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Abstract. Computational models of neurodegeneration aim to emulate
the evolving pattern of pathology in the brain during neurodegenerative
disease, such as Alzheimer’s disease. Previous studies have made spe-
cific choices on the mechanisms of pathology production and diffusion,
or assume that all the subjects lie on the same disease progression tra-
jectory. However, the complexity and heterogeneity of neurodegenerative
pathology suggests that multiple mechanisms may contribute synergis-
tically with complex interactions, meanwhile the degree of contribution
of each mechanism may vary among individuals. We thus put forward a
coupled-mechanisms modelling framework which non-linearly combines
the network-topology-informed pathology appearance with the process
of pathology spreading within a dynamic modelling system. We account
for the heterogeneity of disease by fitting the model at the individual
level, allowing the epicenters and rate of progression to vary among sub-
jects. We construct a Bayesian model selection framework to account for
feature importance and parameter uncertainty. This provides a combina-
tion of mechanisms that best explains the observations for each individual
from the ADNI dataset. With the obtained distribution of mechanism
importance for each subject, we are able to identify subgroups of patients
sharing similar combinations of apparent mechanisms.

Keywords: Network spreading model · Disease progression · Bayesian
model selection · Variational Inference .

1 Introduction

Computational models of neurodegeneration aim to emulate the underlying
physical process of how disease initiates and progresses over the brain from

1 Elinor Thompson and Anna Schroder contributed equally to this work as the co-
second authors.
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a mechanistic point of view [6,25,10]. A better understanding of disease mech-
anisms and inter-individual variability through these models will aid in the de-
velopment of new treatments and disease prevention strategies.

Two types of components typically contribute to such models: models of
pathology appearance - how and where pathology spontaneously appears in dif-
ferent brain regions; and models of pathology spreading - how pathology spreads
from region to region. Both components are often linked to brain connectivity so
that spontaneous appearance arises according to network topologies, and spread-
ing is facilitated by network edges or brain-connectivity pathways.

Network metrics link spontaneous appearance of pathology to brain connec-
tivity via various mechanistic hypotheses. For instance, Zhou et al. [27] relate
disease patterns with several network topologies: i) centrality [3], indicating that
regions with denser connections are more vulnerable to disease due to heavier
nodal stress; ii) segregation [1], the converse of centrality, stating that regions
with sparse connections are more susceptible due to lack of trophic sources; iii)
shared vulnerability, expounding that connected regions have evenly distributed
disease because they have common characteristics such as gene expressions [10].

For the spreading component, dynamical systems models emulate the spatio-
temporal propagation process along the brain connectivity [11,15,16,9,23]. One
popular example is the network diffusion model [15] (NDM), which assumes that
the pathology purely diffuses from epicenters. Weickenmeier et al. [25] combine
the disease diffusion process with a local production term in a single model,
which emulates the full process of how the protein diffuses from epicenters and
replicates locally, gradually reaching a plateau. Thus, this model is able to re-
construct the process from disease onset to later stages.

However, such models make specific choices on the underlying mechanism in
the particular physical process. The complexity and heterogeneity of neurode-
generative conditions suggests that multiple processes may contribute and vary
among individuals. To avoid making such assumptions, Garbarino et al.[7] use
a data-driven, linear combination of several network topological descriptors ex-
tracted from the structural connectome to match the disease patterns fitted by a
Gaussian Process progression model. They find that the combination, which they
refer to as a ”mechanistic profile” better matches observed pathology patterns
than any single characteristic. However, this considers appearance and spread-
ing as interchangeable rather than interacting mechanisms. Secondly, although
[7] does produce individual-level as well as group-level mechanistic profiles, the
individual-level profiles assume that all the subjects lie on the same disease
progression trajectory. This does not fully capture the heterogeneity (such as
different epicenters [24], diffusion rate) within groups and underestimates the
variability in composition of the mechanistic profile among subjects.

In this work, we introduce an alternative model framework that non-linearly
couples the effects of spontaneous appearance and spreading. We construct a
Bayesian framework with an appropriate sparsity structure to estimate the mech-
anistic profile, in a similar way to [7] but including interaction of model com-
ponents and quantification of uncertainty. We account for the heterogeneity of
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neurodegenerative diseases in a more complex way than [7], by allowing factors
like epicenters, rates of diffusion and production, and the weights of network
metrics to vary among individuals. The resulting mechanistic profiles highlight
distinct subgroups of individuals within an Alzheimer’s disease (AD) cohort, in
which each subgroup has similar combinations of network metrics.

