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A B S T R A C T   

The reduction of water leakage is essential for ensuring sustainable and resilient water supply systems. Despite 
recent investments in sensing technologies, pipe leakage remains a significant challenge for the water sector, 
particularly in developed nations like the UK, which suffer from aging water infrastructure. Conventional models 
and analytical methods for detecting pipe leakage often face reliability issues and are generally limited to 
detecting leaks during nighttime hours. Moreover, leakages are frequently detected by the customers rather than 
the water companies. To achieve substantial reductions in leakage and enhance public confidence in water 
supply and management, adopting an intelligent detection method is crucial. Such a method should effectively 
leverage existing sensor data for reliable leakage identification across the network. This not only helps in 
minimizing water loss and the associated energy costs of water treatment but also aids in steering the water 
sector towards a more sustainable and resilient future. As a step towards ‘self-healing’ water infrastructure 
systems, this study presents a novel framework for rapidly identifying potential leakages at the district meter area 
(DMA) level. The framework involves training a domain-informed variational autoencoder (VAE) for real-time 
dimensionality reduction of water flow time series data and developing a two-dimensional surrogate latent 
variable (LV) mapping which sufficiently and efficiently captures the distinct characteristics of leakage and 
regular (non-leakage) flow. The domain-informed training employs a novel loss function that ensures a distinct 
but regulated LV space for the two classes of flow groupings (i.e., leakage and non-leakage). Subsquently, a 
binary SVM classifier is used to provide a hyperplane for separating the two classes of LVs corresponding to the 
flow groupings. Hence, the proposed framework can be efficiently utilised to classify the incoming flow as 
leakage or non-leakage based on the encoded surrogates LVs of the flow time series using the trained VAE 
encoder. The framework is trained and tested on a dataset of over 2000 DMAs in North Yorkshire, UK, containing 
water flow time series recorded at 15-minute intervals over one year. The framework performs exceptionally well 
for both regular and leakage water flow groupings with a classification accuracy of over 98 % on the unobserved 
test dataset   

1. Introduction 

Water distribution networks face growing pressures from rising 
population levels, increased urbanisation, more significant uncertainty 
in supply due to climate change, rising energy prices, a volatile global 
economy, and a more complex social and regulatory environment 
(Marlow et al., 2013). These stressors have seen the industry shift from a 
‘predict and provide’ approach, which does not account for limitations 
in supply, towards a ‘conserve and contain’ approach (Taylor and 

Hodges, 2008). This change in mindset seeks to reduce per capita con
sumption through a combination of demand-side behaviour change and 
improved supply-side efficiency. Leakage due to pipe bursts is a major 
inefficiency in water distribution networks and over 20 % of the water 
entering public supply in England and Wales is lost as leakage, a wastage 
of over 50 litres per person per day (PR19 final determinations 2019). 

A priority for Ofwat, the economic regulator of the water industry in 
England and Wales, is to reduce leakage across water distribution net
works. High levels of leakage can undermine efforts to reduce con
sumption on the demand side, as consumer confidence in their water 
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supplier is diminished. This is compounded by the fact that, despite 
efforts by water companies to improve leakage management, a signifi
cant proportion of leakage bursts in distribution systems are reported by 
consumers rather than detected by the companies themselves. While 
catastrophic failures can have an average response time of 1.5 to 3.5 
hours, depending on the time of day, bursts that are not visible from the 
surface may go undetected for months in the absence of customer 
reporting (Mounce et al., 2010). Traditional leakage identification and 
analysis methods are unable to offer a rapid response, typically relying 
on nighttime sensor data to spot leakage. New sensing technologies, 
while promising, will take decades to see widespread distribution across 
an extensive buried network. Hence, more proactive and reliable ap
proaches are needed for leakage management in water distribution 
systems, that are able to make use of existing sensor technologies 
(‘“Proactive” approach to leaks required to meet tough Ofwat targets 
2023). 

The standard practice for water utility companies in the UK is to 
divide the water distribution network into district meter areas (DMAs). 
DMAs represent isolated water network areas, typically serving up to 
2000 households, where sensors at the inlet and outlet measure the flow. 
Leakage management is usually performed at the DMA level (Morrison, 
2004). In the field of leakage management of water flow distribution 
networks, leakage detection is a critical research subject (Mounce et al., 
2010; Romano et al., 2014; Chan et al., 2018; Puust et al., 2010; Aksela 
et al., 2009). Sensor data can be fed into leakage detection models that 
seek to identify bursts by monitoring changes in the flow profile over a 
set window of time. Traditionally, the most common methods for 
identifying leaks utilise minimum night flow (MNF) (García et al., 
2008). This technique recognises that water usage during night-time is 
less variable than in the daytime. Hence, the average nightly minimum 
over a specified window is used as a baseline for comparison with new 
flow data, with a significant variation (relative to a pre-defined 
threshold) indicating a leak (Mounce et al., 2007). However, these 
techniques are not highly reliable as MNF methodologies have to deal 
with several uncertainties (such as seasons, weather conditions, holiday 
periods, gatherings, etc). Accurate use of MNF relies upon having suf
ficient knowledge to estimate several parameters, including active night 
users, leakage exponent (which varies with system pressure), and the 
hour-to-day factor (Amoatey et al., 2021). Reliable estimation of these 
parameters typically requires both pressure and flow data. The selection 
of the best time window for the computation of MNF requires additional 
considerations and analysis. It has been shown that minimum error does 
not correspond with the selected night flow window but with the hour in 
which average demand applies (García et al., 2008). While it is often the 
responsibility of trained operators to identify leakage from MNF, a 

significant proportion of leaks are reported to water companies by their 
customers (Mounce et al., 2007). 

MNF is a leakage detection method based on simplified demand 
forecasting, as the average of the time window is assumed to be the 
required demand for future nights. Deviation from expected demand is a 
method of leakage identification. Demand forecasting therefore has a 
potential role to play in developing leakage detection methods that are 
based on comparison between expected and actual flow. Methods for 
demand forecasting in water distribution networks include both tradi
tional and machine learning-based forecasting techniques (Antunes 
et al., 2018). Hybrid models have also been developed which incorpo
rate machine learning methods, and these have the potential to further 
improve forecasting accuracy (Pandey et al., 2021; Pu et al., 2023). 

Recent works have proposed models based on machine-learning 
methods to improve the accuracy and reliability of leakage detection 
(Pu et al., 2023; Abdelmageed et al., 2022; Fu et al., 2022). Benefits of 
intelligent methods include increased automation, high levels of accu
racy and reliability, ability to deal with high temporal resolution, and 
more rapid leakage identification (Fu et al., 2022). Some of the 
machine-learning and deep-learning techniques utilised by these studies 
include artificial neural networks (ANNs) (Mounce and Machell, 2006; 
Aksela et al., 2009; Romano et al., 2014; Zhou et al., 2019), support 
vector machines (SVM) (Geberemariam et al., 2014; Kang et al., 2018), 
Kalman filters (KFs) (Ye and Fenner, Feb. 2011; Jung and Lansey, 2015), 
and wavelet analysis (Romano et al., 2014). With sufficient quality and 
quantity of training data, these methods have demonstrated strong 
performance in leakage identification (Mounce and Machell, 2006). 
Many of these models are trained using examples of standard flow data 
and flow during leakage bursts. The burst examples are typically ob
tained by matching the timestamps of abnormal flow patterns to pipe 
repair records or reports of visible leakage from consumers to water 
companies. Alternatively, the data can be simulated through a hydrant 
flush event that mimics a leakage burst (Birek et al., 2014). Some studies 
do not use data from real water distribution networks and instead 
extract pressure data from simulation software-based network models 
(Leu-and Bui. 2016). 

