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A B S T R A C T   

Motivation: The growth of unannotated proteins in UniProt increases at a very high rate every year due to more 
efficient sequencing methods. However, the experimental annotation of proteins is a lengthy and expensive 
process. Using computational techniques to narrow the search can speed up the process by providing highly 
specific Gene Ontology (GO) terms. 
Methodology: We propose an ensemble approach that combines three generic base predictors that predict Gene 
Ontology (BP, CC and MF) terms from sequences across different species. We train our models on UniProtGOA 
annotation data and use the CATH domain resources to identify the protein families. We then calculate a score 
based on the prevalence of individual GO terms in the functional families that is then used as an indicator of 
confidence when assigning the GO term to an uncharacterised protein. 
Methods: In the ensemble, we use a statistics-based method that scores the occurrence of GO terms in a CATH 
FunFam against a background set of proteins annotated by the same GO term. We also developed a set-based 
method that uses Set Intersection and Set Union to score the occurrence of GO terms within the same CATH 
FunFam. Finally, we also use FunFams-Plus, a predictor method developed by the Orengo Group at UCL to 
predict GO terms for uncharacterised proteins in the CAFA3 challenge. 
Evaluation: We evaluated the methods against the CAFA3 benchmark and DomFun. We used the Precision, Recall 
and Fmax metrics and the benchmark datasets that are used in CAFA3 to evaluate our models and compare them 
to the CAFA3 results. Our results show that FunPredCATH compares well with top CAFA methods in the different 
ontologies and benchmarks. 
Contributions: FunPredCATH compares well with other prediction methods on CAFA3, and the ensemble 
approach outperforms the base methods. We show that non-IEA models obtain higher Fmax scores than the IEA 
counterparts, while the models including IEA annotations have higher coverage at the expense of a lower Fmax 
score.   

1. Introduction 

As more powerful sequencing machines become more available, 
efficient, and affordable, the number of sequences for analysis has also 
increased rapidly. A 2021 report by The UniProt Consortium shows that 
between January 2011 and January 2020, the size of UniProtKB/ 
TrEMBL grew from around 13 million to over 189 million sequences, 
while the number of manually curated sequences in UniProt/SwissProt 
remained around 500, 000, indicating that numerous proteins remain 
unannotated [8]. 

Improving the understanding of proteins has a critical impact on 

their role as essential building blocks in different organisms and the 
consequences of mutations that alter their function and role in disease. 
Computational techniques improve the process of understanding protein 
function by providing insights into the locations where the protein acts 
and what activities it might be involved in. The current state-of-the-art 
protein function prediction methods, however, rely on limited and 
biased training data that makes it challenging to accurately predict the 
functions of proteins with novel or rare sequences. Additionally, 
methods struggle with the complex and context-dependent nature of 
protein functions, leading to potential inaccuracies in the functional 
annotations and predictions. 
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Proteins are responsible for various tasks in an organism, such as 
establishing structure and supporting cells, facilitating biochemical re
actions, signalling transmission, repelling invading pathogens, regu
lating gene transcription, binding, and transporting small molecules 
within cells. 

Rost et al. [29] defined protein function “as all that happens by means 
of, and to, a protein”. Other authors define protein function as the variety 
of possible activities through proteins, from biochemical to biological to 
phenotypic activities [5,29,33]. From a computational point of view, 
Friedberg and Radivojac [16] provide a more practical definition to 
evaluate the prediction of functions since the problem of assigning the 
best consistent sub-graph (from the Gene Ontology) for the new protein 
and a score that indicates the level of confidence in the prediction. 

The Gene Ontology (GO) is widely used in Biology and Protein 
Function Prediction (PFP). GO attempts to formalise a “controlled vo
cabulary of terms” to describe various aspects of biological systems. It is 
subdivided into three sub-ontologies: the Biological Process ontology, 
which describes the biological objectives a protein contributes to; the 
Molecular Function ontology, which contains terms that explain the 
biochemical activity of a protein; and the Cellular Component ontology, 
whose terms refer to the place where the protein is active [3]. 

Given a controlled vocabulary, such as the one provided by GO, that 
is agreed to by the community and used in popular databases, the 
computational prediction of protein function can be defined as the 
process in which models are built to identify patterns in protein prop
erties that are related to function and map these to terms in the 
controlled vocabulary. These models are then applied to uncharac
terised proteins, using the same features to transfer the terms that 
describe the function. 

