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Abstract

Quantum computing is an exciting area of research with potentially sig-
nificant impacts on studying physics, developing new medicines, and un-
derstanding complex materials. However, current quantum hardware is too
noisy to achieve the anticipated speed-ups that quantum computing promises
over classical computers. While waiting for powerful devices that can per-
form quantum error correction, so-called NISQ devices will become available
with the capability to perform computations beyond those possible classi-
cally. However, whether these NISQ devices will permit the acceleration of
a scientifically or industrially relevant problem is still unknown. Tensor net-
work methods are state-of-the-art techniques for the simulation of 1D and
2D quantum systems. NISQ circuits can generate and manipulate tensor
network states with larger bond dimensions than can be simulated classi-
cally. This thesis explores methods to map insights and algorithms from
the classical tensor network toolbox to NISQ devices to extend and improve
NISQ-powered quantum simulation. This thesis outlines algorithms for rep-
resenting and time-evolving infinite, translationally-invariant quantum states
on finite NISQ devices utilising translationally invariant MPS states. This
thesis also outlines an initialisation technique for variational quantum al-
gorithms based on pre-training classical matrix product states and demon-
strates its effectiveness for quantum simulation and machine learning.
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Impact Statement

The work presented in this thesis relates to the simulation of tensor net-
work states on near-term quantum devices. More specifically, we introduce
algorithms for the simulation of large quantum states on small near-term
quantum devices and novel state-of-the-art initialisation schemes for quan-
tum neural networks. Tensor network algorithms are amongst the best tech-
niques for the classical simulation of quantum systems. This thesis uses ideas
from classical tensor network methodology to permit the simulation of sys-
tems larger than the physical device used to simulate them. This brings
closer the simulation of large systems on small near-term devices. Examples
of such large systems are translationally invariant condensed matter systems,
large molecules, and complex materials. The new initialisation technique in-
troduced in this thesis is more effective than the current state-of-the-art at
producing trainable quantum neural networks. One of the more speculative
yet potentially impactful applications of NISQ devices is accelerating machine
learning. Quantum machine learning techniques are studied widely within
the academic and industrial community for uses ranging from optimisation
of supply chains to identification of promising molecules for medicinal appli-
cations. One of the major stumbling blocks in this research is the difficulty
in training large quantum circuits. The techniques introduced in this the-
sis increase the trainability of quantum neural networks, potentially moving
towards a quantum advantage for machine learning and optimisation with
near-term devices.
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Chapter 1

Introduction

In the beginning God said ih ∂
∂t
|ψ(t)⟩ = H|ψ(t)⟩. This has made a lot of

people very angry and been widely regarded as a bad move. - Douglas Adams
(sort of)

Quantum mechanics is the most effective description of the universe that
humanity has come up with to date. Ignoring the rather thorny matter of
how gravity fits into this whole picture, it is widely understood that at a
fundamental level nature is quantum. To understand the world around us it
is necessary to understand and manipulate quantum states of matter, except
in the (many) cases where good theories can be constructed in the classical
limit. This is unfortunately a case of something being easier said than done.

Simulating systems that behave quantum mechanically is notoriously dif-
ficult. Physicists who try to shut up and calculate quickly run into difficulty.
As quantum systems grow large the resources needed to perfectly simulate
the system grow exponentially. Anyone who has recently lived through a
pandemic will be well aware of how quickly exponential growth becomes
unmanageable. The growth in the resources required to simulate large di-
mensional systems is often referred to as the curse of dimensionality. The
curse of dimensionality effectively sets a hard limit on the size of quantum
systems that can be studied directly, where only a few dozen particles quickly
saturate the capabilities of the world’s largest supercomputers. This is rather
paltry considering the ∼ 1023 particles that might be found in a single gram
of any almost element.
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Much effort has been spent trying to overcome the difficulty of simulating
quantum systems. There are many exciting and potentially valuable ap-
plications that could be opened up with the ability to efficiently simulate
quantum systems. The field of quantum chemistry searches for ways to push
back against the exponential quantum wall to accelerate drug discovery[1].
The properties of solid-state materials are ultimately determined by the in-
teractions between the many particles in the substance. A better ability to
simulate complex quantum systems could lead to advances in difficult-to-
solve materials science problems, such as designing better batteries[2]. Effi-
cient simulation of quantum systems could teach us more about fundamental
theories of physics, by directly probing nature in extreme environments; like
around black holes; or in extremely high-energy environments, much like is
already done with very large and expensive particle colliders.

1.1 Outline of Thesis

This thesis will be focusing on the problem of using quantum computers to
simulate many-particle quantum systems. In particular, we focus mainly on
studying quantum condensed matter systems, with a brief layover into quan-
tum machine learning with so-called quantum neural nets. Below I outline
the structure of this thesis:

Chapter 1 — The remainder of this chapter introduces quantum comput-
ing, and tensor networks as a classical tool for studying quantum con-
densed matter systems.

Chapter 2 — Introduces quantum tensor networks, and outlines work done
in representing and optimising translationally invariant quantum ma-
trix product states. The work in this chapter is based on publications
[3, 4].

Chapter 3 — Develops a time evolution algorithm for quantum MPS, facil-
itating the efficient study of the dynamics of translationally invariant
quantum matrix product states on quantum devices. The work in this
chapter is based on publications[3, 4].

Chapter 4 — Considers ways to extend the results of the previous two
chapters. We consider how to best translate quantum tensor networks
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to devices with all-to-all connectivity, and how to represent quantum
thermofield states on quantum devices.

Chapter 5 —Outlines a quantum neural network initialisation scheme based
on classical pre-training of classical tensor networks. The work in this
chapter is based on the publication[5].

1.2 Motivation

The motivating concept behind this thesis is to use quantum tensor net-
works to enhance the study of quantum condensed matter systems and, per-
haps more broadly, use insights from the tensor network field to advance the
younger discipline of near-term quantum computing. The quantum tensor
network framework combines state-of-the-art techniques in the classical sim-
ulation of quantum systems with the expressive power of quantum computing
hardware, hoping both fields have something to gain from their union.

Effectiveness of classical tensor networks — Tensor network methods
are amongst the best tools available for the classical simulation of quantum
systems. In particular, the Matrix Product State (MPS)[6] has been highly
successful for both theoretical insights and numerical simulations of 1D and
2D systems. Likewise, theMulti-Scale Entanglement Renormalization Ansatz
(MERA)[7] states have provided insights into critical systems found in both
condensed matter and quantum gravity research[8].

Quantum condensed matter as a target for NISQ devices — Quan-
tum condensed matter problems are scalable to match the qubit count of
qubit-restricted near-term hardware. Furthermore, condensed matter inter-
actions are often local, which is appropriate for the limited connectivity of
NISQ devices. Quantum chemistry problems, on the other hand, have highly
non-local interactions[9]. Finally, classical methods in simulating condensed
matter systems are very well understood, making it potentially easier to
identify quantum speed-ups, which has proven difficult in previous claims of
quantum advantage[10, 11].

Benefits of Quantum Tensor Networks — Quantum tensor networks
have the potential to augment the classical tensor network approach with
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the increased expressiveness that quantum hardware brings. Quantum ten-
sor networks might extend the capabilities of classical tensor networks and
result in higher accuracy numerical simulations of interesting quantum sys-
tems[12, 13]. Inspired by classical tensor networks, quantum tensor network
states explore regions of Hilbert space with limited entanglement. One of
the fundamental insights underlying the success of the tensor network for-
malism in quantum mechanics has been understanding entanglement as a
computational resource managed during simulation. Entanglement in quan-
tum simulation can be translated to classical computing resources, which
can then be allocated as required across the system being simulated. NISQ
devices directly use entanglement as a resource for computation. The quan-
tum tensor network formalism can hopefully help make better use of limited
entanglement resources on near-term quantum devices.

1.3 Preliminaries

1.3.1 Quantum Computing

Quantum information processing involves the manipulation of qubits rather
than bits [14]. Bits exist in one of two fixed states, 0 or 1. Qubits have the
property that they can exist in a superposition of two states, e.g. α|0⟩+β|1⟩.
Interactions between qubits can generate entanglement, a uniquely quantum
mechanical resource required for the applications of quantum computers.

Quantum computers may give a speedup for quantum simulation[15].
Quantum systems are challenging to simulate classically but may be sim-
ulatable by a programmable quantum computer via Hamiltonian simula-
tion. There may also exist quantum speedups for classical problems. Algo-
rithms exist for solving discrete logarithm problems[16], searching unstruc-
tured lists[17], and random walks on graphs[18]. All the above use cases are
instances of the Quantum Singular Value Transform (QSVT)[19], a general
framework for accelerating matrix manipulations with quantum devices.

Despite a solid theoretical understanding of these algorithms, implement-
ing these algorithms presents a significant engineering challenge. Qubits are
exposed to the environment and interact with systems outside the quantum
device. These spurious interactions result in errors during the execution of
these algorithms. It is possible to correct such errors using quantum error
correction[20], where these interactions with the environment are identified
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and fixed during execution. Unfortunately, quantum error correction intro-
duces significant overhead in the number of qubits and operations. Current
best estimates are of 105 physical qubits per logical qubit and require addi-
tional computational steps[21] - far beyond the capability of current genera-
tion devices. Quantum devices are partitioned into two families, depending
on whether or not they can perform error correction. The so-called Near-
Term Intermediate Scale Quantum (NISQ)[22] devices can not perform error
correction, whereas future devices may be able to.

NISQ devices are limited in qubit number, with current state-of-the-
art[11] and soon-to-be-released[23] devices having ∼ 100 qubits. These de-
vices are also noisy and can implement ∼ hundreds of operations before noise
entirely corrupts the output. NISQ devices have now potentially reached the
stage where they can perform computations that can not efficiently be classi-
cally simulated[11]. This may change as the classical simulation of quantum
systems improves in response to such claims[10, 24]. The open challenge is
to find a practically relevant problem that these NISQ devices can acceler-
ate before error-corrected devices are available. The strongest candidate for
NISQ-advantage seems to be quantum simulation. The Variational Quan-
tum Eigensolver (VQE)[25, 26] algorithm attempts to find solutions to the
time-independent Schrodinger Equation

H|ψ⟩ = E|ψ⟩ (1.1)

where |ψ⟩ is an eigenvector of the Hamiltonian of interest, and E is the
associated energy level. Time evolution algorithms attempt to find solutions
to the time-dependent Schrodinger equation

|ψ(t)⟩ = e−iHt|ψ(0)⟩ (1.2)

which defines the dynamics of a system. This thesis is centred around finding
applications of NISQ devices to condensed matter physics, using insights from
classical tensor network methods.

1.3.2 Tensor Networks

Tensor network methods are state-of-the-art techniques for simulating quan-
tum lattices in 1D and 2D[27, 28, 29]. Tensor network methods revolve
around viewing entanglement as a resource to be managed during numerical
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simulations of quantum systems. By restricting simulations to smaller re-
gions of Hilbert space, it is possible to simulate even large quantum systems
using classical computers. Accurate classical simulation is only possible for
systems that have restricted entanglement, which is the case for many sys-
tems of interest.

Matrix Product States

The most well studied class of tensor network states are the matrix product
states (MPS)[28]. Amplitudes of MPS are given by

|ψi0,i1,...,iN ⟩ = Tr[Ai0Ai1 . . .AiN ]|i0i1 . . . iN⟩ (1.3)

where An is a complex valued matrix of size χ × χ, where χ is known as
the bond dimension of the MPS. Tensor networks can be expressed using a
very convenient graphical notation known as Penrose notation[30]. In this
graphical notation matrix product states are given by

(1.4)

where the nodes of the network are tensors, and connected lines indicate
multiplication of tensors along the connected dimensions. A single MPS site
is described by a d× χ× χ tensor

(1.5)

where d is the physical dimension of the site, and χ is known as the bond
dimension. The bond dimension of an MPS is a parameter that can be ad-
justed to control the expressiveness of the state. Large bond dimension MPS
can capture higher entanglement states, but require more computational re-
sources to do so.

Low bond dimension matrix product states are efficiently manipulated
with classical computers. For an N site MPS, with physical dimension d and
bond dimension χ , only Ndχ2 complex numbers are needed to store the
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state, one complex number for each element in each tensor of the network.
A general quantum state on N sites with a physical dimension d requires dN

complex numbers to store. Matrix product states also permit the efficient
manipulation of quantum states. For example, the inner product between
two MPS requires O(Ndχ3) operations to calculate, with an exponential
improvement in N compared to the naive computation. The overlap between
a pair of 4-site states, |ψA⟩ and |ψB⟩, is given by

(1.6)

MPS Canonical Form

Matrix product states have a gauge freedom in that they are invariant under
the transformation A → G−1AG. These gauge transformations are given by
inserting resolutions of the identity between pairs of tensors,

. (1.7)

This gauge freedom allows MPS to be constructed that are particularly com-
pact and easy to manipulate. One such gauge choice puts the MPS in canoni-
cal form[6]. Canoncial form can be constructed with a series of Singular Value
Decompositions (SVDs) along the lattice sites. Canonicalisation proceeds by
identifying a site (1.8ii) in the chain, and reshaping it by combining an aux-
iliary leg with the physical one. (1.8iii). The reshaped tensor is decomposed
using an SVD (1.8iv), where the outer nodes are isometrics (1.8v) and the
inner node is a diagonal tensor where the entries are the singular values of
the tensor across the separated legs.

(1.8)
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Absorbing the diagonal tensor to the node on the right and repeating this
process with the next pair of sites gives a procedure to put a matrix product
state in left canonical form. Any MPS can efficiently be put into this form
without changing the state. Similarly there exist right and mixed canonical
form constructions, which involve sweeping from right to left, or left to right
and back again.

Translationally Invariant MPS

The utility of the canonical form is apparent when considering the tensor
network to calculate the expectation value of a local operator in an infinite
translationally invariant MPS

(1.9)

where there are an infinite number of sites on both sides of the operator.
Naively this would be impossible to calculate, as it would require the contrac-
tion of infinitely many tensors. However the isometry condition in Eqn. 1.8v
allows the nodes left of operator can be simplified using

(1.10)

where the right hand side is the identity matrix. The right hand side of the
operator can also be greatly simplified. The nodes to the right of the operator
form an infinite chain of matrix multiplications, where the multiplied matrix
is given by the transfer matrix, EA

B ,

(1.11)

which is equivalent to the red node. A and B refer to the MPS tensors that
make up the transfer matrix. A and B will be the same when calculating
expectation values, however for situations like time evolution which will be
presented later, they are not necessarily the same. Multiplying a matrix
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many times has the effect of projecting any vector onto the largest weight
eigenvector of that matrix. We can replace the infinite multiplications of the
transfer matrix with the largest right eigenvector of E, denoted R, defined
using the fixed point equation

(1.12)

where λ is the largest singular value of the mixed transfer matrix. Now the
calculation of this expectation value is given by the much simpler expression

(1.13)

This way of expressing a translationally invariant MPS forms the basis
of the following section, which outlines how to simulate such translationally
invariant states on NISQ devices.

