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The mechanisms subserving motor skill acquisition and learning in the intact human brain are not fully understood.
Previous studies in animals have demonstrated a causal relationship between motor learning and structural rearrangements
of synaptic connections, raising the question of whether neurite-specific changes are also observable in humans. Here, we use
advanced diffusion magnetic resonance imaging (MRI), sensitive to dendritic and axonal processes, to investigate neuroplas-
ticity in response to long-term motor learning. We recruited healthy male and female human participants (age range 19-29)
who learned a challenging dynamic balancing task (DBT) over four consecutive weeks. Diffusion MRI signals were fitted
using Neurite Orientation Dispersion and Density Imaging (NODDI), a theory-driven biophysical model of diffusion, yielding
measures of tissue volume, neurite density and the organizational complexity of neurites. While NODDI indices were
unchanged and reliable during the control period, neurite orientation dispersion increased significantly during the learning
period mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor areas. Importantly, reor-
ganization of cortical microstructure during the learning phase predicted concurrent behavioral changes, whereas there was
no relationship between microstructural changes during the control phase and learning. Changes in neurite complexity were
independent of alterations in tissue density, cortical thickness, and intracortical myelin. Our results are in line with the
notion that structural modulation of neurites is a key mechanism supporting complex motor learning in humans.

Key words: brain microstructure; diffusion; MRI; motor learning; neuroplasticity; NODDI; skill acquisition

(s )

The structural correlates of motor learning in the human brain are not fully understood. Results from animal studies suggest
that synaptic remodeling (e.g., reorganization of dendritic spines) in sensorimotor-related brain areas is a crucial mechanism
for the formation of motor memory. Using state-of-the-art diffusion magnetic resonance imaging (MRI), we found a behav-
iorally relevant increase in the organizational complexity of neocortical microstructure, mainly in primary sensorimotor, pre-
frontal, premotor, supplementary, and cingulate motor regions, following training of a challenging dynamic balancing task
(DBT). Follow-up analyses suggested structural modulation of synapses as a plausible mechanism driving this increase, while
colocalized changes in cortical thickness, tissue density, and intracortical myelin could not be detected. These results advance
our knowledge about the neurobiological basis of motor learning in humans.
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processes contribute to these macrostructural alterations (Zatorre et
al,, 2012). In the gray matter (GM), synaptic remodeling is a well
established mechanism underlying motor learning (Xu et al., 2009;
Hayashi-Takagi et al., 2015), whereas myelin-related changes have
been conclusively shown to occur in white matter (WM) tissue
(Sampaio-Baptista et al., 2013; McKenzie et al., 2014; Bacmeister et
al., 2020). Of note, neuroplastic processes in GM and WM were
demonstrated to be highly dynamic with transient retraction and
expansion tendencies (Xu et al, 2009; Wenger et al, 2017;
Bacmeister et al., 2020), requiring highly specific methods to detect
them.

Because of methodological limitations in in vivo sampling of
brain tissue, it has long been impossible to investigate whether
the learning-related plasticity processes demonstrated in animals,
such as changes in neurite structures (i.e., dendrites and axons),
also apply in humans. Over the past two decades, longitudinal
studies using magnetic resonance imaging (MRI) with sensitized
contrast to the mobility of water yielded promising achievements
in this respect (for review, see Zatorre et al., 2012; Tardif et al,,
2016; Lerch et al.,, 2017). Usually, these studies employed diftu-
sion sensitization at low b-values (<1000 s/mm2) and fitted the
measured signal to a diffusion tensor (DTI; Basser and Pierpaoli,
1996). Previous studies of motor learning based on this approach
have shown changes in diffusivity and anisotropy in both GM
(Sagi et al., 2012) and WM (Scholz et al., 2009).

Albeit sensitive to change, tensor-derived metrics are biologi-
cally ambiguous because they reflect a voxel average of the degree
of hindrance or restriction experienced by the diffusing water
(Jones et al., 2013; Lerch et al., 2017). Key neuroplastic processes
related to the brain’s neurite architecture or myelin remodeling
can therefore not be directly inferred from DTIL. Moreover, DTI
is not well suited to deal with highly dispersed and complex tis-
sue microstructure present in the vast majority of WM, but espe-
cially in GM voxels (Jones et al., 2013; Tardif et al., 2016; Lerch et
al., 2017; Assaf, 2019).

Recent advances in diffusion MRI do now offer the possibility
to characterize key neuroplastic processes and their dynamics in
unprecedented specificity, while possibly also offering higher
sensitivity to detect neuroplastic changes and brain-behavior-
correlations (Kamiya et al., 2020). For instance, multicompart-
ment models like Neurite Orientation Dispersion and Density
Imaging (NODDI) can cope with complex fiber arrangements
and can differentiate between intraneurite restricted (e.g., axons
and dendrites) and extraneurite hindered (e.g., cell bodies, glial
cells) diffusion. Extensive validation studies have shown a high
correspondence between NODDI-based estimates of neurite
density (Grussu et al., 2017; Wang et al., 2019; Gong et al., 2020)
and orientation dispersion (Grussu et al., 2017; Mollink et al,,
2017; Sato et al., 2017; Schilling et al., 2018) with their histologic
counterparts.

Here, we investigate whether key neuroplastic mechanisms pres-
ent in animals can also be observed in humans. Specifically, we aim
to identify brain areas showing correlated changes (C. Thomas and
Baker, 2013) between NODDI-derived microstructural indices and
concurrent motor learning. To achieve this, we use an established
dynamic balancing task (DBT; Wulf et al., 2001) as a learning para-
digm, whose acquisition process is expected to result in structural
reorganization, particularly in sensorimotor, supplementary motor
and prefrontal areas and associated nerve fiber tracts, according to
previous study results (Taubert et al., 2010, 2016; Lehmann et al,,
2020, 2022). To narrow down possible neurobiological correlates
underlying plasticity (Tardif et al., 2016), we use information from
multiple state-of-the-art MRI modalities.
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Materials and Methods

Participants and experimental design

We used a controlled within-subject design (see below) to investigate
whether learning the DBT would change the microstructure of
the brain’s GM and WM. Twenty-four cognitively healthy adults [21 3,
3 @ age: (arithmetic) mean (M) =22.21, SD = 3.05, range 19-29; body
mass index (BMI): M =23.55, SD =2.52, range 18.99-29.40] with no
history of neurologic, psychiatric or systemic diseases were included in
this trial. Further exclusion criteria were contraindications to MRI, body
mass index (BMI) > 30kg/cm?’ a history of neuropsychiatric diseases,
left-handedness, self-reported physical activity of >2 h/week, prior expe-
rience with the DBT, and past or present performance-oriented partici-
pation in endurance and/or coordinative-demanding sports. The sample
was a subset of the subjects that participated in our previous reliability
studies (Lehmann et al., 2021; Aye et al., 2022). The study was performed
in accordance with the ethical standards as laid down in the 1964
Declaration of Helsinki and its later amendments. Approval was granted
by the Ethics Committee of Otto von Guericke University Magdeburg
(approval number 106/98). Written informed consent was obtained from
all individual participants included in the study.