In the field of deep-learning, autoencoders (AE) are relatively novel 
and draw upon the concept of dimensionality reduction using artificial 
neural networks (ANNs) with bottleneck shapes at the central layers of 
the ANN (Hinton and Salakhutdinov, 2006). Variational autoencoders 
(VAE) are a type of AE that relies on Bayesian concepts and forces the 
bottleneck layers to possess a regularised standard normal space 
(Kingma and Welling, 2019). This reduces the dimensions of input data 
in such a way that the inputs similar to each other in terms of their 
characteristics, lead to similarities in the outputs of the bottleneck layers 
(Kingma and Welling, 2019). Hence, within the setting of water leakage 
detection, it can be understood that with sufficient training of a VAE 
using leakage and non-leakage flow datasets, VAEs can be capable of 
differentiating between the flow data classified as leakage or 
non-leakage. VAEs have demonstrated their potential in the detection of 
extreme events in numerous engineering contexts (González-Muñiz 
et al., 2022), including earthquake early-warning systems (Fayaz and 
Galasso, 2023), detection of cyber-attacks (Zavrak and İskefiyeli, 2020), 
and structural health monitoring of infrastructure such as dams (Shu 
et al., 2023). Various types of AE, including VAEs, have begun to be 
considered a tool for leakage detection in both water and oil/gas pipe
lines, where they have shown initial promise (Cody et al., 2020, Wang 
et al., 2020). However, previous studies using AE for leakage detection 
have relied on test-bed setups, where water flow behaviour can be 
strictly controlled. These setups vary in scale, from representing a single 
component (Feng et al., 2021, Ahmad et al., 2023), a handful of pipes 
(Yeo et al., 2019), to a broader distribution network more comparable in 
scale to a small DMA (Cody et al., 2020). Some setups model only reg
ular flow (Yeo et al., 2019), while others simulate leakage events (Cody 
et al., 2020, Feng et al., 2021). Such setups allow for cutting-edge sensor 
technology to be used, and so all work to date has used hydroacoustic 

Nomenclature 

AE autoencoder 
ANN artificial neural network 
AUC area under the curve 
DMA district meter area 
IA index of agreement 
KF Kalman filter 
KL Kullback–Leibler 
LKG leakage grouping 
LV latent variable 
MNF minimum night flow 
NLKG non-leakage grouping 
PDF probability density function 
ROC receiver operating characteristic 
SVM support vector machine 
VAE variational autoencoder  
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measurements from acoustic sensors (Cody et al., 2020, Feng et al., 
2021, Ahmad et al., 2023, Yeo et al., 2019) rather than traditional water 
flow measurements. While this can provide more accurate sensing, 
acoustic sensing is a less explored method of monitoring behaviour in 
water pipes. The technology has undergone limited deployment, and 
most DMAs are not subjected to acoustic monitoring. In developed na
tions with well-established water distribution systems, the cost of 
installing improved sensing technology across the entire existing 
network is high – one supplier for North West England spent £30 million 
installing 100,000 acoustic loggers across its network (United Utilities - 
World’s biggest listening project helps tackle water leaks, 2019) – and 
water companies report large numbers of their acoustic loggers not 
working due to failed batteries, incorrect attachment, communication 
failure, etc. (Pressure logging or acoustic logging, 2020). 

Hence, this study explores machine learning and deep learning 
methods for widespread water flow monitoring at a DMA level. In 
particular, this study proposes a VAE-based framework that reduces the 
dimensions of incoming real-time flow time series into two surrogate 
latent variables (LV) space. This is done by training a VAE using 
~10,000 groupings of 96-point flow time series from ~2000 DMAs in 
the North Yorkshire region of England, UK, and utilising a novel domain- 
informed loss function. The loss function is tuned based on the 
application-specific assumption that the flow during leakages possesses 
different characteristics than the usual/normal flow. Thus, a new loss 
term is introduced in the original VAE loss function to penalise any 
overlap of the LVs corresponding to the leakage (LKG) and non-leakage 
(NLKG) flow groups. Hence, the trained surrogate LV space possesses 
distinct yet regulated LVs for the two types of flow groupings. The 
encoded LV space is then used to train a binary SVM classifier which can 
be used to accurately classify the incoming encoded LVs into LKG or 
NLKG in real time based on its mapping onto the pre-trained LV space. 
Unlike previous studies using test-bed setups, this study uses real-world 
DMA flow data. This could yield the environmental and economic 
benefits of reduced water loss (and the associated energy and resource 
savings) without requiring the cost of widespread deployment of new 
sensing technologies. Hence, the proposed framework can provide a 
greater level of resilience in existing and aged water infrastructure 
systems where uptake of new sensing technologies is likely to be 
gradual. It is verified that the proposed framework is highly successful in 
accurately monitoring the leakage status of DMAs and can handle the 
additional challenges of processing noisy real-world data. 

2. Framework conceptualisation 

In complex infrastructure systems, a vast number of individual 
components are often difficult to access (e.g., buried infrastructure). 
Hence, directly detecting failure via inspection can be prohibitively 
expensive and, to some extent, relies on noticeable/surface-level defects 
within the system. This can be costly to the resilience of both the system 
and the societies it serves and result in unsustainable and non-climate- 
friendly wastages, as well as monetary losses. Therefore, instead of 
directly observing failure in water infrastructural systems, operators rely 
on the data, often in the form of time series data, from a sensor network 
to try and identify failure events. In such cases, data-driven- and ma
chine learning-based models can offer a robust solution to the problem 
of failure detection (Chan et al., 2018; Puust et al., 2010). 

An issue with time series data can be the curse of high dimensionality 
(Bellman, 1961) and the difficulty of developing damage detection 
cut-offs. Due to this, differentiating between critical information and 
noise in the data becomes challenging. To address this issue, many 
machine learning algorithms require some feature engineering, which is 
the application of domain knowledge to identify and select a subset of 
features from a data set (e.g., mean, variance) to be used as inputs to 
train these algorithms. In other cases, algorithms like principal compo
nent analysis (PCA), singular value decomposition (SVD), etc. conducts 
feature reduction by statistically merging original features into lower 

dimensions. Within this setting, AE neural networks (particularly VAEs) 
conduct effective dimensionality reduction without requiring explicit 
feature engineering. In addressing the challenges posed by time series 
data, selecting VAEs over other methods, such as wavelet transform 
andfunctional principal component analysis (FPCA), offers several 
distinct advantages (Todo et al., 2022). Time series data often exhibits 
complex and non-linear relationships, and VAEs can capture these 
non-linear dependencies through their neural network architectures, 
allowing them to represent the data in a more flexible manner and with 
minimal assumptions. Furthermore, VAEs learn a probabilistic latent 
space representation of the data, providing a distribution of possible 
representations for each input, which is valuable when dealing with 
noisy or imperfect sensor data. Specifically, VAEs can produce smooth 
and regulated LVs that act as statistical surrogates for the input data by 
reducing the dimensions and capturing the key characteristics. Note
worthy alternatives like PCA, SVD, and regular AEs, though valid, may 
not inherently provide this continuous probabilistic dimensionality 
reduction with comparable precision and reconstruction efficiency. 
Hence training and exploring the LV space of the VAEs can provide 
high-dimensional insights within a low-dimensional space where the 
distance between the LVs indicates the similarity/dissimilarity within 
the characteristics of the input data. This offers an approach to identify 
any anomalies/failures (such as pipe bursts) in a lower-dimensional 
surrogate space rather than the original complex and 
high-dimensional space of the inputs (especially water flow in water 
infrastructure systems). 

With this backdrop, this study proposes a framework for leakage 
identification based on the concept of statistical surrogacy. Rather than 
directly classifying the original high-dimensional water flow time series 
data into LKG or NLKG categories, the framework instead reduces the 
dimensions of the flow data using a domain-informed VAE to minimise 
the impact of redundant characteristics and isolate the key components 
of different classes through surrogate LVs. Classification can then be 
performed on the surrogate LVs, which are trained to capture the 
distinction between the LKG and NLKG flow groupings through a 
domain-informed loss function. VAE is chosen for obtaining the surro
gate variables as they have proved to be effective method for natural 
data (van der Maaten et al., 2009) and in cases of extreme events (Fayaz 
and Galasso, 2023), with leakage representing an extreme case of flow 
behaviour. Furthermore, due to the Bayesian nature of the VAE, the 
flexibility of altering the loss function provides an efficient solution to 
include the physics of the problem in the training process. 

