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Abstract  The frailty index (FI) uses a deficit accu-
mulation approach to derive a single, comprehensive, 
and replicable indicator of age-related health sta-
tus. Yet, many researchers continue to seek a single 
“frailty biomarker” to facilitate clinical screening. 
We investigated the prognostic accuracy of 70 indi-
vidual biomarkers in predicting mortality, comparing 
each with a composite FI. A total of 29,341 individu-
als from the comprehensive cohort of the Canadian 
Longitudinal Study on Aging were included (mean, 
59.4 ± 9.9 years; 50.3% female). Twenty-three blood-
based biomarkers and 47 test-based biomarkers 
(e.g., physical, cardiac, cardiology) were examined. 
Two composite FIs were derived: FI-Blood and FI-
Examination. Mortality status was ascertained using 

provincial vital statistics linkages and contact with 
next of kin. Areas under the curve were calculated 
to compare prognostic accuracy across models (i.e., 
age, sex, biomarker, FI) in predicting mortality. Com-
pared to an age-sex only model, the addition of indi-
vidual biomarkers demonstrated improved model fit 
for 24/70 biomarkers (11 blood, 13 test-based). Inclu-
sion of FI-Blood or FI-Examination improved mortal-
ity prediction when compared to any of the 70 bio-
marker-age-sex models. Individual addition of seven 
biomarkers (walking speed, chair rise, time up and 
go, pulse, red blood cell distribution width, C-reactive 
protein, white blood cells) demonstrated an improved 
fit when added to the age-sex-FI model. FI scores had 
better mortality risk prediction than any biomarker. 
Although seven biomarkers demonstrated improved 
prognostic accuracy when considered alongside an FI 
score, all biomarkers had worse prognostic accuracy Supplementary Information  The online version 

contains supplementary material available at https://​doi.​
org/​10.​1007/​s11357-​023-​01055-2.
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on their own. Rather than a single biomarker test, 
implementation of routine FI assessment in clinical 
settings may provide a more accurate and reliable 
screening tool to identify those at increased risk of 
adverse outcomes.

Keywords  Frailty · Biomarkers · Prediction · 
Mortality · CLSA

Introduction

The global population has aged rapidly in recent dec-
ades [1]. In Canada, the proportion of individuals 
aged 65 + or older is expected to double from 2018 to 
2030 [2]. This changing age demographic and impli-
cations for health and mortality outcomes are crucial 
to help manage the complexities of population aging 
at an individual, society, and governmental level. One 
quantifiable approach to aging considers frailty as 
“a state of increased vulnerability to poor resolution 
of homeostasis, which increases the risk of adverse 
outcomes, including falls, delirium, and disability” 
[3]. This vulnerability usually represents age-related 
decline across multiple physiological systems and is 
commonly operationalized using a frailty index (FI). 
An FI can quantify the state of any individual’s health 
as the proportion of health variables that are consid-
ered to be in a deficit state [4]. Across heterogenous 
samples and settings, FIs demonstrate replicable 
properties that are consistent regardless of the indi-
vidual deficits included.

Most commonly used in large cohort studies, 
FIs are increasingly employed in clinical settings 
where they can be derived from routine administra-
tive data [5, 6], Comprehensive Geriatric Assess-
ments [7], or existing medical records. For exam-
ple, when electronic frailty index (eFIs) derived 
from routinely collected medical records have 
been implemented internationally, they show a 
strong discriminative capacity for predicting mor-
tality, hospitalization, and other adverse outcomes 
[5, 8–15]. This success demonstrates the substan-
tial potential and feasibility of automated frailty 
screening in primary and secondary health set-
tings. Still, many researchers aim to simplify the 
FI approach by substituting a single “frailty bio-
marker” in the hope of parsimoniously predicting 
adverse outcomes. To date, such attempts have 

not been successful [16–19]. To explore whether 
any single biomarker might do well enough on its 
own to supplant combinations of biomarkers, our 
aim was to investigate and compare the prognostic 
accuracy of 70 individual biomarkers in predict-
ing mortality with previously validated blood- and 
examination-based frailty indices [20].

Methods

Sample

The Canadian Longitudinal Study on Aging (CLSA) 
is a study of community-dwelling older adults aged 
45 to 85 at baseline (2010–2015). We used data from 
the baseline comprehensive cohort (n = 30,097), 
which measured clinical, biological, and physical 
assessments during a home or data collection site 
(DCS) visit. To be eligible for the comprehensive 
cohort, participants must live within 50 km of one of 
11 DCSs across seven Canadian provinces. Detailed 
information on the CLSA objectives, sampling strat-
egy, protocol, and sample characteristics is available 
elsewhere [21].

