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Abstract

Quantitative descriptors of bioimage features have been used to efficiently discriminate between

different phenotypic populations within microscopy image datasets. However, trying to

discriminate between the processes of canonical and non-canonical autophagy is difficult as

they share a key patterning determinant - relocalisation of LC3 - and because both responses

are subject to significant heterogeneity. Here, we apply both classical feature extraction and

unsupervised representation learning to isolate and the describe the differences between

canonical and non-canonical autophagy. In doing so, this thesis aims to demonstrate how using

quantitative bioimage analysis in this context can increase the robustness of observations

derived from hypothesis-driven high throughput imaging experiments. A texture descriptor
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approach is contrasted with two deep representation learning methods, the InfoGAN and BYOL,

where it is seen that classical approaches are more amenable to statistical testing and allow for

stronger inferences about the underlying biology. These classical approaches are then used to

identify imaging phenotypes unique to different stimuli of non-canonical autophagy. From a

methodological perspective, this thesis underlines the continued utility of classically-derived

image features for scientific discovery.

Impact Statement

Deep learning enabled image analysis is being widely investigated as a way to supplement and

inform decisions in a wide range of fields, including medical imaging and robotics. Exploring

how these networks undertake visual reasoning, and in particular the ways in which this visual

reasoning can diverge from how expert practitioners view their subject matter, will be essential

in ensuring these systems function safely and fairly. Additionally, understanding how we can

better use quantitative information to supplement directly observational experiments will

hopefully allow for more targeted formulations of quantitative hypotheses, reducing time spent

on low-priority avenues of enquiry and in doing so reducing research waste.
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Abbreviations

BYOL - Bootstrap Your Own Latent

CASM - conjugation of atg-8 to single membranes

EGFP - enhanced green fluorescent protein

eIF2α - eukaryotic initiation factor 2 alpha

GAN - generative adversarial network

HA - influenza haemagglutinin protein

InfoGAN - information maximizing generative adversarial network

JSD - Jensen-Shannon divergence

LC3 - microtubule-associated protein 1 light-chain 3

LDA - linear discriminant analysis

LIR - LC3-interacting region

3-MA - 3-methyladenine

mTORC1 - mammalian target of rapamycin complex 1

NS1 - influenza non-structural protein 1

PB2 - influenza protein polymerase basic 2

PI3K - phosphoinositide 3-kinase

PI3P - phosphatidylinositol 3-phosphate

PKR - protein kinase R

SIE - superinfection exclusion

TGN - trans-Golgi network

TRIM - tripartite motif-containing protein

ULK1 - unc-51 like kinase 1

vATPase - vacuolar ATPase

VPS34 - vacuolar protein sorting 34
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1 - Introduction and Aims

In autophagy research, the lipidation of a core autophagy marker, LC3, is used as a

semi-quantitative readout for the process of canonical autophagy. This lipidation process drives

a relocalisation of LC3 from cytoplasmic to membrane compartments, resulting in a distinct

imaging phenotype, where diffuse LC3 is collected into discrete puncta. However, LC3 lipidation

can take place in contexts functionally and molecularly dissimilar to canonical autophagic

pathways, contexts sometimes referred to as non-canonical autophagy (Table 1). Reasoning

directly from LC3 lipidation to canonical autophagy has led to contradictory interpretations and

confused inferences in contexts where non-canonical autophagy is seen to occur. Difficulty in

measuring and defining phenotypes in this context is compounded by heterogeneity inherent to

both processes. This thesis will outline a set of methods that distinguish canonical from

non-canonical autophagy when imaging LC3, and subsequently make inferences about cellular

behaviour under non-canonical autophagy, inferences which may have otherwise been

ill-constructed if premised on naive interpretations of LC3 lipidation.
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Canonical autophagy Non-canonical autophagy

Site of
lipidation Double membranes Single membranes

Stimuli
Nitrogen starvation

Dysfunctional organelles
Protein aggregates
Cytosolic pathogens

Ionophore drugs
LC3-associated phagocytosis
Aberrant ion channel activity
Bacterial secretion systems

Function
Lysosomal degradation
Metabolic homeostasis
Organelle maintenance

Microbial restriction

Unknown

Molecular
Determinants

ULK1 complex
VPS34 complex

Atg9/Atg2

vATPase complex
ATG16L1 WD40 domain

Table 1: An outline of key differences between canonical and non-canonical autophagic
processes.

1.1 The Influenza A M2 Protein

Influenza A is a respiratory virus that is capable of causing pandemics. It possesses a

segmented, negative-sense RNA genome, and aquatic birds are the primary natural reservoir

for the virus, prompting frequent viral crossover from domestic poultry populations (Parrish,

Murcia, and Holmes 2015). Understanding the mechanisms by which it avoids and subverts

cellular defenses is essential to reduce both the scale of its impact on global health and the

possibility of emergence of highly transmissible and pathogenic viral strains (Pappas et al. 2008;

Lam et al. 2011). Due to the highly restricted coding capacity of the viral genome (Dubois,

Terrier, and Rosa-Calatrava 2014), most influenza proteins perform multiple roles during the
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viral lifecycle. The influenza M2 protein acts primarily as an ion channel, and its best described

role is to acidify the virion upon endosomal entry, triggering release of the viral genome from

virion into the cytoplasm (Shaw and Palese 2007). Additionally, the haemagglutinin (HA) cell

entry complex is acid-sensitive and must be prevented from triggering during transport through

the acidic trans-Golgi network (TGN). As such, the M2 protein has a parallel role during viral exit

where it acts to neutralise ion gradients across a set of secretory endomembrane compartments

(Ciampor et al. 1992; Alvarado-Facundo et al. 2015). A further proposed role for the M2 protein

can also be found during the budding of new virions from the plasma membrane, where

structural studies have shown a contribution of the transmembrane portion of the protein to

membrane curvature and scission (reviewed in Rossman and Lamb 2011).

Despite the experimental focus on the ion channel activity of the M2 protein, M2 additionally

possesses the longest cytoplasmic tail of any influenza A protein (Iwatsuki-Horimoto et al.

2006), with a complex set of post-translational modifications and proposed interaction partners

(Holsinger et al. 1995; Tripathi et al. 2015). As there is such a strong coding capacity constraint,

the presence of this cytoplasmic tail is strongly suggestive of M2 possessing functions beyond

endomembrane ion gradient disruption, possibly as a signalling interface to the host cell.

Previous work in our laboratory has defined and explored one such interaction, that of M2 with

members of the Atg8 protein family (typically referred to, in aggregate, as ‘LC3’ in mammalian

contexts) via a highly conserved LC3-interacting region (LIR) motif. This protein is a universal

component of the autophagy machinery in eukaryotes.
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1.2 Autophagy and the Influenza A Virus

1.2.1 Macroautophagy and its regulators

Autophagy refers to a set of processes in which bulk cytoplasmic components are degraded via

delivery to the lysosome. The term is first defined in the context of the discovery of the lysosome

(de Duve et al. 1955), in deliberate contrast with the process of delivery of extracellular contents

to the lysosome (then defined as heterophagy, now more commonly known as endocytosis).

Autophagic processes are critical under conditions of low nutrient availability as the products of

lysosomal degradation can be recycled as substrates for cellular respiration and anabolic

reactions. This criticality of autophagy to the cellular starvation response underpinned the yeast

genetic screens that delineated the molecular determinants of autophagy - a group of thirty

proteins that are almost universally conserved in eukaryotes (reviewed in Ohsumi 2014).

Subsequent research found that autophagy functioned outside of starvation by selectively

delivering dysfunctional or damaging cellular components, such as aging mitochondria or large

protein aggregates, to the lysosome for destruction - thereby contributing to cellular

maintenance (reviewed in Johansen and Lamark 2011). Outside of cellular maintenance, the

capacity of autophagy to destroy contents of the cytoplasm can be utilised by the cell as a

restriction mechanism for a variety of intracellular pathogens, in a set of processes described as

xenophagy (reviewed in Wileman 2013). The growing understanding of xenophagy has led to a

variety of descriptions of bacterially and virally-encoded systems of disruption or subversion of

autophagic machinery (reviewed in McEwan 2017).

Macroautophagy is a form of autophagy which generates distinctive double membrane

structures known as phagophores to engulf cellular contents prior to their delivery to the

lysosome (summarised in Ravikumar et al. 2009). This requires finely tuned orchestration of

cellular signal transduction, substrate recognition, membrane trafficking and remodelling. To
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parse this complexity, a protein known as LC3 is often used to interrogate autophagic

processes, firstly because the lipidated form of the protein is specifically and strongly localised

to autophagic membranes and thus allows profiling of autophagic structures with fluorescence

microscopy. Secondly, because processed and unprocessed populations of LC3 can be easily

resolved via western blot, and the relative proportion of these two populations can be

informative about the rate of flux through the pathway (Klionsky et al. 2021).

