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A B S T R A C T   

Studying the development of brain network disruptions in epilepsy is challenged by the paucity of data before 
epilepsy onset. Here, we used the unilateral, kainate mouse model of hippocampal epilepsy to investigate brain 
network changes before and after epilepsy onset and their stability across time. 

Using 32 epicranial electrodes distributed over the mouse hemispheres, we analyzed EEG epochs free from 
epileptic activity in 15 animals before and 28 days after hippocampal injection (group 1) and in 20 animals on 
two consecutive days (d28 and d29, group 2). Statistical dependencies between electrodes were characterized 
with the debiased-weighted phase lag index. We analyzed: a) graph metric changes from baseline to chronic 
stage (d28) in group 1; b) their reliability across d28 and d29, in group 2; c) their correlation with epileptic 
activity (EA: seizure, spike and fast-ripple rates), averaged over d28 and d29, in group 2. 

During the chronic stage, intra-hemispheric connections of the non-injected hemisphere strengthened, yielding 
an asymmetrical network in low (4–8 Hz) and high theta (8–12 Hz) bands. The contralateral hemisphere also 
became more integrated and segregated within the high theta band. Both network topology and EEG markers of 
EA were stable over consecutive days but not correlated with each other. 

Altogether, we show reproducible large-scale network modifications after the development of focal epilepsy. 
These modifications are mostly specific to the non-injected hemisphere. The absence of correlation with epileptic 
activity does not allow to specifically ascribe these network changes to mechanisms supporting EA or rather 
compensatory inhibition but supports the notion that epilepsy extends beyond the sole repetition of EA and 
impacts network that might not be involved in EA generation.   

1. Introduction 

Epilepsy is a neurological disease affecting nearly 1% of the world
wide population characterized by the occurrence of recurrent seizures 
and interictal epileptiform discharges (IEDs) on electroencephalography 
(EEG) (Fisher et al., 2014). Epilepsy is now unanimously recognized as a 
brain network disorder (Bartolomei et al., 2017), meaning that even 
“focal” epilepsies such as temporal lobe epilepsy (TLE) involve patho
logical interactions between different brain regions. Both seizures and 
IEDs -and their network signatures- are widely studied (Carboni et al., 
2019; Rigoni et al., 2023a; Terry et al., 2012; van Mierlo et al., 2019) as 
they are clinically useful to diagnose and characterize the brain disorder. 

However, their unpredictability and variability are a strong motivation 
to further investigate abnormalities in background activity that could 
help better understand the pathological mechanisms and could repre
sent potential diagnostic and prognostic biomarkers, especially consid
ering that >40% of clinical EEG do not present epileptiform 
abnormalities (Geut et al., 2017; King et al., 1998; Wirrell, 2010). 

EEG studies showed that the IED-free interictal activity of patients 
with TLE is characterized by different connectivity patterns than that of 
healthy controls, such as higher network integration and segregation 
(Carboni et al., 2020; Coito et al., 2019; Rigoni et al., 2023b; Verhoeven 
et al., 2018), suggesting that even resting-state non-epileptiform brain 
activity contains important information with clinical validity. 
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Alterations of interictal brain networks were found also in functional 
magnetic resonance imaging (fMRI) studies (de Campos et al., 2016; Kay 
et al., 2013), although the IED contribution to the altered connectivity 
cannot be controlled for. Furthermore, fMRI measures blood oxygena
tion changes rather than neuronal electrical brain activity. Therefore, it 
is not trivial to perform comparisons across both modalities. 

Animal models are crucial to study aspects of diseases that are hard if 
not impossible to investigate in humans, such as the comparison be
tween brain activity before and after epilepsy onset. Connectivity 
studies in rodents with epilepsy are mostly carried out with fMRI and 
show interictal changes that resemble those observed in humans. Most 
studies point at a higher level of brain connectivity, integration and 
segregation in epileptic animals (Bertoglio et al., 2019; Li et al., 2021; 
Singh et al., 2017), and to their relationship with seizure frequency 
(Bertoglio et al., 2019; Christiaen et al., 2019, 2020; Samiee et al., 
2018). Only one previous study from our group (Słowiński et al., 2019) 
used EEG to derive and investigate specifically IED-free interictal brain 
networks and found increasing network asymmetry in favor of the 
hemisphere contralateral to the lesion. Here, we aimed at expanding the 
characterization of networks based on interictal background activity 
between the occurrence of IED. 

Discrepancies in connectivity studies exist in animal (Christiaen 
et al., 2019, 2020), as they do in human research (Slinger et al., 2021). 
Considering these controversies, we also wanted to evaluate the 
repeatability of network metrics in a mouse model of TLE, the leading 
cause of pharmacoresistant epilepsy in human adults. Here, we study 
within-animals brain network changes in the intrahippocampal kainate 
(KA) mouse model, which is the most widely used and reliable model for 
unilateral temporal lobe epilepsy (Arabadzisz et al., 2005; Lévesque and 
Avoli, 2016). Following KA-induced status epilepticus, this model is 
characterized by the development of unilateral hippocampal sclerosis 
representative of the most common lesion in human TLE. This contrasts 
with other models using intraperitoneal (i.p.) KA or pilocarpine models 
that lead to bilateral sclerosis and various cortical lesions (Rusina et al., 
2021). Within a few weeks, a focal epileptic disease develops with 
frequent ictal discharges generated in the KA-injected hippocampus, i.e., 
the epileptic focus, and less frequent secondarily tonic-clonic seizures 
(Lisgaras and Scharfman, 2022; Paschen et al., 2020; Riban et al., 2002; 
Sheybani et al., 2018). Although seizures start in and mostly remain 

within the KA-injected hippocampal region, large-scale functional al
terations have also been described, with the expression of IEDs invading 
both hemispheres, comprising neocortical areas (Sheybani et al., 2018, 
2019). 

