record. 53 

1. Introduction 54 

The intensity of the East Asian Summer Monsoon (EASM) has varied extensively through the late 55 
Cenozoic, although interpretations of the timing and magnitude of its intensification and weakening 56 
remains contentious and vary widely depending on the proxy data used. In part, the conflicting 57 
interpretations of EASM intensification reflects the fact that deep-marine proxy records are influenced by 58 
terrestrial environmental and marine biological production, as well as processes independent of climate 59 
(Clift 2017; Clift et al. 2014; Wang et al. 2005b). Here, we assess the influence of climate-independent 60 
controls, such as tectonic- and geodynamic-driven shifts in sediment transport mechanisms and sediment 61 
source, on EASM proxy records from the SCS. Through our data comparisons we demonstrate how 62 
seemingly contradictory datasets reflect physical and geographic controls on transport and preservation. 63 

1.1. Overview of East Asian Summer Monsoon Records 64 

Terrestrial vegetation records date an initial strengthening of the EASM in the Eocene, with increases 65 
since 23 Ma likely driven by progressive Himalayan and Tibetan topographic growth (Farnsworth et al. 66 
2019; Prell and Kutzbach 1992; Sarr et al. 2022). Studies of terrestrial pollen from across China (e.g., 67 
Sun and Wang 2005), a loess–paleosol sequence at Qinan, China (Guo et al. 2002), and the occurrence 68 
of C4 plants in the SCS region (Jia et al. 2003) all suggest that warm, humid conditions started around 23 69 
Ma. Finally, mineralogical and geochemical proxies indicate wetter and “more erosive” climates existed 70 
after 23 Ma, peaking at ~15 Ma, then weakening after 8 Ma (Clift et al. 2002; Wan et al. 2007). In 71 
contrast, the Red Clay sequences from the Chinese Loess Plateau include aeolian deposits that place the 72 
strengthening of the East Asian monsoon winds at 8–7 Ma (An et al. 2001; Ding et al. 1998; Ding et al. 73 
2001; Sun et al. 1997; Sun et al. 1998).  74 

Late Miocene to Pleistocene proxy records derived from sediment cores in the SCS are interpreted to 75 
record multiple phases of fluctuation in EASM intensity. Sedimentary magnetic parameters and 76 
hematite/goethite (Hm/Gt) values through Late Miocene (6.5–5.0 Ma) sedimentary strata cored at 77 
International Ocean Discovery Program (IODP) Site U1431, in the central, eastern SCS are interpreted to 78 
record a stable EASM that strengthened near 5 Ma (Gai et al. 2020). This is near-synchronous with the 79 
closure of the Central America Seaway, which resulted in a major reorganization of ocean circulation that 80 
led to the strengthening of the Atlantic meridional overturning circulation and enhanced moisture transfer 81 
to Eurasia (Haug and Tiedemann 1998; Lunt et al. 2008; Steph et al. 2010). Decreasing magnetic mineral 82 
content and increasing Hm/Gt between ~3.8–2.6 Ma through sedimentary strata at Ocean Drilling 83 
Program (ODP) Site 1148 in the northern SCS and IODP Site U1431, indicate a weakened summer 84 
monsoon, and this is attributed to global cooling and the onset of Northern Hemisphere glaciation (Gai et 85 
al. 2020).  86 

In contrast, interpretations of EASM changes since 6.5 Ma based on clay/feldspar ratios, kaolinite/chlorite 87 
ratios, and biogenic opal mass-accumulation rate from ODP Site 1143 in the southern SCS suggest the 88 
EASM peaked in strength between 8.5–7.6 Ma and 7.1–6.2 Ma, was relatively stable from 6.2–3.5 Ma, 89 
and then intensified from 3.5–2.5 Ma (Wan et al. 2006; Wan et al. 2010a). The Hm/Gt record from ODP 90 
Site 1143 (Ao et al. 2011b; Zhang et al. 2009; Liu et al., 2019) also shows an intensification of the EASM 91 
(i.e., enhanced seasonality) during the Late Pliocene (3.5–2.5 Ma), which may be attributed to the phased 92 
uplift of the Tibetan Plateau (An et al. 2001; Sun et al. 2010). Hm/Gt records from nearby Site U1433 also 93 
indicate enhanced seasonality starting ~4 Ma (Liu et al. 2019). The local increase in EASM intensity in the 94 
southern SCS may be linked to formation of the western Pacific “warm pool” at ~4 Ma which made the 95 
southern SCS warmer than the northern/central SCS (Chaisson and Ravelo 2000; Jian et al. 2006; Li et 96 
al. 2004). Alternatively, it may reflect southward migration of the Intertropical Convergence Zone (Liu et 97 
al. 2019). 98 
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While sedimentation rates tend to be higher in tectonically active regions, resulting in more complete 99 
sedimentary archives when subsidence permits accumulation (Hsieh et al. 2023a; Vaucher et al. 2023b; 100 
Vaucher et al. 2021; Zhong et al. 2021), the observed discrepancies between EASM proxies from the 101 
SCS and surrounding land masses demonstrate that proxies can be both difficult to interpret and 102 
contradictory. Often this reflects comparison of wind-related marine upwelling proxies and terrestrial 103 
weathering and erosion proxies that are not directly comparable (Clift 2017). Proxy data used to assess 104 
EASM variability can be obscured by sedimentary processes independent of climate. In the SCS, there 105 
are multiple, major sediment sources that have evolved through time (Figure 1A). Each sediment source 106 
has distinct mineralogical and geochemical compositions that can produce “false” EASM signatures. To 107 
resolve accurate EASM proxy records, it is necessary to first identify and filter out “false” proxies that are 108 
not linked to EASM intensity (Clift et al. 2014; Wang et al. 2005b).  109 