The experimental design consisted of a control phase and a learning
phase of equal duration. MRI measurements were conducted three times
at four-week intervals. In the first four-week period, we assessed the reli-
ability of our MR imaging protocol. After this control period subjects
engaged in four consecutive weeks of learning the DBT. At the end of
the learning period subjects received MRI scans identical to those in
MRII and MRI2. To avoid acute influences of motor training on MRI
(e.g., increased functional activity or blood flow), training sessions (TSs)
and MRI measurements were performed at least 24 h apart. Note that all
subjects participated in both phases of the experiment, such that each
subject serves as its own control (cf. A.G. Thomas et al., 2009), reducing
the influence of potential confounding variables. In other words, the
MRI signal changes during the learning phase (MRI2-MRI3) can be
related to the changes during the control phase (MRI1-MRI2), which
functions as the baseline. The within-subjects design also ensures opti-
mal statistical power because of the removal of variance associated with
between-subject differences (Poldrack, 2000; C. Thomas and Baker,
2013; Szucs and Ioannidis, 2020).

Whole-body dynamic balancing task (DBT) and quantification of motor
learning
After the four-week scan-rescan control interval was completed, subjects
commenced with learning the DBT over four weeks, with two training
sessions (TSs) per week at least 24 h apart. DBT training was performed
on an unstable seesaw-like platform (stability platform, model 16030,
Lafayette Instrument) moveable in a medio-lateral direction with a max-
imum deviation of 26° on either side of the pivot. Standing with both
feet on the platform, subjects were instructed to keep the board in a hori-
zontal position for as long as possible during each trial. Every TS con-
sisted of 15 trials with a duration of 30 s each and an intertrial break of
90 s to avoid fatigue. The behavioral outcome measure was the time
(millisecond timer) in which subjects kept the platform within a devia-
tion range of *3° from the horizontal (time balancing, BAL). After each
trial, subjects received verbal feedback on how long the board was in the
target zone (knowledge of results), while no feedback was provided on
strategy or other aspects of the task (discovery learning approach; Orrell
et al., 2006). During task execution, participants’ attention was directed
to a fixation cross affixed to the wall in front of them (external focus of
attention).

To get a summary measure of learning performance over eight train-
ing sessions, we first averaged the 15 BAL values belonging to each train-
ing session. Second, we fitted a general power function

y(x) =axx" (1)

to the session-averaged DBT data of each individual (Ivry, 1996). For
whole-brain nonparametric combination (NPC) analyses, we used the
slope value (exponent n) of the power function, adjusted for the base a
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(Manning and Dubois, 1962; Adams, 1987) by residualization, as a de-
pendent variable.

MR image acquisition

MRI data were acquired on a 3T MAGNETOM Prisma system (Siemens
Healthcare) using a 64-channel head coil. The same measurement proto-
col was used for each volunteer and scanning session. Subjects were
asked to relax, keep their mind free of any thoughts, and to move as little
as possible. A pillow was placed surrounding the sides and the
back of the head to minimize head motion and within-subject as
well as between-subject differences in positioning.

Whole-brain diffusion MR images were obtained with a monopolar
single-shot spin echo echo planar image (EPI) sequence: echo time
(TE) = 74 ms; repetition time (TR) = 4970 ms; flip angle & = 90°; paral-
lel GRAPPA acceleration factor =2, matrix: 130 x 130; field-of-view
(FOV) =208 x 208 mm; nominal spatial resolution = 1.6 X 1.6 X 1.6 mm;
multiband acceleration factor = 2; phase-encoding direction: anterior >
posterior). The sampling scheme was designed according to Caruyer et
al. (2013; http://www.emmanuelcaruyer.com/q-space-sampling.php) and
consisted of 228 isotropically distributed diffusion sensitization direc-
tions including three diffusion shells with b-values of 1000 s/mm® (38
directions), 2000 s/mm? (76 directions), and 3000 s/mm? (114 direc-
tions). Note that diffusion sensitization in this protocol is considered
strong enough to sensitize to pools of water with restricted diffusion
(especially neuritic elements) and to reduce signal contributions of the
faster moving extraneurite water (Jones et al., 2013; Weiskopf et al,,
2021). Fourteen images without diffusion weighting (b= 0 s/mm?) were
collected interleaved throughout the acquisition. To generate appropri-
ate fieldmaps to correct for susceptibility-induced distortions, nine b =0
s/mm’ images with reversed phase encoding (posterior > anterior)
were also acquired. The total scan duration was 22 min 31 s.

To quantify cortical macrostructure, we used a standard T1w three-
dimensional magnetization-prepared rapid gradient echo sequence
(Mugler and Brookeman, 1990) based on which cortical thickness was
estimated. The imaging parameters used were as follows: 240 sagittal sli-
ces, inversion time, TI = 1100 ms; TR = 2600 ms; TE = 5.18 ms; readout
pulse flip angle, a = 7°; parallel GRAPPA acceleration factor =2;
acquisition matrix =320 x 320; FOV =256 x 256 mm; nominal
spatial resolution =0.8 x 0.8 x 0.8 mm; scan duration =7 min 25 s.

Not least, to test myelin-related hypotheses (Tardif et al., 2016; Lerch
etal., 2017; Natu et al., 2019; Lazari and Lipp, 2021), we used magnetiza-
tion transfer saturation (MTsat) maps (Helms et al., 2008) based on MT-
weighted images. MT-weighted images were acquired (as part of a
multiparameter mapping protocol) with a multiecho FLASH scan
with TR=37ms/a = 7°. Multiple gradient echoes were acquired
with alternating readout polarity at six equidistant TEs between
2.46 and 14.76 ms. Other acquisition parameters were: 224 sagittal
slices, nominal spatial resolution = 0.8 x 0.8 x 0.8 mm, FOV =230 x 230
mm. Transmit and receive field correction acquisition was done before
with the following imaging parameters: 56 sagittal slices, FOV = 230 x 230
mm, TR=4.1ms, TE=198ms for Bl— and TR=2000ms, TEl=
TE2 = 14 ms, 24 sagittal slices, slice thickness =5 mm, o = 90°, 120°, 60°,
135°, 45° for the RF map which was used for the B1+ correction. MT-
weighted images were further preprocessed as outlined in Aye et al. (2022).

