
Transfer learning in Monte Carlo
Methods and Beyond

Zhuo SUN

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Statistical Science

University College London

December 21, 2023



Declaration

I, Zhuo Sun, confirm that the work presented in this thesis is my own. Where infor-

mation has been derived from other sources, I confirm that this has been indicated

in the thesis.



Abstract

From computational statistics to machine learning, many methods have already

achieved excellent performance for one single task given a moderate or large num-

ber of data points, e.g., kernel methods and deep learning. A task is usually a

regression task, a classification task or a Monte Carlo integration task in statistical

learning.

However, the performance of those methods is likely to degrade when the sam-

ple size of the training data is small; when latent information across tasks is ignored;

when computational cost is prohibitively expensive. In this thesis, we focus on

transfer learning for Monte Carlo methods and beyond via the scope of multi-task

learning and meta-learning. It is well known that supervised learning aims to solve

a specific task and often requires to train a model on some labeled data points (also

known as training set). Monte Carlo methods provide us with estimators of ex-

pectations of functions of random variables with respect to some distributions. In

this context, it is desirable to design novel algorithms or methods to explore and

exploit transferable information across related tasks for both Monte Carlo methods

and supervised learning.

This thesis includes three novel transfer learning methods. In the first work, we

extend existing control variates, a powerful kind of post-processing tools for Monte

Carlo methods, and propose a general framework called vector-valued control vari-

ates for multiple related integrals. In the second work, inspired by gradient-based

meta-learning, we further generalise existing control variates to meta-learning con-

trol variates. In the third work, we extend gradient-based meta-learning to be a

gradient-based probabilistic learning algorithm for few-shot image classification by



4

introducing latent class prototypes.



Impact Statement

This thesis mainly focuses on transfer learning for Monte Carlo methods and be-

yond. The first topic of this thesis is transfer learning for Monte Carlo methods via

multi-task learning and meta-learning while the second topic is meta-learning for

few-shot image classification.

For both topics, I consider to use transfer learning to improve existing methods.

For Monte Carlo methods, it is often the case we can not collect a large number of

samples and it can be infeasible to collect sufficient samples for all tasks. For im-

age classification methods, it can be expensive and in-practical to acquire a large

number of labeled data points, which often requires lots of human and financial re-

sources to label huge datasets. I show that it is possible to employ transfer learning

for Monte Carlo methods, which results in more efficient ways of estimation with-

out requiring more data (but only use existing data of each task). This opens a new

avenue for Monte Carlo methods. Meanwhile, my contribution on image classifica-

tion methods serves as a stepping stone towards efficient transfer learning for image

classification problems.

From an industry perspective, my work enhances computational efficiency

while reducing costs. Thus, they can benefit many real-world applications. For in-

stance, the two proposed transfer learning based Monte Carlo methods offer promis-

ing potential for enhancing the optimization of machine learning algorithms. It is

also possible to improve medical diagnosis and vision ability of autonomous ve-

hicles with the proposed few-shot image classification algorithm. These show the

commercial potential of the proposed methods in this thesis.



Acknowledgements

I would like to thank my supervisor Dr. François-Xavier Briol for his extraordinary

support and help. Over the past three years, he has always been keen to share his

opinions and thoughts, and has given detailed feedback on drafts of our papers, my

talk at conferences and institutions, and prize applications. He provided me with

many great opportunities and guided me to be an independent researcher. I am also

grateful to Department of Statistical Science and EPSRC for funding my PhD.

I would also like to thank Prof. Jing-Hao Xue for his kind support during the

first year of my PhD and for being my second supervisor for the rest of my PhD.

I appreciate to all the efforts of the staff members and my fellow PhD students in

the department for providing support, organising departmental seminars and social

events, which create a supportive research environment.

I would like to thank all my collaborators for their support. With the help from

all these great people, I am able to do all these interesting and exciting projects listed

in this thesis. I would also like to thank people from the data-centric engineering

group at The Alan Turing Institute who were very kind and supportive when I co-

organised Statistics in Data-Centric Engineering Seminar series in 2022. I am also

thankful to the researchers and scholars who accepted my invitation and gave a

talk at the seminar series. Meanwhile, I would also like to thank The Alan Turing

Institute for providing me with the great opportunity of the Enrichment placement.

I am very grateful to my family for their support and encouragement through

all my life. It is their endless love that guides me here.



UCL Research Paper Declaration

Form: referencing the doctoral

candidate’s own published work(s)

This declaration form contains information of published works of my own that are

relevant to this thesis.

For the work presented in Chapter 4:

1. For a research manuscript that has already been published (if not yet

published, please skip to section 2):

(a) What is the title of the manuscript? Vector-valued Control Variates.

(b) Please include a link to or doi for the work: https://

proceedings.mlr.press/v202/sun23a.html

(c) Where was the work published? Online.

(d) Who published the work? Proceedings of Machine Learning Re-

search.

(e) When was the work published? July 2023.

(f) List the manuscript’s authors in the order they appear on the pub-

lication: Zhuo Sun, Alessandro Barp, François-Xavier Briol .

(g) Was the work peer reviewed? Yes.

(h) Have you retained the copyright? Yes.

(i) Was an earlier form of the manuscript uploaded to a preprint server

(e.g. medRxiv)? If ‘Yes’, please give a link or doi Yes. https:

//arxiv.org/abs/2109.08944

https://proceedings.mlr.press/v202/sun23a.html
https://proceedings.mlr.press/v202/sun23a.html
https://arxiv.org/abs/2109.08944
https://arxiv.org/abs/2109.08944


8

If ‘No’, please seek permission from the relevant publisher and check

the box next to the below statement:

� I acknowledge permission of the publisher named under 1d to in-

clude in this thesis portions of the publication named as included

in 1c.

2. For a research manuscript prepared for publication but that has not yet

been published (if already published, please skip to section 3):

(a) What is the current title of the manuscript?

(b) Has the manuscript been uploaded to a preprint server ’e.g.

medRxiv’?

If ’Yes’, please please give a link or doi:

(c) Where is the work intended to be published?

(d) List the manuscript’s authors in the intended authorship order:

(e) Stage of publication:

3. For multi-authored work, please give a statement of contribution cover-

ing all authors (if single-author, please skip to section 4): The article was

written and edited by François-Xavier Briol and myself. François-Xavier

Briol proposed the idea of this work and then we shaped this work together.

All the experiments were done by myself, with some code from a previous

publication contributed by Chris Oates. Alessandro Barp and François-Xavier

Briol made contributions to most theorems. I also contributed to the theo-

rems including Theorem 4.2.5 and the derivation of the special cases of the

proposed matrix-valued Stein kernels.

4. In which chapter(s) of your thesis can this material be found? Chapter 4.

For the work presented in Chapter 5:

1. For a research manuscript that has already been published (if not yet

published, please skip to section 2):

(a) What is the title of the manuscript? Meta-learning Control Variates:

Variance Reduction with Limited Data.

(b) Please include a link to or doi for the work: https://

https://proceedings.mlr.press/v216/sun23a.html


9

proceedings.mlr.press/v216/sun23a.html

(c) Where was the work published? Online.

(d) Who published the work? Proceedings of Machine Learning Re-

search.

(e) When was the work published? July 2023.

(f) List the manuscript’s authors in the order they appear on the pub-

lication: Zhuo Sun, Chris J Oates, François-Xavier Briol.

(g) Was the work peer reviewed? Yes.

(h) Have you retained the copyright? Yes.

(i) Was an earlier form of the manuscript uploaded to a preprint server

(e.g. medRxiv)? If ‘Yes’, please give a link or doi Yes. https:

//arxiv.org/abs/2303.04756

If ‘No’, please seek permission from the relevant publisher and check

the box next to the below statement:

� I acknowledge permission of the publisher named under 1d to in-

clude in this thesis portions of the publication named as included

in 1c.

2. For a research manuscript prepared for publication but that has not yet

been published (if already published, please skip to section 3):

(a) What is the current title of the manuscript?

(b) Has the manuscript been uploaded to a preprint server ’e.g.

medRxiv’?

If ’Yes’, please please give a link or doi:

(c) Where is the work intended to be published?

(d) List the manuscript’s authors in the intended authorship order:

(e) Stage of publication:

3. For multi-authored work, please give a statement of contribution cover-

ing all authors (if single-author, please skip to section 4): The article was

written by François-Xavier Briol and myself. I proposed the idea of this work

and all the experiments were done by myself, with some code from a previous

https://proceedings.mlr.press/v216/sun23a.html
https://proceedings.mlr.press/v216/sun23a.html
https://arxiv.org/abs/2303.04756
https://arxiv.org/abs/2303.04756


10

publication contributed by Kaiyu Li. Theoretical analyses were mostly done

by myself with the help of Chris J Oates and François-Xavier Briol. Chris J

Oates also helped to edit the paper.

4. In which chapter(s) of your thesis can this material be found? Chapter 5.

For the work presented in Chapter 6:

1. For a research manuscript that has already been published (if not yet

published, please skip to section 2):

(a) What is the title of the manuscript? Amortized Bayesian Prototype

Meta-learning: A New Probabilistic Meta-learning Approach to Few-

shot Image Classification.

(b) Please include a link to or doi for the work: https://

proceedings.mlr.press/v130/sun21a.html

(c) Where was the work published? Online.

(d) Who published the work? Proceedings of Machine Learning Re-

search.

(e) When was the work published? April 2021.

(f) List the manuscript’s authors in the order they appear on the publi-

cation: Zhuo Sun, Jijie Wu, Xiaoxu Li, Wenming Yang, Jing-Hao Xue.

(g) Was the work peer reviewed? Yes.

(h) Have you retained the copyright? Yes.

(i) Was an earlier form of the manuscript uploaded to a preprint server

(e.g. medRxiv)? If ‘Yes’, please give a link or doi

If ‘No’, please seek permission from the relevant publisher and check

the box next to the below statement:

� I acknowledge permission of the publisher named under 1d to in-

clude in this thesis portions of the publication named as included

in 1c.

2. For a research manuscript prepared for publication but that has not yet

been published (if already published, please skip to section 3):

(a) What is the current title of the manuscript?

https://proceedings.mlr.press/v130/sun21a.html
https://proceedings.mlr.press/v130/sun21a.html


11

(b) Has the manuscript been uploaded to a preprint server ’e.g.

medRxiv’?

If ’Yes’, please please give a link or doi:

(c) Where is the work intended to be published?

(d) List the manuscript’s authors in the intended authorship order:

(e) Stage of publication:

3. For multi-authored work, please give a statement of contribution cover-

ing all authors (if single-author, please skip to section 4): The article was

written mostly by myself. Jing-Hao Xue edited the paper. I proposed the

idea of this work and designed all the methods and experiments. Jijie Wu and

myself contributed to the code of the experiments. Xiaoxu Li and Wenming

Yang provided helpful discussions and computing resources.

4. In which chapter(s) of your thesis can this material be found? Chapter 6.

e-Signatures confirming that the information above is accurate (this form

should be co-signed by the supervisor/ senior author unless this is not appropriate,

e.g. if the paper was a single-author work):

Candidate: Zhuo Sun

Date: July 28, 2023

Supervisor/Senior Author signature (where appropriate): François-Xavier Briol

Date: July 28, 2023



Contents

1 Introduction 20

1.1 Background and scope of the thesis . . . . . . . . . . . . . . . . . . 20

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Transfer Learning in Monte Carlo Methods and Machine Learning 24

2.1 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Transfer Learning in Monte Carlo Methods . . . . . . . . . . . . . 28

2.3 Transfer Learning in Supervised Learning . . . . . . . . . . . . . . 30

3 Background: Kernel Methods, Stein’s Method, Control Variates and

Meta-learning 35

3.1 Kernel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . 35

3.1.2 Kernel Methods in Statistical Learning . . . . . . . . . . . 38

3.2 Stein’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Stein Identity and Stein Operators . . . . . . . . . . . . . . 40

3.2.2 Stein’s Operators on RKHSs . . . . . . . . . . . . . . . . . 41

3.2.3 Applications of Stein’s method in Statistical Learning . . . 42

3.3 Scalar-valued Control Variates . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Control Variates . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Constructing and Selecting Control Variates . . . . . . . . . 45

3.3.3 Choices of U . . . . . . . . . . . . . . . . . . . . . . . . . 47



Contents 13

3.4 Relevant Work on Information Sharing Across Integral Estimation

Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Gradient-based Meta-learning . . . . . . . . . . . . . . . . 55

3.5.2 Metric-based Meta-learning . . . . . . . . . . . . . . . . . 57

4 Vector-valued Control Variates 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Construction Vector-valued RKHSs with Zero Means . . . . 62

4.2.2 Alternative Kernel-based vv-CVs based on the Second Or-

der Langevin Stein operator . . . . . . . . . . . . . . . . . 66

4.2.3 Learning Vector-valued Control Variates . . . . . . . . . . . 67

4.2.4 Computational Complexity of Vector-valued Control Variates 73

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 A Synthetic Example . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Multi-fidelity Modelling . . . . . . . . . . . . . . . . . . . 75

4.3.3 Computation of the Model Evidence for Dynamical Systems 79

4.3.4 Bayesian Inference of Lotka-Volterra System . . . . . . . . 82

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Meta-learning Control Variates: Variance Reduction with Limited

Data 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Recap of Control Variates . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Problem Set-up . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2 Meta-learning CVs . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Experimental Assessment . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 A Synthetic Example . . . . . . . . . . . . . . . . . . . . . 94

5.4.2 Uncertainty Quantification for Boundary Value ODEs . . . 97



Contents 14

5.4.3 Bayesian Inference for the Lotka–Volterra System . . . . . 97

5.4.4 Marginalization in Hierarchical Gaussian Processes . . . . . 99

5.5 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Amortized Bayesian Prototype Meta-learning for Few-shot Image Clas-

sification 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Meta-learning via Maximizing Expectation of Posterior

Predictive Likelihood . . . . . . . . . . . . . . . . . . . . . 109

6.3.2 Amortized Bayesian Prototype Meta-learning . . . . . . . . 111

6.4 Applications to Few-shot Image Classification . . . . . . . . . . . . 116

6.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . 118

6.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . 119

6.4.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Conclusions and Future Work 124

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Appendices 146

A Supplementary Material of Vector-valued Control Variates 146

A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2.1 First-order K0 for Polynomial-based vv-CVs . . . . . . . . 146

A.2.2 Connection between vvpolynomials and vvRKHS with

polynomial kernel . . . . . . . . . . . . . . . . . . . . . . 147

A.2.3 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . 149



Contents 15

A.2.4 Proof of Theorem 4.2.3 . . . . . . . . . . . . . . . . . . . . 151

A.2.5 Proof of Theorem 4.2.4 . . . . . . . . . . . . . . . . . . . . 151

A.2.6 Proof of Theorem 4.2.2 . . . . . . . . . . . . . . . . . . . . 152

A.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 155

A.3.1 Kernels and Their Derivatives . . . . . . . . . . . . . . . . 155

A.3.2 Hyper-parameters Selection . . . . . . . . . . . . . . . . . 157

A.4 Additional Details and Results for the Experimental Study . . . . . 158

A.4.1 Experimental Details of the Illustration Example . . . . . . 158

A.4.2 Experimental Details of the Multifidelity Univariate Step

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.4.3 Experimental Details of the Multifidelity Modelling of Wa-

terflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.4.4 Experimental Details of the Computation of the Model Ev-

idence through Thermodynamic Integration . . . . . . . . . 161

A.4.5 Experimental Details of the Lotka-Volterra System . . . . . 163

B Supplementary Material of Meta-learning Control Variates: Variance

Reduction with Limited Data 167

B.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B.2 Proof of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B.2.1 Convergence of Model-Agnostic Meta-Learning . . . . . . 167

B.2.2 Proof of Theorem 5.5.1 . . . . . . . . . . . . . . . . . . . . 168

B.2.3 Proof of Corollary 5.5.1.1 . . . . . . . . . . . . . . . . . . 170

B.3 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.3.1 Experiment: Oscillatory Family of Functions . . . . . . . . 171

B.3.2 Experiment: Boundary Value ODEs . . . . . . . . . . . . . 173

B.3.3 Experiment: Bayesian Inference of Lotka-Volterra System . 173

B.3.4 Experiment: Sarcos Robot Arm . . . . . . . . . . . . . . . 175

C Supplementary Material of Amortized Bayesian Prototype Meta-

learning 178



Contents 16

C.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

C.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . 178

C.3 Details of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C.4 Comparisons of Convolution Networks . . . . . . . . . . . . . . . . 179

C.5 Effect of L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



List of Figures

2.1 Illustration example of a vector-valued integration task. . . . . . . . 29

2.2 Illustration example: 5-shot sinusoidal function meta-learning. . . . 33

4.1 Illustration of a separable matrix-valued Stein kernel K0. . . . . . . 65

4.2 Numerical integration of problem from South et al. (2022c). . . . . 76

4.3 Numerical integration of univariate discontinuous multifidelity model. 77

4.4 Model evidence computation through thermodynamic integration. . 81

5.1 Mean absolute error (with 95% confidence intervals) for Ttest =

1, 000 oscillatory functions (with Nt = N and mt = nt = N/2

for all t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Mean absolute error (with 95% confidence intervals) for Ttest =

1, 000 oscillatory functions for increasing dimension d. . . . . . . . 96

5.3 Mean absolute error (with 95% confidence intervals) of Meta-CVs

for Ttest = 1, 000 2-dimensional oscillatory functions for increasing

B and Itr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Absolute error for Ttest = 100 (with Nt = N and mt = nt = N/2

for all t.) unseen tasks from the boundary value ODE problem. . . . 98

5.5 Mean absolute errors (with 95% confidence intervals) over 40 sub-

populations for varying Nt. . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Effect of L: Estimated absolute errors over Ttest = 1, 000 unseen

states of the Sarcos anthropomorphic robot arm. . . . . . . . . . . . 100

6.1 Ablation Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Reliability Diagrams on Various Image Datasets. . . . . . . . . . . 122



List of Figures 18

A.1 Performance of vv-CVs with unbalanced sample sizes. . . . . . . . 162

A.2 Score functions of the power posteriors. . . . . . . . . . . . . . . . 164

A.3 Bayesian inference of abundance of preys of Lotka-Volterra system. 165

A.4 Bayesian inference of abundance of predators of Lotka-Volterra

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B.1 Priors and posteriors of kernel hyper-parameters. . . . . . . . . . . 176

B.2 Estimated absolute errors over the same training states of the Sarcos

anthropomorphic robot arm. . . . . . . . . . . . . . . . . . . . . . 177



List of Tables

3.1 Properties of The Existing CVs . . . . . . . . . . . . . . . . . . . . 50

4.1 Computational complexity of kernel-based CVs and vv-CVs. . . . . 74

4.2 Expected values of the flow of water through a borehole under an

expert-elicited prior distribution and using the high-fidelity model. . 79

4.3 Posterior Expected Abundance of Preys. . . . . . . . . . . . . . . . 83

6.1 Meta-testing Accuracy for 5-way Classification on Mini-ImageNet

and Omniglot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Meta-testing Accuracy for 5-way Classification on CUB-200-2011,

Stanford-dogs and Mini-ImageNet. . . . . . . . . . . . . . . . . . . 120

6.3 Ablation Study: Robustness on Mini-ImageNet. . . . . . . . . . . . 122

A.1 Prior Distributions for the inputs of the Borehole function. . . . . . 160

A.2 Lotka Example: Sum of mean absolute error of each task. . . . . . . 166

C.1 Ablation study in Figure 6.1-(a). . . . . . . . . . . . . . . . . . . . 180

C.2 Ablation study in Figure 6.1-(b). . . . . . . . . . . . . . . . . . . . 180

C.3 Ablation study in Figure 6.1-(c). . . . . . . . . . . . . . . . . . . . 180

C.4 Convolution networks of methods in Tab. 6.1. . . . . . . . . . . . . 181

C.5 Effect of L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181



Chapter 1

Introduction

1.1 Background and scope of the thesis

Many methods in the fields of machine learning and computational statistics are

tailored to one specific task at a time, which often require a large number of train-

ing data points to ensure satisfactory performance. In statistical learning, such a

task can be a classification task, a regression task or a Monte Carlo integration task.

For each task, it is often required to fit or train the model to a finite set of train-

ing dataset each time, and therefore, the latent information across different tasks is

often ignored. Such latent information exists when those learning tasks are related

somehow. For instance, in multi-fidelity modelling, it is often the case when there

are a collection of functions being related and we are interested in the expectations

of those functions. A natural and simple way is to estimate those integrals indi-

vidually. However, as shown in Chapter 4, we can get more precise estimators by

learning joint estimators for those multiple related integrals.

It is then natural for us to explore and exploit possible information among dif-

ferent tasks. To achieve this, extra assumptions are made to describe the relationship

among data (e.g. either in terms of the covariates or the responses or the joint) or

the relationship between different models (e.g. hard or soft parameter sharing).

In this thesis, we aim to develop novel transfer learning methods for Monte

Carlo methods and classification methods through the scope of meta-learning and

multi-task learning. Specifically, both the classification methods and variance re-



1.2. Contributions 21

duction methods for Monte Carlo methods considered in this thesis fall into the

category of supervised learning. We will point it out in Chapter 2.

1.2 Contributions
This thesis makes the following contributions to the fields of computational statis-

tics and machine learning.

Contribution 1: Vector-valued Control Variates Existing control variates meth-

ods tackle integral estimation tasks one-by-one. This, however, ignores and wastes

the potential relationship across many integration tasks. Therefore, in Chapter 4,

we proposed a novel method for estimating related integrals jointly, Vector-valued

Control Variates, by borrowing the strength from Stein’s method and vector-valued

reproducing kernel Hilbert spaces. We propose a matrix-valued Stein kernel for

a sequence of distributions, provide simplified versions of it under several special

cases, and give the formulation of vector-valued control variates. Our experiments

show its superior performance when being compared to existing control variates

methods and Monte Carlo estimators.

Contribution 2: Meta-learning Control Variates: Variance Reduction with

Limited Data Inspired by meta-learning, in Chapter 5, we proposed a novel

method, Meta-learning Control Variates, which is capable of learning task-specific

control variates fast and achieve better performance even with limited data per task.

Our experiments demonstrate its superior performance over existing control variate

methods, e.g., control functionals, neural control variates, and also Monte Carlo

estimators. Our theories provide insights and explicit conditions on the form of

control variates that can be learnt well by the proposed method.

Contribution 3: Amortized Bayesian Prototype Meta-learning: A new proba-

bilistic meta-learning approach to few-shot image classification In Chapter 6,

we proposed Amortized Bayesian Prototype Meta-learning, a simple and novel

method tailored for few-shot image classification. By introducing class prototypes

as latent random variables into model-agnostic meta learning, the proposed method

achieved competitive or state-of-the-art performance on multiple image datasets



1.2. Contributions 22

when it was accepted for publication.

The works presented in Chapter 4, Chapter 5 and Chapter 6 lead to the following

publications:

1. Z. Sun, C. J. Oates, and F.-X. Briol. Meta-learning Control Variates: Variance

Reduction with Limited Data. In Conference on Uncertainty in Artificial

Intelligence (UAI), 2023b

• This paper was selected for an oral presentation at UAI 2023.

2. Z. Sun, A. Barp, and F.-X. Briol. Vector-Valued Control Variates. In Interna-

tional Conference on Machine Learning (ICML), 2023a

• This paper received a Student Paper Award from the Section on

Bayesian Statistical Science of the American Statistical Association in

2022.

3. K. Li∗ and Z. Sun∗. Multilevel Control Functional. ICML 2023 Workshop on

Structured Probabilistic Inference & Generative Modeling, 2023

4. Z. Sun, J. Wu, X. Li, W. Yang, and J.-H. Xue. Amortized Bayesian Prototype

Meta-learning: A New Probabilistic Meta-learning Approach to Few-shot Im-

age Classification. In International Conference on Artificial Intelligence and

Statistics (AISTATS), volume 130, 2021

5. X. Li∗, Z. Sun∗, J.-H. Xue, and Z. Ma. A concise review of recent few-shot

meta-learning methods. Neurocomputing, 2020a

6. X. Li∗, J. Wu∗, Z. Sun∗, Z. Ma, J. Cao, and J.-H. Xue. Bsnet: Bi-similarity

network for few-shot fine-grained image classification. IEEE Transactions on

Image Processing, 2020b

Outline of the Thesis The rest of the thesis is organised as follows. In Chap-

ter 2, we present a brief summary of existing transfer learning methods in a general

form and give concrete examples in both fields of computational statistics and ma-

chine learning. Chapter 3 contains necessary background on kernel methods, Stein’s

method, control variates and meta-learning, which are the key components of the

fore-mentioned three contributions of this thesis. Chapter 4, Chapter 5 and Chap-



1.2. Contributions 23

ter 6 present Contribution 1, 2 and 3, respectively. Each chapter is self-contained

with necessary preliminary background, and additional appendices are provided at

the end of the thesis. In the end, Chapter 7 presents concise summaries of this thesis

and outlines future research directions.



Chapter 2

Transfer Learning in Monte Carlo

Methods and Machine Learning

This chapter consists of three sections. Section 2.1 introduces general concepts and

strategies of transfer learning. Section 2.2 presents how transfer learning methods

can be employed for Monte Carlo methods, especially in terms of multiple related

integration tasks. Section 2.3 presents how transfer learning can be used in the con-

text of supervised learning, points out the connection between control variates meth-

ods and supervised learning, and briefly gives one example called meta-learning of

such transfer learning methods.

2.1 Transfer Learning
Transfer learning (for a detailed review, see e.g., (Yang et al., 2020)) plays an im-

portant role in machine learning and statistics since it is a promising way to solve

multiple tasks simultaneously, and is capable of improving the performance of algo-

rithms on some target tasks based on the knowledge or information extracted from

some source tasks. It aims to provide better performance than the traditional meth-

ods which are only designed to find or learn the decision function f : X −→ Y for a

response variable Y ∈ Y given some covariates X ∈ X from one single task. For

instance, such a decision function f can be a regressor or a classifier, depending on

the problem of interest. In this thesis, we focus on homogeneous transfer learning.

That is, the domain X is identical for both source and target tasks, while they may



2.1. Transfer Learning 25

differ in the marginal distribution of X , p(X). Though it is a concept in machine

learning, we actually can see it in computational statistics, e.g., importance sam-

pling, optimal transport and gradient flow. To begin with, we give the definitions of

tasks, target tasks and source tasks.

Definition 2.1.1 (Tasks). A task T consists of a quantity of interest together with

the data that can be used to estimate this quantity.