 110 
Figure 1 A) Simplified map showing sediment plumes (coloured polygons) into the northern and 111 

central South China Sea. Sediment plumes are modified from Liu et al. (2016) and 112 
Schroeder et al. (2015). Annual suspended pre-industrial sediment fluxes (yellow arrows) 113 
are also shown for Taiwan (Dadson et al. 2003), South China (Milliman and Farnsworth 114 
2011; Zhang et al. 2012), Luzon (Liu et al. 2009), and Mainland Southeast Asia (Milliman 115 
and Syvitski 1992; Milliman and Farnsworth 2011), compiled by Liu et al. (2016). All 116 
values are in Mt yr-1 (arrow size is proportional to sediment volume). Note that the arrow 117 
from Luzon is very small. The relative translation rate of the Philippine Sea Plate with 118 
respect to the Eurasian Plate is obtained from Lin et al. (2003). B) Modern-day circulation 119 
in the SCS, modified from Hu et al. (2010), Liu et al. (2010a), Liu et al. (2016), and Yin et 120 
al. (2023). The locations of the Late Miocene–Early Pleistocene records used in this 121 
study are shown. The inset map in (B) shows the locations of the Taiwan sites, including 122 
borehole HYS-1 and the Da’an River Kueichulin Formation outcrop. MT = Manila Trench; 123 
RT = Ryuku Trench.  124 

1.2. Oceanographic setting 125 

The South China Sea extends over ~3.5 × 106 km2. It is bound by the Asian continent to the northwest, 126 
the Indonesian and Philippine archipelagoes to the southwest and southeast, respectively, and Taiwan to 127 



4 
 

the northeast (Figure 1; Wang and Li 2009). EASM proxies in the SCS region are highly sensitive to 128 
changes in 1) atmospheric circulation, 2) terrigenous input (e.g., Liu et al. 2016; Tamburini et al. 2003; 129 
Webster 1994), and 3) ocean circulation in the Pacific Ocean that passes through the Luzon Strait (e.g., 130 
Lüdmann et al. 2005; Qu 2000; Qu et al. 2006; Tian et al. 2006a). This make the SCS an area of interest 131 
for studying late Cenozoic changes in the EASM system. The SCS is situated in a tectonically active area 132 
and receives high sediment influx from various sources. Over 700 million metric tons of fluvial sediments 133 
representing approximately 3.7% of estimated global fluvial sediment discharge to the SCS (Figure 1A; 134 
Milliman and Farnsworth 2011). The main sediment sources to the SCS are the Pearl, Red, and Mekong 135 
Rivers, and rivers draining southwestern Taiwan, while small mountainous rivers in the Philippines and 136 
Indochina only contribute minor amounts (e.g., Clift et al. 2002; Liu et al. 2003; Liu et al. 2016; Milliman 137 
and Farnsworth 2011; Shao et al. 2009; Wan et al. 2007; Figure 1A). Sediment is transported 138 
subsequently across the SCS by various surface and deep-water currents (Figure 1B).  139 

Presently, deep-water circulation in the SCS is driven by water exchange with the Pacific Ocean, which 140 
occurs through the Luzon Strait (Figure 1B; Lan et al. 2013; Tian et al. 2006b; Zhao et al. 2014). 141 
Circulation within the SCS occurs along three distinct layers (Cai et al. 2020; Lan et al. 2013; Tian et al. 142 
2006a; Zhu et al. 2019). The SCS Surface Water (SSW) flows from the Pacific Ocean in an anticlockwise 143 
direction in the uppermost layer (0–500 m water depth) and along the Eurasian continental margin (Cai et 144 
al. 2020). The SCS Intermediate Water (SIW) flows clockwise out towards the Pacific Ocean in the middle 145 
layer (500–1500 m water depth; Cai et al. 2020; Qu et al. 1999; Tian et al. 2006a). In the lowermost 146 
layers, the SCS Deep Water (1500–2500 m water depth) and SCS Bottom Water (>2500 m) currents flow 147 
anticlockwise, and originate as overflow from the Pacific Deep Water flowing counterclockwise (Qu et al. 148 
2006; Tian et al. 2021; Zhao et al. 2014). The SCS Deep Water and SCS Bottom Water are characterized 149 
by low velocities (0–4 cm s-1) that are seasonally variable and are modulated by tides by ± 1 cm s-1; they 150 
flow dominantly towards the southwest (Chen et al. 2019a; Wang et al. 2011; Zhou et al. 2017). These 151 
deep-water currents are capable of transporting sediment along the seafloor in the northern SCS, but are 152 
too weak to be erosive (Chen et al. 2019a; Zhang et al. 2014). 153 

The Kuroshio Current is a part of the western boundary of the North Pacific Subtropical Gyre, which 154 
branches through the Luzon Strait to the north to form the Taiwan Warm Current (TWC), and to the 155 
southwest to form the South China Sea Branch of the Kuroshio (SCSBK) (Chen et al. 2020; Hu et al. 156 
2010; Jan et al. 2002; Liang et al. 2003; Liu et al. 2021; Nan et al. 2015). Today, the TWC is responsible 157 
for remobilizing Taiwan-sourced sediment to the East China Sea (Horng and Huh 2011; Hsiung and Saito 158 
2017; Jan et al. 2002; Kao et al. 2008; Liu et al. 2010b; Milliman et al. 2007), and the SCSBK transports 159 
sediment from Taiwan and Luzon to the northern SCS (Liu et al. 2016). 160 