Homology transfer is one of the most common approaches to PFP, the 
underlying assumption being that similar sequences have a higher 
probability of having the same function. Homologous protein sequences 
descend from a common ancestral sequence, and the observed similar
ities are characteristics shared with a common ancestor. 

Homologues can be further subdivided into orthologues and 
paralogues. Orthologues arise through a speciation event and can be 
found in different species. On the other hand, paralogues are the result of 
a gene duplication event within a species and can exist in different 
species as the gene duplication event could have occurred before 
speciation (differentiated by the terms inparalogue and outparalogue to 
refer to paralogues that occur after and before speciation - see [20] for a 
review). 

The significance of these concepts is that orthologues are more likely 
to maintain the same or similar function in different species, while 
paralogues may evolve new functions even though they retain the 
sequence similarity to their parents [1,21]. From a PFP perspective, 
methods that rely on homology search for the degree of identity of the 
query protein with known proteins. A high degree of similarity (above 
60%) indicates that homologues have a high probability of sharing the 
same function [10,15,27,30]. 

The Critical Assessment of protein Function Annotation (CAFA) 
challenge [35] is a timed community assessment that assesses the cur
rent state of protein function prediction methods. It presents an oppor
tunity to understand the different methods and the data that the 
methods used to predict protein function. CAFA also provides a good 
benchmark against which to compare novel algorithms and enhance
ments to existing ones. 

CAFA is organised over three phases. The first phase consists of a 
prediction stage, where the organisers release numerous proteins and 
predictors apply their methods to compute the putative function of the 
proteins. A waiting phase follows, where biological curators deposit 
annotations for proteins in UniProt/SwissProt and UniProtGOA [9]. In 
the third phase, the scores for the methods (based on the annotations 
accrued for the proteins in stage 2) are calculated. The proteins used in 
the assessment in the third phase can be used outside the challenge to 
evaluate novel prediction methods. 

CAFA has two types of benchmarks, a No Knowledge (NK) and a 
Limited Knowledge (LK) benchmark in two evaluation modes, full-mode 
and partial-mode. In the NK benchmark, proteins are selected if they do 
not have experimentally verified annotations during the prediction 
phase but would have accumulated annotations during the waiting 
phase. The Limited Knowledge benchmark, introduced in CAFA2, in
cludes proteins with experimental annotations in one or two ontologies 
at release and accumulated experimental annotations during the waiting 
phase. The full mode is used for general-purpose methods that predict 
function for all proteins, whereas partial mode is useful for methods that 
predict specific targets selected by the method developers [35]. 

The CAFA challenge highlights the plurality of data models and ap
proaches involved in Protein Function Prediction (PFP). These methods 
attempt to discover a mapping from a protein’s sequence to GO terms 
describing the function and where it acts. 

We have developed a homology-based method using CATH Fun
Fams, described further below. We integrated our approach with 
another homology-based method, domain-centric Gene Ontology 
(dcGO) predictor pioneered by Fang and Gough [14]. We compared our 
method to some of the methods that rank in the top-10 in CAFA and 
which are described below, to compare our method against the results 
they obtained (referred to as CAFA3 Rank 1 and CAFA3 Rank 10 in 
Table 3). 

Our approach is a generic ensemble that allows base predictors to be 
added to the ensemble, which uses a ‘mixture of experts’ approach. We 
use Set Intersection and Set Union to provide precision-based and recall- 
based models to combine the predictions from the underlying base 
models. This method allows diverse predictors to be combined to 
improve the overall predictions and increase coverage. 

One approach to predict protein function involves using the k- 
Nearest Neighbours (kNN) algorithm. kNN is a supervised Machine 
Learning (ML) algorithm used for estimating the probability of a data 
point joining a cluster or another, depending on its proximity to the 
cluster. 

