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How can one conciliate the claim that humans are uncertainty minimizing
systems that seek to navigate predictable and familiar environments with
the claim that humans can be creative? We call this the Enlightened Room
Problem (ERP). The solution, we suggest, lies not (or not only) in the
error-minimizing brain but in the environment itself. Creativity emerges
from various degrees of interplay between predictive brains and changing
environments: ones that repeatedly move the goalposts for our own error-mini-
mizing machinery. By (co)constructing these challenging worlds, we effectively
alter and expand the space within which our own prediction engines operate,
and that function as ‘exploration bubbles’ that enable information seeking,
uncertainty minimizing minds to penetrate deeper and deeper into artistic,
scientific and engineering space. In what follows, we offer a proof of principle
for this kind of environmentally led cognitive expansion.

This article is part of the theme issue ‘Art, aesthetics and predictive proces-
sing: theoretical and empirical perspectives’.

1. Introduction
Predictive Processing (PP) seeks to explain animal behaviour and cognitive
functions as well as their underlying neurophysiology in terms of—Bayesian—
inference processes. PP can be read as the umbrella term for many theories of
the predictive brain (e.g. [1–6]). PP explains cognition and behaviour by relying
exclusively on the construct of Bayesian (i.e. probabilistic) ‘beliefs’ encoded by
the brain’s neurophysiology, and that need not be defined relative to linguistic
propositions (for a review see [7]). In PP, action, perception, attention and learn-
ing are cast as inference processes over prior beliefs, or as corollaries of such
inferences; these beliefs mapping the relation between unknown (unobservable
or latent) variables such as states of the world across time and the (observable)
outcomes they are thought to cause. Action selection is presented as an infer-
ence process over sequences of latent variables, and that leads to actions that
harvest the sensory data that is least surprising and implicitly makes the beliefs
come true; in other words, realising predicted outcomes [8,9].

Some have argued that there is a fundamental limit to how much cognition
and behaviour one can explain with the constructs of predictions and prior
beliefs under PP. The so-called Dark Room Problem (DRP) suggests that if be-
haviour was driven only by the imperative to minimize uncertainty, organisms
like us would always be found in situations that are minimally uncertain and
that preclude violations of our predictions. This problem has bred a large
and varied literature [10–16]. It is now clear that the DRP ignores the basic
fact that prediction errors need to be minimized both with respect to internal
and external sensory evidence, allowing bodily requirements to exert a strong
influence on behaviour [10,12,15]. Furthermore, many creatures minimize
error across long-term time horizons, enabling them to act locally—in ways
that seek informative prediction errors—as part of trajectories that move
them closer to their goals [12,15].
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Having said this, the intuition behind the DRP is not com-
pletely misplaced. There is indeed a limit to how much
behaviour one can satisfactorily explain solely with skull-
bound prediction and beliefs. Under PP, there is a sense in
which all that one could ever perceive or predict ought to
be already possible from the perspective of that person’s
world model, or generative model. Changes in the content
of our world models do not, it seems, involve the creation
of brand-new understandings, so much as settling into a less
visited or latent part of an existing space of hypotheses.
Exploring this latent space of beliefs corresponds to a kind of
model expansion or exploration: it is all about entertaining con-
ceivable—although improbable—parts of a high-dimensional
conjecture space [17]. This is the problem of generating the
space of generative models per se, that can then be explored
using Bayesian model selection [17–20]. This generally uses
some form of nonparametric Bayes [21–23]. However, if we
cannot expand our generative models, we can only commit
to hypotheses that may have a low prior probability. A conse-
quence of this is that while a PP agent can escape dark rooms, it
can only do so if it is equipped with the beliefs that it should
escape (i.e. prior beliefs that its actions minimize expected
surprise; namely, uncertainty). We call this the Enlightened
Room Problem (ERP) of PP: the problem for a predictive
system to seek out anything that is truly ‘different from what
it already knows’.