1.4 Summary

This section has introduced the two major fields of study underlying this
thesis. NISQ devices are the current state-of-the-art quantum hardware,
however have limitations on what computations they are able to perform.
It is of great scientific and industrial interest to figure out if there are any
computations that can be efficiently and accurately performed by a NISQ
device that cannot be done classically. Tensor network methods allow for the
efficient manipulation of exponentially small sets of quantum states, which
are non-the-less of relevance for studying many physical systems. The main
takeaway from this thesis will be that insights from the tensor network field
can be used to improve the performance of NISQ devices. The following
chapters introduce NISQ algorithms and methods inspired by classical tensor
networks. Firstly methods are introduced for representing and time evolving
translationally invariant states on NISQ devices, drawing inspiration from
classical simulations of translationally invariant MPS. Then an algorithm
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for initialising quantum neural networks is introduced using classical MPS
machine learning.
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Chapter 2

Representing QMPS

This chapter is based on the publications; Parallel Quantum Simulation of
Large Systems on Small Quantum Devices[3], and Simulating groundstate
and dynamical quantum phase transitions on a superconducting quantum
computer[4]. In these works, we developed the framework for generating
translationally invariant matrix product states on quantum computers and
implemented these on near-term quantum hardware. In [3], we outline how
to construct a quantum circuit that can represent any translationally invari-
ant MPS in canonical form, by efficiently solving a fixed point equation on
device. We use this construction to define a subset of translationally invari-
ant MPS that can be constructed using shallow quantum circuits, and argue
for the possibility of exponential advantage in the simulation of these states.
We use these states as ansatz for calculating the ground states of transla-
tionally invariant Hamiltonians. In this work I helped develop the efficient
quantum implementation of the fixed point equation, and adapted this to work
as a target for VQE. I also worked on the implementation of all the numerics
used in the work. In [4] we implement translationally invariant MPS on near-
term hardware and achieve very good translationally invariant ground-state
estimates using multiple error-mitigation strategies. In this work I imple-
mented the quantum circuits and error mitigation techniques used on device,
and adapted the ground state optimizations to work better on a noisy device.

Despite the anticipation that quantum computers may accelerate a wide
range of computational tasks, many problems are out of reach for near-term
quantum hardware to deliver an advantage over classical approaches. Find-
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ing challenging problems to simulate classically but which NISQ devices may
provide an advantage is an active area of research. As well as benchmark-
ing the state of NISQ devices, such problems could benefit from quantum
advantage once powerful enough devices are available.

Condensed matter systems are a good candidate for such problems. Con-
densed matter problems are readily scalable to match the qubit count of
the target device, often have local interactions that are well suited to the
architecture of NISQ devices, and yet still retain scientific and technologi-
cal relevance. Strongly correlated condensed matter systems are among the
most complex condensed matter systems to simulate classically and hence
are the most likely to benefit from a quantum advantage. One strongly cor-
related phenomenon is quantum criticality[31, 32, 33]. Quantum criticality
refers to systems near zero temperature phase transitions. These systems ex-
hibit diverging correlation lengths near criticality, which can be challenging
for classical numerics due to finite size scaling effects. Tensor networks are
amongst the best numerical tools to study strongly correlated quantum sys-
tems. In particular, tensor networks are suitable for studying critical systems
as tensor network states can be studied directly in the thermodynamic limit,
eliminating errors due to finite scaling. Unlike other classical numeric tech-
niques, many tensor networks are equivalent to quantum circuits[34], and this
mapping can potentially yield quantum advantage for tensor network simula-
tions. The following chapter details how to perform this translation for both
finite and translationally invariant MPS and demonstrates that these trans-
lationally invariant quantum MPS can capture properties of critical ground
states on current NISQ devices.

The previous section outlined algorithms for manipulating translation-
ally invariant tensor networks by putting them in canonical form and using
this simplified representation to simulate infinitely large systems efficiently.
This simplified representation is equivalent to a class of quantum circuits
which perform identical computations. The following section outlines this
translation and discusses the potential for accelerating these computations
on quantum hardware for large bond dimension tensor networks.

2.1 MPS as Quantum Circuits

This section outlines the connection between MPS and quantum circuits.
Any MPS has an equivalent canonical form, where all the tensors in the
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Figure 2.1: Translation between MPS and Quantum Circuits:a) The
translation between an MPS tensor in canonical form and a unitary matrix.
Given a bond dimension D MPS tensor log2(D) qubits are needed to encode
the axillary legs of the tensor. b) The left canonical condition in classical
MPS is automatically satisfied by unitary matrices.
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MPS are isometries. Isometries are equivalent to unitary matrices acting
on reference input states, Fig. 2.1. For a MPS with bond dimension χ the
unitary embedding requires log2(χ) + 1 qubits. One qubit is required to act
on the reference state, and the remaining qubits act as a binary expansion
of the bond dimension of the tensor to index the auxiliary state. Unitary
matrices automatically satisfy the left canonical condition, shown graphically
in Fig. 2.1b.

2.1.1 Finite MPS

Given this mapping, we can now construct a quantum circuit equivalent to
a MPS. Staircase circuits generate quantum MPS states. Left and right
canonical MPS are equivalent to staircase circuits rising in opposite direc-
tions. For MPS with a bond dimension larger than two, the unitaries will act
more than two qubits. Fig 2.2 gives an example of an MPS in left canonical
form, with a maximum bond dimension of four, as a quantum circuit. This
bond dimension four MPS circuit requires interactions across three qubits
to simulate the state tensors directly. Most NISQ devices are limited to
nearest neighbour interactions. Fig 2.2 shows one way of decomposing high
bond dimension tensors into local gates which preserves the high bond di-
mension. This reverse staircase ansatz is but one choice of decomposition;
for gates acting over many qubits, one can imagine many such decomposi-
tions. Therefore even when limited to local interactions, capturing high bond
dimension MPS states is still possible, but shallow nearest-neighbour circuits
capture only a subset of all high bond dimension MPS. The expressiveness
of these local high bond dimension MPS is still an open question, although
there is evidence that quantum tensor networks may achieve speed-ups over
their classical counterparts. Shallow quantum tensor network states have a
high overlap with states generated during time evolution and are potentially
more expressive per parameter than densely represented MPS circuits[12,
13]. One can tentatively hope such states could achieve quantum advantage,
performing approximate groundstate optimization and time evolution using
extremely high bond dimension MPS. Naively one may assume that such de-
compositions give the possibility of an exponential advantage over classical
MPS simulations. The computational resources requires to simulate a bond
dimension χ circuit grow only as O(log(χ)), whereas classically the difficulty
is O(poly(χ)). To exactly simulate a system of size N , in general, requires a
bond order O(exp(N)), making high accuracy simulations of large systems
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Shallow 
Factorization

Figure 2.2: Representing Finite MPS on a Quantum Circuit: a) A
bond dimension 4 MPS in canonical form can is equivalent to quantum cir-
cuit. The bond dimension 4 tensors are represented using 3 qubit unitary
matrices. b) Multi-qubit matrices can be approximately decomposed into
local circuits. Shown here is a reverse stair-case decomposition, shown to be
able to effectively express states generated during time evolution.
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in general impossible. However, since Quantum MPS states on NISQ de-
vices will be limited to subsets of high bond order MPS generated by low
depth quantum circuits, accurate simulations of some large, highly entangled
systems may still be out of reach.

2.1.2 Translationally Invariant MPS

Simulating translationally invariant systems at first glance appears to be a
difficult task for qubit-limited devices. Although the system is infinitely large,
typically, one can get a handle on calculations in the translationally invariant
limit by studying larger systems and extrapolating to the infinite case[35,
36]. This procedure results in undesirable finite scaling approximation errors.
Notice that for calculations of interest, such as finding the expectation value
of an operator on a small number of sites, it is possible to split the infinite
chain into terms to the left and right of the site of interest. When using
MPS, calculations like this can be significantly simplified. When the MPS is
in canonical form, terms to the left of the site vanish, which is precisely the
left canonical condition satisfied by quantum MPS tensors. In this situation,
terms to the site’s right do not vanish. However the influence of these terms
is mediated via the partition highlighted in Fig 2.3a. Hence the influence of
the infinite chain can be replaced by a single unitary acting on only 2 log2(D)
qubits, where D is the number of non-zero Schmidt coefficients across the
partition. The tensor that summarises the influence of the semi-infinite chain
of unitary gates acting to the right of the main site is called the environment,
shown as V in Fig 2.3b. In the case of translationally invariant MPS states
V is given by the fixed point equation given in Fig 2.3c. This is the same
equation as shown earlier in Section 1, Eqn. 1.12.

Solving the Fixed Point Equation

To faithfully represent a translationally invariant MPS on a quantum circuit,
it is necessary to identify an environment tensor that satisfies the fixed point
equation. One method to solve this is to vary a parametrised decomposition
of V for a fixed state tensor U . The variational algorithm proceeds by calcu-
lating the distance between the LHS and RHS of Fig 2.3c at each proposed
parameter and updating the parameters by calculating the gradient of this
distance. This distance can be evaluated efficiently with shallow quantum
circuits using the Destructive SWAP test[37]. The Destructive SWAP test
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Figure 2.3: Translationally Invariant MPS: a) Translationally invariant
MPS are represented as infinitely deep and wide quantum circuits. Sites
above the dashed line can be replaced with a single tensor summarizing their
influence on local observables. b) The effect of the gates to the top left of an
operator can be summarized by a single environment tensor. The size of this
tensor is determined by the entanglement between the state tensor and the
semi-infinite chain of gates acting before it. c) The V tensor is the solution
to the fixed point equation shown here.
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acting on two reduced density matrices measures the trace of the product of
the two density matrices,

DESTRUCTIV E SWAP (σ, ρ) = Tr[σρ] (2.1)

The output of the destructive swap test is two bit strings, O1 and O2.
An example of this can be seen in Fig 2.4. The CNOT and Hadamard gates
constitute the SWAP test, and the measured bit strings are used to calculate
the trace of the product of the reduced density matrices. Given the output
strings O1 and O2 the result of the SWAP test is given by the probability
that the dot product of the output bits is even,

Tr[σρ] = 2P (O1 ·O2 mod 2 == 0)− 1 (2.2)

The destructive SWAP test is used as a subroutine to calculate the Trace
Distance, D

D(ρ, σ) = Tr[(ρ− σ)2] (2.3)

where ρ and σ are the reduced density matrices being compared. Using the
linearity of the trace this is equal to

D(ρ, σ) = Tr[ρ2] + Tr[σ2]− 2Tr[σρ] (2.4)

where each term in 2.4 can be evaluated with a destructive SWAP test.
Fig 2.4 gives the three terms in the cost function evaluated with a destructive
SWAP test for a bond dimension 4 environment. These three circuits can be
executed in parallel or sequentially on the device.

Parametrising D=2 Environments

The environment of a translationally invariant MPS is equivalent to the
largest eigenvector of the MPS transfer matrix. This matrix, R, is a trace
1 Hermitian matrix. V embeds the Cholesky decomposition, r, of the envi-
ronment tensor. The Cholesky decomposition of a trace 1 matrix will have a
Frobenius norm of 1. We can parametrise the singular values of any 2-by-2
matrix with Frobenius norm 1 with cos(γ) and sin(γ). Taking the SVD of
the matrix r = W †ΛW with the parametrisation
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Figure 2.4: Shallow Trace Distance Circuits: The three circuits needed
to calculate the trace distance between the LHS and RHS in equation given
in Fig 2.3c. V is the correct environment for a state tensor U if the trace
distance Tr[(ρ(V ) − σ(U, V ))2] = 0. Shown here are the circuits to find a
U, V pair for a bond dimension 4 MPS.
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(2.5)
and decomposing the single qubit rotations W using

(2.6)

gives an exact parametrisation for bond dimension 2 environments as

(2.7)
where the last equality uses the fact that all diagonal gates commute,

allowing the two Z gates to be pulled through the diagonal Y Y gate and
cancel, and absorbing the single qubit rotations into the state tensor U .
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Pseudocode for Translationally Invariant MPS

1 import cirq

2 import numpy as np

3

4 # 4 qubits for 2 site translationally invariant MPS

5 qubits = cirq.LineQubit.range (4)

6

7 # 11 params , 4 for each U, 3 in V

8 p = np.random.rand (11)

9

10 circuit = cirq.Circuit ([

11 # Environment circuit

12 cirq.YY.on(qubits [0], qubits [1])**p[0],

13 cirq.X.on(qubits [1])**p[1],

14 cirq.Z.on(qubits [1])**p[2],

15

16 # U1

17 cirq.Z.on(qubits [1]) ** p[3],

18 cirq.X.on(qubits [1]) ** p[4],

19 cirq.Z.on(qubits [2]) ** p[5],

20 cirq.X.on(qubits [2]) ** p[6],

21 cirq.CNOT(qubits [1], qubits [2])

22

23 # U2

24 cirq.Z.on(qubits [2]) ** p[7],

25 cirq.X.on(qubits [2]) ** p[8],

26 cirq.Z.on(qubits [3)) ** p[9],

27 cirq.X.on(qubits [3]) ** p[10],

28 cirq.CNOT(qubits [2], qubits [3])

29 ]

30 )

Listing 2.1: Example python pseudocode for optimizing the right
environment using the simulation engine Cirq and scipy optimize. A circuit
is created for each of the three terms. The circuits are simulated and the
results processed. This is dont in the inner loop of an optimization. The
final parameters represent the D
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Pseudocode for finding D=2 Environments

1 import cirq

2 from scipy.optimize import minimize

3 import nump as np

4

5 # set parameters

6 gamma , phi , delta = ...