Two kinase complexes cooperate to integrate cellular nutrient sigalling and induce the

generation of autophagic membranes, and thus occupy central roles in the literature. The ULK1

complex is a protein kinase complex that is directly inhibited by mTORC1 binding. In starvation

conditions, mTORC1 dissociates, releasing the inhibition of the protein kinase activity of the

complex. While it is likely ULK1 possesses a large number of protein substrates, two key

substrates, Vps34 and Beclin1, are found in the other central autophagic kinase - the class III

phosphoinositide 3-kinase (PI3K) complex. Phosphorylation of Vps34 and Beclin1 in turn drives

the phosphatidylinositol 3-phosphate (PI3P) kinase activity of this complex. After localisation to

a nascent autophagic membrane, these two kinase complexes act in concert to create an

autophagosome specific pool of PI3P. Molecular recognition of the PI3P pool allows for the

recruitment of the LC3 lipidation machinery, consisting at its core of the key complex

ATG12-ATG5-ATG16L1, which acts as an E3-like ligase by conjugating the ubiquitin-like LC3 to

lipid molecules, most often phosphatidylethanolamine. As these kinases sit at the very top of the

autophagy signalling cascade and are thus essential for the generation of autophagosomes,

they often undergo genetic or chemical manipulation as a method of investigating the

contribution of autophagy to other cellular processes (reviewed in Lamb, Yoshimori, and Tooze

2013).

9

https://paperpile.com/c/UXAy2n/rF8H
https://paperpile.com/c/UXAy2n/cb9B
https://paperpile.com/c/UXAy2n/cb9B


1.2.2 Influenza infection and canonical macroautophagy

The influenza virus non-structural protein 1 (NS1) possesses a well described protein kinase R

(PKR) inhibitory activity. This acts to limit activation of the interferon signalling system and thus

constrains the activity of the innate immune system (Bergmann et al. 2000). As PKR also sits

upstream from eukaryotic initiation factor 2α (eIF2α), the early literature concerning the

relationship between autophagy and influenza posits it is primarily antagonistic with

virally-derived autophagic inhibition functioning to reduce innate immune activity and viral

antigen presentation (Randall and Goodbourn 2008; Schmid and Münz 2005; Orvedahl and

Levine 2008). The first paper describing a direct measurement of autophagic activity in influenza

A infection demonstrated a significantly increased degree of LC3 lipidation via SDS-PAGE

(Zhou et al. 2009). It was additionally seen that a pharmacological inhibitor of autophagy,

3-methyladenine (3-MA) seemed to reduce viral titres, concluding from this that influenza

induced autophagy and this induction directly contributed to viral fitness - in contrast to

predictions about autophagy acting as host defense. However, the validity of 3-MA as an

autophagic inhibitor has been challenged (Y.-T. Wu et al. 2010), in that it has been shown that it

can in fact induce or potentiate autophagy in nutrient-rich mammalian contexts.

Gannagé et al. demonstrated a similar increase in lipidated LC3 under infection, but showed

that there was no further increase in lipidated LC3 under inhibition of lysosomal flux. This was

interpreted as influenza acting to inhibit the final steps of the macroautophagy pathway, where

the contents of autophagosomes were prevented from being degraded in lysosomes (Gannagé

et al. 2009). It was further found that the influenza M2 protein alone could induce a similar

autophagic phenotype under transient transfection, and that the identified autophagosomes

induced under these conditions had radically differing morphologies and transport kinetics to

those induced under conditions of canonical macroautophagy when visualised under confocal
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fluorescence microscopy. The paper describes a further set of experiments which show that the

M2 protein induces this autophagic blockade independently of its ion channel activity.

Amantadine was employed to specifically block the M2 ion channel, and it was seen that upon

amantadine treatment there was no impact on LC3 lipidation. Notably, these experiments were

conducted in a strain known to be resistant to amantadine treatment (Appleyard 1977).

In contrast to the findings of Gannagé et al., a closer investigation of the role of the cytoplasmic

tail in the potentiation of increased LC3 lipidation showed a partial dependence on the LIR motif

(Beale et al. 2014), in contrast to the localisation of function to the N-terminal region.

Additionally, it was shown that the increased LC3 lipidation was independent of the FIP200

complex - a component of the ULK1 complex and thus key upstream regulator of canonical

autophagy - while being dependent on the core lipidation machinery through ATG16L1. A further

contribution of Beale et al. was in describing a distinctive LC3 patterning phenotype, in which

the LC3 molecule localised strongly to the plasma membrane - a unique phenotype not seen in

canonical autophagy. Secondly, the independence of the LC3 lipidation phenotype from M2 ion

channel activity was explicitly overturned (Ren et al. 2016; Fletcher et al. 2018), via the use  of

amantadine-sensitive influenza strains.

Later papers which directly investigate the interaction of influenza with autophagy include

(Comber et al. 2011) which attempts to directly investigate the effects of influenza-derived

autophagy on antigen presentation, but relies on pharmacological tools with many off target

effects in a similar manner to (Zhou et al. 2009). Interestingly, an assay dependent on

high-throughput imaging flow cytometry demonstrated that LC3 relocalisation induced by

influenza infection could be differentiated from canonical autophagy as it allowed for high LC3

relocalisation in addition to strong caspase-3 cleavage (de la Calle et al. 2011), a surprising
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result as canonical autophagy is typically seen to be downregulated prior to initiation of

apoptosis (Xu, Yuan, and Lipinski 2013).

Work in highly pathogenic H5N1 avian influenza suggested that virally-induced autophagy acts

to increase viral pathogenicity (Ma et al. 2011), and in contrast to Gannagé et al., proposes that

autophagy (and attendant “autophagic cell death”, which is in itself a contentious concept (Shen,

Kepp, and Kroemer 2012; Kroemer and Levine 2008)) is induced rather than stalled at the

autophagosome-lysosome fusion stage. However, there are limited experimental controls for

cell entry or lowered viral replication phenotypes when assessing virus-induced cell death,

limiting the strength of its conclusions. This line of reasoning linking high pathogenicity to

autophagic signalling is continued in mouse models (Sun et al. 2012), however there is little

recognition that increased LC3 accumulation may result from an inhibition of flux (despite

(Gannagé et al. 2009)) and the reliance on 3-MA makes the paper’s strong causal conclusions

about inhibiting autophagy (for example, via the use of chloroquine (Yan et al. 2013)) as a

clinical intervention problematic. The (Gannagé et al. 2009) and (Zhou et al. 2009) papers result

in two different patterns of citation, with multiple review papers (and research papers concerned

with the interactions of autophagy with other viruses) diametrically claiming that influenza either

inhibits or induces autophagy, respectively - resulting in a somewhat confused literature

concerning the subject of autophagy in influenza.

Complicating the autophagy-pathogenicity relationship, experiments with H5N1 pseudotyped

viral particles demonstrated strong induction of a form of autophagy which was dependent on

the presence of haemagglutinin - as opposed to M2 - and the presence of upstream autophagic

regulators such as Beclin-1 (Pan et al. 2014), suggesting there may be multiple pathways of

autophagy induction present, dependent on the particular strain of influenza used and its

pathogenicity.  This is consistent with similar work exploring the effects of a host-restrictive
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polymorphism in the influenza polymerase subunit PB2 (Kuo et al. 2017),  finding that only

avian-signature viral titres were significantly affected by a set of autophagic genetic

manipulations. These papers clarify - to a certain extent - earlier contradictory work as they

suggest a distinct pattern of autophagy induction specific to highly pathogenic avian influenza,

with an effect on viral titre. This is in contrast to human- or lab-adapted influenza strains which -

in cell culture - are unaffected by autophagic manipulation and are independent of canonical

upstream regulators of autophagy. Later work using carefully constructed cellular models

deficient in core autophagy lipidation machinery (Atg5) seems to confirm the lack of a concrete

effect of autophagy on viral titre (Perot et al. 2018), demonstrating instead an

autophagy-dependent reduction in interferon expression. There is some work, however, that

puts forward evidence that Beclin-1 overexpression, a canonical upstream autophagy regulator,

plays a titre-modulating role in H1N1 infection (Feizi et al. 2017), but the interferon-inducing

effects of RNA transfection are not controlled for - an essential consideration in RNA virus

research (X. L. Li et al. 1998).

Further work on the relationship between upstream autophagic signalling and influenza infection

suggests that viral proteins, including M2 and HA, can act to induce increased mTORC

signalling, although there is no investigation into the subsequent effects on autophagy induction

(Kuss-Duerkop et al. 2017). This suggests that upstream regulators of autophagy are

undergoing some form of viral manipulation, but are not the key points of control for viral

autophagy. As the mTORC complexes sit upstream of a wide variety of virus-relevant processes

- notably transcriptional regulation - it is likely that induction of mTORC signalling primarily acts

to potentiate virus protein production. Additionally, work investigating knockdown of Rubicon, a

key autophagy inhibitor, under influenza infection demonstrated a subsequent reduction in

interferon signalling (Wan et al. 2017). However, as above, it is unclear whether this is mediated

by Rubicon’s effects on autophagy.
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Parallel to the work on viral replication dynamics, a well-characterised canonical autophagic

haploinsufficiency mouse model (Yue et al. 2003) was used as a basis to explore the dendritic

cell host response under canonical autophagy deficiency, demonstrating a partial dependence

on functional canonical autophagy for full T-cell activation and antigen cross-presentation under

influenza infection (Zang et al. 2016), corroborating to a certain extent the results found in

(Comber et al. 2011).