Preprocessing of diffusion-weighted images

Preprocessing of diffusion-weighted images followed the standard FSL
diffusion processing pipeline (Smith et al., 2004). This pipeline starts
with identifying susceptibility-induced distortions based on reversed
phase-encoding b=0 s/mm” volumes using the topup tool (Andersson
etal,, 2003). Afterwards, corrections for eddy currents and subject move-
ment were conducted using eddy (Andersson and Sotiropoulos, 2016),
and the fieldmap that resulted from topup was applied. Realignment of
images in the course of motion correction was accompanied by appro-
priate correction of gradient directions (Leemans and Jones, 2009).

Fitting of microstructural maps
In the next step, diffusion imaging data were fitted with NODDI (Zhang
et al., 2012) and with the conventional diffusion tensor (Basser and
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Pierpaoli, 1996). Note that both modeling approaches were used in WM,
because it has been suggested that the tensor-model might be particu-
larly sensitive to change in tissue environments with approximately par-
allel fiber bundles (Tardif et al., 2016; Alexander et al., 2019; Kamiya et
al., 2020). Unlike WM, GM exhibits an even more heterogeneous neural
environment and shows above that a problematic contamination with
CSF (Tardif et al., 2016; Assaf, 2019). From this it follows that several
assumptions of the tensor model, such as the presence of one principal
diffusion direction per voxel or single-exponential signal decay, are
unlikely to be fulfilled in GM (Jones et al., 2013; Lerch et al, 2017;
Fukutomi et al,, 2019). On the contrary, NODDI is particularly well
suited to assess neuroplastic change in tissue environments with highly
dispersed and complex microstructure (e.g., crossing, fanning, or kissing
fibers) because it allows for distributed fiber orientations within voxels
(Tardif et al,, 2016; Lerch et al.,, 2017; Assaf, 2019; Wang et al,, 2019).
Furthermore, NODDI-derived tissue indices are free from CSF contami-
nation, making it particularly well suited for the study of plasticity in
GM (Assaf, 2019; Fukutomi et al., 2019). Since NODDI is also consid-
ered to be more sensitive to microstructural change in GM than the ten-
sor (Tavor et al., 2013; Vukovic et al., 2021), only NODDI maps were
used to assess plasticity in this particular tissue class.

NODDI is a multicompartment model of diffusion aiming at the esti-
mation of biologically interpretable microstructural tissue properties in
each image voxel (Zhang et al., 2012). It assumes that the diffusion signal
arises from the sum of three distinguishable tissue environments, namely
intraneurite space, extraneurite space, and free water (for details of the
model, see Zhang et al., 2012; Kraguljac et al., 2023). There are three
microstructural maps emerging from this model that are used for statis-
tical analyses: the isotropic volume fraction (ISO), the neurite density
index (NDI), and the orientation dispersion index (ODI). ISO represents
the signal from freely diffusing water or CSF (as opposed to tissue) in a
voxel. Note that ISO and the tissue volume fraction, which comprises
the intraneurite and extraneurite compartments, sum up to 1. This
means that a higher (lower) value of ISO must be accompanied by a
lower (higher) value of the tissue volume fraction. NDI is the proportion
of tissue that is intended to represent contributions from axons, den-
drites or neural processes (Zhang et al., 2012; Assaf, 2019). The relative
volume fraction of the extraneurite compartment (1-NDI) is assumed to
mainly comprise contributions from cellular membranes of somas and
glial cells (Zhang et al., 2012). Not least, ODI is a metric based on the
Watson distribution concentration parameter « (Zhang et al,, 2012). It
describes the spatial configuration of the intraneurite space and repre-
sents how widely the orientations of the neurites spread out in space
(Kraguljac et al., 2023).

In the present study, NODDI parameter maps were estimated from
corrected multishell diffusion images (b=0 s/mm?, b=1000 s/mm?,
b=2000 s/mm?, and b= 3000 s/mmz). To fit the model in WM voxels,
we used the NODDI MATLAB Toolbox v1.0.1 (http://nitrc.org/projects/
noddi_toolbox) with default settings, implementing the model formula-
tion of Zhang et al. (2012). Fukutomi et al. (2018) and Guerrero et al.
(2019) have recently suggested that the fixed NODDI model parameter
intrinsic free diftusivity (d;,), which reflects the rate of diffusion along indi-
vidual neurites, needs to be adjusted in GM voxels. To this end, GM-opti-
mized NODDI maps with di, set to 1.1 x 10> mm?/s (instead of the WM
optimum of 1.7 x 10> mm?/s) were calculated using the Accelerated
Microstructure Imaging via Convex Optimization (AMICO) v1.5.2 toolbox
running in python (Daducci et al., 2015).

To assess microstructural plasticity in WM, we also fitted a diffusion
tensor (Basser and Pierpaoli, 1996) at each voxel of the preprocessed
images (b =0 s/mm?* and b= 1000 s/mm? shells only) using FSL’s dtifit.
The diffusion indices fractional anisotropy (FA), mean diffusivity (MD),
and radial diffusivity (A ;) were computed from the eigenvalues of the
diffusion tensor with the standard formulas as described by Pierpaoli
and Basser (1996).

Image normalization using tract-based and gray matter-based spatial
statistics

To ensure optimal sensitivity of longitudinal exploratory whole-brain
analyses, it is paramount to have accurate alignment of the microstructural
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maps within each subject as well as cross-subject voxel-based correspon-
dence in standard (MNI152) space. To this end, we used skeleton-based
registration approaches optimized for the conditions of WM and GM,
respectively. The underlying idea of these approaches is to project diffu-
sion imaging-derived microstructural maps to an alignment-invariant
sample-specific skeleton which either represents the center of the main
WM tracts (Smith et al,, 2006) or the maximally probable GM voxels
(Nazeri et al., 2015), as outlined below. Besides improving registration,
skeletonization is also hoped to minimize the influence of partial-volume
contamination of microstructural maps (Smith et al., 2006; Nazeri et al.,
2015; Lerch et al., 2017).

For WM microstructural maps, we used a reliable (Madhyastha et
al., 2014; Lehmann et al., 2021) and sensitive (Lehmann et al., 2020)
TBSS-based (Smith et al., 2006) processing routine, starting with deter-
mining an unbiased midspace between the three FA images of each par-
ticipant (Smith et al., 2002). In the next step, the native space FA images
of each participant were linearly registered to the individual midspace
and subsequently averaged to generate a within-subject FA template
(Madhyastha et al., 2014; Lehmann et al., 2020, 2021). Afterwards, each
subject’s FA template was nonlinearly aligned to every other one to iden-
tify the most representative template of the sample (target). After warping
each subject’s template to the target, images were linearly registered to
MNI152 space (FMRIB58 1-mm template) using affine transformation,
and a group-average FA image was thinned and binarized with an FA-
value of >0.25 (skeletonization). Finally, the previously created warp fields
were applied to all midpoint-space registered NODDI/DTI maps of the
three measurement points, and the aligned NODDI/DTI maps in MNI
space were projected onto the groupwise skeleton.