We hypothesized that: 1) the epileptogenic lesion would induce 
changes in the animals’ brain network, observable as increase in global, 
hemispheric, and nodal measures of integration and segregation; 2) 
these network changes -and the frequency of epileptiform abnormalities 
in EEG recordings- would be reproducible at the chronic stage; 3) these 
network changes would correlate with the severity of the epilepsy. 

2. Materials and methods 

2.1. Animals 

Twenty-nine male C57BL/6j mice (Charles River) were included in 
this study. All animals were around 10–11 weeks old when they entered 
the protocol. EEG was recorded at the baseline (d0), i.e. before the KA 
injection (d1), and on two consecutive days during the chronic phase 
(d28 and d29, see timeline in Fig. 1.b), which is defined as the time- 
point when the majority of animals develop spontaneous seizures 
(Rusina et al., 2021; Sheybani et al., 2018). As not all animals were 
recorded on every timepoint, animals were split into two groups and 
were used for different analyses. Group A consisted of N = 15 animals 
that were recorded on d0 and d28 (see Fig. 1.a): these animals were used 
to test the first hypothesis. Group B consisted of N = 20 animals that 
were recorded on d28 and d29, which were used to test the second and 
third hypothesis (6 animals belonged also to group A, see Fig. 1.a). 

2.2. Surgery 

Head-fix surgeries were carried out under injectable anesthesia using 
a sleep cocktail (Medetomidine (Domitor): 0.5 mg/kg, Midazolam 
(Dormicum): 5 mg/kg, Fentanyl: 0.05 mg/kg) delivered intra- 
peritoneally. Briefly, as described in detail previously (Sheybani et al., 
2018), an aluminum ring-like header was attached to the mouse skull 
using dental cement, after the skin was reclined. The positions of the 
EEG electrodes were marked using blue ink. A drop of Loctite was spread 
over the skull to form a thin layer, then small patches (500 μm) of the 

Fig. 1. Study protocol. A) Table representing the distribution of the animals in the two groups. B) Time-frame of surgery, kainate injection and data acquisition. C) 
Schema of the EEG electrode positioning on the mouse brain, highlighting the injection site (yellow syringe), the epileptic focus (red electrodes, overlying the left 
hippocampus) and the non-injected hippocampus (blue electrodes). The mouse schema was adapted from scidraw.io (https://zenodo.org/record/3925903#.Y9 
qN0HbMKUk). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Loctite were removed by drilling over the electrode marked positions 
using a nano drill. The center of the aluminum ring-like holder was then 
filled with protective silicon (kwik-cast, World Precision Instrument), 
which can be easily removed and replaced to allow access for further 
injections and recordings. After the procedure, an awake cocktail (Flu
mazenil (Anexate): 0.5 mg/kg, Atipamezol (Alzane): 2.5 mg/kg, 
Naloxone: 1.2 mg/kg) was administered subcutaneously before the an
imal was returned to his cage and placed under a heating light for a brief 
duration until they were awake. In addition to food and play materials, 
antibiotics (trimethoprim-sulfamethoxazole, Roche) and anti- 
inflammatory analgesics (ibuprofen, Vifor, and paracetamol, Bristol- 
Myers) were delivered in the drinking water. Before administering kai
nate injections, the animals were given one week to recover and rebuild 
strength. 

2.3. Kainate injection 

The KA injection site was marked with ink during the head-fix sur
gery procedure and the injections were performed one week after the 
head-fix surgery. Under isoflurane anesthesia, the animal was mounted 
on the stereotaxic frame and the previously applied kwik-cast removed. 
Using a dental drill, a 0.3 mm hole was drilled above the injection site. 
Using a drawn glass capillary (Drummond glass capillaries # 3–000-203 
G/X; tip diameter 15 μm), a volume of 70 nl kainic acid (Tocris Biosci
ence; 5 mM in NaCl 0.9%) was administered at a rate of 10 nl/s into the 
left dorsal hippocampus (Mediolateral 1.6 mm, Anteroposterior − 1.8 
mm, Depth 1.9 mm). Within an hour from injection, all animals had a 
clear status epilepticus that was allowed to self-terminate and that was 
characterized by rearing and falling with unilateral or bilateral forelimb 
clonus (stage 3–5 on the Racine scale) (Racine, 1972; Rusina et al., 2021; 
Sharma et al., 2018). The day when KA injection was performed is 
referred to as d1. 