Koskinen et al. [18] developed a high-throughput GO annotation tool 
named Protein ANNotation with Z-score (PANNZER) as a high-throughput 
annotation tool to reliably annotate proteins. It uses statistical testing in 
addition to kNN to maximise the evidence when annotating proteins. 
The process scans the target sequence against a database to collect a list 
of homologues (called the Sequence Similarity Result List, SSRL). The 
list is partitioned into clusters of similar proteins, which are evaluated 
using a regression model. The prediction process results from enrich
ment analysis of the GO classes in the SSRL. 

Another PFP method that ranks in the top 10 and uses the kNN al
gorithm is MS-kNN [19]. This uses three data sources for the prediction 
method: protein sequence data, microarray expression data and protein- 
protein interaction data. In the kNN algorithm, the similarity between 
two proteins in the three data sources is scored based on the data 
composition of the data source, which formed the baseline. A second 
classifier (called Lin-sim kNN considers proteins annotated with similar 
functions in addition to neighbourhood proteins with the same function. 
The scores from the baseline and the Lin-sim kNN classifiers were finally 
integrated using various strategies, and the result was used for PFP. 

You et al. [34] developed GOLabeler, a Machine Learning method 
based on five sequence-derived methods. These features include GO 
term frequency, homology-based inference (through BLAST-kNN), the 
frequency of amino acid trigrams, InterPro [17] features and ProFET 
[23] features. GOLabeler uses a Learn-To-Rank (LTR) method to predict 
protein function, where predicted GO terms from the base methods are 
combined, and the top terms are selected for ranking by LTR. 

INGA is a predictor that uses a consensus among predictors and uses 
Protein-Protein Interaction (PPI) networks (using the STRING database 
[32]), sequence similarity (using BLAST [2]) and domain assignments 
(from the PFAM database [7]) to train the methods [26]. These sources 
generated 36 models and applied them to a training set of 10,000 
experimentally annotated SwissProt proteins. The consensus score in 
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INGA maximises the F-score, representing a given prediction’s quality. 
The methods reviewed above are methods that ranked in the top 10 

in the CAFA3 challenge. Another recent approach exploiting CATH- 
FunFams is DomFun, a novel tool that predicts function using a tripar
tite network of domains, proteins, and functions [28]. DomFun uses 
CATH data but different techniques for this study, making it a suitable 
comparison method. The tripartite network is analysed to generate as
sociation values between domains and functions to generate a list of 
mappings between domains and functions. Protein functions are pre
dicted by searching for the domains associated with the protein in the 
domain-function list. DomFun uses non-IEA SwissProt data besides 
CATH FunFams as the basis of the model. 

The evaluation of our FunPredCATH method shows that it performed 
very well in partial mode on the different benchmarks, although 
coverage was lower than the methods we compared against. On the 
Biological Process ontology, FunPredCATH outperformed the top- 
ranked method on the NK benchmark in partial mode and obtained 
the same Fmax as the top method on the LK benchmark in partial mode. 

On the Cellular Component ontology, FunPredCATH obtained the 
same Fmax as the 10th method in the NK benchmark in partial mode, 
while it ranked higher than the 10th ranked method on the LK bench
mark in partial mode. 

On the Molecular Function ontology, FunPredCATH outperformed 
the 10th ranked method on the NK benchmark in partial mode, while it 
outperformed the top-ranked method on the LK benchmark in partial 
mode. 

2. Materials and method 

The methods described in this paper were written in Python 3.7 with 
a MariaDB backend. Scalability was achieved by adopting a parallel 
architecture. Moreover, to improve the prediction speed, several pre- 
processing steps were performed (such as mapping proteins to Fun
Fams) to improve the prediction performance. The predictor runs on 
Ubuntu 22.04. 

2.1. Data sources 

Our approach uses the CATH database [24] to identify protein do
mains. CATH is a hierarchical protein structure organisation maintained 
by the Orengo Group at UCL [31]. CATH stands for Class, Architecture, 
Topology, and Homologous superfamilies and uses the protein structure 
to detect evolutionary relationships and improve the understanding of 
the relationship between sequence and function [31]. CATH data can be 
searched through the portal available at http://www.cathdb.info/ or by 
using an API [31]. CATH provides a hierarchical classification of protein 
domains for proteins obtained from the PDB database. Superfamilies in 
CATH group together domains sharing a clear common ancestor [31]. 

