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Abstract
Contact tests on machined and natural granite showed that extensive plastic deformation which extends to the core shape is 
happening before the cross-over from the behaviour of an elastic rough surface to the Hertzian behaviour of an elastic smooth 
contact when all asperities have yielded in the surface. The plastic deformation, which was found to take place when the 
estimated maximum stresses at the contact reaches about 0.6 of the material hardness, affects the behaviour during normal 
loading as the material will start to deform at constant stiffness after reaching these stresses. The plastic deformation during 
lateral loading also affects the applicability of lateral loading models. The data yielded a much lower lateral stiffness which 
is around one order of magnitude less than that predicted by the available contact models.
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List of symbols
aH  Radius of the circle delimiting the contact sur-

face in Hertz model
a∗  Radius of area in contact for rough surfaces
A
0
  Area of contact at full yielding of asperities

Df   Fractal dimension
E∗  Combined modulus of elasticity of the two sur-

faces in contact
Hst  Hurst exponent
Hv  Vicker’s Hardness number
kH
N

  Hertz normal stiffness
KP&P
N

  Normal stiffness as predicted by Pohrt and Popov
KRMS
N

  Normal RMS stiffness
∗KRMS

N
  Normalised RMS stiffness

KT  Lateral stiffness
p
0
  Maximum contact pressure

P  Normal load
R  Equivalent radius of curvature for the two sur-

faces in contact.
Sq  Root mean square of surface roughness
α  Non-dimensional roughness parameter
β  Radius of curvature of asperity peaks
�
RMS
N

  Normalised displacement in RMS model
μ  Coefficient of friction at start of sliding
μ′  Surface asperity parameter

η  Density of asperities distribution per unit area
υ  Poisson’s ratio
σ  Combined RMS roughness of the two surfaces
σy  Yield stress at contact

1 Introduction

Hertz contact theory [9] is widely used to model the dis-
crete behaviour of granular materials including soils, ballast 
or rock fill. The Hertz solution describes the deformation 
during normal loading of two contacting smooth elastic 
spheres pressed against each other. For most granular mate-
rials, however, the presence of surface asperities can affect 
the behaviour at the contact, for example the contact stiff-
ness is reduced, resulting in a softer response of the grain 
assembly (e.g. [14]. Modifications to the Hertz model to 
include roughness effects have been numerous and varied. 
Greenwood and Tripp [7], then Greenwood et al. [8] and 
Johnson [11] considered that the behaviour at the contact of 
rough spheres is fully elastic, with both the asperities and 
bulk surface at the contact deforming according to Hertz 
theory. In most models, the roughness, which affects the 
normal load–deflection response, is represented by the root 
mean square (RMS) value of asperity heights, although 
more recently the concept that most surfaces are fractal 
in nature has been used. Yang et al. [31] showed how the 
surface fractal dimension gives a measure of the irregular-
ity of soil grains, complementing the RMS roughness for a 
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better representation of the surface morphology. The model 
proposed by Pohrt and Popov [18], which uses the fractal 
dimension as a key parameter, was successfully implemented 
by Tolomeo and McDowell [23] into DEM for more realistic 
predictions of railway ballast behaviour. Other models, such 
as those proposed by Yip and Venart [29] or Bahrami et al. 
[4], consider that the contacting bodies comprise a plastic 
crust (the asperities) overlying an elastic bulk. Altuhafi et al. 
[2] compared predicted data using Yip and Venart [29] and 
Pohrt and Popov [18] models and although those models 
were developed for engineered surfaces, good agreement 
was found with experimental data obtained from particle-
to-particle tests on machined granite surfaces.

In most elastic models there is a power relation between 
normal stiffness, K, and normal force, F, with the exponent 
equal to 1/3 for Hertz [9] (K α  F1/3; 1/2 for Goddard [6] for 
low loads, or linked to the fractal dimension for Pohrt and 
Popov [18], with values between 0.51 for smooth surfaces 
(fractal dimension equal to 2) and 0.77 for very rough sur-
faces (fractal dimension equal to 3). In the two latter models, 
as well as in Yip and Venart [29] model, the stiffness reverts 
to being Hertzian at higher loads. Goddard’s [6] assumption 
was that the change in stiffness is gradual and results from 
the contact geometry moving from being initially sharp to 
becoming more rounded with larger loads. Pohrt and Popov 
[18] on the other hand have linked the load exponent and the 
transition to Hertzian behaviour to the surface roughness and 
fractal dimension. In this paper, experimental data will be 
compared to predicted responses by Hertz (H), Greenwood 
et al. (RMS) and Pohrt and Popov (P&P) models. Details on 
the use of the Pohrt and Popov model [18] for soil behav-
iour have been given in Altuhafi et al. [2] and Tolomeo and 
McDowell [23].

From recent experimental evidence, it has been shown 
experimentally that plastic deformation can occur at the con-
tact, and extend to the bulk shape at the contact point (e.g. 
[27]. This transition from elastic behaviour to plastic behav-
iour at contacts has been also noted in non-geomaterials such 
as industrial granules [1]. While elastic models will fail to 
predict the response after the onset of plastic deformations 
[2], most of the available elasto-plastic contact models tend 
to assume that the transition to plastic deformation occurs 
at the asperities in contact, however there are no or limited 
studies on the deformation of the bulk. Thornton [22] sug-
gested modelling the plastic behaviour at contacts subjected 
to normal loading by assuming that the particles yield at 
a contact stress corresponding to a cut-off in the Hertzian 
pressure distribution, after which the displacement is plastic 
and the relationship between normal load and displacement 
is linear i.e. the contact will deform with constant stiffness. 
This is in agreement with experimental data obtained on 
granite contacts presented by Altuhafi et al. [2], who also 
suggested that Hertz model can be used to simulate the 

contact behaviour during normal unloading, as was also 
suggested by Thornton [22] and implemented by Tolomeo 
and McDowell [23]. Zhao et al. [30] modelled the transition 
from elastic to fully plastic deformation at the contact of two 
nominally flat rough surfaces as occurring only in the asperi-
ties, with plastic deformations initiating when the maximum 
Hertz contact pressure reaches 60% of the material hardness 
(0.6HV). The model was developed based on the deforma-
tion of single asperities, but it can be extended to the whole 
contact area. At high normal loads, when asperities are fully 
deformed and the stresses exceed the material strength, the 
bulk would be expected to deform plastically too.