Frailty biomarkers

A total of 70 frailty biomarkers were measured 
including 23 blood biomarkers from non-fasting 
blood samples (i.e., triglycerides, hematocrit, albu-
min; see Table  1 for a full list) and 47 test-based 
biomarkers. Test-based biomarkers consisted of 5 
physical performance measures, 9 cognitive tests, 7 
anthropometric measures, 2 spirometry measures, 9 
hearing or vision measures, and 15 cardiac indicators 
(see Table 2 for a full list).

Frailty indices

Two FIs were constructed: an FI-Blood, consisting 
of the 23 blood biomarkers, and an FI-Examination, 
consisting of the 47 examination-based tests. Details 
of FI construction including a detailed data diction-
ary and syntax files have been previously documented 
[20]. Briefly, deficits were selected for inclusion fol-
lowing four standard criteria [22]: deficits must be 
health-related, increase with age, not saturate too 
early, and cover a range of health domains. Each 
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deficit was coded on a scale from 0 (no deficit) to 1 
(highest level of the deficit) using binary or ordinal 
cut-points or transformation into normalized scores. 
For example, abnormal blood tests such as albumin 
or hemoglobin were coded as 0 if the score fell within 
the normal range and 1 if the score fell outside. Vari-
ables such as physical performance and cognitive 
scores were normalized such that 0 indicated no defi-
cit and 1 indicated the highest deficit level. An indi-
vidual must have data on 80% of deficits for an FI 
score to be derived. FI scores were calculated as the 
sum of all deficits present divided by the number of 

deficits considered (e.g., 20 of 40 deficits = FI score 
of 0.5).

Outcomes

Mortality status as of July 1, 2019, was ascertained 
using linkage to provincial vital statistics, contact 
with participants between waves of data collection, 
or direct contact from the next of kin. Censoring time 
was calculated as the time between the day of the data 
collection site visit (i.e., between 2010 and 2015) and 

Table 1   Blood-based biomarkers and their impact on mortality prediction based on comparisons of area under the curve (AUC) 
across four logistic regression models

Model 1: age and sex; Model 2: age, sex, biomarker; Model 3: age, sex, 22-item FI; Model 4: age, sex, biomarker, 22-item FI
✓: improved prognostic accuracy (statistically significant improvement in AUC between models using Benjamini–Hochberg correc-
tion with false discovery rate of 0.05)
–: no statistically significant difference in prognostic accuracy

Biomarker
improved age + sex 
model (Model 2 
vs 1)

FI
improved age + sex 
model (Model 3 
vs 1)

FI
improved age, sex + bio-
marker model (Model 4 
vs 2)

Biomarker
improved age, sex + FI 
model (Model 4 vs 3)

Red blood cell distribution width ✓ ✓ ✓ ✓
High-sensitivity C-reactive protein ✓ ✓ ✓ ✓
White blood cells ✓ ✓ ✓ ✓
Hemoglobin A1c ✓ ✓ ✓ –
Hematocrit ✓ ✓ ✓ –
Mean corpuscular hemoglobin ✓ ✓ ✓ –
Hemoglobin ✓ ✓ ✓ –
Red blood cells ✓ ✓ ✓ –
Albumin ✓ ✓ ✓ –
Creatinine ✓ ✓ ✓ –
Free thyroxine ✓ ✓ ✓ –
Mean corpuscular volume – ✓ ✓ –
Mean platelet volume – ✓ ✓ –
Cholesterol – ✓ ✓ –
Ferritin – ✓ ✓ –
Triglycerides – ✓ ✓ –
Granulocytes – ✓ ✓ –
Lymphocytes – ✓ ✓ –
Monocytes – ✓ ✓ –
Platelets – ✓ ✓ –
25-Hydroxyvitamin D – ✓ ✓ –
Estimated glomerular filtration rate – ✓ ✓ –
Thyroid-stimulating hormone – ✓ ✓ –
Total 11 23 23 3
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Table 2   Test-based biomarkers and their impact on mortality prediction based on comparison of area under the curve across four 
models

Biomarker
improved age + sex 
model (Model 2 vs 1)

FI 
improved age
 + sex model 
(Model 3 vs 1)

FI 
improved age, sex
 + biomarker model 
(Model 4 vs 2)

Biomarker
improved age, sex + FI 
model (Model 4 vs 3)