The corollary of this is the problem of creativity in PP
agents. How can creativity occur in PP agents if they
cannot expand the bounds of their own prediction arenas?
A solution to the problem of creativity would involve show-
ing how PP agents can be creative despite being confined to
their generative model—the latent mental space within which
predictions can be formulated. In what follows, we provide a
simple proof of principle of the way PP agents—endowed
with a limited belief space—can nonetheless find creative sol-
utions to foraging and navigation problems that are never
represented explicitly in their world model (i.e. outside of
the dark room). In the spirit of computationally informed
psychology, though recognizing that there are important
gaps between our computational approach to creativity in
PP and the way such a phenomenon occurs in humans, we
conclude with some of the consequences of our view for
how one could understand human creativity, should we
accept that the predictive processing mechanism resembles
those of the human mind.
2. Simulating creativity in predictive systems
(a) The notion of creativity
Ellis Paul Torrance—the psychologist behind the widely used
Torrance Test of Creative Thinking (TTCT)—suggested that
creativity is a process of hypothesizing a solution to a pro-
blem and then testing and evincing that solution [24]. This
definition captures two essential features of creativity: (i)
creativity as a process, or as an attribute of a person, and
(ii) creativity as a product, or as that which results from the
process. Common criteria to assess creativity are the novelty
of the product, idea or solution that is the outcome of the
creative process, and the aptness, or value of the product,
idea or solution for the larger social group [25].

While product creativity is relatively straightforward to
define, the mechanisms of process creativity remain disputed
[26]. One common way to measure the cognitive mechanisms
of creativity, within the context of creative thinking,
is through tasks that measure creative ideation, which is
commonly operationalized with psychometric measures
of Divergent Thinking [27]. Mechanistically, it has been
suggested that creative ideation could be framed as the ability
to explore a (model) space of ideas. For instance, the associat-
ive theory of creative ideation [28] argues that creative
ideation is driven by an activation spread of related ideas
in long-term memory, facilitating access to ideas that are
related in semantic networks [29,30]. Conceiving of creative
thinking as depending on one’s ability to explore a (model)
space of ideas is not new. Mednick [31] proposed that creative
thinking depended on what he called the ‘associative hierar-
chy’, which corresponds to the ‘manner in which the
associative strength around ideas is distributed’ [31], explain-
ing why a creative individual can produce non-stereotyped
(i.e. original) responses. Although this idea was criticized
[32], the general claim on creativity—being a process of
escaping ‘well-trodden’ regions of a long-term memory
semantic space—remains relevant [33]. Within the context
of computational approaches to creativity, Boden [34] pro-
posed that creativity involves the ability to transform one’s
conceptual space through the alteration of computational
rules (e.g. an evolutionary programme that employs numeri-
cal variation to induce novel adaptive solutions). In Koestler
[35], creative thinking was associated with a series of mech-
anisms that allowed for the exploration of ‘matrices of
concepts’, which was driven by two key mechanisms. The
first mechanism is the ‘selective emphasis’ of the ‘perceptual
and conceptual matrices’ that pattern the creator’s experience;
thereby determining which aspects of those matrices should
be considered relevant. The second mechanism is the
mediation of the internal, partly conscious process of matrix
manipulation by a ‘feed-back control’ mechanism exerted
by the external medium of creativity.

Discussions on the notion of creativity—in the sociology of
arts—have focused on the way social context functions as such
a feed-back control mechanism. The sociological perspective
seeks to frame creativity as an emergent phenomenon at the
intersection of culture, language, materiality, education and
training [36,37]. On that view, creativity—rather than being
read as taking seed solely in the mind of the artist—ought to
be understood as that which obtains in networks of actors,
resources and constraints that allow for the creative work in
a given art world. This sociological shift in emphasis on the
source of artistic creativity, from the mind of the individual
to the artist in context, aided by developments in embodied
and extended approaches to cognition [38–41] has led some
researchers to favour a ‘distributed’ approach to creativity
[42], which seeks to understand creativity as a process that
unfolds through the interaction of mind and socio-material
environments.

Taking stock of the above perspectives on creativity, in
our simulation study, we will consider a concept of creativity
that refers to the rolling (socially and environmentally distrib-
uted) process of hypothesizing a solution to a problem and
then testing and evincing that solution, which should turn
out to be novel (i.e. statistically different from other products)
and apt (i.e. responding to the task demands). We take the
mechanisms of process creativity to be broadly those respon-
sible for allowing an agent to explore regions of their
hypothesis space (e.g. of their associative hierarchy), using
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mechanisms for ‘selective emphasis’ guided by ‘feedback
control’ from the environment. We operationalize this view
of creativity in the following series of simulations that
begin to address the challenges posed by the problem of crea-
tivity under the ERP. Importantly, we are not directly offering
a solution to the problem of creativity for psychological
science. Rather, we are concerned with the ERP, which is a
problem for predictive processing systems—a problem that
may be more relevant for robotics than for psychology.
However, under the assumption that humans are PP agents,
which remains debated, our findings could inform research
on human creativity in psychological science. Our simulation
explores the following question: ‘if we were to ask predictive
processing agents to generate creative products, how could
they manage to do so?’ Our view of creativity simply fur-
nishes a target for deriving computational metrics to
measure creative behaviour in predictive processing agents.