Plastic deformation may affect the lateral loading even 
more, as existing models based on elastic deformations have 
so far been found unsuitable to simulate the contact behav-
iour of sand grains (e.g. [13] or railway ballast (e.g. [26], 
often predicting a response one order of magnitude stiffer 
than the test data.

Exhaustive comparisons between real test data and con-
tact models are limited in the literature, due to both the lack 
of good quality data or sometimes any experimental data 
at all, and to the difficulty of applying those models to real 
materials. An accurate representation of the contact mor-
phology, and measurement of the curvature at the contact, 
are necessary to use most models, but in natural materials 
the shape, particularly at the contact, can be complex and at 
a scale that makes measurements non-straightforward. Yao 
et al. [27] compared test data from sand particles loaded 
normally against a rigid platen with predictions by Hertz 
model and by Greenwood et al.’s [8] model showing that 
generally the latter model showed a close representation of 
the data unless severe plastic deformation had occurred at 
the contact, then the load–deflection behaviour diverted sig-
nificantly from the simulated response, being much softer. 
In Yao et al.’s experiments, plastic deformations for differ-
ent load levels were measured using the profile obtained by 
interferometry, and a relationship was established between 
the amount of deformation and the radius of curvature. 
Altuhafi et al. [2] who tested granite particles machined to 
defined geometry, compared their response with existing 
elastic models: Hertz (H), Hertz with roughness (H-RMS), 
Pohrt and Popov (P&P) and models with plastic asperities 
(Yip and Venart, Bahrami et al.), and also found from the 
experimental results that small radii of contact curvature led 
to larger plastic deformations and greater divergence from 
the model predictions. For particles that deformed predomi-
nantly elastically, the models by P&P and Yip & Venart 
showed the best agreement with the test data.

In this paper, the link between the onset of plastic defor-
mations and the change in stiffness at the contact is exam-
ined based on test data in both normal and lateral loading. 
The tests were carried out on two types of natural railway 
ballast and some granite particles machined to have shapes 
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with defined curvatures, such as spheres and cones, for eas-
ier implementation of the models.

2  Materials

Two railway ballasts commonly used in their respective 
countries were chosen for testing, a granodiorite ballast 
retrieved from Mount Sorrel, U.K., and a latite basalt bal-
last from the New South Wales region, Australia. In order to 
achieve a point-flat contact, a naturally pointed ballast stone 
was selected to form a single point contact on a naturally 
formed flat surfaced ballast stone of the same material. The 
mineralogy of the Mount Sorrel granodiorite mostly consists 
of feldspar, plagioclase, potassium-feldspar and quartz [20]. 
Its main mechanical properties are listed in Table 1. The 
Poisson’s ratio used in the calculations was 0.25, a typi-
cal mean value for granite [5]. The physical and durability 
attributes of the latite basalt were given by Indraratna et al. 
[10]. Its modulus of elasticity E and Poisson’s ratio were 
taken as 57GPa and 0.25 respectively [19], for the purpose 
of model calculations.

As well as being tested in their natural shape, some grains 
of granodiorite ballast were machined to achieve a defined 
geometry, such as spheres of different diameters, flat sur-
faces and conical shapes. The roughness of the spherical 
stones was controlled by using a stone polishing tumbler 
while the flaws in the flat surfaces were smoothed using 
polishing paper. A V8 Stereo-Discovery Microscope was 
used for surface image acquisition while analysis of the 
images was carried out using the ConfoMap7 software 
(equivalent to Mountains 7.4). For non-flat surfaces, natu-
ral or machined, the radius of curvature at the contact was 
determined from microscope images as the mean value on 
two orthogonal directions using the best fit circle in the local 

profile where the contact is taking place. An example of 
radius determination is shown in Fig. 1.

2.1  Inter‑particle apparatus

The particle-to-particle tests were carried out using the inter-
particle apparatus designed at UCL and described in Wong 
and Coop [25]. The apparatus was developed to investigate 
the contact behaviour of coarse-grained materials, with ver-
tical and horizontal load capacities of 1 and 0.5kN respec-
tively. Two particles (stones) can be mounted on platens and 
subjected to loads along three axes that are concentric with 
their contact (Fig. 2). In each axis, the load is applied by a 
linear actuator and measured with a load cell with a resolu-
tion of about 0.01–0.02N. A non-contact displacement trans-
ducer along each axis is used to monitor the displacements 
with a resolution of  10−2 μm. The lower platen is held on a 
sled, under which is a three-point bearing system, for which 
the friction was calibrated, even if it was barely significant. 
A purpose-written software that allows control of each axis 
in either a force or displacement mode is used to control 
the load application and to log the data during the test. To 
reduce compliance at the contact with the platen, the stones 
were cut flat on the side where they were attached to the 
platen by an epoxy resin glue, using a small thickness of glue 
to ensure minimum compliance.