Physical performance measures
  Timed 4-m walk ✓ ✓ ✓ ✓
  Chair rise ✓ ✓ ✓ ✓
  Timed get up and go ✓ ✓ ✓ ✓
  Standing balance ✓ ✓ ✓ –
  Grip strength ✓ ✓ ✓ –

Cognitive measures
  Stroop interference time ✓ ✓ ✓ –
  Delayed recall ✓ ✓ ✓ –
  Event-based memory ✓ ✓ ✓ –
  Animal fluency – ✓ ✓ –
  Controlled oral word association – ✓ ✓ –
  Immediate recall – ✓ ✓ –
  Mental alteration test – ✓ ✓ –
  Choice reaction time – ✓ ✓ –
  Time-based memory – ✓ ✓ –

Anthropometric measures
  Waist-hip ratio ✓ ✓ ✓ –
  Body mass index – ✓ ✓ –
  Whole body BMD, T-score – ✓ ✓ –
  BMD, multiple body regions – ✓ ✓ –
  Appendage lean mass – ✓ ✓ –
  Body fat percent – ✓ ✓ –
  Adiposity, multiple body regions – ✓ ✓ –

Spirometry measures
  Forced vital capacity (FVC) ✓ ✓ ✓ –
  FEV 1/FVC ratio – ✓ ✓ –

Hearing and vision measures
  Hearing pure tone average, right – ✓ ✓ –
  Hearing pure tone average, left – ✓ ✓ –
  Visual acuity, left eye – ✓ ✓ –
  Visual acuity, right eye – ✓ ✓ –
  Intraocular pressure, right – ✓ ✓ –
  Intraocular pressure, left – ✓ ✓ –
  Corneal hysteresis, right – ✓ ✓ –
  Corneal hysteresis, left – ✓ ✓ –
  Mean ocular perfusion pressure – ✓ ✓ –

Cardiac measures
  Pulse ✓ ✓ ✓ ✓
  Max carotid intima thickness ✓ ✓ ✓ –
  ECG, QT interval ✓ ✓ ✓ –
  ECG, PQ interval – ✓ ✓ –
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July 1, 2019 (censoring date). The exact time to death 
is not currently available.

Statistical analyses

For each individual frailty biomarker, area under 
the curves (AUCs) were calculated to examine the 
prognostic accuracy of four different logistic regres-
sion models in predicting mortality. The four models 
included the following predictors: (1) age and sex; 
(2) age, sex, biomarker; (3) age, sex, FI (22-item 
FI-Blood or 46-item FI-Examination); (4) age, sex, 
biomarker, FI. Note that in Models 3 and 4, the rel-
evant biomarker was excluded from the FI to avoid 
collinearity.

We test the equality of AUCs and compare the prog-
nostic accuracy of different models using roccomp 
package, which applies multiple test modalities to the 
sample. First, the addition of each biomarker to an 
age-sex model (Model 2) was compared to the age-sex 
only model (Model 1), followed by a comparison of the 
age-sex-FI model (Model 3) to the age-sex only model. 
Next, the addition of FI score to the age-sex-individual 
biomarker model was examined (Model 4 vs Model 2). 
Finally, the reverse was considered, which examined the 
addition of the individual biomarker to the age-sex-FI 

model (Model 4 vs Model 3). Due to some participants 
having no blood tests, sample size varies between bio-
markers. However, for each of the four models for any 
given biomarker, we restricted to the same sample size 
to enable direct comparison between AUCs. To control 
for multiple comparisons, the Benjamini–Hochberg 
correction was used to determine statistical significance 
[23], and a false discovery rate of 0.05 was used to cal-
culate the critical values. Analytic weights were applied 
to all models to provide population-representative esti-
mates [24]. Characteristics of those who survived and 
died as of mortality censoring data were compared. All 
analyses were conducted in Stata 16.