Additional work compares the effects of deletions across a set tripartite-motif containing (TRIM)

proteins, a set of interferon effectors with E3 ubiquitin-ligase activity, on autophagsome

induction across different viruses. By manually counting autophagosome number in

TRIM-deficient backgrounds, a TRIM23 axis was found to be a unifying signalling pathway

linking interferon induction to autophagosome formation in viral infection, including H1N1

influenza infection (Sparrer et al. 2017). This is of particular methodological interest as the

validity of this analysis is premised on the assumption that autophagy induction only manifested

via the formation of individuated autophagosomes, despite the fact that influenza-induced

autophagy was seen to have radically non-standard patterning under fluorescence microscopy

(Gannagé et al. 2009; Beale et al. 2014), highlighting the difficulty of trying to perform

comparative phenotypic analysis in settings where the phenotype itself is either non-standard or

not easily defined.

In summary, the central question of whether autophagy is host-protective or is virally subverted

is subject to confusing and contradictory claims. Influenza directly manipulates upstream

regulators of autophagy, although possibly to effect changes in processes unrelated to

autophagy. It possesses a highly conserved interaction motif with a core autophagy marker and

yet (at least in strains adapted to human hosts) the complete abrogation of central autophagic
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machinery has no effect on viral titre. When autophagy is allowed to be induced its primary

effect seems to be to limit innate immune signalling, prompting the question as to why influenza

would derive an increase in fitness from actively inhibiting a host response that limits interferon

activity.

1.2.3 Influenza infection and non-canonical autophagy

Fletcher et al. demonstrate that much of the above interpretational confusion originates from the

inference of canonical autophagy directly from LC3 lipidation data. A hallmark of canonical

macroautophagy, as outlined above, is that LC3 is inserted into double membrane structures. A

key result in the paper is that a non-canonical system of conjugation of LC3 to single

membranes, prototypically described in LC3-associated phagocytosis (Florey et al. 2011), can

be differentiated from canonical autophagy as it is specifically abolished via the removal of the

C-terminal WD40 domain of the ATG16L1 protein (Fletcher et al. 2018). Without this domain,

canonical autophagy can still proceed, yet no lipidation is seen under influenza infection,

strongly suggesting that influenza-induced LC3 lipidation only occurs in this non-canonical

context. This form of non-canonical autophagy, later described as conjugation of atg-8 to single

membranes (CASM), is known to be independent of the nutrient-homeostasis signalling

pathways that drive canonical autophagy. This is consistent with the independence of

influenza-derived autophagy from upstream canonical autophagic signalling seen in some parts

of the earlier literature. As a result, reasoning about the functional and evolutionary relationships

of influenza to LC3 lipidation necessarily must be divorced from the known functions of

canonical autophagy, and thus makes the analysis of previous results in the literature complex.

Further description of this process has shown that it is dependent on the vacuolar ATPase

(vATPase) complex as a key signal transducer, whereby a host of stimuli that induce aberrantly

neutral ion gradients in the endolysosomal compartment (including ionophore drugs such as
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monensin alongside the M2 protein) induce vATPase-mediated recruitment of the ATG16L1

complex via its WD40 domain (Ulferts et al. 2021; Hooper et al. 2022).

What, then, is the function of this non-canonical form of autophagy in influenza infection?

Results from a mouse model lacking the ATG16L1 WD40 domain demonstrate a

host-detrimental phenotype whereby low-pathogenicity strains become lethal in the absence of

non-canonical autophagy (Yingxue Wang et al. 2021). Bone marrow transplant experiments with

wild-type mice show that the phenotype is not likely to depend on immune cells, demonstrating

that host-protective function acts directly in infected cell populations. Additionally, it’s seen that

the lethality in CASM-deficient mice derives from widespread uncontrolled viral entry and

inflammatory signalling.

The function of the LIR motif remains obscure, however. As with canonical autophagy, it seems

that if the LIR motif potentiates induction of CASM it will actively be limiting its own replication. It

is possible that this is an evolutionary adaptation towards avirulence, and this hypothesis is

consistent with the reports of combined increased pathogenicity and altered patterns of LC3

lipidation in highly pathogenic avian influenza strains. However, CASM seems to reduce

influenza replication primarily via slowing virion-endosome fusion as described in (Yingxue

Wang et al. 2021), and thus possibly acts in its capacity as host defence prior to any interaction

of the M2 cytoplasmic tail with LC3. It is possible, then, that the potentiation of CASM by the LIR

motif functions as a mechanism of superinfection exclusion (SIE), and thus is of primary

epidemiological importance as SIE is a fundamental mechanism in limiting the rate of

generation of reassortant strains (Sims et al. 2022). This is consistent with reports of higher

multiplicities of infection (and thus greater CASM induction) generating stronger SIE effects

(Martin et al. 2020). It is equally possible that the effectors of the CASM response in influenza

infection are functionally saturated even in the absence of the LIR motif, and the increased
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lipidation doesn’t modulate the host response in a meaningful manner. Pointing towards this

possibility is the effect of CASM on the viral lifecycle prior to viral entry and thus prior to

substantial LC3 lipidation. Instead, the LIR motif may simply be a way for M2 to hijack on host

trafficking systems, something that may be particularly important considering influenza’s

relatively unique independence from the host cell’s ESCRT machinery (Rossman et al. 2010).

Finally, it may present a way of interpreting cellular signals to allow influenza to adapt to its

cellular environment, something that is rarely described in viruses but could represent an

interesting mechanistic manifestation of a virulence-transmission trade-off on a per-cell level

(Dolnik et al. 2015).

1.2.4 Conclusions

Measuring LC3 lipidation is not sufficient to differentiate canonical autophagy from CASM, and

this error has led to a confused literature and misaddressed interpretations of experiments - in

some cases with attendant clinical recommendations (Yan et al. 2013). Additionally, basic

measures of LC3 relocalisation in microscopy images (such as spot count) are similarly

non-specific to differing forms of autophagy. In order to more closely understand the relationship

between M2 and CASM, it is necessary to develop more sophisticated analytical tools which are

capable of identifying phenotypically distinct populations of cell images.

1.3 Observational and Quantitative Microscopy

1.3.1 Introduction

In fluorescence microscopy, it is possible to make a distinction between observational and

quantitative biology (Wait, Reiche, and Chew 2020). Microscopes are fundamental tools for

exploratory science, and descriptions from images entirely absent the use of statistical or

quantitative methods are critical methods for hypothesis generation. Observational usage of
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microscopes can be contrasted with the use of microscopes as quantitative tools, where a

quantitative hypothesis is generated and measurements derived from images are used to test

such a hypothesis. This is often seen in drug or genetic screening, where high-throughput

microscopes take images of cells treated with a number of compounds so large so as to be

infeasible to score by eye.

Both canonical autophagy and CASM are highly heterogeneous processes under most inducing

conditions and are difficult to robustly differentiate using traditional fluorescence microscopy.

This presents a difficulty to performing observational science as finding representative images

amongst the phenotypic noise is difficult and highly prone to bias. However, as seen above,

generating and testing valid quantitative hypotheses is ill-posed without robust knowledge of the

phenotype we wish to measure. What is needed, therefore, is the application of quantitative

methods to allow for observational analysis under significant biological variation and

measurement noise. A section of the literature is concerned with pursuing such hypothesis-free

data exploration in the context of high-throughput microscopy datasets (Chessel and Carazo

Salas 2019; Piccinini et al. 2017). However, they often focus on datasets where there are

significant and obvious phenotypic differences, and the advantage of quantitative data

exploration techniques derives from their capacity to form observational inferences at the scale

of thousands of different conditions. In this thesis, by way of contrast, the advantage of data

exploration derives from ordering and controlling for noise in cellular populations, over a smaller

number of selected, hypothesis-relevant conditions. This makes the analysis pursued in this

thesis somewhat novel when situated in the wider literature, as we are using highly quantitative

methods to make inferences that are as qualitative as those that would be seen in an

observational microscopy study. Additionally, combined observational-quantitative approaches

can be (and often are) as problematic as observational microscopy experiments with regards to
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experimenter/analyst bias (Yanai and Lercher 2020), a consideration taken into account during

the implementation and execution of this analysis.