(b) Material and methods
(i) Task
This section describes numerical simulations in which we
consider creative solutions to a foraging task (figure 1a). In
this instance, the paths taken by an agent are scored using
measures of creativity outlined below. These simulations
are repeated when dynamically changing (i) the latent struc-
ture of an agent’s generative model or (ii) the environmental
process generating its observations or (iii) both. The goal of
the task is to find one of the four borders of a 100 × 100
maze comprising 9750 empty locations, starting from the
centre of the maze, and to collect as many rewards as possible
over 100 trials. There are 250 reward locations scattered ran-
domly across the 10 000 possible locations. The constraint
imposed on the agents is that, at all times, they only have
access to the eight locations that surround their current
location (access to nine locations in total). Agents can only
plan over 1 time step ahead, thereby having to infer their cur-
rent location with respect to their limited set of beliefs (i.e.
‘which of the nine possible locations am I in right now?’)
and predict and thereby enact the transition to the next
location (i.e. ‘given that I am in this location, I predict that
engaging the action ‘up’ will bring me to the location
above’). On each trial, the surrounding locations of the
agent are redefined relative to the locations corresponding
to the true position of the agent in the environment
(figure 1b). Because we equip the agent with beliefs that attri-
bute 100% probability to the centre location (location 5,
figure 1b), agents always start at the centre of their ‘explora-
tion bubble’.

We simulated 100 agents, 100 trials per agent, across the
following four conditions that manipulate the fluctuation in
internal model parameters and in external environmental
parameters.

Condition 1 (static beliefs and static environment) is the
baseline condition and involves no changes in the settings
of the simulation parameters.

Condition 2 (dynamic beliefs and static environment)
involves increasing the options available to the model as
parameterized in its prior beliefs about transitions among
states. Specifically, we replaced previously zero transition
probabilities with small non-zero prior probabilities
(figure 2, upper right panel). We thus keep the same dimen-
sions for the matrix encoding the parameters, but switch on
some parameters that were previously switched off. The
motivation for this manipulation is to allow the agent to
commit to new hypotheses that have low prior probability,
thereby making new behaviour possible. This intervention
was performed every 10 trials (i.e. 10 times over the 100
trials). Otherwise, agents operate with the same belief set as
in condition 1. This intervention induces volatility over the
agents’ beliefs about possible actions, thereby allowing the
agent to explore states that were previously inconceivable.
This can be viewed as experiencing a transient expansion of
the world model by switching on latent parameters, every
10 trials.

Condition 3 (static beliefs and dynamic environment)
keeps the beliefs of the agent intact, but randomly redistri-
butes the rewards across the environment on every trial.
This means that reward locations that were previously acces-
sible in the agent’s model might disappear, and vice versa,
thereby inducing variations in environmental structure and
the agent’s sensorium (figure 2, left panel).

Condition 4 (dynamic beliefs and dynamic environment)
combines both world model and environmental fluctuations.
(ii) Operationalization of creativity
The task of our simulated agent can be understood as a form
of Divergent Thinking task (DT). DT tasks such as the Alter-
nate Uses Task (AUT) are used to study creative ideation
understood as a facet of creativity. The AUT asks a partici-
pant to provide as many uncommon and original uses for a
common object prompt, within a predefined unit time.
AUT psychometric measures include the number of ideas
generated by the participant, or fluency, the uncommonness
of those ideas, or originality, and the diversity of semantic
categories covered, or flexibility. This allows one to quantify
the ‘aptness’ (i.e. the number and semantic range of ideas;
namely, fluency and flexibility, respectively) and ‘novelty’
(i.e. originality) in a way that corresponds to the task at
hand. In our simulations, we tried to identify a computational
homologue of such psychometric measures.