The proposed framework is illustrated in Fig. 1. Sensors record the 
net flow of water for a given DMA at a discrete time interval (e.g., every 
15 min in this case). The proposed framework uses a pre-specified length 
of the water flow record (e.g., preceding 24 h, i.e., 96 points, in this case) 
and classifies them into LKG or NLKG flow in real time using end-to-end 
pre-trained models of VAE and SVM. The framework starts by convert
ing the preceding flow time series data into two surrogate mean LVs (i.e., 
μLV1

and μLV2
) using a pre-trained VAE encoder. The LVs are trained to be 

Fig. 1. The proposed VAE and SVM-based framework.  
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sufficient and efficient to contain information about the required char
acteristics of the water flow. The obtained μLV1

and μLV2 
are then used as 

inputs to a pre-trained SVM, which compares it against the pre-obtained 
mapping of LVs to compute the probability of the flow data to be clas
sified as LKG (‘burst’) or NLKG (‘usual’) flow (i.e., P(LKG) =

P(LKG|μLV1
and μLV2

) and P(NLKG) = P(NLKG|μLV1
and μLV2

)). Then 
P(LKG) is compared against P(NLKG), and based on this comparison, the 
final classification decision is made (i.e., LKG/burst or NLKG/usual 
flow). Thus, this framework enables rapid monitoring of the water pipes 
and flags possible leakages without human intervention. This informa
tion can then be used to inform the targeted repair strategies that 
minimise water loss in the network and curtail inconvenience to the 
public. 

3. Dataset 

This study uses a water flow dataset of ~2500 DMAs managed by 
Yorkshire Water, a utility company of water supply and distribution in 
North Yorkshire, UK. The dataset consists of water net flow (in litres/ 
second) for each DMA recorded at a 15 min interval from April 2016 to 
April 2017 (~ 365 days × 24 h × 60 min/15 min interval = 35,040 data 
points). Each data point is given a validity code based on Yorkshire 
Water’s assessment of the sensors’ records. These codes – ‘V’ for valid, ‘I’ 
for invalid, or ‘M’ for missing – reflect any possible breaks or faults in the 
sensor readings. Invalid or missing sections represent less than 5 % of all 
DMA flow data. Fig. 2a shows a full year of flow data for one exemplar 
DMA. The magnitude of flow remains broadly consistent throughout the 
year, with some seasonal fluctuations and spikes of large flow rates. 
Fig. 2b shows a standard week of valid flow data from the same DMA. 
The figure shows the typical volatility over a 24 h period of flow data; 
minimums are seen during the night hours, with peaks occurring during 
the morning and late afternoon that correspond with a large proportion 
of the population leaving for and returning from work/school. 

The provided dataset also contains the repair logs during the one- 
year period with corresponding repair dates for respective DMAs 
(although the exact timestamps of repairs are unknown). The logs 
contain the dates of over 5000 recorded repairs across 1600+ unique 
DMAs. Although this repair log does not explain each repair’s reasons, it 
is assumed that the entries are mainly due to leakage/burst events. 
Repairs are typically prompted either by customer leakage reports or the 
identification of unusual flow data by Yorkshire Water operators. If a 
leak is customer-reported and visible at the surface level, it is often 
repaired within a few hours or days. However, no evident leakages may 
take several weeks to repair. This delay between the onset of the 
leakage/burst event and the repair date means that a direct comparison 
of flow and repair logs is insufficient to tag the leakage dates in the 
dataset. Instead, it is necessary to utilise a method that identifies 
“abnormal” flow data representing probable leakages/bursts. The 

timing of this flow can then be compared to recorded repair logs to 
ensure that the identified bursts are within the vicinity of the closest 
logged repair date (after the burst). In the absence of widespread 
metering, repair logs are the best alternative for the verification of 
identifying leakage events. 

4. Dataset pre-processing 

In an ideal scenerio, the framework would be trained on a dataset of 
confirmed leakages (as well as confirmed non-leakage flow datapoints) 
drawn from a complete dataset without any missing or invalid water 
flow data. However, such an ideal dataset is unrealistic due to the 
various aberrations and data errors that occur in typical real-world raw 
data. Hence, it is necessary to statistically complete the available water 
flow data and to appropriately sample examples of water flow data to 
represent bursts/LKG| events and periods of regular/NLKG flow. This 
section outlines the pre-processing required to generate the data inputs 
necessary to train the proposed framework. 

4.1. Data completion using Kalman smoothing 

As mentioned in the previous section, the raw sensor flow data 
provided by Yorkshire Water contains faulty segments labelled as 
“invalid” or “missing” or containing impossible flow values (such as 
negative flow). As this study proposes a data-driven framework, 
ensuring the dataset is robust and doesn’t contain any invalid/missing 
data is vital. Hence, before utilising the dataset to develop the frame
work, the fault segments of the flow time series are corrected using 
Kalman smoothing (Shumway and Stoffer, 1982). 

Kalman smoothing is based on the technique of KF, a simple dynamic 
Bayesian network that uses observed measurements (assumed to be a 
combination of state and noise) to provide recursive estimates of the 
underlying state at each time-step t (Masreliez and Martin, 1977). The 
KF process consists: i) a prediction step, to estimate the underlying state 
and covariance, and ii) an update step, which uses information from the 
observed measurement (at time-step t) to revise these estimates (Durbin 
and Koopman, 2012). Eqs. (1) and 2 are used in KF to represent the 
observation and the state of time series data, where Xt is the observed (or 
measured) value at time-step t, yt represents the underlying state, θ is a 
tuning parameter, and vt and wt are noise components that are assumed 
to be normally distributed with a mean of 0 and standard deviations of Φ 
and τ, respectively. 

Xt = yt + vt
(
∼ N

(
0,ϕ2)) (1)  

yt = θyt− 1 + wt
(
∼ N

(
0, τ2)) (2) 

Kalman smoothing is a post-processing method that estimates the 
state of time series data before and after a given smoothing window and 

Fig. 2. Flow data from DMA 5 for (a) a full year and (b) a typical week.  
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performs Bayesian-state interpolation of the observations. For a given 
window (t = 1,2,…,T), a forward pass of the time series is completed 
with KF, followed by a backward recursive pass. This backward pass 
allows estimates to be refined using information from later observations 
after the smoothing window (t > T) (Briers et al., 2009). 

Kalman smoothing is utilised to replace all the faulty segments in the 
datasets. An initial examination of the dataset used in this study reveals 
that approximately 95 % of segments with missing or incorrect flow data 
consist of fewer than 480 data points, which is equivalent to a span of 5 
days when compared to the total available water flow data spanning a 
year. Moreover, more than 85 % of these segments contain less than 96 
data points, corresponding to a duration of 24 h. The median and mode 
values for the missing or invalid segments are both observed to be 5 data 
points, equivalent to 75 min. Consequently, the presence of such a small 
proportion of missing or invalid data is not expected to adversely impact 
the Kalman smoothening process. It is also worth noting that, of the 
complete set of available flow data from the ~2000 DMAs, only 
~10,000 groupings representing both LKG and NLKG flow patterns are 
employed to train the framework (explained in section 4.3). Therefore, 
the influence of missing or invalid data is further constrained. 

Fig. 3 shows a short segment with missing flow data from an exem
plar DMA (a) before and (b) after Kalman smoothing. As seen in Fig. 3a, 
the flow data contains a missing section, which is completed with a 
smooth flow profile that connects the preceding and subsequent data 
using Kalman smoothing in Fig. 3b. Thus, Kalman smoothing can replace 
erroneous sensor data with realistic values based on the available non- 
erroneous data. This process is repeated for all faulty segments of the 
dataset individually. 