Results

Of the 30,097 comprehensive cohort participants, FI-
Examination data and FI-Blood were available for 
29,341 and 25,253 individuals, respectively [20]. Of 
the maximal 29,341 participants included in analy-
ses, the mean age was 59.4 (SD 9.9) years and 50.3% 
(n = 14,762) were female. As of July 2019, 899 (3.1%) 
had died. The average time between baseline data col-
lection and mortality ascertainment was 5.5 ± 0.8 years 
(range, 4.0–7.6). Participants had a mean FI-Blood 

Model 1: age and sex; Model 2: age, sex, biomarker; Model 3: age, sex, 22-item FI; Model 4: age, sex, biomarker, 22-item FI
✓: improved prognostic accuracy (statistically significant improvement in AUC between models using Benjamini–Hochberg correc-
tion with false discovery rate of 0.05);
–: no statistically significant difference in prognostic accuracy

Table 2   (continued)

Biomarker
improved age + sex 
model (Model 2 vs 1)

FI 
improved age
 + sex model 
(Model 3 vs 1)

FI 
improved age, sex
 + biomarker model 
(Model 4 vs 2)

Biomarker
improved age, sex + FI 
model (Model 4 vs 3)

  ECG, P axis – ✓ ✓ –
  ECG, R axis – ✓ ✓ –
  ECG, T axis – ✓ ✓ –
  ECG, P duration – ✓ ✓ –
  ECG, QRS duration – ✓ ✓ –
  ECG diagnosis summary – ✓ ✓ –
  Systolic BP – ✓ ✓ –
  Diastolic BP – ✓ ✓ –
  Pulse pressure – ✓ ✓ –
  Carotid intima thickness, right – ✓ ✓ –
  Carotid intima thickness, left – ✓ ✓ –
  Total 13 47 47 4
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score of 0.15 ± 0.10 (range, 0.00–0.70) and a mean FI-
Examination score of 0.27 ± 0.08 (range, 0.07–0.70). 
Supplementary File 1 describes baseline characteris-
tics by mortality status; as expected, those who sur-
vived were younger (63 ± 10 vs 72 ± 9), were more 
likely to be female (51% vs 39%), had higher educa-
tional attainment (78% with post-secondary degree/
diploma vs 66%), and had lower frailty scores (FI-
Blood, 0.16 ± 0.19 vs0.24 ± 0.13; FI-Examination, 
0.29 ± 0.08 vs 0.38 ± 0.10).

Blood‑based biomarkers

Table  1 provides a summary of model findings of 
AUC comparisons (95% confidence intervals) for 
each blood-based biomarker model, Fig.  1A high-
lights the biomarkers with notable findings and Sup-
plemental File 2 provides complete model details. 
The addition of the individual biomarkers to the age-
sex model (Model 2) improved model fit in 11 of 23 
models. Conversely, the addition of FI-Blood (Model 

3) improved the prognostic accuracy of the age-sex 
model in all models (range, 0.787 (0.770, 0.803) to 
0.791 (0.775, 0.808); note that AUCs range due to 
fluctuations in sample size across biomarkers).

The addition of FI-Blood score (Model 4) to the 
age-sex-biomarker model (Model 2) also improved 
the prognostic accuracy for all 23 blood-based bio-
markers. When the reverse was examined, the addi-
tion of individual biomarkers (Model 4) to the 
age-sex-FI model (Model 3) improved prognostic 
accuracy for only three biomarkers: red blood cell 
distribution width, high-sensitivity C-reactive protein, 
and white blood cells. Combining age, sex, FI-Blood, 
and red blood cell distribution width yielded the high-
est AUC (0.797 (0.781, 0.813)) of any model.

Test‑based biomarkers

As above, a summary of the comparison of all AUCs 
for the test-based biomarker models is provided in 
Table 2, Fig. 1B highlights the biomarkers with notable 

*Addi�on of biomarker (model 4) to sex-age-FI (model 3) improved model fit 

*

*

*

*

*

*

Fig. 1   Area under the receiving operating characteristic (AUC) with 95% confidence intervals for the 11 blood-based and 13 test-
based biomarkers that improved mortality prediction compared to a sex-age only model (model 2 vs model 1)
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findings. Results were similar to that of the blood-
based biomarkers  and  Supplemental File 3 provides 
complete model details. The addition of individual 
biomarkers (Model 2) demonstrated a better model fit 
than the base age-sex model in 13 of 47 models; this 
included all five physical performance measures, three 
cognitive measures, three cardiac measures, forced 
vital capacity, and waist-hip ratio. The addition of the 
FI-Examination (Model 3) improved the prognostic 
accuracy of the age-sex model for all biomarkers.

As with the blood-based biomarkers, the addition of 
FI-Examination (Model 4) to each of the 47 age-sex-
biomarker models (Model 2) improved model fit. Con-
versely, adding the individual biomarker to the age-sex-
FI model only improved model fit for four biomarkers: 
three physical performance measures (walking speed, 
chair rise, time up and go) and pulse. The largest AUC 
was produced for the age, sex, FI, and average carotid 
intima—right side model (0.798 (0.782, 0.814)).