7

8 # create the qubits

9 VV_qubits = cirq.LineQubit.range (4)

10 UVV_qubits = cirq.LineQubit.range (5)

11 UVUV_qubits = cirq.LineQubit.range (6)

12

13 sim = cirq.Simulator ()

14

15 def simulate_circuit(gamma , phi , delta , sim)

16 VV_circuit = cirq.Circuit(

17 # first copy of V

18 cirq.YY(VV_qubits [0:2]) ** gamma ,

19 cirq.X(VV_qubits [0]) ** phi ,

20 cirq.Z(VV_qubits [0]) ** delta ,

21

22 # second copy of V

23 cirq.YY(VV_qubits [2:]) ** gamma ,

24 cirq.X(VV_qubits [2]) ** phi ,

25 cirq.Z(VV_qubits [2]) ** delta ,

26

27 # SWAP test

28 cirq.CNOT(VV_qubits [0], VV_qubits [2]),

29 cirq.H(VV_qubits [0])

30 cirq.measure(VV_qubits [0], VV_qubits [2])

31 )

32

33 # simulate the circuit

34 result = sim.run(circuit , repetitions =20)

35

36 # postprocess the results

37 positive_score_VV = ( np.dot(result [0], result [1]) % 2 )

== 0 / len(result)

38

39 trace_VV = 2 * positive_score - 1

40

41 # do the same for the other terms:

42 ...
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43 return trace_vv + trace_uvuv - 2*( trace_uvv)

44

45 res = minimize(simulate_circuit , [gamma , phi , delta])

Listing 2.2: Example python pseudocode for optimizing the right
environment using the simulation engine Cirq and scipy optimize. A circuit
is created for each of the three terms. The circuits are simulated and the
results processed. This is dont in the inner loop of an optimization. The
final parameters represent the D

Parametrising Large Bond Dimension Environments

In general, for larger bond dimensions, there is no shallow circuit that can
capture the environment exactly. Repeating the same procedure above, diag-
onalising the r tensor gives a parametrisation of the right environment that
generalises to a high bond dimension

(2.8)

where the Singular V alues gate encodes the singular values of the 2n qubit
gate, V , along the diagonals of the output matrix, which maps the lower
n qubits to the upper n qubits. The W gates are arbitrary 3-qubit gates,
which are themselves decomposed into shallow circuits. The right-hand side
of Eqn. 2.8 shows one way to approximately encode these gates by extending
the D = 2 parametrisation to act across multiple qubits. The factorised
singular value matrix, acting over 2n qubits, accurately captures the original
matrix’s most significant n singular values. As the largest singular values
are the most significant, this factorisation may prove effective at extending
to higher bond dimensions, although more work is necessary to find if this is
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indeed the case. All unitary circuits acting on an all-zeros input state can be
recast as a non-unitary matrix mapping from a subset of the qubits to the
remaining qubits. The insight that a low-rank decomposition of this matrix
is capturable with low depth circuits has been used to construct expressive
low depth variational quantum circuits[38].

2.2 Optimizing Quantum MPS

The previous section has demonstrated that both finite and translationally
invariant MPS are equivalent to quantum circuits. The goal is now to make
use of these representations to be able to obtain valuable information about
a system of interest. For example, quantum MPS can be used as an ansatz to
study the ground states of a Hamiltonian variationally. Using finite quantum
MPS as a VQE ansatz is relatively straightforward. Using a translationally
invariant MPS as a VQE ansatz requires slightly more care. A simple gradient
update will produce states where the V and U pair are no longer consistent
with a translationally invariant state. The naive solution to this might be to
re-calculate V for each new set of parameters to get an accurate estimate of
the energy and gradients of the state parameters. Such nested optimisation
loops are likely to be very slow. Instead, one can augment the usual VQE
cost function to include a term that penalises producing inconsistent state
and environment pairs. For a Hamiltonian H the cost function is given by

(2.9)
where γ ∈ [0, 1] is a parameter to prioritise optimisation towards improving
the energy or the state/environment consistency. This term allows for more
sophisticated optimisation schemes. A particularly effective one is to start
with γ ≈ 0 to prioritise quick improvements in energy, followed by linearly
increasing γ to enforce state/environment consistency later in the optimisa-
tion. Varying γ helped avoid local energy minima during optimisation. In
practice, one uses a shallow factorisation of the state unitary, U , to optimise
over. Fig 2.5 shows that such shallow factorisations are able to effectively
capture the D = 2 iMPS ground states effectively.
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Figure 2.5: Ground State Simulation: a) The shallow factorization of the
state unitary, U . b) The error in the ground state of the transverse field Ising
model where λ = J

g
. Shallow factorisations are able to accurately capture

the exact D = 2 iMPS ground state.
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2.3 NISQ Implementation

This section is based on work done in [4]. Optimising D = 2 quantum iMPS
circuits has been realised on Google’s Rainbow processor, which shares the
Sycamore architecture used in Google quantum supremacy experiment[11].
There is an open question regarding what problems can be solved effectively
by NISQ circuits. One such problem might be studying systems at criticality.
Critical systems are characterised by a divergent correlation length. Using
finite-sized circuits to study systems at criticality can result in finite-size
scaling effects. The long-range correlations typical of critical systems make
low bond dimension MPS methods prone to error and could benefit from the
ability of quantum circuits to express high bond dimension tensor networks.
It might be the case then that using a large bond dimension, translationally
invariant quantum MPS could provide an advantage when studying systems
at criticality on near-term hardware. This work demonstrates that systems
at criticality can be effectively prepared and optimised on noisy quantum
hardware using error mitigation.

Optimizing circuits on noisy, near-term hardware brings unique challenges
to overcome. Extracting valuable insights from these machines requires error
mitigation; otherwise, errors on the device will invalidate the results. There
have been many proposals to mitigate noise in NISQ devices, some of which
have good synergies with quantum MPS[39, 40].

2.3.1 Experiment

This work studies the transverse field Ising model (TFIM) using quantum
MPS. The TFIM Hamiltonian with exchange coupling J and transverse field
g is given by

H =
∑
i

[JZiZi+1 +
g

2
(XiIi+1 + IiXi+1)] (2.10)

where Z and X are Pauli operators. This model demonstrates a quantum
phase transition in the ground state at g

J
= 1. A hybrid classical-quantum

algorithm variationally searches for the translationally invariant ground state
of the TFIM at criticality using a D = 2 MPS ansatz. The TFIM Hamilto-
nian has three terms to measure to estimate the energy. There are two-site
ZZ interaction terms and two onsite terms, XI and IX. The translationally
invariant ground state is the state and environment pair that simultaneously
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Figure 2.6: Rainbow Optimization Circuits: a) and c) The circuits used
to calculate the 6 terms in the cost function to optimize transverse field
Ising model on the Rainbow device. Three terms are needed to calcualte the
energy, and three terms are needed to calculate the consitency between the
state and environment tensors. b) and d) How these circuits can be laid out
on the Rainbow device, showing the connectivity and layout of the qubits on
the Rainbow device. 33



minimises the Hamiltonian’s energy while keeping the state and environment
consistent. In total, there are six terms in the cost function to minimise, given
by the six circuits in Fig 2.6a and c. These can be laid out on the Rainbow
device in parallel as given in Fig 2.6b and d.

2.3.2 Results

Fig 2.7 gives the results of optimizing the MPS inspired quantum circuits.
These circuits simultaneously optimise the energy and the state environment
consistency equations. A reduced factorisation of the state unitary, U , was
used to minimise circuit depth and reduce the impact of noise, as shown
in Fig 2.6. Even with this reduced parametrisation, the optimised circuits
were very close to the true ground state of the TFIM at criticality. For
g
J
< 1 the major source of errors were oscillations in energy expectations

measurements on the device of unknown origin. These are shown clearly in
Fig 2.7c. For g = 0.4 the error was particularly noticeable. For g

J
> 1 we

find the parametrisation less effectively captures the ground state.
A quasi-adiabatic optimisation strategy was used alongside an SPSA op-

timiser to optimise the parameters. The circuits are initialised at a value of
g where optimisation was easy. Initialisation begins with the state at the
ground state of the g = 0 Ising Hamiltonian. Then g is incrementally in-
creased, and at each step, the state is re-optimised with the previous ground
state as the starting point. This procedure was necessary to prevent optimi-
sation from terminating at local minima.

2.3.3 Error Mitigation Techniques

NISQ devices are often too noisy to directly use the results from the device.
Error Mitigation is the name given to a broad set of techniques that improve
the performance of these devices using some classical pre and post-processing,
which can identify and eliminate some noise sources from the device. Three
error mitigation strategies were applied concurrently in finding the ground
state.

Confusion Matrix

One source of noise on the Rainbow device was classical bit-flip errors that
occurred in readout. The measured output bit string, s1 would be incor-
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Figure 2.7: Rainbow Ground State Optimization Results: a) The
ground state energies as measured on the Rainbow device, before and after
depolarization rescaling. Measured results show good agreement with the
minima attainable within the shallow ansatz class used, and good agreement
at crticality with the true ground state. Erroneous ground state energies
at g = 0.4 can be explained by oscillations in the measured energy on the
device of unknown origin. b) Example quasi-adiabatic optimisation to find
the ground state at g = 1.2. g is varied from 1 to 1.2 and at each step the
ground state is found and used to initialise the next step. Throughout the
optimization the state is able to retain good consitency between U and V (top
curve). c) Example oscillations in the measured energy at g = 0.4. Note that
the energy implied by the parameters exactly (the red dashed curve) varies
slowly while the measured energy varies rapidly, indicating an error on the
device.
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rectly measured as another bit string, s2, with a probability Ps1→s2 . Readout
errors are corrected by estimating the transition probabilities for all possi-
ble bit strings and using the values to correct for these transitions on aver-
age. The transition probabilities are stored in a confusion matrix given by
Ms1,s2 = Ps1→s2 . The true probability of measuring a bit string, P T

s , given
the confusion matrix and the measured probability PM

s , is found by inverting
the confusion matrix:

P T
s =M−1PM

s (2.11)

The size of the confusion matrix is exponential in the length of the measured
bit strings. This method scales exponentially for problems where the mea-
sured operators act on many qubits. Many interesting systems, including
the Ising model, require measuring terms of fixed size and do not scale with
system size. However, the three terms in the cost function needed to calcu-
late the state-environment consistency require measurements on O(log(χ))
qubits. Therefore the exponential overhead caused by readout measurement
error mitigation can overwhelm any computational speed-up for high bond
order Quantum MPS. Hopefully, later generation devices will not need this
expensive form of error mitigation. For time evolution this mitigation strat-
egy wasn’t necessary. Numerically it was found that if the goal was the
maximise the probability of a particular bit string then the readout errors
didn’t affect the resulting state in a meaningful way.

Floquet Calibration

The Sycamore architectures have an uncertainty in the interaction imple-
mented on the device due to a parasitic C-PHASE operation on the de-
vice[41]. Floquet calibration works by repeatedly applying a two-qubit gate
on the chip to amplify errors in the angle applied on the gate. The calibration
scheme corrects the errors in the applied angles on the circuit[39]. Floquet
calibration has the effect of increasing the fidelity of the applied circuit with
the desired circuit. The methodology, as reported in [39], only corrects an-
gles in the single qubit native gates on the Sycamore devices. A similar form
of error mitigation was proposed for two-qubit gates in [42]. This was not
used in this work, as the error mitigation strategies already being used were
sufficient to get good estimates of the ground state energy.
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Depolarizing Noise

Depolarization is a significant source of error in the measured outputs of
these quantum circuits. Depolarization errors are corrected using a known
reference circuit. Consider the effect of the depolarizing channel on a single-
qubit system,

ε(ρ) =
pI

2
+ (1− p)ρ (2.12)

on the expectation of the energy

⟨E⟩ = tr[Hρ]. (2.13)

The energy of the depolarized state is given by

⟨E⟩ε = tr[Hε(ρ)] (2.14)

= tr[H(
pI

2
+ (1− p)ρ)] (2.15)

=
p

2
tr[H] + (1− p)⟨E⟩ (2.16)

= (1− p)⟨E⟩. (2.17)

where the last equality holds if the Hamiltonian model terms are traceless.
The depolarized energy is related to the true energy by a constant multiplica-
tive factor. Approximating depolarizing noise in this way is valid for more
complex multi-qubit systems[43]. The TFIM terms are traceless, meaning
the simple expression in Eqn 2.17 can be used to correct depolarizing noise.
To correct depolarizing errors, a reference circuit where ⟨E⟩ is known can be
run on the device and ⟨E⟩ε measured. Then energies of similar circuits on
the device can be corrected by multiplying by the factor ⟨E⟩/⟨E⟩ε. When
g = 0 and J = −1, the state |0⟩⊗n is the ground state of the TFIM and gives
an energy of J. This state was created by setting all variational parameters
in the circuit close to zero. The energy was measured, which can then correct
measured energies for g > 0. The improvements in the energy approximation
when using rescaling is clear in Fig 2.7a.
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2.4 Summary

This chapter has introduced quantum matrix product states, a set of quan-
tum circuits which can represent classical matrix product states. This chap-
ter extends finite quantum MPS to translationally invariant quantum MPS
by introducing an environment tensor to summarise the influence of an infi-
nite number of site tensors. Quantum MPS circuits for variationally finding
the environment tensor are given, including circuits on hardware permitting
mid-circuit measurements. Translationally invariant QMPS can efficiently
represent the critical ground state of the TFIM, as verified on near-term
hardware on Google’s Rainbow device. The following section introduces al-
gorithms to time evolve quantum MPS and demonstrates applications to
studying dynamical phase transitions and quantum many-body scarring.

38



Chapter 3

Time Evolving QMPS

This chapter is based on the publications; Parallel Quantum Simulation of
Large Systems on Small Quantum Devices[3], and Simulating ground state
and dynamical quantum phase transitions on a superconducting quantum
computer[4]. In these papers, we develop algorithms to time evolve quan-
tum matrix product states. This builds upon the framework developed in
the same paper for representing matrix product states on quantum devices.
We develop two related algorithms for time evolving quantum matrix product
states, termed the transfer matrix and the power method algorithms. Both
of these algorithms are based on the time dependant variational principle.
Two different algorithms are provided to calculate the overlap between two
translationally invariant quantum states on a quantum device. These are
then used to benchmark variational TDVP on translationally invariant quan-
tum matrix product states. We apply one of these procedures on Google’s
Syamore hardware, and demonstrate that the power-method approach to cal-
culating overlaps is potentially applicable on near term hardware. In this
work I helped develop the time evolution algorithms, involved in both the the-
oretical developments of the transfer matrix and power method variants. I
implemented classical simulation code using both methods to test their accu-
racy, and implemented the power-method algorithm on Sycamore hardware,
alongside error-mitigation strategies.