4.2. Outlier labelling using isolation forest 

Ideally, the flow data during known leakage events would be flagged 
as LKG in the dataset. However, bursts in real DMA networks are rarely 
so neatly catalogued, with most leakage events being identified in the 
aftermath through customer reporting. Therefore, the best available 
verification for the known leakages in the available dataset is assumed to 
be the recorded repair log. However, the repair logs do not neccesarily 
correspond to the leakage timestamps (rather only contain repair dates), 
and the actual timestamps of leakages are still unknown. Hence, it be
comes necessary to use post-hoc anomaly/outlier detection algorithms 
to statistically label the most probable timestamps of leakage (Mounce 
et al., 2007, Mounce et al., 2013). In this study, continous sets of sta
tistical outliers are treated as leakage events and the ourliers are iden
tified using a tree-based unsupervised machine learning algorithm: 
isolation forest (Liu et al., 2008). Isolation forest assumes that outliers 
will be rarer than the expected datapoints and have different attributes, 
making the outliers easier to isolate. In terms of decision trees, this 
phenomenom leads to outliers being placed closer to the root node than 
the normal data points. The classification threshold, which separates 

outliers from non-outliers, is set by a hyperparameter called contami
nation fraction (Liu et al., 2012). In this study, a contamination fraction 
of 0.005 is selected. This algorithm is used to label the flow data for all 
DMAs as outliers and non-outliers, and the outliers are further analysed 
to validate the indication of potential leakages. 

Fig. 4 presents the outliers detected in the flow data of one of the 
most-repaired DMAs. The dashed lines in the figure show the dates of 
repair based on the repair log, while the green circles are the outliers 
flagged by the isolation forest. It can be observed that the isolation forest 
algorithm performs well in identifying both extreme outliers and 
extended periods of unusual flow rates. The detected outliers, particu
larly extreme ones, correlate well with repair dates. While a few repair 
dates are observed to be away from the outlier data, this can be due to 
the repairs being conducted for reasons other than pipe leakage, such as 
replacing aging infrastructure or capacity upgrades, which are not of 
interest in this study. It is further observed that the algorithm also flags 
some other unusual flow data points that do not appear to be leakages as 
they aren’t close to the repair dates. Hence, it is crucial to identify outlier 
groups so that only extended periods of irregular flow are flagged as 
outliers hence leakages, while isolated individual outliers are discarded. 
For this reason, leakage groupings labelled LKG are required to have a 
minimum of 20 outliers in length, representing five hours of flow. The 
literature supports this approach, suggesting that abnormal flow shorter 
than a few hours in size is not likelyto indicate leakage but sensor error, 
firefighting, or an industrial event (Mounce et al., 2007). 

Identifying accurate leakage data points is essential in developing a 
reliable tool for classifying LKG and NLKG data. To validate the 
assumption that the detected outliers can act as a reliable proxy for the 

Fig. 3. Section of missing data (a) before and (b) after Kalman smoothing, DMA 1348.  

Fig. 4. Outlier identification and repair dates for DMA 2131.  
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true leakage events, the timesteps at which the outliers are flagged using 
the algorithm are compared to the repair dates in the repair log. Though 
these timings are not expected to align perfectly due to fluctuations in 
the time taken to respond to suspected leakage, a reasonable time frame 
is necessary (a time frame of 30 days is used here). Furthermore, it 
should be noted that the repair logs only contain the repair dates (rather 
than exact timestamps); hence time lags are expected. 

Fig. 5 shows the time difference between each repair date (assumed 
to be 23:59:59 h of each repair date) and the closest outliers before and 
after the repair dates for DMA 2131. The DMA has undergone 17 repairs 
(shown on the y-axis) during the year. As the repair logs contain only the 
date of repair, and not the time, this analysis assumed that each repair 
occurred at 23:59:59 h; hence the outliers occurring on the same date as 
a repair are recorded to occur prior to the repair. Based on Fig. 5, it is 
noted that the outliers correspond well with documented repairs, with 
many repairs occurring within two to three days of an outlier, which are 
likely to represent repairs to customer-reported, surface-visible bursts. 
Almost all recorded repairs in the example shown in Fig. 5 took place 
less than five days after a record of outlier flow. This falls well within the 
repair timescale that would be expected for less urgent, non-visible 
leakage or leakage on land requiring permissions for access. These 
findings confirm that repair data is the best proxy for leakages/bursts. 

4.3. Selection of training and testing datasets 

Once the outliers have been identified and examined, they must be 
grouped into LKG/burst and NLKG/usual groupings to provide training 
samples for the VAE and SVM. The outliers close to each other in time 
(within a few hours of each other) are likely to indicate a single burst 
rather than more distinct bursts and hence are grouped together. Single 
outlier points may indicate sensor error or data quality issues. In addi
tion, the literature indicates that short periods of anomalous flow, 
lasting just a few hours, can often be attributed to industrial or fire
fighting events rather than leakage (Mounce et al., 2007). Hence, a 
minimum length of outlier grouping is required to ensure outlier 
groupings likely represent leakage. For this study, a minimum length of 
five hours of flow data with outliers is qualified as LKG groupings. Based 
on this criterion, ~3500 LKG groupings are identified for all DMAs 
combined, ranging from five hours to ~3.5 days of outliers. The choice 
of a five-hour duration for leakage groupings aligns with both literature 
insights (Mounce et al., 2007) and expert consultations. Notably, the 
proposed framework’s flexibility allows for adjustments to shorter 
leakage groupings if additional data were accessible to guide their 
determination. In instances where brief yet substantial leakages are 
officially reported and verified by water utilities, the associated flow 
data could be employed as training examples. This is particularly sig
nificant as, in a real-world network deployment, the framework’s 
adaptability could evolve over time. After the detection and repair of a 
leakage, coupled with the recording of its corresponding flow data, this 

information could be utilised to retrain the framework. Consequently, 
this approach has the potential to enhance the accuracy of identifying 
similar events in subsequent occurrences. 

Fig. 6 shows the distribution in the length of the LKG groupings. It is 
observed that outliers have a large range of lengths, though shorter 
outliers of five to ten hours are far more common. Indeed, over 80 % of 
outlier groupings contain less than 12 h, or 48 points, of flow data, and 
over 90 % of outlier groupings contain less than 24 h, or 96 points, of 
flow data. 

In order to train the VAE, all input sequences must have the same 
length. Hence, LKG groupings are padded with zeros (after the flow 
data) to make them up to the length of the largest LKG grouping. Finally, 
in order to limit the impact of the zero-padding on the training of the 
VAE, a maximum limit of LKG grouping length is set. Various length 
cutoffs were examined, including 48, 64, 96, 128, 160, and 192 data
points, in order to identify the optimal trade-off between early warning 
time, classification accuracy, and effective dimensionality reduction. 
The investigation revealed that a length cutoff of 96 datapoints yielded 
the most favourable equilibrium among these considerations. Accord
ingly, this specific cutoff value, equivalent to a span of 24 h of flow data, 
was selected as the preferred choice for this study. It is evident from 
Fig. 6 that over 90 % of LKG groupings contained less than 24 h of data, 
and hence this cutoff achieves the compromise of retaining a represen
tative sample of LKG groupings while restricting the impact of zero- 
padding on the training of the VAE. The limited groupings over 96 
datapoints were discarded to ensure that the leakage characteristics are 
fully captured within the selected cutoff. Thus, around 3500 potential 
LKG groupings are identified. 

As the proposed framework aims to classify both regular flow data 
and leakage flow data, ~7000 NLKG groupings (twice the number of 
LKG groupings) with length equal to the LKG groupings (i.e., 24 h of 
flow, 96 points) are randomly selected and combined with LKG data to 
train the VAE. To ensure that the input data does not contain any 
erroneous data points (possibly due to undetected sensor error), vari
ance checks are performed on the NLKG groupings, and those with co
efficients of variation (COV) greater than 100 or less than 0.01 are 
removed. All these checks finally lead to a final dataset of 3336 LKG 
groupings and 6818 NLKG groupings. This results in a total of ~10,000 
flow times series LKG and NLKG groupings for training the proposed 
framework. Fig. 7 shows an example of an (a) LKG and (b) NLKG 
grouping, for input into the VAE. It can be observed that the LKG 
example has significantly more variability (with flow values ranging 
from below 10 l/s to over 80 l/s), while the NLKG example exhibits 
much less fluctuation (remaining below 10 l/s throughout the 24 h 
period). The peak flow of the LKG example is also over eight times 
greater than the peak flow of the NLKG example. This contrast in flow 
behaviour is common between LKG and NLKG groupings, with LKG 

Fig. 5. Time difference between repairs and closest outliers (hrs) for 
DMA 2131. Fig. 6. Length (in hours and number of data points) of LKG groupings.  
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groupings typically having higher maximum flow values and greater 
variability in flow values. 