Definition 2.1.2 (Supervised Learning as Tasks). For supervised learning, we aim

to learn or estimate the relationship f : X −→ Y between a response variable Y ∈ Y
and covariates X whose marginal distribution is p(X) on the domain X . Assuming

that the underlying truth f belongs to a function space F , and given a training set

(e.g. m realisations of X and Y , denoted as {xi, yi}mi=1) of the task, the problem of

interest typically involves learning an approximation, denoted as f̂ , to the function

f from the function space F . The performance of learnt approximation f̂ is then

evaluated on a testing set {xi, yi}m+n
i=m+1 of the same task.

Example 2.1.1 (Estimation of Integrals as Tasks). Estimation of integrals can be

categorized into the above definition of tasks since integration methods can be

written as integrals of approximation methods. For instance, Bayesian quadrature

(Briol et al., 2015; Xi et al., 2018; Li et al., 2023) utilizes Gaussian processes to

approximate integrands of interest. Other examples include control variates (Oates

et al., 2017; Si et al., 2021; Leluc et al., 2021; South et al., 2022b) which select

an approximation to the integrand of interest from a zero-mean (with respect to the

distribution of interest) function space; see Chapter 3 for details. This is also the

case for the proposed vector-valued control variates in Chapter 4 and the proposed

meta-learning control variates in Chapter 5.

Remark 2.1.1 (Target Tasks and Source Tasks in Transfer Learning). In transfer

learning, sometimes only one particular task among a group of tasks is of interest.

This task is referred as the target task. The remaining tasks are referred as the

source tasks. Note that there could be more than one target task. The domain of

the target task Xtarget can be different to that of source tasks Xsource. The space of



2.1. Transfer Learning 26

the response variable of a target task Ytarget can also differ from that of source tasks

Ysource. Thus, the most general setting is that every task in the group has distinct

domains and label spaces. In this thesis, we consider the cases when the domains

of tasks are identical but may have different marginal distributions. Note that when

all tasks are target tasks, this is also known as multi-task learning.

Numerous learning algorithms fall within the category of transfer learning,

encompassing multi-task learning and meta-learning, all of which bear significant

relevance to the three proposed methods.

Pre-training and fine-tuning Pre-training and fine-tuning are mainly designed

for deep learning algorithms (LeCun et al., 2015). Pre-training (Devlin et al., 2018;

Hendrycks et al., 2019; Zoph et al., 2020) means that we can pre-train a deep neural

network on a large dataset (which is usually cheap to obtain), which can then be

used for other tasks later. This can be particular useful when we only have access to

a small number of training data points of the target tasks. Fine-tuning means that we

only need to fine-tune part or all of the parameters of the pre-trained neural network

without training the whole neural network from scratch. These two approaches can

save lots of computing time and efforts for optimising neural networks for the target

tasks and often result in significant improvements in performance, and thus they are

widely used in the fields of computer vision and large language models (Devlin

et al., 2018; Chen et al., 2019b; Zoph et al., 2020; Ju et al., 2022).

Multi-task learning In this case, all the tasks are treated equally. Multi-task learn-

ing aims to learn multiple tasks simultaneously and improve the performance on all

tasks. This kind of method can not only be found in the machine learning commu-

nity such as multitask learning with kernel methods (Carmeli et al., 2010; Álvarez

et al., 2012; Ciliberto et al., 2015) or with deep neural networks (Collobert and We-

ston, 2008; Standley et al., 2020) but also in the computational statistics community

such as multiple output Bayesian quadrature (Xi et al., 2018) and multi-task av-

eraging (Efron and Morris, 1977; Feldman et al., 2014; Marienwald et al., 2021).

In particular, multi-task kernel methods are closely related to the contribution in

Chapter 4 of this thesis. More details will be presented in Chapter 3 and Chapter 4.



2.1. Transfer Learning 27

Bayesian hierarchical modelling Bayesian hierarchical modelling considers the

cases when we have access to observations from different groups. By allowing

different parametric or non-parametric models to govern the data generating pro-

cesses for each of these groups, and treating some hyper-parameters as random

variables shared among these groups, Bayesian hierarchical modelling constructs

a hierarchical probabilistic structure on data (via likelihood), models (via priors)

and hyper-parameters (via hyper-priors), e.g. hierarchical Gaussian processes when

we use Gaussian processes as the middle level non-parametric models (Rasmussen,

2003) or hierarchical linear models when we use linear models as the middle level

parametric models (Garson, 2013; Griffin and Brown, 2017). Instead of doing indi-

vidual inference for each group, it provides us with better inference by combining

all the data from all the groups as all the information are utilized and shared via the

hierarchical probabilistic structure designed specifically.

Meta-learning The goal of meta-learning is to design an algorithm that is capable

of learning unseen target tasks fast and efficiently. This capability is established

upon: i) having access to labeled data points from a number of source tasks and

ii) designing efficient learning algorithms. Meta-learning algorithms have shown

promising performance in the fields of image classification (Finn et al., 2017) and

reinforcement learning (Liu et al., 2019). One typical branch of meta-learning is

gradient-based meta-learning (Finn et al., 2017, 2019, 2018; Grant et al., 2018),

which is closely related to the contributions in Chapter 5 and Chapter 6 of this

thesis. More details will be presented in Chapter 3, Chapter 5 and Chapter 6.

One common characteristic shared among the above methods is that they all

want to transfer the knowledge extracted from the source tasks to improve perfor-

mance on the target tasks, e.g. better classification accuracy if the goal is to learn

a classifier f̂ , which includes parameter sharing and feature adaption. For instance,

we can pre-train models using the data from source tasks and then adapt the param-

eters conditioning on the training samples from the target task.

In this thesis, our focus lies in the construction of novel transfer learning meth-

ods for Monte Carlo methods and supervised classification methods. We will briefly



2.2. Transfer Learning in Monte Carlo Methods 28

introduce and discuss the fundamental concepts of multiple related integration tasks

and supervised meta-learning in Section 2.2 and Section 2.3, respectively. More

background knowledge will be presented in Chapter 3.

2.2 Transfer Learning in Monte Carlo Methods
Integrals appear almost everywhere in computational statistics, e.g., from posterior

moments of model parameters in Bayesian inference to marginal likelihood in hier-

archical models. These integrals are often presented in the form of the integration

of a function f : X −→ R over a distribution Π. For the distributions considered

here, we assume that Π is some probability distribution with Lebesgue density π.

A concrete example is the expected volume of water that passes through a borehole

(Xiong et al., 2013) where the parameters of the model of the borehole and water-

flow are regarded as random variables with expert-specified distributions. Suppose

that we have a sequence of square-integrable functions f1, . . . , fT and distributions

Π1, . . . ,ΠT , and we would like to use {(xtj, ft(xtj))mtj=1} to estimate these T inte-

grals:

Πt[ft] :=
∫
X ft(x)πt(x)dx for t = 1, . . . , T. (2.1)

Example 2.2.1 (A 2-dimensional Illustration Example of Multiple Related Monte

Carlo Integration Tasks). For illustration purpose, we show an example where X =

R2 and Π[f ] := (Π1[f1],Π2[f2],Π3[f3])> in Figure 2.1. The functions are set to be

f1(x) = 0.6 + sin(0.5x1) cos(0.5x2)/5; f2(x) = 0.55 + sin(0.2x1) cos(0.4x2)/5;

f3(x) = 0.65 + sin(0.7x1) cos(0.4x2)/5. Πt is a mixture of Gaussians with

three components in the form of 1
3

∑3
j=1 N(µtj,Σtj). In this example, µtj are

randomly generated while Σtj is a diagonal matrix with equal size elements σ2
tj .

Here, σ11 = 1.1, σ12 = 1.5, σ13 = 2; σ21 = 1.2, σ22 = 1.3, σ23 = 2.5;

σ31 = 1.1, σ32 = 1.15, σ33 = 1.2. We will see how the proposed vector-valued

control variates and meta-CVs solve these multiple related integrals efficiently in

Chapter 4 and Chapter 5.

Each of these integrals can be estimated individually. Such estimators include



2.2. Transfer Learning in Monte Carlo Methods 29

x1

15
10

5
0

5
10

x2

16
14

12
10

8
6

4
2

0

f(x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x1

2.5
0.0

2.5
5.0

7.5
10.0

12.5
15.0

x2

10
8

6
4

2
0

2
4

f(x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x1

5
0

5
10

15

x2

10

5

0

5

10

f(x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2.1: Illustration example of a vector-valued integration task. The black wireframe
is the integrand ft(x) with two-dimensional input x = (x1, x2)> while the
bottom is the density contour plot of the distribution Πt.

simple Monte Carlo (MC) estimator, Markov Chain Monte Carlo (MCMC) estima-

tor, importance sampling (IS) estimator and self-normalized importance sampling

(SNIS) estimator. For detailed reviews and analyses, we refer readers to (Owen,

2013; Robert and Casella, 2013). More sophisticated low-variance estimators in-

clude Bayesian quadrature (BQ) and control variates (CVs). These methods enjoy

a much faster convergence rate if being compared to Monte Carlo estimators. This

thesis will focus on Stein-based control variates for Monte Carlo methods as they

can be used in the cases when we only have access to evaluations of π̃ = π
C

with

intractable normalising constant C. This is typically the case when π is a posterior

distribution in Bayesian inference. Recent development of control variates includes

stochastic-optimised control variates (Wan et al., 2019; Si et al., 2021), which is

scalable to large datasets. Other interesting work includes semi-exact control vari-

ates (South et al., 2022b), which combines polynomial control variates (Mira et al.,

2013) and control functionals (Oates et al., 2017) at the same time.

However, these existing control variates methods focus on one integral estima-

tion task at a time. This restricts the flow of information among related tasks during

the process of selecting/learning effective control variates for each task. The main

insight is that if the functions f1, . . . , fT are related in some way, and if the same



2.3. Transfer Learning in Supervised Learning 30

can be said about the distributions Π1, . . . ,ΠT , then we can estimate these integrals

jointly. The intuition of jointly estimation of integrals can be traced back to Stein’s

paradox (Efron and Morris, 1977), which has shown that it is better to jointly esti-

mate the means of three or more Gaussian random variables as such a vector-valued

estimator (James-Stein estimator) has lower risk than the sum of the risk of each

individual estimator. Recent development of multiple related integral estimation

is established on Bayesian quadrature (Xi et al., 2018). However, it only be used

in the cases when the kernel mean
∫
k(x, x′)π(x′)dx′ has closed form expression.

This can be problematic when we only know the target distribution up-to an un-

known normalising constant C, i.e., only having access to π̃ = π
C

with intractable

C.

Therefore, it is desirable to design new control variates methods that can learn

the sequence Π1[f1], . . . ,ΠT [ft] simultaneously on the basis of transfer learning.

Existing control variates methods (Mira et al., 2013; Oates et al., 2017; Si et al.,

2021; South et al., 2022b) are post-processing tools for Monte Carlo methods. How-

ever, they are designed to estimate one integral at a time. When we have multiple

related integration tasks required to be estimated and want to do better than exist-

ing control variates methods, inspired by multi-task kernel methods (Álvarez et al.,

2012), we propose vector-valued control variates in Chapter 4. Furthermore, when

the number of tasks T is extremely large (e.g. T = 1000) and the sample size is

very small for each task, it is infeasible to use existing control variates methods

or the proposed vector-valued control variates since the computational cost is ex-

pensive and these methods cannot provide us with satisfactory performance due to

the small sample size per task. In this case, inspired by meta-learning, we propose

meta-learning control variates in Chapter 5.

2.3 Transfer Learning in Supervised Learning

In the context of supervised learning, we seek for a predictor

f ∗ = arg minf :X−→Y E(f) with E(f) := E(X,Y )∼p(x,y) [J (f (X) , Y )] (2.2)



2.3. Transfer Learning in Supervised Learning 31

that can predict the labels for some new unseen points, where J is some loss func-

tion and p(x, y) is the joint distribution of the response variable y ∈ Y and the

covariates x ∈ X . For example, when J is the squared loss (common loss for

regression tasks), f ∗(x) = Ep(y|x) [y|x]; when J is the 0-1 loss (common loss for

classification tasks), f ∗(x) = arg maxy∈Y p(y|x).

However, it is hard to obtain the exact analytic expression for the population

risk E(f) and seek for the optimal solution in the giant space of {f : X −→ Y} (i.e.

the set of all possible functions fromX toY) and have access to the joint distribution

p(x, y). Therefore, to tackle the above task, the common way is to minimize the

empirical risk and optimize it over some function space F ⊂ {f : X −→ Y},
e.g. reproducing kernel Hilbert spaceHk induced by a kernel k (Rasmussen, 2003;

Wainwright, 2019). That is, given a training dataset {xi, yi}mi=1, we seek for f̂ which

minimizes the empirical loss,

f̂ = arg minf∈F
1
m

∑m
i=1 J (f (xi) , yi) (2.3)

where {xi, yi}mi=1 are the training samples of the corresponding task.

Example 2.3.1 (C-class classification). A C-class classification task is a typical su-

pervised learning task. It means that we want to categorize objects into C different

classes. In this case, the response variable y takes values in the set {1, 2, . . . , C},
which represents C different categories. The covariates x can be images or words.

See Chapter 6 for the cases when we are interested in predicting the labels of im-

ages.

Example 2.3.2 (Selecting Control Variates as Supervised Learning). Control vari-

ates can be regarded as a specific type of supervised learning as the way to select-

ing an effective control variate g ∈ G is done by minimizing some loss J between

the integrand f and g conditioning some data points {xi, yi := f(xi)}mi=1 (e.g.,∑m
i=1 J(g(xi), yi)), where G is a function space with known-mean functions. See

Chapter 3, Chapter 4 and Chapter 5 for more details of the choice of G and the loss

J .



2.3. Transfer Learning in Supervised Learning 32

Suppose that we have obtained a predictor f̂ for a C-class classification prob-

lem with a training dataset {(xi, yi)mi=1; ∀yi ∈ {1, . . . , C}}, we expect it to achieve

satisfactory accuracy on another testing dataset from the same task. However, such

a classifier can not be directly applied to a new classification task. For example, the

task for training is to assign different types of dogs while the new task is to classify

several kinds of birds. It becomes more difficult when the training sample size for

the new task is very small, e.g., 1 labeled data point per class.

Therefore, it is desirable to design novel machine learning algorithms that are

tailored for such kind of transfer learning problems. Common ways of utilizing the

latent relationship among different tasks includes parameter control and knowledge

transfer as discussed in Section 2.1. One example of such transfer learning methods

is meta-learning; see Chapter 3 for a more detailed discussion of meta-learning.

Example 2.3.3 (Meta-learning). Meta-learning (Bartunov and Vetrov, 2018; Finn

et al., 2017; Grant et al., 2018; Amit and Meir, 2018; Rusu et al., 2019; Iakovleva

et al., 2020) aims to solve unseen new tasks based on experience established through

an episodic meta-training process (Vinyals et al., 2016) of previous tasks. The goal

is to seek for f̂ that can be adapted fast to any testing task after being trained

through an episodic meta-training process. To find such a f̂ , the objective is to

minimise the expected loss of f on a testing set Q after being adapted on a training

set S. That is,

f̂ = arg minf∈F ET ∼ρES,Q∼T [J (f (S) , Q)] ,

where ρ is the population distribution (also known as environment) of tasks; T is

a task sampled from ρ; S and Q are training and testing sets from the task T ,

respectively.

Example 2.3.4 (Few-shot Sinusoidal Function Meta-learning). Consider a class

of regression tasks with true underlying functions f(x; γ) = γ1 sin(x + γ2) where

γ := (γ1, γ2)>. Suppose that we only have access to noisy observations y(x; γ) =

f(x; γ) + ε at some points {xi}mi=1, where γ1 and γ2 are not fixed and ε is some



2.3. Transfer Learning in Supervised Learning 33

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

3

2

1

0

1

2

3

y

Figure 2.2: Illustration example: 5-shot sinusoidal function meta-learning. Each curve rep-
resents the true function from a sinusoidal function regression task, with obser-
vations plotted as dots.

random Gaussian noise following N (0, 0.12). Consider that the environment ρ is

γ1 ∼ Uniform[0.1, 3.0] and γ2 ∼ Uniform[0, π], each task is then a regression task

with values of γ1 and γ2 sampled from their distributions. Through a meta-learning

process, we want to find a f̂ that can adapt to the underlying true function of an

unseen task T from ρ fast. Few-shot means the number of training samples S of

the unseen task T is small, e.g., 1. When |S| = 1, this is referred to as 1-shot

regression; when |S| = 5, this is referred to as 5-shot regression. Figure 2.2 gives

an example of 5-shot meta learning for this class of sinusoidal functions.

The above sinusoidal function regression tasks can be solved individually.

However, when the true underlying function f is much more complex than sinu-

soidal functions and when only a small number of training data points per task are

available, learning a good regressor f̂ can be very difficult.

Example 2.3.5 (Parametric Probabilistic Models). Suppose that we have access to

noisy observations from several tasks, and all of these tasks are assumed to share

the family of probabilistic model PΘ(X ,Y) := {pθ, θ ∼ ρ} where θ encodes some

unknown random structure of (X, Y ) and is sampled from some distribution ρ. Each

task T can then be the inference problem of the joint distribution of covariates and

response, i.e., pθ(X, Y ). Since θ is random, the generative process of (X, Y ) can be



2.3. Transfer Learning in Supervised Learning 34

different across different realisations of θ but they can be related as the environment

ρ is shared across different tasks and thus observations. The goal of meta-learning

is to utilize a model f that is able to learn the structure θ̃ given few observations

from any unseen new task T̃ fast once the model has been fit on the previous training

tasks with observations {(xi, yi)}mti=1 for Tt and t = 1, . . . , Ttrain. Concrete examples

of this kind are included in Chapter 5 and Chapter 6.



Chapter 3

Background: Kernel Methods,

Stein’s Method, Control Variates and

Meta-learning

This chapter contains three sections. Section 3.1 presents necessary background

of kernel methods. Section 3.2 introduces Stein’s method. Section 3.3 discusses

the existing control variates methods. Section 3.5 presents necessary background

of meta-learning. These are important and fundamental components of the three

proposed methods in Chapter 4, Chapter 6 and Chapter 5, repectively.

3.1 Kernel Methods
In this section, we provide necessary background of kernel methods as they are

the key components of the method proposed in Chapter 4. Kernel methods have

been used to construct control variates (Oates et al., 2017; Si et al., 2021; South

et al., 2022b), and they are also very popular in computational statistics and machine

learning.

3.1.1 Reproducing Kernel Hilbert Spaces

A reproducing kernel Hilbert space (RKHS) is a space of real-valued functions

with reproducing property (Berlinet and Thomas-Agnan, 2011; Wainwright, 2019),

which makes it popular and convenient for solving statistical machine learning

tasks. A concrete way to think of a RKHS Hk is to specify a positive semidefi-



3.1. Kernel Methods 36

nite kernel k. Alternatively, an equivalent way is to restrict to the Hilbert spaces in

which linear functionals are bounded as a result of the Riesz representation theorem.

For the purpose of introduction, we will focus on the first way to introduce a RKHS

by defining a valid positive semidefinite kernel function.

Definition 3.1.1 (Scalar-valued Kernels). A symmetric bivariate function is a func-

tion of two input variables, of which the value is the same no matter the order

of its two input variable. A symmetric bivariate function k : X × X −→ R is

said to be a valid scalar-valued positive semi-definite (PSD) kernel function if for

any finite set of points X := {xi}Ni=1, the Gram matrix k(X,X) with elements

(k(X,X))i,j := k(xi, xj) is positive semidefinite, i.e. v>k(X,X)v ≥ 0 for any

v ∈ RN .

For example, the squared-exponential kernel k(x, y) = exp(−‖x−y‖2
2λ2

) with

λ ∈ R+ and preconditioned squared-exponential kernel (Oates et al., 2017)

k(x, y) = 1
(1+α‖x‖22)(1+α‖y‖22)

exp
(
−‖x−y‖22

2λ2

)
with λ ∈ R+ and α ∈ R+ are valid

kernels. Polynomial kernels k(x, y) = (x>y + c)l with constant c ∈ R and power

l ∈ N are valid scalar-valued kernels. The product of kernels are also valid kernels;

see (Duvenaud, 2014) for more examples of kernels and kernel grammar.

Kernels are particularly useful as raw data points are embedded in a high di-

mensional feature space without specifying it directly. This is referred as repro-

ducing property (defined in Definition 3.1.2), which is one of the most important

and useful properties of kernels. It allows us to regard the kernel function as a

feature map from X to H. One benefit of using kernels is that we no longer need

to do computation in the feature space, instead, by reproducing property we have

〈k(·, x), k(·, x′)〉Hk = k(x, x′).

Definition 3.1.2 (Reproducing Property). For a kernel K, given ∀x ∈ X and ∀f ∈
HK , K(·, x) ∈ HK and it satisfies,

〈f,K(·, x)〉HK = f(x). (3.1)

However, choice of kernels itself is an important and challenging task when



3.1. Kernel Methods 37

we do not have expert knowledge. The widely-adopted strategy is to choose kernels

(and the associated hyper-parameters of kernels) by cross-validation. There are

some tricks that help us to find proper candidates. For example, for regression

tasks, it is often to choose the kernels which match the properties of the underlying

true functions, e.g. periodicity and smoothness. Another example is more relevant

to the topics of this thesis. That is, for kernel-based control variates, it is generally

required in practice that the chosen kernels should match the smoothness of the

integrands of interest, and ideally the integrands lie in the space of the RKHSs

induced by these kernels.

Theorem 3.1.1 (Moore-Aronszajn Theorem). Every scalar-valued kernel induces

a unique Hilbert space H in which k satisfies the reproducing property defined in

Definition 3.1.2. It is also known as reproducing kernel Hilbert space (RKHS).

See (Wainwright, 2019, Theorem 12.11) for proof.

Similarly, we can have a vector-valued RKHS (vv-RKHS) by specifying a valid

matrix-valued PSD kernel function. The definition is provided below. Learning

vector-valued functions in a vv-RKHS has been used in the literature of machine

learning (Micchelli and Pontil, 2004; Evgeniou et al., 2005; Micchelli and Pon-

til, 2005; Minh et al., 2016) since it allows us to learn multiple tasks jointly, e.g.,

vector-valued regularized least squares (Micchelli and Pontil, 2005) and vector-

valued multi-view support vector machines (Minh et al., 2016).

Definition 3.1.3 (Matrix-valued Kernels). Suppose that W is a real separable

Hilbert space with inner product 〈, 〉W and L(W) is the Banach space of bounded

linear operators on W . A bivariate function K : X × X −→ L(W) is said to be a

valid matrix-valued positive semi-definite kernel function if K(x, y) = K(y, x)>

for ∀x, y ∈ X and
∑N

i=1

∑N
j=1〈ai, K(xi, xj)aj〉W ≥ 0 for every finite set of points

{xi}Ni=1 in X and {ai}Ni=1 inW .

One example of W is RT . Note that, when W is R, this recovers the case of

scalar-valued positive semidefinite kernel.



3.1. Kernel Methods 38

Theorem 3.1.2. Given such a K : X ×X −→ L(W), there exists a unique (up to an

isometry)W-valued RKHS in which K satisfies the reproducing property defined in

Definition 3.1.2.

See Micchelli and Pontil (2005, Theorem 2.1) for proof. WhenW is RT , one

example of K is a separable kernel K(x, y) = Bk(x, y) where B is a positive semi-

definite matrix and k is a scalar-valued kernel. B can be regarded as the relationship

among tasks since it is a kernel on the response variables. IfB is unknown, Ciliberto

et al. (2015) showed that one could estimate B by block-coordinate descent. This

is particular useful when the relationship among several related tasks is unknown.

This can also benefit the proposed vector-valued control variates; more details will

be presented in Section 4.2.

3.1.2 Kernel Methods in Statistical Learning

In this section, we will present details of Gaussian processes regression and kernel

ridge regression, which are widely used in statistical machine learning.

Gaussian Processes Gaussian process (GP) (Rasmussen, 2003) is one of most

influential Bayesian non-parametric methods in statistical learning. It has been

widely used in the fields of regression, Bayesian quadrature, active learning and

uncertainty quantification. By assuming a GP prior on the function f ∼ GP(m, k)

with a mean function m : X −→ R and a kernel function k : X × X −→ R and

conditioning on a finite set of observations {xi, yi}Ni=1 where yi = f(xi) + εi with

εi ∼ N (0, σ2), we have Y ∼ N (m(X), k(X,X)) where X is a matrix with the

i-th row x>i , Y is a column vector with the i-th element yi, m(X) is a column

vector with the i-th element m(xi) and k(X,X) is a square matrix with the (i, j)-

th element k(xi, xj). As a result of Gaussian conditioning, GP provides tractable

posteriors of f |{xi, yi}Ni=1 ∼ GP(m̃σ2 , k̃σ2). When εi degrades to zero, this is the

setting of interpolation. In this case, we will have f |{xi, yi}Ni=1 ∼ GP(m̃0, k̃0).



3.1. Kernel Methods 39

Both of the two scenarios can be unified using the following equations:

m̃σ2(x∗) = m(x∗) + k(x∗, X)(k(X,X) + σ2IN)−1(Y −m(X))

k̃σ2(x∗, z∗) = k(x∗, z∗)− k(x∗, X)(k(X,X) + σ2IN)−1k(X, z∗),

where IN is an indentity matrix of size N , k(x∗, X) = (k(x∗, x1), . . . , k(x∗, xm))>

and k(X, x∗) = k(x∗, X)>.

Kernel Ridge Regression and Kernel Interpolation Though the above expres-

sions are derived by Gaussian conditioning from a probabilistic point of view, it can

also be derived by non-probabilistic functional approximation in the reproducing

kernel Hilbert spacesHk associated with the kernel k of the GP. Given observations

{xi, yi}Ni=1, the objective of kernel Ridge regression is:

f̂ := arg minf∈Hk
∑N

i=1 J(f(xi), yi) + λ‖f‖2
Hk , (3.2)

with J(f(xi), yi) := (f(xi) − yi)2 and λ > 0. The solution to the above objective

is unique and is given by:

f̂(x) = k(x,X)(k(X,X) +NλIN)−1Y,

where k(x,X) := (k(x, x1), . . . , k(x, xN)). In the noise-free case, i.e. without

observation random error, yi = f(xi), this corresponds to kernel interpolation. The

kernel interpolation estimator is given by (3.2) with λ = 0, i.e.,

f̂(x) = k(x,X)k(X,X)−1Y.