1.3.2 Imaging flow cytometry

Imaging flow cytometry is a high-throughput imaging technique that captures images of cells in

suspension as they flow through a microfluidics system that isolates and orders them within a

single stream (Basiji et al. 2007). The primary advantage of this system is that it generates

images of single cells, unlike other methods of high-throughput imaging which require

segmentation prior to the generation of per-cell measurements. More subtle is the advantage

that each cell image is acquired by itself, preventing complex batch-level correlations between

cells segmented from the same image in plate-based automated imaging platforms. However, in

comparison to confocal microscopy, imaging flow cytometry possesses significantly lower

resolution, and requires cells to be in suspension prior to running, thereby resulting in a

discrepancy between the physiological and acquisition environment for adherent cells. Taken

together, the system is ideal for generating hypotheses about populations of single cells where

phenotypes are not reliant on sub-micron detail, or adherent cell morphology, to be apparent.

1.3.3 Classical and Deep Feature Extraction

To pursue hypothesis-free image analysis, we require quantitative descriptors of images in our

dataset. The evident difficulty is in choosing and designing our descriptors to be absent of

analyst-introduced bias while still allowing for the focussed capturing of biologically relevant

data. The relative advantages of traditional feature descriptor methods as compared to more

novel deep learning techniques are difficult to determine a priori, especially as the literature

concerned with generating feature descriptors is often situated in the context of natural images,

which possess radically different statistical and pixel-level properties as compared to

microscopy images.
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Classically, generating representations requires a significant degree of domain expertise,

especially in bioimage analysis. This is because the classical pipeline involves designing

algorithms to extract features that will be of known biological interest (Handfield et al. 2013).

Evidently, this requires not only knowledge of those features which are or are likely to be of

interest but also of the image processing techniques that will best isolate those - often vaguely

defined - features of interest. This results in a significant degree of variance between image

analysts and thus introduces bias as to which features are emphasised and the quantitative

form they take. Additionally, it limits the analysis to that of a quantitative assay and limits the

possible extent of exploratory data analysis and thus the likelihood of finding novel phenotypes

in a particular imaging dataset. The tradeoff is that because the features are hand-designed the

resultant analysis is highly transparent and individual features are both relevant and easily

interpretable.

Another approach to feature extraction in this context is to abandon handcrafted features and to

use feature descriptors, developed early in computer vision research to classify datasets of

natural images (Haralick, Shanmugam, and Dinstein 1973; Lowe 2004). Predictably, there is

less direct analyst input and thus less introduced bias, but the sensitivity of the resulting

analysis is likely to be low for biological features.

Methods to extract quantitative features using deep learning fall under the category of

representation learning (Bengio, Courville, and Vincent 2013). The isolation of representation

learning as an area of research is something of an arbitrary distinction, as all deep learning

methods function by generating representations of data which are informative for a given task ,

most often classification. Representation learning, as a field, differs in the scope of its aims -

where the representations of data are not only useful for the defined training task but also
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possess a variety of desirable statistical properties. These properties often include

interpretability and statistical independence of the individual quantities found in these

representations (Yixin Wang and Jordan 2021), and allow them to function across a wide range

of downstream tasks.

1.4 Aims

A traditional image analysis workflow for phenotypic profiling is predicated on strong prior

knowledge of an imaging phenotype. After acquiring a large number of images, an image

analyst would design image features with the intention that they accurately quantitate our known

phenotype of interest, and subsequently judge the quality of these features by assessing how

well they agree with our prior biological understanding of how our phenotype varies across a set

of conditions.

A primary aim of this thesis is to extend this analysis to contexts where our knowledge of the

phenotype is less strong and therefore is less suitable as an epistemic basis for developing

image analysis pipelines. We anticipate this to occur in contexts where the biology itself is novel

and thus knowledge of defining aspects of the phenotype is less secure. Additionally, if the

phenotypic response is stochastic, or if the imaging technology introduces strong measurement

noise, the increased heterogeneity within the acquired populations will make it difficult to assess

the quality of any individual engineered feature. This analysis is designed to answer two

questions of our data under these adverse inductive conditions. Firstly, to determine when two

populations of cells are biologically distinguishable, and secondly to determine what these

distinguishing phenotypes consist of. Influenza-induced LC3 lipidation is an ideal context for this

analysis as the literature has clearly demonstrated a need for an approach to phenotypic

profiling that can allow for the identification and separation of different LC3 patterning

phenotypes.
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2 - Results & Discussion

2.1 Unsupervised representation learning and high-throughput image

analysis

2.1.1 Introduction

The training tasks used for training neural networks vary widely, and the choice of task will

radically alter the representations and thus information derived from an imaging dataset

(Hermann and Lampinen 2020). A commonly used task is classification, where over the course

of training representations are extracted which will best allow for the classification of input

images. At the end of the training, the output classifications are discarded and the

representations are retained for further analysis - as seen in (McQuin et al. 2018). However, if

populations of images with a given label do not all possess identifying image features (as is

often the case in biological image datasets, either due to measurement noise or heterogeneity

inherent to the biological process under investigation) then there is an incentive for the network

to extract irrelevant features that spuriously allow for the separation of labelled populations

(Geirhos et al. 2020). In this way, the training task introduces a structure to the representation

space that is non-trivially entangled with the actual underlying population structure in the

dataset.

To circumvent this problem, a set of techniques that do not use labelling information can be

implemented, typically referred to as unsupervised learning approaches (Radford, Metz, and

Chintala 2015; Locatello et al. Jun 2019; Le-Khac, Healy, and Smeaton 2020). As these

approaches are unable to rely on label data as a source of information, the tasks by which their

performance (and thus quality of their representations) is measured are often more complex. I
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implemented two deep learning models, an Information Maximizing Generative Adversarial

Network (InfoGAN) (Chen et al. 2016), and the Bootstrap Your Own Latent model (BYOL) (Grill

et al. 2020), as representatives of two broader paradigms of unsupervised representation

learning - generative approaches and self-supervised approaches respectively (Liu et al. 2021).

The following analysis was intended to determine how two well-understood, unbiased, deep

learning methods would function in the context of bioimage datasets, and in particular how well

they could be used as a tool for scientific inference.

2.1.2 Representation learning with the InfoGAN

The InfoGAN relies on the training of a generative adversarial network at its core. Generative

adversarial networks were - at the time of investigation - the gold standard for synthesising

photorealistic images (Karras et al. 2019) (although they have since been superseded by

methods such as stable diffusion (Rombach et al. 2021)). It was reasoned that their capacity to

produce detailed images (as compared to other generative methods such as the variational

autoencoders, which are notoriously blurred (Dosovitskiy and Brox 2016)) would allow them to

better capture the relatively subtle texture variations that can define phenotypic differences in

bioimage datasets. This has led to their previous use in fluorescence microscopy contexts

(Goldsborough et al. 2017). The overall model consists of two individual networks in competition

(hence the adversarial nature of the training), where one network acts as a generator and its

companion as a discriminator. Training proceeds by allowing the generator to output a set of

images, and allowing the discriminator to classify a mixed set of generated and real images into

those which come from the true data distribution. The weights of the discriminator are

subsequently updated so that it can better identify fabricated images, and the weights of the

generator are updated so that it can more easily fool the discriminator network. As the networks

are trained, the discriminator becomes more discerning, thereby providing a more stringent
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training signal to the generator, and thus over time increasing generated image quality (K. Wang

et al. 2017).

As neural networks are deterministic with regards to their input, we need to provide a form of

random noise to the generator so that it can generate images of sufficient diversity. In the

traditional GAN setup, this noise is of limited importance (although the exact form of the

distribution can alter stability of the training process). However, in the InfoGAN an additional

constraint is placed on the network, where the discriminator is also trained to infer the exact

noise values fed into the generator. As the generator only has access to the images, it must

infer these values solely from the image data, and thereby forcing the network as a whole to

relate the most important features to these input noise values. This constraint is intended to

force representations to consist of only those features which are most important for image

generation, and thus exclude features which typically contribute to measurement noise - such

as the position and orientation of the cell in the image (Kingma and Welling 2019).

2.1.3 Representation learning with BYOL

Self-supervised image representation learning (of which BYOL is an example) begins by first

defining a set of programmatic image manipulations which do not fundamentally alter the

semantic content of an image. These content-preserving manipulations are known as

augmentations, and typically consist of spatial transformations such as rotation or flipping, or the

application of basic image filters such as a Gaussian blur (Shorten and Khoshgoftaar 2019).

Training proceeds by presenting two sets of images to the neural network, each of which has

had a random subset of the defined augmentations applied. The network correspondingly

outputs two sets of representations, and is trained such that the two sets are as similar as

possible. Therefore, the network is trained to generate representations which are implicitly

insensitive to the augmentations we define as content-preserving (von Kügelgen et al. 2021).
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Such networks suffer from a problem known as “representational collapse”, whereby the training

criteria of having identical representations under transformation is trivially met by the network

outputting identical representations for every image. Typically, this is solved through the use of

negative, or contrastive samples (Jing et al. 2021). This is where we additionally stipulate that a

given representation must not only be insensitive to augmentation but also must be separable

from a representation derived from a different image - the negative sample. This introduces a

choice as to the method of selection of negative samples, a choice which can alter the form of

extracted representations in ways which are dependent on the relative distribution of features in

a given dataset (M. Wu et al. 2020). BYOL implements a different approach to this problem, in

which no negative samples are used and representational collapse is prevented utilising two

networks for each of the two augmented image sets. One network is set to be an exponential

moving average of the other, and this results in relative stability during training - although the

mathematical reasoning behind exactly why this approach prevents representational collapse is

contested (Richemond et al. 2020; Fetterman and Albrecht 2020; Tian, Chen, and Ganguli Jul

2021). This lack of need for a negative sampling strategy was reasoned to be an advantage for

the aims of this research as I wished to make as few assumptions about the distributions of

features across the acquired dataset as possible.