5. Training of the framework 

This section outlines the general procedure for training the proposed 
VAE-SVM framework, with the details of VAE and SVM explained in the 
respective sub-sections. As discussed in Section 4, the ~10,000 LKG and 
NLKG flow groupings from over 2000 DMAs are carefully processed and 
selected to train the proposed framework. The flow time-series group
ings are randomly split into train and test datasets. The train dataset is 
used to train the VAE-SVM framework. VAE aims to reduce the dimen
sionality of 96× 1 incoming flow time series data into two sufficient and 
efficient surrogate LVs. The LVs map the flow time-series onto a regu
larised two-dimensional variable space such that the LVs of LKG and 
NLKG groupings are maximally separated using a domain informed loss 
function. The relative position of the LVs is based on the similarity/ 
dissimilarity of the time series groupings, which can be easily used to 
deduce the type of flow grouping. Hence, the trained VAE projects the 
flow time series to a two-LV space. Then, an SVM classifier is used to 
develop a decision boundary between the LVs of LKG and NLKG flow 
groupings to classify the LV into bursts or usual flow. Once trained, the 
framework can map unlabelled flow time series groupings onto the LV 
space and then probabilistically classify them as LKG or NLKG based on 
their position relative to the decision boundary. The framework’s two 
principal components, i.e., VAE and SVM, are described in the following 
sections. 

5.1. Variational autoencoder (VAE) 

VAEs are from the family of Bayesian neural networks, and their 
premise is based on AE neural networks (Kingma and Welling, 2019). 
AEs are a type of neural network used for the dimensionality reduction 
of vectorial data and are often used to find efficient data representations 
(Hinton and Salakhutdinov, Jul. 2006). Due to high temporal di
mensions of the flow data (curse of dimensionality), dimensionality 
reduction plays a crucial role in the proposed analysis. Training a clas
sification model directly on the time series data without dimensionality 
reduction would be computationally inefficient (Verleysen and Fran
çois, 2005). This challenge stems from the exponential increase in data 
sparsity and computational complexity as the number of dimensions 
increases, which severely impacts the model’s computational feasibility 
and performance. Preliminary analyses using an SVM and logistic 
regression classifiers on the original 96-point flow data underscore a 
substantial bias intrinsic to the algorithms’ handling of a 
high-dimensional feature space. This bias culminates in a pronounced 
underfitting tendency, where the two algorithms struggle to accommo
date the vast number of dimensions adequately. The bias-related 
underfitting can be ascribed to the fact that these machine learnin 

algorithms weigh all 96 individual data points uniformly, irrespective of 
their varying levels of significance in capturing leakage patterns. 
Crucially, not all 96 data points equally manifest pronounced leakage 
trends; instead, leakage patterns collectively emerge through intricate 
interactions across the 96-dimensional space, each with differing de
grees of deviation from established norms. This intricate interplay poses 
a challenge when the SVM and logistic regression are directly applied to 
the original data, as the classifiers lack the discriminatory power to 
segregate the informative leakage-influenced data points from the 
broader set of 96 points. This limitation is particularly evident in the 
context of subtle leakage patterns that may span multiple data points 
and dimensions. 

In essence, a standalone machine learning based classifier struggles 
to distinguish the fine-grained leakage characteristics within the original 
96-dimensional space, inhibiting its capacity to accurately discern and 
classify nuanced leakage events. Thus, dimensionality reduction 
emerges as a pivotal strategy to address these limitations and bolster the 
efficacy of the leakage detection framework. By reducing the dimen
sionality of the data while retaining its essential characteristics, 
dimensionality reduction techniques such as VAEs enable a more 
concentrated representation that facilitates the identification of key 
patterns related to leakages. This transformed space retains the crucial 
leakage-related information while mitigating the curse of 
dimensionality, 

AEs consist of a neural network-based encoder trained with a neural 
network-based decoder. The encoder reduces the dimensionality of 
vectorial input data to produce LVs, a lower-dimensional embedding 
that seeks to capture the defining characteristics of the input data. The 
choice of LV dimensions is made based on the trade-off between the 
reconstruction power and explainability/visualisation of the LVs. Hence, 
this study uses a two-dimensional LV space to provide sufficient 
reconstruction power while ensuring the results are interpretable and 
explainable. The decoder then uses the LV space to reconstruct the input 
data effectively with minimal loss. While a standard AE maps the input 
data onto a deterministic LV space, in a VAE (Kingma and Welling, 
2019), the input data is instead mapped onto a probabilistic LV space 
with a pre-defined probability distribution and the LV space is 
compelled to possess smooth and continuous representations. 

Consequently, points in closer proximity in the latent space lead to 
similar reconstructions using the decoder. This is done using a neural 
network-based encoder (recognition model) trained with a neural 
network-based decoder (generative model) that can use the LV space to 
reconstruct the observations. This means that the encoder describes a 
probability distribution for each latent attribute from which values are 
randomly sampled to be fed into the decoder that is expected to accu
rately reconstruct the input. The LVs space is constructed using Bayes’ 
rule given by Eq. (3), where X represents the input vector (in this case 
96× 1 flow groupings). 

Fig. 7. Examples of (a) LKG and (b) NLKG groupings for training the proposed framework.  
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p(LVs|X) =
p(X|LVs)p(LVs)

p(X)
(3) 

Traditionally, VAEs are trained using a loss function consisting of 
two terms: i) reconstruction loss (denoted as Lossrecon) and ii) the Kull
back–Leibler (KL) divergence loss (denoted as KLLV) (Kullback and Lei
bler, 1951, Asperti and Trentin, 2020). Lossrecon is the average of the 
mean squared error across the input and output (reconstructed input) 
vectors and measures how accurately the network reconstructs the 
original data (expressed in Eq. (4) where n is the total number of input 
sequences, i is the sequence of interest, and X and X̂ are the true and 
reconstructed vectors of time series data respectively). On the other 
hand, KLLV measures how closely the generated LVs match the target 
probability distribution (typically standard normal distribution as 
expressed in Eq. (5) where n is the total number of input sequences, i is 
the sequence of interest, and μ and σ are the mean and standard devi
ation vectors of the generated LVs, respectively). KL divergence is a 
directed distance measure that determines the deviation of one proba
bility distribution compared to the other. Therefore, the higher the KL 
divergence, the higher the deviation between the two distributions. In 
other words, Lossrecon makes sure that the LVs are sufficient and efficient 
representations of the input data X while KLLV forces the LVs to possess a 
smooth and regularised target distribution space. 

Lossrecon =
1
n
∑n

i
(Xi − X̂i)

2 (4)  

KLLV =
1
n

∑n

i

1
2

[

−
∑

i

(
lnσ2

i + 1
)
+
∑

i
σ2

i +
∑

i
μ2

i

]

(5) 

In this study, the loss function is improved through an understanding 
of the physical leakage detection problem that the proposed framework 
attempts to solve. The analyses discussed in Section 4 establish that the 
leakages are associated with periods of anomalous flow (detected as 
outliers). Thus, to properly detect any leakages/bursts, it is necessary 
that the LKG and NLKG groupings possess different characteristics. 
While the differences in characteristics can be challenging to identify in 
the original time series domain (as discussed in Section 1), exaggerated 
differences in LV space (which is a sufficient and efficient representation 
of the original flow) can significantly improve the detection process. It 
is, therefore important that the VAE is able to accurately capture the 
distinction between LKG and NLKG groupings in the LV space. 