See (Berlinet and Thomas-Agnan, 2011; Kanagawa et al., 2018) for more details

and discussions of the connection between kernel ridge regression, kernel interpo-

lation and Gaussian processes.



3.2. Stein’s Method 40

3.2 Stein’s Method
Stein’s method (Chen et al., 2010) can be used to construct classes of functions that

have zero mean. Therefore, it has been widely used in control variates (Mira et al.,

2013; Si et al., 2021; Oates et al., 2017). It is also closely related to the proposed

vector-valued control variates in Chapter 4 and the proposed meta-learning control

variates in Chapter 5. Therefore, in this section, we provide necessary background

knowledge of Stein’s method and its applications in the fields of computational

statistics and machine learning; see (Anastasiou et al., 2023) for a more detailed

review.

3.2.1 Stein Identity and Stein Operators

In this section, we will give definitions of Stein identity in Definition 3.2.1 and then

introduce the Langevin Stein operator in Definition 3.2.2. They are also the key

components of the proposed methods vector-valued control variates in Chapter 4

and meta-learning control variates in Chapter 5.

Definition 3.2.1 (Stein identity). A Stein class of a distribution Π is a class of

functions U associated to a Stein operator SΠ, such that the Stein identity holds:

Π[SΠ[u]] = 0 ,∀u ∈ U .

Definition 3.2.2 (Langevin Stein Operator). For regular scalar-valued functions u :

X −→ R, the second-order Langevin Stein operator is,

L′′Π[u](x) := ∆xu(x) +∇xu(x) · ∇x log π(x), (3.3)

where ∆xu(x) :=
∑d

j=1
∂2u(x)

∂x2j
,∇xu(x) := (∂u(x)

∂x1
, . . . , ∂u(x)

∂xd
)> and a · b is the inner

dot product for two equally sized vectors a and b. While, for regular vector-valued

functions u : X −→ Rd, the first-order Langevin Stein operator is,

L′Π[u](x) := ∇x · u(x) + u(x) · ∇x log π(x), (3.4)

where∇x · u(x) :=
∑d

j=1
∂(u(x))j
∂xj

.



3.2. Stein’s Method 41

With L′Π, to check if a function f : Rd −→ Rd is in the Stein class of Π which

admits a continuous differentiable density π with support X ⊆ Rd, we only need to

check each element of fj is smooth and satisfies
∫
x∈X ∇x(fj(x)π(x))dx = 0 for all

j ∈ {1, . . . , d} (Liu et al., 2016). With L′′Π, if f : Rd −→ R is twice continuously

differentiable, log π is continuously differentiable and ‖∇xf(x)‖ ≤ C‖x‖−δπ(x)−1

for some constant C ∈ R and δ > d − 1, then f is in the Stein class of Π (South

et al., 2022b). In addition, evaluation of these operators requires only point-wise

evaluation of ∇x log π(x). It can also be used even when π involves an unknown

normalisation constant, i.e. π = π̃/Z where π̃ is only known point-wisely and Z >

0 is a intractable normalising constant. This is because that ∇ log π̃ = ∇log π −
∇ logZ = ∇log π. This is a significant advantage for many applications, e.g. when

the distribution of interest Π is a Bayesian posterior.

3.2.2 Stein’s Operators on RKHSs

Stein’s operators on RKHSs were firstly proposed and used by Liu et al. (2016);

Oates et al. (2017), and then several applications and extensions have been devel-

oped in Liu and Wang (2016); Wang et al. (2019a); Gorham et al. (2019); Barp

et al. (2019); Singhal et al. (2019); Matsubara et al. (2021). Here, we only present

essentials of Stein’s operators on RKHSs, we refer readers to (Oates et al., 2017;

Liu et al., 2016; Oates et al., 2019) for more details.

Definition 3.2.3 (Scalar-valued Stein Kernels (Oates et al., 2017)). The image of

U := Hd
k := Hk × . . .×Hk under L′Π is a RKHS Hk0 induced by the reproducing

kernel k0, which is given by

k0(x, x′) = (∇x · ∇x′)k(x, x′) + (∇x log π(x)) · (∇x′ log π(x′))k(x, x′)

+ (∇x log π(x)) · (∇x′k(x, x′)) + (∇x′ log π(x′)) · (∇xk(x, x′)). (3.5)

The kernel mean Ex∼Π[k0(·, x)] = 0 almost everywhere in X (Oates et al., 2017,

2019).

One example is that the well-known squared-exponential kernel k(x, x′) =

exp(−‖x−x′‖22
l2

) with l > 0 is in the Stein class of distributions with smooth densities



3.2. Stein’s Method 42

with support X = Rd. The conditions for a base kernel k(x, x′) in the Stein class

of a distribution Π have been discussed in (Oates et al., 2017, 2019); see also (Liu

et al., 2016, Definition. 2.1 & 3.4 and Proposition 3.5). That is, a kernel k is said to

be in the Stein class of Π if k has continuous second order partial derivatives, and

for any fixed x, k(·, x) and k(x, ·) are in the Stein class of Π.

3.2.3 Applications of Stein’s method in Statistical Learning

In this thesis, Stein’s method is mainly used to construct control variates, which is

presented in details in Section 3.3, Chapter 4 and Chapter 5. Stein’s method has also

been widely used in computational statistics and machine learning. In this section,

we will briefly discuss recent applications of Stein’s method.

Variational Inference with Stein’s Method Stein’s method has also been used for

statistical inference. One representative work in the field is Stein variational gradi-

ent descent (SVGD) (Liu and Wang, 2016). Other variants include SVGD without

gradient (Han and Liu, 2018) (using surrogate gradient), message-passing SVGD

(Zhuo et al., 2018) (using Markov blanket to solve collapse in high-dimensional

scenarios) and Stein discrepancy for energy-based models (Barp et al., 2019; Grath-

wohl et al., 2020). Connection between SVGD and black-box variational inference

(BBVI) has been discussed in (Chu et al., 2020): equivalence is established when

SVGD uses the neural tangent kernel. SVGD has also been combined with amor-

tized varitional inferece, e.g., Stein variational auto-encoder (Feng et al., 2017; Pu

et al., 2017). It is also closely linked to measure transport (Fisher et al., 2021) and

gradient flow (Liu, 2017).

Kernel Stein Discrepancy Stein’s method has also been used for construction of

kernel Stein discrepancy (KSD) which has applied in many fields. Liu et al. (2016)

employ KSD for goodness-of-fit tests and Chwialkowski et al. (2016) establish the-

oretical consistency for these tests. Gorham and Mackey (2017) employ KSD to

measure sample quality with KSD. Barp et al. (2019) establish theoretic results for

minimum Stein discrepancy estimators when maximum likelihood estimators are

infeasible. Matsubara et al. (2021) provide a generalized Bayesian inference frame-

work with kernel Stein discrepancy. It is also possible to perform efficient sampling



3.3. Scalar-valued Control Variates 43

or post-processing MCMC samples with KSD. These include Stein points (Chen

et al., 2018, 2019a) (selecting samples sequentially by minimising KSD between

a candidate point and existing selected samples in a greedy way) and Stein thin-

ning (Riabiz et al., 2022) (optimally thinning the output of MCMC algorithms by

minimising KSD greedily).

3.3 Scalar-valued Control Variates

In this section, we will review existing control variates methods and discuss the key

steps of constructing and selecting effective control variates. The existing control

variates methods aim to estimate only one single integral at a time, which is also

referred to as scalar-valued control variates (sv-CVs). These sv-CVs methods are

post-processing tools of Monte Carlo methods which can provide us with more

accurate estimators with the same number of data points. This can be particularly

useful when it is expensive to obtain samples and/or to evaluate the function of

interest, e.g., when the likelihood is expensive.

3.3.1 Control Variates

In Chapter 4 and Chapter 5, we consider the integrand of interest f belonging to

the space of Π-square-integrable functions on X . This space is denoted as L2(Π) =

{f : X → R s.t. Π[f 2] <∞}. This assumption is crucial to guarantee the existence

and finiteness of the variance of the target integrand f under distribution Π which

is given by VΠ[f ] := Π[f 2]− (Π[f ])2.

The Monte Carlo estimator is the average of integrand values evaluated at N

independent and identically distributed (IID) samples from Π, {xi}Ni=1, which is

given by

Π̂MC[f ] = 1
N

∑N
i=1 f(xi). (3.6)

Since we assume that the integrand f ∈ L2(Π), the Monte Carlo estimator defined



3.3. Scalar-valued Control Variates 44

above satisfies the following central limit theorem:

√
N
(

Π̂MC[f ]− Π[f ]
)

d−→ N (0,VΠ[f ]) ,

where d−→ means converge in distribution.

The above theorem tells that the variance VΠ[f ] plays a vital role in the per-

formance of MC estimators. When VΠ[f ] is large, MC estimators often require

a large number of samples and integrand evaluations to ensure a satisfactory ac-

curacy. This is also why many CVs methods take minimising VΠ[f ] as the goal.

This can also be generalised for Markov chain Monte Carlo (MCMC) (Dellaportas

and Kontoyiannis, 2012; Belomestny et al., 2020, 2021; Alexopoulos et al., 2023)

and quasi-Monte Carlo (Hickernell et al., 2005), e.g., to minimise the asymptotic

variance. For instance, Oates and Girolami (2016) proposed kernel-based CVs for

quasi-Monte Carlo specifically, in addition to the previous work for Monte Carlo

(Oates et al., 2017). In this thesis, we will focus on the MC variance VΠ[f ].

As discussed above, we want to have an estimator of Π[f ] but with a reduced

variance. A widely adopted approach is to identity a function g ∈ L2(Π), also

known as a control variate, such that VΠ[f − g] is much smaller than VΠ[f ]. Then,

we can use the sum of a MC estimator of Π[f − g] and Π[g] to be an estimator

of the original integral of interest Π[f ]. This, however, requires Π[g] = 0 or a

tractable Π[g] (e.g. Π[g] is a constant β such that Π[f − g] + β = Π[f ]) since we

need to compensate for the subtraction of g from f in the integral. With a subset

{xi, f(xi)}mi=1 (also called the training set of CVs) of all N samples and the cor-

responding integrand evaluations, we can select an effective CV ĝm that minimises

VΠ[f − g]. We can then regard f − ĝm as the new integrand of interest and use the

remaining N − m samples and the associated functional evaluations to construct

a MC estimator of Π[f − ĝm]. Then, the CV estimator of the original integral of



3.3. Scalar-valued Control Variates 45

interest Π[f ] is given by,

Π̂CV[f ] := Π̂MC[f − ĝm] + Π[ĝm] (3.7)

= 1
N−m

∑N
i=m+1 (f(xi)− ĝm(xi)) + Π[ĝm].

Note that, conditioning on the training set {xi, f(xi)}mi=1, we can derive a central

limit theorem for Π̂CV[f ] with VΠ[f − ĝm] in place of VΠ[f ]. That is,

√
N −m

(
Π̂CV[f ]− Π[f ]

)
d−→ N (0,VΠ[f − ĝm]) .

This tells us that when ĝm approximates f well, the variance VΠ[f − ĝm] is very

close to zero. Then, the CV estimator Π̂CV[f ] tends to be much more accurate than

the raw MC estimator Π̂MC[f ].

In the following section, we will detail how to construct and select an effective

CV from the data.

3.3.2 Constructing and Selecting Control Variates

As discussed in previous section, there are two key steps if we want to us control

variates for Monte Carlo integration:

(i). Constructing classes of known-mean functions G, e.g. Π[g] = 0 for ∀g ∈ G;

(ii). Selecting an effective control variate g∗ ∈ G.

Zero-mean Functions by Stein’s method The first challenge is that it is required

a function class G such that for all g ∈ G have known-mean under the distribution

of interest, Π. Though ad-hoc approaches, such as Taylor expansions of f (Paisley

et al., 2012; Wang et al., 2013), can be used when Π is relatively simple, this is usu-

ally a challenge whenever Π is a more complex density, such as can be encountered

in a Bayesian inference task. One way forward is to use Stein’s method discussed

in Section 3.2. That is, we can construct g := SΠ[u] by applying a Stein operator

SΠ (e.g. L′Π) to u ∈ U such that Π[g] = 0. CVs constructed in this way are known

as Stein-based CVs.



3.3. Scalar-valued Control Variates 46

Selecting Control Variates When a family of control variates G has been iden-

tified, we need to select an effective CV from this family for the integration task

of interest. In general, there are two ways to select the optimal g∗, either through

closed form solutions (e.g., Assaraf and Caffarel, 1999; Mira et al., 2013; Oates

et al., 2017) or stochastic optimization algorithms (e.g., Si et al., 2021; Wan et al.,

2019). One typical choice of the objective of selecting an ideal CV g∗ ∈ G is to

minimize the variance,

g∗ ∈ arg min J(g) := Π
[
(f − g − Π[f ])2] (3.8)

In this thesis, we will limit ourselves to parametric families, and will aim to identify

a good parameter value so that the variance of the CV estimator is minimised; see

Section 3.3.3.2, Chapter 4 and Chapter 5 for more specific details. Let gβ,θ(x) =

β + gθ(x) where θ consists of parameters determining the zero-mean Stein-based

CV gθ, and there is an additional parameter β that will be used to approximate Π[f ].

Given a dataset S = {xi,∇ log π(xi), f(xi)}mi=1, and following the framework of

empirical loss minimisation, the parameter θ can be estimated by minimising

JS(θ, β) := 1
m

∑m
i=1 (f(xi)− gβ,θ(xi))2 .

The value of β minimising this objective is a consistent estimator for Π[f ] in the

m → ∞ limit. To avoid over-fitting when m is small, penalised objectives have

also been used in practice (Oates et al., 2017; South et al., 2022a; Wan et al., 2019;

Si et al., 2021). Determining the strength of the penalty can be very challenging.

CV Estimators In general, we split the dataset of size N = m + n of an in-

tegral estimation task into two parts, S := {xi,∇ log π(xi), f(xi)}mi=1 and Q :=

{xi,∇ log π(xi), f(xi)}Ni=m+1. Once gβ̂,θ̂ is selected with the first dataset S, the re-

maining n samples are used to construct unbiased estimators of Π[f ] (as long as the



3.3. Scalar-valued Control Variates 47

samples are IID), given by

Π̂CV[f ] = Π̂MC
[
f − gβ̂,θ̂

]
=

1

N −m
N∑

i=m+1

(
f(xi)− gβ̂,θ̂(xi)

)
+ β̂. (3.9)

Remark 3.3.1 (Alternative Objectives of Control Variates). Note that the objectives

used to select g∗ matter. The objective in (3.8) is known as ordinary least squares

Monte Carlo. Extra penalty terms on g ∈ G would result in various variants.

For instance, when including a L1-penalty term on θ, this gives us Lasso Monte

Carlo, one can perform control variates selection and provide a control variate

estimator simultaneously; see (South et al., 2022a; Leluc et al., 2021) for a detailed

discussion.

Remark 3.3.2 (Control Variates Estimator). As shown above, Π[f ] can be in-

cluded into the objective and learnt with other parameters simultaneously. For

instance, when gθ(x) =
∑d

j=1 θjφj(x) (Assaraf and Caffarel, 1999; Mira et al.,

2013) where φj are some control variates, Π[f ] can be regarded as an intercept

β in the regression with f as the response and {φj}dj=1 as the covariates. This

is also the case when we use a RKHS Hk0 with k0 be a Stein kernel. Given a

training dataset {xi,∇ log π(xi), f(xi)}mi=1 and with the objective of kernel Ridge

regression, the optimal g ∈ Hk0 has the form of: gθ(x) =
∑m

i=1 θik0(x, xi) where

θ := (θ1, . . . , θm)> ∈ Rm. We can take gβ,θ(x) =
∑m

i=1 θik0(x, xi) + β where now

(β, θ1, . . . , θm)> ∈ Rm+1. This will result in a biased and consistent estimator of

Π[f ] given by β when the sample sizem is finite. However, this biased estimator will

be much more accurate if the problem of functional approximation can be solved at

a faster rate than the Monte Carlo convergence rate.

3.3.3 Choices of U
In the previous section, the framework of existing CVs methods is discussed. In this

section, we will present relevant existing Stein-based CVs methods, including poly-

nomial CVs, kernel-based CVs and neural CVs, which consider different choices of

U . We also compare the computational complexity and properties of the CVs dis-



3.3. Scalar-valued Control Variates 48

cussed in this section in Table 3.1; see a more detailed discussion in (South et al.,

2022c).

3.3.3.1 Polynomial Control Variates

Polynomial control variates (Mira et al., 2013; Assaraf and Caffarel, 1999) utilize

polynomials to be U , e.g., first-order or second-order polynomials. For first order

polynomials uθ(x) =
∑d

i=1 θix
i where θ = (θ1, . . . , θd)

>, CVs are constructed as

the following,

gθ(x) = L′Π[uθ](x) =
∑d

i=1 θi∂
i log π(x) = θ>∇x log π(x), (3.10)

where ∂i log π(x) := ∂ log π(x)
∂xi

. Similarly, for second order polynomials uθ(x) =∑d
i=1 θix

i +
∑d

i=1

∑d
j≥i θijx

ixj where θ = (θ1, . . . , θd, θ11, θ12, . . . , θdd)
>, CVs are

constructed as the following,

gθ(x) = L′Π[uθ](x) = 2
∑d

i=1 θii +
∑d

i=1

∑d
j≥i(θi + θijx

j)∂i log π(x). (3.11)

However, though polynomial control variates are simple to compute, they are

not bias-correcting, which means the resulting estimators are not shown to be con-

sistent in a biased-sampling setting as discussed in South et al. (2022c). Meanwhile,

polynomials CVs sometimes are not flexible enough and can have a bad fit to com-

plex integrands. It also requires us to determine a proper value of the degrees of

polynomials.

3.3.3.2 Kernel-based Control Variates

Unlike polynomial CVs, kernel-based control variates (Oates et al., 2017, 2019;

South et al., 2022b) approximate the integrand in a non-parametric way. In addition,

one particular benefit of control functionals (Oates et al., 2017, 2019) and semi-

exact control functionals (South et al., 2022b), is that these two methods are bias-

correcting (South et al., 2022b,c) even in a biased-sampling setting.

Control Functionals One representative work is control functionals (Oates et al.,

2017, 2019; Oates and Girolami, 2016). As discussed in Definition 3.2.3 and pre-



3.3. Scalar-valued Control Variates 49

vious sections, control functional estimators Π̂CF[f ] are constructed based on the

particular choice of reproducing kernel Hilbert spaceHk0 .

Π̂CF[f ] =


1
n
111>n [f(Z)− k0(Z,X)k0(X,X)−1(f(X)− β̂111m)] n > 0

111>mk0(X,X)−1f(X)
111>mk0(X,X)−1111m

=: β̂ n = 0

(3.12)

where X = {xi}mi=1, Z = {zj}Nj=m+1, (k0(X,Z))i,j = k0(xi, zj). The selected CV

is: ĝm(z) = k0(z,X)k0(X,X)−1[f(X) − β̂111m] which can be used to construct

unbiased control variate estimators if we have an additional dataset of size n as

demonstrated in the first row of (3.12). Meanwhile, β̂ can be used as a biased

estimator of Π[f ] which often has a lower mean squared error typically (Oates et al.,

2017). However, the computational cost for selecting effective CVs with control

functionals is O(dm2 +m3), which can be prohibitive when m is large.

Stochastic Optimization of Kernel-based Control Variates Given m observa-

tions {xi,∇ log π(xi), f(xi)}mi=1, it is known that an interpolant inHk0 should have

the form of gm(x) =
∑m

i=1 θik0(x, xi). Therefore, we can use stochastic optimiza-

tion tools to learn (β, {θi}mi=1)>; see also Oates et al. (2017); Si et al. (2021) such

that the computational cost of selecting effective CVs can be reduced; see Table 3.1

for more details. This can be quite useful when the number of samples (and the

corresponding function evaluations) is large.

Other Variants More generally, we can combine different types of control vari-

ates. South et al. (2022b) propose to use a hybrid of polynomials and kernels as

control variates, which are known as semi-exact control functionals (SECFs). By

using kernel grammar (Duvenaud, 2014), combinations of kernels can also be used

to construct kernel-based control variates (Si et al., 2021).

Motivation for Chapter 4 Existing control variates methods have not yet con-

sidered to learn a joint estimator for multiple related integral estimation tasks. To

this end, we propose vector-valued control variates in Chapter 4 through the lens

of reproducing kernel Hilbert spaces induced by novel matrix-valued Stein kernels

K0, which are capable of learning a joint estimator for related tasks and provide us



3.3. Scalar-valued Control Variates 50

with more accurate estimators.

3.3.3.3 Neural Control Variates

Another popular choice of U is a set of neural networks (Wan et al., 2019; Si et al.,

2021), which is referred as neural control variates (Neural CVs). The rationale

of this choice stems from that neural networks are able to approximate complex

functions well, but have a fixed number of parameters, and thus a fixed memory

and computational cost unlike kernel-based control variates. Meanwhile, it is also

convenient to compute ∆ · uθ(x) and ∇xuθ(x) by using AUTOGRAD mechanism in

modern machine learning tools like PYTORCH(Paszke et al., 2019). Benefiting from

stochastic optimisation and neural networks, learning the optimal control variates

with (3.8) and evaluating control variates estimators with (3.9) are convenient and

fast. However, due to non-convexity and complicate structures of neural networks,

Neural CVs have not been shown to be bias-correcting yet.

Motivation for Chapter 5 However, as shown in Si et al. (2021), neural control

variates require a large number of samples (often thousands of samples) to achieve

satisfactory performance and require re-training the neural network for each indi-

vidual integral estimation task. To solve these problems, we propose meta-learning

control variates in Chapter 5 which is capable of constructing control variates at

scale, sharing information across a large number of tasks and achieve better per-

formance even with a very small number of samples (and corresponding function

evaluations) per task, e.g., 5.

Table 3.1: Properties of The Existing CVs That Have Been Discussed. d is the dimension
of x, k is the order of polynomials, p is the number of parameters, N is the total
number of data points, m is the number of data points used to select an effective
CV, m̃ is the size of each mini-batch and L is the total number of iterations.

Method Computational complexity Bias-correcting Super-
√
m convergence

Poly. CVs (Mira et al., 2013) O(Nd+ d3k +md2k) No No
CFs (Oates et al., 2017) O(Nd+m3 +m2d) Yes Yes

SECFs (South et al., 2022b) O(Nd+m3 + d3k) Yes Yes
Stoch. Poly. CVs (Si et al., 2021) O(Nd+ dkm̃L) No No

Neural CVs (Wan et al., 2019) O(Nd+ pm̃L) Not shown Not shown



3.4. Relevant Work on Information Sharing Across Integral Estimation Tasks 51

3.4 Relevant Work on Information Sharing Across

Integral Estimation Tasks

The idea of sharing information across integral estimation tasks has been explored in

a range of settings outside the framework of control variates. Each of these methods

is built on specific assumptions and relies on the structure of the relationship across

tasks. In this section, we will present and discuss these relevant methods which also

consider sharing information across several integral estimation tasks.

Multi-task Averaging for Mean Multi-task averaging (Feldman et al., 2014;

Marienwald et al., 2021) considers joint estimation of the means of several dis-

tributions with separate datasets. Though it is convenient to get an individual mean

estimator for each distribution, joint estimators tend to have better performance.

One early work is James-Stein estimators (Efron and Morris, 1977) for Gaussian

distributions, which have a smaller summed mean squared error than that of indi-

vidual estimators. However, these multi-task averaging methods (Feldman et al.,

2014; Marienwald et al., 2021) only consider and exploit task relationship in terms

of target distributions since the target integrands are fixed to be the mean of the

associated distributions. The proposed vector-valued control variates in Chapter 4

and meta-learning control variates in Chapter 5 do not have such limitations as the

target integrands are not restricted to be the mean.

Multi-task Learning for Monte Carlo Multi-output Bayesian quadrature

(MoBQ) (Xi et al., 2018; Gessner et al., 2020) is a Bayesian probabilistic method

for joint estimation of multiple related integrals. As an extension to Bayesian

quadrature (BQ) (Briol et al., 2015), MoBQ is based on multi-output Gaussian

processes. Instead of placing a GP prior for each individual fj , these methods

regard f1, . . . , fT as elements of a vector-valued integrand f := (f1, . . . , fT )> and

place a multi-output GP prior on this vector-valued integrand f . Therefore, the

relationship among the T integral estimation tasks can be modeled by specifying

structures shared across outputs. Though MoBQ shows the potential to provide im-

proved joint estimators of T related integrals, MoBQ suffers from a computational



3.4. Relevant Work on Information Sharing Across Integral Estimation Tasks 52

cost between O(T 2) and O(T 6) in comparison to O(T ) of BQ. This limit the use

of these methods in cases when there is a large T number of integrals required to

be estimated. Meanwhile, it is hard to use these methods for Bayesian inference.

This is because BQ or MoBQ requires tractable kernel means
∫
X k(x, x′)π(x′)dx′,

which is rare in practice. For instance, it is often the case that we only know the

posterior π up-to an intractable constant Z, i.e., π = π̃/Z, in Bayesian inference. In

these cases, these BQ methods cannot be used. The proposed vector-valued control

variates in Chapter 4 and meta-learning control variates in Chapter 5 do not have

such limitations.

Multilevel and Multi-fidelity Integration Multi-fidelity modelling means that

we are approximating a target function f with approximations with varying levels

of accuracy, which are denoted by f1, . . . , fT ; see (Peherstorfer et al., 2018) for a

detailed review. In this field, methods provide estimates to Π[f ] including multilevel

Monte Carlo (Giles, 2015), multilevel Bayesian quadrature (Li et al., 2023) and

multilevel control variates (Nobile and Tesei, 2015; Fairbanks et al., 2017; Geraci

et al., 2017; Li and Sun, 2023). These methods are usually based on a telescoping

sum Π[f ] =
∑T

l=0 Π[fl−fl−1] where f−1 := 0 and fT := f and estimate Π[fl−fl−1]

for all levels l = 1, . . . , L by Monte Carlo, Bayesian quadrature or control variates.

These methods are used for problems when T is small. In particular, the cost of

function evaluation varies in different levels, and usually the evaluation cost of the

low fidelity approximations is cheaper than that of the high fidelity approximations.

Thus, these methods tend to allocate more samples for cheaper but less accurate

approximations and fewer samples for expensive but more accurate approximations.

This setting is different from what we consider in Chapter 4 and Chapter 5 of this

thesis. Meanwhile, these methods are limited to the cases when we only have one

target distribution, i.e., π1 = · · · = πT for all levels. The proposed vector-valued

control variates in Chapter 4 and meta-learning control variates in Chapter 5 do

not have such limitations.