Details of the tests carried out are listed in Tables 2, 3 and 
4. In all the tests, initial contact between the particles was 
made using a slow displacement control mode (0.1 mm/h) 
until the normal load reached 10N, then force control was 

Table 1  Mechanical properties of Mount Sorrel granite used in this 
study

*Shore Hardness is a measure of the resistance a material has to 
indentation. A diamond-tipped hammer is manually dropped verti-
cally and freely from a height on to a horizontal, polished test surface
**The Vickers hardness, also referred to as a micro-hardness test, is 
carried out by observing the area of the indentation caused by a dia-
mond pyramid indenter under vertical load

Specific gravity  GS 2.68

Unconfined Compressive strength 
(MPa)

176.4

Poisson’s ratio, ν 0.25
Young’s Modulus (GPa) 60.6
Shore Hardness* 77 this is equivalent to 

639 kg/mm2 in Vicker’s 
hardness**

0 0.5 1 1.5 2
X, mm

-1

-0.5

0

0.5

1

Z,
 m

m

R= 1.167mm

Surface profile from microscope

Fig. 1  Radius of curvature estimation at contact point from local 
microscope profile for Test BB12 in X–Z direction
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started. This was done to avoid heavy impact between the 
two surfaces at the instant of contact, which would have 
occurred had a force-controlled loading been used at the 
start.

The roughness values reported in this paper are the root 
mean squares of surface heights (RMS or Sq) of an area of 
0.2 × 0.2 mm at the area where the contact is expected to 
take place. Height measurements on the sample were made 
from Z-stack images obtained by the microscope using a 
magnification of 84X, for which the total area of view was 
1.62 mm × 1.34 mm. Full analysis of the surface can be made 
using the microscope software to provide statistical data of 
the surface topography which also has the ability to remove 
the surface shape effect using different degrees of polyno-
mial fittings to the surface. The fractal dimension of the sur-
face Df was also calculated, using the box counting method. 
The values of surface roughness reported here were obtained 
after removing the effect of shape using a polynomial func-
tion in the ConfoMap7 software.

2.2  Plastic behaviour during normal loading

Altuhafi et al. [2] showed that during normal loading of 
spherical granite ballast with diameter between 12 and 
18 mm, no or insignificant plastic deformation takes place 
at the contact, and any small plastic deformation is limited to 

Fig. 2  Inter-particle apparatus

Table 2  Test details for conically shaped tests

*Some data of these tests is presented in [2]

Test ID Description Properties

FC5*
RFC10*

Cone against flat
Cut ballast surface in multiple cyclic loading stages with sample surface morphology moni-

toring between stages. Five stages were conducted:
1st: load to 20N then unload
2nd: load/unload to 20N then 40N
3rd: load/unload to 20, 40 and 80N
4th: load/unload to 20, 40, 80 and 150N
5th: load/unload to 20,40, 80, 150 and up to failure load

Cone base diameter mm 5.15
Cone height mm 9.90
Cone tip curvature radius mm 0.32
Cone surface roughness  Sq μm 3.67
Cone fractal dimension Df 2.05
Flat surface:  Sq μm 1.95
Flat surface: Df 2.02

Cone against flat cut ballast surface in multiple cycles of load/unload to 20, 40, 80, 150 and 
300N without removing sample between cycles

Cone base diameter mm 10.75
Cone height mm 10.97
Cone tip curvature radius mm 0.96
Cone surface roughness  Sq μm 5.04
Fractal dimension Df 2.66
Flat surface:  Sq μm 2.47
Flat surface: Df 2.17

FC15 Cone against flat cut ballast surface in monotonic compression to 300N maximum normal 
force

Cone base diameter mm 15.23
Cone height mm 11.49
Cone tip curvature radius mm 0.64
Cone surface roughness  Sq μm 2.48
Fractal dimension Df 2.06
Flat surface:  Sq μm 1.97
Flat surface: Df 2.36
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changes in the surface and does not extend to the bulk. The 
contact behaviour can therefore be represented to an accept-
able accuracy by an elastic contact model that includes 
roughness such as the RMS model [8], or by models for 
rough fractal surfaces such as the P&P model [18]. However, 
when there is high curvature at the contact, the stresses con-
centrated on the small contact area are greater, which can 
result in damage extending to the core shape of the particles. 
Figure 3 shows images of the deformation taking place at the 
contact between a conically shaped granite particle and a flat 
granite surface (Test FC5). The mean radius of curvature at 
the cone tip was 0.32 mm. The images show the develop-
ment of deformation with the increase of normal load from 
0 to 150N. Changes in the cone tip profile are shown in 
Fig. 3g and changes in the flat surface at the area of contact 
in Fig. 3f, for loads of 80N and 150N. It can be seen that 
most of the plastic deformation of the bulk shape is taking 
place in the flat surface, increasing with load level, while 
no significant change in cone tip shape is noticed at these 
load levels.

Figure 4 shows the displacement—force relationship for 
three cone-flat contact tests for which the dimensions and 
properties of the cones are given in Table 2, in which the test 
ID names indicate the approximate cone base diameter (5, 
10 and 15 mm). It is clear from Fig. 4 that the response to 
normal loading is mainly governed by the cone tip curvature, 

and not other shape properties, least of all the cone base 
diameter or height. In test FC5, with the smallest cone tip 
radius of 0.32 mm, a higher normal displacement was meas-
ured compared to test FC15 (cone tip radius 0.64 mm) and 
RFC10 (cone tip radius 0.96 mm). The larger contact area 
associated with larger contact radii results in a lower con-
centration of stresses at the contact area, which explains the 
smaller deformation. Examination of the topology showed 
that clear shape changes occurred at higher loads, after 
reaching 20N. On the other hand, the limited deformation 
at low normal load levels meant that application of elastic 
models to the behaviour at lower range of load might be 
possible. Figure 5a and b show predictions by the two rough 
elastic models, P&P and RMS, as well as Hertz for tests 
FC5 and RFC10 for a normal load range up to 20N. For 
both tests, the Hertz model predicts stiffer behaviour than 
the experimental data. Test RFC10 shows a good agreement 
with both rough elastic models RMS and P&P in this load 
range, while FC5 which has the smallest radius of curvature 
diverts from these models much earlier, at about 7N normal 
load, and starts to deform with the stiffness remaining con-
stant after reaching this load, indicating that plastic deforma-
tions started at even lower normal loads.