Discussion

In a large cohort of nearly 30,000 individuals aged 45 + , 
we demonstrated that no single biomarker provided 
sufficient discriminative capacity in predicting mortal-
ity. Conversely, FI scores combining biomarkers dem-
onstrated better mortality risk prediction when com-
pared to all 70 individual biomarkers. There was some 
evidence to suggest that certain biomarkers (walking 
speed, chair rise, time up and go, pulse, red blood cell 
distribution width, high-sensitivity C-reactive protein, 
and white blood cells) can improve prognostic accuracy 
when considered in addition to frailty, yet on their own, 
they had poorer predictive validity than the comprehen-
sive FI score. These findings reaffirm that measuring a 
single biomarker is an insufficient screening tool, fur-
ther supporting the need for more automated and holis-
tic FI assessment in clinical settings.

No biomarker predicted better mortality by itself 
when compared to the whole FI. However, the iden-
tification of seven biomarkers that improved the 
accuracy of the models requires further considera-
tion, given their close relationship to aging. First, it 
is unsurprising that half of the physical performance 
tests added value to the predictive model, given 
these have been shown repeatedly to predict mortal-
ity [25]. Physical performance and pulse are the result 
of a complex interaction between bodily systems, 

which thus may be indicative of damage across cel-
lular, organ, and multi-system levels. Aging has been 
shown to decrease this complexity, which therefore 
may eventually lead to adverse outcomes [26]. Each of 
the three blood-based markers (red blood cell distri-
bution width, high-sensitivity C-reactive protein, and 
white blood cells) may suggest distinct mechanisms 
in the aging process, which may explain their utility 
in a prediction model. For example, C-reactive protein 
is a well-known inflammatory marker related to aging 
and adverse outcomes and is involved in immunose-
nescence and inflammaging [27]. Regarding red blood 
cell distribution width, a recent study showed that the 
hemoglobin to red blood cell distribution width ratio 
is associated with frailty [28]. Moreover, it is also 
associated with cognitive impairment, even in patients 
without anemia [29], suggesting multiple pathways 
through which it can affect the aging process. Finally, 
although white blood cell count is variable from day 
to day, it may be indicative of consistent acute infec-
tions, chronic stresses, or toxic exposures (i.e., smok-
ing, obesity) [30] that can increase mortality risk. It 
is noteworthy that only overall white blood cell count, 
and not specific type (i.e., granulocytes, lymphocytes, 
monocytes), improved prognostic accuracy.

The clinical meaningfulness of the AUC differences 
warrants discussion. In health care settings, many clini-
cians strive to gather as much information as possible 
from the patient. Having a composite measure of frailty, 
such as the FI, allows clinicians to focus interventions on 
the whole individual, moving away from the reduction-
ist focus that a sole biomarker would provide. For exam-
ple, if C-reactive protein was the only available marker, 
clinical suspicion could orient the assessment and the 
subsequent intervention to target inflammatory disor-
ders or cardiovascular stress. This approach would fail 
to acknowledge that the patient could benefit more from 
other interventions (e.g., exercise) and, instead, orient 
treatment to intervene on the single abnormal biomarker. 
Many of the deficits included are already routinely col-
lected in clinical settings (e.g., pulse, vision, blood tests) 
or can be derived from self-report questionnaires; there-
fore, it is feasible to implement our findings into clinical 
care. Given the non-invasive nature of FI data collection, 
the statistically significant improvements in AUC (e.g., 
0.02–0.04) are likely to provide a clinical net benefit, 
particularly considering the population level benefits if 
frailty assessments become a part of routine data collec-
tion across all clinical settings [31, 32].
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Key strengths of this study include the large sample 
size, objective ascertainment of 70 individual biomark-
ers, and comprehensive triangulation of mortality sta-
tus using three methods. Limitations include the lack of 
availability of exact date of death, missing blood sam-
ples in ~ 10% of sample, and exclusion criteria of CLSA 
(those with cognitive impairment, full-time members 
of Canadian Armed Forces, those in long-term care 
institutions, and those living on reserves/other aborigi-
nal settlements). Future research should replicate these 
analyses while examining other adverse health out-
comes including biomarker-specific disease outcomes 
(e.g., mobility/disability for physical performance bio-
markers or cardiovascular-related outcomes for cardiac 
biomarkers). In conclusion, our findings provide strong 
support for the continual implementation of routine 
frailty assessment combining biomarkers in health care 
settings and advocate caution against trying to capture 
frailty and mortality risk using a single biomarker.
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