Monte Carlo Methods for Parametric and Conditional Expectations Para-

metric expectation or conditional expectation methods (Krumscheid and Nobile,



3.5. Meta-learning 53

2018; Alfonsi et al., 2023) consider to approximate EX∼π(·|θ)[f(X, θ)] uniformly

over some region of θ. Thus, these methods can be applied to the cases when the

number of integral estimation tasks T is large. However, these methods often re-

quire assumptions on the smoothness of the values of these integrals when varying

θ, which can be problematic when these assumptions are violated. This can an

interesting future direction of control variates methods.

Importance Sampling Importance sampling is used when we want to estimate

Π[f ] with samples from another related distribution Π′ (also known as the impor-

tance distribution). This is achieved by re-weighting the samples from Π′ according

to the weights π
π′

where π and π′ are corresponding probability densities. This is

because Π[f ] = EX∼Π′ [
π(X)
π′(X)

f(X)]. However, such an importance distribution Π′

needs to be chosen carefully to ensure the resulting estimator has a low variance.

Demange-Chryst et al. (2022) consider estimate multiple related integrals by choos-

ing an importance distribution Π′ that works well for multiple integral estimation

tasks. However, choosing such a distribution Π′ can be very challenging when the

number of integral estimation tasks is large. The proposed vector-valued control

variates in Chapter 4 and meta-learning control variates in Chapter 5 do not re-

quire to know such an importance distribution Π′.

3.5 Meta-learning

Humans are known to be able to learn new ideas or concepts from a small number

of observations in a new task. This remarkable ability is on the basis of: excel-

lent leverage of the learning experience from the past; adaption to novel ideas or

concepts even with few samples from unseen tasks fast.

To mimic such ideal ability for machine learning algorithms, meta-learning,

also known as learning to learn, has been proposed. Meta-learning methods have

gained much attention and achieved rapid progress recent years, especially in the

fields of image classification (Finn et al., 2017, 2019; Vinyals et al., 2016; Snell

et al., 2017; Sung et al., 2018). In this section, we will introduce the necessary

background knowledge of meta-learning with focus on the two branches of meta-



3.5. Meta-learning 54

learning, gradient-based meta-learning and metric-based meta-learning, which are

most relevant to the proposed methods in Chapter 6 and Chapter 5.

Definition 3.5.1 (Meta-Learning). Suppose that we have a collection of tasks from

some population distribution ρ. We seek for f̂ that can be adapted rapidly to any

testing task T after being trained through some meta-training process. That is,

f̂ = arg minf∈F ET ∼ρES,Q∼T [J(f(S), Q)],

where J is some loss function, S is a training dataset of the task T while Q can

be regarded as a testing set of T with labeled-samples from the task T . S and Q

are also known as the support set and the query set of the task T . Here, f is firstly

learnt on the support set S and then is tested on the query set Q. The overall goal

is then to minimize the risk over the whole environment ρ. We will introduce the

standard way, episodic meta-training process, of training meta-learning algorithms

later in this chapter.

Definition 3.5.2 (Few-shot Meta-Learning). Few-shot means that for each task T ,

its support set S has a very small number of training points. We denote the sample

size of a support set S by |S|. For convenience, we will use the term few-shot

learning instead of few-shot meta-learning in the remaining content of this section.

One typical example of few-shot meta-learning isC-wayK-shot classification.

It is challenging since for each task only few labeled training samples are available.

It is also used as a standard to evaluate the performance of different meta-learning

algorithms for classification tasks.

Definition 3.5.3 (Few-shot Classification: C-wayK-shot). C-wayK-shot few-shot

classification means that each task T has C different classes in total. In particular,

the support set S from T only has K labeled samples per class.

Episodic Meta-training A common way of training a meta-learning algorithm is

the episodic meta-training, proposed by Vinyals et al. (2016). The basic concept

of episodic meta-training is that the process of meta-training should be identical to



3.5. Meta-learning 55

that of the meta-testing. That is, it requires to sample tasks and then sample the

corresponding support sets and query sets for both the meta-training process and

the meta-testing process. To make this clear, we summarize it in Algorithm 1. In

Algorithm 1, the CONDITIONING step can be very general. For instance, given

current task Tt, we can use the loss on St (Finn et al., 2017) to adapt the model or

use the feature map of the raw data from St (Snell et al., 2017) to be the input of the

model. The UPDATE step usually utilizes the loss on the query set Qt to update the

meta-model.

Algorithm 1: Episodic Meta-training: Learn a Meta-model
Input: An Initial Meta-ModelM0, CONDITIONING Rule, UPDATE Rule,

Number of meta-iterations Itr, Environment ρ.
1 for i from 1 to Itr do
2 Sample T1, . . . , TB from ρ.
3 for t ∈ {1, . . . , B} do
4 Sample St and Qt for the task Tt.

/* Conditioning */

5 CONDITIONINGM on St:M←−M(St).
6 Evaluate the loss ofM(St) on Qt: J(M(St), Qt)

/* Update */

7 Mi ←− UPDATE
(
Mi−1,

∑
t∈{1,...,B} J(Mi−1(St), Qt)

)
.

Output: The optimized meta-model M̂ :=MItr .

Algorithm 2: Evaluation: Construct Task-specific Models from the
Meta-model

Input: A task Tt′ of interest, Meta-model M̂, CONDITIONING Rule.
1 Set the task-specific modelM be the meta-model:M←− M̂
2 CONDITIONINGM on St′:M←−M(St′).

Output: Evaluate the performance ofM(St′) on Qt′ .

3.5.1 Gradient-based Meta-learning

Gradient-based meta-learning is a class of meta-learning algorithms that utilises

gradient descent to leverage similarities and relationship among tasks for meta-

learning. The most well-known work in this branch is Model-agnostic Meta-

learning (MAML) (Finn et al., 2017). It aims to learn a globally shared initial-

ization of parameters for all unseen new tasks. Within few steps of gradient descent



3.5. Meta-learning 56

from the shared initialization, MAML has shown excellent performance to an un-

seen task from the environment. To learn such an initialisation, MAML proposes

a bi-level optimisation scheme which includes an inner optimization loop and an

outer optimization loop. Given a task Tt, it restricts task-specific parameters φt be

initialized at the meta-parameters γ, i.e. φt0 ←− γ. Then, φt is further optimized

according to the loss J(Mφt , St) of the model’s prediction for the support set St

of Tt. This inner optimisation of φt can take a few gradient descent steps which

involves φtl ←− φtl−1 − α∇φtl−1
J(Mφtl−1

, St) for l = 1, . . . , L and thus the final opti-

mised task-specific parameter is φtL. During the process of meta-training, since we

also have access to the responses/labels of data points in Qt, γ can be gradually up-

dated by minimising the loss J(MφtL
, Qt) for a series of tasks, where J(MφtL

, Qt)

is the loss of the model’s prediction (after adaption on St) for the query set Qt. The

algorithm of MAML is summarised in Algorithm 3.

Algorithm 3: Model-agnostic Meta-learning (Finn et al., 2017)
Input: ModelMγ , learning rates α and η1, . . . , ηItr , number of

meta-iterations Itr, environment ρ.
1 Initialize the parameters γ ofMγ with γ0.
2 for i from 1 to Itr do
3 Sample a mini-batch of tasks T1, . . . , TB from ρ.
4 for t ∈ {1, . . . , B} do
5 Sample St and Qt for the task Tt.
6 Initialize φt0 ←− γi−1.

/* Adaption */

7 for l from 1 to L do
8 φtl ←− φtl−1 − α∇φtl−1

J(Mφtl−1
, St).

/* Update */

9 γi ←− γi−1 − ηi∇γi−1

1
B

∑B
t=1 J(MφtL

, Qt).
Output: ReturnMγItr

.

Remark 3.5.1 (Unrolled Learning Objectives of MAML). It is possible to unroll

the learning algorithm of MAML as shown in (Fallah et al., 2020; Ji et al., 2022)

later. We will present more details of the unrolled learning objective of MAML

in Chapter 5 and use it for control variates. We keep the original presentation of

MAML here for the most general interpretation, based on which many probabilistic



3.5. Meta-learning 57

variants are proposed (which are discussed in the next paragraph). We will also

introduce a novel probabilistic meta-learning algorithm in Chapter 6.

Remark 3.5.2 (Probabilistic Variants of MAML). Many gradient-based meta-

learning algorithms are based on the particular structure of MAML, including

MAML-HB (Grant et al., 2018), BMAML (Yoon et al., 2018), PLATIPUS (Finn

et al., 2018), VAMPIRE (Nguyen et al., 2020), Meta-Mixture (Jerfel et al., 2019),

ABML (Ravi and Beatson, 2019) and VERSA (Gordon et al., 2019). These prob-

abilistic variants aim to learn the posteriors of neural networks’ parameters for

each task. For instance, MAML-HB links the connection between MAML and hi-

erarchical Bayes while PLATIPUS aims to learn the joint posterior of the shared

initialization γ and task-specific parameters φt conditional on the support set St of

each task Tt.

3.5.2 Metric-based Meta-learning

Metric-based meta-learning methods use metric or similarity measurement as cri-

teria to evaluate how similar an object from the query set is to the labeled objects

in the support set of a task. Thus, these metric-based methods are well-suited for

classification tasks. However, they can not be used for regression tasks in gen-

eral. Some of these methods use well-defined metrics (e.g., cosine (Vinyals et al.,

2016) and Euclidean distance (Snell et al., 2017; Allen et al., 2019)) while others

do not (Sung et al., 2018). Matching Network (Vinyals et al., 2016), Prototype Net-

work (Snell et al., 2017) and Infinite Mixture Prototype Network (Allen et al., 2019)

utilize a specific metric (e.g. cosine or Euclidean distance) for all tasks from the

environment and aim to learn to learn a proper feature map (e.g. in the form of a

neural network) that can capture the discriminative information for all tasks. There

are also some other non-standard metric-based methods, i.e., not using a proper

metric. For instance, Relation Network (Sung et al., 2018) introduces a so-called

deep relation network for pair-wise similarity measurement. Metric-based meta-

learning methods expect that the learned feature map can generalize well to unseen

new tasks from the environment.



3.5. Meta-learning 58

Remark 3.5.3 (Probabilistic Interpretation of Metric-based Meta-learning). Some

metric-based meta-learning methods can be interpreted from a probabilistic per-

spective. For instance, Prototype Network implicitly assumes that within a task

each class follows a Gaussian distribution with a class-specific mean and an iden-

tity covariance matrix. Infinite Mixture Prototype Network allows multiple clusters

within one class, which is achieved by using DP-means or Chinese restaurant pro-

cess. It assumes that within each class each cluster follows a Gaussian distribution

with a cluster-specific mean and a shared covariance matrix among all clusters.



Chapter 4

Vector-valued Control Variates

Monte Carlo (MC) methods are often used to construct estimators for integrals.

However, MC estimators are known to have large variances. To achieve a desired

accuracy, these estimators often require a large number of samples. This can be

infeasible when sampling from the target distributions or evaluation of integrands is

expensive. This problem can be especially severe when multiple integrals need to

be estimated. Control variates are post-processing tools for Monte Carlo estimators

which largely reduce the variances and thus fewer samples and function evaluations

are required. However, existing control variates only consider the cases of scalar-

valued integrals. When we have multiple related integrals, existing control variates

methods ignore the information shared across these related integration tasks since

there is no information flow during the learning processes.

In this chapter, we will extend standard scalar-valued integration to vector-

valued integration. We will show how to construct and select effective vector-

valued control variates in this case. Related background knowledge has already

been presented in Chapter 3. In Section 4.2 and Section 4.3, we formally present

the proposed vector-valued control variates and demonstrate their superior perfor-

mance empirically.

4.1 Introduction
A significant computational challenge in statistics and machine learning is the ap-

proximation of intractable integrals. Examples include the computation of posterior



4.1. Introduction 60

moments, the model evidence (or marginal likelihood), Bayes factors, or integrat-

ing out latent variables. This has lead to the development of a range of Monte Carlo

(MC) methods; see Green et al. (2015) for a review. Let f : X → R denote some

integrand of interest, and Π some distribution with Lebesgue density π known up

to an intractable normalisation constant. The integration task we consider in this

chapter can be expressed as estimating

Π[f ] :=
∫
Rd f(x)π(x)dx

using evaluations of the integrand at some points in the domain: {xi, f(xi)}Ni=1.

These evaluations are usually combined to create an estimate of Π[f ] of the form

Π̂[f ] = 1
N

∑N
i=1 f(xi). For example, when realisations are IID, this corresponds to

a MC estimator. In that case, assuming that f is square-integrable with respect to

Π (i.e. Π[f 2] < ∞), we can use the central limit theorem (CLT) to show that such

estimators converge to Π[f ] as N →∞, and this convergence is then controlled by

the asymptotic variance of the integrand f . Analogous results can also be obtained

for MCMC realisations (Jones, 2004), in which case {xi}Ni=1 are realisations from a

Markov Chain with invariant distribution Π, or for randomised quasi-Monte Carlo

(Hickernell et al., 2005), in which case {xi}Ni=1 form some lattice or sequence filling

some hypercube domain.

As discussed in Chapter 3, the main insight behind the concept of control vari-

ate (CV) is that it is often possible to instead use an estimator of Π[f − g] for

some g : X → R. This is justified if Π[g] is known, in which case we may use

Π̂CV[f ] := Π̂[f − g] + Π[g]. Furthermore, if g is chosen appropriately, the variance

of the CLT for this new estimator will be much smaller than that of the original, and

a smaller number of samples will be required to approximate Π[f ] at a given level

of accuracy.

Suppose now that N = (N1, . . . , NT ) ∈ NT (T ∈ N+) is a multi-index. In

this paper, we will focus on cases where we have not one integration problem, but

a sequence of integrands ft : X → R and distributions Πt for which we would like



4.1. Introduction 61

to use {{xtj, ft(xtj)}Ntj=1}Tt=1 to estimate

Πt[ft] :=
∫
Rd ft(x)πt(x)dx for t ∈ [T ], (4.1)

where [T ] := {1, . . . , T}. This is a common situation in practice; for example, our

paper considers the case of multifidelity modelling (Peherstorfer et al., 2018) where

f1, . . . , fT may be a computationally expensive physical model f , and we might

be interested in expectations of that model with respect to unknown parameters.

Another example we will also study is when π1, . . . , πT are closely related posterior

distributions, such as in the case of power posteriors (Friel and Pettitt, 2008).

Of course, the estimation of integrals in (4.1) could be tackled individually,

and this is in fact the most common approach. However, the main insight from this

paper is that if both the integrands and distributions are related across tasks, we can

improve on this by sharing computation across these tasks. We propose to construct

a CV to jointly reduce the variance of estimators for these integrals and hence obtain

a more accurate approximation. We will call such a function a vector-valued control

variate (vv-CV). In order to encode the relationship between integration tasks, we

will propose a flexible class of CVs based on interpolation in reproducing kernel

Hilbert space of vector-valued functions (vv-RKHS). More precisely, we generalise

existing constructions of Stein reproducing kernels to derive novel vv-RKHSs with

the property that each output has mean zero.

We note that very few methods exist to tackle multiple integrals jointly. One

exception is Xi et al. (2018), which also proposes an algorithm based on vv-RKHSs.

However, that work is limited to cases where the kernel mean is known in closed-

form, which is rarely possible in practice. In contrast, our vv-CVs are applicable

so long as πt is known up to an unknown constant and ∇x log πt can be evaluated

pointwise for all t ∈ [T ] (where ∇x = (∂/∂x1, . . . , ∂/∂xd)
>). This will usually be

satisfied in Bayesian statistics, and is a requirement for the implementation of most

gradient-based MCMC algorithms.

Notation Vectors x ∈ Rd are column vectors, ‖x‖q = (
∑d

i=1 x
q
i )

1/q for q ∈ N, and

111d = (1, . . . , 1)> ∈ Rd. For a multi-index m ∈ Nd, we write |m| =
∑d

i=1mi for



4.2. The Proposed Method 62

its total degree. For a matrix M ∈ Rp×q, Mij denotes the entry in row i and column

j, ‖M‖2
F =

∑p
i=1

∑q
j=1M

2
ij is the Frobenius squared-norm, Tr(M) =

∑m
i=1Mii

is the trace, and M † is the pseudo-inverse. Im denotes the m-dimensional identity

matrix, and Sm+ the set of symmetric strictly positive definite matrices in Rm×m. We

denote by Cj the set of functions whose mixed partial derivatives of order at most j

are continuous, and given a differentiable function g on Rd1×Rd2 , ∂rxg(x, y) denotes

its partial derivative in the rth-coordinate of its first entry evaluated at (x, y).

4.2 The Proposed Method
In this chapter, we consider vector-valued RKHSs (Carmeli et al., 2006, 2010;

Álvarez et al., 2012) to be U onto which Stein operators will be applied. The reason

that we choose to use vector-valued RKHSs is because it allows us to encode rela-

tionships among integration tasks from the literature of multi-task kernel learning

(Ciliberto et al., 2015). To start with, we give the definitions of integrals.

Definition 4.2.1 (Scalar-valued Integral). Suppose f : X −→ R and Π is a distribu-

tion of interest.

Π[f ] := EX∼Π[f(X)] =

∫
Rd
f(x)dΠ(x) (4.2)

Definition 4.2.2 (Vector-valued Integral). Suppose f : X −→ RT such that f(x) =

(f1(x), . . . , fT (x))>, and it is of interest to estimate of the following vector of inte-

grals:

Π[f ] := (EX∼Π1 [f1(X)], ...,EX∼ΠT [fT (X)])>, (4.3)

where Π is formally known as a vector probability distribution.

4.2.1 Construction Vector-valued RKHSs with Zero Means

Since now we are interested in a vector probability distribution Π = (Π1, . . . ,ΠT )>,

we need to define a generalised Stein identity, and also a generalised Stein operator

Svv.



4.2. The Proposed Method 63

Definition 4.2.3 (Generalised Stein Identity and Generalised Stein Operator Svv).
Consider HK which is a vv-RKHS with matrix-valued reproducing kernel (mv-

kernel) K : X × X → RT×T , and suppose that K ∈ C1,1(X × X ). Furthermore,

for suitably regular vv-functions u : X → RT , let

Svv[u] = (L′Π1
[u1], . . . ,L′ΠT [uT ])>,

such that Πt [(Svv[u])t] = 0 for ∀u ∈ U and ∀t ∈ [T ]. Thus, we have Π[Svv[u]] =

(0, . . . , 0)>.

Remark 4.2.1. From Definition 4.2.3, the order matters since for any t′ 6= t, we

may not have Πt′ [(Svv[u])t] = 0.

This leads to a novel class of matrix-valued Stein reproducing kernels which is

presented in the theorem below.

Theorem 4.2.1 (Matrix-valued Stein Reproducing Kernels). Consider the K and

Svv in Definition 4.2.3, the image ofHd
K = HK× . . .×HK under Svv is a vv-RKHS

with kernel K0 : X × X → RT×T :

(K0(x, y))tt′ =
∑d

r=1 ∂
r
x∂

r
yK(x, y)tt′ + lt′r(y)∂rxK(x, y)tt′

+ ltr(x)∂ryK(x, y)tt′ + ltr(x)lt′r(y)K(x, y)tt′ ∀t, t′ ∈ [T ],

where ltr(x) = ∂rx log πt(x). See Appendix A.2.3 for the proof.

Remark 4.2.2 (Evaluation of K0). To evaluate K0 at a pair of points (x, x′),

normalization constants of {Πt}Tt=1 are not required but it is required to know

∇x log πt(x) and ∇x′ log πt(x
′) for all tasks, i.e., ∀t ∈ [T ].

The matrix-valued Stein kernelK0 in Theorem 4.2.1 is very general. When the

base kernel K is separable, the expression of K0 will simplify a lot. Meanwhile,

in this case, it allows us to encode the relationship among the sequence of integral

estimation tasks explicitly.



4.2. The Proposed Method 64

Special Case I: Separable kernel K A matrix-valued kernel K is separable if it

can be written as K(x, y) = Bk(x, y) where k is a scalar-valued kernel and B is a

positive semi-definite matrix of size T × T (i.e. B ∈ ST+). This allows us to encode

and learn the relationship B among integral estimation tasks even when no prior

knowledge of B is available. This simplifies the kernel K0 in Theorem 4.2.1 and

we have:

(K0(x, y))tt′ = Btt′
∑d

r=1 ∂
r
x∂

r
yk(x, y) + lt′r(y)∂rxk(x, y)

+ ltr(x)∂ryk(x, y) + ltr(x)lt′r(y)k(x, y) t, t′ ∈ [T ]. (4.4)

In this case, K0 is not separable even though K is separable.

Example 4.2.1 (Illustration of Special Case I). To give a concrete example of K0,

here we choose Π1 = N (0, 1), Π2 = N (0, 1.25), B11 = B22 = 1 and B12 =

B21 = 0.1. The first row corresponds to taking k to be a squared-exponential

kernel, whereas the second and third row correspond to taking a polynomial kernel

k(x, y) = (x>y+ 1)l with l = 1 and l = 2 respectively. As shown in Figure 4.1, the

two components of 1>K0(x, y) are closely related. This is the key of vv-CVs.

Special Case II: Separable kernel K with one single target distribution When

all the distributions of interested are identical Π1 = . . . = ΠT , this further simplifies

the evaluation of K0 in Theorem 4.2.1 and gives,

(K0(x, y))tt′ = Btt′k0(x, y) ∀t, t′ ∈ [T ]. (4.5)

where k0 is given in (3.5). And the scalar-valued Stein kernel k0 can then be recov-

ered by taking T = 1 and B = 1.

Form of Vector-valued Control Variates Given a dataset D = {D1, . . . ,DT}
where Dt = {{xtj, f1(xtj)}mtj=1, and since we take g ∈ HK0 to be the vector-valued



4.2. The Proposed Method 65

5 0 5
x

1

0

1

sq
ua

re
d 

ex
po

en
tia

l k (1TK0(x, 0))1

(1TK0(x, 0))2

5 0 5
x

0

2

sq
ua

re
d 

ex
po

en
tia

l k (1TK0(x, 1))1

(1TK0(x, 1))2

5 0 5
x

0.0

2.5

5.0

sq
ua

re
d 

ex
po

en
tia

l k (1TK0(x, 2))1

(1TK0(x, 2))2

5 0 5
x

20

10

0

1s
t o

rd
er

 p
ol

yn
. k

(1TK0(x, 0))1

(1TK0(x, 0))2

5 0 5
x

5

0

5

1s
t o

rd
er

 p
ol

yn
. k

(1TK0(x, 1))1

(1TK0(x, 1))2

5 0 5
x

0

50

1s
t o

rd
er

 p
ol

yn
. k (1TK0(x, 2))1

(1TK0(x, 2))2

5 0 5
x

40

20

0

2n
d 

or
de

r p
ol

yn
. k

(1TK0(x, 0))1

(1TK0(x, 0))2

5 0 5
x

100

0

100

2n
d 

or
de

r p
ol

yn
. k (1TK0(x, 1))1

(1TK0(x, 1))2

5 0 5
x

0

500

2n
d 

or
de

r p
ol

yn
. k (1TK0(x, 2))1

(1TK0(x, 2))2

Matrix-valued Stein reproducing kernel

Figure 4.1: Illustration of a separable matrix-valued Stein kernel K0 for T = 2 through
projections with 1 = (1, 1)>.

control variates, it has the form of,

gθ(x) =
∑T

t=1

∑mt
j=1K0(x, xtj)θtj, where θtj ∈ RT for all t ∈ [T ], j ∈ [mt].

(4.6)

Remark 4.2.3 (Connection between vector-valued polynomials and vv-RKHSs

with polynomial kernels). We now consider a vv-RKHS HK specified by a matrix-

valued kernel K(x, xi) = B̃kpoly,l(x, xi) = B̃(〈x, xi〉 + c)l. Conditioning on

m samples, f(x) =
∑m

i=1 B̃(〈x, xi〉 + c)lθ̃i for f(x) ∈ HK . Thus, (f(x))t =∑m
i=1

∑l
k=0 B̃t,·θ̃i C

k
l c

l−k
(∑d

j=1 xjxij

)k
. A multivariate polynomial (uθ(x))t =∑

|α|≤l

{
θt,α
∏d

j=1 x
αj
j

}
, where θt,α ∈ R and the subscript denotes the dependence

on α = (α1, . . . , αd) and the task index t. Under this formulation, the connection is

then,

θt,α =
∑m

i=1

(∑T
t′=1 B̃t,t′ θ̃it′

) (
l
k

)
cl−k

(
k

α1,...,αd

) [∏d
j=1 x

αj
ij

]
See Appendix A.2.2 for a detailed derivation.



4.2. The Proposed Method 66

Example 4.2.2 (Polynomial vv-CVs). Suppose that we have kpoly,l(x, y) = (〈x, y〉+
c)l and K(x, y) = Bk(x, y) where B ∈ ST+. When l = 1, we obtain the matrix

valued Stein reproducing kernel:

(K0(x, y))tt′ = Btt′
∑d

r=1 {1 + lrt′(y)yr + lrt (x)xr + lrt (x)lrt′(y) (〈x, y〉+ c)} .

When l = 2, we get:

(K0(x, y))tt′ = Btt′
∑d

j=1

{
2xryr + 2 (〈x, y〉+ c) + 2yrl

r
t′(y) (〈x, y〉+ c)

+ 2xrl
r
t (x) (〈x, y〉+ c) + lrt (x)lrt′ (〈x, y〉+ c)2

}
.

See Appendix A.2.1 for a detailed derivation.

4.2.2 Alternative Kernel-based vv-CVs based on the Second Or-

der Langevin Stein operator

An alternative class of matrix-valued Stein kernels can be constructed using the

second-order Langevin Stein operator. The following theorem provides a character-

isation of the class of vector-valued functions (vv-functions) obtained when apply-

ing this operator to functions in a vv-RKHS.

Theorem 4.2.2. Consider HK which is a vv-RKHS with mv-kernel K : X × X →
RT×T , and suppose that K ∈ C2,2(X × X ). Furthermore, for suitably regular

vv-functions u = (u1, . . . , uT ) : X → RT define the differential operator

Svv[u] = (L′′Π1
[u1], . . . ,L′′ΠT [uT ])>.