It is not possible to measure the stresses at the contact 
of rough surfaces accurately unless the real contact area 
is measured. The real contact area can be very different 

Table 3  Details of tests on 
natural Latite basalt ballast

Test ID Mean radius of top stone 
at contact, mm

Combined roughness of 
two surfaces, μm

Df Max 
Normal 
load, N

flat point

BB2 2.94 12.9 2.07 2.15 150
BB12 0.50 10.7 2.08 2.17 200
BB1_AH 4.23 6.88 – – 100
BB2_AH 2.80 – – – 100

Table 4  Details of tests subjected to lateral loading

1 some data of this test is presented in [2]
*R1 and  R2 are the radius of curvature of the top and lower surfaces in contact respectively
**Sq1 and  Sq2 are the root mean square of the roughness of the surfaces in contact
 + Df1 and  Df2 are the fractal dimension values for the top and lower surface in contact respectively

Test ID Description R1 mm* R2
mm*

Sq1
μm**

Sq2
μm**

Df1
+ Df2

+

SS(18–18)1 Relatively smooth granite spheres. Tested in normal loading to 100N. Lateral loading 
(post sliding) at both 20N and 100N normal load

8.76 8.63 1.56 1.84 2.21 2.23

VS(18–18) Very smooth granite spheres tested in normal loading to 200N. Pre-slip lateral loading 
at 20N, 50N, 100N, 150N and 200N

8.27 7.90 1.07 1.50 2.01 2.20

GB2 Natural granite ballast tested in normal loading up to 150N. Pre-slip lateral loading at 
20N, 50N, 100N and 150N

3.92 ∞ 14.10 10.10 2.13 2.09
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from the nominal area estimated in most elastic models. It 
can be estimated from the area of the islands formed by 
the smaller contacts within the nominal area [17], but for 

smooth spheres, an approximation of these stresses can be 
obtained from the radius of the nominal area aH , proposed 
by Hertz [9]:

(a)                                            (b)                                               (c) 

                       (d)                                                  (e)                                                                        

(g) (f) 
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Fig. 3  Images showing flat surface damage in cone-flat contact test FC5 after different normal loading stages, a before test, b after 20N, c after 
40N, d after 80N, e after 150N, f profile change of the flat surface at area of damage, g profile change of the cone tip
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in which P is the load normal to the contact area, R is 
the equivalent radius of curvature of the two surfaces in 
contact;1/R = 1/R1 + 1/R2, and E* is the combined elastic 
modulus of the two surfaces in contact and can be calcu-
lated from the relation 1/E* = (1-ν12)/E1 + (1-ν22)/E2, where 
(R1, E1, ν1) and (R2, E2, ν2) are the radius of curvature, 
modulus of elasticity and Poisson’s ratio for the first and 
second sphere respectively. An estimation of the maximum 
stress p0 at the centre of the contact can be obtained from 
the equation:

In Fig. 6, the normal stiffness for three cone-flat compres-
sion tests is plotted against the predicted maximum Hertzian 
pressure using Eq. 2. The corresponding stiffness-pressure 
relationships as predicted by the Hertz model are also plot-
ted for each of these tests. The simulated stiffness increases 
continuously with the contact stress level, while the experi-
mental data suggest a limiting value of stiffness, reached 
when the maximum Hertzian pressure approaches values 
between 45 and 100% of the Vicker’s hardness value,  Hv of 
639 kg/mm2 reported for the Mount Sorrel granite (Table 1).

For contacting bodies of similar material, it was shown 
by Tabor [21] that when contact stresses reach 60% of the 
material hardness  (Hv), yielding will start at the contact or 

(1)aH =

(

3PR

4E∗

)1∕3

(2)p0 =
3P

2�a2
H

=

(

6PE∗2

�3R2

)1∕3

asperity and plastic deformation will take place. The value 
of 0.6Hv is shown in Fig. 6 for the granodiorite as a vertical 
dashed line. Although the experimental data do not yield at 
exactly 0.6Hv contact pressure, probably due to the mixed 
mineralogy of the granodiorite and therefore the hardness 
not representing necessarily that of the contact asperities 
that yielded, it seems reasonable to interpret that the contact 
surfaces for these tests started to suffer from plastic deforma-
tion, with a constant stiffness, at about this value of maxi-
mum stress.

In Thornton’s [22] model, contacting particles follow 
Hertz load–displacement law until a contact yield pressure 
(σy) is reached and plastic deformations start, after which 
the load–displacement follows a linear relationship of slope 
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πσy R, i.e. with a constant stiffness. The response predicted 
by Thornton’s model for tests RFC10, FC15 and CF5 is 
shown in Fig. 6, using the contact yield stress as 0.6 Hv to 
be consistent with Tabor [21] and our experimental data. 
The constant stiffness takes different values depending on 
the value of stiffness reached until yield, which depends on 
the combined radius of the particles in contact.

2.3  Normalisation of contact behaviour 
during normal loading

To identify more clearly the start of plastic deformation dur-
ing normal loading, and whether this behaviour is an intrin-
sic property of the material, a normalization of the data is 
proposed: both the normal displacement and normal stiffness 
are divided by the corresponding displacement and stiffness 
predicted by Hertz model at the same load level, using the 
following formulae:

With such normalisation, the normal displacement, �N 
divided by Hertz displacement value, �H

N
 at the start of 

the test (low loads) will be high for an ideal rough con-
tact, decreasing with increasing load level as the normal 
stiffness approaches the Hertz stiffness and the ratio of 

(3)�
H
N
=

a2
H

R
=

(

9P2

16RE∗2

)1∕3

(4)KH
N
=

(

6PRE∗2
)1∕3

normal stiffness, KN divided by Hertz stiffness, KH
N

 even-
tually reaches unity when all asperities have yielded. It 
must be noted that since the displacement is cumulative, 
the ratio of normal displacement/Hertz displacement will 
never reach unity but will be asymptotic to it at large 
displacements.