2.1.4 Results

To generate the dataset, four EGFP-LC3 expressing HCT116 cell lines were transfected with

four different M2 constructs under Tet-On inducible control - a wild-type construct from the

Udorn strain of the virus, and three mutations of interest. The fluorescently-tagged LC3 allows

us to monitor its relocalisation under different autophagic processes, and the inducible control

allows us to induce M2 expression, and through M2 induce LC3 relocalisation, using

doxycycline treatment.
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The first mutation consists of a mutation in the LIR motif, F91S, known to significantly attenuate

the extent of the M2-induced LC3 lipidation. Two additional mutants are less well characterised

but are of interest - the L4Q mutation which occurs in the N-terminal ectodomain and may alter

the localisation of the M2 protein (Wise et al. 2012), and the R45H mutation which is found in

reversion mutants of strains with highly sensitive haemagglutinin fusion machinery, implying

either an altered ion channel or an altered channel gating mechanism to more strongly raise pH

in the TGN.

Each of these cell lines was treated with doxycycline at 5 µg/mL for 16 hours to induce

expression of the M2 protein, alongside a mock condition to capture the cell lines at a baseline

with no CASM response. After trypsinisation, cells were run unfixed on an imaging flow

cytometer to acquire fluorescence images, thus only capturing the EGFP-LC3 fluorescence

channel. After neural network training, features were extracted with the InfoGAN by passing

images to the discriminator and extracting activations from its final linear layer, as this seems to

drive improved performance. After training with the BYOL, images were passed to the ResNet

backbone and features were extracted from the final maxpool layer.

Upon immediate inspection, features were difficult to parse - seemingly admitting quite a

significant degree of variation between control populations. As neural networks were intended to

capture a large proportion of the variation in image datasets, I adapted a method of feature

normalisation from the literature to more closely align the baseline phenotypes across cell lines

which is described in figure 3. Briefly, a robust measure of standard deviation for each feature is

calculated across firstly all control populations, and subsequently across the total dataset. If a

feature varied minimally within the control populations but substantially across the dataset it was

reasoned that this would indicate the feature would likely relate in some way to the expression
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of M2 and thus be of biological interest. The ratio of control to total variation, therefore, was

used as a method of ranking and filtering the extracted features.

The features from both deep learning approaches were analysed and ranked as above, and low

ranking features were progressively ablated prior to undergoing a principal components analysis

to determine how amenable the respective extracted representations were to the removal of

nuisance variation (figure 1A). This progressive ablation performed for the InfoGAN features

shows a limited effect on the degree of variation seen across control populations, but as

performed for the BYOL-extracted features the variation in control populations is seen to be

strongly controlled. Additionally, when the 1000 highest ranked features are kept and the

differing control conditions along the first principal component axis are plotted (figure 1B), it can

be seen that the BYOL features show the greatest consistency across control conditions,

whereas the InfoGAN features display significant heterogeneity across control conditions.

To determine whether the resultant principal component axis corresponded to biological

variation, an interpolation along this axis was generated, and images close to those interpolated

values were plotted (figure 2B). Both axes corresponded at least loosely to increasing

relocalisation of EGFP-LC3, with the particular perinuclear relocalisation seeming to be in

agreement with the known phenotype of CASM. However, the InfoGAN representations seemed

to be closely following the mean fluorescence of the images, with the BYOL representations

admitting more variation in similarly basic features. To further explore these visual distinctions,

64 images from the first and last deciles of the InfoGAN and BYOL first principal components

were plotted (figure 2A). It can be further seen that the InfoGAN representations are very

strongly dependent on image fluorescence, whereas the BYOL features demonstrate a strong

distinction primarily in patterning.
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To quantitate the dependence of the InfoGAN features on photometric features, I performed a

basic second-order polynomial regression of the first principal component against fluorescence

intensity (figure 2C). It was seen that the InfoGAN principal component much more closely

follows intensity values, whereas the BYOL features seem to admit a much greater degree of

variation of intensity values when extracting phenotypic information.

Finally, to determine whether these principal component measures could accurately determine

the phenotypic differences between mutants, we constructed a measure of CASM induction

based on the Jensen-Shannon divergence (JSD) (figure 2D). This is a well-known measure of

the difference between two distributions (Menéndez et al. 1997), and it was reasoned that the

difference between control and induced populations would be a better measure of phenotype

induction than a simple mean of the induced populations. This is because it would in theory take

into account any differences found at baseline in the different cell lines. Unexpectedly, the

InfoGAN first principal component axis shows closer agreement with our previous knowledge of

the phenotype, where the F91S significantly ablates the induction of CASM. This is in contrast

with the BYOL embeddings, which seem to imply no significant difference between the M2 WT

and F91S mutants.

2.1.5 Discussion & limitations

The primary aim of these results were to investigate the performance of neural networks in a

targeted phenotypic environment. The reasoning behind the use of neural networks was that it

would remove a degree of bias from attempts at visual phenotyping in relatively novel contexts,

such as underexplored mutations in a viral protein. By attempting to make best use of neural

networks in this context, however, some aspects of this reasoning have needed reexamination.
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Firstly, as the degree of information contained with a neural network representation greatly

exceeds the real degree of phenotypic variation in our particular small-scale datasets, data

pruning is required to remove the nuisance sources of variation the networks will inevitably

model. The difficulty is that smaller scale networks with a more limited encoding capacity do not

model complex phenotypic details particularly well. Choosing or designing methods, as I have

done in this context, to isolate signal from noise in the resultant representations will

consequently generate similar levels of analyst-derived bias as would hand-designing image

features. Additionally, the normalisation analysis (and those analyses which it is based on) rely

on there being minimal actual phenotypic variation across our control populations - an

assumption that could be easily violated due to clonal artefacts altering the baseline degree of

M2 expression, and is often seen in other high-throughput contexts.

Critically, the multiple complex choices involved in not only designing an architecture for a

neural network, but performing the necessary data engineering to allow the input images to be

suitable for training, and the choices of training parameters, will all substantially impact the form

and content of representations extracted by using neural networks - as demonstrated by the

significant differences in the distributional properties of the InfoGAN and BYOL representations.

These choices that a neural network practitioner must make alter the inductive bias of such

networks, choices which are as substantial and less well understood than those made to

algorithmically extract known features from images.

An example of the difficulty that this introduces to attempting to derive scientific knowledge from

these features can be seen with the BYOL representations and their independence from

fluorescence intensity. One of the augmentations we used as part of the self-supervised training

was that of altering the fluorescence of the images. This was intended to drive an inductive bias

in the network whereby it would learn that parts of the semantic content of an image were
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independent of fluorescence intensity. It is unclear whether this independence from intensity

improves representations because intensity is a source of nuisance variation, or whether it is a

source of actual biological variation that can be ablated to ensure that control populations look

distributionally similar. The frequency and degree with which this augmentation is applied during

training will alter the degree of control over intensity in the representations. In this way, the

decision to try and control for fluorescence intensity is not only made implicit but also more

difficult to justify, interpret and, most importantly, critique.

Collectively, these considerations prompted some questioning as to the actual utility of

high-throughput imaging in this particular context of targeted phenotypic discovery. The original

aim of generating a set of representations which immediately separate populations with minimal

processing or encoded prior phenotypic knowledge was likely to be ill-founded. It was reasoned

that there is enough spurious information contained within any individual condition to allow it to

be easily classified as separate from another condition in the absence of actual phenotypic

difference. Therefore, considering this sensitivity of feature extraction to nuisance variation, it

would be possible to more concretely reason from extracted image features if two populations -

known to be phenotypically identical - were indistinguishable under active attempts at

separation in a given feature space. Validating and performing scientific inference in

representational spaces using this indistinguishability criterion forms the basis of the following

analyses.
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2.2 Phenotypic identification with classical image features

2.2.1 Differentiating canonical and non-canonical autophagy

To investigate this alternative approach to phenotypic identification in bioimage datasets, we

aimed to try to identify and retrieve the known phenotypic differences between canonical and

non-canonical autophagy.