As a remedial measure, this study uses an additional “domain- 
informed” loss term that drives the separation between the LVs of the 
two classes (i.e., LKG and NLKG). This is done mainly by computing the 
KL divergence (KLsep) between the multivariate normal distributions of 
the LVs corresponding to the two classes (i.e., LKG and NLKG) as given in 
Eq. (6) where m1 and m2 and Σ1 and Σ2 are mean vectors and covariance 
matrices corresponding to the two classes of LVs, and n represents the 
number of groups (Hershey and Olsen, 2007). As can be understood 
from KLsep, larger values of this term signify higher separation between 
the multivariate LV distributions of the two classes while lower values 
represent higher degree of overlap. Hence unlike KLLV where the goal is 
minimizing the difference between the LV space and target distribution 
(hence lower values are better), the objective of the KLsep loss is having 
higher values representing better separation and distinction between the 
two classes of LVs (corresponding to LKG and NLKG). Therefore KLsep is 
added to the total loss of the VAE in an inverse manner as shown in Eq. 
(7). 

KLsep =
1
2

[

(m2 − m1)
T Σ− 1

2 + tr
(
Σ− 1

2 Σ1
)
− ln

det|Σ1|

det|Σ2|
− n

]

(6)  

LossTotal = Lossrecon + KLLV +
1

KLsep
(7) 

Thus, the overall loss function used to train the VAE penalises three 

items: i) improper reconstruction of the input sequence, ii) unreg
ularised LV space, and iii) inseparable LVs across the two classes. This 
helps the VAE training process create distinct groupings in the LV space 
for the two classes, thereby improving confidence in LKG/NLKG classi
fication. Alternative loss function additions, including computing the 
distance between class centroids, calculating class overlap probability, 
and finding the margins of SVM classifiers, were also explored during 
the internal training trials of domain-informed VAE. Based on the per
formance and consistency of implementation, finally KLsep loss was 
selected. KLsep is also compatible with KLLV loss that is inherent to the 
VAEs. Hence, the purpose of the VAE in this study is to produce an LV 
mapping that shows the separation between the LVs of different types of 
flow time series groupings (LKG and NLKG), by capturing the different 
characteristics of these data groupings via dimensionality reduction. 

For training the VAE in this study, the LKG and NLKG groupings are 
standardised and randomly split into train and test sets such that 80 % of 
both groupings are used in training (with 10 % cross-validation), and 20 
% of both groups are used for testing the VAE. Various configurations of 
the VAEs were trained through grid search and hyperparameter tuning 
approaches (Briers et al., 2009, Mounce et al., 2013), to select the 
best-performing VAE architecture. The hyperparameter variations con
sisted of different: numbers of layers, number of neurons, activation 
functions, optimization algorithms, batch sizes, epochs, and dropout 
rates. The final optimised VAE is presented in Fig. 8. The proposed VAE 
consists of nine layers in each encoder and decoder (including the input 
and output layers) with a total of 1244 neurons and a bottleneck to 
produce two independent, normally distributed LVs. The activation 
function for each layer is hyperbolic tangent (tanh) except for the output 
layer of the decoder, which is linear (Sharma et al., 2020). The train set 
is shuffled into mini batches of 128 and used to train the VAE in 500 
epochs using the adaptive moment estimation (Adam) (Kingma and Ba., 
2015) optimiser and early stopping (Chollet, 2018) regularisation. 

5.2. Support vector machine (SVM) 

SVM is a supervised machine learning algorithm that can be applied 
to both regression and classification problems (Cortes and Vapnik, 
1995). Since this study aims to train a model capable of accurately 
detecting the separation between the two classes of LVs, a binary SVM is 
deemed sufficient. The binary SVM is a linear classifier that, given 
training data and corresponding class labels, finds an optimal boundary 
in the feature space to maximise the separation between two classes. 
This boundary is called the optimal hyperplane (Boser et al., 1992). SVM 
classifiers identify the points closest to the hyperplane as support vec
tors. The support vectors influence the position and orientation of the 
optimal hyperplane. By maximising the thickness of the hyperplane 
(thereby distance between the support vectors), SVM allows the feature 
space to be divided into regions that represent the known classes. A 
hyperplane can be described by Eq. (8). The optimal hyperplane given in 
Eq. (8) is obtained through the optimisation of Eq. (9). Real data often 
contains outliers, and, thus is rarely linearly separable, so a soft margin 
SVM adds slack variables and regularisation to deal with noisy data 
(Xiao et al., 2019). Once the SVM has been trained and the hyperplane is 

Fig. 8. The selected architecture of VAE (number of neurons of each layer is 
displayed in the cells). 
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obtained, new unlabelled data can be probabilistically classified by 
mapping into the feature space and noting position relative to the 
hyperplane. 

w⋅V + b = 0 (8)  

where w is the weight vector, b is the bias, and V is the input data. 

min
w,b

1
2
‖ w ‖2 + C

∑n

i
ζi (9) 

Subject to ki(w⋅Vi + b) ≥ 1 − ζi, with ζi ≥ 0, for all 1 ≤ i ≤ n. 
Where n is the total number of input samples, ‖ . ‖ is the matrix norm, 
and C > 0 is the regularisation constant. ζ is the slack variable, with ζi =

0 for regular points and ζi > 0 for outlier points. k is a variable such that 
negative classes have k = − 1 and positive classes have k = 1. 

The training of the SVM hyperplane is conducted using the LVs of the 
training dataset along with their associated LKG/NLKG class labels. 
From the ~8000 samples (80% of the ~10,000 groupings) in the 
training dataset, 383 points are selected as support vectors by the SVM, 
which are used to maximise the margin of the classifier and thereby 
classify the LV data. The SVM is used after the trained VAE encoder maps 
the flow grouping data into the LV space in order to utilise the trained 
hyperplane to probabilistically separate the LVs of the LKG and NLKG 
classes. Hence, once the proposed framework is provided with unla
belled 96× 1 water flow data, it maps the flow onto the two-dimensional 
LV space using the pre-trained VAE encoder. And then, the pre-trained 
SVM uses the mapped LVs to determine the probability of the input 
flow data being classified as LKG and NLKG. 

6. Results and discussion 

This section presents the results of the trained framework on the train 
and test datasets of the flow time series. Both datasets contain one-third 
LKG groupings and two-thirds NLKG groupings so as to avoid any biases 
between the two groups. It should be noted that the framework is only 
trained using the train set and the test set acts as unseen data to assess 
the framework in this section. The following sections discuss the efficacy 
of LVs obtained from the VAE and the accuracy of the trained SVM. 

6.1. VAE 

The dataset utilised in this study contains leakages detected through 
outliers, which can differ significantly in magnitude. Since such 
different outliers are used to train the VAE (hence the LVs), it is 
important to assess the nature of the LVs with respect to the magnitude 
of outliers. However, due to the different diameters of pipes and flow 
rates for different DMAs, an absolute magnitude of the flow rate cannot 
be directly used to understand the corresponding LVs. Hence in this 
study, a standardised measure of volatility (i.e., the difference in the 
magnitude of the LKG flow compared to the magnitude and variance of 
preceding NLKG flow) is computed for each LKG grouping. This is done 
by computing the Z values for each of the LKG and NLKG groupings 
using Eq. (10). In this equation, peakcur represents the largest flow data 
point of the LKG/NLKG section and medpre and σpre are the median value 
and standard deviation of the preceding NLKG flow data, respectively. 
The Z value thus compares the magnitude of the peak of the flow 
sequence to the average magnitude and variability of the preceding flow 
data, thereby indicating the magnitude of the outlier. The comparison of 
the Z values against the corresponding LVs for each grouping provides 
insights into the LVs. The means of the LVs (μLV1 

and μLV2
) trained using 

the VAE are presented in Fig. 9, with each point colour coded as either 
LKG or NLKG along a colour gradient set by the corresponding Z values. 