2.4. EEG recordings and analyses 

Epicranial EEG was recorded with 31 stainless-steel electrodes 
(diameter of 500 μm) covering the entire skull surface as shown in Fig. 1. 
b and as previously described (Mégevand et al., 2008; Quairiaux et al., 
2011; Silachev et al., 2022). Recordings were performed on d0, i.e. the 
day before the KA injection, and 28 and 29 days after the injection (d28 
and d29). During the three to four days preceding the first recording 
session, all animals were trained to remain in the head-fix position twice 
a day. The training time was gradually increased from 10 to 30 min. The 
animals were momentarily sedated with isoflurane anesthesia prior to 
the recording sessions to allow electrode positioning. The recordings 
were then carried out once the animals were fully awake and lasted 
approximately 30–50 min. All recordings were acquired with a Digital 
Lynx SX (Neuralynx), using a sampling frequency of 4 kHz, with an 
online band-pass filter of 0.1–2 kHz. An in-house automated MATLAB 
algorithm was used to detect abnormal pathological activity on the 
whole recording, as explained in the next paragraph. The recordings 
were segmented in epochs of 2 s and we discarded those <2 s away from 
epileptic events (see details below). We visually identified and removed 
epochs containing artifacts and then randomly selected 50 epochs for 
analysis. Data were downsampled to 250 Hz and bandpass filtered 
(1–40 Hz) with a 6th Butterworth filter. Channels with poor signal-to- 
noise ratio were identified as those with standard deviation (SD) 
-computed across epochs- exceeding the third quartile by a factor of 2 
times the interquartile range. These were replaced by a ‘spline’ inter
polation of the neighboring channels (Perrin et al., 1989). Finally, the 
epochs were re-referenced to the average and the reference electrode 
was removed, leaving 30 electrodes for connectivity analyses. 

2.5. Identification of epileptiform activity 

To quantify epileptiform activities (EA) in a standardized manner 

and eliminate examiner bias, we used an algorithm-based fast-ripples 
(FRs) detection method. FR were targeted because they almost system
atically override EA during the spikes component (Lévesque et al., 2018; 
Weiss et al., 2016). 

First, FRs are identified on all electrodes using an automated detector 
previously described in detail (Sheybani et al., 2018; Słowiński et al., 
2019) The raw signal (0.1-2 kHz, sampling frequency of 4 kHz) is first 
filtered between 200 and 550 Hz (2nd order Butterworth filter). FRs are 
then identified as events with ≥4 consecutive oscillations with ampli
tude 3 times greater than the standard deviation of the 250 ms sur
rounding baseline. To avoid identifying harmonics of lower frequency 
activities as FRs, the detector retains only FRs that do not overlap with 
ripples or high-gamma activity. When two FRs are detected at two 
distinct sites without phase lag, volume conduction is assumed to have 
occurred and only the event with the greatest power is preserved. 
Finally, all detected events are visually validated in filtered and unfil
tered data. Then, FRs detected on the electrodes positioned above the 
epileptic focus (see Fig. 1.b) are used to identify and classify focal EA. In 
the raw non-filtered data, a marker is positioned on the positive peak of 
the spike waveform associated with each FR and peak-to-peak inter- 
spike intervals are calculated to classify epileptic patterns as follows. 
Discharges neither preceded nor followed by another spike for at least 1 
s are classified as isolated spikes (IS). Events with >2 successive spikes 
within a second are further separated according to spike rates and event 
duration. Events that never display >5 spikes/s are named spike trains 
(STs); the first spike not followed by another for at least one second 
marks their termination. Events that reach >5 spikes/s but do not exceed 
10 s are classified as short hippocampal paroxysmal discharges (sHPDs), 
those that exceed 10 s are classified as ictal hippocampal paroxysmal 
discharges (iHPDs) and are considered as reminiscent of focal seizures 
(Sheybani et al., 2018). Electrographic seizures are known to emerge 
after 2–3 weeks in the kainate model, which is considered as chronic 
stage of the disease (Arabadzisz et al., 2005; Riban et al., 2002; Sheybani 
et al., 2018). Here, we therefore allocate all our EEG recordings made 
after the 4th week (d28 and d29) to the chronic phase of the disease. 

FRs occurring on all other electrodes are classified as remote FRs and 
regarded as network EA. A reviewer blind to the animal condition also 
identified a large-scale type of IEDs that we classify as network IED and 
that correspond to the previously described generalized spikes (Shey
bani et al., 2018). Network IEDs are characterized by a large-scale 
network and two spiking bursts separated by flattening of the EEG of 
approximately 250 ms. Note that remote FRs co-occurring with network 
IEDs were not included in the remote FRs quantification. From now on, 
the term epileptiform activities (EA) will refer to the ensemble of fea
tures described in this paragraph (see Fig. 2). Examples of traces of EA 
are depicted in Supplementary Fig. S1. 