The simulation of quantum systems is one of the most compelling rea-
sons to build quantum computers. Physical laws govern the evolution of
systems. Systems evolve following differential equations that originate from
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the physical laws. Given an initial state, the goal is to describe how the state
evolves into the future. Numerical approaches to this problem, both clas-
sical and quantum, proceed similarly. Time and space are discretized, and
the differential equation is solved iteratively for many time steps on this dis-
cretized space. However, quantum systems pose a unique difficulty; there are
exponentially many differential equations to solve as the system size grows.

Time-evolution using tensor network states side steps this difficulty by
restricting time evolution to low entanglement manifolds of states. Algo-
rithms such as Time Evolving Block Decimation (TEBD)[44] and the Time
Dependent Variational Principle (TDVP)[45] allow for the simulation of large
quantum states without paying this exponential cost. For early-time, low-
entanglement systems, these methods are exact. However, for late-time,
large-entanglement systems, these methods are only approximate and intro-
duce an error originating from the projection to lower bond dimension states.

Tensor network time evolution algorithms are a good candidate for im-
plementation on quantum devices. Tensor network states efficiently cap-
ture low entanglement states. Low entanglement states naturally appear at
short times when time evolving, starting from low-entanglement states. As
entanglement grows during time evolution, the increased expressiveness of
quantum hardware allows for evolution to longer times and more entangled
states without error. Furthermore, NISQ devices are limited in the entan-
glement that they can generate. Errors in the circuit push the generated
states to classical mixtures of non-entangled states. Therefore time evolu-
tion algorithms which restrict to low-entanglement states could be valuable
for studying quantum dynamics on NISQ devices.

The following chapter introduces Quantum TDVP, an algorithm that can
time evolve translationally invariant quantum MPS, and demonstrates its
applicability on near-term quantum devices.

Variational Time Evolution

Given a parametrised state at time t, |ψ(A(t))⟩, the state at time t + dt is
given by

|ϕ(t+ dt)⟩ = e−iHt|ψ(A(t))⟩ (3.1)

where newly evolved state |ϕ(t + dt)⟩ is not necessarily expressible within
the ansatz class |ψ(A)⟩. For example, time evolution under a multi-site
Hamiltonian operator will generate entanglement between pairs of interacting
sites, necessarily increasing the bond dimension of the state. To remain in
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Figure 3.1: Finite Time Evolution - A finite state is evolved under a local
Trotterized Hamiltonian. The state |V (θ⃗)⟩ is varied to maximise the overlap
with the original state.

the manifold of fixed bond dimension the time evolved state can be projected
back onto the variational manifold according to

A(t+ dt) = argmax
B

|⟨ψ(B)|e−iHdt|ψ(A)⟩| (3.2)

with B a set of variational parameters to search over and A(t + dt) the
parameters of the next time step.

For finite quantum MPS circuits, this procedure is straightforward to
implement as a quantum circuit, Fig 3.1. Variational time evolution done in
this way is efficient due to good initialisations of the parameters[46]. The
search for the next parameters begins with the parameters at time t. For
small dt, these parameters are a good guess for the next step; over a short
time, the parameters can only vary a small amount. This scheme allows
for approximate time evolution beyond the coherence time of the physical
qubits. The variational updates repeat arbitrarily many times to simulate
time evolution over long times.

3.0.1 Pseudocode for Finite MPS Time Evolution
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1 import cirq

2 from scipy.optimize import minimize

3

4 # original parameters:

5 time_t_params = ...

6

7 # guess for the new params is the same as the starting

point

8 time_t_plus_delta_params = copy(time_t_params)

9

10 def cost_func(new_params , original_params , simulator):

11 circuit = cirq.Circuit ()

12 circuit = add_ansatz_circuit(circuit , original_params)

13 circuit = add_hamiltonian_circuit(circuit)

14 circuit = add_inverted_ansatz_circuit(circuit , new_params

)

15 result = simulator.simulate(circuit)

16 return np.abs(result [0])

17

18 # perform a single time step to find the new params

19 time_t_plus_delta_params = minimize(cost_func , x0=

time_t_plus_delta_params)

Listing 3.1: Example python pseudocode for optimizing a finite quantum
circuit using TDVP.

3.1 Translationally Invariant Variational Time-

Evolution

The extension of variational time evolution to translationally invariant states
is slightly more involved. The basic subroutine required to perform varia-
tional time evolution is measuring the overlap between two states. The over-
lap between two states is used as the cost function to maximize to perform
a single update step. For infinitely large states, any two states that are not
identical will have an overlap of 0. Instead, the relevant quantity is the over-
lap density of two states, which is the rate at which the overlap between
two states decreases as a function of the length of the spin chain considered.
In the tensor network picture this quantity is the largest right eigenvalue of
the mixed transfer matrix. Given a pair translationally invariant states with
associated matrix product tensors A and B, the overlap is graphically given
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by the tensor network diagram

. (3.3)

where it is assumed that the chain extends to infinity in both the left and
right directions. If A and B do not represent the same state, this overlap
will be zero. The mixed transfer matrix is identified as

(3.4)

which can be understood as a matrix by grouping the left and right legs
together. This transfer matrix can be represented using unitary matrices,

(3.5)

where the bottom open legs are the left legs and the top two legs are the
right most legs in Eqn. 3.4.

The overlap is equivalent to the largest right (or left) eigenvalue of this
transfer matrix. The mixed transfer matrix is not available for quantum cir-
cuit implementations of time evolution using translationally invariant states.
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Instead the overlap must be calculated by the contraction of the mixed trans-
fer matrix with the left and right environments,

(3.6)

where the right environment satisfies the eigenvalue equation

(3.7)

with λ the largest right eigenvalue. A similar equation holds for the left
eigenvalue and eigenvector. The right and left-most tensors in Eqn 3.6 are
also known as the environment tensors, and perform a similar function as
the environment tensors introduced in Chapter 2. These tensors summarise
the effect of the infinite chain of tensors to the left and right of the site. The
left environment is not the identity in this scenario because the MPS tensors
are different, so that the left canonical condition does not hold. Eqn 3.6 is
equivalent to a quantum circuit,Fig 3.2, so is suitable as a subroutine for
quantum matrix product state time evolution. The right environment is
embedded into a unitary matrix as

(3.8)
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and the equivalent for the left environment is

(3.9)

Eqn 3.6 can be seen to be equivalent to the circuit in Fig 3.2, using the
identity

(3.10)

to connect the state tensors to the right environment. The circuits presented
here give a way to estimate the overlap of two translationally invariant states,
given access to the right and left environments of the transfer matrix embed-
ded in unitary matrices.

Time Evolved Transfer Matrix

To perform variational time evolution with translationally invariant states,
it is necessary to identify the mixed transfer matrix needed to estimate the
overlap density. The transfer matrix is equivalent to a repeated block of uni-
tary matrices in the infinitely wide and deep circuit needed to calculate the
overlap. Fig 3.3 shows the mixed transfer matrix for a second order Trot-
ter decomposition of a time evolution operator. Finding the largest right
eigenvalue of this matrix is equivalent to finding the overlap between a time
evolved state and a candidate bond dimension two state. Numerically it
appears that being limited to translationally invariant states allows a simpli-
fication of the time evolution decomposition. Using only the even terms in
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Figure 3.2: Circuit to calculate overlaps - Circuits to measure the
overlap between two infinite MPS on a quantum circuit, given the right
and left environment vectors embedded in unitary matrices. P (|000...⟩) =
|⟨ψ(UB|ψ(UA))⟩|2
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Figure 3.3: Time Evolution Transfer Matrix - Transfer matrix of a
translationally invariant state with a second-order Trotterized time evolution
operator. The whole state (top) is infinitely wide and deep but only the
transfer matrix (bottom) needs to be considered to calculate the overlap
density. The section outlined in red corresponds to the transfer matrix.
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Figure 3.4: Half Time Step Time Evolution - The transfer matrix can
be simplified by projecting back to a translationally invariant state after just
the even or odd terms in the Trotter decomposition. This scheme is effective
for translationally invariant MPS, as evolving with just the odd (or even)
terms is equivalent to to evolving with both the even and odd terms, but for
half the time step.
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Figure 3.5: Overlap Circuit For Time Evolution - The circuit needed
to calculate the overlap between a time evolved state and a candidate bond
dimension state. R and L are the right and left eigenvectors associated to the
largest eigenvalues of the transfer matrix with the time evolution operator in
the transfer matrix.

the time evolution decomposition does not accumulate errors as quickly as
expected. Evolving using just the even terms is equivalent to the full evolu-
tion step of a translationally invariant Hamiltonian, but with half the time
step. This half-step decomposition is shown in Fig 3.4.

Taking the transfer matrix identified in Fig ?? and connecting the correct
left and right environments, we get the circuit needed to calculate the overlap
between a time evolved state and a candidate state of fixed bond dimension.
The circuit in Fig 3.5 calculates the overlap between a time evolved state
and a candidate bond dimension two quantum MPS. The circuit relies on the
correct construction of the right and left unitary environments. The following
section introduces algorithms to find the left and right environment gates.

Finding Environment Tensors

Using the transfer matrix method introduced above, it’s possible to construct
a quantum circuit to estimate the overlap between a candidate MPS state
and a time-evolved MPS state. This circuit is given in Fig 3.5. This circuit
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requires that the environment tensors, R and L, are the largest weight right
and left eigenvectors of the time evolution transfer matrix. How can such
a pair be found? It was shown in Chapter 2 how to find the largest weight
eigenvector of Hermitian transfer matrices by solving a fixed point equation.
R and L are still the solutions to fixed point equations, Fig 3.6, but without
the luxury of the transfer matrix being Hermitian. In this case, the transfer
matrix given in Fig 3.4 is not Hermitian, as the two unitary matrices repre-
senting the MPS are not necessarily the same. Therefore the Rayleigh-Ritz
variational principle for finding the maximum or minimum weight eigenvec-
tors of matrices no longer applies.

Instead finding the largest weight eigenvectors of the transfer matrix can
be reframed as a min-max problem over eigenvector and eigenvalue pairs

η, r = max
η

{argmin
(η,r)

||EU
U ′r − ηr||2} (3.11)

with the transfer matrix given by EU
U ′ , the candidate right eigenvector, r, and

the candidate largest eigenvalue, η. For time evolution, the overlap between
states is often very close to 1, as short time steps ensure the states cannot
differ significantly from one another. Hence this equation can be simplified
to

η, r = argmin
η,r

||EU
U ′r − ηr||2 = min

η,r
ν(η, r) (3.12)

with the approporitate initial condition that η starts at 1, and optimization
is restarted if η varies too far (≈ O(dt)) from 1.

Solving Eqn. 3.12 on a Quantum Computer

Expanding Eqn. 3.12 gives the following expression:

ν(η, r) = r†EU
U ′

†
EU
U ′r + |η|2r†r − r†EU

U ′r − r†EU
U ′

†
r (3.13)

The first two terms are equivalent to quantum circuits, Fig 3.7d and f.
The last two terms are not necessarily real and therefore aren’t equivalent to
the probability of measuring a given bit string which is necessarily real. At
the minima of the function, the last two terms will be equal to the largest
eigenvalue of the mixed transfer matrix. The largest eigenvalue of the transfer
matrix will be almost real since U and U ′ will only differ by a small amount,
and when they are equal, the largest eigenvalue is 1. Therefore the minima
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Figure 3.6: Fixed Point Equations - The fixed point equations satisfied
by the environment tensors R and L. These are analogous to the fixed point
equations introduced in section 2.

d) e) f)

Figure 3.7: Fixed Point Equation Terms - Presented are the 6 circuits
needed to evaluate the cost function ν ′ defined in Eqn. 3.14 for both the lest
and the right environment. Minimising the cost function will typically find
the largest eigenvalue and eigenvector pair, (η, r) of the given transfer matrix.
Shown are the ciruits without the time evolution operator. The equivalent
circuits with the time evolution operator have twice as many state tensors
and are correspondingly deeper and wider.
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Figure 3.8: Effectiveness of Approximate Algorithm - The results of
optimizing the approximate cost function ν ′(η, r). a) A comparison of the
exact and variationally calculated largest eigenvalue of the mixed transfer
matrix along 2000 steps of a TDVP trajectory. Using a time step of δt = 0.1
and the BFGS optimizer. b) The number of times the algorithm had to
restart because of a large deviation of η from 1 at each time step.

ν(η, r) can be approximated with the minima of the function ν ′(η, r), given
by

ν ′(η, r) = r†EU
U ′

†
EU
U ′r + |η|2r†r − 2|r†EU

U ′r| (3.14)

where the difference between the two functions is O(dt). Thus ν ′(η, r) is
minimized instead of ν(η, r), with the condition that η is initialized to 1, and
the optimization is restarted if η changes by more that O(dt). The three
terms in ν ′(η, r) are calculated using the three circuits given in Fig 3.7a-c
for the left environments and d-f for the right environment. In practice this
scheme works very well. Fig 3.8 highlights the effectiveness of this scheme,
and demonstrates that repeating the minimisation in Eqn. 3.12 is only needed
infrequently.

3.1.1 Time Evolution Simulations

With a subroutine to estimate the overlap of translationally invariant MPS
on a quantum device, it is now possible to define a variational time evolution
algorithm based on the time dependant variational principle. The procedure
involves a nested optimisation loop. The inner loop finds an appropriate
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Figure 3.9: Dynamical Phase Transitions - There are dynamical phase
transitions displayed in the Loschmidt echo evolving a state under the Trans-
verse Field Ising Model. Simulated results show that shallow factorisations
of the state unitaries are able to effectively capture the dynamics. Greater
depth results in greater agreement with the analytically correct results.
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right and left environment for a given U and U ′ pair needed to evaluate the
overlap between the two MPS. Finally, the outer loop updates U ′ to find the
highest overlap to the time evolved state. The doubled optimisation loop is
repeated each step up to the desired time.