2 Methodology

2.1 Model Definition

Baseline Model One model of disease spreading [25,14] based on the Fisher-
Kolmogorov equation, assumes that the concentration of toxic protein can be
emulated by an ordinary differential equation (ODE) system, which involves the
combination of two physical processes: 1) the diffusion of toxic proteins along
the structural network from an epicentre(s), as described by the NDM [15]; 2) its
local production and aggregation at each node. The diffusion component includes
the graph Laplacian matrix L calculated from the structural connectome [15], as
a substrate for disease diffusion with the rate k. The production and aggregation
part provides a monotonically increasing trend converging to a plateau level v
with a common speed α shared by all regions. The model evolves the pathology
concentration c at time t according to:

dc

dt
= −k[Lc(t)] + αc(t)⊙ [v − c(t)], (1)

where ⊙ denotes the element-wise product. It constructs the disease progression
process from onset to late stage based on the single mechanism of network prox-
imity. It assumes a constant local production rate across regions, thus the growth
of concentration only depends on the level of biomarker propagating from the
epicenter along the structural connectome to each node. This does not take into
account the synergistic effect of other mechanisms.

Coupled Model Following [25], we retain the network proximity mechanism
for the diffusion component of our model, but we weight the local production
process with the combination of P network metrics M = [m1, ...,mP]. We use
w = [w1, ..., wP ]

T to represent the weighting, or extent of contribution of each
characteristic. In contrast to the baseline model, by weighting the rate of pro-
duction with the combination of network metrics, we further incorporate pathol-
ogy appearance proportional to various brain network topologies to the disease
spreading process. The new model expresses this coupling as follows:

dc

dt
= −k[Lc(t)] + αMw ⊙ c(t)⊙ [v − c(t)]. (2)

Network Metrics The network metrics considered by the model are listed in
Table 1 and a visualization is shown in Figure 1. StructureC, InvGeodist,
FunctionC represent the structural connectome, the matrix of the inverse of
geodesic distance along the cortical surface and the functional connectome.
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Table 1. Network metrics used as the interaction component with the spreading model

Metrics formula weights mechanism

m1 1−BetweennessCentrality(StructureC) w1 Structural Segregation
m2 1−ClusterCoefficient(StructureC) w2 Structural Dispersion
m3 ClosenessCentrality(StructureC) w3 Structural Centrality
m4 WeightedDegree(InvGeodist) w4 Geodesic proximity
m5 BetweennessCentrality(FunctionC) w5 Functional centrality
m6 1 w6 Even distribution

Fig. 1. Visualization of network metrics of the toy brain connectivity.
BetweennessCentrality is the fraction of all shortest paths that contain a specific
node. ClusterCoefficient quantifies the extent to which one node is clustered with its
neighbours. ClosenessCentrality is proportional to the reciprocal of the sum of the
shortest path length between the node and others. WeightedDegree is the sum of the
weights of the connections. Calculation of metrics has been done using the Brain Con-
nectivity Toolbox [18]. Metrics m1 to m5 have been normalized between [0,1] to main-
tain the same scale. Visualization is done using NetworkX (https://networkx.org/).

2.2 Bayesian Framework

In order to quantify the uncertainty of the estimation, we construct a Bayesian
inference framework for our dynamic system, thus we are able to obtain distri-
butions of parameters rather than deterministic values.

Parameter distributions In this work we focus on modelling the dynamics
of tau protein, which is widely hypothesized to be a key causative agent in AD.
Its concentration can be measured in vivo by positron emission tomography
(PET). We assume for subject i at jth scan time tij , the measurement of tau
concentration ĉ(tij) follows a normal distribution

p(ĉ(tij) | ki, αi) ∼ Normal
(
c(tij , ki, αi), σ

2
)
, (3)

where the mean is the model prediction with best-fit parameters and the error is
quantified by the standard deviation σ. The time gap δij (in years) between the
baseline scan and the jth follow-up scan is available in the dataset. However the
time from the disease onset to the baseline scan is unknown. Thus we need to
estimate such time tonseti such that tij = tonseti +δij . This time parameterization
enforces the relevant locations among all scans fixed by given δij .

Descriptions of the key model parameters are displayed in Table 2. We enforce
the rate of spreading and production to be positive by selecting a Half-Normal
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prior. The hyper-parameters of the rates are decided according to the research
findings that the annual change rate of tau-PET signal is quite slight [12,20].
Explorations of the proper choice of the hyper-parameters has also been done by
simulating different parameter levels and comparing the generated trajectories
to the measured data distribution.

Table 2. Model parameters and their prior distribution

Baseline Model Coupled model Interpretation Prior distribution

ki ki Spreading rate HalfNormal(std = 0.1)
αi αi Local production rate HalfNormal(std = 0.1)
tonset
i tonset

i Pseudo onset time Uniform(10,100)
σi σi Overall uncertainty HalfNormal(std = 1)

wi Feature weights Dirichlet(βi1 . . . βiP )

For ease of notation and clarity in the subsequent discussions, we will drop
the subject index i for the parameters in the following paragraphs.