Then, the image of HK under Svv is a vv-RKHS with reproducing kernel K0 : X ×
X → RT×T :

(K0(x, y))tt′ =
∑d

r,s=1 ∂
ss
x ∂

rr
y (K(x, y))tt′ + lt′r(y)∂ssx ∂

r
y(K(x, y))tt′

+ lts(x)∂sx∂
rr
y (K(x, y))tt′ + lts(x)lt′r(y)∂sx∂

r
y(K(x, y))tt′ ,



4.2. The Proposed Method 67

for ∀t, t′ ∈ [T ].

See Appendix A.2.6 for proof. This theorem is very similar to Theorem 4.2.1.

When T = 1, this more general kernel recovers the kernel proposed in Barp et al.

(2022). However, one particular disadvantage from a computational perspective is

that it requires higher-order derivatives of the kernel K. Another disadvantage is

that it requires the evaluation of a double sum, which leads to significant increases

in computational cost relative to the one in Theorem 4.2.1. Therefore, we will not

explore this second-order matrix-valued Stein kernel in this thesis.

4.2.3 Learning Vector-valued Control Variates

Analogous to the scalar-valued control variates, suppose that G is parameterised,

denoted by GΘ, then the objective is,

Jvv(θ) = ‖VΠ[f − gθ]‖ = ‖Π[(f − gθ − Π[f ])2]‖, (4.7)

where gθ ∈ GΘ. VΠ means to apply VΠt to ft − (gθ)t elementwisely. This norm

can be any norm. A natural objective then can be the sum of VΠt [ft − gt] for all

t ∈ [T ], i.e., L1 norm. Since we want to use functions in HK0 as vector-valued

control variates, we want to ensure the objective in (4.7) is well-defined. And this

is provided by the following theorem.

Theorem 4.2.3. Suppose that K is bounded with bounded derivatives, and

Πt[‖∇x log πt‖2
2] < ∞ for all t ∈ [T ]. Then, for any g ∈ HK0 , gt is square-

integrable with respect to Πt for all t ∈ [T ].

See Appendix A.2.4 for the proof.

Empirical Risk Minimization with Penalty Given D = {D1, . . . ,DT} where

Dt = {{xtj, ft(xtj)}mtj=1, it is then naturally to follow the empirical risk minimiza-

tion scheme with penalty terms. The penalty terms often serve as the control of the



4.2. The Proposed Method 68

bias-variance trade-off.

Lvv
m(θ, β) := Jvv

m (θ, β) + λ‖gθ‖2

=
∑T

t=1
1
mt

∑mt
j=1(ft(xtj)− (gθ(xtj))t − βt)2 + λ‖gθ‖2, (4.8)

where β = (β1, . . . , βT )> ∈ RT and λ ≥ 0 is the penalty coefficient. The second

term in (4.8) is the penalty term which regularises the norm of vv-functions gθ along

with the emprical loss Jvv
m . Note that here it is not restricted to any particular choices

of norms.

4.2.3.1 Closed-form Solutions of Vector-valued Control Variates

The following Theorem 4.2.4 shows that there exists a unique minimiser of the

objective in (4.8) inHK0 .

Theorem 4.2.4. Given D = {{x1j, f1(x1j)}m1
j=1, . . . , {xTj, fT (xTj)}mTj=1}, the func-

tion which minimises the objective in (4.8) with ‖gθ‖ := ‖gθ‖HK0
and β ∈ RT is of

the form:

gθ(x) =
∑T

t=1

∑mt
j=1 θ

>
tjK0(x, xtj), θtj ∈ RT ∀t ∈ [T ], j ∈ [mt],

with optimal parameter θ∗ given by the solution of this convex linear system of

equations:

∑T
t′=1

∑mt′
j′=1

(∑T
t=1

1
mt

∑mt
j=1 K0(xt′′j′′ , xtj)·tK0(xtj, xt′j′)t· + λK0(xt′′j′′ , xt′j′)

)
θ∗t′j′

=
∑T

t
1
mt

∑mt
j=1 K0(xt′′j′′ , xtj)·t(ft(xtj)− βt),

for ∀t′′ ∈ [T ], j′′ ∈ [mT ]. When K0 is strictly positive definite, then the system is

strictly convex and θ∗ is unique.

See Appendix A.2.5 for proof.

Remark 4.2.4. In Theorem 4.2.4, β = (β1, . . . , βT )> is assumed to be known.



4.2. The Proposed Method 69

Given a estimator θ̂, (4.8) is a quadratic in β, and the optimal estimator is then,

β∗t = 1
mt

∑mt
j=1 ft(xtj)− (gθ(xtj))t, for ∀t ∈ [T ].

This naturally reminds us of block coordinate descent methods in multitask kernel

methods literature, which can be implemented by using closed-form solutions or

stochastic optimisation. Note that Theorem 4.2.4 does not require K is separable.

But the closed-form solution might be largely simplified when K is separable. In

the following two sections, we are going to show how we implement this for special

case I and II, i.e., when the base kernel K is separable.

4.2.3.2 Stochastic Optimization with Known Relationship under

Separable Kernel

One ideal scenario is when B ∈ ST+ is known. This happens when domain knowl-

edge is available, e.g., from experts in the relevant fields. The pseudo-code of our

proposed stochastic optimisation learning algorithm is presented in Algorithm 4.

Since our kernel-based vv-CVs in (4.6) are linear in θ and the objective Lvv
m is

jointly convex in (θ, β) when ‖gθ‖2 is convex in θ, Algorithm 4 is able to minimise

the objective Lvv
m globally when using popular stochastic optimization approaches

under regularity conditions (Bottou et al., 2018), e.g., mini-batch stochastic gradient

descent (Si et al., 2021). Note that, Algorithm 4 can also be applied to other vv-CVs

whether linear or nonlinear.

Initialization Initialising the algorithm at θ(0) = (0, . . . , 0) ∈ Rp when vv-CVs are

parameterized by θ (e.g., polynomial-, kernel- and neural network-based vv-CVs).

This means that no control variates are involved before optimization. Meanwhile, a

natural way of initialising β is to set β(0) to be any available estimates of Π[f ] as we

expect β = (β1, . . . , βT )> approaches Π[f ] when m1, . . . ,mT −→ ∞. For instance,

we can set β(0) = (Π̂MC
1 [f1], . . . , Π̂MC

T [fT ])>.

Construction of Mini-batches For each iteration in the stochastic optimisation

algorithm for vv-CVs, we take mini-batches of size m̃ ∈ N+ where |m̃| ≤ |m|.
Note that m̃ = (m̃1, . . . , m̃T )> is the multi-index that determines the size of the



4.2. The Proposed Method 70

Algorithm 4: Stochastic optimisation for vv-CVs with known task rela-
tionship

Input: D, m̃, L, λ, β(0) and θ(0).
1 for iterations l from 1 to L do
2 Select a mini-batch Dm̃ of size m̃.
3

(
θ(l), β(l)

)
← Updateθ,β(θ(l−1), β(l−1), B;Dm̃

)
.

Output: Return θ(L), β(L).

mini-batch taken from each of the T datasets. This flexible formulation allows

different sizes of mini-batches from the T datasets, which can be useful when the

datasets are of different sizes. Thus, we propose to set m̃t ∝ mt/(
∑T

t=1mt) for all

t ∈ [T ]. This choice means that the number of samples for each integrand in the

mini-batches is proportional to the proportion of data points for that integrand in

D = {D1, . . . ,DT}. An epoch means that the algorithm has gone through all data

points in D and the indices are randomly shuffled after each epoch, which happens

every mt/m̃t (assuming it is an integer) iterations.

Updating In Algorithm 4, θ and β are updated abstractly as a function

Updateθ,β(θ, β, B;D). We present this general formulation here because it might

also be used for other vv-CVs which might benefit from different update ap-

proaches. For instance, pre-conditioners for the gradients might be used for up-

dating when they are available or can be estimated. In our experiments, we update

the values of θ and β based on the gradient of the learning objective∇(θ,β)L
vv
m̃(θ, β)

with the Adam optimizer (Kingma and Ba, 2015).

Regularisation Based on the literature on kernel ridge regression, a natural reg-

ularisation term can be ‖gθ‖ := ‖gθ‖HK0
. This also recovers the objective used in

Theorem 4.2.4. However, it can be infeasible to use this norm due to the heavy

computational cost as it requires kernel evaluations for all the training points in D.

Therefore, we follow the setting of Si et al. (2021) and use the Euclidean norm:

‖gθ‖ = ‖θ‖2. Note that the learning objective is still quadratic in θ and thus still a

convex optimisation problem.



4.2. The Proposed Method 71

4.2.3.3 Stochastic Optimization with Unknown Relationship under

Separable Kernel

We now extend our method to the scenarios when the task relationship B is un-

known. In this case, we need to learn B jointly with θ and β for our vv-CVs. We

propose to use the same objective (4.8), but with one extra penalty term on the norm

of B. That is,

L̄vv
m(θ, β, B) = Jvv

m (θ, β, B) + λ‖gθ‖2 + ‖B‖2, (4.9)

Note the change from Jvv
m (θ, β) to Jvv

m (θ, β, B). This is to emphasize the de-

pendence on the task relationship B. This objective can be optimized by via Al-

gorithm 5. In Algorithm 5, the optimization is accomplished via block coordinate

descent, i.e., combining the gradient updates on (θ, β) and gradient updates on B.

This block coordinate descent approach is inspired by (Ciliberto et al., 2015). Al-

though we use gradient of the loss to updates the parameters, we once again present

such updates as a general function UpdateB(θ, β, B;D), which has similar reasons

to those of Algorithm 4.

Remark 4.2.5 (Positive (Semi-)Definite B in Optimization). To ensure that B is

positive definite at every iteration, we set B = LL>, where L is a lower triangle

matrix with elements being forced to be larger than zero. This is achieved by expo-

nential transformation. Another possible transformation is to take squared values.

And in this case, B is positive semi-definite at every iteration.

In terms of initial values of (θ, β), they can be chosen via using the discussions

in the previous section. While, for the initial value ofB, we suggest to setB(0) = IT

since this means that no relationship across tasks as we do not have access to such

information before learning from the data.

Remark 4.2.6 (Convexity). Algorithm 5 is convex in (θ, β) or B but it is not jointly

convex in all of the three components (θ, β, B). Though we cannot provide con-

vergence to a global optimum due to lack of convexity in general, it works well in



4.2. The Proposed Method 72

practice as shown in the experiments. However, we show the learning objective

is actually jointly convex in (θ, β, B) in some scenarios; see Section 4.2.3.4 for

details.

4.2.3.4 Convex Optimisation for Estimating B

As discussed in Section 4.2.3.3, estimating the matrixB for a separable kernel from

data leads to a non-convex optimisation problem. Thankfully, we can approximate

the optimum using a sequence of convex problems by extending the work of Din-

uzzo et al. (2011); Ciliberto et al. (2015) together with Theorem 4.2.4 above. For

this, we will require that the kernel K0 is separable, and shall thus restrict ourselves

to the case where we have a single target distribution (i.e. special case II).

Theorem 4.2.5. Suppose that Πt = Π for t ∈ [T ] and K(x, y) = Bk(x, y) so that

K0(x, y) = Bk0(x, y) where k0 is defined in (3.5). Then the following objective is

convex in (θ, β, B) for any value of δ > 0:

L̄vv
m,δ(θ, β, B) = J vv

m(θ, β, IT )

+ λ
∑T

t,t′=1

∑mt
j=1

∑mt′
j′=1 Tr

[
B†
(
k0(xtj, xt′j′)θtjθ

>
t′j′ + δ2IT

)]
+ ‖B‖2,

and for each β and any sequence δ` → 0, the associated sequence of minimisers

(θ`, B`) converges to (θ∗, B∗) s.t., (θ∗B
†
∗, B∗) minimises the objective in (4.9).

Proof. Since the kernel K0 is separable, the objective (4.9) may be written

in the form of Ciliberto et al. (2015, Problem (Q)). Has shown therein,∑T
t,t′=1

∑mt
j=1

∑mt′
j′=1 Tr

[
B†
(
k0(xtj, xt′j′)θtjθ

>
t′j′

)]
is jointly convex in B and θ,

and since the first term in Lvv
m,δ(θ, β, B) is convex in β and θ jointly, Lvv

m,δ(θ, β, B)

is jointly convex in (θ, B, β). Moreover, by Theorem 3.1 & 3.3 in (Ciliberto

et al., 2015), when δ → 0, (θ, B) converges in Frobenius norm to (θ∗, B∗), where

(θ∗B
†
∗, B∗) a minimiser of (4.9), where B†∗ denotes the pseudoinverse of B∗.

This theorem could therefore be used to construct an approach based on con-

vex optimisation algorithms which are used iteratively for a decreasing sequence of



4.2. The Proposed Method 73

Algorithm 5: Block-coordinate descent for vv-CVs with unknown task
relationship

Input: D, m̃, L, λ, β(0), θ(0) and B(0).
1 for iterations l from 1 to L do
2 Select a mini-batch Dm̃ of size m̃.
3

(
θ(l), β(l)

)
← Updateθ,β(θ(l−1), β(l−1), B(l−1);Dm̃

)
.

4 B(l) ← UpdateB
(
θ(l), β(l), B(l−1);Dm̃

)
.

Output: Return θ(L), β(L) and B(L).

penalisation parameters in order to converge to an optimum approaching the global

optimum. However, this approach is limited to the case where all distributions are

identical, and is hence not as widely applicable as Algorithm 5.

4.2.4 Computational Complexity of Vector-valued Control Vari-

ates

Vector-valued control variates can be beneficial from the perspective of accuracy.

However, this is achieved at the cost of computation burden, especially when the

number of tasks T is large. Thus, whether to use vv-CVs should depend on the

computational budget available. For instance, when the computational cost of the

evaluations of the integrands or score functions are expensive, the additional com-

putational cost of vv-CVs might be negligible.

The computational complexity of CVs and vv-CVs is presented in Table 4.1.

We emphasise the impact of T , the number of tasks. In particular, the dependence

of the number of tasks T for kernel-based CVs is O(T ), while that for vv-CVs is

between O(T 4) and O(T 6). We also compare the computational complexity of the

closed-form solutions by solving the linear system of equations in Theorem 4.2.4

and the stochastic optimisation methods in Section 4.2.3.2 and Section 4.2.3.3. It is

found that when m̃tL is small relative to mt, computational gains can be achieved.

In all applications considered, both mt and T were small so the overall cost

is controlled. However, this computational complexity can be further significantly

reduced in special cases. When using a kernel corresponding to a finite-dimensional

RKHS (e.g. a polynomial kernel), the scaling becomes linear in mt, but is O(q3)



4.3. Experimental Results 74

Table 4.1: Computational complexity of kernel-based CVs and vv-CVs as a function of
d,m, m̃, L and T . We assume that mt is the same ∀t ∈ [T ] up to additive
or multiplicative constants (and similarly for all m̃t with t ∈ [T ]). The cost
of stochastic optimisation algorithms is assumed to only scale with the cost of
stochastic estimates of the gradient of Jvv.

Method CV vv-CV
Exact solution O((dm2

t +m3
t )T ) O(dm2

tT
4 +m3

tT
6)

Stochastic optim. O(dm̃tmtLT ) O(dm̃tmtLT
4)

instead of O(m3
t ), where q � mt is the dimensionality of the RKHS. Alterna-

tively, for certain choices of point sets and kernels, it is possible to reduce the com-

putational complexity to O(mt logmt) instead of O(m3
t ) by using scalable kernel

methods such as fast Fourier features or inducing points. When the integrands are

evaluated at the same set of points and the separable kernel is used, the compu-

tational cost in T also becomes O(T 2) instead of O(T 6), once again significantly

reducing the computational complexity.

4.3 Experimental Results

We now illustrate the proposed approach on a range of problems with related in-

tegration tasks, including multi-fidelity models and computation of the model evi-

dence for dynamical systems via thermodynamic integration. To make fair compar-

isons across methods, we will always use the same learning rate, decay coefficient,

batch size, and initial values for each example. Since we are interested in gains

obtained from the CVs, we will always fix n = 0. We describe the way of choos-

ing kernel hyperparameters in Appendix A.3. Code is available at: https://

github.com/jz-fun/Vector-valued-Control-Variates-Code.

4.3.1 A Synthetic Example

To start with, a synthetic example is selected from (South et al., 2022c) (denoted

f2). To make the problem fit into our framework, we introduce another integrand

https://github.com/jz-fun/Vector-valued-Control-Variates-Code
https://github.com/jz-fun/Vector-valued-Control-Variates-Code


4.3. Experimental Results 75

(denoted f1) which is similar to f2:

f1(x) = 1.5 + x+ 1.5x2 + 1.75 sin(πx) exp(−x2),

f2(x) = 1 + x+ x2 + sin(πx) exp(−x2).

For this problem, we trained all CVs through stochastic optimisation and use

m = (50, 50) MC samples. This synthetic example was originally used by South

et al. (2022c) to show one of the drawbacks of kernel-based CVs, namely that the

fitted CV will usually tend to β in parts of the domain where we do not have any

function evaluations. This phenomenon can be observed on the red lines in Fig-

ure 4.2 (left and center) which gives a CV based on a squared-exponential kernel.

This behaviour is clearly one of the biggest drawbacks of existing kernel-based

approaches. However, the blue curve, representing a kernel-based vv-CV with sep-

arable kernel where B was inferred through optimisation, partially overcomes this

issue by using evaluations of both integrands, hence clearly demonstrating potential

advantages of sharing function values across integration tasks.

The right-most plot in Figure 4.2 presents several box plots for the sum of

squared errors for each integration problem calculated over 100 repetitions of the

experiment. The different box plots show the impact of the difference in Π1 and

Π2. As we observed, vv-CVs always outperform CVs, although this difference in

performance is more stark when Π2 has a larger tail than Π1. This reinforces the

previous point, since a more disperse Π2 means that the second integrand will be

evaluated more often at more extreme areas of the domain, which will help obtain a

better vv-CV by improving the fit at the tails of the distribution.

4.3.2 Multi-fidelity Modelling

Many problems in the engineering and physical sciences can be tackled with multi-

ple models of a single system of interest. These different models are often associ-

ated with varying computational costs and levels of accuracy, and their combination

to solve a task is usually referred to as multi-fidelity modelling; see Peherstorfer

et al. (2018) for a review. In this section, we will focus on the case with T = 2

models. We will consider a high-fidelity model fH and a low-fidelity model fL, and



4.3. Experimental Results 76

5.0 2.5 0.0 2.5 5.0
x

0

10

20

30

40
y

f1(x)
f1(x)
vv-CV
CV

5.0 2.5 0.0 2.5 5.0
x

0

10

20

30

40

y

f2(x)
f2(x)
vv-CV
CV

1 1.1 1.15 1.2 1.25
2

10
3

10
2

10
1

10
0

S
um

 o
f s

qu
ar

ed
 e

rr
or

s

vv-CV
CV

Figure 4.2: Numerical integration of problem from South et al. (2022c). Left and cen-
ter: Illustration of f1 and f2, as well as the corresponding kernel-based CVs
and vv-CVs obtained through stochastic optimisation when Π1 = N (0, 1)
and Π2 = N (0, 1.25). Right: Sum of the squared errors in estimating
Π1[f1] and Π2[f2]. Here, Π1 = N (0, 1) whilst Π2 = N (0, σ2) where
σ2 ∈ {1, 1.1, 1.15, 1.2, 1.25}.

will attempt to estimate the integral of fH with our vv-CVs and using function eval-

uations from both the high- and low-fidelity models. For clarity, we will now denote

the function f = (fL, fH) and the vector-probability distribution Π = (ΠL,ΠH).

We note that this is a special case of the problem considered in this section

since we use evaluations of multiple functions but are only interested in ΠH [fH ]

(whereas ΠL[fL] is not of interest). The most common approach to tackling this

type of problem is multi-level MC (Giles, 2015), and in the context of unnormalised

densities, multi-level MCMC can be used (Dodwell et al., 2019). However, since

vv-CVs are post-processing tools which can be used with any MC method, we will

restrict ourselves to reducing the variance of simple MC estimators.

4.3.2.1 Univariate Step Function

Our first multi-fidelity experiment is a common synthetic problem in the multi-

fidelity literature; see for example Xi et al. (2018). The low-fidelity function is

fL(x) = 2 if x ≥ 0 and −1 otherwise. The high-fidelity function is fH(x) =

1 if x ≥ 0 and 0 otherwise. Although this problem is only one-dimensional, it is

nonetheless not straightforward for CVs since the integrands are discontinuous but

existing CVs are all continuous. The integral is over the real line and taken against

Π = N (0, 1), and we fix the sample sizes to m = (mL,mH) = (40, 40).



4.3. Experimental Results 77

2 0 2
x

3

2

1

0

1

2

3

f L
(x

)

Low-fidelity model

2 0 2
x

3

2

1

0

1

2

3

f H
(x

)

High-fidelity model

vv-CV (squared-exponetial k)
vv-CV (1st order polyn. k)
CV (squared-exponetial k)
f(x)

0 200 400
Number of Epochs

0.03

0.04

0.05

0.06

0.07

A
bs

ol
ut

e 
er

ro
r f

or
 

H
[f H

]

Squared-exponential kernel CVs

MC
CF
CV
vv-CV with Fixed B (1)
vv-CV with Fixed B (2)
vv-CV with Estimated B

0 200 400
Number of Epochs

0.03

0.04

0.05

0.06

0.07

A
bs

ol
ut

e 
er

ro
r f

or
 

H
[f H

]

First-order polynomial kernel CVs

2 0 2
x

3

2

1

0

1

2

3

f L
(x

)

Low-fidelity model

2 0 2
x

3

2

1

0

1

2

3

f H
(x

)

High-fidelity model

vv-CV (squared-exponetial k)
vv-CV (1st order polyn. k)
CV (squared-exponetial k)
f(x)

0 200 400
Number of Epochs

0.03

0.04

0.05

0.06

0.07

A
bs

ol
ut

e 
er

ro
r f

or
 

H
[f H

]

Squared-exponential kernel CVs

MC
CF
CV
vv-CV with Fixed B (1)
vv-CV with Fixed B (2)
vv-CV with Estimated B

0 200 400
Number of Epochs

0.03

0.04

0.05

0.06

0.07

A
bs

ol
ut

e 
er

ro
r f

or
 

H
[f H

]

First-order polynomial kernel CVs

Figure 4.3: Numerical integration of univariate discontinuous multifidelity model. Upper:
fitted CVs for both functions. Lower Left: performance of CVs based on a
squared-exponential kernel as a number of epochs of the optimisation algo-
rithm. The lines provide the mean over 100 repetitions of the experiment,
whereas the shaded areas provide one standard deviation above and below the
mean. Lower Right: same experiment for a polynomial kernel.

Results with a squared-exponential and 1st order polynomial kernel k can be

found in Figure 4.3. The upper plots clearly show that the approximations are not

of very high-quality, but the lower plots show that all CVs can still lead to an order

of two gain in accuracy over MC methods.

We also observe that vv-CVs can lead to further gains over existing CVs by

leveraging evaluations of fL. For both kernels, we provide three different versions

of the vv-CVs with separable structure to highlight the impact of the matrix B.

The first two cases use Algorithm 4 with a fix value of B. In the first instance,

B11 = B22 = 0.1, B12 = B21 = 0.01, whereas in the second instance B11 =

B22 = 0.5, B12 = B21 = 0.01. The third case is based on estimating B through

Algorithm 5. Clearly, B can have a significant impact on the performance of the vv-

CV, and estimating a good value from data can provide further gains. The choice of



4.3. Experimental Results 78

k is also significant; all CVs based on the squared-exponential kernel significantly

outperform the CVs based on a 1st order polynomial kernel.

4.3.2.2 Multivariate Model of Water Flow

We now move on to a much more challenging task based on multi-fidelity mod-

els of the flow of water through a borehole drilled from the ground surface

through aquifers (Xiong et al., 2013). The two functions have d = 8 inputs

x = (rw, r, Tu, Tl, Hu, Hl, L,Kw) representing a range of parameters influencing

the geometry and hydraulic conductivity of the borehole, as well as transmissivity

of the aquifer. The two functions are given by

fL(x) = 5Tu(Hu−Hl)

log( r
rw

)
(

1.5+ 2LTu

log( r
rw )r2wKw

+Tu
Tl

)
fH(x) = 2πTu(Hu−Hl)

log( r
rw

)
(

1+ 2LTu

log( r
rw )r2wKw

+Tu
Tl

) .
They provides estimates of water flow through a borehole in m3 per year. Prior

distributions have been elicited from scientists over input parameters to account for

uncertainties about their exact value (see Appendix A.4.3 for further details). One

quantity of interest here is the expected water flow under these prior distributions.

We hence have Π1 = Π2. Here, fH is not more expensive than fL and so the

two-fidelity approach is not essential for this example. However, this example is

popular in the multi-fidelity modelling literature (Xiong et al., 2013; Kandasamy

et al., 2016; Park et al., 2017) since it is representative of the difficulty of problems

commonly tackled in this field.

Results of our simulation study are presented in Table 4.2. We compare a

standard MC estimator with a kernel-based CV fitted with a closed form solution

(denoted control functionals (CF)) and two kernel-based vv-CVs corresponding

to special case II in Section 4.2.1. The first with B11 = B22 = 5 × 10−4 and

B12 = B21 = 5 × 10−5, and the second with B estimated using Algorithm 5. The

kernel used was a tensor product of squared-exponential kernels with a separate

lengthscale for each dimension. Clearly, vv-CVs significantly outperform MC in



4.3. Experimental Results 79

m vv-CV- Estimated B vv-CV-Fixed B CF MC
(10, 10) 3.722 (0.273) 1.943 (0.150) 2.236 (0.159) 6.418 (0.435)
(20, 20) 1.290 (0.096) 1.352 (0.103) 1.960 (0.101) 4.314 (0.313)
(50, 50) 1.044 (0.064) 1.766 (0.120) 1.761 (0.070) 2.629 (0.172)

(100, 100) 1.074 (0.064) 1.647 (0.137) 1.712 (0.045) 1.827 (0.152)
(150, 150) 0.854 (0.047) 1.302 (0.094) 1.671 (0.039) 1.423 (0.102)

Table 4.2: Expected values of the flow of water through a borehole under an expert-elicited
prior distribution and using the high-fidelity model. The numbers provided give
the mean absolute integration error for 100 repetition of the task of estimating
ΠH [fH ], and the number in bracket provide the sample standard deviation. To
provide the absolute error, the true value of the integral (72.8904) is estimated
by a MC estimator with 5× 105 samples.

the large majority of cases, and estimating B can lead to significant gains over us-

ing a fixed B. The worst performance for vv-CVs with estimated B is when values

of m are the lowest. This is because m is not large enough to learn a good value of

B.