Dynamical Phase Transitions

This quantum TDVP algorithm effectively captures dynamical phase transi-
tions in Loschmidt echos[47]., even when restricted to shallow factorisations
of the state unitaries. The ground state of the Transverse Field Ising Model
with g = 1 is prepared and then evolved under the same Hamiltonian with
g = 0.2. At each step, Fig 3.9 plots the overlap between the original and the
latest state.
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Figure 3.10: Many Body Scars - The Hamiltonian H =
∑

n(1 −
σ̂zn−1)σ̂

x
n(1− σ̂zn+1) displays a property where certain states display persistent

oscillations as they evolve. This is known as many-body scarring. These
scarred states can be described using low bond order MPS[48]. a) A two
site translationally invariant MPS state with two parameters per site is used.
b) A partial Poincare section the plane θ1 = 0.9 is produced using analytic
results and classical simulation of the quantum TDVP code. Initial condi-
tions are chosen on the energy surface such that ⟨H⟩ = 1. Initial states were
chosen along a line with spacing δϕ1 = 3×10−2, with θ1 = 0.9 and θ2 = 5.41.
c) The same Poincare plot produced by the quantum time dependant vari-
ational principle. The figure is distorted by integration and optimization
errors, but that large structures still remain.
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Pseudocode for Many Body Scar States

4

Many-Body Scars

A low depth state ansatz can also represent the states used in [48] to pro-
duce Poincare maps, used to study slow quantum thermalization in the PXP
model. To produce a Poincare map the parameters of the quantum state are
tracked as they evolve through time. Whenever a chosen parameter crosses
a plane in the positive direction, the values of the remaining parameters are
recorded. This map is plotted in Fig 3.10b and c. Fig 3.10b is generated
exactly using TDVP equations, and Fig 3.10c is generated using the time
evolution scheme introduced here. Variational time evolution uses discrete
time steps, so calculating the exact crossing point through a plane is not
immediately possible. Instead, the crossing points are evaluated using an
interpolation algorithm. Around the approximate crossing time, the evolu-
tion of the parameters is estimated using polynomial function interpolation.
A root-finding algorithm is used on the interpolated function of the chosen
parameter to find an estimate of the exact crossing time. Then this time
is input into the other interpolated functions to get estimates of all other
parameters at the crossing times.

3.1.2 Power Method Approximation

The time evolution algorithm introduced above relied on a variational subrou-
tine to find the right and left environments of the transfer matrix to calculate
the overlap between a pair of states. This time evolution algorithm requires a
nested optimisation loop, with the inner loop finding eigenvalue/eigenvector
pairs of the transfer matrix and the outer loop optimising the parameters
of the updated state to maximise the overlap. A nested optimisation loop
makes this procedure slow. To accelerate time evolution it is possible to re-
place the inner loop with a non-variational procedure to estimate the overlap
of two states using the power method.

The power method is a technique to approximate the largest eigenvalue
of a matrix. The largest eigenvalue of the transfer matrix EU

U ′ is given by

λ = lim
n→∞

L̃EU
U ′
n
R̃

L̃EU
U ′
n−1

R̃
= lim

n→∞

Cn(U,U
′)

Cn−1(U,U ′)
(3.15)
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Figure 3.11: Calculating Overlaps - a) The overlap of two translationally
invariant MPS is measured by estimating the ratio Cn/Cn−1. Shown is C6,
with the red dashes highlighting the transfer matrix. b) Measurement of Cn
for two states for n up to 10 sites. Depolarization errors are corrected using
a Loschmidt echo, shown in green, where the overlap is measured for two
identical states (which ought to always be 1). At 6 sites an unknown error in
the Loschmidt echo occurs. Interpolation is used to infer the correct value.
c) The overlaps implied by the data in b). The blue horizontal line shows the
true overlap density of the two states. At n = 4 the overlap has converged
to a good estimate of the overlap, larger n circuits are impacted heavily
by noise. d) Demonstration on Google’s Sycamore device that variational
optimization of one state can achieve high fidelity with the original state.
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with R̃ and L̃ as approximations to the eigenvectors of the transfer matrix,
and n is the power the transfer matrix is raised to. This error in this ap-
proximation decreases exponentially as n increases. The choice of R̃ and L̃
is also significant. If these are the exact eigenvectors of the transfer matrix,
the power method converges at n = 1. The circuit to calculate C6 is shown
in Fig 3.11a. On NISQ devices, there is a trade-off between the accuracy of
the approximation and the impact of noise. Large n approximations require
deeper circuits, which are in turn more exposed to noise. Fig 3.11b-d investi-
gates this trade-off to identify the ideal circuit depth on the Google Rainbow
device. To correct for depolarisation errors, the value for Cn(U,U

′) is divided
by the measured value of Cn(U,U) which always has the value 1 in the ab-
sence of noise. These results suggest that choosing n to be 4 or 5 provides
the optimal trade-off between approximation errors and noise mitigation on
the Rainbow device. The chosen value of n only works when there is no time
evolution operator in the transfer matrix. Adding a time evolution operator
will increase the depth of the circuit, thereby likely decreasing the optimal n
to use before errors become intolerable. For time evolution choosing n to be
2 or 3 provided the best trade-off.

Time Evolution Using the Power Method

Using the power method to avoid the inner optimisation loop produces a
faster time evolution algorithm. Fig 3.12a gives a quantum circuit which
evaluates C2. The transfer matrix is the matrix shown in the red dashes.
The probability of measuring |0⟩⊗N gives an approximation to the square
of the largest eigenvalue of the transfer matrix, λ2. The environments are
approximated as L̃ = I and R̃ is approximated with an additional U and U ′

pair. λ is the square root of the output probability. Taking the square root
of the output avoids dividing by C1, which can be a very small number and
introduces numerical instability.

A cost function constructed from this estimate of the overlap faithfully
tracks the actual overlap between states. A noiseless simulation demonstrates
that dynamical quantum phase transitions are present during time evolution
using this estimate of the overlap, shown in Fig 3.13a. On the Rainbow
device, this cost function tracks the actual value of the overlap during time
evolution. For each time step in the true time evolution, the cost function is
evaluated along a linear interpolation from the initial parameters to the op-
timal parameters. At each time step, the optimal point has a higher overlap
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Figure 3.12: Time Evolution Circuits - a) The probability of measuring
|0⟩⊗N as the output gives an approximation to λ2. First |0⟩ is post-selected
on the top two qubits. λ is the largest eigenvalue of the transfer matrix given
by the dashed red lines. b) The shallow factorization of the state unitary.
c) Factorization of the time evolution operator into the native Rainbow gate
set. The time evolution operator is one of the most costly elements of the
circuits.
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Figure 3.13: Time Evolution Results I - a) The dynamics of the transverse
field Ising model are given analytically and compared with the outputs of
ideal classical and simulated quantum circuits. In blue is given the exact
evolution of the TFIM. In orange is given time evolution as obtained by
optimization of the state exactly within the chosen ansatz class. In green is
shown time evolution as obtained using the power method to approximate
the largest eigenvalue of the transfer matrix. This is equivalent to a noise-less
simulation of the circuits shown above. Both numerical methods show good
agreement with the true results and display dynamical phase transitions. b)
The cost function maximized in the green curve is executed on the Rainbow
device. The cost function is evaluated along a linear interpolation in the
8 parameters from the initial U to the optimal U ′ found numerically, and
extended beyond. Interpolations are given for each time step in a). The
optimum value of the rescaled circuits along the interpolation agrees with
the point calculated classically without errors.
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with the time-evolved initial state than the initial parameters, Fig 3.13. In
principle, this means a suitably chosen optimiser could perform this optimi-
sation and recreate the dynamics shown in Fig 3.13a.

Pseudocode for Power-Method Time Evolution

1 import cirq

2 import numpy np

3

4 NUM_QUBITS = 6

5

6 qubits = cirq.LineQubit.range(NUM_QUBITS)

7

8 def build_2qubit_U(circuit , qubits , params , invert=False):

9 # add a shallow factorized 2-qubit gate

10 new_circuit = cirq.Circuit ([

11 cirq.X.on(qubits [0])** params [0],

12 cirq.Z.on(qubits [0])** params [1],

13 cirq.X.on(qubits [1])** params [2],

14 cirq.Z.on(qubits [1])** params [3],

15 cirq.CNOT(qubits [1], qubits [0]),

16 cirq.X.on(qubits [0])** params [4],

17 cirq.Z.on(qubits [0])** params [5],

18 cirq.X.on(qubits [1])** params [6],

19 cirq.Z.on(qubits [1])** params [7],

20 ])

21

22 if invert:

23 new_circuit = new_circuit ** -1

24

25 circuit.append(new_circuit)

26 return circuit

27

28 def build_1qubit_U(circuit , qubit , params):

29 # add a completely general single qubit gate

30 circuit.append ([

31 cirq.X.on(qubit) ** params [0],

32 cirq.Z.on(qubit) ** params [1],

33 cirq.X.on(qubit) ** params [2],

34 ])

35

36 return circuit

37

38 def build_H(circuit , qubits , params):
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39 add the time evolution operator

40 circuit = build_1qubit_U(circuit , qubits [0], params [:3])

41 circuit = build_1qubit_U(circuit , qubits [1], params [3:6])

42 circuit = circuit.append ([cirq.ISWAP.on(qubits)])

43 circuit = build_1qubit_U(circuit , qubits [0], params [6:9])

44 circuit = circuit.append ([cirq.ISWAP.on(qubits)])

45 circuit = build_1qubit_U(circuit , qubits [0], params

[9:12])

46 circuit = build_1qubit_U(circuit , qubits [1], params

[12:15])

47 circuit = circuit.append ([cirq.ISWAP.on(qubits)])

48 circuit = build_1qubit_U(circuit , qubits [0], params

[15:18])

49 circuit = circuit.append ([cirq.ISWAP.on(qubits)])

50 circuit = build_1qubit_U(circuit , qubits [0], params

[18:21])

51 circuit = build_1qubit_U(circuit , qubits [1], params

[21:24])

52

53 return circuit

54

55 initial_params = np.random.rand (8)

56 H_params = np.random.rand (24)

57

58 def cost_func(time_evo_params):

59 circuit = cirq.Circuit ()

60

61 for i in range(NUM_QUBITS):

62 circuit = build_2qubit_U(circuit , qubits[i:i+2],

initial_params)

63

64 for i in range(1, NUM_QUBITS -2, 2 ):

65 circuit = build_H(circuit , qubits[i:i+2], H_params)

66

67 for i in reversed(range(NUM_QUBITS)):

68 circuit = build_2qubit_U(circuit , qubits[i-2:i],

time_evo_params , invert=True)

69

70 simulator = cirq.Simulator ()

71 result = simulator.simulate(circuit)

72 score = np.abs(result [0])

73

74 return score

75
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76 new_params = minimize(cost_func , x0 = initial_params)

Listing 3.2: Example python pseudocode for time evolving an MPS by a
single time step using the power method appoximation.

Alternative Cost Functions

There are several other options to configure the power method to estimate
the overlap. The one presented above was found to perform the best on the
Rainbow device. The 4 alternative cost functions which perform worse are
given below, in Fig 3.14-3.17.

63



Figure 3.14: Time Evolution Results II - a) The overlap is estimated with
the power method using |0⟩⟨0| as an approximation to the right environment,
and taking λ ≈ C2/C1. Each value is calculated by measuring the probability
of measuring |0⟩⊗N at the end of each circuit. b) Classical results of using
these circuits as a cost function for time evolution. In blue is the exact time
evolution of the TFIM. In green is the curve using C2/C1 as a cost function,
and in red is the curve using C5/C4 as a cost function. C5/C4 does a better
job at capturing the dynamics during time evolution, and C2/C1 fails to
capture the dynamics. c) Results on the Rainbow device. The cost function
is evaluated through a linear interpolation of the parameters from the initial
starting point to the optimal point for each time step in a). Although there
is a peak in the cost function at the correct value, it is measured as lower
than the initial point, meaning no optimizer would correctly optimize to this
point.
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Figure 3.15: Time Evolution Results III - a) Approximating the right
fixed point with |0⟩⟨0| and calculating λ ≈ √

C2. C2 is calculated as the
probability of measuring |0⟩⊗N , divided by the appropriate Loschmidt echo.
b) Classical circuit simulation of this cost function. The circuit can capture
key features of the dynamics without noise. c) The cost function evaluated
along a linear interpolation of the parameters from the initial starting point
to the optimal point at each time step. the measured cost function tracks
the correct values well but the peak is not measured at the right point.
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Figure 3.16: Time Evolution Results IV - a) C2 is measured using U
and U ′ as approximations to the right environment. C2 is calculated as the
probability of measuring |0⟩⊗N , without post selection. b) Exact analytical
results of the time evolution compared to simulated results using these cir-
cuits as a cost function. Some features of the dynamical phase transition are
captured, although it is not as good as the results seen in Fig 3.13b. c) Cost
function measured along a linear interpolation of the parameters between
the initial starting point and the optimal point. The measured values again
track the correct values but the peak is not measured at the correct point.
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Figure 3.17: Time evolution Results V - a-b) The right environment
is approximated using two different approximations. One is V , the right
environment of the individual MPS, and the other is two copies of U . c) An-
alytical results compared to simulations of the cost functions without errors.
Both these results are considerably closer to the true results compared with
the cost functions considered above.
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3.2 Summary

This chapter has outlined two alternative algorithms for time evolving trans-
lationally invariant MPS states on quantum devices. These algorithms scale
efficiently with bond dimension, leaving open the possibility for large bond
dimension time evolution of quantum MPS on future hardware. This chapter
introduced the quantum TDVP algorithm for time evolution of translation-
ally invariant states. This algorithm requires requires approximation of the
right and left environment tensors of the mixed transfer matrix to estimate
the overlap, which is then maximised. Two algorithms are presented to find
the right and left environments. A slower variational algorithm is shown to
effectively capture dynamical phase transitions in Loschmidt echos when a
state is time evolved under the TFIM across the critical state, and capture
scarred states in the PXP model. A non-variational algorithm for approx-
imating the right and left eigenvectors using the power method was also
introduced. This algorithm is faster, and more suitable for current NISQ
hardware. This method was tested on the Google Rainbow device, where it
was shown that the overlap of two translationally invariant states could be
accurately calculated using rescaling to correct for depolarizing errors. These
tests form the basis for future experiments on NISQ devices, where complex
phenomena can be directly simulated on the device with the time evolution
of low bond dimension states.
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Chapter 4

Extensions

This chapter contains extensions to the work in the previous two chapters,
on the representation and time evolution of quantum matrix product states.
The content in this chapter represents avenues for future research. I present
qubut-efficient circuits, equivalent to the circuits presented in the previous
two chapters, using mid-circuit measurements to achieve greater qubit effi-
ciency. I also present extensions of the quantum MPS formalism to quantum
thermofield MPS, for the simulation of thermal states among other uses.
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4.1 Mid Circuit Measurement

Multiple near-term hardware implementations permit mid-circuit measure-
ment and resetting of individual qubits, including IONQ’s, Honeywell’s, and
IBM’s hardware. Access to mid-circuit measurement and resetting gives a
means for qubit efficient quantum MPS circuits, using fewer qubits in ex-
change for larger gate depth[42]. Such a trade-off could be favourable for
ion-trap qubits, which have high fidelity gate but are often limited in qubit
number.