1.3. Geological setting 161 

The Taiwan orogen formed as the result of collision between the Luzon Arc on the Philippine Sea Plate 162 
and the Eurasian Plate. The onset of arc-continent collision began as early as the Late Miocene (~12–8 163 
Ma; Chang and Chi 1983; Clift et al. 2003; Clift et al. 2008; Tensi et al. 2006). Since that time the collision 164 
point has propagated towards the southwest (Covey 1986; Suppe 1981; Teng 1990) so that orogenesis 165 
began northeast of modern Taiwan starting ~6.5 Ma (Castelltort et al. 2011; Covey 1986; Lin and Watts 166 
2002; Lin et al. 2003; Nagel et al. 2018; Pan et al. 2015). The Late Miocene–Pliocene (~6.3–3.2 Ma) 167 
Kueichulin Formation was deposited in the Western Foreland Basin (WFB) concurrently with uplift of the 168 
Taiwan orogen and comprises mainly shallow-marine and deltaic strata (Castelltort et al. 2011; Covey 169 
1986; Dashtgard et al. 2021; Dashtgard et al. 2020; Lin et al. 2003; Nagel et al. 2013; Pan et al. 2015; Yu 170 
and Chou 2001). The Kueichulin Formation comprises three members (from bottom to top, Figure 2): 171 
Kuantaoshan Sandstone (~6.5–5.4 Ma), Shihliufen Shale (~5.4–4.92 Ma), and Yutengping Sandstone 172 
(~4.92–3.2 Ma) (Castelltort et al. 2011; Lin et al. 2007; Pan et al. 2015; Shaw 1996). The Kuantaoshan 173 
Sandstone is interpreted to represent deposition in water depths ranging from 25 to 35 m, (Nagel et al. 174 
2013). The overlying Shihliufen Shale is interpreted to represent deposition in an offshore environment in 175 
water depths deeper than 35 m (Dashtgard et al. 2021; Nagel et al. 2013), and the Yutengping Sandstone 176 
is interpreted as recording deposition in water depths of 20–35 m (Dashtgard et al. 2021; Dashtgard et al. 177 
2020; Nagel et al. 2013). Overlying the Kueichulin Formation is the <300 m thick Chinshui Shale (Late 178 
Pliocene; ~3.2–2.52 Ma), which records deposition in an offshore environment during a period of 179 
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maximum flooding in the WFB (Castelltort et al. 2011; Nagel et al. 2018; Nagel et al. 2013; Pan et al. 180 
2015; Vaucher et al. 2023b). The heterolithic Cholan Formation was deposited in the Early Pleistocene in 181 
shallow-marine environments with influence from wave, river, and tide processes (Covey 1986; Nagel et 182 
al. 2013; Pan et al. 2015; Vaucher et al. 2023a; Vaucher et al. 2021). At the top of the interval lies the 183 
Upper Pleistocene Toukoshan Formation, which comprises conglomerates deposited in terrestrial 184 
environments (Nagel et al. 2018). 185 

 186 
Figure 2  Chronostratigraphic correlation of sedimentary strata in the north-central extent of the 187 

WFB of Taiwan (after Teng (1990) and Chen (2016)). The Kueichulin Formation, the 188 
Chinshui Shale, and the Cholan Formation are highlighted in the red box. Yellow 189 
indicates that the main lithology is sandstone and grey indicates shale. Normal (black) 190 
and reversed (white) polarity reversals and nannofossil zonations (NN) are shown (Horng 191 
and Shea 2007; Pan et al. 2015; Vaucher et al. 2021). Br = Brunhes, which is a 192 
magnetostratigraphic polarity chron. 193 

1.4. Provenance of South China Sea sediment 194 

Studies of modern seafloor sediment in the SCS show that sediment composition is strongly controlled by 195 
its provenance and records the mixing of sediment from the major fluvial point sources in the region 196 
(Figure 1) (e.g., Clift et al. 2014; Clift et al. 2022; Horng and Huh 2011; Kissel et al. 2016, 2017; Liu et al. 197 
2009; Liu et al. 2007; Liu et al. 2010b; Liu et al. 2016; Wan et al. 2010b). Modern-day fluvial sediment 198 
derived from Taiwan is characterized by low proportions of smectite and kaolinite, moderate chlorite, and 199 
high illite. In comparison, the modern Pearl, Red, and Mekong Rivers contain considerably higher 200 
proportions of kaolinite, and sediment from Luzon is dominated by smectite (Liu et al. 2016). It is 201 
noteworthy that these rivers are in a high state of anthropogenic disruption and that the Pearl River also 202 
supplied significant smectite before 2.5 ka (Hu et al. 2013). Sediment in the northern SCS reflects a 203 
Taiwanese provenance and is dominated by illite, with moderate proportions of chlorite and minor 204 
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smectite and kaolinite. In contrast, sediment in the central SCS reflects a mixture of different sources, and 205 
in the east-central SCS, sediment has higher proportions of smectite due to their proximity to Luzon. 206 

In addition to clay mineralogy, sediment from the main fluvial point sources to the SCS have distinct 207 
magnetic susceptibility (χ) signatures (Horng and Huh 2011; Kissel et al. 2016, 2017), and χ values of 208 
seafloor sediment in the SCS strongly reflect their provenance. Fluvial sediment from Taiwan contains the 209 
lowest concentrations of magnetic minerals and therefore has the lowest χ values; the dominant magnetic 210 
mineral from Taiwan is pyrrhotite (Horng and Huh 2011). Sediment from rivers discharging from South 211 
China (e.g., Pearl River) and Mainland Southeast Asia (Red and Mekong rivers) have slightly higher χ 212 
values than Taiwan. The proportion of hematite also increases southward from the Pearl River to the 213 
Mekong River (Horng and Huh 2011; Kissel et al. 2016, 2017). Sediment delivered from Luzon is 214 
enriched in magnetite and is characterized by high χ values (Horng and Huh 2011; Kissel et al. 2016, 215 
2017). Sediment in the deep-water northern SCS (sourced mainly from Taiwanese rivers) consequently 216 
have the lowest χ values, while sediment from the east-central SCS (derived largely from Luzon) have the 217 
highest χ values. 218 

Since its rapid uplift and exhumation Taiwan has become a major sediment source to the seas 219 
surrounding the island (Dadson et al. 2003; Dashtgard et al. 2021; Hsieh et al. 2023b; Hu et al. 2012; Hu 220 
et al. 2020; Kao et al. 2008; Kao and Milliman 2008; Liu et al. 2010b; Wan et al. 2010b). A recent study of 221 
the Upper Miocene to Lower Pliocene Kueichulin Formation in the WFB demonstrated that prior to the 222 
emergence of Taiwan in this region, sediment to the WFB (i.e., paleo-Taiwan Strait) was largely derived 223 
from Eurasia (Hsieh et al. 2023b). The onset of major sediment supply from the Taiwan orogen to the 224 
WFB began at ~5.3 Ma as the collision zone migrated into this region. This change is ~2 million years 225 
earlier than previously recognized; however, the areal distribution of these sediments is unknown. By 226 
~4.92 Ma, Taiwan had become the dominant sediment source to the modern WFB as a result of rapid 227 
uplift and erosion and continued southwest migration of the collision zone. The shift in sediment 228 
provenance towards a Taiwan-dominated source to the WFB and SCS is independent of climate change, 229 
and hence, complicates the interpretation of EASM proxies derived from the sedimentary record.  230 