To induce canonical autophagy we treated cells with both Torin-1, an mTOR inhibitor, and

bafilomycin A, a vATPase inhibitor that is thought to inhibit the transduction of CASM-inducing

signals, thus generating a solely canonical phenotype (Florey et al. 2015). To induce CASM, we

treated HCT116 cells with monensin, an ionophore which disrupts ion gradients across a wide

range of compartments and, in a similar way to M2, drives the vATPase-mediated recruitment of

ATG16L1 that underlies the CASM response. However, due to the breadth of the targets of

monensin in the cell, the drug is toxic and can induce several changes in cell morphology even

in the absence of CASM. To deconvolute the CASM specific responses in phenotype from those

due to the broadly deleterious effects of monensin, these treatments were applied in two genetic

backgrounds - a CRISPR KO of ATG16L1, reconstituted with either wildtype ATG16L1 or a

construct with a point mutation in the WD40 domain of the protein, K490A, which has been

shown to strongly (albeit not completely) ablate the capacity of the cell to mount a CASM

response while having no impact on canonical autophagy (Fletcher et al. 2018). In the resultant

population of cells, it was reasoned that only those cellular responses unique to the

monensin-treated, wildtype-reconstituted cell line would represent the true CASM imaging

phenotype.

Three biological replicates of each condition were fixed, stained and run separately, with 10,000

cell images captured for each replicate. The cells were fixed and stained for LC3, and TGN46,
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as a trans-Golgi marker which - at the resolution obtained - acts as a readout for the perinuclear

area. After filtering for image quality, a set of 126 image features was extracted using the IDEAS

software.

By eye, it was found that a colocalisation measure of LC3 with TGN46 was the best individual

image feature for differentiating the WT Monensin population from other conditions (figure 4H).

In agreement with this observation, a key individuating characteristic of monensin-induced

CASM is relocalisation to the perinuclear area. However, it was seen that high colocalisation

values could not uniquely identify the WT Monensin population, as high values of colocalisation

could be found in all populations (figure 4I).

To find the phenotypically unique population of cell images in the WT Monensin condition, we

used linear discriminant analysis (LDA), which analogously to principal component analysis

(PCA) projects high dimensional data into a set of summary variables (figures 4C, 4D, 4E). LDA

differs from PCA in that it uses class information to project the data into summary variables

which best separate the given classes, as opposed to the variance-maximising projections of

PCA (Hastie, Tibshirani, and Friedman 2009) pp. 106 - 119. We perform this analysis to

explicitly attempt to distinguish between the WT and K490A populations under the mock and

Torin/Baf treatments where they should be identical. We can then measure distributional

distances between conditions in the first two dimensions of the space to determine whether they

can be reasonably differentiated (figure 4B). The distance metric we use in this case is the

Wasserstein distance, as it possesses better numerical stability properties (Arjovsky, Chintala,

and Bottou 2017). It is seen that the distributional differences between repeats are on a similar

scale to the difference between genotypes under mock and Torin/Baf treatments, suggesting

that the representational space that we have extracted is appropriately insensitive to nuisance

variation without the need for complex normalisation strategies.
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Under monensin treatment the wildtype and K490A cell lines are highly separable (figure 4D),

showing that the two cell lines are only distinguishable under conditions where CASM is

induced. To further investigate the performance of this analysis, the data were projected onto

the axis that best separated the WT Monensin condition from the other conditions (figures 4F,

4G). Evidently, this provided much better separation from the other cell images than the naive

single-feature approach, with a proportion of the WT Monensin population being uniquely

attributed to the CASM phenotype. Using this WT Monensin axis to generate a cutoff, we can

compare images from the population that pass the cutoff to those that don’t (figure 4A), as a

form of control internal to the WT Monensin population. We can subsequently visually identify

features which seem to correspond to the induction of CASM, namely the diffuse spherical

localisation of LC3 to a single site in the cell, often perinuclear. This can be compared to the

cells which show no discernible LC3 patterning (suggesting a lack of atg8-ylation to

membranes) or a multilobed/punctate LC3 pattern that does not colocalise with the perinuclear

marker, possibly indicating a canonical autophagic response.

2.2.2 Investigating influenza M2 mutants

In the knowledge that the representational space extracted using basic image features seemed

to be reasonably robust to nuisance variation, we used a similar analysis to again investigate

the phenotypes of the influenza M2 mutants, with an experimental design that allowed for the

statistical analysis of distributional distances, where we generated three biological repeats for

each condition.

We transduced three M2 constructs as before into a polyclonal rather than monoclonal

EGFP-LC3 background - the wildtype construct, and two mutants, F91S and R45H. As before,

three biological replicates of each condition were fixed, stained and run separately, with about
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1500 cell images captured for each replicate. The cells were fixed and stained for M2, to allow

for filtering for the M2 positive populations. Additionally, as there was seen to be a strong

division of the M2 protein between the plasma membrane and perinuclear compartments,

features were calculated over cytoplasmic and perimembrane masks in addition to the whole

cell mask. After filtering for image quality as before, a set of 259 image features was extracted

using the IDEAS software.

To determine whether the populations were phenotypically unique, we performed the LDA

analysis as before (figure 5C) seeing that all different mutants were strongly distinguishable. To

determine the relative contribution of the two fluorescence channels to this distinguishability, we

again performed an LDA analysis but using only those features derived from either the

EGFP-LC3 channel or the M2 channel (figure 5E). Direct quantification of distributional

distances between conditions demonstrates that the EGFP-LC3 pattern is the primary

distinguishing factor for the F91S mutant, whereas both M2 and EGFP-LC3 patterning

contribute to the separation of R45H from the other conditions (figure 5F). To determine the

exact phenotype contributing to the discrimination of R45H from other conditions, we can

determine, as before, the axis of greatest discrimination for the R45H condition (figure 5B).

Visualising samples from the extremes of the R45H population along this axis, it can be seen

that there is lesser M2 intensity and seemingly greater EGFP-LC3 relocalisation (figure 5A), and

this difference can be quantified (figure 5D). This suggests that within a heterogeneous

population of EGFP-LC3 relocalisation induction, those cells which induce strong relocalisation

at lower levels of M2 expression are likely to be those cells expressing the R45H mutant. This is

consistent with the proposed greater degree of ion conductivity with this mutant.

As the F91S mutant populations display little overlap with the other two conditions (figure 5C),

isolating the unique portions of this population is unnecessary. Instead, we can easily visually
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identify that the M2 population seems to have a greatly reduced relocalisation of EGFP-LC3,

and seemingly very little M2 localised intracellularly. To quantify these patterns, we use a

measure of bright detail intensity (which filters for high frequency patterns before measuring

intensity of an image, figure 6C) and the modulation of M2 in a cytoplasmic mask (which

effectively calculates the maximum pixel range, figure 6D). With this quantification, it is seen the

distribution of these patterns is greatly altered across mutants (figures 6A, 6B, 6E). This seems

to indicate that in addition to driving differing degrees of CASM induction, the different mutants -

possibly as a result - also undergo altered trafficking through the cell.

To determine whether this alteration in M2 localisation was an artifact induced by high

non-endogenous expression of EGFP-LC3, for example by saturating the LIR motif binding site

in a non-physiological manner, the difference in M2 modulation was measured for differing

quintiles of EGFP-LC3 expression (figure 6F). This seemed to demonstrate that the difference

between mutants in M2 localisation was preserved across all levels of EGFP-LC3 expression.

However, there was seen to be an increase in the degree of M2 internal localisation for the

wildtype M2 construct as GFP-LC3 expression increased. Due to the permeabilisation process,

and despite strong formaldehyde fixation, some proportion of unlipidated LC3 will be removed

from the cell - causing a potential correlation between GFP-LC3 intensity and the degree of its

lipidation (Eng et al. 2010). Thus the increase of M2 internal localisation with GFP-LC3 intensity

could possibly reflect a dose-dependent effect of M2 expression on the degree of LC3 lipidation.

2.2.3 Delineating effects of ion channel activity and LC3-binding on M2 and LC3

patterning

There are two possible explanations for the difference in M2 localisation between the wildtype

and F91S cell lines. The first is that the M2 protein is reliant on CASM for the modulation of its

trafficking, and the reduction in CASM seen with the F91S mutant is directly responsible for its
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altered localisation. The second is that the LC3-binding capacity of M2 is directly causally linked

to its trafficking, and the lack of a functional LIR motif is responsible for both the attenuated

CASM response and the altered trafficking of the F91S mutant. To investigate this, we used

amantadine as a tool to block M2 ion channel activity, thereby dissecting the two contributors to

the combined trafficking and CASM response - the LC3-binding capacity and ion gradient

disruption of the protein.

Four conditions were investigated: wildtype and F91S with either only doxycycline treatment or

doxycycline and amantadine. Three biological replicates of each condition were fixed, stained

and run separately, with approximately 3500 cell images captured for each replicate. The cells

were stained for M2 as before, to allow for filtering for the M2 positive populations, and features

were calculated over cytoplasmic and perimembrane masks in addition to the whole cell mask.

After filtering for image quality, a set of 380 image features was extracted using the IDEAS

software.