Finite Quantum MPS

Consider a finite quantum MPS circuit with a measurement on two of the
physical legs

|0〉

|0〉

|0〉

|0〉

|0〉

U

U

U

U
U

(4.1)
We refer to these as space-like quantum MPS, since distance between physical
sites is mirrored by a distance between the qubits themselves on the device.
The equivalent qubit efficient circuit is given by
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|0〉

|0〉
U ′

|0〉
U ′

|0〉
U ′

|0〉
U ′

U ′

(4.2)
We refer to these as time-like quantum MPS, since distance between physical
sites is encoded as a time between application of unitaries on a fixed pair of
qubits. Time-like unitaries are related to their space-like counterparts by a
SWAP gate applied to the output legs:

U = U ′

(4.3)

Translationally Invariant Qubit Efficient Circuits

Qubit-efficient circuits can represent translationally invariant quantum MPS
states. For a translationally invariant quantum MPS state with an environ-
ment tensor V ,

|0〉

|0〉

|0〉

|0〉

V

U

U

(4.4)

the qubit-efficient circuit is given by
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Figure 4.1: Time-like Trace Distance Circuits: The three circuits to
calculate the trace distance to calculate the consistency between a U , V
pair, using qubit efficient mid-circuit measurements.

|0〉

|0〉
V ′

|0〉
U ′

|0〉
U ′

(4.5)
where the time-like environment tensor is related to the space-like environ-
ment tensor by

V = V ′

(4.6)

Time-like SWAP tests

Given a time-like representation for translationally invariant quantum MPS,
the next step is to use time-like quantum circuits to find the environment
tensor. The SWAP test, as defined in Eqn. 2.1 can be adapted for use in
time-like circuits. The circuits in Fig 4.1 are used to calculate the three
terms in the trace distance formula 2.4. These three elements are sufficient
to represent and optimize translationally invariant time-like MPS states on
quantum hardware with mid-circuit measurements.
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4.2 Qubit Efficient Time Evolution

The time evolution algorithms introduced in Chapter 3 can be translated to
qubit efficient circuits when mid-circuit measurements are available. Ion-trap
devices can execute these circuits as they permit mid-circuit measurements.
Mid-circuit measurements offer a qubit-efficient way to estimate the envi-
ronment of translationally invariant MPS circuits. Calculating the environ-
ments is one of the more computationally challenging parts of time-evolution
algorithms using translationally invariant quantum MPS. Running multiple
copies of the state tensors before introducing time evolution operators esti-
mates the environment using the power method directly. This method trades
qubit number for increased circuit depth. For qubit-poor devices with good
gate fidelity, this may be a worthwhile trade-off.

Fig 4.2 shows how to map time evolution circuits to a qubit-efficient
circuit. Fig 4.2a is an alternative way to measure the overlap between a time
evolved state and a candidate quantum MPS. A multi-qubit SWAP test is
used instead of applying the inverse of the candidate state. The Trotterized
time evolution operators applied for half the time step on each half of the
circuit. This symmetry makes it easier to see the mapping to qubit efficient
circuits but is otherwise not necessary. Fig 4.2b shows the same circuit with
mid-circuit measurements. The single multi-qubit SWAP test is replaced
with multiple, smaller SWAP tests performed over time. The measurement
statistics that build up over time are used to calculate the overlap between the
two states. Future work will involve the execution of the time-like quantum
TDVP algorithm on NISQ hardware to assess the trade-off between circuit
depth and accuracy of overlap estimates. Deeper circuits are equivalent to
higher order power method approximations, but are more exposed to noise.
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Figure 4.2: Qubit efficient Time Evolution - a) Circuit to calculate the
overlap between a time evolved state and a candidate bond dimension 2 state.
The circuit is split in half and the overlap is measured with a SWAP test.
The time evolution operator, W/2, on each side is the same time evolution
operator applied for half the time step. b) The same circuit, with mid-
circuit measurements. The state tensor legs are permuted so the auxiliary
leg remains on the same qubit on each side. The overlap is calculated using
the measurement statistics that build up across time. The environment is
implemented with repeated applications of the transfer matrix before the
time evolution operator is introduced.
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4.3 Generating Symmetric States

There exist situations where one may be interested in generating symmetric
MPS states. Such states appear in the study of thermofield MPS. Thermofield
MPS are used in the study of thermalization during time evolution[49], and
in the study of black holes in holographic quantum systems[50]. This section
introduces thermofield MPS states and a shallow factorization of thermofield
unitaries that is NISQ friendly and permits the generation of symmetric
thermofield MPS states.

4.3.1 Thermofield States

Consider a general quantum mixed state

ρ =
∑
α

γα|ψα⟩⟨ψα| (4.7)

where γα represents the (classical) probability that the wavefunction is in
the state |ψα⟩. Such states naturally appear in studying finite temperature
quantum systems. At equilibrium, quantum states follow a Boltzmann dis-
tribution given by

ρ =
∑
α

e−βEα|Eα⟩⟨Eα| (4.8)

where β is the inverse temperature of the system at equilibrium. It is well
known that such mixed states can always be purified, whereby a pure state
is found such that the expectation values of all local operators on the mixed
state and pure state are equal. A purified state acts on a larger Hilbert state
to the mixed state. A symmetric purification of the mixed state ρ is given
by

|ψpure⟩ =
∑
α

√
γα|ψα⟩ ⊗ |ψα⟩ (4.9)

where now
√
γα is a probability amplitude. Any local observable on ρ is equal

to the the corresponding expectation value on |ψpure⟩ obtained by tracing out
the other Hilbert space,

Tr[Ôρ] = ⟨ψpure|Ô ⊗ I|ψpure⟩ (4.10)
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It is also possible to represent the state on each Hilbert space as an MPS,
with bonds between the two Hilbert spaces generating the statistics of the
mixed state when one state is traced out. This is known as a thermofield
MPS [49]. Thermofield double states can be graphically represented as two
copies of MPS with contracted bonds between the two Hilbert spaces

(4.11)

where non-zero entanglement between the two Hilbert spaces will be known
as admixture. In the absence of admixture this represents two pure states,

(4.12)

in which the traced out state remains pure. The infinite temperature state
also has a particularly simple representation in this picture, given by the
expression

(4.13)

in which a pair of maximally entangled states are shared across each site.
Thermofield states can be explicitly represented as MPS by contracting the
central legs,

Contract Central 
Leg

(4.14)
where the object on the right is an MPS with a squared bond dimension and
a squared physical dimension. The central tensors are given by the expression

(4.15)
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where the doubled legs are grouped together. The tensors satisfy a symmetry
where the tensors should be equal under simultaneous permutation of the
auxillary and physical legs,

AΣ
I,J = AΣ̃

Ĩ,J̃
= A

(σ′,σ)
(i′,i)(j′,j) (4.16)

which is necessary to ensure the states across the two Hilbert spaces are
equivalent.

4.3.2 Quantum Thermofield MPS

The doubled tensor can be embedded in a unitary matrix with one qubit for
each physical and auxiliary leg,

(4.17)
Arbitrary 4 qubit unitaries will not satisfy the symmetry properties in

Eqn. 4.16. To be suitable for near-term simulation a shallow decomposi-
tion of the unitary needs to be found which satisfies the required symmetry
conditions, Eqn. 4.16. One possible decomposition is the following,

(4.18)
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where Ulocal is a fully general 2-qubit unitary which acts on a single Hilbert
space, and Usymm is a symmetric unitary acting across Hilbert spaces which
is invariant under a swapping of the output qubits. To generate the correct
symmetries the Ulocal unitaries acting on the two physical legs are restricted
to be the same unitary for each tensor. The symmetric gates satisfy the
equality

i

j U
s
y
m

m

=
i

j U
s
y
m

m

(4.19)
which reflects invariance under permutations of the output legs. Given such
a symmetric gate, it is possible to construct thermofield MPS states that
satisfy the required symmetry properties. To be suitable for applications on
NISQ devies this symmetric gate needs to be factorizable into shallow depth
circuit.

Structure of Usymm

For dealing with states of fixed symmetry it is useful to work with the Bell
basis. The four Bell basis states are

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

|Φ−⟩ = 1√
2
(|00⟩ − |11⟩)

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩)

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩)

where the 4 basis states are either symmetric under qubit swapping (|Φ+⟩, |Φ−⟩, |Ψ+⟩),
or anti-symmetric, (|Ψ−⟩). Any symmetric two qubit state can be expressed
as a linear combination of the three symmetric Bell states. This gives a clear
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way to generate arbitrary symmetric states in the Bell basis, by mixing be-
tween the symmetric terms, and excluding the antisymmetric term. Such an
interaction will take the form of a block diagonal two-qubit gate

(4.20)
where the unitary is given in the Bell basis. Usymm as constructed will map
symmetric states to symmetric states. Any U ∈ SU(3) can be embedded in
the upper left block of the symmetric gate. Mapping this unitary from the
Bell basis back to the computational basis gives the following general form
for Usymm

U
s
y
m

m

=
H

SU(3)
H

(4.21)

where the gate labelled SU(3) is the gate given Eqn. 4.20.

Examples of SU(3) Gates

There exist multiple examples of low-level SU(3) gates that can be imple-
mented on near term hardware. The Sycamore interactions are particularly
suitable for this. The native interactions on the Sycamore architecture belong
to the family of FSim gates[41]. The FSim interaction is given by

F (θ, ψ) = e−iθ(X⊗X+Y⊗Y )/2−iψZ⊗Z/4 (4.22)

which has the required form to generate symmetric interactions. Therefore,
any future implementation of thermofield MPS on NISQ hardware will benefit
from naturally low depth implementations of the entangling gates in the
thermofield decomposition presented here.
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Figure 4.3: Thermofield Circuit - A circuit to create a thermofield MPS
state that is invariant under simultaneous permutation of the auxillary and
physical legs. The symmetric gates are decomposed into a Bell basis trans-
formation and an SU(3) gate as defined above. Non-local interactions in the
1D picture above are local on 2D nearest neighbour circuits, by picturing
the two sets of qubits on which the local MPS are defined to lie on-top of
eachother. Note two copies of an MPS state given by the blue tensors. These
are connected with symmetric entangling gates.

Thermofield Circuit

Putting all this together a circuit can be constructed where the output state
is a thermofield MPS guaranteed to be invariant under simultaneous permu-
tation of the auxillary bond legs and the physical legs. Such a circuit is given
in Fig 4.3.

4.4 Summary

In this chapter, I introduce extensions of the ideas introduced in the previous
two chapters, which are avenues for future work. I have introduced qubit-
efficient translationally invariant quantum matrix product states, which are
equivalent to quantum matrix product states but can be expressed with fewer
qubits. This is achieved by substituting qubit number for increased gate
depth. This is possible on hardware supporting mid-circuit measurements,
such as ion-trap devices. I also present an extension to the quantum matrix
product framework to include quantum thermofield states. To create ther-
mofield states, it is required to generate states symmetric across two sets
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of qubits. I demonstrate the existence of variational classes of such states,
and argue that such states can be realized with low gate depth on near-term
hardware.
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Chapter 5

MPS Initialisation

This chapter is based on the publication Matrix Product State Pre-Training
for Quantum Machine[5]. In this work we develop an initialization scheme
applicable to multiple near-term quantum machine learning tasks, utilising
classical optimization of matrix product states. MPS are trained classically
as solutions to classical machine learning tasks, using a combination of imag-
inary time evolution, and DMRG-inspired optimization methods for image
recognition. The optimized MPS are then translated into quantum circuits,
utilising in part the mapping between classical and quantum MPS outlined in
[3]. We demonstrate numerically that this initialization is able to mitigate
the impacts of vanishing gradients when optimizing variational circuits. We
do this for finding ground states of Hamiltonians, combinatorial optimization
problems, and for image classification. I contributed to this work with the ini-
tial development of how to use quantum MPS to initialize quantum circuits.
I then wrote code to optimize classical MPS using the non-local iTEBD algo-
rithm outlined in this chapter. Finally I conducted the quantum simulations
for all the problems in the paper starting from the pre-trained classical MPS
state and from randomly initialized and identity initialized-circuits.

Parametrised quantum circuits (PQCs) have been at the centre of at-
tempts to achieve computational advantage on NISQ devices[51, 52, 53].
Many problems of scientific and commercial interests have been mapped
to PQCs and shown to work on small problem instances that can run on
current simulators and NISQ hardware. The most common approach is
to parametrise a quantum circuit with a set of angles and define a loss
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function over these angles to be minimised by a classical optimiser. The
quantum hardware evaluates difficult-to-simulate loss functions, while the
classical hardware uses the outputs of the quantum device to calculate the
subsequent inputs to reduce a loss function. These are known as Hybrid
quantum-classical algorithms (HQCA). A general schematic of HQCAs is
shown in Fig 5.1.

A significant hurdle in the success of HQCAs is the inherent difficulty
in optimising these quantum circuits. It is well documented that the loss
landscape of PQCs makes it challenging to optimise the parameters. One
problem with the loss landscapes is the issue of vanishing gradients[54]. The
gradients of the loss function in PQCs tend to fall to zero as the size of the
circuits increase. It is not just the number of qubits and the depth of a cir-
cuit that results in vanishing gradients. Ansatz expressibility, entanglement
between measured and un-measured qubits in the circuits, and circuit noise
can all result in barren plateaus[55, 56, 57].