The Hm/Gt ratio has been used as a proxy for monsoon-related precipitation in East Asia where up to 85–231 
90% of annual rainfall occurs during the summer monsoon season (Clift 2006; Liu et al. 2007; Zhang et 232 
al. 2009). The presence of hematite is indicative of iron oxidation under arid climates, while yellow 233 
goethite forms under humid climates (e.g., Kämpf and Schwertmann 1983; Maher 1986). The seasonal 234 
character of the monsoon climate encourages hematite formation during the dry winter season (Lepre 235 
and Olsen 2021). Consequently, decreasing Hm/Gt can indicate weaker summer monsoons and 236 
increasing Hm/Gt may correspond to stronger summer monsoons. Monsoonal climates are favourable for 237 
the formation of hematite because moisture from the wet season produces ferrihydrite, while seasonal 238 
dryness is required for the formation of hematite from ferrihydrite (Balsam et al. 2004; Schwertmann 239 
1971). 240 

Magnetic susceptibility values can be used to determine the main source of terrigenous material delivered 241 
to the SCS as well as variations in EASM strength. Major land masses near the SCS, including Taiwan, 242 
Eurasia, and Luzon, have distinct χ values (Horng and Huh 2011; Kissel et al. 2017). Magnetic 243 
susceptibility of marine sediment is proportional to terrigenous material input, which increases with 244 
enhanced monsoon precipitation-related runoff (Clift et al. 2002; Kissel et al. 2017; Tian et al. 2005).While 245 
Hm/Gt and χ values of SCS sediment have traditionally been used as EASM rainfall proxies, they can 246 
also reflect changes in contributions from the various sediment sources to the SCS (Horng and Huh 2011; 247 
Kissel et al. 2016, 2017). δ13Corg values of organic material have also been used as an indicator for the 248 
uplift and erosion of the Taiwan orogen (Hsieh et al. 2023b) as δ13Corg can be used to distinguish between 249 
marine and terrestrial sources (e.g., Czarnecki et al. 2014; Dashtgard et al. 2021; Hilton et al. 2010; Kao 250 
and Liu 2000; Kao et al. 2014; Peterson and Fry 1987). 251 

2. Study Sites and Methods 252 

To evaluate whether variations in SCS sedimentary records are driven by changing EASM intensity or 253 
changing sediment sources, we compare variations in gamma ray (GR), δ13Corg, χ, and Hm/Gt profiles 254 
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collected through Upper Miocene–Lower Pleistocene strata of the WFB in northwestern Taiwan and 255 
deep-sea sediment cores in the SCS. Gamma-ray data are from a borehole (HYS-1; 120.702024°E, 256 
24.399908°N; Lin et al. 2007) drilled through the Kueichulin Formation, the Chinshui Shale, and the 257 
Cholan Formation of the WFB. The age-model for GR data from HYS-1 is derived from Hsieh et al. 258 
(2023b; Kueichulin Formation) and Vaucher et al. (2023b; Chinshui Shale and Cholan Formation). Values 259 
for δ13Corg and χ were measured from samples collected from a section of the Kueichulin Formation along 260 
the Da’an River (24.29479°N, 120.91062°E; Dashtgard et al. 2021; Hsieh et al. 2023b). The HYS-1 and 261 
Da’an River sites are referred to collectively in this study as the “Taiwan sites”. From the SCS, Hm/Gt and 262 
χ profiles are collected from ODP Site 1148 (18.836170°N, 116.565760°E, approximately 740 km 263 
southwest of the Taiwan sites), IODP Site U1431 (15.375818°N, 117.000015°E, approximately 1060 km 264 
southwest of the Taiwan sites), and ODP Site 1143 (9.361990°N, 113.285030°E, approximately 1830 km 265 
southwest of the Taiwan sites; Figure 1) 266 

Variations in GR intensity recorded on wireline logs correspond largely to changes in lithology (Green and 267 
Fearon 1940; Schlumberger 1989). In siliciclastic sedimentary strata, GR values below 75 American 268 
Petroleum Institute (API) units correspond generally to sandstone-rich intervals, and GR values 269 
exceeding 105 API correspond to mudstone-rich intervals. Gamma-ray values between 75 and 105 API 270 
typically indicate heterolithic strata and/or muddy sandstone/sandy mudstone.  271 

δ13Corg and χ were measured from the Da’an River outcrop for time intervals 5.83–4.13 Ma (δ13Corg) and 272 
~5.72–4.14 Ma (χ) (Hsieh et al. 2023b). Magnetic susceptibility records are available from IODP Site 273 
U1431 (Gai et al. 2020) and ODP Site 1143 (Wang et al. 2005a). Diffuse reflectance spectroscopy (DRS) 274 
was used to quantify the distribution of iron oxides such as hematite (Fe2O3) and oxyhydroxides such as 275 
goethite (a-FeO(OH)) in the cored successions from ODP Sites 1148 (Clift 2006) and 1143 (Ao et al. 276 
2011a; Liu et al., 2019), and IODP Site U1431 (Gai et al. 2020). Hematite and goethite in bulk sediment 277 
strongly influences the colour intensity at the 565 and 435 nm bands, respectively, and therefore their 278 
relative abundances can be estimated using DRS (Giosan et al. 2002; Harris and Mix 1999; Harris and 279 
Mix 2002; Zhang et al. 2007).  280 