2.6. Connectivity analyses 

We quantified the statistical dependencies between the 30 electrodes 
with the debiased weighted phase lag index (dwPLI). The Fourier 
transform was calculated using multitapers based on the Slepian 
sequence with a 2 Hz smoothing box. The resulting functional connec
tivity (FC) matrix (30 × 30 × 81, where 30 is the number of EEG 
channels and 81 is the number of frequency bin spacing from 1 to 40 Hz) 
was averaged across the different frequency bands. This yielded five 
average matrices for each animal on each recording day: delta (1–4 Hz), 
theta or “low-theta” (4–8 Hz), alpha “or high-theta” (8–12 Hz), beta 
(12–30 Hz) and low-gamma (30–40 Hz). EEG preprocessing and con
nectivity analyses were implemented in MATLAB using the MATLAB- 
based Fieldtrip toolbox (Oostenveld et al., 2011). 

2.7. Graph analyses 

The FC matrices describe the brain as a network where the nodes are 
the different brain regions, and the edges are their statistical de

I. Rigoni et al.                                                                                                                                                                                                                                   



Neurobiology of Disease 190 (2024) 106382

4

pendencies. To fully characterize it, we extracted graph measures that 
describe the integration (efficiency, E), the segregation (clustering co
efficient, CC) and the balance of the specific network (laterality index, 
LI). We did so at three different levels: global, hemispheric and nodal. 
The global measures are the average of the nodal ones. Hemispheric 
measures were computed as global ones, only that the network to which 
they referred comprised the nodes belonging exclusively to the specific 
hemisphere and their intra-hemispheric connections (midline electrodes 
were removed from the computation, see Fig. 1.b). For integration, we 
extracted the global, the hemispheric and the nodal efficiency (GE, HE 
and NE respectively), which, at the global level, reflects how efficiently 
information is propagated and integrated over different nodes. The ef
ficiency of node i, NEi, was calculated as the average of the inverse of the 
distance d between node i and all other nodes connected to i (Rubinov 
and Sporns, 2010): 

NEi =

∑

j∈N,j∕=i
NEij

n − 1
=

1
(n − 1)

∑

i∕=j∈N

1
dij 

As the distance dij was calculated as the inverse of the connection 
between nodes i and j, the efficiency of the communication between i 
and j (NEij) is inversely proportional to their distance (Latora and 
Marchiori, 2001). Intuitively, the higher the distance between i and j, 
the smaller the efficiency in their communication. For segregation, we 
extracted the global, the hemispheric and the nodal CC (GCC, HCC and 
CC, respectively), which, at the global level, reflects the level of clus
tered connections around individual nodes. The clustering coefficient of 
node i, CCi, is the fraction of i’s neighbors that are also neighbors to each 
other (Watts and Strogatz, 1998): 

CCi =
2ti

ki(ki − 1)

where ki is the strength of the node (calculated as the sum of all i ’s 
edges) and ti is the number of triangles attached to the node (Rubinov 
and Sporns, 2010). Lastly, we calculated the LI of the network based on 
nodal strength as previously proposed (Coito et al., 2015): 

LI =

(
∑

i∈N,i∈LEFT
ki −

∑

i∈N,i∈RIGHT
ki

)

(
∑

i∈N
ki

)

where a positive value indicates that the total strength of the nodes in 
the left hemisphere (ipsilateral to injection) is higher than the total 
strength of the nodes in the right hemisphere (contralateral) (left>
right), and vice versa. From now on, for the sake of clarity, we will refer 
to the left and right hemisphere as to the hemisphere ipsilateral and 
contralateral to the epileptogenic focus. 

All measures were extracted with the Brain Connectivity Toolbox 
(Rubinov and Sporns, 2010). 

2.8. Statistical analyses 

For group A (N = 15), we compared global and hemispheric network 
metrics (GE, GCC, LI, HE and HCC) at baseline (d0) vs chronic stage 
(d28) with a two-side Wilcoxon signed rank test. For each metric, we 
Bonferroni-corrected the p-values for the 5 tests run across frequency 
bands. For the nodal metrics, NE and NCC, we used a two-side cluster- 
based permutation test to correct for the 30 electrodes. The latter was 
implemented with the Fieldtrip toolbox (Oostenveld et al., 2011), using 
5000 permutations. To reduce the number of tests, we only looked at the 
frequency bands that showed differences in the global and hemispheric 
measures and we Bonferroni-corrected the cluster significance. 
Furthermore, to investigate if epilepsy induced brain asymmetry (rather 
than just looking at whether asymmetry increased or decreased from d0 
to d28) we also tested whether the network was balanced (LI = 0) at 
baseline and became unbalanced (LI > 0 or LI < 0) at chronic stage. To 
do so, we used a Wilcoxon test to test if LI was significantly different 
from zero at d0 and d28, only in those frequency bands where there were 
differences between LI at d0 and d28. The p-values were Bonferroni- 
corrected for the 4 tests. 