Z =
peakcur − medpre

σpre
(10)  

Fig. 9 shows clear groupings of μLV1 
and μLV2 

for LKG and NLKG data. 
There is minimal overlap in the probability density functions (PDF) 
distributions of the two groupings for both mean LVs, with a distinct and 
dense cluster of NLKG LVs and a largely separate, though more spread, 
the cluster of LKG LVs. The difference in the spread of the clusters can be 
accredited to the fact that the LKG groupings are generally uniform 
(Fig. 7b) and obviously fluctuate less dramatically than the outliers 
NLKG groupings (Fig. 7a). Hence the corresponding mean LVs are 
narrowly spread for the NLKG groupings. A significant majority of NLKG 
data leads to μLV1 

between 0 and 1, and μLV2 
between 0.5 and 1.5. The 

PDF kernels for the mean LVs of NLKG show sharp spikes in these ranges, 
indicating a dense concentration and smaller variance. As mentioned 
earlier, this narrow variance in the LV space suggests minimal variation 
in the characteristics of the initial time series data of the NLKG group
ings. The dimensionality reduction leads to similar features in the input 
data. The Z values are represented in the red and blue colour gradients 
for the LKG groupings and NLKG groupings respectively. The mean LVs 
for the LKG groupings show no major difference between those with 
high Z values, indicating higher volatility in the outliers, and those with 
low Z values. The NLKG groupings lead to low Z values, as expected for 
non-outlier data, and are shown in the dense groups of pale blue points. 
The few exceptions are observed for the NLKG groupings with particu
larly high Z values, indicating greater volatility in the original time se
ries than the majority of NLKG groupings. An examination of these 
NLKG groupings characterised by elevated Z values reveals that the 
corresponding flow time series data typically exhibits significantly 
diminished magnitudes. This phenomenon can be attributed to several 
factors, including variations in DMA size, pipe diameter, and potential 
supply constraints. The pronounced sensitivity of Z values to even minor 
fluctuations in low-flow scenarios results in their escalation. Detecting 
leakage within pipes of lower volume can consequently pose a more 
intricate task compared to their higher-volume counterparts, although 
the magnitude of water loss associated with leaks in lower volume pipes 
is anticipated to be comparatively minimal. 

The μLV1 
and μLV2 

corresponding to LKG data have a greater spread, 
with PDF kernels showing lower peaks and higher variances. This can be 
due to the higher variability in the characteristics of the input time series 
of the LKG groupings. The spread is observed to not differ significantly 
for the different Z values. This suggests that the volatility of LKG 
groupings (relative to preceding non-leakage flow) is not the only 
characteristic influencing the dimensionality reduction process. Hence, 
the training of VAEs leads to surrogate LVs that may capture other be
haviours of the LKG time series (e.g., the sustained value of peaks, etc.). 
However, such analysis is out of the scope of this study. The possible 
reasons behind the few misclassified LKG groups are not immediately 
discernible. However, it is noteworthy that these instances largely fall 

Fig. 9. Mean LVs (μLV1 
and μLV2

) of the trained VAE.  
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within the margins of the SVM classifier. 
The reconstruction power of the VAE is assessed using the index of 

agreement (IA) (Willmott, 1981, Willmott et al., 1985) described in Eq. 
(11), where X is the true input data, X̂ is the reconstructed data, and n 
and i represent the total number of timesteps and the timestep of in
terest, respectively. IA is computed by comparing the input flow time 
series (X) and the output flow time series (X̂) reconstructed through the 
decoder of the VAE using the LVs. IA gives a single bounded metric for 
pattern characterisation (value of 1 represents perfect match and 0 rep
resents no match between the true and reconstructed flow time series) 
and comparison, and also incorporates information of the magnitude of 
deviations. IA is, therefore, a valuable tool for the comparison of model 
performance and has been widely applied to the assessment of time 
series models (Durbin and Koopman, 2012). It is worth noting that the 
primary goal of the proposed framework is to train surrogate LVs that 
lead to an accurate classification of LKG and NLKG flow groupings 
through SVM, and therefore a precise reconstruction of the input 
groupings is not the main goal of the study and only serves to improve 
confidence in the surrogate LVs. Hence, IA of the ~10,000 flow group
ings provide an additional indicator of the strength of model 
performance. 

IA = 1 −

∑n
i=1(Xi − X̂ i)

2

∑n
i=1(|X̂ i − mean(X)| + |Xi − mean(X)|)2 (11) 

Fig. 10 shows the IA distributions for both the LKG and NLKG 
groupings. The IA values of both LKG and NLKG groupings follow similar 
distributions, with an IA > 0.5 for most cases for both train and test 
groupings. The median IA value for LKG groupings is 0.67, while the 
median value for NLKG groupings is 0.59. This indicates that the VAE is 
able to handle the higher variability of LKG groupings well. The train 
and test datasets follow almost identical IA distributions, with lower 
quartiles of 0.51 and 0.52, respectively, and both have a median of 0.61 
and an upper quartile of 0.73. With less than 25 % of the dataset having 
an IA value below 0.5, the VAE is verified as having sufficient recon
struction power. The LVs are, therefore, successful in providing suffi
cient information for reconstructing time series data and showing the 
separation between LKG and NLKG classes. Given that, in this study, 
dimensionality is reduced from 96 points to a two-dimensional LV space, 
it is impressive that the VAE can produce LVs that sufficiently achieve 
both of these aims in only a two-dimensional LV space. 

6.2. SVM 

A radial basis kernel-based SVM binary classifier is trained on the 
mean LVs (μLV1 

and μLV2
) obtained from the VAE using the training set. 

The SVM is trained to classify the mean LVs into LKG and NLKG accu
rately. Hence the LVs are the inputs to the SVM classifier, and the 
associated LKG/NLKG labels are the targets. The hyperplane and asso
ciated margins (ε) of the trained SVM are shown in the LV space in 

Fig. 11. It can be observed that the hyperplane seeks to create the largest 
possible separation between the two classes of LKG and NLKG, with the 
margins largely covering the area of overlap between the two classes. 
Beyond these margins, only a few points are incorrectly classified. 

The performance of the trained SVM is then tested on the test dataset. 
This dataset consists of μLV1 

and μLV2 
and their associated LKG/NLKG 

labels corresponding to the flow time series in the test dataset (2031 
examples with two-thirds of NLKG and one-third of LKG data). The 
confusion matrix and receiver operating characteristic (ROC) curve of 
the classification results are presented in Fig. 12a, b, respectively. It can 
be observed from Fig. 12a that the SVM leads to an overall accuracy of 
98.2 % on the test set for classifying the LVs into LKG and NLKG classes. 
Furthermore, the SVM’s precision represents the fraction of LKG pre
dictions in the LKG class, and the recall of the SVM, which is the fraction 
of all LKG LV inputs that were correctly predicted as LKG, is 98.3 % and 
95.9 %, respectively. The trained SVM further leads to an F1 score 
(which combines precision and recall into a single metric by calculating 
their harmonic mean) of 97.1 %. . 

The ROC represents a probability curve that provides a measure of 
how well a model can separate two classes for different thresholds. The 
area under the ROC curve (AUC) indicates classification accuracy and 
can range from a minimum of zero to a maximum of one. Fig. 12b shows 
the ROC-AUC curve for the trained SVM classifier. It can be observed 
that the SVM classifier leads to a high AUC value of 0.996, thereby 
indicating its excellent classification power. Furthermore, the strong 
performance on the test dataset demonstrates that the SVM could be 
used to accurately classify any new, unlabelled time series groupings as 
either LKG or NLKG, based on the mapping of the corresponding LVs 
onto LV space. 

Fig. 10. The IA distributions of (a) LKG and (b) NLKG groupings for both train and test sets.  