Stratal ages in the Kueichulin Formation are based on magnetobiostratigraphic ages (Figure 2; Hsieh et 281 
al. 2023a), and magnetobiostratigraphic age boundaries are used to correlate GR, δ13Corg, and χ records 282 
from the Taiwan sites to an orbitally tuned, benthic foraminiferal, stable oxygen isotope (δ18O) record 283 
(Wilkens et al. 2017) from the equatorial Atlantic Ocean (Figure 3; Hsieh et al. 2023a; Vaucher et al. 284 
2023b). The δ18O record of Wilkens et al. (2017) is used for orbital tuning because it was tuned to 285 
physical sedimentary properties independent of ice volume, and has a robust timescale. Stratal ages from 286 
ODP Site 1148 are constrained using biostratigraphic ages of benthic foraminifera (Shipboard Scientific 287 
Party 2000), and stratal ages from IODP Site U1431D are magnetobiostratigraphically constrained (Gai et 288 
al. (2020). Finally, stratal ages from ODP Site 1143 are astronomically tuned by correlating the δ18O 289 
record of benthic foraminifera from the same core to the LR04 stack of 57 globally distributed benthic 290 
δ18O records (Ao et al. 2011b).  291 
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 292 
Figure 3 The benthic foraminiferal δ18O record (black curve; Wilkens et al. (2017)) is used to 293 

astronologically tune and correlate the records from the Kueichulin Formation, the 294 
Chinshui Shale, and the Cholan Formation (Hsieh et al. 2023a; Vaucher et al. 2023b). 295 
Gamma-ray data (GR) from HYS-1 are from Lin et al. (2007). Organic carbon isotopic 296 
ratios (δ13Corg) are from Dashtgard et al. (2021) and Hsieh et al. (2023b), and magnetic 297 
susceptibility (χ) data from the Da’an River Kueichulin Formation outcrop are from Hsieh 298 
et al. (2023b). Selected tie points used to tune the datasets are shown by white and grey 299 
rectangles.  300 

3. Results 301 

3.1. Taiwan Sites 302 

The proxies from the HYS-1 wellbore and Da’an River outcrop in northwest Taiwan show overall stable 303 
trends between ~6.27 and 5.4 Ma, with GR values of 81.1 ± 12.1 API, δ13Corg values of -23.5 ± 0.3 ‰, 304 
and χ values of 3.4 ± 0.5 × 107 m3 kg-1 (Figure 4). Deposition of the Shihliufen Shale occurred during the 305 
early stages of emergence of Taiwan in the modern region (~5.4–4.92 Ma), and through the Shihliufen 306 
Shale, GR values increase to a maximum of 104.9 API, while δ13Corg and χ values decrease to lows of -307 
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25.6 ‰ and 1.1 × 107 m3 kg-1, respectively. During early deposition of the Yutengping Sandstone (~4.92–308 
4.6 Ma) GR, δ13Corg, and χ values all rapidly decrease to minimum values of 50.5 API, -27.8 ‰, and 0.7 × 309 
107 m3 kg-1, respectively. Later during deposition of the Yutengping Sandstone (~4.6–3.2 Ma), all proxies 310 
stabilized overall, with GR values of 70.5 ± 13.7 API, δ13Corg values of -26.5 ± 0.5 ‰, and χ values of 1.1 311 
± 0.5 × 107 m3 kg-1. Finally, near the top of the Yutengping Sandstone as it transitions into the Chinshui 312 
Shale (~3.2 Ma), GR values increase rapidly then stabilize at 81 ± 1.4 API. GR values remain relatively 313 
stable to the end of the record, even with increasing sand-mud variability during deposition of the Cholan 314 
Formation from ~2.52–1.95 Ma.  315 

 316 
Figure 4 Compilation of δ13Corg, mass-specific magnetic susceptibillty (χ), and gamma-ray (GR) 317 

data from the Taiwan sites (Hsieh et al. 2023a; Hsieh et al. 2023b; Vaucher et al. 2023b),  318 
and East Asian Summer Monsoon proxy records from the South China Sea. 319 
Hematite/goethite (Hm/Gt) data at ODP Site 1148 are from Clift (2006); Hm/Gt and χ data 320 
at IODP Site U1431 are from Gai et al. (2020); Hm/Gt data from Ao et al. (2011b) and 321 
mass-specific magnetic susceptibiltiy (χ) from Wang et al. (2005a) for ODP Site 1143. 322 
The arrows indicate the intervals and trends discussed in the text. 323 
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3.2. ODP Site 1148  324 

From ~6.27 to 5.3 Ma, Hm/Gt values from ODP Site 1148 were stable at 0.6 ± 0.1. From ~5.3 to 4.59 Ma, 325 
Hm/Gt began to decrease, with an anomalously low value of 0.03 at ~5.01 Ma and accelerating in its 326 
decrease near 4.87 Ma to a low of 0.1 (Figure 4). Hm/Gt stabilized between ~4.59 and ~3.18 Ma at an 327 
average of 0.2 ± 0.1. From ~3.18 to 2.91 Ma, Hm/Gt values began to increase and then stabilized after 328 
~2.91 Ma at 0.2 ± 0.1 until the end of the record at ~1.95 Ma. 329 

  330 
3.3. IODP Site U1431 331 

The χ record at IODP Site U1431 shows a stable trend between ~6.27 and 1.95 Ma, averaging 7.1 ± 4 × 332 
107 m3 kg-1 (Figure 4). In contrast, Hm/Gt values average 0.5 ± 0.2 between ~6.27 and 4.82 Ma and 333 
began to decrease from ~4.82 to ~4.4 Ma reaching a minimum of 0.04. Between ~4.4 and 1.95 Ma, 334 
Hm/Gt values remained relatively stable, averaging 0.4 ± 0.2.  335 

 336 
3.4. ODP Site 1143 337 

At ODP Site 1143, both the Hm/Gt and χ records show increasing trends from the start of the record at ~5 338 
to ~3.77 Ma, reaching maximum values of 0.3 and 1.4 × 107 m3 kg-1, respectively (Figure 4). From ~3.77 339 
to 2.52 Ma, Hm/Gt showed two fluctuating cycles, with a minimum of 0.1 at ~3.37 Ma and a maximum of 340 
0.3 at ~3.13 Ma, followed by another minimum of 0 at ~2.8 Ma and maximum of 0.4 at ~2.53 Ma. After 341 
~2.52 Ma Hm/Gt stabilized to an average of 0.2 ± 0.1. In contrast, χ remains relatively stable from ~3.77 342 
to 1.95 Ma, averaging 1.0 ± 0.1 × 107 m3  kg-1. 343 