An LDA analysis was performed, and all conditions were seen to be separable, with the

strongest phenotype seen to be WT untreated with amantadine (figure 7A). As before, the WT

condition demonstrated both the greatest degree of EGFP-LC3 relocalisation and M2 internal

localisation (figure 7B, 7C). To delineate effects on EGFP-LC3 relocalisation and M2 localisation

we performed a further set of LDA analyses, firstly where solely those features extracted from

the LC3 channel were used as input features, and secondly where only those features extracted

from the M2 channel were used (figure 7D, 7F). These two analyses demonstrated differing

patterns of distinguishability. It was seen that for the M2-derived features, there was no

discernible difference between F91S with and without a functional ion channel, but a statistically

significant difference between WT and F91S when both were treated with amantadine (figure

7E). Conversely, the same statistical analysis performed with the LC3-derived features
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demonstrated the opposite pattern of phenotypic separation (figure 7G). Taken together, this is

consistent with  the primary dependence of CASM on the presence of a functional ion channel

as the initiating stimulus, and that the lack of a LIR motif simply prevents potentiation - as F91S

mutants still demonstrate some degree of CASM induction. Additionally, in the absence of

detectable CASM under amantadine treatment, it is seen that there must be some biological

interaction of M2 with LC3 as there is a discernible trafficking difference in the WT Dox/Amt

population. It is possible that this results from reduced amount of breakthrough CASM induction

that is undetectable with our assay, or alternatively that M2 is capable of a trafficking-relevant

interaction with LC3 in the absence of a major lipidation stimulus.

2.3 Discussion & Future work

I hope to have demonstrated that this form of phenotypic analysis allows us to generate novel

biological insights, not through the synthesis of highly diverse phenotypic data as might be seen

in a high throughput drug screen, but rather through highly targeted understanding of a smaller

set of phenotypes. In this targeted experimental regime the high data volume allows us to make

strong inferences about perceptual difference which would otherwise be difficult due to inherent

biological heterogeneity and measurement noise. It additionally allows for the statistical control

of potential overexpression artifacts, and overall allows us to some extent mitigate the

limitations of the experimental tools we use in the imaging of autophagic phenotypes.

The above analysis has provided several biological insights. The first is that M2 is dependent on

its interaction with LC3 for its trafficking through the cell. This had never been found in previous

descriptions of LC3 relocalisation under M2 expression (Beale et al. 2014), likely because

attempting to infer this insight from lower throughput data would have been difficult. Firstly, as

the phenotypic overlap seen with the simple measure of M2 internal localisation (figure 6B)

would have lessened the perceptual difference needed for concrete conclusions from confocal
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microscopy data. Additionally, controlling for EGFP-LC3 overexpression artefacts via the quintile

analysis would have equally been non-viable without several thousand cell measurements. A

further insight is that M2 has a measurable interaction with LC3 in the absence of substantial

CASM induction. Similarly, quantifying the perceptual differences which underpin the dissection

of the contribution of the LIR motif and ion channel activity to M2 localisation would have been

infeasible without the utilisation of measures of distributional difference to quantify the

perceptual dissimilarity specific to each channel. Attempting to prove or disprove a functional

biological interaction of M2 with LC3 in the absence of CASM would otherwise be very difficult to

prove with biochemical techniques.

Finally, the use of LDA to identify populations unique to a given class allowed us to firstly identify

a LC3 patterning signature unique to CASM despite significant phenotypic inference from

monensin, and secondly identify that the R45H M2 mutant was able to induce CASM at lower

expression levels than a wildtype M2 protein. Notably in this latter case the patterning in both

channels was similar to the wildtype, and the identification of this increased potency derived

from an inference in the relationship between the two channels, suggesting that this form of

analysis can allow for the discovery of subtle mechanistic differences in phenotypes.

Notably, in comparison to the deep learning techniques covered earlier, the features which were

used did not undergo significant processing to control for nuisance variation, suggesting that the

relatively simple extracted image features that were used did not extract enough noise to

generate spuriously unique populations. This, alongside the significantly reduced

implementation time and compute usage, represents a significant advantage of feature

extraction over representation learning in this particular context.
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There are two strong biological limitations in these experiments which restrict the breadth of

conclusions we can draw from these results. The first is the use of an M2 protein expression

system rather than directly studying influenza A infection. This may not recapitulate the

trafficking pathway of the M2 protein during infection, due to the expression of other viral

proteins that can interact with M2 such as M1. This is compounded by the fact we have only

studied this phenotype in the HCT116 cells, and may rely on some idiosyncratic aspect of this

cell line to manifest. The strength of the effect and its response under amantadine treatment

argue against this, however.

If this patterning phenotype is insensitive to cell line background, it may provide a provocative

indication of the function of the LIR motif. CASM is protective for the host in a mouse model

(Yingxue Wang et al. 2021). However, the fact that there is a conserved LIR motif within the M2

protein suggests that there is some paradoxical benefit to the virus to not only induce - with the

action of the ion channel - but seemingly amplify this host protective response. If the presence

of LC3 acts as a form of trafficking regulation for M2, this could represent a system by which

influenza alters its lifecycle in response to host signalling. There is evidence to suggest that M2

is required for budding of virions from the plasma membrane (Rossman et al. 2010; Rossman

and Lamb 2011) and from this it is possible to speculate that the concentration of M2 at the

plasma membrane would be regulated to ensure proper co-ordination of the budding machinery.

Notably, influenza virions in their natural state are highly pleiomorphic (Stevenson and Biddle

1966), and demonstrate a wide distribution of shape from effectively spherical to filamentous.

Mathematical modelling of this pleiomorphism has indicated that it may serve an important

function in adapting to host humoral immune responses (T. Li et al. 2021), with different shapes

being optimal at different levels of antibody prevalence. It is therefore possible that different

levels of CASM alter virion shape by differentially retaining M2 within the cytoplasm, and that

this system represents a method by which influenza alters its reproductive strategy in response
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to cellular stress. This theory is consistent with evidence demonstrating that F91S M2 mutant

viruses display a strongly limited ability to generate filamentous virions (Beale et al. 2014).

Further computational work should investigate whether altered architectures and training

paradigms (for example, tailoring the augmentations used for contrastive learning to bioimaging

contexts) can improve not only the information content of the resultant representations, but also

their amenability to direct interpretation by simple, linear methods such as LDA. Critically,

metrics that go beyond downstream classification accuracy should be developed to capture

non-standard dimensions of representational performance. In contexts where reproducibility and

visual interpretability are key, such metrics would help improve the transparency of architectural

and analytical decisions made by deep learning practitioners. Closer inspection of the ways in

which such decisions alter the form and content of scientific inferences based on these deep

learning models will, in turn, allow for much needed epistemic trust in their outputs.

3 - Materials & Methods

3.1 Transfection & Generation of M2 Mutant Cell Lines

M2 and associated mutant constructs were inserted into a pInducer20 plasmid - a gift from

Stephen Elledge (Addgene plasmid # 44012 ; http://n2t.net/addgene:44012 ;

RRID:Addgene_44012). Second generation lentiviral vectors were generated in HEK293T cells,

under polyethylenimine transfection. Polyclonal EGFP-LC3 HCT116s were transduced with

lentivirus and passaged under G418 selection at 400 µg/mL for 5 days, until untransduced cells

were no longer detectable under brightfield microscopy.
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3.2 Imagestream Cell Preparation

HCT116s are seeded at a density of 20000 cells per well in 12 well plates and grown for two

days at 37ºC with 5% CO2 prior to treatment. Wells are treated as indicated in the text. After

treatment, wells are washed once with 4ºC PBS, and cells are dissociated using 800µL of

Accumax (ThermoFisher Scientific). The dissociation reaction is quenched with 200µL of 4ºC

5% FCS in PBS, volumes are transferred to 1.5mL eppendorf tubes and cells are spun for 5

minutes in a 4ºC microfuge at 200g. The dissociation reagent is aspirated and cells are further

washed in 4ºC PBS and spun. Cells are resuspended and fixed in 4% formaldehyde at 4ºC for

40 minutes. Cells are washed and resuspended in a 0.1% saponin, 5% FCS in PBS

permeabilisation/staining buffer. Cells are stained with primary antibodies at 4ºC overnight, and

secondary fluorescent antibodies for one hour at room temperature. Cells are resuspended in

PBS prior to running on the Amnis ImageStream X Mk II (Luminex).

3.2.1 Imagestream Cell Preparation - Antibodies

Mouse anti-LC3 (Cosmo Bio - Clone LC3.No.6, 1:100) was used to stain for LC3 patterning.

Mouse anti-M2 (Abcam - ab5416, 1:200) was used to stain for M2 patterning. Rabbit

anti-TGN46 (Abcam - ab50595, 1:1000) was used to stain for M2 patterning. Llama anti-mouse

CF488A (Biotium, 1:1000) was used to label LC3, Goat anti-Rabbit AF647 (ThermoFisher

Scientific, 1:1000) was used to label TGN46, and finally Goat anti-Mouse AF647 (ThermoFisher

Scientific, 1:1000) was used to label M2.
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3.3 Imagestream Data Acquisition and Analysis

Cells were run for approximately 15 minutes per sample. Acquired populations were gated to

exclude speedbeads, cell aggregates, and cells out of the plane of focus. Laser power for each

channel was set to prevent detector saturation.