Homology searches involving the whole protein may not always 
return a characterisation to a known protein family. In such cases, 
analysing the domain components of the uncharacterised protein and 
finding functionally characterised homologues for each domain might 
improve the correct identification of the protein’s function. This 
approach can be characterised by constructing a ‘domain grammar’ of 
function [6,13]. 

Function prediction is possible using CATH Functional Families 
(FunFams). CATH FunFams comprise evolutionary-related domains 
classified into functionally consistent sets using an entropy-based 
approach that segregates sets of relatives with differentially conserved 
residue position [11]. They have been used to identify protein functions 
associated with particular diseases, such as in [4]. 

For each FunFam, a Hidden Markov Model (HMM) is derived from 
the Multiple Sequence Alignment (MSA) of relatives using HMMER3. 
Query sequences are then scanned against the library of CATH FunFam 
HMMs and assigned to a FunFam if the match to the HMM is within the 
E-value threshold for the FunFam. GO terms are mapped to the FunFam, 

which enables the inheritance of these GO terms once a FunFam has 
been identified. 

CATH FunFams facilitate predicting protein function by representing 
structural and functional units within proteins conserved across various 
protein sequences and families. By identifying and characterising these 
domains in a protein, it is possible to infer potential functions based on 
the known functions of similar domains. 

Besides CATH FunFams, the models are trained using UniProtGOA 
protein annotations. The proteins from UniProtGOA that were consid
ered consisted of those proteins for which a CATH FunFam could be 
identified. Moreover, the models were separately trained with experi
mental annotations (which we refer to as non-IEA annotations) and both 
experimental and electronic annotations (which we refer to as IEA 
annotations). 

2.2. Overview of the base predictors 

The prediction process uses three base predictors, two of which were 
developed as part of this research. The first predictor (dcGO4CATH) is 
an implementation of domain-centric Gene Ontology (dcGO) for CATH. 
dcGO is a method developed by Fang and Gough [14] for PFP using the 
SCOP database. The second predictor in FunPredCATH consists of set- 
based models applied to the CATH database. 

The third method is FunFams-Plus, a PFP method developed by the 
Orengo Group based on CATH and one of the modules in the Orengo- 
FunFams method that competed in CAFA3 [12]; the Orengo-FunFams 
method ranked among the top-10 methods in the CAFA3 challenge 
[35]. FunFams-Plus is also the baseline that FunPredCATH aims to 
improve on. 

Each predictor is given protein sequences as input. For each sequence 
in the input, the corresponding CATH FunFams are identified. Using the 
identified CATH FunFams, the base methods retrieve GO terms that 
exceed a preset, empirically derived threshold. The threshold is a lower- 
bound cut-off to identify the most promising GO terms. 

2.2.1. dcGO4CATH 
A homology-based approach used in PFP involves statistical tech

niques to predict protein function. dcGO [14] is an example of this class 
of methods. dcGO infers GO terms associated with SCOP [22] domains 
and supra-domains (accessible through the SUPERFAMILY database 
[25]) from annotations in UniProtGOA. The method relies on a matrix 
representing the frequency of GO term annotations for SCOP domains 
and supra-domains. A statistical test measures the overall, relative and 
significance inference derived from these frequencies to obtain a score 
used to evaluate a prediction’s strength. 

The underlying principle under which dcGO operates is that if a GO 
term annotates a set of proteins linked to a domain, it is possible to infer 
that the GO term can be assigned to that domain. dcGO uses the 
Directed-Acyclic Graph structure of GO and domain composition in 
SUPERFAMILY to generate GO associations for SCOP family and su
perfamily domains. 

Two main considerations at the centre of the dcGO algorithm are:  

1. structural domains generally correspond to a functional unit of a 
protein, and therefore, GO terms are more likely to correspond to a 
domain than a whole protein;  

2. if a domain has more proteins annotated with a particular GO term 
than one would expect by chance, then it is possible to infer func
tional GO associations. 

We have adapted the dcGO algorithm to use the CATH FunFam data 
and used it as one of our base prediction algorithms. Since CATH Fun
Fams are similarly hierarchically structured as their SCOP equivalent, it 
was possible to adapt the algorithm using CATH FunFams. The main 
challenge was that, in some cases, CATH FunFams had relatively few 
proteins. Due to the insufficient number of proteins, it was not possible 
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to generate a confidence score between the CATH FunFam and the GO 
term in these cases. 