Feature selection with sparsity We account for the feature importance by
estimating the weights of network metrics

w = [w1, ..., wP ]
T ∼ Dirichlet(β1, . . . , βP ).

We seek the minimal set of network components that explain the data to define
the mechanistic profile. Thus, we apply sparsity to the weight in a Bayesian way
by introducing the Horseshoe prior [4] to the hyper-parameters of the Dirichlet
distribution:

βl | λl, τ ∼ HalfNormal
(
0, λ2

l τ
2
)
, l = 1 . . . P.

This horseshoe structure includes a global shrinkage parameter τ and local
shrinkage parameters λl, each following a half Cauchy distribution:

λl, τ ∼ HalfCauchy(0, 1).

The flat tail from Cauchy Distribution allows the features with strong contribu-
tion to remain with a heavy tail of the density, while the sharp rise in density
near 0 shrinks the weight of the features with weak signal.

2.3 Variational Inference

Suppose x, z and θ represent the collections of observations, hidden variables
and parameters respectively. Due to the complexity of the model structure, the
posterior pθ(z | x) we are interested in is often intractable and hard to ob-
tain analytically. Thus we use the variational distribution qϕ(z) with ϕ as the
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variational parameters to approximate the posterior. The evidence lower bound,
ELBO ≡ Eqϕ(z) [log pθ(x, z)− log qϕ(z)], can be used to approach the log like-
lihood, since the gap between them is the Kullback-Leibler divergence between
the variational distribution and the posterior, which is larger or equal to 0:

log pθ(x)− ELBO = KL (qϕ(z)∥pθ(z | x)) ≥ 0. (4)

Thus the objective of the optimization is to maximize the ELBO. We use a nor-
mal distribution with a diagonal covariance matrix as the variational distribution
to sample the hidden variables in the latent space, and then use proper param-
eter transformation to obtain the constrained hidden variables. The process is
accomplished with the use of Pyro [2], a probabilistic programming framework.

3 Experiments and results

3.1 Data processing

Brain Networks Three types of connectivity were used to extract features
for our coupled models: 1) the structural connectome, which contains the num-
ber of white matter fibre trajectories; 2) the matrix of the geodesic distance
along the cortical surface; 3) the functional connectome, which reflects the syn-
chrony of neural functioning among regions. The structural connectome is an
average of 18 young and healthy subjects’ connectomes from the Human Con-
nectome Project [22]. We generated streamlines using probabilistic, anatomi-
cally constrained tractography, processed using MRtrix3 [21], and filtered the
streamlines using the SIFT algorithm [19]. The geodesic distance matrix and
the functional connectome are obtained from the Microstructure-Informed Con-
nectomics Database [17], and is an average of 50 healthy subjects’ matrices. We
define the brain regions according to the Desikan-Killiany Atlas [5].

Tau-PET data We model the dynamics of tau protein measured by PET scans.
We use the tau-PET standardized uptake value ratios (SUVRs) downloaded from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (adni.loni.usc.edu) [13].
We exclude subcortical regions, which are impacted by off-target binding of the
radiotracer [8]. Two-component Gaussian mixture modelling is applied to the
SUVR signals of all subjects. We treat the distribution with the lower mean
as the distribution of negative signals, and define the mean plus one standard
deviation of this distribution as the threshold for tau-positivity.

Selection of subjects We include N = 110 subjects with at least two tau-PET
scans, amyloid beta positive status and at least one region with positive tau
signal, including healthy, cognitively impaired and AD subjects, since we aim
to focus on the people with a potential to accumulate abnormal pathological
tangles. We normalise the data of all the subjects (i = 1,..,N) between 0 and 1
by (taui−taumin))/(taumax−taumin)) where taumin and taumax are calculated
across all the subjects and regions, thus the differences in data scales among
subjects and regions are maintained.
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Fig. 2. Comparison of the overall fitting among all subjects. This boxplot vi-
sualizes the distribution of Pearson R correlations (between model fitting and the mea-
sured value) of all subjects fitted by the baseline and our coupled model respectively.

Setting of epicentres For initialization, we assume pathology starts from
candidate epicentres, to simulate the full process of disease progression from
very early stages, i.e. prior to the baseline scan. We rank 34 pairs of bilateral
cortex regions according to the total number of subjects that have positive tau
signals, and pick the top eight pairs of regions as the candidate epicentres where
the propagation of pathology is likely to start: inferior temporal cortex, banks of
the superior temporal sulcus, fusiform gyrus, lateral orbitofrontal cortex, middle
temporal gyrus, entorhinal cortex, parahippocampal gyrus and temporal pole.
The four epicentres identified by Vogel et al.[24] are all included.