We quantified the aptness of the product—i.e. the behav-
ioural trajectory—in terms of the number of rewards and
the time taken to complete the task (of finding one of the
four outer boundaries of the plane). We measure the novelty
of the behavioural trajectories in terms of their movement
entropy across conditions. Movement entropy corresponds
to the Shannon entropy of the distribution representing all
the movements to all possible nine locations, over the 100
trials (figure 3, bottom panel). Movement entropy thus
measures variations in movements. Movement entropy pro-
vides a quantitative comparison of agents’ behaviour. It is a
measure of the extent to which an agent has explored a reper-
toire of trajectories across trials (i.e. over the full trajectory).
Data driven ways of measuring originality are used in other
creative thinking studies to quantify originality based on fea-
tures intrinsic to the data structure describing the creative
product; instead of relying on an extrinsic standard, such as
the judgement of an assessor (e.g. using latent semantic analy-
sis to measure distance between the meaning of responses in
an AUT [33]). Here, the product is a sequence of
movements that can be represented as a distribution with a
measurable property, such as entropy.

In the AUT, subjective rating measures of effort can be
used to track, indirectly, the extent to which the participant
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Figure 1. (a) Each agent starts at the centre of the grid world (starting area) and must reach one of the locations that comprise the borders (yellow borders). The
grid world is made of empty locations ( purple) and rewarding locations (blue). An additional objective of the agent is to collect as many rewards as possible. The
constraint that applies to the agent is that it only has access to its eight surrounding locations as well as to the location it currently occupies. (b) As the agent moves
across the grid world or plane, the surrounding locations are reconfigured to match the locations in the true environment (a.k.a., generative process). (c) Indeed, the
agent’s world model functions as a representation of the true environment that generates the sensory evidence that the agent uses to infer where it currently stands
in its known region and where it should go next. The agent is modelled as a generative model that decomposes into priors and likelihood. White circles represent
random variables, which are the hidden states (i.e. locations 1–9 in the agent’s world model) and policies (i.e. the inferred action plan). Purple circles represent the
outcomes, or observations, which correspond to what will be experienced at a location (i.e. a reward, blue; an empty location, purple; or an undesirable outcome,
black, which is always associated with the starting position to motivate the agent to not stay where it is). Squares represent model parameters (e.g. likelihood A,
and empirical priors B, D, G). (d ) The generative model is the joint probability of observations and hidden states, and decomposes into priors and the likelihood. The
factors are categorical densities (Cat), and learning is suppressed in this model. Behaviour amounts to the selection of an action plan, which moves the agent across
the grid world. This is done by inferring the policy that minimizes expected free energy (G). Expected free energy includes an expected value, where value is the
logarithm of preferred outcomes; known as ‘prior preferences’—often denoted as ‘C’. In our simulation, this parameter was not manipulated, and was specified such
that our agent had higher preference for the reward outcome, lower preference for the empty location outcome, and very low preference (i.e. aversion) for the
observation corresponding to the ‘start’ location. This location was the observation associated with the location number ‘5’ in the likelihood matrix A. For a descrip-
tion of the update equations and underlying theory, see [43,44]. (e) The likelihood parameter A maps the three possible outcomes (blue, purple and black) onto the
nine possible location states, ( f ) whereas the transition parameters B map the probability of transitioning between location states over time for each nine possible
policies (up, down, left, right, up-left, up-right, down-left, down-right).