With group B (N = 20), we investigated the reproducibility of both 

Fig. 2. Classification of epileptiform activities. Focal (red boxes) and network (blue boxes) epileptiform activities are identified from the automatically detected fast 
ripples (FR) and the visually-detected network IEDs. The EA retained for correlation analyses are those surrounded by black, red and blues boxes. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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FC and EA at the chronic stage (d28 vs d29). We repeated the analyses 
described in the previous paragraph for network metrics (GE, GCC, LI, 
HE, HCC, NE and NCC), and then used correlation analyses to further 
test the stability of functional connectomes and EA. For the latter step, 
we averaged the frequency-specific FC matrices across animals and 
calculated the interclass correlation coefficient (ICC) between the 
average matrix at d28 with the average matrix at d29. The p-values were 
Bonferroni-corrected for the 5 frequency bands. We also tested the ICC 
between EA at d28 and d29 (IS, ST, sHPD, iHPD, network IEDs, remote 
FRs and the total number of all FRs) and Bonferroni-corrected the p- 
values for the number of measures tested (7). The ICC for absolute 
agreement was calculated with the ICC function (Arash Salarian, 2023) 
for average (ICC(A,k) for FC matrices) and single measurements (ICC 
(A,1) for EA) (McGraw and Wong, 1996). Results are reported with 95% 
confidence intervals (CI). 

Finally, as reproducibility results suggested high stability of FC and 
EA in the chronic state, we looked at the relationship between the 
average FC and EA values. Specifically, we averaged individual FC 
matrices across d28 and d29 and re-extracted the global and hemi
spheric graph measures (GE, GCC, HE, HCC, and LI). Then, we averaged 
EA across the two consecutive days and tested whether they were related 
to the graph metrics extracted from the averaged FC matrices. To reduce 
the number of comparisons we only tested the correlation with those 
graph measures that significantly changed from d0 to d28 (those that 
were affected by the epilepsy), and Bonferroni-corrected the p-values. A 
Pearson’s or Spearman’s correlation test was used, depending on the 
presence of outliers. 

3. Results 

3.1. Epileptiform activity 

We detected iHPDs events -reminiscent of focal seizures- in 24 out of 
29 animals. The remaining 5 animals without recorded iHPDs still pre
sented with clear epileptiform discharges (see Supplementary Tables S1 
and S2); lack of iHPDs detection in these animals could be consecutive to 
the discontinuous nature of our recordings. 

3.2. Global and hemispheric measures 

Global graph measures, namely GE and GCC, did not show any sig
nificant difference between baseline and chronic state. However, at 
intra-hemispheric level, graph measures changed significantly, but only 
in the hemisphere contralateral to the epileptogenic focus. Specifically, 
both high-theta HE and HCC of the contralateral hemisphere increased 
in the chronic state as compared to baseline (p = .042 and p = .0043, 
respectively; see Fig. 3.a). No changes were observed in the intra- 
hemispheric connections of the injected hemisphere (see Supplemen
tary Fig. S2). The strength LI significantly decreased from d0 to d28, in 
both low- and high-theta frequency bands (p = .0006 and p = .0021, 
respectively), meaning that nodes of the contralateral hemisphere 
became stronger at the chronic stage (see Fig. 3.b). Furthermore, when 
testing the lateralization at d0 and d28 separately, we observed that the 
LI was not significantly different from a zero-median distribution at d0 
in any frequency bands, while it was significantly smaller than zero 

Fig. 3. Hemispheric graph measure results. First row: boxplots of HE (a) and HCC changes (b) from baseline (d0, blue) to chronic stage (d28, red), that occurred only 
in the contralateral hemisphere. Second row: boxplots of LI changes from d0 to d28, found both in low-theta (c) and high-theta (d) frequency band. The red dotted 
line represents the zero-median with which all four distributions (LI in low-theta and high-theta, at d0 and d28) were compared. The red asterisks indicate a LI- 
distribution that is significantly different from zero, i.e. a network that is lateralized and not balanced. All asterisks in the figure represent statistical significance 
(* for p < .05, ** for p < .01 and *** for p < .001). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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(lateralized toward the contralateral hemisphere) at d28, in both low- 
theta and high-theta bands (p = .0017 and p = .00024, respectively; 
see the red asterisks in Fig. 3.b). Interestingly, while in high-theta it was 
the nodal strength of the contralateral hemisphere that increased at d28 
(see Supplementary Fig. S3.b), in low-theta it was the nodal strength of 
the ipsilateral hemisphere that decreased at d28 (see Fig. S3.a), which 
both led to an increased lateralization toward the contralateral hemi
sphere at the chronic stage. 

3.3. Nodal measures 

When comparing the nodal measures between the two time points in 
low- and high- theta, the cluster -based permutation test revealed a 
significant increase of both NE and CC in high-theta from d0 to d28 (p =
.02 and p = .014, respectively). In this frequency range, the effect was 
most pronounced in electrodes overlying the contralateral hippocampus 
and occipital cortex (see yellow asterisks in Fig. 4.a.2 and 4.b.2). 
Although a decrease of both NE and CC can be visually noticed in the 
occipital part of the ipsilateral hemisphere in low-theta (see Fig. 4.a.1 
and Fig. 4.b.1), these were not significant. 

3.4. Stability and reproducibility at the chronic stage 

When repeating these analyses between d28 and d29, we found no 
significant difference for any of the network metrics (GE, GCC, LI, HE, 
HCC, NE and NCC). The specular results of Fig. 3 are reported in Fig. S4. 