4. Discussion 344 

4.1. Late Miocene (~6.27–5.4 Ma): early stages of arc-continent collision 345 

During the early stages of collision between the Eurasian Plate and Luzon Arc in the modern Taiwan area 346 
and prior to its emergence (~6.27–5.4 Ma), sediment delivered to the northern and central SCS was 347 
derived largely from rivers discharging from the Eurasian continental margin (i.e., present-day South 348 
China and Mainland Southeast Asia). The redistribution of terrestrially derived sediment in the marine 349 
realm is reflected in the δ13Corg record through the Kuantaoshan Sandstone where values lower than -24 350 
‰ suggest a long residence time of sediment on the seafloor and incorporation of significant volumes of 351 
marine organic matter (Dashtgard et al. 2021; Hsieh et al. 2023b). Gamma-ray values measured through 352 
the Kuantaoshan Sandstone also reflect deposition of sand-dominated sediment, probably in water 353 
depths of 25–35 m (Figure 5; Nagel et al. 2013). Magnetic susceptibility values are also high and stable 354 
through this time period both at the Taiwan sites and at IODP Site U1431, and this reflects sediment 355 
derivation largely from Eurasia (i.e., South China and Mainland Southeast Asia; Figure 5; Horng and Huh 356 
2011; Kissel et al. 2016, 2017). The Hm/Gt records at both ODP Site 1148 and IODP Site U1431 are also 357 
stable during this time period, which is consistent with a dominant Eurasian source enriched in hematite 358 
under stable environmental conditions (Horng and Huh 2011; Kissel et al. 2016, 2017).  359 

Sediment contributions to the northern and central SCS from other sources besides Eurasia between 360 
~6.27 and 5.4 Ma were probably insignificant. Contributions from the Philippines during this period were 361 
probably lower than the present day because the archipelago was located in a more distal position 362 
compared to now (Figure 6; Hall 1996, 2002; Lee and Lawver 1994). As well, during the Late Miocene, 363 
prior to emergence of Taiwan (Chen et al. 2019b; Covey 1986; Lin and Watts 2002; Lin et al. 2003) and 364 
when Luzon was southeast of its present position (Clift et al. 2008; Hall 1996, 2002, 2012; Lee and 365 
Lawver 1994), the SCS was open to the Pacific Ocean (Figure 6; Wang and Li 2009; Yin et al. 2021). 366 
Paleocurrents inferred from contourites indicate that in the Late Miocene, the SCS shared the same 367 
circulation pattern as the North Pacific Subtropical Gyre with a dominant clockwise flow direction (Yin et 368 
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al. 2021; Yin et al. 2023; Figure 6A). Sediment deposited in the SCS during this time would reflect 369 
provenance from the Eurasian margin and dispersal by paleo-SCS currents. 370 

4.2. Late Miocene to middle Pliocene (5.4–3.2 Ma): emergence of Taiwan 371 

As the collision zone between the Eurasian Plate and the Luzon Arc migrated southwestwards and 372 
modern Taiwan began to emerge (i.e., subaerially exposed) near 5.4 Ma, the island rapidly became a 373 
significant sediment source to the WFB (Figure 5; Hsieh et al. 2023b). The impact of Taiwan on 374 
sedimentation in the WFB is recorded by the gradual decrease in δ13Corg and χ values from ~5.4 to 4.92 375 
Ma, which reflect increases in both terrestrial organic content (from plants and soil) and low-χ sediment 376 
derived from erosion of metasedimentary rocks of the Taiwan orogen (Hsieh et al. 2023b). GR values 377 
were high between ~5.4 and 4.92 Ma reflecting deposition of the Shihliufen Shale at increasing water 378 
depths as the WFB subsided. Sediment export from Taiwan to the WFB begins to accelerate at ~4.92 Ma 379 
and reached a maximum between ~4.6 Ma and 3.2 Ma as Taiwan became the dominant source of 380 
sediment to the basin (Hsieh et al. 2023b). This is manifested in the abrupt decrease in the δ13Corg and χ 381 
values near the top of the Shihliufen Shale and into the base of the Yutengping Sandstone in the Taiwan 382 
sites (Figure 5). GR values also abruptly decreased after ~4.92 Ma, reflecting rapid deposition of sand-383 
dominated sediment exported from Taiwan.  384 

The export of large volumes of low-χ, sand-dominated sediment with high terrestrial organic content is 385 
attributed largely to tropical cyclones denuding Taiwan (Dashtgard et al. 2021; Hsieh et al. 2023b; 386 
Vaucher et al. 2023a; Vaucher et al. 2021). Tropical cyclones were probably more frequent and more 387 
intense during the Pliocene because of the warmer climate (Coumou and Rahmstorf 2012; Fedorov et al. 388 
2013; Kossin et al. 2020; Yan et al. 2019a; Yan et al. 2019b; Yan et al. 2016). Furthermore, precipitation 389 
would have been significantly enhanced if tropical cyclones coincided with EASM circulation (Chen et al. 390 
2010; Chien and Kuo 2011; Kao and Milliman 2008; Lee et al. 2015; Liu et al. 2008). Warmer periods in 391 
the northwest Pacific since emergence of Taiwan should be manifest as higher sediment loads to the 392 
WFB.  393 