2.2.2. Set-based methods 
The set-based approach involves calculating an association score 

based on the prevalence of proteins with some associated GO term 
within a given FunFam. 

Fig. 1 describes the notation used to express the equations of the 
methods, using a Venn diagram as an aid. A set, A or B, is a collection of 
elements. A ∩ B (verbally A intersection B), represents the common 
members of the sets A and B, while A ∪ B (verbally A union B) represents 
the combined members of the sets A and B. A\B (verbally A minus B), 
and B\A (verbally B minus A) represent the unique elements in the set A 
and the set B respectively, that is, the members that are in one set and 
not in the other. 

Let sets A and B represent proteins in a specific FunFam and proteins 
annotated by a particular GO term, respectively. Therefore, A ∩ B would 
be all proteins within a FunFam and annotated by the considered GO 
term. A ∪ B would contain all proteins in a FunFam or annotated by a 
particular GO term. A would be all the proteins within the FunFam, both 
the proteins annotated by the considered GO term and those that are not. 
A\B would be the set of proteins in the FunFam that are not annotated by 
the GO term. 

The set-based method employs three similarity measures to quantify 
the size of the intersection, namely the Jaccard, the Sørensen-Dice and 
the Overlap similarity measures. The equations Eq. (1), Eq. (2) and Eq. 
(3), respectively, show the calculations for each of the similarity 
measures. 

JAB =
|A ∩ B|
|A ∪ B|

(1)  

SDAB =
2|A ∩ B|
|A| + |B|

(2)  

OAB =
|A ∩ B|

min(|A|, |B|)
(3) 

The Jaccard Similarity Index provides a comparative score of two 
sets by examining the distinct proteins in the two sets (represented by 
the set A ∪ B) and the proteins that exist in both sets (represented by the 
set A ∩ B). 

The Sørensen-Dice Similarity Coefficient gives a more general simi
larity metric on vectors. The Sørensen-Dice index differs from the Jac
card index because it does not satisfy the triangle inequality (which 
states that the sum of the lengths of any two sides of a triangle must be 
greater than or equal to the remaining side). This makes the Sørensen- 

Dice index less susceptible to outliers, thus maintaining sensitivity in 
heterogeneous data sets. 

The Overlap Similarity Coefficient, also known as the Szymkiewicz- 
Simpson coefficient, measures the overlap between two sets. It is 
calculated by dividing the size of the intersection by the smaller of the 
two sets. 

Fig. 2 shows how the confidence changes with the size of the inter
section of the two sets. If only a few of the proteins in a FunFam are 
annotated with a GO term compared to the other proteins in the Fun
Fam, the indexes give a low score. As the number of proteins annotated 
by the GO term increases, so will the score. The score, therefore, in
dicates confidence level when assigning the GO term to a query protein 
that maps to the FunFam during prediction. 

The protein annotations used in this study were extracted from 
UniProtGOA (version 157 of June 2016, at the time of CAFA3). These 
data are stored in a relational database, simplifying data retrieval and 
processing. There were 308,273 proteins with non-IEA annotations 
having an identifiable FunFam associated with them, which were used 
for training. Similarly, 7,649,853 proteins were used for training the IEA 
models. 

The basic CATH-FunFams algorithm is a Protein Function Prediction 
method developed and maintained by the Orengo Group. Given an un
annotated protein sequence, the method identifies domains related to 
the protein and assigns them to CATH Superfamilies. After a CATH 
FunFam HMM search, the domains are assigned to the specific FunFams 
obtained from the search. Lastly, experimental GO terms are inherited 
from FunFams, where confidence scores are calculated and GO term 
assignments are up-propagated [11]. 

For CAFA3, CATH versions 4.0 and 4.1 were used in the predictions. 
Fig. 3 shows the process used to generate the predictions. In addition to 
the CATH-FunFams prediction algorithm described previously, 
FunFams-Plus also uses Pfam FunFams, InterPro data and BLAST against 
UniProt to predict functions when a CATH FunFam cannot be identified. 