4.3.3 Computation of the Model Evidence for Dynamical Sys-

tems

We now consider Bayesian inference for non-linear differential equations such as

dynamical systems, which can be particularly challenging due to the need to com-

pute the model evidence. This is usually a computationally expensive task since

sampling from the posterior repeatedly requires the use of a numerical solver for

differential equations which needs to be used at a fine resolution.

In Calderhead and Girolami (2009), the authors propose to use thermodynamic

integration (TI) (Friel and Pettitt, 2008) to tackle this problem, and Oates et al.

(2016, 2017) later showed that CVs can lead to significant gains in accuracy in

this context. Let Θ denote our parameter space. TI introduces a path from the

prior p(θ) to the posterior p(θ|y), where y and θ represent the observations and

the unknown parameters respectively. This is accomplished by the power posterior

p(θ|y, t) ∝ p(y|θ)tp(θ), where t ∈ [0, 1] is called the inverse temperature. When

t = 0, p(θ|y, t) = p(θ), whereas when t = 1, p(θ|y, t) = p(θ|y). The standard TI

formula for the model evidence has a simple form which can be approximated using



4.3. Experimental Results 80

second-order quadrature over a discretized temperature ladder 0 = t1 ≤ · · · ≤ tw =

1 (Friel et al., 2014a). It takes the following form

log p(y) =
∫ 1

0

[∫
Θ

log p(y|θ)p(θ|y, t)dθ
]
dt

≈∑w
i=1

ti+1−ti
2

(µi+1 + µi)− (ti+1−ti)2
12

(vi+1 − vi),

where µi is the mean and vi the variance of log p(y|θ) under πi = p(θ|y, ti). To es-

timate {µi, vi}wi=1, we need to sample from all power posteriors on the ladder, then

use a MCMC estimator which can be enhanced through CVs. This gives T = 2w in-

tegrals which are related: w integrals to compute means and w integrals to compute

variances, each against different power posteriors. As we will see, this relationship

between integration tasks will allow vv-CVs to provide significant gains in accu-

racy.

Our experiments will focus on the van der Pol oscillator, which is a second

order oscillator x : R+ × Θ → R (where here θ ∈ R) given by the solution of

d2x/ds2 − θ(1 − x2)dx/ds + x = 0, where s represents the time index. For this

experiment, we will follow the exact setup of Oates et al. (2017)and transform the

equation into a system of first order equations:

dx1
ds

= x2,
dx2
ds

= θ(1− x2
1)x2 − x1,

which can be tackled with ODE solvers. Our data will consist of noisy observation

of x1 (the first component of that system) given by y(s) = N (x1(s; θ), σ2) with

σ = 0.1 at each point s ∈ {0, 1, . . . , 10}; see the left-most plot of Figure 4.4 for

an illustration. We will take a ladder of size w = 31 with ti = ((i − 1)/30)5

for i ∈ {1, . . . , 31}. This gives a total of T = 62 integrals that will need to be

computed simultaneously, which is likely to be too computationally expensive. As

a result, we group integrands in groups of 4 means or 4 variances (except one group

of 3 for mean and variance), and use vv-CVs for each group separately. To sample

from the power-posterior, we use population MC with the manifold Metropolis-

adjusted Langevin algorithm (Girolami and Calderhead, 2011). Due to the high



4.3. Experimental Results 81

0.0 2.5 5.0 7.5 10.0
Time

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x

van der Poll oscillator
= 1

20 40 60 80
Sample Size

25.3

25.4

25.5

25.6

25.7

25.8

25.9

M
od

el
 E

vi
de

nc
e

Kernel-based CVs

20 40 60 80
Sample Size

25.3

25.4

25.5

25.6

25.7

25.8

25.9

Kernel-based vv-CVs

Figure 4.4: Model evidence computation through thermodynamic integration. Left: Illus-
tration of the van der Pol oscillator model (black line) and corresponding ob-
servations (red dots) used to obtain a posterior distribution. Center: Estimates
of the model evidence as a function of the number of posterior samples for
kernel-based CVs. The boxplots were created by repeating the experiment 20
times and the black line gives an estimate of the truth obtained from Oates et al.
(2017) and equals 25.58. Right: Same experiment repeated with kernel-based
vv-CVs.

computational cost of using ODE solvers, our samples will be limited to less than

100 per integrand and this number will be the same for each integration task.

Our results are presented in Figure 4.4, and the boxplots present 20 repetitions

of the experiment. The kernel parameters were taken to be identical to those in Oates

et al. (2017). As observed in the centre plot, kernel-based CVs provide relatively

accurate estimates of the model evidence. As the sample size increases, we notice

less variability in these estimates, but the central 50% of the runs are contained in

an interval which excludes the true value. In comparison, the right-most plot shows

that kernel-based vv-CVs can provide significant further reduction in variance. The

distribution of estimates is also much more concentrated and centered around the

true value.



4.3. Experimental Results 82

4.3.4 Bayesian Inference of Lotka-Volterra System

We now consider another model: the Lotka-Volterra system (Lotka, 1925; Volterra,

1926; Lotka, 1927) of ordinary differential equations. This system is given by:

dv1(s)
ds

= αv1(s)− βv1(s)v2(s)

dv2(s)
ds

= δv1(s)v2(s)− γv2(s).

Here, s ∈ [0, S] for some S ∈ R+ denotes the time, and v1(s) and v2(s) are the

numbers of preys and predators, respectively. The system has initial conditions

v1(0) and v2(0). We have access to noisy observations of v = (v1, v2) at points

s1, . . . , sm ∈ [0, S] denoted y1j, y2j and which are both observed with log-normal

noise with standard deviation σy1 and σy2 respectively for all j ∈ {1, . . . ,m}, given

some unknown parameter value x∗ = (α∗, β∗, δ∗, γ∗, v1(0)∗, v2(0)∗, σ∗y1 , σ
∗
y2

)>. In

practice, we reparameterise x such that the model parameters are defined in R8; see

Appendix A.4.5 for details. Given these observations, we can construct a poste-

rior distribution on the value of x∗ and we will denote this posterior Π. We will

then be interested in computing posterior expectations of v1 at a set of time points

s′1, . . . , s
′
T , and hence have T integrands of the form ft(x) = v1(s′t;x) where x

highlights the dependence on the parameter x. CVs were previously considered for

individual tasks in this context by Si et al. (2021). However, these T integrands are

related when s′1, . . . , s
′
T are close to each other.

We are interested in estimating Π[ft] for preys at time s′t. We use the real world

dataset (Hewitt, 1921) of snowshoe hares (preys) and Canadian lynxes (predators)

as observations and implement Bayesian inference on model parameters x by us-

ing no-U-turn sampler (NUTS) in Stan (Carpenter et al., 2017). For sv-CVs, we

estimate each individual Π[ft] separately; while for vv-CVs, we estimate a col-

lection these tasks Π[f ] := (Π[f1], . . . ,Π[fT ])> jointly. See Appendix A.4.5 for

experimental details. In Figure A.3 (Appendix A.4.5), we demonstrate the fitting of

MCMC via the posterior predictive as well as posterior trajectories of v conditional

on each posterior sample of x.



4.4. Conclusions 83

Table 4.3: Posterior Expected Abundance of Preys. The numbers provided give the sum of
the mean absolute integration error for 10 repetition of each task of estimating
the vector-valued expectation Π[f ]. To provide the absolute error, the true values
of the associated expectations are estimated by MCMC estimators with 8× 105

posterior samples.

T m vv-CV- Est. B vv-CV-Fix. B CF MCMC
2 500 0.462 0.404 0.666 0.568
5 500 0.393 0.419 0.521 0.987
10 500 0.938 1.031 2.540 2.663

In Table 4.3, we compare kernel vv-CVs (special case II) with standard MCMC

estimators and CF estimators. We consider two cases of vv-CVs: the first is the case

when B is with Btt = 5 × 10−4 for all t and Btt′ = 5 × 10−5 for ∀t 6= t′, and the

second with B estimated using Algorithm 2. The kernel used is a tensor product

of squared-exponential kernels with a separate lengthscale for each dimension. We

increase the number of tasks from T = 2 to T = 10. Once again, vv-CVs sig-

nificantly outperform MCMC, especially for large T , and estimating B provides

further gains over using a fixed B in terms of statistical efficiency.

4.4 Conclusions
This chapter considers variance reduction methods that share information among

multiple related integration problems. The proposed approach, vector-valued con-

trol variates, has shown to lead to significant variance reduction for problems in-

cluding multi-fidelity modelling and Bayesian evidence computation for dynamical

systems. To the best of our knowledge, the proposed approach is the first algorithm

that can perform multi-task learning for numerical integration, which is achieved

by using only evaluation of the score functions of the corresponding target distri-

butions. Meanwhile, it is also the first algorithm which is able to simultaneously

learn the relationship between integrands and provide estimates of the associated

integrals.

There are a number of possible ways forward. Firstly, the proposed method

can be tailored for a range of other interesting problems in Bayesian statistics. For

instance, when doing a sensitivity analysis for the choice of prior, Markov Chain



4.4. Conclusions 84

Monte Carlo can be run for several choices of priors. We would then compare

the corresponding posterior expectations of interest which differ only up due to the

priors. Clearly, these integrals will be closely related and gains may be obtained by

sharing information across tasks. Another example would be in settings when we

have sequential data. In this case, it might be of interest to update our estimates

of posterior expectations once new data arrives. This would lead to a sequence of

integration tasks where information from the earlier tasks can inform something

about future tasks. These are just two examples of possible uses of the proposed

approach. We expect that many others could be found in practice.

On the methodology side, we propose a novel approach for constructing vv-

CVs and show this can lead to significant gains in accuracy. However, further re-

search can focus on making the approach more computationally practical. One par-

ticular line of research warranting future work is how special cases of our matrix-

valued Stein kernels in Theorem 4.2.1 can be chosen to reduce the computational

cost whilst still having rich classes of vv-CVs. Another line of research warrant-

ing future work is the question of when transferring information across multiple

integration tasks will lead to sufficient gains in accuracy.

At last, a number of methods have been developed on the basis of Stein dis-

crepancies, which stem from Stein reproducing kernels (Anastasiou et al., 2023).

Most relevant to Bayesian computation are sampling methods such as Stein varia-

tional gradient descent (Liu and Wang, 2016; Wang et al., 2019a) and Stein points

(Chen et al., 2018). One of the main contributions of this work has been the devel-

opment of matrix-valued Stein reproducing kernels which produce zero mean vv-

functions against vector-probability distributions. This novel tool is able to hence

derive novel (and more flexible) Stein discrepancies, which further result in novel

statistical methods. For instance, in terms of sampling, this can lead to methods

which are able to approximate multiple distributions simultaneously.



Chapter 5

Meta-learning Control Variates:

Variance Reduction with Limited

Data

Control variates methods are quite useful to reduce the variance of Monte Carlo

estimators. However, it can be challenging to construct and select control variates

when the sample size is small.

In this chapter, we demonstrate that it is possible to construct and learn ef-

fective control variates when a large number of related integrals are required to be

estimated with only few samples per task available. This is achieved by leveraging

the similarity and relationship among these integration tasks. Our approach, called

meta-learning control variates (Meta-CVs), can be used for hundreds or thousands

of integration tasks. We validate the performance of the proposed Meta-CVs from

two aspects: i) The empirical assessment demonstrates that Meta-CVs can result in

significant variance reduction and thus more accurate estimators in such settings;

ii) The theoretical analysis establishes general conditions when Meta-CVs can be

learnt successfully.

5.1 Introduction
From Chapter 3 and Chapter 4, we know that to construct and select an effective CV,

it often requires a large sample size N . This unfortunately restricts the usefulness



5.1. Introduction 86

of CVs in scenarios when sampling from π or evaluating f is expensive, or when

the computation budget is limited. When integrals are defined in high dimensions,

it also poses challenges to CVs since such functions are difficult to approximate

due to the curse of dimensionality. In the latter case, sparsity can be exploited for

integrands with low effective dimension (South et al., 2022a; Leluc et al., 2021), but

many integrands do not admit convenient structure that can be easily exploited.

In this chapter, we propose a different solution, named meta-learning con-

trol variares (Meta-CVs), which borrows strength from multiple related integral

estimation tasks to construct and select effective CVs for each individual integral

estimation task. The proposed method requires a setting where there are T in-

tegration tasks (Π1[f1], . . . ,ΠT [fT ]) to be estimated, and where the integrands of

interest f1, . . . , fT and the target densities π1, . . . , πT are different, but related. This

setting actually arises in a broad range of applications. For instance, multifidelity

modelling (Peherstorfer et al., 2018; Li et al., 2023), sensitivity analysis (Demange-

Chryst et al., 2022), policy gradient methods (Liu et al., 2018), and thermodynamic

integration (Oates et al., 2016). We also consider further examples in Section 5.4.

For instance, we consider the application to the marginalisation of hyper-parameters

in Bayesian inference so we demonstrate it with a hierarchical Gaussian process ex-

ample. Another example is the computation of predictive distributions which we il-

lustrate with Bayesian inference of the Lotka–Volterra system. We demonstrate that

when the integrands and densities are closely related, sharing information among in-

tegration tasks can be expected to result in substantial improvement in estimation

accuracy.

To the best of our knowledge, vector-valued control variates by Sun et al.

(2023a) (also presented in Chapter 4) is the only existing control variates method to

explore and exploit multiple related integration tasks to obtain further improvement

on the accuracy of estimators. This is achieved by learning the relationship among

the integrands of interest via a multi-task kernel learning method in a vector-valued

reproducing kernel Hilbert space induced by a matrix-valued Stein kernel. Though

it shows the potential to have an improvement in performance, it suffers from a high



5.2. Recap of Control Variates 87

computational cost O(T 6) and a significant memory cost of O(T 2). The biggest

experiment in Sun et al. (2023a) is the computation of posterior expected abundance

of preys for the Lotka–Volterra System at T = 10 different time points. This method

lacks scalability in T , which is an important limitation. It can be desirable to learn

and exploit the shared information across hundreds or thousands of tasks, e.g., in

the motivating examples mentioned above. Therefore, a key challenge remains to

be solved: “How can we construct control variates at scale, sharing information

across a large number of integration tasks even with limited samples per task?”

Our answer to this challenge, Meta-learning CVs (Meta-CVs), is established

on the framework of meta-learning (Finn et al., 2017, 2018). The benefits of Meta-

CVs are three-fold: (i) the computational cost grows as O(T ), (ii) the effective

number of parameters is constant in T , and (iii) the construction of the Meta-CV

occurs offline and a new control variate can be constructed and selected at mini-

mal cost whenever a new integration task arises. Before introducing Meta-CVs in

Section 5.3, we first recall background on CV methods in Section 5.2.

5.2 Recap of Control Variates

The background knowledge of control variates has already been included in Chap-

ter 3. For completeness of this chapter, we decide to still present necessary back-

ground information on general techniques used to construct and select control vari-

ates in this section.

From Chapter 3 and Chapter 4, we know that the general strategy of control

variates methods is to identify a function g ∈ L2(Π) (i.e. a control variate) for

which VΠ[f − g] is small, and for which the expectation Π[g] is known or can be

exactly computed. For instance, as mentioned in Chapter 3, we know that Stein-

based control variates gθ := SΠ[uθ] that has zero-mean under Π where θ ∈ Rp

are the parameters of the control variate. In addition, by adding an extra parameter

β ∈ R, we then have a new control variate

g(x; γ) := gθ(x) + β



5.3. The Proposed Method 88

that has β-mean under π, where γ := (θ, β)> ∈ Rp+1 and β is an additional param-

eter used to approximate Π[f ]; see Remark 3.3.2 for a detailed discussion.

Once a suitable family of control variates is identified and employed, we then

need to select an effective control variate for the integrand of interest f from this

family. In this chapter, we limit ourselves to neural networks as in Wan et al. (2019).

This means that we need to learn a good value of the parameters of neural networks.

Given samples S = {xi,∇ log π(xi), f(xi)}mi=1, and following empirical loss min-

imisation, the parameter γ can be estimated by minimising

JS(γ) := 1
m

∑m
i=1 (f(xi)− g(xi; γ))2 .

This is the loss we used for scalar-valued control variates in Chapter 4 which has

also been discussed in Chapter 3. Penalised objectives of control variates have also

been proposed to avoid over-fitting in practice (South et al., 2022a; Wan et al., 2019;

Si et al., 2021). Since controlling the strength of such penalties is challenging and

is not the focus of this chapter, we will proceed with the un-regularised objectives

in this chapter.

5.3 The Proposed Method

We now present and set out the details of the proposed method: meta-learning con-

trol variates (Meta-CVs).

5.3.1 Problem Set-up

Consider a finite but possibly large number, T , of integration tasks

Π1[f1], . . . ,ΠT [fT ].

Denote by Tt := {ft, πt} the essential components of the tth integration task,

which consists of an integrand ft ∈ L2(Πt) and a target density πt : X → [0,∞).

Meanwhile, we assume that for each task we have access to the data of the following



5.3. The Proposed Method 89

form

Dt = {xi,∇ log πt(xi), ft(xi)}Nti=1,

where the sample size Nt ∈ N+ is relatively small per task.

We make the assumption that these tasks T1, . . . , TT are related. In a gen-

eral sense, we can consider these tasks as realisations sampled from an environment

denoted as ρ. However, we do not aim to formally define this concept. With this set-

up in place, we can then frame Meta-CVs within the framework of gradient-based

meta-learning (Finn et al., 2017, 2019). This allows us to leverage gradient-based

optimization techniques to learn CVs efficiently across multiple related integral es-

timation tasks.

5.3.2 Meta-learning CVs

From Chapter 3, we know that gradient-based meta learning (GBML) (Finn et al.,

2017, 2019; Grant et al., 2018; Yoon et al., 2018) was proposed in the context of

model-agnostic meta-learning (MAML) (Finn et al., 2017, 2019). Initially devel-

oped for the concept of “learning-to-learn” in a supervised learning context, these

methods are primarily designed with a specific emphasis on regression tasks and

large-scale image classification tasks. The fundamental idea of these GBML meth-

ods is to enhance the model’s capacity to adapt to new unseen tasks fast. This is

achieved by identifying a meta-model that serves as an initial model, which is capa-

ble of being adapted to a new task through a few iterations of gradient-based opti-

mization on its parameters. By leveraging the meta-model and employing gradient-

based optimization with a large number of training tasks, these methods are able to

learn and perform well on a range of tasks.

In this chapter, we will adapt gradient-based meta-learning to the construction

of CVs and present an algorithm that is capable of learning CVs fast and efficiently.

Analogous to gradient-based meta-learning, it naturally results in a two-step ap-

proach, as outlined in Algorithm 6 and Algorithm 7. In the first step, Algorithm 6,

the focus is to learn an effective Meta-CV that is assumably close to optimal CVs of



5.3. The Proposed Method 90

arbitrary tasks and exhibits reasonably good performance across most tasks. While,

for the second step, as shown in Algorithm 7, we will fine-tune this Meta-CV to

each specific integration task by a small number of steps of gradient-based optimi-

sation on a task-specific objective function. This provides us with a task-specific

CV for each specific integration task.

For each integration task Tt := {ft, πt}, we split its data Dt into two disjoint

sets St and Qt such that Dt = St ∪Qt. St and Qt consists of the following form of

data points,

St := {xj,∇ log πt(xj), ft(xj)}mtj=1

Qt := {xj,∇ log πt(xj), ft(xj)}Ntj=mt+1.

Note that, log πt(x) are required only due to the requirement of Stein-based CVs.

It is worthy of mentioning that St and Qt correspond to the idea of the support

set and the query set in the field of GBML; see Chapter 3 for details. Similar

to GBML methods, the roles of St and Qt will also differ depending on whether

the task is used for learning the Meta-CV (Algorithm 6) or for learning a task-

specific CV (Algorithm 7). More details will be presented when we return to this

point below. For simplicity and since Nt is small in our experiments, all of our

experiments in this chapter will consider mt = Nt/2 and mt is an integer.

5.3.2.1 Constructing the Meta-CV

The first step of the proposed method is to construct a Meta-CV. It will then be fine-

tuned to a task-specific CV for each integration task. We will follow the approach

in Section 5.2 and use a Neural-CV (Wan et al., 2019) as the base CV.

In order to separate the choice of the gradient-based optimization method

from our overall general construction of Meta-CVs, we will use the term

UPDATEL(γ,∇γJ (γ) ;α) to represent L steps of any arbitrary gradient-based op-

timizer, where γ ∈ Rp+1 is the initial parameter value, ∇γJ (γ) is the gradient of

an objective J : Rp+1 → R, and α represents (hyper-)parameters of the associated

optimisation method. This decoupling allows us to focus on the general framework



5.3. The Proposed Method 91

and design of Meta-CVs, while leaving the specific choice of optimization tech-

nique flexible. For instance, such optimisation methods could be gradient descent

and Adam (Kingma and Ba, 2015). It is possible to use more flexible alternatives

(Andrychowicz et al., 2016; Grefenstette et al., 2019).

Example 5.3.1 (Gradient Descent as UPDATEL). For example, the update cor-

responding to L-step gradient descent starting at γ0 consists of γj := γj−1 −
α∇J (γj−1) for j = 1, . . . , L. This is the original setting of gradient-based meta-

learning presented by Finn et al. (2017).

By using such notation, we can now represent an an idealised Meta-CV as a

CV whose parameters γ satisfy

γmeta ∈ arg minγ∈Rp+1 Et [Jt (UPDATEL (γ,∇γJt (γ) ;α))] , (5.1)

where Et denotes expectation with respect to a uniformly sampled task index t ∈
{1, . . . , T}.

The above objective is hard to approximate in general since it requires solving

nested optimisation problems. Fortunately, we can follow the method in (Finn et al.,

2017), and use a gradient-based bi-level optimisation approach presented in Algo-

rithm 6 to minimise this objective. Note that the above objective requires estimating

the gradient of the loss Jt in both the inner and outer level. To avoid over-fitting,

we estimate this with two independent datasets: St and Qt. The inner level then

corresponds to conditioning the model on St while the outer level corresponds to

updating the model. This indicates that the above objective is the unrolled learning

objective of the gradient-based bi-level optimisation approach used in MAML.

We will then call the output of Algorithm 6 our meta-parameter which is de-

noted as γ̂meta. The resulting g(·; γ̂meta) will be called the Meta-CV.

5.3.2.2 Task-Specific CVs

Once we have identified a meta-parameter γ̂meta (and consequently the Meta-CV

g(·; γ̂meta)), we only need to adapt γ̂meta though few optimisation steps to obtain a

task-specific parameter γ̂t and hence the corresponding task-specific CV g(·; γ̂t) for



5.3. The Proposed Method 92

Algorithm 6: Learning a Meta-CV
Input: Training tasks T1, . . . , TT , initial parameter γ0, UPDATE rule, #

update steps L, optimiser parameters α and η1, . . . , ηItr , mini-batch
size B, # meta-iterations Itr.

1 for i = 1, . . . , Itr do
2 Sample t1, . . . , tB uniformly from {1, . . . , T}.
3 for t ∈ {t1, . . . , tB} do
4 Initialize γt0 ← γi−1.
5 for j = 1, . . . , L do
6 γtj ← UPDATE(γtj−1,∇γtj−1

JSt(γ
t
j−1);α).

7 γi ← UPDATE(γi−1,
1
B

∑B
b=1∇γi−1JQtb (γ

tb
L ); ηi).

Output: The meta-parameter γ̂meta := γItr .

each task Tt. This is summarised in Algorithm 7, and can be applied either to one of

the T tasks used for learning the Meta-CV, or to any unseen new integration tasks.

Once such a task-specific CV is obtained, we can use the CV estimator

Π̂CV
t [ft] := Π̂MC

t [ft − g(·; γ̂t)] + Πt[g(·; γ̂t)] (5.2)

= 1
Nt−mt

∑Nt
i=mt+1 (ft(xi)− g(xi; γ̂t)) + Πt[g(·; γ̂t)].

to estimate the corresponding integral Πt[ft].

Remark 5.3.1. Note that we once again use two datasets, St and Qt per task of

which roles now differ from those in Algorithm 6: St will be used for learning the

task-specific CV g(·; γ̂t) through Algorithm 7, whilst Qt will be used to evaluate the

CV estimator as shown in (5.2).

To understand how these task-specific CVs borrow strength intuitively, for un-

seen new tasks we highlight that each task-specific CV is constructed by using∑T
t=1Nt samples in addition to its own data. Thus, when T is large and Nt is small,

our task-specific CV may be constructed from a much larger number of samples

compared to any CV constructed only using data from a single task. The closeness

of the relationship among integration tasks determines the additional performance

of including these additional data into the learning process of a CV. We will assess

the empirical performance of Meta-CVs in Section 5.4.



5.3. The Proposed Method 93

Algorithm 7: Task-specific CVs from the Meta-CV
Input: Integration task Tt, meta-parameter γ̂meta, UPDATE rule, # update

steps L, optimiser parameters α.
1 Initialize γ0 ← γ̂meta.
2 for j = 1, . . . , L do
3 γj ← UPDATE(γj−1,∇JSt(γj−1);α).

Output: Task-specific parameter γ̂t := γL.

5.3.2.3 Computational Complexity

In this section, we will discuss the computational complexity of the proposed

method.

Suppose that the meta-parameter γ̂meta of the Meta-CV has already been iden-

tified. The additional computational complexity of training all task-specific Neural-

CVs isO(TL), where T is total number of tasks for evaluation and L is the number

of optimisation steps used to fine-tune the Meta-CV to each specific task. Usually

a large number of optimisation steps (i.e. a large L) is required to learn parameters

of a neural network. But due to meta-learning, we would expect the value of L to

be very small. We actually take L = 1 in most of experiments in Section 5.4.

Remark 5.3.2 (Trade-off on the value of L). When L increases, the task-specific

CV will be less and less dependent on the Meta-CV. As a result, it will take less and

less into account the data from the other tasks, and revert to a case where it only

depends on the very few data point from the current task. Clearly, there is therefore

a trade-off between remaining close to the Meta-CV, and specialising each CV to a

specific task; see Antoniou et al. (2019) for a detailed discussion.

Moreover, taking L to be a small number indicates that fine-tuning a Meta-CV

can be orders of magnitude faster compared to training Neural-CVs independently

for each integration task. This will be experimentally assessed in Section 5.4.