The southwest migration of Taiwan caused by the northwest migration of Luzon combined to form the 394 
Luzon Strait, a gateway through which deep-water bottom currents enter the SCS from the Pacific Ocean 395 
(Figure 6; e.g., Caruso et al. 2006; Liu et al. 2016; Qu et al. 2006; Qu et al. 2004; Wan et al. 2010b; Wang 396 
et al. 2011; Webster 1994; Zhao et al. 2014). Bottom currents entering the SCS are then deflected to the 397 
southwest along the Eurasian continental margin and towards the central SCS (Qu et al. 2006; Qu et al. 398 
2004; Wang et al. 2011; Zhao et al. 2014). Bottom currents bring sediment eroded from Taiwan and 399 
transported down the continental slope towards the northern/central SCS (Liu et al. 2016). The 400 
emergence of Taiwan also created the westward-flowing SCSBK, which is responsible for delivering 401 
sediment from Taiwan and the Philippines (i.e., Luzon) to the northern SCS (Liu et al. 2016). However, 402 
sediment contributions from the Philippines to the SCS today are low and this was probably similar or less 403 
during the Pliocene (Liu et al. 2009). Sediment from the other major sediment source in the northern 404 
SCS, the Pearl River, is now transported westward along the continental margin by surface currents (Liu 405 
et al. 2016; Schroeder et al. 2015), and this limits its contribution to the deep-water extent of the SCS 406 
relative to Taiwan.  407 

Taiwan-sourced sediment exported to the SCS by deep-water bottom currents and the SCSBK (Figure 6) 408 
is depleted in hematite and enriched in pyrrhotite (Horng and Huh 2011). As Taiwan became the major 409 
sediment source to the WFB around 4.92 Ma, the rapid uplift and erosion of Taiwan resulted in increased 410 
sediment delivery to the SCS. In the northern SCS, the effect of increasing sediment supply from Taiwan 411 
is manifested at ODP Site 1148, where the Hm/Gt signal shows an accelerated decrease at ~4.87 Ma 412 
(Figure 5). By ~4.82 Ma, the effects of sediment flux from Taiwan were reflected in the central SCS, 413 
wherein the Hm/Gt record from IODP Site U1431 also began to decrease (Figure 5). The delayed 414 
response times between ODP Site 1148 and IODP Site U1431 is probably due to their position relative to 415 
Taiwan, but we cannot rule out uncertainties in the age models. Average Hm/Gt values at IODP Site 416 
U1431 are higher than at ODP Site 1148 which is interpreted to reflect their relative distances from 417 
Taiwan (hematite-depleted sediment source) and Eurasia (hematite-enriched sediment source). This 418 
interpretation is supported by the relatively stable χ values at IODP Site U1431 before and after 4.82 Ma, 419 
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which probably records mixing of sediment sourced from Taiwan, Eurasia, and Luzon, each of which 420 
have distinct χ values (Horng and Huh 2011; Kissel et al. 2016, 2017). By ~4.6 Ma, sediment at both sites 421 
in the northern and central SCS reflected a dominant flux from Taiwan (Figure 5). This is attributed to 422 
both the accelerated uplift/erosion of Taiwan and to strengthening of deep-water bottom currents and the 423 
SCSBK (Figure 6). 424 

In contrast to the northern and central SCS sites, the records from ODP Site 1143 show trends that 425 
suggest the southern SCS received limited sediment volumes from the Taiwan orogen (Figure 5). 426 
Magnetic susceptibility values are lower at ODP Site 1143 compared to IODP U1431 in the central SCS, 427 
indicating limited sediment contribution from Luzon. Instead, mineralogical and geochemical records from 428 
ODP Site 1143 indicate that since the Pliocene the Mekong River has dominated sedimentation in the 429 
southern SCS (Liu et al. 2017; Milliman and Meade 1983; Milliman and Syvitski 1992; Wan et al. 2006). 430 
Because the sediment source to the southern SCS has remained stable since the Pliocene, it is possible 431 
that the main driver of variations in Hm/Gt and χ values seen in ODP Site 1143 are related to 432 
environmental changes in Mainland Southeast Asia driven by monsoon variability (Ao et al. 2011b; Wan 433 
et al. 2006; Wan et al. 2010a; Zhang et al. 2009).  434 

 435 
Figure 5  Chronostratigraphic cross-section from north (N) to south (S) with the interpreted extent 436 

of sediment distribution from the Taiwan orogen and key tectonic and climatic events and 437 
changes in ocean circulation.  438 
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4.3. Late Pliocene–Early Pleistocene (after ~3.2 Ma): Subsidence of the WFB and current 439 
intensified flow through the Taiwan Strait 440 

As the Taiwan orogen continued to grow and propagate towards the southwest, the WFB experienced 441 
increasingly rapid subsidence (Lin and Watts 2002; Nagel et al. 2018; Nagel et al. 2013; Pan et al. 2015). 442 
At the same time, Luzon continued to migrate to the northwest at an increasingly faster rate. Together the 443 
movement of these two land masses narrowed and shallowed the Luzon Strait (Hall 1996, 2002; Lee and 444 
Lawver 1994; Sibuet and Hsu 2004; Yin et al. 2023). The reduced width and depth of the Luzon Strait 445 
weakened surface and intermediate water flow, while deep-water and bottom-water currents 446 
strengthened in the SCS (Figure 6; Yin et al. 2023).  447 

The growth of the Taiwan orogen and the formation of the Taiwan Strait resulted in the formation of 448 
alongshore currents, including the TWC flowing north along the west coast of Taiwan (Chen et al. 2020; 449 
Hu et al. 2010; Jan et al. 2002; Liang et al. 2003; Liu et al. 2021; Nan et al. 2015; Figure 6). The TWC 450 
would have remobilized sediment from Taiwan northwards to the East China Sea as it does in the present 451 
day (Horng and Huh 2011; Hsiung and Saito 2017; Jan et al. 2002; Kao et al. 2008; Liu et al. 2010b; 452 
Milliman et al. 2007). As the Taiwan orogen continued to grow, the TWC would have intensified, leading 453 
to greater northward transport of sediment. Additionally, an increase in the intensity and frequency of 454 
tropical cyclones has been shown to drive strengthening of the Kuroshio Current (Zhang et al. 2020). In 455 
the Late Pliocene, the warmer climate would have been favourable for increased tropical cyclone 456 
formation (Coumou and Rahmstorf 2012; Fedorov et al. 2013; Kossin et al. 2020; Yan et al. 2019a; Yan 457 
et al. 2019b; Yan et al. 2016), leading to a strengthening of the Kuroshio Current which enhanced 458 
northward transport of sediment from Taiwan. A decrease in sediment input from Taiwan to the SCS 459 
would result in an increase in the relative sediment contribution from Eurasia and Luzon throughout the 460 
SCS, which would be reflected in an increase in Hm/Gt at ODP Site 1148 at ~3.18–2.91 Ma.  461 