The FunFams-Plus method differs from the Orengo-FunFams method 
reported for CAFA3 [35] since the Orengo-FunFams method represents a 
modified version of FunFams-Plus that also uses Machine Learning 
techniques to improve the prediction process. In this study, we wanted 
to see how FunFams-Plus could be extended and improved by devel
oping new algorithms. 

2.3. Overview of the ensemble prediction 

FunPredCATH uses a ‘mixture of experts’ approach based on the base 
predictors previously described – dcGO4CATH, the set-based methods 
and FunFams-Plus predictions – to create different prediction models. 
FunPredCATH combines the models described above and applies them 
to predict protein function. The resulting models attempt to consolidate 
the predictions to improve coverage and provide more relevant 
predictions. 

Predictions from the individual base predictors are combined using 
two set-based operations: union and intersection. The union operator is 
a recall-oriented metric that returns all the unique GO terms predicted 
by the different methods. The intersection operator is a precision- 
oriented metric that only returns the common GO terms predicted by 
the different individual predictors. 

FunPredCATH generates new models (see Table 1) by combining 
models from the previously described base methods that provide 
different levels of predictions. It should be noted that the base models 
(the set-based and dcGO4CATH) are based only on CATH data without 
incorporating any other data sources. If a protein’s sequence cannot be 
matched to a CATH functional family (i.e. no homologue is identified 
from the HMMs), then no prediction will be made for that protein. 

FunPredCATH’s base models were trained using non-IEA and IEA 
annotations from UniProtGOA with CATH FunFams version 4.3. We 
wanted to investigate whether non-IEA annotations would provide 
improved predictions over the IEA annotations. The evaluation carried 

Fig. 1. Venn Diagram showing the overlap between the sets of proteins in the 
CATH Functional Family and the proteins annotated by the particular GO Term. 
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out was intended to assess how well the models predict proteins by using 
only CATH FunFams; that is, if a FunFam is not identified, then the 
models did not attempt to find homologues (for example, by using 
BLAST or other means, although FunFams-Plus provides these) that 
could then be used to attempt or improve prediction. dcGO4CATH was 
trained with non-IEA data only to ensure high-quality predictions. 

The IEA trained base methods (Jaccard, Sørensen and Overlap) were 
combined using Set Intersection and Set Union. In a separate model, the 
non-IEA trained models were also combined with dcGO4CATH by using 
the intersection and union operators similarly. Finally, Set Intersection 
and Set Union were applied to the models generated from the two 
strategies and combined with the FunFams-Plus results. FunPredCATH 
generates and exploits six models using intersection and union: two with 
just the base predictors and another four when each of the two base 
predictor models is unioned and intersected with FunFams-Plus. 

The Set Intersection model produces predictions common across all 
the methods and will represent the smallest set of GO terms across the 

three methods: a conservative method. Although this method may not 
always achieve high coverage, it should be precise since it represents the 
agreement between the different predictors. 

The Set Union model returns all the unique predictions from the 
different methods and represents the widest set of GO terms predicted by 
the three methods. This method increases the coverage and should have 
better recall since all the predictions from the different methods are 
considered equally valid. 

In evaluating prediction methods and providing a reliable compari
son, a common standard benchmark is required. By applying computa
tional methods to a community-agreed standard dataset, it is possible to 
compare the performance of the methods and assess the overall state of 
the community’s ability to meet its targets. 

The CAFA challenge benchmark datasets provide this opportunity 
through an assessment for the global target of predicting protein func
tion irrespective of the organism and secondly as a means of assessing 
the performance of the different methods on a species-by-species basis. 

In this study, the CAFA benchmark provides the ideal independent 
dataset with which to compare the performance of the methods. The 
evaluation of the methods can be performed against an independent 
dataset accepted by the community with correspondingly accepted 
metrics. 

The benchmark for evaluating FunPredCATH is taken from the 
CAFA3 challenge. CAFA scores prediction methods based on their gen
eral performance and specific subsets of proteins taken from benchmark 
organisms. CAFA evaluates predictions as follows: if T is a set of 
experimentally determined annotations, and P a non-empty set of pre
dicted annotations from an ontology for a particular protein, then pre
cision and recall are defined by Eq. (4) and Eq. (5) below: 

pr(P,T) =
|P ∩ T|
|P|

(4)  

Fig. 2. The overlap between the different sizes of the intersection provides the level of confidence that is used in the predictions.  