Several techniques have been proposed to make PQCs easier to opti-
mise. A number of initialisation techniques have been proposed[58], new
optimization techniques[59], and defining local cost functions as optimisa-
tion targets[60]. This chapter introduces a novel initialisation scheme based
on tensor network algorithms. Tensor network-based methods are state of
the art for numerical simulations of 1D and 2D systems. Tensor networks
can also be used to solve optimisation problems, such as portfolio optimi-
sation, and are competitive with commercial solvers[61]. Tensor networks
are effective classifiers for several machine learning tasks, including image
classification and anomaly detection[62, 63]. Tensor networks can be trained
classically as solutions to machine learning problems and then mapped to
quantum circuits which are precisely as good candidates for the solution as
the classical tensor network. This method allows PQCs to be classically pre-
trained, reflecting the methods used in state-of-the-art language and image
modelling, where classical neural networks benefit from pre-training on large
a corpus of data before being fine-tuned on their task of interest. Unlike
in the classical machine learning setting, the pre-training of quantum tensor
networks doesn’t explicitly aim to improve the prediction quality but instead
increases the trainability of the circuits by starting in a part of parameter
space closer to the target state than randomly sampled parameters. In do-
ing so, perhaps pre-training can mitigate issues of vanishing gradients and
difficulties during learning.

The following sections outline the classical pre-training techniques before
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Figure 5.1: Hybrid Quantum-Classical Algorithms: Outline of HQCAs.
A classical computer is paired with quantum hardware which can implement
gates parametrized by rotation angles, θ⃗. The classical computer provides
these angles, and gets back the results of a circuit which is hard to simulate
classically. The classical computer then calculates a loss function, and up-
dates the parameters following some optimization algorithm.

going through the results of classically pre-training quantum circuits. This
chapter is based on work published in Matrix Produe State Pre-Training for
Quantum Machine Learning [5].

5.1 MPS Optimization

Finding ground states of Hamiltonians is a standard task in many NISQ
applications. This is the case when wanting to study the low energy states of
a physical system, but it also appears in many other instances. Problems that
are not clearly analogous to physical systems can often be solved by mapping
the problem to a Hamiltonian and searching for its ground state. An example
of this that will be outlined in more detail later is the well-studied MaxCut
problem.
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5.1.1 Imaginary Time Evolution

Imaginary time evolution is a technique to find the ground state of a Hamil-
tonian. Consider the Schrodinger equation

iℏ
∂|ψ⟩
∂t

= Ĥ|ψ⟩ (5.1)

which has solutions in terms of the energy eigenbases of Ĥ, |Ei⟩ with energy
eigenvalues Ei

|ψ⟩ =
∑
i

ci|Ei⟩ (5.2)

After evolving for a (real) time t the solutions are given by

|ψ(t)⟩ =
∑
i

ci(t = 0)e−itEi/ℏ|Ei⟩ (5.3)

with the phase of each term oscillating with a frequency given by the energy
of the state. Reparametrising the time with imaginary time, τ = it, this
gives

|ψ(t)⟩ =
∑
i

ci(t = 0)e−τEi/ℏ|Ei⟩ (5.4)

The contribution of each term decays exponentially to zero, where the
decay rate is the energy of the eigenstate. In the large τ limit, only the
lowest energy state will remain, as this state decays the slowest.

Time Evolving Block Decimation

The Time Evolving Block Decimation (TEBD) algorithm is an MPS time
evolution algorithm that uses a Trotter decomposition of a time evolution
operator to give a low bond order MPS approximation to a time evolved
state.

For this it is assumed that the Hamiltonian is given by a sum of nearest-
neighbour two-qubit terms

Ĥ =
∑
i

ĥi (5.5)

Then a Trotter decomposition is used to estimate the time evolution
operator as sequentially applied local operators

e−iĤdt ≈
∏
i

e−ihidt (5.6)
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Figure 5.2: TEBD Algorithm: a) Local TEBD - The TEBD algorithm
works by applying Trotterized time evolution operators to a MPS. The MPS
is projected back down to a low bond order using an SVD after each ap-
plication of the Trotterized time evolution operator. b) Non-Local TEBD -
The non-local variant of the TEBD algorithm. Long range interactions are
replaced by local interactions and SWAP operators, which can be applied
and compressed using the local TEBD algorithm.

To perform the TEBD algorithm each local term is contracted with the
MPS, and then this new tensor split using an SVD, keeping only the top k
singular values, where k is the desired maximum bond dimension. This pro-
cedure is shown graphically in Fig 5.2a. When the time evolution operators
in Eqn. 5.6 are replaced with imaginary time evolution operators, e−ĥidτ , the
TEBD algorithm evolves to the state to a large imaginary time, increasing
the overlap with the low energy eigenstates of the Hamiltonian. This can be
extended to non-local Hamiltonains, like those encountered in combinatorial
optimization problems.

Non-Local Time Evolving Block Decimation

The TEBD algorithm outlined above can be extended to work for Hamilto-
nians with two-qubit terms that do not act on nearest neighbour sites.

Each long-range operator can be expressed as a local operator with cas-
cades of SWAP operators acting on the physical legs of the lattice between
the legs of the operator, Fig 5.2b. This new local operator + SWAP gates
can be applied in the same way as the local TEBD algorithm.
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5.1.2 DMRG-Inspired Optimisation

Until recently, MPS algorithms like TEBD, TDVP, and DMRG had been
used to solve machine learning problems whose solution could be written as
the ground state of a Hamiltonian. This formalism isn’t very useful when
considering the use case of machine learning using data. Instead, a new
method was developed, taking inspiration from deep learning and kernel
methods[62, 64].

Consider classical data, x⃗ ∈ Rd, sampled from a dataset D with |D| = N
training samples. Each data vector has a label y ∈ {−1, 1}. The task is to
find a function, f , such that f(x⃗) ≥ 0 for all x⃗ with y = 1, and f(x⃗) < 0
otherwise, including generalising to unseen data. The proposed MPS method
to solve this problem involves embedding the classical data into a higher
dimensional vector space. This mapping, Φ(x⃗), is defined as

Φ(x⃗) =
d⊗
i=0

ϕ(xi) (5.7)

where ϕ(xi) is some non-linear function on the single data value. The non-
linear mapping used in this work is the sinusoidal mapping,

ϕ(xi) = (sin(πxi/2), cos(πxi/2)) (5.8)

although many others have been explored in the literature. This mapping
can be interpreted as mapping each data point to a single qubit spin, where
the value of the data point determines that angle of the spin. The total
vector is a normalized wavefunction over d spins. The size of this vector is
2d, exponentially large in the dimensionality of the classical data vector.

The goal is to train a linear classifier, W, on the high-dimensional embed-
ded data. This classification scheme draws inspiration from Support Vector
Machines (SVMs), which use the fact that low dimensional data which is
not linearly separable can become linearly separable in higher dimensions.
Naively the matrix W would have to be exponentially large to act on the
vector Φ(x⃗). However one can use a matrix product state approximation to
W so it can efficiently be contracted with the high dimension data. This
gives a classifying function

f(x⃗) = WMPSΦ(x⃗) (5.9)
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where the sign of f is used to classify the binary data. This is easily extended
to l possible labels by adding an output leg to the MPS classifier. A square-
error loss function is calculated over the dataset

L =
1

N

N∑
j=0

(yj −WMPSΦ(x⃗j))
2 (5.10)

There are several ways one could train the MPS classifier. In the most
straightforward setting, one could calculate this loss function and use back-
propagation to update the weights of the MPS tensors directly[65]. Di-
rectly updating the MPS tensors is particularly easy when using an auto-
differentiation library, like Tensorflow, Pytorch, or Jax. Alternatively a
DMRG-inspired optimisation scheme can be used, outlined in Fig 5.3b. Pairs
of sites are combined and updated using gradient descent, while all other sites
remain frozen. This has the benefit of automatically selecting the MPS clas-
sifier’s bond dimension during training by removing all singular values below
a certain size.

The following section considers how to use these methods to pre-train a
quantum circuit, having trained MPS to solve both classical and quantum
machine learning problems.

5.2 Initialising Circuits with Quantum MPS

Finding a better quantum circuit initialisation relies on initialising the cir-
cuit as a pre-trained classical MPS. Doing so gives an effective initialisation
point for future variational quantum algorithms trying to solve the same
problem. The ability to initialise a quantum circuit in this way is a unique
benefit of the MPS approach to solving machine learning problems. Other
classical methods, such as classical neural networks, cannot immediately be
used to seed a quantum algorithm in the same way. From here onwards, this
procedure will be known as MPS Pre-training.

5.2.1 MPS Pre-training

MPS Pre-training has three steps:

1. Train an MPS classically
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Figure 5.3: DMRG-Inspired Classification: a) Classical data vectors are
embedded in a wave function by encoding the data as the rotation angles of
individual qubits. Linear classifiers can be trained efficiently by restricting
optimization to MPS classifiers acting on this exponentially large dimensional
space. b) Sites can be updated by combining pairs of sites and updating them
using gradient descent, keeping all other tensors frozen. The updated tensor
is then split using an SVD. This DMRG inspired approach is done instead
of direct gradient descent on all of the tensor simultaneously.
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2. Compile the MPS to an equivalent quantum circuit

3. Continue training of the quantum circuit from this starting point

Step 1 is covered in the previous section. Step 2 follows the procedure
outlined in chapter 2. The trained MPS can be put into canonical form,
where each tensor is an isometry, and these isometries can is embedded into a
unitary matrix. The MPS will correspond to a diagonal staircase of unitaries
in the circuit. Finally, one can view this initialized circuit as a PQC where
the off-diagonal gates are initialized to the identity. The classical optimizer
can now vary all the parameters, including those in the identity off-diagonal
gates. This procedure is outlined in Fig 5.4.

The MPS unitaries are converted into rotation angles using Cartan’s de-
composition, commonly referred to as the KAK decomposition[66]. MPS pre-
training proceeds by initialising a brick wall circuit, also known as a quantum
neural network, using the longest diagonal of the circuit to initialise with the
MPS. MPS Pretraining is evaluated on three tasks.

1. Finding ground states of Hamiltonians

2. Combinatorial optimisation

3. Image classification

5.2.2 Finding Ground States

MPS pre-training can accelerate VQE and improve the task of finding the
ground states of Hamiltonians. Particularly for condensed matter Hamilto-
nians, like the TFIM, this would seem a natural application of the technique,
where MPS can capture the ground states of these systems effectively. Elec-
tronic Hamiltonian MPS pre-training works to accelerate finding the ground
states of electronic Hamiltonians. For the electronic ground state of the H2

molecule, it is demonstrated that on the order of 105 fewer function evalua-
tions are needed to find the ground state to within 10−8 of the true ground
state when using pre-training compared to random initialisation, Fig 5.5b.
For Ising models, the benefits of pre-training are also apparent. MPS pre-
training was tested on the transverse fielding Ising model at criticality,

Ĥ =
L−1∑
i=0

JZiZi+1 +
L∑
i=0

gXi (5.11)
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Map the trained 
MPS to PQC

Figure 5.4: MPS Initialisation Outline: a) Classical Training - a MPS
is optimized as an approximate solution to a given problem. The optimized
MPS is put into canonical form, where tensors are isometries. In canonical
form the tensors are equivalent to unitary matrices acting on a reference
state. b) Initialisation - The trained MPS is mapped to a quantum circuit.
Off diagonal gates are implicitly initialized to the identity. This circuit is as
good an approximation to the problem solution as the classical MPS was.
The optimizer is then able to vary all the parameters, including those in the
gates initialised to the identity.
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where J
g
= 1. At the critical point, long-range correlations make low bond

order MPS a worse candidate for finding the ground state; training begins
at a more favourable energy than randomly initialised circuits, and proceeds
more rapidly, Fig 5.5d. Note that circuits initialised to the identity in this
case often failed to optimise, with the identity representing quite a severe and
difficult to overcome local minima. The Tilted Field Ising Model was used to
test the effectiveness of this initialisation in mitigating the barren plateau.
The barren plateau is the exponential decrease in the variance of gradients as
the depth and width of a parametrised quantum circuit grows. As shown in
Fig 5.5c, pre-trained circuits did not have exponentially decreasing gradient
variance. The efficiently trainable MPS initialised circuit contrasts randomly
initialised circuits and circuits initialised to the identity.

5.2.3 Combinatorial Optimization

Another set of problems that can be expressed in the language of finding
ground states is that of combinatorial optimization. The following section
focuses on MaxCut, one of the most well studied combinatorial problems.

The Max Cut optimisation problem begins with a weighted graph, G(E, V )
with weights wi,j along each edge. The goal is to find a set of vertices, S,
such that the total weight of the edges connecting S to it’s complement is
maximized. Finding this set of edges is equivalent to finding the ground state
of the Hamiltonian

Ĥ = −
∑
<i,j>

wij(1− ZiZj) (5.12)

Another set of problems expressible in the language of finding ground
states is that of combinatorial optimisation. The following section focuses
on MaxCut, one of the most well-studied combinatorial problems.

The MaxCut optimisation problem begins with a weighted graph, G(E, V )
with weights wi,j along each edge. The goal is to find a set of vertices, S,
that maximises the total weight of the edges connecting S to its comple-
ment. Finding this set of edges is equivalent to finding the ground state of
the Hamiltonian

Ĥ = −
∑
<i,j>

wij(1− ZiZj) (5.13)

The Hamiltonian contributes 0 whenever nodes i and j are in the same
set, and -2 otherwise. The lowest energy state will be a superposition of
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Figure 5.5: Initialising VQE with MPS: a) Quantum Circuit Ansatz -
The ansatz used in these experiments. Shown is a depth 6 circuit acting on
4 qubits. Each 2 qubit unitary, U , is decomposed into 15 parametrized gates
using Cartan’s KAK Decomposition. b) H2 Optimisation - The H2 electronic
Hamiltonian was optimized, until a good estimate of the ground state energy
was found, E −Emin < 1× 10−8. The MPS initialised circuits require thou-
sands of fewer function evaluations at each depth. c) Non-vanishing gradients
- For the tilted field Ising model we find the variance of the MPS initialised
gradients, at initialisation, do not decrease exponentially with circuti depth.
This is in contrast to both random and identity optimization. The gradient
was calcualted with respect to parameters in the first gate in blocks initialsied
to the identity. The tilted field parameters are λ = 1 and δ = 0.5. d) TFIM
Optimisation - At all depths tested the MPS initialisation converged with
fewer iterations.
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product states in which spins are in different sets if there is a large weight
connecting them. There is no restriction on the graphs used for MaxCut
problems, so this Hamiltonian will generally have long-range interactions.
Hence non-local imaginary time TEBD was used to optimise a MPS as the
solution to the MaxCut problem given by the graph in Fig 5.6a. Pre-training
accelerated optimisation by beginning initialisation in a lower energy state,
and subsequent training reached convergence in many fewer gradient updates.