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

379:20220415

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 J

an
ua

ry
 2

02
4 
engages executive functions during the task, which are func-
tions that have been shown to contribute to creative ideation
through top-down control, by inhibiting stereotyped associ-
ations [45,46]. Although we cannot ask our synthetic agents
to tell us about the cognitive effort exerted to complete a
task, we can quantify their ‘surprise’. We thus quantified pro-
cess creativity with a measure of the unexpectedness, or
surprise inherent in posterior beliefs, known as variational
free energy (F). Free energy is a bound on the negative
logarithm of Bayesian model evidence, which—in the
implementation of PP under active inference—functions as
a metric of how well an agent’s beliefs match the true pos-
terior over hidden states. We take the variance of F over the
100 trials: i.e. the degree to which F deviated from its average,
as well as the total F over 100 trials. The variance of F over
time can be read as equivalent to the ‘effective surprise’ of
the creative process [47]. A higher variance in F means
more expected surprise, and therefore more process creativ-
ity. Importantly, free energy is not a cause of creativity. It is
a consequence of an inference process, and in this context
functions as a marker of how ‘unexpected’ the outcome of
that inference process was from the point of view of an
agent’s model. Under the assumption that free energy tracks
experiential aspects of an aesthetic experience [48–51], the var-
iance of F could further be seen as a proxy for the experiential
aspect of creative behaviour—had the simulated agents been
human agents.
(iii) The generative model
Under PP—as implemented by active inference [52]—world
models entailed by the brain are specified as a joint probability
(P(S,O)) of world states denoted as St = (s1,s2,… st) and of sen-
sory states, or observations denoted as Ot = o1,o2,… ot). Each
agent is endowed with such a model, or joint probability,
the inference over which—following a Partially Observable
Markov Decision Process (POMDP)—amounts to (i) leveraging
prior beliefs over states (e.g. P(S)), (ii) prior beliefs over state
transitions for each possible policy ‘pi’ (e.g. P(St+1|St,pi)), and
(iii) the likelihood mapping between states and observations
(P(O|S)) to infer current and future states and observations.
The update equations to perform the inference over the
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Figure 2. Manipulation of the reward locations and the agent’s beliefs about the consequences of action. The left panel: At the start of each trial, the agent is
equipped with a likelihood that corresponds to the outcomes at the locations that surround it. After the agent’s action (e.g. going up), the likelihood of the agent is
reconfigured to reflect what is around the agent at its novel position. This is represented on the left-hand side of the left panel as the 3 × 3 matrices. On the second
and third matrices, we use the subscript to illustrate the movement of the agent (e.g. the second matrix starting from the bottom has a subscript ‘4’ next to the
location ‘5’ to indicate that the new location 5 is the previous location 4). When we apply the randomization of the reward in the environment, some of the reward
locations that were present at the previous time step (e.g. in t2) can disappear (e.g. in t3). For instance, in the example shown, in t2 the agent knows that there is a
reward on the left. The agent then decides to engage the policy ‘stay’, but then the reward on the left disappears due to the randomization of the reward dis-
tribution. Thus, at t3, the agent loses the reward that was on its left. The right panel: The bottom matrix represents all nine B matrices available to the agent to
infer the policy—as though they were superimposed on each other. The nine B matrices allow for the nine possible movements, which are ‘up’ (green), ‘down’
(yellow), ‘left (blue), ‘right’ (orange), ‘up-left’ (brown), ‘up-right’ ( purple), ‘down-left (red), and ‘down-right’ (black). Each B matrix is represented with a different
colour. The manipulation of the agent’s beliefs amounts to randomly adding nine Dirichlet parameters of ‘.1’, such as depicted in the matrix on the upper-right
corner of the figure, to the agent’s transition matrices for each action, which change the probability distributions through renormalization of the columns and creates
volatility that underwrites exploratory behaviour. In practice, only those parameters in the column corresponding to the state ‘5’ have an influence. Here, we
illustrate such a manipulation of the transition matrix ‘up-left’ (brown).

C1

movement entropy 0.16144 movement entropy 1.5547 movement entropy 0.92528 movement entropy 1.9559

C2 C3 C4

Figure 3. Top panel illustrates the simulated behaviour (i.e. product) for one agent across all four conditions. The light blue squares represent the rewards at the last
trial. The agent has to navigate to the outer boundary while collecting as many rewards as possible over 100 trials. The bottom panel depicts the movement
(Shannon) entropy in terms of the action distribution for an agent. Regions of the 3 × 3 matrix become darker as the agent chooses the action corresponding
to that location more frequently (e.g. the upper right cell on the first panel being black because the agent only went up-right). The more spread out the
grey is across cells, the higher the movement entropy, and the less directed, or predictable the behaviour. The 3 × 3 matrix represents the nine locations that
the agent can access, and to which its model is limited (i.e. the darkroom of its mind).
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agent’s generative model are described in Smith et al. [43]. Our
simulations used standard variational message passing under a
POMDP, with policy-dependent state transitions. The
implementation of this message passing used (open source)
code that has been used in the majority of active inference
studies of this sort. In brief, predictive processing is simulated
with a MATLAB routine (spm_MDP_VB_X.m) that takes
model parameters—i.e. likelihood and transition matrices,
initial conditions and prior preferences—and returns a
sequence of belief updates and actions that minimize vari-
ational and expected free energy, respectively. Here, we focus
on a description of the parameters of the generative model
used to simulate condition-specific behaviour. For a full discus-
sion of the modelling details used in this paper—and the
accompanying neuronal process theories—please see Smith
et al. and Parr & Friston [43,52]. Each simulation was run separ-
ately—under different model parameters—for four conditions.
Each condition involved a loop of 100 iterations for 100 trials.
For example, condition 4 involved adding parameters to the B
matrix (every 10 loops), as illustrated in figure 2 (right panel),
and randomizing the distribution of rewards (every loop).