For GM microstructural maps, we used a modified gray matter-based
spatial statistics (GBSS) pipeline inspired by TBSS (Nazeri et al,, 2015;
bash scripts available at https://github.com/arash-n/GBSS). GBSS starts
with a segmentation of brain tissues using the NODDI and DTT data.
Specifically, the CSF volume fraction (fcsr) corresponds NODDI’s ISO
map, while the WM volume fraction (fwy) was derived from a two-tis-
sue classification (WM/non-WM) of FA images using the Atropos seg-
mentation tool implemented in ANTs (Avants et al., 2011). GM fraction
maps were then calculated according to the formula:

fom = 1 = (fose + fim)- (2)

Note that we used midspace-registered average images of each sub-
ject for the processing steps mentioned above. Next, fou and diffusion
microstructural maps were warped to MNI152 space using the registra-
tions estimated in the course of TBSS. Afterwards, fgy maps in MNI
space were averaged resulting in a mean GM image which was subse-
quently thinned and binarized (skeletonization). Only voxels with fo >
0.5 in >50% of the subjects were retained. Note that this threshold was
set to a slightly more liberal level than the one originally proposed by the
authors (cf. Nazeri et al.,, 2015) to ensure an adequate representation
especially of the motor regions on the skeleton, which are known to have
a relatively thin cortex. Next, each subject’s maximally probable local
GM voxel perpendicular to the skeleton was identified. Finally, applying
the estimated projections from the previous step, GM-optimized NODDI
and MTsat maps (after boundary-based intermodal registration to native
diffusion space, Greve and Fischl, 2009) of each subject and measurement
point were registered onto the skeleton.

Quality assurance and reliability assessment

We calculated a recently proposed index of diffusion MR image quality,
the temporal signal-to-noise ratio (tSNR), from the preprocessed and
brain-extracted DWTI data. TSNR is a metric that captures both scanner-
induced and subject-induced imaging artifacts and allows to reliably dif-
ferentiate between poor and good image quality (Roalf et al., 2016). For
each subject and imaging session, tSNR was estimated by first calculating
the mean and standard deviation of each voxel’s intensity over time, and
then averaging the resulting values across all brain voxels to yield a single
metric of image quality (Farrell et al., 2007; Roalf et al., 2016). Note that
this calculation was performed separately for the b=0 s/mm® and
b=1000 s/mm? shells, respectively (Farrell et al., 2007; Roalf et al., 2016).
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tSNR was not calculated for the shells with higher diffusion weightings
because their signal intensity and noise profiles differ considerably from
volumes without diffusion weighting (Farrell et al., 2007).

TSNR data were subsequently compared between measurement ses-
sions (MRI1, MRI2, MRI3) by means of a one-way repeated-measure-
ments ANOVAs (RM-ANOVAs). Furthermore, we checked for the
presence of tSNR outliers using the absolute deviation around the me-
dian (MAD) framework (Leys et al., 2013). Specifically, an individual’s
tSNR value was categorized as an outlier if it was lower than 2.5 times
the MAD below the group median (Leys et al,, 2013).

Furthermore, we calculated the reliability metrics within-subject
coefficient of variation (CVyys, Hopkins, 2000) and intraclass coefficient
(two-way mixed model, single measure, absolute agreement; cf. McGraw
and Wong, 1996) based on each individual’s median voxel on the GM
skeleton at time points MRI1 and MRI2 (i.e., in the absence of training).
To do so, we employed the procedures and formulas that we have previ-
ously used to assess NODDI reliability in WM (Lehmann et al., 2021).

Not least, we tested for the presence of systematic error or drift in the
global signal by comparing the median voxel of NODDI maps on the
GM skeleton between measurement sessions (MRI1, MRI2, MRI3) with
a one-way RM-ANOVA. Note in this respect that a global change in
microstructural maps after training is not expected. Rather, we assume
that plasticity effects occur in a regional fashion in networks that were
previously identified to change with stabilometer training (Taubert et al.,
2010, 2016; Lehmann et al., 2020, 2022).

Assessment of behaviorally relevant plasticity

Whole-brain voxel-wise statistical analyses on skeletonized microstruc-
tural maps were conducted using the Permutation Analysis of Linear
Models (PALM) v. alphall5 toolbox (Winkler et al., 2014, 2016) run-
ning in a MATLAB R2017B environment. Specifically, we aimed to iden-
tify clusters of voxels simultaneously showing both (1) changes in
microstructural indices over time and (2) a correlation between neuro-
plasticity and motor learning (C. Thomas and Baker, 2013). To this end,
the global hypothesis of behaviorally relevant neuroplasticity was broken
down into a set of four subhypotheses (general linear models), each sen-
sitive to the empirical predictions of the theory (for a graphical overview,
see Fig. 1). PALM’s modified nonparametric combination (NPC) frame-
work was then used to collate the information from these partial tests to
produce a single measurement summarizing the statistical evidence for
the underlying complex theory (Winkler et al., 2016).

To practically implement the abovementioned complex hypothesis
test, we first calculated percentage change images between MRII and
MRI3 as well as between MRI2 and MRI3 and created design matrices as
outlined in the following. The first set of designs addressed whether
motor learning did induce changes in WM or GM tissue microstructure.
The corresponding hypothesis was formalized by means of one-sample ¢
tests comparing voxelwise percentage change maps against zero. To empha-
size the aspect of reproducibility, the t test was not only conducted on per-
centage change images between MRI2-MRI3, but also for the time interval
MRI1-MRI3 (Fig. 1). The idea behind this is that the neuroplastic effect
should be present regardless of whether MRI1 or MRI2 is defined as the
baseline, provided that the maps were unchanged and reliable between
MRI1 and MRI2 (Lehmann et al., 2021). The other design matrices postu-
late that learning-related neuroplasticity correlates with DBT learning. To
this end, we used regression-type models to test for a linear relationship
between (percentage) changes in the microstructural maps and (residual-
ized) DBT learning rate. Again, these tests were conducted for the time
intervals MRI1-MRI3 and MRI2-MRI3. We used directional (one-sided)
contrasts based on the anticipated pattern of results (for example, increase
in microstructure and positive correlation with behavior, or vice versa) in
all submodels.