Fig. 3. FunFams-Plus Workflow.  

Table 1 
FunPredCATH Models.  

Method Name Methods Included in FunPredCATH Models  

Set-Based 
Methods 

dcGO4CATH FunFams- 
Plus 

Intersection Methods 
Intersected Base Predictors ✓ ✓ ✕ 
Intersected Base Predictors with 

FunFams-Plus Intersected 
✓ ✓ ✓ 

Unioned Base Predictors with 
FunFams-Plus Intersected 

✓ ✓ ✓ 

Union Methods 
Unioned Base Predictors ✓ ✓ ✕ 
Intersected Base Predictors with 

FunFams-Plus Unioned 
✓ ✓ ✓ 

Unioned Base Predictors with 
FunFams-Plus Unioned 

✓ ✓ ✓  
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rc(P, T) =
|P ∩ T|
|T|

(5)  

where ∣P∣ is the number of predicted items, ∣T∣ is the number of terms 
determined experimentally and ∣P ∩ T∣ is the number of terms predicted 
but also determined experimentally. Prediction methods generally have 
a threshold t that is used to determine the confidence of a prediction. By 
varying the threshold, it is possible to plot a precision/recall curve. To 
obtain a single value, CAFA calculates a metric called the maximum 
harmonic mean (Fmax), which is computed as shown in Eq. (6). 

Fmax = max
t

{

2×
pr(t) × rc(t)
pr(t) + rc(t)

}

(6) 

The “No knowledge” (NK) benchmark contains proteins with no 
prior experimental annotations, while the “Limited knowledge” (LK) 
benchmark consists of proteins with partial prior experimental annota
tions. In the full evaluation mode, the assessors evaluate all the bench
mark proteins, penalising methods for missed predictions. In the partial 
evaluation mode, predictions are evaluated only on the benchmark sets 
where at least one prediction is made. 

3. Results and discussion 

Table 2 shows results drawn from the evaluation of FunPredCATH in 
the three GO sub-ontologies, Biological Process, Cellular Component, 
and Molecular Function on the Limited Knowledge (NK) benchmark in 
partial mode. 

The methods were evaluated against the benchmark Naive and 
BLAST methods in CAFA and DomFun, a method developed since CAFA3 
that also uses the CATH database for training the models. The results for 
the base FunFams-Plus model that was used in FunPredCATH are also 
shown for comparison. 

FunPredCATH outperforms the FunFams-Plus method in our CAFA3 
benchmarks. The results in Table 3 show that FunPredCATH achieves 
higher precision rates than FunFams-Plus and higher Fmax. 

FunPredCATH also outperforms DomFun, which uses the same CATH 
data as our method regarding the Fmax and the coverage across all on
tologies and benchmarks. The full results can be seen in Table 3 in the 
supplementary information. 

The comparison of the models trained with IEA and non-IEA anno
tations showed that the models trained with the IEA annotations 
generally obtained better Fmax scores. A comparison between Table 2 
and Table 2 in the supplementary material show that the IEA models 
outperform the non-IEA models in Molecular Function and Biological 
Process. In the Cellular Component ontology, the non-IEA methods 
achieved the same as the IEA models. However, the coverage obtained 
by the IEA models across the three ontologies was higher than the non- 

IEA models. 
Concerning other CAFA methods, FunPredCATH (trained on IEA 

annotations) outperforms the top-ranked method in the Biological Pro
cess ontology, No Knowledge (partial mode) benchmark (0.43 and 0.40 
respectively) and in the Limited Knowledge (partial mode) benchmark 
obtained a similar Fmax (0.64). 

In the Cellular Component ontology, No Knowledge (partial mode) 
benchmark, FunPredCATH obtained the same Fmax as the tenth-ranked 
method (0.60). FunPredCATH outperformed the tenth-ranked method 
in the Limited Knowledge (partial mode) benchmark (with an Fmax of 
0.62). 

In the Molecular Function ontology, FunPredCATH scored better 
than the tenth-ranked method in the No Knowledge (partial mode) 
benchmark (with an Fmax of 0.57 and 0.54, respectively). FunPredCATH 
outperformed the top method in CAFA3 in the Limited Knowledge 
(partial mode) benchmark, with an Fmax of 0.66 while the top method 
achieved an Fmax of 0.62. 