The experimental data are compared with predicted stiff-
ness for two models, the RMS [8, 28] and P&P models [18]. 
Figure 7 shows the trends predicted by these two models 
within the normalised plot. A brief description of the models 
and their assumptions is given below.

(a) RMS model

Yimsiri and Soga [28] proposed an empirical formula 
based on data from Greenwood et al. [8] who assumed that 
the apparent nominal contact area between rough surfaces, 
a*, is larger than that for smooth surfaces, and can be related 
to the Hertz radius of contact area, aH , by a function of the 
parameter α, where:

where σ is the combined roughness value of the two surfaces 
in contact, and is obtained by the equation 

√

Sq1
2
+ Sq2

2 , 
where Sq1 and Sq2 are the RMS values of the two surfaces in 
contact.

The parameter α gives an indication of the relative mag-
nitudes of the asperities and the mutual displacement of 
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Fig. 6  Maximum stress at contact as predicted by Hertz plotted 
against normal stiffness for three conically shaped granite particles 
compressed against flat granite surfaces. Thornton [22] model for 
elastic-perfectly plastic model is also shown

Fig. 7  Normalisation of two elastic models (RMS and P&P) to the 
Hertz model
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the particles. The proposed equation by Yimsiri and Soga 
[28] is:

From which the RMS normal displacement, �RMS
N

 can 
be calculated:

The RMS normal stiffness can be found from the deriv-
ative of normal force P with regards to normal displace-
ment �RMS

N
 and by substituting Eqs. (1), (5) and (6) into 

Eq. (7). The RMS normal stiffness KRMS
N

 can be calculated:

In this model α alone controls the relation of the nor-
malised stiffness, ∗KRMS

N
 and normalised displacement 

∗
�
RMS
N

 , as can be seen from the following equations:

The equations above predict a unique single curve, 
shown in Fig. 7, with values of ( ∗�RMS

N
, ∗KRMS

N
) = (5.76, 

0.174) at small displacements, reaching (1, 1) at large dis-
placements. In reality, because the stiffness at the contact 
of rough surfaces is lower than that predicted by Hertz, the 
deformation at rough contacts will necessarily exceed the 
Hertz displacement, thus the ratio of displacement over 
Hertz displacement will be larger than one when the RMS 
model reverts to Hertz. This is seen clearly in the obtained 
data which will be presented in this paper, in Fig. 8. On 
Fig. 7 are also shown predicted curves when using Pohrt 
and Popov model. Details of how the curves were obtained 
are given below.

(b) Pohrt and Popov model (P&P) for fractal rough sur-
faces

In the proposed normalisation plot shown in Fig. 7, unlike 
the RMS model, a unique curve cannot be predicted by the 
model proposed by Pohrt and Popov [18], as the predicted 
response depends on parameters that, unlike α above, are not 
normalised. In the P&P model, the stiffness is expressed as:

(6)
a∗

aH
=

−2.8

� + 2
+ 2.4

(7)�
RMS
N

=
a∗2

R

(8)KRMS
N

=
dP

d�
=

PR

2a∗

(
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5.6aH .�

3(2 + �)
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)

−1

(9)
∗KRMS

N
=

1
√

�N(
√

�N −
5.6�

(2+�)
2 )

(10)∗
�
RMS
N

=

[

−2.8

� + 2
+ 2.4

]2

where Df is the fractal dimension of the surface, and A0 is 
the area of contact when all asperities have yielded and full 
contact has taken place, i.e. the behaviour becomes Hertzian. 
The full contact area  A0 can be calculated by:

The displacement is calculated simply from the change in 
normal stiffness and normal force. The parameters represent-
ing the surface, the combined curvature (1/R), the combined 
roughness σ and mean fractal dimension can all affect the 
shape and position of the predicted curve as shown in Fig. 7. 
While an increase in R will move the curve further to the left 
side of the chart, increasing either the fractal dimension Df  
or the combined roughness will move the curve to the lower 
right of the chart with no tendency to reach the Hertz model 
prediction (1, 1).

Figure 8a presents normalised data obtained from the 
three cone-flat contact tests presented earlier. The curves 
predicted using the RMS and P&P models are plotted for 
parameters determined for test RFC10. As seen above, the 
curve for the RMS model is unique, therefore the experi-
mental data from all three tests can be compared with it but 
it is seen from the figure that only data from RFC10 agrees 
well with the normalised RMS model curve. This will be 
discussed later in this section. It seems that the normalised 
stiffness of the experimental data is not increasing beyond a 
certain value for all these tests. This clearly shows that the 
maximum stiffness of the material has been reached and the 
material is deforming with constant stiffness after this point 
indicating yielding of the material at the contact point, this 
agrees with what Thornton [22] presented in his model for 
normal contact of elastic-perfectly plastic spheres. Note that 
for test FC15, only data around the yield are plotted as the 
data at the start of the test were inadequately logged. For 
tests FC5 and RFC10, following yield the normalised stiff-
ness clearly reduces: this is caused by the actual stiffness 
remaining constant while the Hertz stiffness increases with 
the applied force. In Fig. 8b, the normalised cone-flat test 
curves are plotted together with those for test RS(18–18) that 
were performed using two contacting rough granite spheres 
(data from [2], as well as two contact tests on natural granite 
ballast behaviour SC11 and SC14 (data from [26]). It is clear 
that the increase in stiffness in all of these tests ceases when 
the contact stiffness reaches about 70% of Hertz stiffness, 
indicating that extensive plastic deformation starts for this 
material before the cross-over to the Hertz model, regardless 
of the shape or the texture of the surface in contact, and this 
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ratio is an intrinsic property of the material which we will 
call critical normal contact stiffness.