Generative models factorize into priors and likelihood
denoted D, A and B, which constitute the parameters of the
model (figure 1c,d). D represents the agent’s prior expectation,
or belief about the initial hidden states. Here, it was specified
such that the agent always starts with the belief that it is at the
centre location of its exploration bubble. The parameter matrix
A (the likelihood) corresponds to the agent’s ‘sensory’ beliefs
and encodes the probability of observation at a given location
(figure 1e). The transition priors B encode beliefs about the
transitions between states available to the agent (figure 1f )
and the way states evolve over time. In our simulation, the
states ‘S’ of the generative model correspond to the nine
locations that the agent can occupy at any moment, and the
observations ‘O’ correspond to the outcomes that each
location can afford, that is, a reward location or an empty
location. We further add a third possible observation,
which is an observation that corresponds to the agent’s cur-
rent position. This allows the agent to always know where it
stands across the nine possible locations.

The agent completes the task through cycles of hidden
state inference and predictions that lead to actions. State infer-
ence is accomplished by minimizing the discrepancy between
predicted observations and current observation. This
amounts to minimizing variational free energy, which is
equivalent to maximizing Bayesian model evidence [53].
The prediction of future hidden states is allowed by the fact
that the probability of a future state at ‘t + 1’ is conditioned
upon the current state inferred at time ‘t’, and upon a
policy (pi) encoded by the policy-dependent B parameters;
hence, generative models under active inference include as
many B matrices as there are possible actions, or policy-
specific transitions. In our simulation, nine policies (and
therefore B matrices) are available to the agent. These are
the ‘up, down, left, right, stay, up-left, up-right, down-left,
down-right’ matrices and policies. The prediction of future
states—and the realization of that prediction with action—is
thus achieved by selecting the policy or plan that has the
greatest model evidence expected under the future states at
t+1, as encoded by the B parameters. This corresponds
to selecting the policy that affords the least expected free
energy Gπ, (represented as G in figure 1c). Expected
free energy is the free energy expected under predictive
posterior beliefs about outcomes following an action. It can
be decomposed in a number of ways. From the point of
view of the current treatment, one can regard expected free
energy as a combination of expected information gain—that
characterizes active learning and Bayes optimal experimental
design [54,55], and expected value that characterizes optimal
Bayesian decisions [56]. Here, value is the logarithm of prior
preferences encoded by C. The combination drives explora-
tion and exploitation that we hoped would showcase
creative solutions to foraging under uncertainty.

The four conditions are implemented through a manipu-
lation of the parameters of the generative (a.k.a. world)
model and a manipulation of the parameters of the genera-
tive process, respectively. Specifically, condition 2 added
nine parameters (randomly selected) to the probability tran-
sition B matrices to increase the volatility, or uncertainty,
about state transitions. This uncertainty engenders an episte-
mic drive for moving to various locations, to resolve
uncertainty about the observations that would ensue. Con-
dition 3 randomizes the true map of reward, and condition
4 induces volatility in the agent’s beliefs about transitions
(i.e. B matrices) and the true map of rewards.
3. Results
We simulated 100 agents each performing 100 trials of the navi-
gation and foraging task. We operationalized the creative
process—within the context of this task—as the process of
inferring current hidden states (i.e. the current location) and
predicting future hidden states (i.e. the future location under
an action) and outcomes (i.e. what is at a location). We
measured the creative process in terms of free energy, which
we read as a measure of effective surprise. We operationalized
the creative product—within the setting of the navigation and
foraging task—as the path of an agent (figure 3), the aptness
of which was measured with the number of collected rewards
and time to task completion (i.e. reaching the boundaries of the
maze). The novelty of the behaviour was measured in terms of
movement entropy, over multiple moves.

Figure 4 presents the distribution of the results in the
population. The first panel (hits) shows that the median hits
are lower under all conditions (box 2 to 4 from left to
right), relative to the baseline conditions (box 1 from left to
right). However, we can see that few ‘exceptional’ individuals
(outliers marked by the red crosses) managed to collect many
rewards under the creativity conditions. There were no
instances of such individuals under the baseline condition.
All the 25% best performing individuals under condition 2
and a large portion of the 25% best performing under the
other conditions scored higher than the 25% best performing
under the baseline condition (99% if the baseline agents had
the same hit score). The second panel (completion time)
shows an important result, which is that the high mean
trials to completion under condition 4 in table 1 is explained
by a large heterogeneity in the population; many of the
agents having in fact reached the boundary in less than 50
trials. The third panel (movement entropy) shows that the
entropy under the baseline was 0 for 99% of agents, meaning
that all agents’ trajectories under the baseline involved only
actions in one direction towards the boundary. The most
entropy, and therefore product novelty, was exhibited under
condition 4, where the least original agents (the bottom
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25%) were still more original than the top 25% under the
other conditions. The fourth panel (variance in F) shows
that many exceptional individuals experienced higher
variation in free energy under conditions 3 and 4, which rep-
resents greater effective surprise. The fifth panel (total F)
shows again the large heterogeneity in effective surprise.