The lower coverage achieved by FunPredCATH without FunFams- 
Plus is due to the instances where FunPredCATH could not map pro
teins to a CATH FunFam since CATH only covers a subset of UniProt. 
Consequently, proteins do not receive annotations from the base pre
dictors and, therefore, are not annotated. 

Low Fmax scores could also result from proteins mapping to FunFams, 
which are not very populated. Therefore, the base method scores are 
lower than the threshold prioritising predicted GO terms, resulting in 
missed predictions. This can be mitigated by allowing lower FunFam-to- 
GO term scores to be considered when the number of proteins in the 
identified FunFams is low, with the resulting GO terms having a lower 
confidence score as a result. This should improve the coverage and 
provide probable GO terms for the target proteins. 

When the base predictor models were added to predictions from 
FunFams-Plus, which uses a cascade method that includes matches from 
PFAM-FunFams, InterPRO and BLAST to obtain predictions where no 
obvious CATH homologues can be found, an increase in coverage can be 
observed over the basic FunFams-Plus method. This indicates that using 
other means to find possible functional associations improves the pre
diction process. 

4. Conclusion 

The Protein Function Prediction problem remains, at present, a 
difficult computational problem that can have a significant impact on 
our understanding of the roles of proteins, especially when related to 
disease. We presented FunPredCATH, a set-based ensemble method used 
to predict protein function from sequence using a statistical-based 
method, set-based methods and a homology-based method (FunFams- 
Plus). Our results confirm that FunPredCATH compares well with 
similar methods while providing reasonable coverage. 

Table 2 
Evaluation of IEA FunPredCATH models on the CAFA3 Limited Knowledge benchmark in Partial mode.  

Method Biological Process Cellular Component Molecular Function 

Fmax Precision Recall Coverage Fmax Precision Recall Coverage Fmax Precision Recall Coverage 

Intersected Base Predictors 0.57 0.49 0.68 0.75 0.59 0.53 0.63 0.73 0.61 0.56 0.64 0.75 
Unioned Base Predictors 0.50 0.45 0.57 0.75 0.55 0.48 0.62 0.73 0.50 0.51 0.49 0.75 
Intersected Base Predictors With 

FunFams-Plus Intersected 
0.64 0.60 0.41 0.61 0.62 0.62 0.62 0.47 0.66 0.67 0.63 0.63 

Intersected Base Predictors With FunFams- 
Plus Unioned 

0.50 0.52 0.41 0.85 0.55 0.46 0.65 0.85 0.54 0.54 0.51 0.87 

Unioned Base Predictors With FunFams-Plus 
Intersected 

0.57 0.42 0.75 0.62 0.58 0.51 0.65 0.48 0.61 0.54 0.66 0.64 

Unioned Base Predictors With FunFams-Plus 
Unioned 

0.47 0.46 0.47 0.85 0.53 0.47 0.59 0.85 0.49 0.47 0.48 0.87 

Naive 0.37 0.48 0.30 0.99 0.53 0.57 0.49 0.93 0.25 0.34 0.20 0.98 
BLAST 0.25 0.17 0.38 0.99 0.45 0.39 0.52 0.93 0.40 0.33 0.53 0.98 
DomFun 0.49 – – 0.55 0.60 – – 0.51 0.62 – – 0.49 
FunFams-Plus 0.51 0.46 0.56 0.73 0.58 0.53 0.65 0.60 0.50 0.40 0.68 0.76  
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The main limitation of FunPredCATH lies in the statistics-based and 
set-based methods, which are only based on CATH, which limits the 
prediction of protein function if no CATH FunFam is identified. Future 
work in this area involves a cascade process that uses BLAST to find 
additional homologues in the base methods. Moreover, the base models 
can also be trained using other sources, such as Pfam FunFams and 
InterPRO, which should extend the capabilities of the models. 

The scores generated by the FunPredCATH models can be used in 
Machine Learning models such as kNN since they can act as distance 
functions for proteins within the same FunFam based on the strength of 
the GO term annotating the protein. The expectation is that proteins 
whose GO terms are more represented in the CATH FunFam will form 
tighter sub-clusters than those whose annotations are sparser. 
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