Moreover, we found that networks were significantly lateralized toward 
the contralateral hemisphere at both d28 and d29, in both low- and high- 
theta (p < .01, see Fig. S4.b). As a further confirmation of the brain 
network similarity between d28 and d29, when functional connectomes 
were averaged across animals, high ICC indicating excellent reliability 
were found in delta (ICCA,k = 0.96, CI95 = [0.92 0.98], F(434,18.4784) =

33.67, p < .001), low-theta (ICCA,k = 0.97, CI95 = [0.97 0.98], 
F(434,434.3361) = 38.96, p < .001), high-theta (ICCA,k = 0.97, CI95 = [0.96 
0.98], F(434, 425.3896) = 34.33, p < .001, see Fig. 5.a for an example), beta 
(ICCA,k = 0.95, CI95 = [0.93 0.96], F(434, 69.746) = 22 p < .001) and low- 
gamma (ICCA,k = 0.93, CI95 = [0.92 0.94], F(434,434.388) = 14.46, p <
.001) between connectivity values on the two consecutive days. Simi
larly, a significant ICC indicating good reliability was found for most of 
the EA between d28 and d29, although, in general, ICC values were 
lower than those obtained for FC. Specifically, a significant ICC was 
found for many EA measured on d28 and d29: number of iHPD (ICCA,1 =

0.75, CI95 = [0.47 0.9], F(19,16.777) = 7.99, p = .0003, see Fig. 5.b), total 
number of FR (ICCA,1 = 0.75, CI95 = [0.46 0.89], F(19,19.1685) = 6.64, p =
.0004, see Fig. 5.c), isolated FR (ICCA,1 = 0.74, CI95 = [0.45 0.89], 
F(19,19) = 6.38, p = 0006), number of network IEDs (ICCA,1 = 0.9, CI95 =

[0.77 0.96], F(19,19.4748) = 18.6, p = 8.3415e-08, see Fig. 5.d), and iso
lated spikes (ICCA,1 = 0.77, CI95 = [0.5 0.9], F(19,19.1406) = 7.3, p =
.0002). No significant ICC was found for sHPD- and spike trains-rate on 
the two days. 

Fig. 4. Nodal graph measure results. Results of cluster-based permutation test run on a) nodal efficiency (NE) and b) clustering coefficient (CC), in 1) low-theta and 
2) high-theta frequency bands. The values displayed on the map are the average differences between nodal measures at the chronic stage and baseline. Red/blue 
values therefore represent an increase/decrease of the specific graph measure from baseline. The electrodes with a yellow star are those that belong to the identified 
cluster (p < .01). The electrodes in red represent the injected hippocampus and the red syringe indicates the KA injection site. Note that the scales used for the plots 
are different from each other. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.5. Correlation of network metrics with epileptic activity 

Finally, when we correlated the graph metrics extracted from the 
average FC matrix and the EA averaged over d28 and d29 we did not 
find any significant results. Correlation analyses were run only for those 
network metrics that showed a significant change from d0 to d28, 

namely high-theta right HE and right HCC, and LI in low-theta and high- 
theta. To visualize this absence of correlation, Fig. 6 shows the network 
metrics in the chronic stage and the animals’ epileptogenicity, here 
quantified as the number of iHPD (reminiscent of focal seizures) 
measured at the chronic stage. 

Fig. 5. Reproducibility results in the chronic stage. a) Results of Pearson’s correlation analysis on high-theta functional connectivity (FC) matrices, averaged across 
animals. Each dot is a unique entry of the average matrix, at the specific day. b), c) and d) show some of the results of the correlation analyses run on the EA measured 
at day 28 and day 29: b) rate of ictal hippocampal paroxysmal discharges (reminiscent of focal seizures); c) total number of FR per minute; d) rate of network IEDs. 
Note that in b) 5 points are superimposed in [0,0]. 

Fig. 6. Network metrics and iHPD measured at the chronic stage. A) Boxplots of high-theta HE and HCC averaged over d28 and d29; b) Boxplots of low-theta and 
high-theta LI, averaged over d28 and d29. The red dotted line represents the zero value, where the network is perfectly balanced between the two hemispheres. Each 
dot represents an animal, and it is colour-coded according to whether it showed iHPD on both days (red), only on one of the two days at chronic stage (yellow) or 
whether it showed no iHPD at all (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

We investigated brain network changes and their stability in a mouse 
model of TLE. We analyzed EEG segments from the recordings made 
before the hippocampal injection (d0) and segments free of epileptiform 
activities (EA) on two consecutive days at the chronic stage (d28 and 
d29). We found that: 1) the network becomes asymmetric in the theta 
frequency bands, with an increase of both integration and segregation of 
the contralateral hemisphere; 2) this asymmetry is stable and repro
ducible over consecutive days, and so are EA; 3) there is no correlation 
between network changes and the frequency of EA. 