Table 1. Results (shown as changes, relative to the first condition).

product creativity process creativity

aptness

novelty % of max
entropy (3.17)

effective surprise

mean hits
mean trials to
completion

mean variance of free
energy

average sum of free
energy

C2 −0.10 (2.88) +25.74 (75.75) + 50.12 (50.17) −0.0048 (0.0101) −1.6271 (−133.73)
C3 −0.55 (2.43) +12.67 (62.68) + 33.71 (33.76) +0.0071 (0.0219) +0.4909 (−131.61)
C4 −0.80 (2.18) +7.94 (57.95) + 66.53 (66.58) +.0031 (0.0180) −0.2314 (−132.33)

Table 2. Agent 47.

product creativity process creativity

aptness

novelty % of max
entropy (3.17)

effective surprise

hits trials to completion variances in F sum F

baseline 2.98 (mean) 50.01 (mean) 0.05 (mean) 0.0148 (mean) −132.10 (mean)
agent 47 in C3 3 50 19.57 0.0148 −133.3253
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In the population, across the three creativity-inducing con-
ditions, only one agent managed to complete the task in 50
trials, which is slightly faster than the mean completion time
at baseline. Agent 47 achieved this (table 2), under condition
3 (i.e. dynamic environment). Only in condition 3 (and one
agent in condition 2) did agents (48 agents in total) managed
to complete their task in less than 63 trials (i.e. in approximately
25%more time than baseline). The aptness of product creativity
and the effective surprise of agent 47 was similar to mean
results at baseline. However, agent 47 exhibited much greater
product novelty, as measured by its movement entropy.
4. Conclusion
Taken together, our results suggest that despite being con-
fined to the limited model space of their mind, PP agents
can exhibit creative behaviour when placed in situations
(exploration bubbles) perturbing the conditions under
which they must accomplish their task (i.e. conditions 2, 3
and 4). This, however, will not always be the case at the indi-
vidual level. Indeed, under the creativity-inducing conditions
2, 3 and 4, figure 3 shows that many agents performed poorly,
in terms of product aptness, despite exhibiting greater
novelty and experiencing greater effective surprise. Under
the assumption that creativity requires product aptness and
novelty, as well as process creativity, many agents under con-
ditions 2, 3, and 4 failed to be creative. However, when
looking at figure 3, some exceptional agents exhibited creativ-
ity above baseline, while managing to complete the task.
Only one agent (agent 47) managed, under condition 3, to
complete the task in 50 trials, which is about mean baseline,
while exhibiting slightly better than average hits and process
creativity; though, with significantly higher product novelty.
The main conclusion of our numerical experiments is that,
even though some exceptional agents evinced creativity, at
the group level no single condition systematically afforded
the best level of creativity along all three dimensions of crea-
tivity: aptness, novelty and effective surprise. At the group
level, trade-offs were frequently apparent. Aptness (e.g.
mean trials to completion) seemed to come at the cost of
novelty (e.g. movement entropy), and effective surprise
tended to come at the cost of novelty and aptness. Thus, crea-
tivity in PP agents appears to be possible—although
sometimes imperfect—despite the imperative to minimize
uncertainty, under natural variations in environmental con-
tingencies (e.g. environmental variations) or intrinsic
variations in belief states (e.g. variations in the B parameter).
5. Discussion
In our numerical analyses, the first of the three creativity-
inducing conditions (i.e. condition 2, dynamic beliefs) was
equivalent to an exploration of latent model space (under con-
ditions 2 and 4). In other words, we allowed the agent to
explore transitions between states by adding new parameters
to the model. This induces a drive towards exploration—
versus exploitation—which has been presented as a response
to the DRP [53], and which here explains the greater increase
in novelty under condition 2 ( table 1). Under the active infer-
ence implementation of PP, dynamic changes in the precision of
transition probabilities have been associated with the action of
the noradrenergic system [53], which changes the volatility in
transition matrices like we did under conditions 2 and 4,
and which is associated with the regulation of performance
in unconstrained cognitive flexibility tasks [57,58] (e.g.
Compound Remote Associate Task).
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In condition 3, each trial involved a reconfiguration of the
agent’s likelihood, or ‘sensory beliefs’—indicating where
the rewards were likely to be at any given time—within the
limits of the agent’s 3 × 3 sensory horizon. The manipulation
in condition 3 acted as a reconfiguration of the sensorium
that could run counter to the agent’s current sensory beliefs
(e.g. ‘where did the reward that was to my left go’?). The
perturbation of the sensorium, through environmental manip-
ulations, is a well-knownmethod for creativity in art historical
modernity. Artists like Jean Arp, Max Ernst, Salvador Dali,
Duchamp, Giacometti, Mondrian andmanymore, in develop-
ing techniques to ‘criticize’ the limit of their artistic medium
[59] often randomized, as it were, the way sensory obser-
vations would be generated by their artistic medium (e.g.
applying the gesso unevenly on a canvas to let the paint
drip in unexpected ways), thereby influencing their act of
creation. Now, it may be argued that random outcomes
(behavioural, or material) are not sufficient for creativity.
However, it is important to note that under the definition of
creativity as product and process, a product can be crea-
tive—i.e. different—and apt, irrespective of whether the
product was produced by chance, or whether it was carefully
engineered. Moreover, the claim that the outcomes of modern
art historical methods of creation, because they heavily relied
on random processes, are not creative products does not align
with common intuitions about the extent of artistic creativity
during modernity. One might say then that what makes a
random outcome creative is the genius mind of the creator
that has decided to leverage a random process to make a
piece of art out of it. But it is not clear whether this is required.
Looking again at art history, the conception of the ‘genius
artist’ has been heavily contested by artists themselves as a his-
tory-dependent construct about creativity that has evolved
with the social status of the artists [60]. Instead, the creativity
of products such as artworks might instead come from the
fact that they generate irregular sensory landscapes yielding
opportunities for various error minimization dynamics,
which some have argued explain many complex features of
aesthetic experience [48–51]. Creativity, art, beauty and the
like may very well be in the eye of the beholder rather than
at the heart of the product, or in the mind of the creator.