The proposed method, of course, also needs to take the complexity of learning

the Meta-CV into account. This can require a large number Itr and L of optimisation

steps in general, which we assess both via experiments in Section 5.4 and theoretical

analysis in Section 5.5. The computational cost in p, the number of neural network

parameters, is at least O(p2) (Fallah et al., 2020) for the proposed method (due



5.4. Experimental Assessment 94

to second-order derivatives in Algorithm 6) while the cost of Neural-CVs is O(p).

This could be a challenge when p is very large. We will return to this issue and

discuss it more in the conclusion section of this chapter.

5.4 Experimental Assessment
In this section, we will assess the empirical performance of the proposed Meta-CV

method experimentally through a range of problems of increasing complexity where

the sample size per task Nt is small and the number of integration tasks T is large.

For simplicity, we restrict ourselves to the setting when the sample size per task Nt

are identical and we use the Adam optimiser in all experiments.

Note that it is not feasible to apply existing methods discussed in Section 3.4

or the vector-valued control variates (vv-CVs) proposed in Chapter 4 to the prob-

lems in this section. Since the number of tasks T we consider in this section

is a very large value, it can lead to extremely expensive computational cost for

these methods. We therefore only compare to methods which do not multitask

learn multiple integration tasks: Monte Carlo (MC), Neural-CVs (Wan et al.,

2019) and control functionals (CFs) (Oates et al., 2017). Code is available at:

https://github.com/jz-fun/Meta_Control_Variates.

5.4.1 A Synthetic Example

The first example we consider is trigonometric functions, which are common bench-

marks for meta-learning (Finn et al., 2017; Grant et al., 2018) and CVs (Oates et al.,

2017, 2019). Consider integrands of the form

ft(x; at) = cos
(

2πat,1 +
∑d

i=1 at,i+1xi

)
,

with parameters at ∈ Rd+1, and let πt be the uniform distribution on X = [0, 1]d.

In this example, the integrals Πt[ft] can then be explicitly computed and used as

a ground truth for assessment. Note that each integrand ft is parameterised by at

which controls the overall difficulty of the tth integration task. We then sample at

from a distribution ρ consisting of independent uniforms to generate related inte-

https://github.com/jz-fun/Meta_Control_Variates


5.4. Experimental Assessment 95

gration tasks. Full details are presented in Appendix B.3.1.

In Figure 5.1, we consider the case when d = 2. We train the Meta-CV on T =

20, 000 integration tasks in total. To challenge Meta-CVs, we assess all methods

in terms of their performance on an additional Ttest = 1, 000 tasks, which are not

available during the training of the Meta-CV. On the left panel of Figure 5.1, we

investigate the effect of the sample sizeNt per task on the performance of CVs. It is

found that Meta-CVs tend to outperform MC, CFs and Neural-CVs in terms of mean

absolute error over all new unseen tasks regardless of the sample size considered.

This can be explained by the fact that the proposed Meta-CVs method is the only

approach that can explore and exploit transferrable information across integration

tasks. Thus, it is able to leverage the large training dataset. In this case, it is also

found that Neural-CVs and CFs perform even worse than MC when the sample size

Nt is small, which highlights the challenge of employing CVs under these settings.

In the right panel of Figure 5.1, we also investigate the effect of L, the number

of gradient-based updates, which shows the robustness of Meta-CVs to L in this

example. In Figure 5.2, we then investigate the effect of dimensionality d on the

performance of these methods. Clearly, all CVs methods suffer from the curse of

dimensionality to some extent. But Meta-CVs do improve on the other CVs when

d < 6.

In Figure 5.3, we investigate the effect of B and Itr through the lens of the per-

formance of Meta-CVs on 1000 2-dimensional unseen new integration tasks. From

Figure 5.3, we find empirically that a larger value of B helps Meta-CVs achieve the

optimal performance faster; and a larger value of Itr results in better performance as

expected.

We conclude this example with a discussion of empirical computational cost.

The empirical computational cost of computing independent Neural-CVs on all un-

seen test tasks is about 2 minutes. While, the offline computational time for learning

the Meta-CV is about 7 minutes (with L = 1 when Ttrain = 20000, Nt = 10 and

d = 1), but the online computational time for deriving task-specific CVs for the

same 1000 unseen test integration tasks is approximately 6 seconds in total (i.e.,



5.4. Experimental Assessment 96

20 40 60 80 100
Sample Size: N (d=2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

CF
Meta-CVs
MC
Neural-CVs

2 4 6 8 10
L (N=10, d=2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Figure 5.1: Mean absolute error (with 95% confidence intervals) for Ttest = 1, 000 oscilla-
tory functions (with Nt = N and mt = nt = N/2 for all t). Left: Increasing
sample sizeNt when d = 2 (Meta-CVs with L = 1); Right: Increasing number
of inner gradient steps L of Meta-CVs.

1 2 3 4 5 6 7
Num. of Dim. d (N=20, L=1)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

CF
Meta-CVs
MC
Neural-CVs

1 2 3 4 5 6 7
Num. of Dim. d (N=5, L=1)

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Figure 5.2: Mean absolute error (with 95% confidence intervals) for Ttest = 1, 000 oscilla-
tory functions for increasing dimension d (with Nt = N and mt = nt = N/2

for all t).

500 1000 1500 2000 2500 3000 3500 4000
Itr

0.00

0.05

0.10

0.15

0.20

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

B=5
B=10
B=20
B=40

Figure 5.3: Mean absolute error (with 95% confidence intervals) of Meta-CVs for Ttest =
1, 000 2-dimensional oscillatory functions for increasingB and Itr (withL = 1,
Nt = N and mt = nt = N/2 = 5 for all t).

0.006 seconds per task). This shows that the Meta-CV can be adapted to new task-

specific CVs of new integration tasks very fast.



5.4. Experimental Assessment 97

5.4.2 Uncertainty Quantification for Boundary Value ODEs

The second example we consider is the computation of expectations of functionals

of physical models which are often represented through differential equations. Such

expectations are often taken with respect to expert-elicited distributions over param-

eters of these differential equations in order to perform uncertainty quantification.

In particular, we now consider a boundary-value ODE with unknown forcing

closely resembling that of Giles (2015):

d
ds

(c(s)du
ds

) = −50x2, 0 < s < 1,

with boundary u(0) = u(1) = 0, c(s) = 1 + as. The integrand of interest is

ft(x) =
∫ 1

0
u(s, x; at)ds where at are draws from ρ = Unif(0, 1). The integral

of interest is Πt[ft] := EX∼πt [ft(X)] where each πt = N (0, 1). We use a finite

difference approximation of ft described in Giles (2015). See Appendix B.3.2 for

full detail. Though it is a relatively simple example, it represents a broader class of

challenging problems where we need improved numerical methods to approximate

integrals well due to a large cost per integrand evaluation and therefore limited

sample size Nt per task.

The performance of Meta-CVs on Ttest = 100 unseen tasks is presented in

Figure 5.4. We also compare it with MC and Neural-CVs on the same set of unseen

test tasks. In this example, it is found that Meta-CVs outperform Neural-CVs and

MC consistently across various settings of sample size Nt per task. This highlights

once again the benefits of Meta-CVs as it shares information among a large number

of tasks when Nt is small.

5.4.3 Bayesian Inference for the Lotka–Volterra System

Our next example is also relevant to uncertainty quantification for differential

equation-based models. This time, we consider it in a fully Bayesian framework.

The specific model we consider here is a parametric ODE system, the Lotka–

Volterra model (Lotka, 1927), which is commonly used in the fields of ecology and



5.4. Experimental Assessment 98

N=4 N=10 N=20 N=40
Sample Size

0

2

4

6

A
bs

ol
ut

e 
E

rr
or

Meta-CVs
MC
Neural-CVs

Figure 5.4: Absolute error for Ttest = 100 (with Nt = N and mt = nt = N/2 for all t.)
unseen tasks from the boundary value ODE problem (grey crosses are mean
absolute errors; white horizontal lines are medians).

epidemiology. It has the following form,

du1
ds

= x1u1 − x2u1u2,
du2
ds

= x3u1u2 − x4u2,

where u1(s) and u2(s) are the numbers of preys and predators at time s, and u1(0) =

x5 and u2(0) = x6.

Consider that we have access to observations of u = (u1, u2) at time points

{s1, . . . sq}with independent log-normal observational random noise with variances

x7 and x8, respectively. A ‘task’ considered here is to compute the posterior expec-

tation of model parameters x conditioning on a given observation dataset. Different

observation datasets could correspond to various animal species, or to various geo-

graphical regions, and also determine the posterior distribution πt of interest. It is

challenging to perform Bayesian inference on this kind of ecological (Bolker, 2008)

and epidemiological (Brauer, 2017) models due to the high computational cost of

MCMC sampling, which limits the number of effective independent samplesNt per

task.

We use the dataset from Hewitt (1921) on snowshoe hares (preys) and Cana-

dian lynxes (predators) here. To mimic the process of sampling sub-populations,

we sub-sample the whole dataset. The goal is to learn a Meta-CV such that it can

be adapted to new sub-populations observed in the future fast. See Appendix B.3.3

for full detail.

In Figure 5.5, we compare the proposed approach to MCMC (a No-U-Turn



5.4. Experimental Assessment 99

20 30 40 50 60 70 80
0.000

0.005

0.010

0.015

0.020

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

x1

20 30 40 50 60 70 80
0.000

0.005

0.010

0.015

0.020

0.025

0.030

x2

20 30 40 50 60 70 80
Sample Size: N

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

x3

20 30 40 50 60 70 80
Sample Size: N

0.000

0.005

0.010

0.015

0.020

0.025
x4

NUTS-MCMC
Meta-CVs

Figure 5.5: Mean absolute errors (with 95% confidence intervals) over 40 sub-populations
for varying Nt. Here, Nt = N and mt = nt = N/2 for all t.

Sampler (NUTS) implemented in Stan (Carpenter et al., 2017)). As previously ob-

served and discussed, the performance of CVs is not satisfactory in high-dimensions

especially when Nt is small. This is exactly what we observe experimentally:

Neural-CVs perform between 5− and 12−times worse than MCMC and thus we

exclude it from Figure 5.5. On the contrary, the proposed Meta-CVs approach is

still able to achieve a better performance than MCMC for Nt considered. This

demonstrates the clear advantage of sharing information across integration tasks for

higher-dimensional problems.

5.4.4 Marginalization in Hierarchical Gaussian Processes

The last example is marginalisation of hyper-parameters in Bayesian statistics. In

particular, we consider a canonical example, Sarcos anthropomorphic robot arm,

for hierarchical Gaussian process regression (Rasmussen, 2003). This example

has been considered in both fields of hierarchical Gaussian processes (Rasmussen,

2003) and CVs (Oates et al., 2017). The problem is to recover the unknown function

ν that describes a 7 degrees-of-freedom Sarcos robot arm, from a 21-dimensional

input space and is based on a subset of the dataset in Rasmussen (2003).

We have access to observations yi = ν(zi) + εi at inputs zi for i = 1, . . . , q,

where εi are IID zero-mean Gaussian random variables with known standard de-

viation σ > 0. We place a zero-mean Gaussian process prior on ν, with ker-



5.4. Experimental Assessment 100

MC CF NCV MCV-1 MCV-5 MCV-20 MCV-50 MCV-100

0.00

0.05

0.10

0.15

E
st

im
at

ed
 A

bs
ol

ut
e 

E
rr

or

Figure 5.6: Effect of L: Estimated absolute errors over Ttest = 1, 000 unseen states of the
Sarcos anthropomorphic robot arm (CF: Control functionals; NCV: Neural-
CVs; MCV-L: Meta-CVs with L inner steps).

nel kx(z, z′) = x1 exp(−‖z−z′‖22
2x22

). We also place priors on the hyper-parameters

x = (x1, x2), i.e., x ∼ πprior.

Conditioning on observations y1:q = (y1, . . . , yq)
>, we consider a ‘task’ of

predicting the response ν(x∗) at an unseen state z∗ marginalising out the poste-

rior π(x|y1:q) on kernel hyper-parameters of the Gaussian process model. This

can be achieved through the Bayesian posterior predictive mean E[Y ∗|y1:q] =

EX∼π(·|y1:q)[E[Y ∗|y1:q, X]]. This is an integral of

fz∗(x) = E[Y ∗|y1:q, x]

= Kz∗,q(x)(Kq,q(x) + σ2Iq)
−1y1:q

against the posterior on hyperparameters π(x|y1:q) (i.e. the target Π), where

(Kq,q(x))i,j = kx(zi, zj) and (Kz∗,q(x))j = kx(z
∗, zj) for i, j ∈ {1, . . . , q}. Each

task has a different integrand determined by z∗ which integrates against the same

posterior of kernel hyper-parameters, Π[fz∗ ], for all z∗ of interest.

Note that the integrand requires O(q3) operations per evaluation (i.e. for each

pair of a state and a sample from the posterior) and is therefore expensive to evalu-

ate. It can be quite significant when q is beyond a few hundred. However, it is also

common to compute the Bayesian posterior predictive mean for several new states

z∗1 , . . . , z
∗
T , which leads to closely related integrands fz∗1 , . . . , fz∗T whose relationship

could potentially be leveraged and be beneficial.

We divide the dataset into two disjoint parts. The first part consists of



5.5. Theoretical Analysis 101

q = 1, 000 data points and is used to infer the posterior of kernel hyper-parameters

(which is approximated through variational inference). The second part consists of

4, 449 data points, half of which are used to learn the Meta-CV while the other half

are used to as a held-out test set of tasks for assessment. See Appendix B.3.4 for

full detail.

We compare the performance of Meta-CVs with MC, Neural-CVs, and CFs

and present the results in Figure 5.6. All the methods are tested on Ttest = 1, 000

unseen tasks with Nt = 4 samples per task. Although we do not have access to

the exact value of these integrals, the value y∗t is an unbiased estimator, and this

enables integration error to be unbiasedly estimated. It is found that Meta-CVs

outperform the other methods once again. Interestingly, the performance of Meta-

CVs improves when the number of inner gradient steps L > 1. Meanwhile, we can

see the trade-off on the value of L empirically as discussed in Section 5.3.2.3. See

(Antoniou et al., 2019) for a more detailed discussion.

5.5 Theoretical Analysis
In the previous section, extensive experimental results demonstrate the advantage

of leveraging a large number of integration tasks for learning CVs for unseen new

tasks. In this section, we will provide theoretical analysis onto the guidance of the

implementation of gradient-based optimisation for Meta-CVs.

In particular, our analysis will mainly focus on strategies for training of Meta-

CVs. This is challenging due to the dis-continuity of the global objective of learning

a Meta-CV, which arises from the inner optimisation steps of these MAML-based

algorithms (Finn et al., 2017; Fallah et al., 2020). Recall that the global objective

(i.e. the unrolled objective) for learning a Meta-CV is

arg minγ∈Rp+1 Et [Jt(γ)] , (5.3)

Jt(γ) := JQt (UPDATEL (γ,∇γJSt (γ) ;α)) ,

where in what follows UPDATEL is gradient descent with L steps and learning rate

α.



5.5. Theoretical Analysis 102

We make the following assumptions on the properties of g with respect to its

parameter γ:

Assumption 5.5.1. For each t and x ∈ Dt, γ 7→ g(x; γ) and γ 7→ ∇γg(x; γ) are

bounded and Lipschitz.

Assumption 5.5.2. For each t and x ∈ Dt, γ 7→ ∇γg(x; γ)∇γg(x; γ)>−∇2
γg(x; γ)

is bounded and Lipschitz.

As a function of x, Stein-based CVs g are usually unbounded. But Assump-

tion 5.5.1 can be satisfied by the Stein-based CVs (presented in Section 5.2 and

Chapter 3) as it only requires the properties of g(x; γ) and ∇γg(x; γ) as γ, rather

than x. In terms of Assumption 5.5.2, since ∇γg(x; γ)∇γg(x; γ)> is a widely

adopted low-rank approximation to the Hessian ∇2
γg(x; γ), it explicitly requires

this low-rank approximation to be reasonably good.

Given the above two assumptions, we then present the following theorem. It

is built on the work of Ji et al. (2022). The theorem establishes conditions under

which Algorithm 6 can find an ε-first order stationary point of the meta-learning

objective function (5.3), for any ε > 0.

Theorem 5.5.1. Let γ̂meta be the output of Algorithm 6 with gradient descent steps,

using the meta-step-sizes η1, . . . , ηItr , the inner-step size α and batch size B pro-

posed in Theorem 9 and Corollary 10 of Ji et al. (2022). Then, under Assumptions

5.5.1, 5.5.2:

E[‖Et[∇Jt(γ̂meta)]‖2] = O
(√

1
Itr

+ 1
B

)
,

where the outer expectation is with respect to sampling of the mini-batches of tasks

in Algorithm 6.

See Appendix B.2.2 for proof.

The above theorem indicates the ideal value for the number of meta iterations

Itr. If we choose the meta batch size B ≥ CBε
−2 with CB a large constant, the



5.5. Theoretical Analysis 103

output of Algorithm 6 γ̂ε will satisfy E[‖Et[∇Jt(γ̂ε)]‖] = O(ε) with at most Itr =

O(1/ε2) meta iterations.

When using Neural CVs as the base for Meta-CVs, there will not be a unique

γmeta since they are highly non-linear in the parameters γ. Therefore, it is hard to

further extend the result in Theorem 5.5.1 in this case. However, for simpler CVs

which are linear in their parameters, such as those based on polynomials (Assaraf

and Caffarel, 1999; Mira et al., 2013; Papamarkou et al., 2014; Friel et al., 2014b;

South et al., 2022a), we can reasonably assume a unique γmeta and convexity of the

Meta-CV objective around this point. Given these additional assumptions, we are

able to show that γ̂ε tend to be close to the minimiser of the task-specific objective

functional. This result is presented in the following corollary.

Corollary 5.5.1.1. Under the setting of Theorem 5.5.1, further suppose that there

exists µ > 0 such that for all t and all γ, ∇2JQt(γ) � µIp+1 where Ip+1 is an

identity matrix of size p+ 1. Then there exist constants C1, C2 > 0 such that

E[Et[‖γ̂ε − γ∗t ‖2]] ≤ C1

µ
ε+ C2

µ
,

where γ∗t is the (unique) minimiser of γ 7→ JQt(γ), and here again the outer expec-

tation is with respect to sampling of the mini-batches of tasks in Algorithm 6.

See Appendix B.2.3 for proof.

These results justify that one can learn such Meta-CVs and task-specific CVs

with Algorithm 6. Meanwhile, they provide us with vital insight into the theoreti-

cally optimal choice of the hyper-parameters of the proposed method, including the

value of the meta-iterations Itr, mini-batch size B, inner step size α and meta-step-

sizes η1, . . . , ηItr . The assumptions establish explicit conditions and requirements

on the properties of CVs g(x; γ) which can be trained successfully (i.e. finding an

ε-first order stationary point of (5.3)) with Algorithm 6.



5.6. Conclusions 104

5.6 Conclusions
In this chapter, we introduced Meta-CVs, an extension of existing control variates

methods. The proposed Meta-CVs approach brings meta-learning to bear on MC

and MCMC. To summarise, it can achieve significant variance reduction even when

the number of samples per task is small, but a large number T of similar tasks are

available. In addition, most of the computational cost is an offline cost for learning

a Meta-CV, and task-specific CVs for new integration tasks can be identified with

minimal additional computational cost.

Our proposed algorithm is scalable in T and Nt, but it can require significant

computational cost for learning the Meta-CV when dealing with flexible CVs such

as Neural-CVs. For instance, the computational complexity scales as O(p2) in the

number of parameters p in the CV, which could prevent us from using large neural

networks and thus limit the performance on more challenging tasks. One promising

direction for future work is to consider first-order or Hessian-free meta-learning

algorithms (Fallah et al., 2020) which can potentially alleviate the cost.

Alternatively, it is also possible to adapt online meta-learning algorithms (Finn

et al., 2019) to CVs, which could be particular powerful when integration tasks ar-

rive sequentially and Meta-CVs cannot be computed offline. Such examples include

application fields where sequential importance sampling and sequential MC-type al-

gorithms (Doucet et al., 2000, 2001) are currently being used, e.g. in the context of

state-space models.

Finally, it is also possible to extend our theoretical analysis of the proposed

Meta-CVs approach. The current convergence rate in Itr of Meta-CVs presented in

Section 5.5 aligns with (Fallah et al., 2020; Ji et al., 2022). It could be also beneficial

to extend the theoretical analysis of Meta-CVs from an information theoretic aspect

(Chen et al., 2021) or towards a faster convergence rate (Riou et al., 2023) with

extra conditions.



Chapter 6

Amortized Bayesian Prototype

Meta-learning for Few-shot Image

Classification

Deep supervised learning algorithms (e.g., LeCun et al., 2015) often rely on a sub-

stantial amount of labeled data to train neural networks effectively for satisfactory

performance on new tasks. However, acquiring a large labeled dataset for each new

task can be very expensive or even impractical. Furthermore, re-training neural

networks for every incoming task may be computationally unfeasible. As a result,

learning an unseen new task with limited labeled observations poses a significant

challenge. To overcome this challenge, a novel approach known as meta-learning or

few-shot meta-learning has been conceptualised and proposed, which attracts lots of

attention. These algorithms aim to tackle the problem of learning unseen new tasks

fast and efficiently when only a small number of labeled observations are avail-

able (in the context of supervised learning). By leveraging knowledge learnt from

previous tasks, meta-learning enables the efficient adaptation of neural networks

to new tasks with limited data per task, and thus it provides us with a promising

solution/idea to such challenges.

In this chapter, we will introduce a novel probabilistic meta-learning algorithm

tailored for image classification specifically. The related background knowledge

has already been provided in Chapter 3. In Section 6.3, we formally present the



6.1. Introduction 106

proposed amortized Bayesian prototype meta-learning. We demonstrate its superior

performance on a range of image benchmark datasets in Section 6.4.

6.1 Introduction

Meta-learning (Bartunov and Vetrov, 2018; Jamal and Qi, 2019; Finn et al., 2017;

Grant et al., 2018; Amit and Meir, 2018; Li et al., 2019; Xu et al., 2020; Ren et al.,

2019; Rusu et al., 2019; Sun et al., 2019; Hospedales et al., 2020; Wang et al.,

2019b; Iakovleva et al., 2020; Patacchiola et al., 2020) aims to develop algorithms

that can solve unseen new tasks efficiently based on the knowledge extracted from

previous tasks. These methods have shown remarkable performance on few-shot

classification on many image benchmark datasets, e.g. CUB-200-2011 dataset con-

taining 11788 birds’ images from 200 different classes (Wah et al., 2011). Built on

probabilistic structures over data and parameters of neural networks, probabilistic

meta-learning methods (Grant et al., 2018; Gordon et al., 2019; Ravi and Beatson,

2019; Finn et al., 2018; Yoon et al., 2018; Nguyen et al., 2020; Patacchiola et al.,

2020) are able to learn the posteriors of parameters and use posterior predictive

samples to solve unseen new tasks that emerge during the meta-testing phase.

However, one drawback of these probabilistic methods is that they treat the

parameters of large neural networks as random variables. Consequently, this intro-

duces a substantial number of random variables, leading to severe computational

and inferential challenges, such as identifiability problems. This can pose a hurdle

for effectively applying probabilistic methods in practice. Our motivation stems

from here, which is: can we instead introduce an embedding space with much

less random variables while still well representing the generative process of meta-

learning? To this end, we introduce latent class prototypes to probabilistic meta-

learning, which largely reduce the number of random variables while achieving

competitive performance.

In this chapter, we propose a novel and simple probabilistic meta-learning

method, named amortized Bayesian prototype meta-learning, for few-shot image

classification. Our approach introduces a novel latent random vector, denoted as



6.2. Related Work 107

z, which serves as class prototypes for each task. It is capable of learning to learn

the posterior distributions of these latent variables for each task effectively when-

ever at meta-training or meta-testing stage. This capability is obtained by careful

design of the prior and variational distributions for the latent class prototypes and

is based on gradient-based meta-learning like model-agnostic meta-learning (Finn

et al., 2017). In particular, we propose task-dependent priors for latent class proto-

types conditional on the support set of each task, and replace the Kullback–Leibler

(KL) divergence term in the evidence lower bound of the marginal log-likelihood of

the support set with an unbiased estimator to its expectation. Notably, the proposed

method does not require any pre-training and can be trained end-to-end. Experi-

mental results demonstrate its competitive performance on many real-world image

benchmark datasets, such as mini-ImageNet (Vinyals et al., 2016), Stanford-dogs

(Khosla et al., 2011) and CUB-200-2011 (Wah et al., 2011).

6.2 Related Work

Gradient-based meta-learning and metric-based meta-learning methods have al-

ready been introduced in Chapter 3. In this section, we will discuss the probabilistic

variants of gradient-based meta-learning methods which are closely related to the

proposed method and summarize the key differences from these previous proba-

bilistic algorithms.

Probabilistic Meta-learning Methods The proposed method is based on MAML

(Finn et al., 2017), a gradient-based meta-learning method aiming to learn a shared

initialization of neural network’s parameters that can be adapted to an unseen novel

task with only few steps of gradient descent. Probabilistic variants of MAML in-

clude MAML-HB (Grant et al., 2018), BMAML (Yoon et al., 2018), PLATIPUS (Finn

et al., 2018), VAMPIRE (Nguyen et al., 2020), Meta-Mixture (Jerfel et al., 2019) and

ABML (Ravi and Beatson, 2019). MAML-HB interpreted MAML from a hierarchical

Bayes learning perspective. PLATIPUS proposed to learn the joint posterior of meta

initialization γ and task-specific parameters conditional on the support set of each

task Tt, while BMAML, VAMPIRE and ABML learned the posterior distributions of



6.3. The Proposed Method 108

the task-specific parameters conditional on the γ and the support set. More specific,

BMAML learned the posteriors of task-specific parameters through Stein variational

gradient descent, which was distinct from the others. ABML proposed to minimize

the loss of the support and query sets of a task jointly (i.e. equivalent to maximiz-

ing E[log p(S,Q)]), which did not explicitly encourage neural networks to maxi-

mize E[log p(Q|S)]. VAMPIRE was similar to ABML. The main difference was that

VAMPIRE only used the loss of the query set of a task to update the global shared

parameter γ, while ABML used both the support and query sets. VERSA (Gordon

et al., 2019) proposed to directly maximize log p(Q|S), which was achieved by only

learning the posteriors of parameters of the linear classifier via an extra amortization

network.