We then used the modified NPC framework as implemented in
PALM (Winkler et al., 2014, 2016) to jointly test and aggregate signifi-
cance across the statistical submodels introduced above. In brief, NPC
tests the null hypothesis that the null hypotheses of all partial tests are
true (alternative hypothesis: any is false). NPC works by first testing each
component hypothesis separately using synchronized permutations.
Because of this random resampling, NPC relies on minimal statistical
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Figure 1.

Overview of the statistical analyses using the NPC framework. For each imaging modality, change images between the MRl measurements before (MRIT, MRI2) and after the

learning phase (MRI3) were calculated. Afterwards, both resulting change images (Ayri—wriz and Ayri—mriz) Were subjected to a one sample ¢ test against zero to address learning-related
structural plasticity (top row). Likewise, two submodels addressing the correlation between brain changes and DBT leaming rate were set up (bottom row). Union-intersection tests (UIT) were
then conducted to identify clusters of voxels in which there was, on aggregate, evidence for learning-related plasticity in conjunction with behavioral relevant plasticity. To this end, the UIT out-

puts a single measurement that summarizes evidence across the four submodels in every voxel.

assumptions (e.g., with respect to the distribution of the data). Second,
the resulting statistics for each permutation are recorded and based on
them, the empirical null distribution for each of the partial tests is con-
structed. Finally, at each voxel, the test statistics resulting from the previ-
ous step are combined across subtests, in our case by using Fisher’s
(1932) combining function. The joint statistic is considered to be signifi-
cant if an aggregate of the partial tests is significant, therefore forming a
union-intersection test. Note also that the NPC procedure implicitly
deals with nonindependence between partial tests under the null hypoth-
esis owing to the use of synchronized permutations.

We ran the modified NPC procedure with 5000 permutations of the
data to build up the empirical null distribution from which statistical in-
ference was performed. Cluster-like structures in the images were formed
using the threshold-free cluster enhancement (TFCE) approach (Smith
and Nichols, 2009). The resulting statistical maps were then subjected to
cluster-based family-wise error (FWE) correction by using the distribution
of the maximum statistic (Smith and Nichols, 2009; Winkler et al., 2014).
Results were considered to be significant at p << 0.05 (FWE-corrected),
while potentially meaningful statistical trends were assessed with a more
liberal FWE-threshold of p < 0.1.

Intermodal relationships of microstructural changes

For significant results emerging from whole-brain analyses, we assessed
intermodal relationships between microstructural change maps to gain a
more granular insight into the plasticity process. Specifically, we were
interested in processes that might drive the plasticity results. In addition
to looking at the correlations between learning-related changes in the
NODDI maps (ODI, NDI, ISO), here we also consider myelin-sensitive
MTsat images (Lazari and Lipp, 2021) to examine in detail whether
changes in the NODDI maps covary with myelin-related processes or are
relatively independent of them. To this end, within significant clusters, we
extracted the median voxel intensities of the microstructural change maps
(Amrio-mrrs) from the skeleton. Afterwards, we fitted multiple linear
regression models with the modality of the significant cluster as dependent
variable and the remaining modalities as independent variables.

It has been suggested that MRI-derived microstructural maps sample
different, yet correlated, biophysical properties of the local tissue envi-
ronment, depending on the MR sequence parameters (Weiskopf et al.,
2021). Therefore, it must be assumed that the amount of shared variance
(collinearity) between the predictor variables is high, which complicates
inferences about the relative importance of predictors. To circumvent
this problem, we have calculated relative weights (RWs) instead of
“standard” regression coefficients. Briefly, from the original regressors,
the RW analysis approach creates a new set of regressors that is as highly
correlated as possible with the original set of variables but orthogonal
(uncorrelated) to each other (Johnson, 2000). Therefore, an RW reflects
the contribution of a predictor to variance of the dependent variable,
considering the predictor’s unique contribution as well as its common
contribution with the other predictors in the model. RW analyses
decomposes the coefficient of determination (multiple R*) of the model
into contributions from the individual regressors (Johnson, 2000).

Regression models and RWs were calculated using R’s standard library
(v 4.1.1) and the tool RWA Web with bootstrap confidence interval (CI)
estimation (Tonidandel and LeBreton, 2015). For statistical significance
testing, 10,000 samples were drawn using the bias-corrected and acceler-
ated (BCa) method of bootstrapping.

Presence of macrostructural and tissue volume changes

To be able to interpret microstructural changes especially in GM, it is
paramount to also consider colocalized changes in cortical macrostruc-
ture and tissue volume. For example, a loss of neurite structures in com-
bination with cortical thinning might manifest itself in an increase of the
NODDI parameter neurite density (Colgan et al., 2016). Furthermore, as
the NODDI metrics ODI and NDI are corrected for the contribution of
free water (ISO), interpreting their changes during learning should con-
sider potential changes in tissue volume (1-ISO).

With respect to cortical macrostructure, we estimated cortical thick-
ness based on T1-weighted images using the default settings of the
CAT12 toolbox v12.7 r1738 (Christian Gaser, Structural Brain Mapping
Group, Jena University Hospital; http://www.neuro.uni-jena.de/cat12/)
within SPM12 v7771 (Statistical Parametric Mapping, Wellcome Trust
Centre for Neuroimaging; http://www.filion.ucl.ac.uk/spm/software/
spm12/) for MATLAB R2017b (MathWorks). After preprocessing, the
Human Connectome Project Multi-Modal Parcellation (HCP-MMP;
Glasser et al., 2016) atlas was mapped to the estimated surfaces of each
individual and measurement point by using the spherical registration pa-
rameters obtained from the surface-based processing (Gaser et al., 2022).
Afterwards, cortical thickness was calculated for selected task-relevant
regions of interest (ROIs) in native space. A particular brain region
qualified as an ROI if both of the following criteria were given: (1) pres-
ence of a significant neuroplastic effect showing up in both hemispheres
based on the exploratory whole-brain (NPC) analyses in the present
study, (2) evidence of neuroplastic change after DBT training found in
previous studies (Taubert et al., 2010, 2016; Lehmann et al., 2020). For
each ROI, we calculated percentage change in cortical thickness between
measurement points MRI2 and MRI3 and compared the obtained values
against zero by means of one-sample ¢ tests. Finally, the resulting p-val-
ues from the previous step were combined using Brown’s (1975)
method, which takes into consideration the internal correlation (de-
pendency) of the data (Cinar and Viechtbauer, 2022). If the aggregated
p-value is significant, this would lend support to the notion of regional
specificity of the neuroplastic effect. Similarly, we calculated percentage
change scores between MRI2 and MRI3 in NODDI-derived free water
maps (ISO) based on the median voxel within (volumetric) ROIs, con-
ducted one-sample ¢ tests against zero and pooled the results with
Brown’s (1975) method; t tests and p-value combinations were done
using R v4.1.1 and the R package poolr (Cinar and Viechtbauer, 2022).