4.1. Brain network reorganization in the contralateral hemisphere 

Using cross-correlation functions, we previously demonstrated that 
the functional connectivity (FC) networks become increasingly asym
metric during epileptogenesis in the KA mouse model, that inter- 
hemispheric FC is reduced and that nodes in the non-injected hemi
sphere become more important for driving network dynamics (Słowiński 
et al., 2019). We suggested an increased contribution of these nodes to 
the generation of EA in a self-sustained fashion, in line with results 
showing that silencing the injected hippocampus at the chronic stage 
does not control network IEDs (Sheybani et al., 2018). Our current re
sults confirm these previous findings of increased asymmetry using a 
different group of animals and connectivity metric (PLI), suggesting 
strong replicability. Furthermore, we localize this asymmetry in the 
theta frequency bands (4–8 and 8–12 Hz): the network becomes later
alized toward the non-injected hemisphere which was significant at both 
d28 and d29 (see Fig. S4). The nodal strength (Supplementary Fig. S3) 
suggests that this lateralization might depend on two different mecha
nisms. While in high-theta it appears to be influenced solely by an 
increased strength of the nodes in the right hemisphere, in low-theta this 
lateralization is likely to be further boosted by a drop of strength of the 
nodes surrounding the injected hippocampus. A reduction in low- 
frequency network activity (4–8 Hz) in the injected hippocampus was 
already observed in the model (Dugladze et al., 2007). It is possible that 
this lateralization in two frequency bands reflects cell death on the 
injected side (4–8 Hz) and an independent evolution of EEG activity in 
the contralateral hippocampus (8–12 Hz) (Arabadzisz et al., 2005). 

The concurrent contralateral increase of integration and segregation 
(HE and HCC respectively) suggests that the non-injected hemisphere 
tends to a stronger small-world organization (Humphries and Gurney, 
2008) and is consistent with what was found in other animal studies and 
in humans. In a rodent TLE model in which KA was administered 
intraperitoneally, leading to more widespread epileptic alterations, in
creases in whole-brain GE, CC and small-worldness were found (Singh 
et al., 2017), which resembles what we found here for a more focal 
model of unilateral TLE (Lévesque and Avoli, 2016). It’s worth noting 
that higher connectivity strength, GE and CC were found also in the 
latent phase of a intrahippocampal KA model (Li et al., 2021). In 
humans, higher GE (Carboni et al., 2020) and concurrent higher CC 
(Rigoni et al., 2023b) were found at the whole-brain level in spike-free 
interictal EEG segments of TLE patients. Contrarily to our results, in TLE 
patients, it is the ipsilateral hemisphere that shows higher HE and HCC 
(Rigoni et al., 2023b). The proportion between damaged and healthy 
tissue is presumably higher in the mouse model of TLE than in most of 
human patients and the hippocampal lesion is then likely to be more 
disruptive in mice than in humans, potentially explaining these different 
results. Species specificities in inter-hemispheric structural connectivity 
(Suárez et al., 2014) could also play a role. Moreover, our analyses were 
limited to the first 30 days after KA injection, while some patients un
dergo EEG examination after showing seizures for years. Therefore, it is 
unknown if the same network metric changes would be found in mice 
recorded over the long term, after several weeks or months. At the nodal 
level, we observed a significant increase of both local efficiency and CC 
around the non-injected hippocampus (see Fig. 4.a), further suggesting a 

strengthening of its independent role in driving brain activity at the 
chronic stage. Comparison with other connectivity studies. 

Brain network studies in rodent models of TLE are rare, they 
employed various animal models and were mainly carried out using 
fMRI imaging. Studies involving intraperitoneal and intrahippocampal 
KA models report an increase of connectivity at the chronic stage (Ber
toglio et al., 2019), accompanied by a whole-brain increase of CC, GE 
and small-world (Li et al., 2021; Singh et al., 2017). However, contra
dictory findings also exist that show lower integration and segregation 
and more time spent in states of lower connectivity at the chronic stage 
(Christiaen et al., 2019, 2020). As stated above, systemic injections are 
known for causing more widespread damage to subcortical structures 
and cerebral cortex (Lévesque and Avoli, 2016), potentially explaining 
why whole-brain network changes are observed, rather than only 
hemispheric changes (Bertoglio et al., 2019; Christiaen et al., 2019, 
2020; Singh et al., 2017). Moreover, fMRI studies quantify FC from 
continuous data, during which the undocumented occurrence of spikes 
could have contributed to changes of FC. 

4.2. Reproducibility of measures at the chronic stage 

We demonstrate that not only the network topology (network met
rics) is stable but also the functional connections that give rise to these 
metrics (PLI connectomes) are highly replicable at the chronic stage, 
suggesting that the increased theta-asymmetry of the network represents 
a distinct feature of the chronic stage. Indeed, on one side we don’t find 
any difference between network metrics (global, hemispheric and 
nodal) and on the other we find excellent reliability of average con
nectomes at d28 and d29, at all frequency bands (ICC > 0.9, p < .001). 
While a lack of difference may not inherently indicate similarity, the 
high ICC values between connections confirms that the same underlying 
network is responsible for the comparable network metrics at d28 and 
d29. For further studies in rodent models of TLE, this suggests that EEG 
recordings lasting up to 15 days of chronic state (Samiee et al., 2018) 
may not be necessary for accurately characterizing the animals’ brain 
network. However, given that we demonstrated here the stability of 
network metrics during the beginning of the chronic phase only, it 
would be interesting to investigate their evolution over months after KA 
injection. A possible way to do this would be to test periodically (e.g., 
every 7 days) animals during short recordings (e.g., 40 min) over two 
consecutive days. 