One might assume that matrix product states would be poor initial
guesses to solve MaxCut problems. Low bond order MPS will not effec-
tively capture the long-range interactions in the Max Cut Hamiltonian. For
the small problem instances tested here, MPS could express the ground state
of the Hamiltonian effectively. To mimic the scenario in which the ground
state has long-range correlations, so the bond order 2 MPS is unable to cap-
ture it, the training of the MPS was restricted to a short imaginary time.
Hence the initialised MPS is a poor approximation to the ground state. Even
in this case, it is clear that the MPS still provides an effective initialisation
point. This may suggest that even for larger problem instances with more
entanglement, MPS pre-training could be an effective initialisation scheme.

5.2.4 Image Classification

During training, optimisation schemes can treat PQCs as a differentiable
black box, similar to neural network models in classical machine learning.
Hence PQCs are a drop-in replacement for neural networks in many machine-
learning tasks. One such task is image classification. It is not entirely clear
that a so-called quantum neural network should provide a benefit over classi-
cal methods for such tasks, and it remains to be seen if any relevant classical
dataset exists in which quantum processing offers an advantage. As a side
note, hand-crafted data sets exist such that quantum classifiers are more
potent than their classical counterparts[67]. However, these do not appear
relevant to commercial or scientific use cases. This work demonstrates that
the Fashion MNIST classification problem, a common image classification
problem in the classical machine learning literature, can be accelerated using
MPS pre-training. The classifier was trained to distinguish between t-shirts
and trousers. Binary classification was considered for simplicity.

A quantum-inspired machine learning model can be trained on data pro-
ducing an MPS classifier and an embedding map. The MPS classifier has
an equivalent quantum circuit as long as the embedding map can be easily
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Figure 5.6: Max Cut Optimization: a) Max Cut Graph - The 6 node
Max Cut graph with weighted edges. Each node is encoded as a single
qubit in the imaginary time TEBD algorithm. b) Quantum Circuit Ansatz
- For all experiments the diagonal unitaries are given exactly by the KAK
decomposition, and off diagonal unitaries are composed of Pauli Y rotations
and controlled X rotations. c) MPS Pre-training - MPS initialized circuits
converge after fewer gradient steps and converge to a better ground state
than randomly initialised counterparts.
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realisable as a quantum circuit. The sinusoidal embedding is equivalent to a
Pauli Y rotation, where the brightness of the pixel defines the rotation angle.
Naively one would use a single qubit per pixel. However, that would require
over 400 qubits, far beyond any classical simulators or any currently avail-
able hardware. Principle component analysis is used to compress the images.
The images were projected onto the principal components calculated on the
training set.

The training images were flattened and collected into a matrix X. Then
the covariance matrix was computed

Σ = XTX (5.14)

then an SVD is performed on the matrix Σ.

Σ = UΛU† (5.15)

The principal components are the columns of the matrix U,

{u⃗1, u⃗2, . . . , u⃗N} (5.16)

. Taking just the top N principle components of U and finding the inner
product of an image with each principal component produces a compressed
feature vector that will fit on an N qubit device. The input to the ith qubit
from the jth is then given by

x̃i,j = ⟨x⃗j, u⃗i⟩ (5.17)

The values x̃i,j are the inputs to the MPS and the quantum classifier. The test
images were projected onto the principal components found for the training
data set.

Fig 5.8c compares the MPS pre-trained circuits to randomly initialised
circuits and circuits initialised to the identity by setting all rotation angles to
zero. The MPS pre-trained circuits once again started at lower energy and
optimised faster than the other initialisation schemes, Fig 5.8.

5.2.5 Discussion

Comparison to other methods

There have been multiple methods proposed to initialise quantum circuits
to improve trainability. The warm-start QAOA algorithm is very similar in
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Figure 5.7: Fashion MNIST Circuits: Quantum Circuit Ansatz - The
circuits used in all these experiments. Diagonal unitaries are decomposed
using the KAK decomposition whereas off diagonal unitaries are composed
of Pauli Y gates and controlled X rotations. The linear classifier is given by
a brickwall circuit, and the data uploading is done using Pauli Y rotations
parametrised by the projections of the images onto the training set singular
values, x⃗. A binary decision function is calculated as the probability of
measuring the all-zero bit string. Binary cross-entropy loss is used, An image
is classified as label 0 if f(x⃗) = P (|00 . . .⟩) < 0.5 and 1 otherwise
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Figure 5.8: Fashion MNIST Results: MPS Initialisation Results - As well
as starting at a higher binary accuracy, the accuracy of the MPS initialised
circuits increased faster during the early epochs, indicating that the local loss
landscape of the MPS initialised circuits may be easier to traverse for the
optimizer. The Adam optimizer is used to update parameters in the circuit.
The classical MPS were optimized for 5 epochs before being translated to a
circuit and training continued. The MPS initialised circuits took no more
than 2 epochs to converg==e, whereas all others required 4 or more epochs.
As well as starting at a higher binary accuracy, the accuracy of the MPS
initialised circuits increased faster during the early epochs, indicating that the
local loss landscape of the MPS initialised circuits may be easier to traverse
for the optimizer.

98



spirit to the pre-training method proposed here. The QAOA algorithm solves
combinatorial optimisation problems, like the MaxCut problem. QAOA
works by first preparing the ground state of a Hamiltonian that is easy to
prepare, such as Pauli X acting on all sites. Then gates are applied, which
act to interpolate between a Hamiltonian with an easy-to-prepare ground
state and the target Hamiltonian, such as the MaxCut Hamiltonian. The
adiabatic principle ensures that, if interpolated sufficiently slowly, the sys-
tem will always remain in its ground state. At the end of the process, the
QAOA algorithm will produce the ground state of the target Hamiltonian.
Any product state would suffice as a good initial state, and the parent Hamil-
tonian would be able to be implemented to perform QAOA. [68] proposes to
use classically generated solutions to combinatorial problems as the initial
state. Relaxations of a discrete problem generate a continuous optimisation
problem, solved via gradient descent or similar. Then after no interpolation
at all, the state will already be as good an approximation to the answer as
can be generated by the classical solver. Classical relaxation techniques are
often very effective and hence provide a good initialisation for QAOA.

Layer-wise learning is another quantum circuit initialisation scheme. This
technique proposes optimising only the first 1-2 layers of a quantum circuit
and freezing all others to the identity. These low-depth circuits are less likely
to suffer from barren plateaus and might provide an effective starting point
for the rest of the circuit to train. To compare to MPS pre-training, note that
a depth 1 or 2 brick wall circuit is strictly less expressive than bond dimension
2 MPS and can is equivalent to a finite correlation length bond dimension 2
MPS. It is natural to assume that a method which initialises a circuit from a
general bond dimension 2 MPS will start from a better approximation than
one initialised by a 1-2 layer pre-trained brick wall circuit.

Other Tensor Network Structures

Quantum circuits were initialised exclusively with MPS in left (or right)
canonical form. More general tensor network structures can seed a quantum
circuit, with circuits that no longer correspond to the diagonals of a brick
wall circuit. Centre gauge, or mixed canonical, MPS are suitable circuit
initialisers. The equivalent quantum circuit is less deep as several gates are
applied in parallel. Mixed canonical MPS could be beneficial for quantum
hardware with significant errors when qubits are idle, so minimising time
between operations on a qubit is helpful to reduce the impact of noise.
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Figure 5.9: Alternative Tensor Network Circuits: a) Mixed Canonical
Form - Mixed canonical form MPS can also be used to initialise a circuit,
where the centre of orthogonality is parametrized using a Pauli Y rotation
and a CNOT gate. This circuit is shallower than the equivalent left canonical
circuit, and may help mitigate the effect of noise. b) Tree Tensor Network
- Tree tensor networks can be exactly expressed as quantum circuits with
longer range interactions. Tree tensor networks may be useful for pre-training
on data which has longer range correlations.
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Similarly, more exotic tensor network structures can be trained classically
and embedded as a quantum circuit. Tree tensor networks, Fig 5.9b, may be
more effective classifiers for problems which benefit from forming hierarchical
representations at different scales, as is the case with image processing.

5.2.6 Summary

This chapter introduced MPS pre-training, a novel initialisation scheme for
quantum neural networks. MPS pre-training involves classically optimising
an MPS to solve some machine learning task such as finding the ground state
of a Hamiltonian, discrete optimisation problems, or image classification.
The optimised MPS can be translated without loss to a quantum circuit,
and then compiled into a set of rotation angles. The circuit is initialised
with these angles, guaranteeing that the circuit starts optimisation as good a
solution to the target problem as the MPS. Optimisation proceeds from this
starting point. The hope is that by starting at a good approximation to the
target solution, the impacts of the barren plateau can be mitigated.

This method was tested with numerical evidence on a wide range of prob-
lems commonly used to test NISQ devices. Testing with the tilted field Ising
model suggests that such an initialisation doesn’t show vanishing gradients.
Further tests optimising the transverse field Ising model and theH2 electronic
Hamiltonian demonstrate that the ground state energies can be identified in
far fewer iterations, even when the MPS is poorly optimised. This suggests
that this scheme may continue to work even for more highly entangled ground
states, where low bond order MPS are no longer good solutions. This method
demonstrated effectiveness in initialising quantum neural networks to solve
combinatorial optimisation problems like MaxCut. MPS pre-training greatly
reduced the number of iterations needed to find the ground state, as well as
helping avoid local minima. Finally MPS pre-training is shown to be ef-
fective for initialisation of image classification models, as demonstrated on
the Fashion MNIST dataset. The MPS is pre-trained using DMRG-inspired
methods for optimising MPS as classifiers.

It remains to be seen under what scenarios MPS pre-training provides a
significant benefit in a large-scale setting. By under-optimising the classical
MPS, studying ground states at criticality, and studying scaling up to 24
qubits we hope to get a better understanding of how this method will scale
to larger, more complex problems. One might suggest that because low bond-
order MPS can only capture low entangled states that this method is unlikely

101



to work for cases where the target state is highly entangled. There might
exist low entangled states which are close to the highly entangled solutions
in parameter-space, and those states are what is being targeted with this
method. Larger scale experiments are needed, as well as experiments on
NISQ devices to study the impact of noise on the initialisation quality.
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Chapter 6

Conclusion

This thesis has explored connections between classical tensor networks and
quantum computing. Many tensor network states and algorithms can be
mapped onto quantum hardware, thereby benefiting from the increased ex-
pressive power of quantum devices. The contributions of each chapter are
summarised below, and future directions for research are discussed.

Representing QMPS - This chapter introduced a novel way to simulate
translationally invariant systems on quantum devices by mapping concepts
from the classical simulation of infinite MPS to NISQ hardware. It’s shown
how to represent a translationally invariant MPS state on quantum hard-
ware and use this representation to calculate the ground states of infinite
translationally invariant systems. Moreover, such representations are easily
extendible to capture large bond dimension states, albeit subsets of those
states restricted to shallow depth circuits. Simulations of these optimisation
algorithms demonstrate that shallow decompositions of quantum MPS faith-
fully capture ground state properties of low bond order MPS, and circuits
are provided which may be able to extend to larger bond dimensions. The
ability of shallow-depth quantum tensor network states to remain accurate
as bond dimensions exceed classical simulation is an active research area. It
is easy to write quantum MPS states which are difficult to simulate clas-
sically; however, the ability of these states to accurately represent a given
physical system of interest is still unknown. Efforts towards answering this
question, such as [12, 13] have been discussed, which identify the possibility
of quantum advantage within the class of quantum tensor network states.
This work introduces the singular value gate, which captures high bond di-
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mension environments by matching the most significant n singular values of
a 2n×2n environment tensor. Similar analysis needs to be done in the future
to determine if the error scaling properties of this and other environment
decompositions can achieve a quantum advantage. Circuits are outlined that
are suitable for execution on hardware, allowing mid-circuit measurements,
providing a way to run translationally invariant QMPS with fewer qubits at
the cost of greater circuit depth.

This chapter demonstrated the ability to optimise shallow factorisations
of translationally invariant bond dimension 2 MPS on NISQ hardware. Ex-
periments on Google’s Rainbow device achieve accurate estimates of ground
state energy at the critical point of the TFIM by employing multiple error
mitigation strategies used simultaneously.

Time Evolving QMPS - This work outlines a time evolution procedure
for translationally invariant quantum MPS states based on the TDVP algo-
rithm. A variational time evolution procedure is introduced in which quan-
tum MPS states can be efficiently time evolved and then projected back onto
a fixed bond dimension state which maximises the overlap with the time
evolved state. The difficulty of measuring the overlap between two infinite
states required a more involved procedure than is usually required for varia-
tional time evolution over finite states. The chapter proposes two solutions,
one utilising the power method for estimating the overlap, the other requiring
a nested optimisation loop to find the right and left eigenvalues of the trans-
fer matrix. The latter effectively captured the dynamics of multiple systems,
including scarred states in the PXP model and dynamical phase transitions
in the TFIM model. Furthermore, it is demonstrated on the Google Rainbow
device that the power method algorithm can potentially capture dynamical
phase transitions in the TFIM model. Time evolution cost functions are iden-
tified that faithfully track the overlap during optimisations of a single time
step. These experiments are the first steps toward the long-time evolution of
critical systems on near-term hardware directly in the thermodynamic limit.

MPS Pre-Training - This chapter introduced a novel initialisation scheme
for quantum neural networks, using classical MPS to seed a variational quan-
tum algorithm. This classical pre-training mitigates the impacts of vanishing
gradients, as well as removing the barren plateau up to 24 qubit simulations
of the tilted field Ising model. This initialisation scheme is effective for quan-
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tum problems, such as finding the ground states of chemical and condensed
matter Hamiltonians, and classical problems, like MaxCut optimisation and
image classification on the Fashion MNIST dataset.

Future Directions - Extending the algorithms and techniques presented
here to a higher bonder dimension is a promising avenue for future research.
Higher bond dimension quantum MPS begin to accumulate errors originating
from deeper circuits and shallow factorisations of tensors. Investigating the
impact of these errors and methods to mitigate them could enable the sim-
ulation of tensor network states that are not classically simulatable. Ongo-
ing works towards this include time evolution algorithms for the thermofield
state introduced in Chapter 2, and the implementation of qubit-efficient time
evolution algorithms to investigate the trade-off between circuit depth and
accumulated noise in trapped ion qubit devices.
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