The same normalising method was applied to results from 
four normal loading tests obtained on natural basalt ballast 
from Australia. “Natural” here refers to the ballast being in 
its as supplied condition, i.e. a crushed rock, with no surface 
preparation. Details of the tests are given in Table 3 and 

the responses in Fig. 8c are compared to the normalised 
behaviour predicted by the RMS model for this material. 
The contact was made between a relatively flat surface (for 
which R was considered to be ∞ ) and a top pointed stone. 
From the normalised data shown in Fig. 8c, extensive plastic 
deformation seems to take place early, deforming thereafter 
at the critical normal contact stiffness of around 35% of the 

Fig. 8  Normalisation of data of normal loading of particles with dif-
ferent shape and morphologies, a granite cone to flat data compared 
to models, b data for rough granite spheres RS(18–18) and data of 

natural granite ballast stones SC11 and SC14, c normalisation of nat-
ural basalt ballast data
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Hertz stiffness. All tests data plot to the right of the predicted 
RMS model curve, indicating that for this basalt material the 
model tends to underestimate deformations. This contrasts 
with the granite for which RMS model overpredicted the 
displacement.

The discrepancies between the experimental data and the 
curve predicted by the RMS model may arise from the fact 
that Eq. (6) proposed by Yimsiri and Soga [28] neglects 
some features of surface morphology such as the intensity of 
peaks in the contact area and the average roundness of peaks 
which were originally considered in the data presented by 
Greenwood et al. [8] by the parameter μ ′ , as was noted by 
Altuhafi et al. [2]. In which μ � = (8/3)��(2R�)1∕2 , where η 
is the density of asperities per unit area and β is the radius 
of curvature of asperity peaks, assumed to be constant for 
each surface.

Figure 9 shows the test data taken from Altuhafi et al. [2] 
on shaped granite contacts along with the original data from 
Greenwood et al. [8] and the proposed equation of Yim-
siri and Soga [28]. The data for the three cone-flat contacts 
presented in this paper are added to the figure. It appears 
that only RFC10 follows the proposed equation during 
the progress of normal loading, starting from high values 
of α and tending towards zero as the load increases, and 
the bulk rather than the asperities dominate the deforma-
tion. Equation (6) seems to overestimate the a* value in the 
other two tests (FC5 and FC15), and for these tests the P&P 
model might give a better representation of the data before 
yielding takes place, although P&P is an elastic model and 
the displacements measured are substantially plastic even 
before yield of the contact bulk shape. Test data obtained 
by Yao et al. [27] on silica sand, who reported that a transi-
tion from the rough elastic model to the Hertz model could 
be observed well before the start of plastic deformations, 
are also shown in Fig. 9. While comparing the behaviour 
of ballast and sand sized particles is difficult because of the 
much greater roughness of the ballast, by one to two orders 
of magnitude, the normalisation used in this figure allows 
better understanding of the accuracy of the RMS model in 
simulating different material. Note that the hardness of the 
material on the other hand would affect the comparison less 
as the hardness of silica sand is only marginally higher than 
that of granite.

2.4  Behaviour during lateral loading and lateral 
stiffness modelling

Lateral loading on both machined and natural granite ballast 
contacts was applied to investigate the applicability of the 
available lateral loading contact models. There are relatively 
fewer published theoretical models for lateral contact stiff-
ness than for normal stiffness. Most of the available models 
adopt the Mindlin constitutive law, in which the initial lateral 

contact stiffness is simply expressed as the normal contact 
stiffness times the factor 2(1 − ν)/(2 − ν), for isotropic elastic 
interfaces (e.g. [14, 15, 24, 28]), after which the lateral stiff-
ness starts to degrade with the progress of load until slid-
ing occurs. This degradation function simulates the gradual 
increase of the slip surface until the two contacting bodies 
slide against each other. Models for rough surface contacts 
use a similar expression (Eq. 13) but linking the initial lat-
eral stiffness to the normal stiffness from any normal loading 
contact model which considers surface roughness:

The ratio between initial lateral stiffness and normal stiff-
ness is common to most elastic models, however the degra-
dation function can vary: Mindlin and Deresiewicz [12], Vu-
Quoc and Zhang [24] and Yimsiri and Soga [28] all adopted 
the exponent of 1/3 to simulate the rate of degradation of the 
lateral stiffness towards a value of T/N equal to the friction 

(13)

Fig. 9  RMS model equation [28] compared to data for natural and 
machined geomaterials. The three cone-flat contact tests are added to 
the figure presented previously by [2]. Data of Greenwood et al. [8] 
was reproduced by digitizing the original figure
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coefficient μ, at which point the interface is fully developed 
with no further slip occurring. On the other hand, Paggi 
et al. [15] proposed a partial slip condition in the contact 
during lateral loading, where the degradation exponent is a 
function of the Hurst exponent,  Hst, of the fractal geometry 
of the surface. The lateral contact stiffness becomes:

in which the Hurst exponent can be determined from the 
relation (Hst = 3−Df).

In Fig. 10, the four models for lateral stiffness were con-
sidered to simulate the response to lateral loading between 
two relatively smooth granite spheres under a normal load 
of 20N (Test SS(18–18)). Four models for lateral loading 
were investigated: the elastic models of Mindlin and Der-
esiewicz [12] and Vu-Quoc and Zhang [24], developed for 
smooth spheres in contact, in which the normal stiffness is 
predicted by Hertz ( KN = KH

N
 ), the modified equation pro-

posed by Yimsiri and Soga [28] in their RMS model, and 
Paggi et al.’s [15] model for surfaces of fractal geometry. 
In this paper the P&P normal loading model was used in 
conjunction with the model proposed by Paggi et al. [15].