Results

Motor skill practice improved performance in the DBT

We started our analyses by analyzing motor performance of the
DBT. We found that the general power function yielded an
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Figure 2.  DBT performance significantly improved over eight sessions of learning. Colored

dots represent the averaged within-session performance of the n = 24 participants. To assess
learning, each individual's data were fitted with a general power function (colored lines).

adequate fit to individual’s learning data (Fig. 2) with a median
coefficient of determination of R* = 0.93 (25th percentile: 0.89,
75th percentile: 0.95). Participants’ learning rates (exponent of
the power function) were significantly different from zero, t(,3
=13.84, p <0.001, Hedges’ g=2.73, 95% CI [1.59,3.86], suggest-
ing that the DBT performance of the sample improved during
training (large effect).

Quality and reliability of MR metrics

Before commencing with the analysis of training-induced brain
plasticity, we compared the MRI measurement sessions for differ-
ences in tSNR (Farrell et al., 2007; Roalf et al., 2016) and checked
the data for the presence of outliers. By means of One-Way RM-
ANOVAs (including MRI1, MRI2, MRI3), we found that tSNR
was stable over time (b = 0 s/mm? data: F1433278)=0.62, p=0.49,
Greenhouse-Geisser corrected; b= 1000 s/mm? data: F2.46)=0.25,
p=0.78). Likewise, individual tSNR values did not fall outside the
predefined rejection criterion of 2.5*MAD below the median (Leys
et al,, 2013), thus indicating the absence of issues with respect to
MR image quality.

Scan-rescan reliability was assessed between measurements
MRI1 and MRI2, a time interval in which no change was
expected because of the absence of training. With respect to
microstructural maps in WM, our analyses revealed high mea-
surement precision and remarkable properties to discriminate
between individuals. Because the reliability of NODDI metrics
was restricted to WM in our previous paper (cf. Lehmann et al.,
2021), we calculated absolute (CVyys) and relative (ICC) reliabil-
ities only for NODDI maps in the GM. To this end, we extracted
the median voxel of GM-optimized NODDI maps (Fukutomi et
al., 2018; Guerrero et al., 2019) from the GBSS-skeleton of the
measurements MRI1 and MRI2. Two-way mixed model ICC
(McGraw and Wong, 1996) and CVs (Hopkins, 2000) revealed
good-to-excellent reliability of the NODDI metrics in GM tissue
(Fig. 3). We also subjected the NODDI maps to a one-way RM-
ANOVA to test whether median voxels extracted from the
GBSS-derived skeleton means would differ depending on mea-
surement point (MRI1, MRI2, MRI3). Again, no differences in
NDI, Fp46 =024, p=0.79, ODI, F(46 =138, p=0.26 and
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FISO, F(3,46 = 0.02, p = 0.98 were found, therefore indicating the
absence of systematic error (Fig. 3).

Behaviorally relevant changes in cortical microstructure
induced by motor learning

Using the modified NPC framework (Winkler et al., 2014, 2016),
we continued by performing whole-brain analyses aimed at iden-
tifying clusters of voxels whose changes were both significantly
different from zero (plasticity) and correlated with the DBT
learning rate (behavioral relevance).

With respect to GM microstructure, we found a pattern of
results consistent with the assumption that behaviorally relevant
structural changes occurred in the brain during DBT learning.
Specifically, a learning-associated increase in the NODDI metric
ODI and a colocalized positive correlation between changes in
ODI and DBT learning rate were found (Fig. 4; Table 1). The
cluster extended mainly over the primary motor cortex, the ante-
rior cingulate cortex, and the medial prefrontal cortex, as well as
several subdivisions of the dorsolateral prefrontal cortex. Because
GM-ODI within this cluster was unchanged and reliable in the
time interval without training (Fig. 4), it is unlikely that the neu-
roplastic effect was because of random measurement noise.
Likewise, quality of diffusion MR images (averaged tSNR across
MRI2 and MRI3 of the b =0 s/mm” data) was unrelated to per-
centage change in ODI during the learning period (MRI2-
MRI3), r = —0.11, p=10.61. Also note that within-cluster ODI
changes between MRI2 and MRI3 (as well as MRI1 and MRI3)
were correlated with DBT learning, whereas changes between
MRI1 and MRI2 did not predict DBT learning (Fig. 4).

Cortical macrostructure and tissue volume fraction
unaltered by motor learning

Next, we looked for the presence of changes in cortical thickness
and free water (ISO), the latter as an indicator of tissue volume,
during motor learning. Based on the results of the NPC whole-
brain analysis in the present study and the evidence from previ-
ous studies (Taubert et al., 2010, 2016; Lehmann et al., 2020,
2022), we chose the bilateral primary motor cortex (area four
from the HCP-MMP atlas; Glasser et al., 2016) and the bilateral
supplementary motor areas (6mp, 6ma, and SCEF according to
Glasser et al., 2016) as ROIs. Separate for each modality, we then
compared percentage change during learning (MRI2-MRI3) against
zero by means of one-sample ¢ tests. The eight p-values retrieved
were then pooled within-modality using Brown’s (1975) method on
the basis of the calculated correlation structure. No significant train-
ing-induced changes in cortical thickness, x*7g =891, p=0.35
and free water (ISO), X2(9.23) =8.12, p = 0.54 were found.

Changes in orientational coherence are correlated with
changes in neurite density, but not with intracortical myelin
While ODI is a measure representing geometric complexity
(angular variation) of neurite orientation, several other micro-
structural processes have been proposed to contribute to struc-
tural plasticity in GM (Blumenfeld-Katzir et al., 2011; Keifer et
al.,, 2015; Asan et al,, 2021; Schmidt et al., 2021; Matsuda et al.,
2022; Mediavilla et al., 2022). To gain more granular insight into
the neuroplastic process during motor learning, we sought to
predict changes in ODI by a linear combination of NDI, ISO,
and MTsat change (Fig. 5). The multiple linear regression model
significantly explained variance in the criterion A_ODI, multiple
R* = 0.40, adjusted R* = 0.30, F(39)=4.36, p=0.02. Further
analyses revealed that A_NDI was positively correlated with
A_ODI and accounted for 77.61% of explainable variance in the
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Figure 3.  Assessment of reliability and systematic error of NODDI metrics in the gray matter. Al statistics and graphs presented are based on the median of voxels on the GBSS whole-brain
skeleton (50th percentile) extracted separately for each of the n = 24 participants at the different time points of the experiment (MRI1, MRI2, MRI3). A, Examplary scatter plot of the test-retest
correlation of GM-ODI during the control phase of the experiment (MRI1-MRI2). B, Relative (ICC) and absolute (CVyys) test-retest-reliability during the control phase of the experiment (MRI1—
MRI2). Error bars represent 95% asymmetric Cls/confidence limits around the point estimates. All ICCs were significant at p << 0.001. €, Global values of NODDI metrics over the time course of
the experiment. No significant differences between measurement points were found. ns = not significant.

criterion, which is a statistically significant contribution, RW =
0.31, 95% BCa CI [0.03,0.52]. On the contrary, the RWs for
A_ISO and A_MTsat were not significant. Therefore, A_NDI
was the most important predictor, differing significantly from
the RWs obtained for A_ISO, RW_diff = —0.22, 95% BCa CI
[—0.50,—0.09] and for A_MTsat, RW_diff = —0.31, 95% BCa CI
[—0.59,—0.06].