Fig. 11. SVM hyperplane and margins (ε) shown in latent variable space.  
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7. Comparison with MNF metric 

To assess the performance of the proposed framework against a 
traditional leakage detection method, a simplified MNF analysis is 
conducted for the dataset. While the available data is not highly suffi
cient to carry out a comprehensive MNF analysis, there is precedence for 
using a simplified MNF metric based solely on flow data (Mounce et al., 
2007). A simplified MNF index finds the ratio of MNF for a given night to 
the mean or median of MNF over a preceding window period. High MNF 
index values are more likely to represent abnormal flow events, which 
include leakage. The size of the window period varies in the literature 
from three days to six months (Amoatey et al., 2021; Lee et al., 2022; 
Tabesh et al., 2009; Huang et al., 2018), though it is generally agreed 
that a larger window can give a better representation of typical night 
flow behaviour for a given DMA. This study uses a window of seven 
days, as this covers a full week of flow data (including the weekend) yet 
is short enough that sufficient data is available for most of the groupings. 
The nighttime hours used to calculate MNF also vary in literature, 
beginning as early as 12am and ending as late as 5am (Lee et al., 2022). 
This study uses the hours of 2am to 4am, which are selected in various 
existing studies (Yu and Zhu, 2020). To find the MNF index, the median 
value of flow during these hours (night flow, NF) over the window 
period is found. The median is chosen over the mean to limit the effects 
of any erroneous data, as MNF is sensitive to fluctuations or anomalies. 
For the night of interest, a significant deviation from this value during 
the same hours can be taken to indicate possible leakage under MNF 
analysis. This deviation is computed using Eq. (12), where d is the 
24-hour day of interest and i is the size of the window period in days. 

MNF index =
median(NFd)

median(NFd− 1, NFd− 2, …, NFd− i)
(12) 

For the purpose of comparison, this study defines an MNF index of 
1.1 or greater, which represents >10 % deviation from the median 
preceding NF, as indicative of potential leakage. This aligns with MNF 
index values observed in the literature (Mounce et al., 2007), however 
this threshold could be adjusted if necessary. Hence based on this, the 
MNF index is computed for the ~10,000 train and test flow groupings. 

To assess the accuracy of this MNF index for leakage identification on 
the dataset used for this study, the train and test datasets are combined 
so that all ~10,000 LKG and NLKG groupings are analysed. The confu
sion matrix of the classification results of the MNF index analysis are 
presented in Fig. 13. Of the 10,000+ groupings, the MNF analysis 
accurately classifies 70.7 %. Though the MNF tends to perform satis
factorily for a complex problem like leakage detection, it fails to match 
the accuracy of the proposed VAE-SVM framework on this dataset. An 
additional benefit of the framework over the MNF index is that the 
framework does not require a specific period of overnight flow or other 

similar assumptions. This allows the framework to be flexible and 
identify possible leakages at any time of day, allowing a more rapid 
identification. 

8. Conclusion 

In developed urban water networks, reducing leakage levels is not 
only crucial to address the significant costs incurred by the sector but 
also to promote sustainability and build resilience in the water supply 
chain. Leakage levels of over 20 % not only pose a financial burden 
(PR19 final determinations 2019) but also affect consumer confidence in 
the reliability of their water supply, hindering the widespread adoption 
of sustainable water conservation practices. While large-scale upgrades 
to the UK’s aging water distribution infrastructure will take time, there 
are opportunities now to make huge improvements in how this infra
structure is monitored and managed, leading to faster identification and 
repair of leaks (McMillan and Varga, 2022, ‘“Proactive” approach to 
leaks required to meet tough Ofwat targets 2023). By leveraging ma
chine learning algorithms to analyse time series data provided by flow 
sensors, accurate detection of leaks at the DMA level can be achieved 
without costly sensor upgrades. This strategic approach to upgrading 
and repairing infrastructure not only offers significant economic benefits 
but also promotes sustainability by better utilising existing sensing ca
pabilities to reduce water and energy usage. 

This study proposes a hybrid machine-learning based framework for 
rapid classification of incoming water flow time series data. The 

Fig. 12. The SVM (a) confusion matrix (for the 2031 points in the test dataset) and (b) ROC curve for the SVM classifier, with AUC = 0.996.  

Fig. 13. Confusion matrix based on MNF Index.  
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framework consists of a domain-informed VAE, which is trained using a 
loss function that mathematically recognises that the characteristics of 
leakage flow should be different from those of regular (non-leakage) 
flow. After the VAE encoder reduces the dimensionality of the time se
ries data into two surrogate LVs, a binary SVM classifier is then used to 
create a hyperplane to separate the LVs of the two classes. Once trained 
on examples of both regular (non-leakage) and leakage flow, the pro
posed framework is able to classify unlabelled flow data as leakage or 
non-leakage with a high degree of accuracy. The data-driven framework 
is trained and tested on a dataset of 12-months of flow and repair data 
for over 2500 DMAs managed by Yorkshire Water, UK. The data is 
carefully pre-processed and appropiately sampled to obtain ~10,000 
flow time series groupings (out of which 66.66% groupings are NLKG 
and 33.33% groupings are LKG) of 96x1 dimension (representing 24 
hours of flow). The framework is trained on randomly sampled ~8000 
training examples of LKG and NLKG groupings and then tested on the 
remaining dataset of over 2000 unseen flow groupings. The framework 
is able to classify the test dataset groupings with an accuracy of 98.2 %. 
Furthermore, an AUC value of 0.996 is observed, highlighting the strong 
classification power of the proposed VAE-SVM framework. 

Though this study uses water flow time series data, it is worth rec
ognising that the pressure data is also collected in many water distri
bution networks. Future research endeavours could potentially benefit 
from integrating both flow and pressure time series as inputs to the 
models. This integration might enhance the accuracy of leakage detec
tion by providing a more comprehensive view of the network’s dy
namics. Additionally, the current study operates under the assumption 
that the historical water flow data can effectively train a model for real- 
time leakage classification. This presupposes that historical non-leakage 
water consumption patterns remain indicative of current usage. How
ever, given the significant shifts in consumption patterns, particularly 
following the COVID-19 pandemic, it becomes increasingly relevant to 
incorporate more recent data for non-leakage samples where available. 

On the scientific front, it is important to acknowledge inherent 
limitations associated with neural networks and data-driven methods 
employed in this study. While powerful in pattern recognition, the 
extrapolative capabilities of neural networks have been a matter of 
debate in many cases (Pastore and Carnini, 2021). Additionally, 
data-driven approaches heavily rely on the quality and representative
ness of the data used for training. In the context of water distribution 
networks, this means that if the training data does not adequately cap
ture certain types of leakages or network conditions, the model’s per
formance in real-world applications might be compromised. Another 
consideration is the interpretability of the trained models, which can be 
challenging due to their complex and often opaque nature (Somani et al., 
2023, Fayaz, 2023). This can make it difficult to understand the un
derlying reasons for the model’s predictions and decision-making, which 
is crucial for gaining user trust and acceptance in practical applications. 

Furthermore, as water distribution networks increasingly adopt 
smart meters, new opportunities arise in leakage detection. These smart 
meters can serve as additional point sensors, potentially enhancing the 
granularity and accuracy of flow monitoring within DMAs. Conse
quently, there is scope for future research to extend the current method 
beyond the DMA level, aiming for more precise leakage localisation. 
Such advancements could leverage the additional data provided by 
smart meters to improve the model’s accuracy and reliability in 
detecting and pinpointing leakages within the network. 

Using Bayesian deep learning methods to analyse time series data 
from water flow sensors is a novel approach to leakage detection and 
this study demonstrates their high levels of classification accuracy. The 
proposed framework has the potential to improve the health monitoring 
of water distribution networks without requiring costly and time- 
consuming upgrades to the sensor network. The proposed framework 
is compatible with the current set-up of water distribution systems in the 
UK, and its automated nature can facilitate timely andf cost-efficient 
identification of potential leakage. By promptly detecting and 

repairing leaks, the water supply can be better protected from disrup
tions, enhancing its reliability and resilience. The proposed approach 
can also reduce the potential for major water losses, which can strain the 
capacity of the distribution system and lead to costly repairs and 
downtime. Minimising these disruptions, as well as driving down the 
proportion of bursts identified by consumers, will build confidence in a 
continuous and efficient water supply, which will in turn promote sus
tainable demand-side behaviours. Hence, such efficient leakage identi
fication represents an important step towards smart and sustainable 
urban water management (McMillan and Varga, 2022). 
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