3.2 Results

We fix the initial tau level at each candidate epicenter and the end level of
the plateau of all the subjects to be 0.01 and 1.5 and fit each subject using
the baseline model and our coupled model respectively. For evaluation we use
Pearson R correlation between the measured and model fitted values.

Figure 2 compares the distribution of R correlations which reflect the per-
formance of the baseline model and our coupled model on each individual. Ac-
cording to the one-side t test, the R correlations from the coupled model are
significantly larger than those from the baseline model (p-value=3.5732e-22).
Especially, fitting of subjects with particularly low performance in the baseline
model are noticeably improved.

Figure 3 visualizes the model-fitted tau signals versus measured tau signals in
all 68 cortex regions. The distribution of tau fitted by our coupled model is closer
to the measured pattern. Finally, we subtype the individuals according to the
top two most dominant mechanisms of pathology appearance interacting with
the network spreading model. Specifically, we encode each subject with a vector
containing the rank of each metric according to the obtained weights, and assign
the subjects having the same rank of the top two metrics to the same group.
We consider a group containing at least 6 people (5% of all) as one subtype. As
a result, 83 out of 110 subjects have been assigned to six subtypes. Figure 4A
displays the feature importance distribution for an individual, while Figure 4B
places the feature distributions of the subjects belonging to the same subtype
within each of the six plots. It can be observed that structural centrality appears
most frequently as a dominant feature, followed by structural segregation.
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Fig. 3. Model comparison at individual level. We display examples from two
subjects by comparing their fitting from the baseline model and the coupled model.
A: scatter plots which show the model-fitted signals versus the measured signals and
the visualization of signals on the brain. Each point in the scatter plots represents
the signal in one region. B: visualizations of the individual-level trajectory. Each line
represents the modelled trajectory for a region while each point represents the actual
signal in that region at each visit. Improvement can be observed by the coupled model.

Fig. 4. Distributions of the weights for each mechanistic component of an individual
(A) and over all individuals belonging to each particular subtype obtained based on
the top two important features (B).
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4 Conclusions

We introduce a new Bayesian modelling framework that couples pathology ap-
pearance and spreading, by embedding the mechanistic profiles that consist of
combinations of network metrics into the dynamic system of disease spreading.
This improves the fitting of the observed pathology pattern, and provides a
potential way to subtype subjects according to mechanistic profiles. For future
work, we will validate the cohort-level mechanistic profiles derived from the iden-
tified subtypes using external datasets, and also verify the subtypes using other
algorithms such as the SuStaIn [26]. Furthermore, we will incorporate uncer-
tainty from connectomes. We will also perform further comparisons with other
state-of-the-art models, such as the topological profiles by [7], which is currently
hard to compare directly due to various differences in the model design.
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Supplementary: A coupled-mechanisms
modelling framework for neurodegeneration

Tiantian He et al

A A single topology metric vs our combination of metrics

Fig. 1. Weighting the production term with a single metric vs our combi-
nation of metrics We display the model performance (using R correlation of the
modelled and observed data) for each subject using the model with its corresponding
best single metric and compare it with our multi-mechanisms model. It can be observed
that using a single network metric to weight the production term works better than the
baseline model, but not as well as the combination of multiple metrics. This suggests
that multiple mechanisms of pathology appearance may work synergistically.

B Stability test: repeated experiments

Table 1. Summary of model performance across all subjects in three runs To
test the stability of the result, we repeated the experiments three times with different
random seeds. Adam is used as the optimizer with a learning rate of 0.01. The table
summarizes the overall performance of the baseline and our coupled model across three
runs by displaying the average R correlation (fitting vs measurement) across all subjects
and all visits.

Model Average R correlation in three runs

Baseline model [0.466, 0.467, 0.464]
Coupled model [0.669, 0.654, 0.670]
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Fig. 2. Repeated experiments across three runs The results for these three runs
are displayed by violin plots, which compare the distribution of R correlations between
the model prediction and the measured pathology for each individual. The performance
is stable regardless of the randomness.

C Weighting the production term with randomised
vectors

Fig. 3. Using randomised vectors with no biological meaning We replace the
six appearance metrics in our coupled model with six randomised vectors generated
from the standard uniform distribution to verify that the model truly benefits from
the additional information of the biologically-relevant network metrics. We repeat op-
timization for all the parameters and weights. Similarly, we use boxplots to display
R correlations between the fitting and measurements of all subjects. The use of ran-
domised vectors results in poor model performance, compared to the use of network
metrics in the coupled model. This highlights the importance of the network metrics.
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