Results of NODDI and DTI metrics in white matter
Whole-brain NPC analyses did not show nominally significant
results in the WM as assessed with TBSS. However, we observed
statistical trends for radial (A | ; pFWE < 0.06) and mean diffu-
sivities (p)FWE < 0.09) in prefrontal fiber tracts. NODDI results
showed no trend regarding possible behaviorally relevant neuro-
plasticity (all ps > 0.1).

Discussion

Establishing behaviorally relevant structural changes in the
human brain is a challenging endeavor. In addition to calls
for rigorous study designs and appropriate analytical approaches
to address this topic (C. Thomas and Baker, 2013), most studies to
date have used MRI pulse sequences that do not allow for a biolog-
ically specific interpretation of neuroplastic changes (Tardif et al.,
2016; Lerch et al., 2017). Using a powerful within-subject design
in combination with multishell diffusion MRI, we show that train-
ing a complex DBT over four weeks increases the organizational
complexity of cortical microstructure. Importantly, the micro-
structural changes during training correlated with the change in
DBT performance, and structural remodeling of the brain was
specific, meaning that it selectively affected brain areas associated
with motor processes, in the absence of systematic global changes
of tissue microstructure over time.

To the best of our knowledge, only two previous studies have
investigated neuroplasticity in GM using multishell diffusion
MRI combined with advanced biophysical modeling accounting
for non-Gaussian diffusion. In response to two short learning
sessions of a car-racing game, Tavor et al. (2013) report an
increase in restricted diffusion in prefrontal, temporal, and parie-
tal areas based on the CHARMED model (Assaf and Basser,
2005). Furthermore, Vukovic et al. (2021) detected widespread
diffusion kurtosis (Jensen et al., 2005) changes following a brief
language learning session. However, to our knowledge, the pres-
ent study is the first to find cortical microstructural plasticity af-
ter a lengthy period of motor learning, as well as the first to
report a correlation between microstructural change in GM and
concomitant behavioral change.

Learning-induced changes in GM microstructure were pre-
dominantly present in the primary sensorimotor cortex, the sup-
plementary and cingulate motor areas, the premotor cortex, but
also extended to prefrontal areas. These regions are generally
known to be involved in movement planning, motor control,
and learning (Strick et al., 2021), but they have also been identi-
fied in previous work as important nodes in the structural brain
network underlying DBT learning (Taubert et al., 2010, 2016;
Lehmann et al., 2020, 2022).

Based on findings in animal models, it has been hypothesized
that structural changes in neurites might also underlie learning
in humans (Zatorre et al., 2012). Previous studies have indeed
shown that diffusion MRI in general and the orientation distri-
bution function derived from it in particular are sensitive to neu-
ritic elements and their organizational complexity (Colgan et al.,
2016; Assaf, 2019; Wang et al,, 2019; Mak et al.,, 2021; Reveley et
al., 2022). In light of such findings, a previous study in humans
interpreted a long-lasting learning-induced reduction in neocort-
ical mean diffusivity as an indication that a relatively stable
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Figure 4. Training-related, behaviorally relevant changes in the cortical orientation dispersion index (ODI) derived from the NODDI model. The figure demonstrates that cortical ODI changed
noticeably as a result of DBT learing; furthermore, the degree of change in cortical ODI correlated with improved performance (i.e., faster learning). A, Results from the whole-brain union-
intersection test (UIT) on A_ODI maps based on the NPC methodology. Significant clusters depict voxels, in which the UIT revealed evidence for a training-induced increase in 0Dl as well as a
correlation between A_ODI and DBT learning rate. For visualization, the clusters derived from PALM were fattened with the “tbss_fill" script and subsequently projected from MNI152 space
onto the surface of the FSaverage brain using the CAT12 toolbox (Gaser et al., 2022). Clusters are displayed at p << 0.05, FWE-corrected (TFCE). Panels B and € show descriptive data illustrating
the underlying idea of the NPC analysis. B, The data underlying the significant NPC cluster are presented as connected dots (within-cluster median of ODI of the n = 24 subjects at each mea-
surement point, extracted after back-projection to native space). Boxplots are overlaid for each time point. Note that ODI in the time interval without learning (MRI1-MRI2) was highly reliable,
both in terms of within-subject variation, CVy,s = 1.83%, 95% (I [1.48,2.43] and intraclass correlation, ICC(C,1) = 0.86, 95% CI [0.71,0.94], p << 0.001. Also note the increase in ODI visible at
MRI3 (postlearning). (, Scatterplots with lines of best fit show the relation between within-cluster A_ODI (calculated based on the data shown in panel B in different time intervals) and DBT
learning rate. Positive correlations are apparent for the time intervals involving the learning period (i.e., MRIT-MRI3 and MRI2-MRI3), while data were randomly scattered for the correlation
in the time interval without training (MRI1-MRI2; r = —0.13, p = 0.55). The correlations between ODI changes and DBT learning rate were significantly stronger in the time intervals with
training than in the time intervals without training (MRIT-MRI3 vs MRIT-MRI2: z = 4.60, p << 0.001; MRI2-MRI3 vs MRIT-MRI2: z=3.29, p = 0.001), as determined by Steiger’s (1980) z-
test.