After acquisition, cell images where cells clip the image border are removed using a metric of

circularity on the brightfield image mask. The IDEAS software (Luminex) is used to extract a

suite of image texture features and mask shape features. Additionally, cytoplasmic masks are

generated via use of an intensity weighted pixel-wise erosion function on a mask calculated

from a brightfield image. The perimembrane mask is generated by subtracting the cytoplasmic

mask from the overall brightfield mask. Features are subsequently exported to text files for

further analysis.

3.3.1 Data analysis

Full code to perform the classically feature extraction analyses can be found at

https://github.com/ooakley/IS_Analysis - the exported feature values exceed the maximum

repository size and are available upon request. Jupyter notebooks were used as an interactive

coding environment, and the primary packages used were scikit-learn, seaborn, and scipy - full

package requirements can be found in the conda environment file. PRISM (GraphPad) was

used to plot summary features and perform statistical analyses.

3.4 Neural Network Methods

3.4.1 Neural Network Data Engineering

Raw images were exported directly from the Amnis compensated image files. Data preparation

for fluorescence images was performed as previously described (Ísaksson 2018), briefly by
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fitting a three component Gaussian distribution to the fluorescence pixel values across the

whole dataset, and subsequently performing z-score normalisation using the mean and

standard deviation of the component with the largest mean. Full code and computational details

can be found at https://github.com/ooakley/ifc-data-engineering.

3.4.2 Neural Network Architecture and Training Setup

Repositories for the BYOL and InfoGAN architectures can be found at

https://github.com/ooakley/byol-embeddings and https://github.com/ooakley/ReusableInfoGAN,

respectively. The BYOL implementation is heavily indebted to an open source implementation

developed by (P. Wang 2020).

The InfoGAN was trained for 20 epochs with a batch size of 100 (or approximately 73,000

gradient updates). 64 uniform dimensions, 2 categorical dimensions and 5 Gaussian noise

dimensions as input to the generator network. Gradient regularisation as described in (Roth et

al. 2017) was implemented, but due to the low-dimensional manifold of bioimages as compared

to natural images, a form of instance normalisation known as spectral normalisation was

needed to stabilise gradients (Miyato et al. 2018). The BYOL was trained for 200 epochs with

augmentations as described in the given repository.
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A

B

Figure 1: Image Representations generated by BYOL allow for better control of nuisance variation
(A) PCA plots of InfoGAN- and BYOL-derived image representations progressively ablated of features 
that show low variance between control and treated conditions. (B) Kernel density estimation plots of 
distributions over the first principal component axis of variation of image feature embeddings. The 
embeddings were derived from the final convolutional layer of a custom InfoGAN discriminator 
network, and from the final maxpool layer from a WideResNet101 trained using BYOL. The most highly 
varying 1000 features were selected and fed into the PCA model. The x-axis of the InfoGAN distribu-
tions is inverted for easier visual comparison. 



Figure 2: The primary axis of variation in 
BYOL embeddings corresponds to 
biological variation
(A) Cell images corresponding to the first 
and last deciles along the first principal 
component of InfoGAN- and BYOL-de-
rived embeddings. (B) Images whose 
representations fall closest to a linear 
interpolation between the 5th and 95th 
percentile of the first principal component, 
PC1. (C) Regression and residual plots of 
mean fluorescence against the first princi-
pal component of BYOL and InfoGAN 
embeddings. Second order polynomial 
regression was performed, and bands 
show 95% CI. (D) Jensen-Shannon 
distance between CTRL and DOX popula-
tions along first principal component. 
Error bars show SD across five permuta-
tions of 750 features selected from top 
1000 biologically varying features.
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Figure 3: Feature values are processed by PCA, and their distributions along the first principal 
component give insight into the properties of the extracted features
(A) Images are processed by the trained neural network, generating a set of feature values. (B) Each cell 
image is then associated with a set of image features. Each feature dimension is selected, and separat-
ed into control and treated populations. The standard deviation is calculated across the control cells, 
and then both the control and treated cells. The ratio of these two measures of variance corresponds 
roughly to biological importance, allowing for feature selection. (C) After any selection, the resultant 
feature matrix undergoes two-component principal component analysis, generating a further matrix 
where each column is associated with a cell and the two rows correspond to where that particular cell 
lies along the first- and second-largest axes of variation in the dataset. (D) As the second principal 
component is poor at separating control and treated cells, it is discarded, and the distributions of cells 
in different conditions are plotted.

A

B

C

D



B

LC3-B TGN46 Merge LC3-B TGN46 Merge LC3-B TGN46 Merge

LDA WT Monensin > 6

LC3-B TGN46 Merge LC3-B TGN46 Merge LC3-B TGN46 Merge

LDA WT Monensin < 2

I

WT M
ock

K49
0A

 M
ock

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

W
as

se
rs

te
in

 D
is

ta
nc

e ns

WT To
rin

/B
af

K49
0A

 To
rin

/B
af

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

W
as

se
rs

te
in

 D
is

ta
nc

e ns

WT M
onen

sin

K49
0A

 M
onen

sin
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

W
as

se
rs

te
in

 D
is

ta
nc

e

Condition Distances

Figure 4: Distribution distance measures capture biological information in classical-
ly-extracted feature spaces A) Images taken from the WT Monensin population that 
possess a LDA WT Monensin axis value greater than 6 and less than 2. B) Wasserstein 
distances between conditions with distances between repeats within conditions taken as 
a standard deviation for statistical testing. C) Scatterplot of all datapoints after embed-
ding into a two-dimensional linear discriminant analysis space. D) Kernel density 
estimate of all conditions in two-dimensional LDA space. E) Embedding means across 
repeats within conditions in two-dimensional LDA space. F) Feature data transformed 
along axis most discriminable for the WT Monensin phenotype, with one-way ANOVA 
statistical significance testing across genotypes for mean value of this phenotypic meas-
urement. G) Histogram of values along the LDA WT Monensin axis. H) One-way ANOVA 
statistical significance testing across genotypes of Bright Detail Similarity between LC3-B 
and TGN46 image channels as a measure of colocalisation. I) Histogram of colocalisation 
values.
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Figure �: &istribution distance Oeasures alloY Hor phenotypic discovery in inƃuen\a /� protein Outants 
A) Representative fluorescence images of cells with LDA R45H values within the top and bottom 15th percen-
tiles. B) Feature data transformed along axis most discriminable for the R45H phenotype, with top and bottom 
15th percentiles of the R45H population displayed. C) Scatterplot and kernel density estimate of all datapoints 
after embedding into a two-dimensional linear discriminant analysis space, with embedding means across 
repeats. D) Quantification of average M2 fluorescence intensity and a measure of GFP-LC3 relocalisation 
between the most and least discriminable R45H populations, statistical significance testing performed per 
feature with standard t-test. E) Kernel density estimate of all conditions in two-dimensional LDA space generat-
ed using a) only features derived from the M2 fluorescence channel and b) only features derived from the 
GFP-LC3 fluorescence channel. F) Wasserstein distances between conditions derived from LDA performed on 
M2 and GFP-LC3 feature subsets.
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Figure 6: Different M2 Mutants display differences 
in GFP-LC3 relocalisation in addition to altered M2 
localisation  A) Histogram of the Bright Detail Intensity 
feature across all conditions, a constructed image 
feature that captures LC3 relocalisation. B) Histogram 
of intensity modulation within a cytoplasmic mask in 
the M2 channel. C) Representative images of cells with 
low and high Bright Detail Intensity values in the 
GFP-LC3 channel. D) Representative images of cells 
with low and high intensity modulation values in the 
M2 channel. E) Quantification of patterning differences 
across M2 mutants, statistical significance testing 
performed with one-way ANOVA. F) Quantification of 
intensity modulation within the M2 cytoplasmic mask 
across different quintiles GFP-LC3 intensity.
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Figure 7: M2 relocalisation is only partial-
ly dependent on M2 ion channel activity 
and subsequent LC3 relocalisation  A) 
Scatterplot and kernel density estimate of 
all datapoints after embedding into a 
two-dimensional linear discriminant analy-
sis space, with embedding means across 
repeats. B) Histogram of the Bright Detail 
Intensity feature across all conditions. C) 
Histogram of intensity modulation within a 
cytoplasmic mask in the M2 channel across 
all conditions. D) Kernel density estimate of 
all conditions in two-dimensional LDA 
space generated using only features 
derived from the M2 fluorescence channel 
E) Wasserstein distances between condi-
tions in LDA space using only M2 image 
features, distances between biological 
repeats within conditions taken as a 
standard deviation for statistical testing. F) 
Kernel density estimate of all conditions in 
two-dimensional LDA space generated 
using only features derived from the 
GFP-LC3 fluorescence channel. G) Wasser-
stein distances between conditions in LDA 
space using only GFP-LC3 image features, 
distances between biological repeats 
within conditions taken as a standard 
deviation for statistical testing.
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