It can be seen from the figure that all the predicted initial 
lateral stiffnesses are about one order of magnitude larger 
than the experimental data. The models by Mindlin and Der-
esiewicz [12] and Vu-Quoc and Zhang [24] give the highest 
lateral stiffness as they are based on the Hertz normal stiff-
ness for smooth surfaces which is always higher than the 
stiffness of the rough contact models, while the model by 
Paggi et al. [15] for fractal rough surfaces predicts a faster 
degradation and a lower initial lateral stiffness.

(a) Effect of surface roughness on the lateral stiffness

Figure 11a and b show data obtained from two tests in 
which two contacting granite spheres were subjected to lat-
eral loading under a normal load of 20N: SS(18–18), for 
relatively smooth machined spheres, and VS(18–18), for 
very smooth machined spheres, all of approximately similar 
radius of curvature ranging between 7.9 and 8.8 mm. Details 
of these tests are given in Table 4. Figure 11a shows the 
change in lateral load T/normal load N ratio with lateral dis-
placement while in Fig. 11b the stiffness degradation is plot-
ted against the ratio T/N at the pre-sliding lateral stage. The 
effect of the surface roughness is visible in both the values 
of initial stiffness, which is lower for rough contacts, and the 
value of friction coefficient μ at which the lateral stiffness 
reaches zero and sliding occurs. The μ-values are reached 
when the value of T/N stabilises, with a μ-value of 0.18 
for test VS(18–18) and 0.28 for Test SS(18–18) (Fig. 11a). 
These values show clearly that the coefficient of friction μ 

(14)KT =

2(1 − �)

2 − �
KN

(

1 −
T

�N

)

(1∕Hst+1)

increases with increasing surface roughness when a similar 
radius of curvature is considered at the contact.

To show the shortcoming of Mindlin and Deresiewicz’s 
model (M&D), in Fig. 11c the normalised mobilised shear 
stress ratio T/μ.N is plotted against a ratio of the measured 
displacement by the predicted displacement. On this graph, 
predictions by the M&D model would plot as a vertical line 
at an x-axis coordinate of 1. Figure 11c shows a good agree-
ment between the initial response of the very smooth contact 
VS(18–18) with what would be predicted by M&D, but by 
start of sliding the particles have experienced around 6 times 
more displacement than predicted. The divergence of the 
data from test SS(18–18) from M&D model is even greater 
and start from the initiation of lateral loading, with sliding 
happening at a displacement about 14 times that predicted.

(b) Effect of normal load and multiple shearing on the lat-
eral stiffness

Figure 12a presents the degradation of lateral stiffness 
with T/N in two monotonic lateral loadings under two dif-
ferent normal loads of 20N and 100N (test SS(18–18). Note 
that because of the uneven surface morphology, a small neg-
ative lateral force (i.e. in the backward direction) accumu-
lated during the lateral stress reversal. In most elastic mod-
els the normal stiffness, and therefore the lateral stiffness 
(Eq. 9), are strongly dependent on the normal load, however 
here no significant difference in lateral stiffness is observed. 
In Fig. 12a, against the theory for purely frictional materials, 

Fig. 10  Lateral stiffness plotted against lateral force/normal force 
ratio during lateral loading of SS(18–18) at 20N normal load com-
pared to results predicted by four different models of lateral loading
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the value of μ at zero stiffness seems to vary for different 
normal load levels. Previous research on granite ballast had 
not found any effect of load level on μ for natural samples 
[25]. This difference is attributed to plastic deformation 
suffered from the first lateral loading at 20N, leading to a 
change in surface morphology and therefore a change in the 
value of T/N at which sliding is initiated. Different test data 
are compared in Fig. 12b by normalising the T/N values by 
the corresponding μ value for each test or loading event, and 
the lateral stiffness by dividing it by Hertz predicted normal 
stiffness for that set of particles. In this normalised graph the 
M&D model predicts a unique curve, with an initial value of 
normalised stiffness equal to 2(1−ν)/(2−ν) (i.e. around 0.86 
for this granodiorite) at the start of shearing. The normal-
ised data of VS(18–18) at the normal load of 20N and the 
normalised data of the rough contact of RS(18–18) under 
100N normal load instead plot much lower, with an initial 
normalised stiffness value of less than 0.25.

Although the ratio between lateral and normal stiff-
ness typically used in models is derived from the theory 
of elasticity, one test contacting very smooth spheres (test 
VS(18–18)) was designed to provide experimental evi-
dence. The spheres were compressed normally to different 
load levels: 20N, 50N, 100N, 150N and 200N before being 
subjected to small cycles of lateral loading. These lateral 
loadings were carefully controlled so as to minimise the 
displacements pre-sliding and hence minimise damage at 
the contact. A total lateral displacement of 20 microns was 
applied at 20N normal load and 50 microns for the higher 
loads. The degradations of the lateral stiffness with lateral 
displacement and with the ratio T/N are shown in Fig. 13a 
and b respectively. A full degradation of the lateral stiffness 
seems to occur at very small displacements during the first 
lateral loading at 20N, compared to the subsequent lateral 
loadings at higher normal loads (Fig. 13a). Sliding under 
20N normal load seems to take place just before 7 microns 
lateral displacement, while for higher loads no sliding is 
detected within the 50 microns displacement applied during 
lateral loading, and the stiffness seems to show persistent 
stable values over the whole lateral loading stage with no 
clear sign of degradation.