In conditions 2 and 4, agents tended to improve their
model of the world, thereby keeping effective surprise at
bay. This result aligns with findings according to which
self-perception of creativity does not necessarily correlate
with objective measures of creativity (e.g. measures of pro-
duct creativity), which suggests that product creativity and
process creativity might be better presented as two distinct
constructs [61]. The apparent dialectic between creativity
and the ultimate resolution of expected surprise or
uncertainty speaks to the imperatives for action and selection
at different levels. At the level of choice behaviour, the
imperatives for minimizing expected surprise manifest as
information seeking responses to salient cues [62,63]. At the
level of active learning, this imperative leads to novelty- or
knowledge-seeking behaviour that aims to resolve uncertainty
about contingencies [64]. A key aspect of all these processes is
the minimization of model complexity, which means that any
change to a model leading to creative behaviour will usually
entail some simplification of the perceptual or conceptual
hypotheses entertained [65–67]. This has been discussed in
the context of ‘aha moments’ [68], and evidenced in van de
Cruys et al. [69], as insights that provide a unifying explanation
for the way the world works [20,65,66,70].

The goal of this paper was ultimately to illustrate how PP
agents could exhibit creative behaviour, under a certain defi-
nition of creativity. Our numerical analyses suggested that
there are multiple sources of creativity in PP agents, two of
which are perturbations in an agent’s model of the structure
of the world and variations in environmental contingencies.
This hints at a much larger picture: over time, we humans
have built complex worlds in which experiments and pertur-
bations (scientific, personal and artistic) deliver sensory
streams that demand new explanations. In this potent yet indir-
ect way, predictive processing agents structure their physical
and social worlds in ways that repeatedly move the goalposts
for their own error-minimizing brains. In response to the
DRP, PP agents do not stay in dark rooms because they
implicitly or explicitly install—in the environment—constraints
that motivate exploration (e.g. rewards and incentive redistri-
bution). In response to the ERP, moving the goalposts in such
a way allows otherwise improbable behavioural patterns to
emerge, despite agents being committed to their predefined
model space. This is cognitive husbandry—an environmentally
mediated means of cultivating creativity and extending the
reach of our own predictive minds.
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