Since the Late Pliocene, the morphological and tectonic configuration, as well as local ocean circulation 462 
of the study area likely remained relatively constant (Hall 1996, 2002; Lin et al. 2003; Yin et al. 2023), 463 
however, there was a marked intensification of Northern Hemisphere Glaciation (NHG) between ~3.1 and 464 
2.8 Ma, (Berends et al. 2021; Haug and Tiedemann 1998; Miller et al. 2020; Raymo 1994; Shackleton et 465 
al. 1984). Expansion of the Arctic ice-sheet caused the winter monsoon to intensify and the summer 466 
monsoon to weaken in East Asia, which resulted in decreased precipitation and enhanced aridification 467 
over the past ~3 Ma (An et al. 2001; Ge et al. 2013; Prell and Kutzbach 1992; Wan et al. 2007; Wang et 468 
al. 2019; Xin et al. 2020; Zhou et al. 2023). The cooler, drier global climate is favourable for the formation 469 
of hematite (Kämpf and Schwertmann 1983; Lepre and Olsen 2021) and may also have contributed to the 470 
increase in Hm/Gt at ODP Site 1148. The Hm/Gt record at ODP Site 1143 also shows a long-term 471 
increasing trend from 2.8 to 1.95 Ma, suggesting decreasing EASM intensity. Because the Asian 472 
monsoon system is sensitive to Northern Hemisphere ice volume, sustained glaciation would also have 473 
increased the variability in monsoon strength (Ao et al. 2011b; Demenocal and Rind 1993; Prell and 474 
Kutzbach 1992). This is reflected in all the records, which show higher oscillation amplitudes after ~3 Ma, 475 
except at IODP Site U1431, where a low sample density may not have been sufficient to capture the 476 
variations. Therefore, prior to ~3 Ma, the studied records reflect largely tectonic- and geodynamic-driven 477 
shifts in sediment transport mechanisms and sediment source. After ~3 Ma, the fluctuations and 478 
amplitudes recorded in all records likely reflects climate-driven changes related to the NHG.  479 
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 480 

Figure 6  Late-Miocene–Early Pleistocene reconstructions of the SCS region. Geographic locations 481 
of land masses are modified from Hall (2012). Miocene ocean currents are modified from 482 
Karl (1999). Plio–Pleistocene ocean currents are based on modern-day circulation in the 483 
SCS, and are modified from Hu et al. (2010),  Liu et al. (2010a), Liu et al. (2016), 484 
Schroeder et al. (2015), Yin et al. (2021), and Yin et al. (2023). The opacity of the plume 485 
colours are relative to estimated sediment contribution. PL = Proto-Luzon; PT = Proto-486 
Taiwan. 487 

5. Conclusion 488 

Variations in deep-sea EASM proxies are commonly attributed to changes in climate because proxies are 489 
assumed to record changes in terrestrial weathering conditions only. Variations in proxy signals driven by 490 
shifts in sediment sources or transport processes (independent of climate) are often overlooked. Our 491 
study of sediment source characteristics combined with observed and predicted oceanic circulation in the 492 
SCS showcases that shifting sediment provenance can significantly impact proxy signals in the deep sea, 493 
and that EASM proxies should not be interpreted without consideration of sediment provenance. 494 

Prior to emergence of the Taiwan orogen in its modern location (~6.27–5.4 Ma), Eurasia (i.e., South 495 
China and Mainland Southeast Asia) was the main sediment source to the SCS, and these sediments 496 
were dispersed by Pacific Ocean currents. Soon after the onset of major sediment supply to the SCS 497 
from Taiwan after ~5.4 Ma, sedimentary archives from the northern and central SCS shows decreasing 498 
trends in Hm/Gt values, and this reflects the introduction of large volumes of hematite-depleted sediment 499 
from Taiwan. The emergence and southwest propagation of the Taiwan orogen and the northwest 500 
migration of Luzon created both the Luzon Strait and deep-water bottom currents and the SCSBK that 501 
transported large volumes of sediment from Taiwan southwestwards to the northern and central SCS. As 502 
the Luzon Strait narrowed and shallowed with continued migration of the Taiwan orogen and Luzon, the 503 
deep-water bottom currents and therefore sediment volume delivered to the SCS from Taiwan also 504 
accelerated. The continued growth and southwest migration of the Taiwan orogen in the Late Pliocene 505 
(~3.2 Ma) resulted in the formation of the TWC, which remobilized sediment from Taiwan northwards to 506 
the East China Sea. Despite strengthening deep-water and bottom currents during this time, sediment 507 
input from Taiwan to the wider SCS decreased, and relative sediment contribution from Eurasia and 508 
Luzon dominated. In the southern SCS, where the Mekong River has dominated sedimentation since the 509 
Late Miocene, the sedimentary record appears to be largely unaffected by the evolution of Taiwan, and 510 
rather is driven by changes in EASM intensity (Liu et al. 2017). Additionally, since the Late Pliocene, the 511 
morphology, tectonic configuration, and ocean circulation of the study area remained largely unchanged, 512 
while the Northern Hemisphere glaciation intensified. This is also reflected in the studied records, in which 513 
the oscillation amplitudes reflect tectonic- and geodynamic-driven shifts prior to ~3 Ma, and climate-driven 514 
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changes related to Northern Hemisphere glaciation after 3 Ma, which is consistent with enhanced 515 
variability in monsoon strength driven by sustained glaciation. 516 

Through this comparison, we show that a rapidly uplifting orogen can significantly influence various deep-517 
sea climate proxy records located > 1000 km away from the orogen. The influence of shifting sediment 518 
sources through time on different climate proxies emphasizes the need to consider and identify non-519 
climate-controlled mechanisms that can drive changes in proxy records. This enables the accurate 520 
identification and interpretation of climate signals preserved in sedimentary archives, especially in 521 
tectonically active and geologically diverse regions. 522 
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