Multiple pre-sliding lateral loadings were also conducted 
in test GB2 (a natural granite ballast contact) at different 
normal load levels. Details of the surfaces in contact for 
this test are given in Table 4. Small lateral displacements of 
5 microns and 20 microns were applied at normal loads of 
20N and 50N respectively, then 50 microns displacement 
was applied for higher normal loads. The results, shown 
in Fig. 14, indicate that unlike what is observed for test 
VS(18–18), sliding was not initiated for GB2 under 20N 
(Fig. 14a). Similarly to what was previously noted for test 
VS(18–18), the initial lateral stiffness does not vary signifi-
cantly with normal load level. The value of T/N at which 

(c)

Fig. 11  Behaviour during monotonic lateral loading of relatively 
smooth spheres of granite SS(18–18) and very smooth spheres 
VS(18–18) at normal load of 20N. a T/N plotted against lateral dis-
placement. b Lateral stiffness degradation with T/N (c) Normalised 
mobilised shear parameter with data/ M&D model displacement ratio
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sliding would be expected to take place is marked by a 
decrease in stiffness, and seems to increase at higher nor-
mal loads (Fig. 14b). For the stage at 150N normal load, a 
persistent high stiffness value is observed, which does not 
seem to degrade over the 50 microns lateral displacement. 
It is not known to what extent these features simply result 
from the higher load level but it is interesting to note that 
a similar behaviour was observed by Altuhafi and Coop [3] 

in triaxial shearing of the same granite ballast, in which the 
measured small strain stiffness showed a persistent maxi-
mum value in subsequent shearing incidents compared to 
the first shearing incident. This may indicate that the contact 
has suffered from plastic deformation during the first loading 
which caused this change in the stiffness degradation curve.

The initial lateral and normal stiffness determined from 
the test data (VS(18–18) and GB2; data in Fig. 15) are 
shown (Fig. 16). The initial lateral stiffness under different 

Fig. 12  a Lateral stiffness plotted against T/N for two lateral loadings 
of sphere-sphere contacts for Test SS(18–18) at two different normal 
load levels. b Normalised lateral stiffness by Hertz Normal stiffness 
versus normalised mobilised shearing parameter for four lateral load-
ing events on three different contacts of sphere-sphere

Fig. 13  Lateral stiffness change during monotonic lateral loading at 
different normal load levels in test VS(18–18): a with displacement, b 
with lateral force/ normal force development
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normal loads for tests VS(18–18) and GB2 was estimated 
from Figs. 13 and 14 respectively. For each load level the 
corresponding normal stiffness was obtained from Fig. 15. 
The experimental data seem to show that there is a linear 
relationship between initial lateral and normal stiffness but 
at a gradient much lower than that predicted by Mindlin ratio 
(i.e. 2(1 − ν)/(2 − ν)). While the gradient calculated for the 
elastic model is around 0.86, the gradient derived from the 
test data is around 0.05.

(c) Degradation function of lateral stiffness

Figure  17 shows the degradation of lateral stiffness 
against lateral force for tests VS(18–18) and GB2 during 
lateral loading under 20N normal load. The degradation 
data are plotted together with the curves predicted by the 
contact models [12, 24, 28] which use an exponent of 1/3, 
and by Paggi et al. [15] which uses a Hurst-based exponent 
(1/(1 +  Hst)). It is obvious that none of the models can cap-
ture the degradation measured in the tests, and for the data 
available a simple linear relation would fit them better. It is 
interesting to note that Parel et al. [16] also found a linear 

Fig. 14  Lateral stiffness degradation during monotonic lateral loading 
of GB2 test at different load levels, a with displacement, b with T/N

Fig. 15  Normal stiffness plotted against normal load for tests GB2 
and VS(18–18)

Fig. 16  Lateral stiffness plotted against normal stiffness as predicted 
by models compared to real data
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relationship between lateral stiffness and lateral load in tests 
on an alloy Ti–6Al–4V interface.

3  Conclusions

Normal and lateral loading of machined and natural gran-
ite particles with different radii of curvature and differ-
ent morphologies were tested in both normal and lateral 

loading in an inter-particle testing apparatus. Some tests 
were also carried out on a natural basalt ballast. The 
particles were tested pre-failure, where failure means a 
catastrophic destruction of the contact. The tests yielded 
interesting results which emphasize the effect of plas-
tic deformation on the behaviour of contacts and the 

Fig. 17  Degradation of lateral stiffness data compared to degradation 
of stiffness as predicted by models, a lateral stiffness plotted against 
(T/N) for Test VS(18–18), b lateral stiffness plotted against function 

1-(T/N)/μ for Test VS(18–18), c lateral stiffness plotted against (T/N) 
for Test GB2 (b) lateral stiffness plotted against function 1-(T/N)/μ 
for Test GB2
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applicability of elastic models. The following are the main 
points which can be concluded from this study:

1. In normal loading, contacting particles of small radii 
of curvature have a small area of contact and therefore 
higher pressures are expected in the contact area which 
lead to early plastic deformation (at relatively lower nor-
mal load). Elastic models can only be applied before 
extensive plastic deformation takes place. When plastic 
deformations extend to the bulk shape of the contact, 
displacements occur at constant stiffness until failure.

2. The onset of extensive plastic deformation extending 
to the core shape of the contact takes place when the 
maximum stress at the contact, which can be roughly 
estimated using Hertz model, reaches approximately 
60% of the material hardness. This is in agreement with 
Tabor’s [21] findings.

3. It is usually assumed that asperity deformation stops 
at the crossover point from an elastic rough model to 
the smooth surface Hertz behaviour, which has been 
observed on relatively smooth surfaces of higher mate-
rial hardness. However, the data shown here suggest that 
extensive plastic deformation of rough surfaces starts 
before, and that the load–displacement behaviour is lin-
ear afterwards. For the granite and latite basalt tested 
here, constant stiffnesses equal to 70% and 35% of the 
predicted Hertz stiffness were found respectively.

4. Data obtained from lateral loading tests on machined 
and natural granite particles show that the initial lateral 
stiffness predicted by most contact models (for smooth 
and rough surfaces) is around an order of magnitude 
higher than the measured initial lateral stiffness. The 
ratio between initial lateral and normal stiffness usu-
ally adopted in the models also seems to be well over-
predicted.

5. A linear degradation of lateral stiffness with lateral 
load is noted during the lateral loading of both smooth 
and rough surfaces of granite, which does not follow 
the power-law degradation functions proposed by most 
models.
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