Table 1. Peak coordinates and localization of significant clusters emerging from the voxel-based NPC analysis

Peak voxel

(MNI152)
Cluster Index Cluster extent k Maximum p-value X Y V4 Most prominent structures in clusters (reduced HCP atlas; Glasser et al., 2016)
17 5218 0.014 -7 13 25 Somatosensory and motor cortex, paracentral lobular and mid-cingulate
16 1434 0.025 —49 —12 42 cortex, anterior cingulate and medial prefrontal cortex, premotor cortex
15 273 0.037 42 17 63
14 87 0.043 30 —19 69
13 25 0.047 —60 —13 34

Twelve further clusters with a cluster extent of k << 10 are not shown in the table.

memory engram had formed (Brodt et al., 2018). Although inter-  the notion that a motor engram has been formed. In this sense,
pretation of NODDI indices in terms of the underlying cellular ~ on the one hand, it has been shown in animal models that
correlates remains challenging (Kamiya et al., 2020), our finding ~ motor learning is closely linked to structural changes in den-
of a behaviorally relevant increase in the variability of neurite ori-  drites (Xu et al., 2009; Hayashi-Takagi et al., 2015; Hwang et al.,
entations in task-related brain areas seems also consistent with ~ 2022), and on the other hand, NODDI’s ODI has commonly
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Figure 5. Microstructural correlates of A_ODI in the cluster from NPC whole-brain analy-

sis. A, Results of a multiple regression model with changes in A_NDI, A_IS0, and A_MT as
predictors of A_ODI. Relative weights analysis was conducted to partition multiple & among
the predictor variables, i.e., RWs of all predictors (depicted as points) sum to the multiple 8*
of the model. Error bars represent 95% BCa Cls used to test the statistical significance of the
RWs based on 10,000 bootstrap samples. B, Scatterplot with line of best fit shows the posi-
tive correlation between A_NDI and A_ODI.

been interpreted as an index of dendritic complexity (Colgan et
al., 2016; Assaf, 2019; Wang et al., 2019; Nazeri et al., 2020;
Mak et al,, 2021). Further supporting this interpretation is the
fact that several studies of neuroplasticity in animals combining
histology and MRI found that dendritic remodeling was accom-
panied by MRI-detectable signal changes (Blumenfeld-Katzir et
al., 2011; Keifer et al., 2015; Schmidt et al., 2021; Matsuda et al.,
2022). Another candidate mechanism that could give rise to a
reduced orientational coherence of water diffusion is axonal
growth (Lerch et al., 2011), which, however, has been observed
less frequently compared with dendritic changes.

The interpretation that neuritic processes were affected by
training is additionally supported by the positive correlation
between changes in ODI and colocalized changes in NDI, an
index of the relative volume fraction of the intraneurite compart-
ment in the tissue (Zhang et al., 2012). However, in contrast to
previous findings in humans (Tavor et al., 2013; Vukovic et al,,
2021), no evidence for a significant increase in restricted diffu-
sion was detected. We speculate that the timescales at which
neuroplastic processes operate might have played a role here.
For example, mice learning a forelimb reaching task show an
increase in dendritic spine density within an hour, which
returns to pretraining baseline within two weeks (Xu et al.,,
2009). Similar rapid plasticity processes might have taken
place in the studies by Tavor et al. (2013) and Vukovic et al.
(2021), who found changes in GM diffusion within just a few
hours or days of training. In contrast, in our study a possible
increase in neurite volume early in the learning process could
have already disappeared after four weeks of training (Wenger
etal., 2017).

In humans, morphometric changes of the brain’s GM because
of training are thought to result from changes in cortical thick-
ness, surface area, tissue density, cellular composition of tissue
microstructure or some permutation of these factors (Wenger et
al., 2017; Asan et al., 2021). In the present study, there was no
evidence that cortical thickness was changed after training or
that cortical tissue was more densely packed. This is consistent
with the findings of several studies on aging and neurodegenera-
tive diseases, which collectively suggest that there is limited cova-
riation between tissue properties derived from Tlw imaging
(GM volume/cortical thickness) and those from NODDI (Nazeri
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et al,, 2015; Mak et al., 2021; Bai et al., 2022), underlining the
position that diffusion imaging-derived indices may be sensitive
for detecting aspects of neuroplasticity in GM that go beyond
“conventional” methods (Tavor et al,, 2013; Assaf, 2019; Kamiya
et al., 2020; Vukovic et al., 2021).

Besides learning-induced changes in neuritic elements and
neuroglia, research conducted in animals suggests that increased
myelin density may be another cellular mechanism that signifi-
cantly contributes to plasticity in the neocortex (Mediavilla et al.,
2022). Although it has been suggested that apical dendrites are
the main driver of restricted diffusion in the neocortex (Reveley
et al.,, 2022), NODDI metrics have shown to be associated with
myelin staining in postmortem samples of rodent brains
(Sepehrband et al., 2015; Wang et al., 2019) and human spinal
cord (Grussu et al., 2017). Likewise, a colocalization of cortical
neurite density as assessed with NODDI and myelin content
as estimated based on the T1w/T2w ratio has been reported
(Fukutomi et al., 2018). In the present study, however, there
was no significant association between training-induced
changes in myelin-sensitive magnetization transfer maps and
concurrent changes in ODI, suggesting that changes in intra-
cortical myelination did not contribute to alterations in neu-
rite complexity.

It is plausible that some limitations might have influenced the
results obtained. First, in the controlled within-subjects design
we used, as opposed to a parallel randomized controlled trial, it
cannot be ruled out that confounders influenced the control and
learning phases of the experiment differently. However, explana-
tions for our results other than training appear unlikely because
(1) direct interaction with the balancing task, not just life-as-
usual, was required to induce microstructural plasticity, (2)
NODDI metrics were reliable with no signs of undue influence
caused by systematic and unsystematic error, (3) NODDI
changes during the training but not the control period correlated
with DBT learning. Second, it has been argued that some of the
modeling assumptions that NODDI makes may be oversimpli-
fied (Jones et al., 2013; Kamiya et al., 2020), especially in complex
tissues such as GM. One point concerns the fact that NODDI
does not explicitly model glial cells (Kamiya et al., 2020),
although this would be desirable because of the fact that neu-
roglial changes are closely coupled to neuronal changes
(Perez-Alvarez et al., 2014). Such justified criticisms must be
weighed against the facts that NODDI is highly reproducible
(Lehmann et al., 2021; Coelho et al.,, 2022) and extensively
validated by histologic examinations (cf. Kraguljac et al., 2023).
Third, we unexpectedly did not find statistically significant evi-
dence for neuroplastic changes in WM. Instead, we observed a
trend toward decreased diffusivity in prefrontal fiber tracts, con-
sistent with previous findings (Taubert et al., 2010; Lehmann et
al.,, 2020). This might suggest that our study has been underpow-
ered to detect medium-size effects in exploratory whole-brain
analysis of the WM.

In summary, this study shows that advanced diffusion MRI
combined with biophysical modeling is a promising approach to
gain highly specific insights into the underlying mechanisms of
neuroplasticity in humans. From an applied point of view, it is
interesting to note that neurite orientation dispersion, which we
found to increase after motor training, is often lowered in aging
and neurodegenerative conditions (Nazeri et al., 2015; Nazeri et
al., 2020; Mak et al., 2021; Bai et al., 2022). In perspective, it is
therefore hoped that NODDI will increasingly be used as an
MRI index for evaluating treatments to maintain brain health or
to ameliorate the effects of disease.
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