We also demonstrate that most of the automatically identified EA, 
namely ictal hippocampal paroxysmal discharges (HPD), total number 
of fast ripples (FR), isolated FR, network IEDs and isolated spikes, are 
stable over consecutive days in the chronic state. The absence of 
reproducibility for short HPD and spike trains could be linked to the low 
number of events detected by the algorithm and the intrinsic variability 
of these epileptic activities. Altogether, this suggests that a 40-min 
epicranial EEG recording is adequate for quantifying epileptic activity 
in the intrahippocampal KA mouse model of TLE, which is a more 
feasible approach than implementing weeks-months of video-EEG 
monitoring (Li et al., 2021). 

4.3. Absence of correlation with epileptic features 

We did not find any significant correlation between those network 
metrics that changed at the chronic stage (contralateral HE, contralat
eral CC, LI) and EEG measures of epileptic activity. Given the high 
repeatability of these measures across consecutive days, we cannot 
attribute the absence of correlation to artefactual EEG data or to the 
inability to correctly characterize epilepsy severity. 

Our results are in contrast with studies that found a clear positive 
correlation between seizure frequency and connectivity, GE and CC at 
chronic stage (Bertoglio et al., 2019; Christiaen et al., 2019, 2020; 
Samiee et al., 2018), suggesting a higher network synchrony is necessary 
for seizure generation. Considering that fMRI-derived networks are 
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reasonably affected by undocumented epileptiform discharges, the 
characteristics of these networks are likely to reflect networks’ ability to 
not only propagate seizures but also generate epileptic activity. Here, 
however, we selected EEG epochs free from any EA and were therefore 
able to focus only on the resting-state, EA-free, network activity of 
epileptic animals. 

Considering that network changes are robust over consecutive days, 
it seems reasonable to say they must represent some consistent systemic 
mechanism underlying interictal EA-free activity. It has been proposed 
that nodes in the contralateral hemisphere assume a pivotal role in the 
propagation of seizures and network IEDs (Sheybani et al., 2018; Słow
iński et al., 2019). However, here we found no correlation between 
increased asymmetry and network IEDs, suggesting that the observed 
mechanism is a different one. It is possible that the detected changes in 
the contralateral network reflect inhibitory mechanisms that could be 
active during the interictal period free of EA analyzed here. In line with 
this interpretation, the absence of correlation between seizure frequency 
and the increased independence of the contralateral hippocampus (seen 
as loss of interhemispheric connectivity) was interpreted as evidence for 
a mechanism preventing seizure generalization (Arabadzisz et al., 
2005). The importance of feedforward inhibition in restraining epilep
tiform events was already shown using in vitro models of epilepsy in 
acute rodent slices, so that a disruption of this inhibitory mechanism is 
necessary for seizure propagation (Trevelyan et al., 2006, 2007). The 
Interictal Suppression Hypothesis, according to which “the SOZ is 
actively suppressed by the rest of the brain”, has also been put forward in 
humans (Johnson et al., 2023). Intracranial recordings showed that the 
SOZ has increased inward connectivity, suggesting the existence of an 
inhibitory network that actively silences the epileptic focus during 
spike-free interictal activity (Gunnarsdottir et al., 2021; Johnson et al., 
2023; Narasimhan et al., 2020). This interpretation would also explain 
those failed attempts in humans to find a relationship between interictal 
connectivity and clinical variables such as seizure frequency or epilepsy 
duration (Carboni et al., 2020). Considering these results, we hypothe
size that the emerging contralateral network might play an inhibitory or 
compensatory role or a mixture thereof, but future studies including also 
behavioral scores should be performed to untangle these potential ef
fects. The lack of correlation is also an illustration of the concept that 
epilepsy cannot be reduced to the sole repetition of EA, or its correlated 
variables, but extends to impact independent networks. 

4.4. Methodological considerations 

Aside from the methodological considerations discussed above, 
another limitation of the current study comprises the absence of a saline- 
injected control group, to rule out the effect of animal ageing on network 
lateralization. Moreover, all animals should have ideally been collected 
at all three timepoints, to further test that the same differences (d0-d28) 
exist between d0 and d29. Nevertheless, the absence of significant dif
ferences between d28 and d29 in this retrospective analysis makes this 
last point less relevant. Finally, we had no long-term EEG monitoring to 
record potential seizures between d0 and d28 that may modulate the 
evolution in individual animals. Indeed, in 5 animals we did not record 
seizures neither at d28 nor at d29, which could suggest that they were 
still in the latent phase. However, considering that these animals show 
clear sign of epileptic activity (see Supplementary Tables S1 and S2) and 
that they seem to belong to the same population of the other animals 
who show iHPD (see Fig. 6, where no specific cluster is visible), it is 
reasonable to think that the absence of seizure in these animals is mostly 
due to the short duration of the recordings rather to the animals not 
being in the chronic phase. 

5. Conclusions 

Altogether, we find that the role of the non-injected hemisphere 
becomes consistently more prominent in the network at the chronic 

epilepsy stage. However, the absence of correlation with epileptic ac
tivity does not allow us to determine whether this prominent contra
lateral network represents a network supporting propagation of 
epileptic activity or rather represents an inhibitory compensatory 
mechanism in response to focal epileptic activity. 
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