Key Differences from Previous Work The proposed approach has some key dif-

ferences from previous work in the following aspects. 1) Previous probabilistic

meta-learning methods (e.g., Gordon et al., 2019; Ravi and Beatson, 2019; Finn

et al., 2018; Yoon et al., 2018; Nguyen et al., 2020; Jerfel et al., 2019) treat the

parameters of neural networks as random variables, while our method introduces

latent prototypes as random variables. 2) The proposed approach learns to learn

the posterior distributions of latent class prototypes in an amortized inference way

with no need for an extra amortization network. 3) Assuming that the support im-

ages and the query images come from same data generating process, we replace the

KL term in the evidence lower bound of log p(S) with an unbiased estimator to its

expectation (6.7), which is purely dependent on the support set of a task. In addi-

tion, the proposed method provides us with a more interpretable and simpler way

of modelling, and achieves state-of-the-art or competitive performance on various

benchmark datasets.

6.3 The Proposed Method

In this section, we will discuss how meta-learning can be achieved by maximizing

the expectation of the posterior predictive likelihood in Section 6.3.1 and present

the proposed amortized Bayesian prototype meta-learning for few-shot image clas-



6.3. The Proposed Method 109

sification in Section 6.3.2.

6.3.1 Meta-learning via Maximizing Expectation of Posterior

Predictive Likelihood

Suppose that we can sample a series of tasks {Tt}Tt=1 from an environment (or meta

population) ρ, meta-learning aims to learn an algorithmM that can minimize the

transfer riskR on a new task T . R is defined as follows,

R = ET ∼ρE{xi,yi}mi=1∼T E{x̃,ỹ}∼T [J(M({xi, yi}mi=1), {x̃, ỹ})],

where J is some loss function measuring the difference of the model’s prediction

given a testing data point x̃ and the corresponding ground-truth ỹ, and {xi, yi}mi=1

are the m training samples from the same task T . The environment ρ refers to a

distribution of tasks T (Denevi et al., 2018, 2019; Baxter, 2000; Ji et al., 2022;

Fallah et al., 2020). Without loss of generality and to simplify notation, we increase

the number of test samples to n, i.e. {x̃j, ỹj}nj=1, and denote {xi, yi}mi=1 by S and

{x̃j, ỹj}nj=1 by Q. The above risk can then be re-written as follows,

R = ET ∼ρES∼T EQ∼T
[
J

(
M(S), Q

)]
. (6.1)

This risk is often approximated by empirical risk, commonly through Monte Carlo

estimators. When confronted with a new unseen task T from which we have access

to its support set S and query set Q, the algorithm M can be adapted with the

support set S. The performance ofM on this task is then evaluated by measuring

the empirical loss on the query set Q. To assess the overall performance ofM, it is

crucial to measure its average performance on tasks sampled from ρ. This provides

a comprehensive evaluation ofM’s generalisation ability and performance across a

range of diverse tasks from the environment.

Suppose we have two random variables, S and Q, representing a support set

and a query set, respectively. Now consider a probabilistic generative model that

is parameterized by γ. This parameterization defines a prior distribution, denoted



6.3. The Proposed Method 110

as pγ(z), over the latent variables z, as well as a conditional likelihood, denoted

as pγ(S|z), for the support set S. These components collectively characterize the

underlying probabilistic structure. In order to approximate the posterior distribution

pγ(z|S), we can leverage the evidence lower bound (ELBO) of log pγ(S) (Kingma

and Welling, 2013):

log pγ(S) ≥ Ez∼qφ(z)[log pγ(S|z)]−KL[qφ(z)||pγ(z)], (6.2)

where KL denotes the Kullback–Leibler divergence. This lower bound is tight

when qφ(z) = pγ(z|S). However, the true posteriors are intractable. Fortunately,

we can optimize the evidence lower bound with respect to the variational param-

eters φ, which allows us to obtain the approximate posterior qφ(z) (Kingma and

Welling, 2013). Given qφ(z) ≈ pγ(z|S), the log posterior predictive likelihood of

Q, log pγ(Q|S), can be approximated. It is given by,

log pγ(Q|S) = log
∫
pγ(Q|z)pγ(z|S) dz ≈ logEz∼qφ(z)[pγ(Q|z)]

≥ Ez∼qφ(z)[log pγ(Q|z)]. (6.3)

The above discussion indicates that, given γ, we need to first optimize the

ELBO of log pγ(S) to approximate the posterior pγ(z|S). We can then optimize the

lower bound of log pγ(Q|S) (right hand side of (6.3)) with respect to γ. We can find

that the equivalence between maximizing the expectation of log pγ(Q|S) and the

riskR in (6.1) can be established when the loss J(M(S), Q) := − log pγ(Q|S).

In practice, the expectation E[log pγ(Q|S)] can be approximated well by the

average of {log pγ(Qt|St)}Tt=1 of the tasks {Tt}Tt=1 when the number of training

tasks T is large. This is often the case in few-shot meta-learning (Vinyals et al.,

2016; Finn et al., 2017). However, tasks are often encountered in a sequential man-

ner, which poses a challenge when using Monte Carlo estimators to approximate the

corresponding expectation. Due to the requirement of knowing all tasks and com-

puting all relevant terms simultaneously, we cannot employ Monte Carlo estimators

directly in this scenario. Alternatively, we can optimize γ iteratively through each



6.3. The Proposed Method 111

task once arriving using log pγ(Qt|St), for t = 1, . . . , T . As discussed by Ravi and

Beatson (2019), since T is large, the uncertainty of the posteriors of γ is low. It is

reasonable to use a point estimate of γ as in (Ravi and Beatson, 2019). By introduc-

ing auxiliary latent random variables z for each task, we can deal with intractable

likelihoods and posteriors. In the proposed method, we assume that there exists

a generative process wherein each image is generated based on the corresponding

latent class prototype. This assumption implies that the latent prototypes capture

essential characteristics and features of images. As a result, the approximate poste-

rior qφ(z) can then be used as a learnable discriminative classifier tailored for each

few-shot image classification task.

6.3.2 Amortized Bayesian Prototype Meta-learning

In this section, we will firstly give a brief overview of the proposed amortized

Bayesian prototype meta-learning approach, highlight its novelty and strength, and

then discuss the details of variational distributions, prior distributions and the loss

designed.

6.3.2.1 Overview

Rather than inferring task-specific variational parameters φt for each task Tt, we

can employ a global model V which learns to estimate φt conditioned on both the

support set St and the shared set of parameters γ (Marino et al., 2018). It allows us

to obtain φt as a function of St and γ, i.e., φt = V (St, γ) for all tasks. This is also

known as amortized variational inference (Kingma and Welling, 2013; Marino et al.,

2018; Ravi and Beatson, 2019). In the proposed method, we follow the settings of

(Grant et al., 2018; Ravi and Beatson, 2019) and set the task-specific variational

distribution qφt(z) = N (z;µφt ,Σφt). The variational parameters φt := (µφt ,Σφt)

can be optimized by φt = V (St, γ) := γ + α∇γ log pγ(St) for all t. Hence, we can

see that inference for all tasks is amortized by the globally shared set of parameters

γ and the model V . To simplify notation, we drop the subscript t in the following

content.

In the proposed method, we assume that there is a random vector z =



6.3. The Proposed Method 112

(z1, · · · , zC)> acting as class prototypes for each C-way K-shot image classifi-

cation task. Each element of z is allowed to have a specific Gaussian distribution

parameterised by φ representing the corresponding generative processes. From the

discussion above, we know that we can learn φ by φ = V (S, γ). Note that the

first term in the evidence lower bound of log pγ(S) (R.H.S. of (6.2)) and the lower

bound of log pγ(Q|S) (6.3) represents negative reconstruction loss. Hence, we can

reformulate them into a negative classification loss−LPR in (6.9). In this way, given

a task T , we can rewrite (6.2) and (6.3) into a loss on S, J(S), for learning the task-

specific variational parameters φ, and a meta-loss Jmeta(Q) for learning the globally

shared parameters γ, respectively.

J(S) := LPR(S|z) + KL[qφ(z|S) || pγ(z)], (6.4)

Jmeta(Q) := LPR(Q|z). (6.5)

Given the current values of γ, the variational parameters φ can be optimized using

J(S) in (6.4) which are initialized at γ, e.g., several steps of gradient descent or

even more sophisticated approach like Adam (Kingma and Ba, 2015). The globally

shared set of parameters γ can be updated using Jmeta(Q) conditioning on the current

query set Q, e.g., γ ←− γ − η∇γJmeta(Q). The pseudo-algorithms of meta-training,

meta-validation and meta-testing are summarized in Algorithm 8 and Algorithm 9.

Novelty and Strength Our approach targets at learning to learn pγ(z|S) of the

latent class prototypes z for each C-way image classification task efficiently by

amortized variational inference. A significant difference from previous probabilis-

tic meta-learning methods (Gordon et al., 2019; Ravi and Beatson, 2019; Finn et al.,

2018; Yoon et al., 2018) are summarised as follows. Posteriors of the class proto-

types are learnt efficiently. They are used as classifiers directly, rather than gener-

ating stochastic classifiers (i.e neural networks parameterized by random weights

sampled from their posteriors). With the approximate posterior qφ(z|S), the pro-

posed method is able to encourage better classification on the query set through LPR

explicitly.



6.3. The Proposed Method 113

6.3.2.2 Design of Variational Distributions, Prior Distributions and

Classification Loss

In this section, we will present the details of variational distributions, prior distribu-

tions and classification loss designed for the proposed method.

Variational Distributions The proposed approach learns the uncertainty of each

image’s deep representation through an embedding network fγ . The embedding

network fγ consists of a convolutional neural network and a fully connected layer;

see Section 6.4.1 for details. To be more specific, after an image x being fed for-

ward into the embedding network fγ , we then obtain a feature vector fγ(x) ∈ R2p

which is then further split into two parts, i.e., µ(x) ∈ Rp and σ(x) ∈ Rp. We fur-

ther set σ2(x) = |w| � Sig(σ2(x)) ⊕ |b| to ensure a finite σ2(x), where Sig(·) is a

element-wise sigmoid function, and {w, b} are two learnable scalars broadcasted to

match the dimension of Sig(σ2(x)) ∈ Rp. Here, � and ⊕ represent element-wise

multiplication and element-wise addition operators, respectively. Consequently, an

image x can be represented by a Gaussian distribution N (µ(x),Σ(x)) where the

covariance matrix Σ(x) ∈ Rp×p is a diagonal matrix with the diagonal elements

σ2(x). To aggregate distributions of images from one class into one Gaussian dis-

tribution, we consider a matrix-version of harmonic mean. Note that other forms of

average can also be taken into account, e.g., simple average. For a C-way K-shot

classification task, suppose that Sc denotes the subset of S containing K samples

from the class c ∈ {1, . . . , C}, the matrix-version of harmonic mean is,

µc =
{∑

xn∈Sc Σ(xn)−1
}−1 {∑

xn∈Sc Σ(xn)−1µ(xn)
}
,

Σc =
{

1
|Sc|
∑

xn∈Sc [Σ(xn)−1]
}−1

. (6.6)

We can then set q(zc|Sc) = N (zc;µc,Σc) for all c ∈ {1, . . . , C}.

Prior Distributions In existing methods (Grant et al., 2018; Gordon et al., 2019;

Ravi and Beatson, 2019; Finn et al., 2018; Yoon et al., 2018; Nguyen et al., 2020;

Jerfel et al., 2019), z are the parameters of neural networks and are regarded as

random variables. In this chapter, since z are no longer the weights of neural net-



6.3. The Proposed Method 114

works, trivial choices of prior distributions such as standard Gaussian distributions

are not desirable. Task-dependent priors are proposed for z in our approach, i.e.,

N (µ(x),Σ(x)) conditional on a sample x sampled from the support set S of a task

T . The reason why we choose this to be the prior is because it has already been

extracted by the neural network and thus requires no additional efforts. Due to the

randomness induced by x, we propose to replace the KL divergence term in (6.4)

with its expectation,

E{x,y}∼T [KL [qφ(z|S)||pγ(z;µ(x),Σ(x))]] . (6.7)

One unbiased estimator of the above expectation is given by

1
CK

∑C
c=1

∑K
n=1 KL[qφ(zc|Sc)||N (zc;µ(x

(Sc)
n ),Σ(x

(Sc)
n ))],

where x(Sc)
n is the nth image from the subset Sc. This is valid when K > 1. When

K = 1, it is possible to define priors with both the query set and the support set of

a task. However, using samples from the query set to construct priors is arguable

since label information may leak during such processes. Hence, for C-way 1-shot

classification, we use the same rule in (6.6) to aggregate the Gaussian distributions

of the C support samples into a single Gaussian distribution N (µunion,Σunion) to

represent the prior distribution pγ(z). Note that this is a quite strong prior on z

which could result in shrinkage. However, it is still reasonable if being compared to

standard Gaussian distributions. In this case, an estimator of the KL term in (6.4)

now becomes 1
C

∑C
c=1 KL[qφ(zc|Sc) || N (µunion,Σunion)].

Classification Loss For a sample x, we measure its class membership to each of

the C classes by

Pr[µ(x)|zc] = N (µ(x);µc,Σc) , (6.8)

for c = 1, . . . , C. Since the sum of the above probabilities over C classes is not

restricted to be 1, it is essential to normalize these C values of x to ensure a valid



6.3. The Proposed Method 115

loss function for classification. Thus, LPR in (6.4) and (6.5) is then set to be

LPR(τ |z) = − 1
|τ |
∑|τ |

n=1

[
log
(

Pr[µ(xn)|zyn ]∑C
c=1 Pr[µ(xn)|zc]

)]
, (6.9)

where τ represents either a support set S or a query set Q.

6.3.2.3 Connection between Loss and Reconstruction Error

In this section, we make the connection between the classification loss and the neg-

ative reconstruction error Ez[log pγ(τ |z)] clear where τ can be either S or Q.

Note that

log pγ(τ |z) = log(
∏|τ |

n=1 pγ(yn|xn, z)) =
∑|τ |

n=1 log pγ(yn|xn, z).

The response variable yn is discrete and takes values in {1, . . . , C} in a C-way

classification task. Thus, it should have a probability mass function, which can be

accomplished by normalizing over the sum of class membership:

pγ(yn|xn, z) = Pr[µ(xn)|zyn ]∑C
c=1 Pr[µ(xn)|zc]

.

Taking the logarithm of the above equation, we have,

log pγ(τ |z) =
∑|τ |

n=1 log
(

Pr[µ(xn)|zyn ]∑C
c=1 Pr[µ(xn)|zc]

)
.

One unbiased estimator of the negative reconstruction loss Ez[log pγ(τ |z)] is

log pγ(τ |z) when the sample size of z is one. This is well-behaved in our exper-

iments as z are latent prototypes of each task. Therefore, under this setting, one

unbiased estimator of −Ez[log pγ(τ |z)] is then

−∑|τ |n=1 log
(

Pr[µ(xn)|zyn ]∑C
c=1 Pr[µ(xn)|zc]

)
which is our LPR(τ |z) multiplied by a factor of 1/|τ |.

Remark 6.3.1. Though the KL term in the evidence lower bound of log pγ(S) is re-



6.4. Applications to Few-shot Image Classification 116

placed with (6.7) since the proposed prior of z depends on S, our estimator to (6.4)

is still an unbiased estimator to the evidence lower bound of log pγ(S) (scaled by a

constant). Therefore, our approach is still able to learn to approximate the poste-

riors of z conditional on S. To appreciate this, first note that during the inference

stage τ is the support set S (and we have |τ | = CK). After putting the unbiased

estimator of (6.7) and (6.8) into (6.4), the loss in (6.4) can be then rewritten as

J(S) = 1
CK

∑C
c=1

∑K
n=1

[
− log

(
Pr

[
µ(x

(Sc)
n )|zc

]
∑C
k=1 Pr

[
µ(x

(Sc)
n )|zk

])

+ KL
[
qφ(zc|Sc)||pγ(zc;µ(x

(Sc)
n ),Σ(x

(Sc)
n ))

] ]
.

By taking the negative sign on both sides of the above equation, we have

−J(S) = 1
CK

∑C
c=1

∑K
n=1

[
log pγ(y

(Sc)
n |x(Sc)

n , zc)

−KL
[
qφ(zc|Sc)||pγ(zc;µ(x

(Sc)
n ),Σ(x

(Sc)
n ))

] ]
.

Note that the terms in the double summation is an unbiased estimator of the evi-

dence lower bound of log pγ(y
(Sc)
n |x(Sc)

n ). Since

1
CK

∑
c,n log pγ(y

(Sc)
n |x(Sc)

n ) = 1
CK

log pγ(S),

it tells that−J(S) is an unbiased estimator of the evidence lower bound of log pγ(S)

scaled by a factor of 1/CK.

6.4 Applications to Few-shot Image Classification

In this section, we will evaluate the performance of the proposed method on a range

of real-world image datasets. Meanwhile, implementation details and ablation stud-

ies are provided.



6.4. Applications to Few-shot Image Classification 117

Algorithm 8: Meta-training for C-way K-shot classification
Input: ModelMγ with initial parameter γ0, number meta-iterations Itr,

inner learning rate α, outer learning rate η, C-way, K-shot,
environment ρ .

1 for i from 1 to Itr do
2 Sample a mini-batch of tasks Tt from ρ, for t = 1, ..., B.
3 for each task Tt from 1 to B do
4 Sample St and Qt from Tt.
5 Initialize φt0 ← γi−1.

/* Approximate inference for posteriors of z

conditional on St */

6 for l from 1 to L do
7 φtl ← φtl−1−α∇φtl−1

{LPR(St|z)+KL[qφtl−1
(z|St) || pγi−1

(z)]}.
8 Compute prediction loss: LPR(Qt|z) given φtL.

/* Update globally shared meta-parameters γ */

9 γi ← γi−1 − η∇γi−1

1
B

∑B
i=1 LPR(Qt|z).

Output: ReturnMγItr
.

Algorithm 9: Meta-validation/Meta-testing of the proposed method
Input: Meta-modelMγItr

, set of tasks for meta-validation/meta-testing
T1, . . . , TT .

1 for t from 1 to T do
2 Initialize φt0 ← γItr .

/* Approximate inference for the current task */

3 for l from 1 to L do
4 φtl ← φtl−1 − α∇φtl−1

{LPR(St|z) + KL[qφtl−1
(z|St) || pγItr

(z)]}.
5 Denote St,c the subset of St containing samples from the class c ∈ [C].
6 Predict for an image x: ŷ = arg maxc Pr(µ(x)|qφtL(zc|St,c)), c ∈ [C].
7 Compute prediction accuracy at on the query set Qt.

Output: Average accuracy 1
T

∑T
t=1 at.



6.4. Applications to Few-shot Image Classification 118

6.4.1 Implementation Details

We ensure a fair comparison with other methods by adhering to standardized prac-

tices in terms of the network architecture, image datasets used for benchmarking,

and experimental setup.

Network Architecture Our approach only requires a neural network fγ for deep

feature embedding of raw image data. Such embedding neural networks can be

VGG (Simonyan and Zisserman, 2015) or ResNet (He et al., 2016). To make fair

comparisons with existing methods (details in Appendix C), we use a shallow con-

volution neural network consisting of four convolution blocks and a fully-connected

linear layer. This is used as the feature extractor fγ . Each convolution block has 64

3-by-3 filters, followed by batch-normalization, ReLU activation, and 2-by-2 max-

pooling. The fully-connected layer then transforms the flattened features from the

previous four convolution blocks into vectors ∈ R128. By following the steps in

Section 6.3.2, we can formulate a Gaussian distribution for fγ(x) of each sample x.

Image Datasets Omniglot (Lake et al., 2011) is widely used as a image dataset

for benchmarking, which contains 1623 classes from 50 languages. Each class con-

tains 20 samples. For Omniglot, we follow the settings of (Vinyals et al., 2016;

Snell et al., 2017; Chen et al., 2019b) to augment the classes by rotations in 90,

180 and 270 degrees, which leads to 6492 classes in total. We also split these

classes into 4112 classes for meta-training, 688 classes for meta-validation, and

1692 classes for meta-testing by following the settings of Snell et al. (2017); Chen

et al. (2019b). All images are down-sampled to 28 × 28 × 1 as a pre-processing

step. Another popular real-world image dataset used for object recognition is mini-

ImageNet (Vinyals et al., 2016). It is a subset of ImageNet (Deng et al., 2009), firstly

used by Vinyals et al. (2016) to investigate few-shot meta-learning. mini-ImageNet

has images from 100 different classes. Each class has 600 images with labels. In

our experiments, we follow the settings of Ravi and Larochelle (2016); Chen et al.

(2019b). The dataset is randomly split into 64 classes for meta-training, 16 classes

for meta-validation, 20 classes for meta-testing. The proposed approach is also

tested on two fine-grained image datasets, i.e., CUB-200-2011 (Wah et al., 2011)



6.4. Applications to Few-shot Image Classification 119

and Stanford-dogs (Khosla et al., 2011). CUB-200-2011 consists of 11788 birds’

images from 200 different classes. We randomly split the dataset into 100 classes

for meta-training, 50 classes for meta-validation and 50 classes for meta-testing,

which is the same setting as that of (Chen et al., 2019b). Stanford-dogs has 20580

dogs’ images from 120 classes. It is also randomly split into three mutually disjoint

subsets, 60 classes for meta-training, 30 classes for meta-validation and 30 classes

for meta-testing. We down-sample all images from mini-ImageNet, CUB-200-2011

and Stanford-dogs to 84 × 84 × 3, which are then fed into the embedding neural

network fγ . Meanwhile, standard data augmentation techniques are employed, i.e.,

random sized crop, random horizontal flip, and image jitter.

Setup All experiments in this chapter are implemented and evaluated by the use of

the episodic meta-training/meta-evaluation processes (Vinyals et al., 2016), which

is the widely accepted standard in this field. For few-shot image classification, an

episode actually refers to a C-way K-shot image classification task (see Defini-

tion 3.5.3 for definition) or a mini-batch of such tasks. As discussed in the previ-

ous paragraph, each image dataset is randomly split into three disjoint parts. By

doing so, we set up three procedures, i.e., meta-training, meta-validation and meta-

testing. The optimal number of meta-training epochs is selected according to the

accuracy on the meta-validation set. During meta-testing, 600 novel tasks are ran-

domly sampled from the meta-testing set. We report the mean accuracy with its

95% confidence interval. PyTorch (Paszke et al., 2019) is used for all experiments.

See Appendix C for detailed setting of hyper-parameters, e.g., B, L, α and η in

Algorithm 8.

6.4.2 Experimental Results

We now report the performance of the proposed method evaluated on a range of

real-world image datasets.

Comparisons to Probabilistic Meta-learning Methods For 5-shot classification

on mini-ImageNet, the proposed approach achieves state-of-the-art performance for

5-way 5-shot tasks with a lower variance, as shown in Table 6.1. In terms of 1-shot

classification on mini-ImageNet, the mean accuracy of the proposed approach is



6.4. Applications to Few-shot Image Classification 120

Table 6.1: Meta-testing Accuracy for 5-way Classification on Mini-ImageNet and Om-
niglot. These methods all use a comparable feature embedding, i.e. shallow
convolution networks (see the supplementary material for details). Bold text in-
dicates the highest mean accuracy and results that overlap with the confidence
intervals of those highest mean accuracy.

Omniglot (%) mini-ImageNet (%)
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

BMAML (Yoon et al., 2018) - - 53.80± 1.46 64.23± 0.69∗

PLATIPUS (Finn et al., 2018) - - 50.13± 1.86 -
ABML (Ravi and Beatson, 2019) - - 45.00± 0.60 -
Amortized VI (Gordon et al., 2019) 97.77± 0.55 98.71± 0.22 44.13± 1.78 55.68± 0.91
VERSA (Gordon et al., 2019) 99.70± 0.20 99.75± 0.13 53.40± 1.82 67.37± 0.86
Meta-Mixture (Jerfel et al., 2019) - - 51.20± 1.52 65.00± 0.96
VAMPIRE (Nguyen et al., 2020) 98.41± 0.19 99.56± 0.08 51.54± 0.74 64.31± 0.74
DKT (Patacchiola et al., 2020) - - 49.73± 0.07 64.00± 0.09
Ours 98.83± 0.17 99.54± 0.08 53.28± 0.91 70.44± 0.72

Table 6.2: Meta-testing Accuracy for 5-way Classification on CUB-200-2011, Stanford-
dogs and Mini-ImageNet. These methods all use the same feature embedding
architecture in (Chen et al., 2019b), i.e. four convolution blocks. Results with
superscript ∗ means training and testing locally.

CUB-200-2011 (%) Stanford-dogs (%) mini-ImageNet (%)
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchingNet (Vinyals et al., 2016) 60.52± 0.88 75.29± 0.75 45.65± 0.90∗ 60.87± 0.71∗ 48.14± 0.78 63.48± 0.66
ProtoNet (Snell et al., 2017) 50.46± 0.88 76.39± 0.64 41.07± 0.84∗ 62.47± 0.69∗ 44.42± 0.84 64.24± 0.72
RelationNet (Sung et al., 2018) 62.34± 0.94 77.84± 0.68 47.20± 0.89∗ 66.12± 0.71∗ 49.31± 0.85 66.60± 0.69
Baseline++ (Chen et al., 2019b) 60.53± 0.83 79.34± 0.61 44.15± 0.71∗ 64.42± 0.66∗ 48.24± 0.75 66.43± 0.63
IMP (Allen et al., 2019) 59.50± 0.93∗ 79.50± 0.65∗ 48.29± 0.84∗ 68.00± 0.67∗ 49.60± 0.80 68.10± 0.80
MAML (Finn et al., 2017) 56.10± 1.01 75.41± 0.74 43.35± 0.85 60.55± 0.77 48.70± 1.84 63.11± 0.92
Ours 63.46± 0.98 80.94± 0.62 54.45± 0.94 72.61± 0.64 53.28± 0.91 70.44± 0.72

slightly lower than that of BMAML (Yoon et al., 2018). However, it still falls in the

95% confidence interval of the performance of BMAML. Experimental results also

show that the performance of our approach slightly degrades on Omniglot but it still

achieves comparable results if being compared to recent probabilistic meta-learning

methods.

Comparisons to Metric-based Methods Since Chen et al. (2019b) provide fair

comparisons of recent metric-based methods, the proposed method uses a neural

network which consists of the same four convolution blocks as those in (Chen et al.,

2019b). Our experiments are also follow the same settings as those in Chen et al.

(2019b). To make fair comparisons, the results of MatchingNet, ProtoNet and Rela-

tionNet reported in Chen et al. (2019b) are presented here. As shown in Table 6.2,

the proposed method achieves state-of-the-art performance on all three datasets.



6.4. Applications to Few-shot Image Classification 121

6.4.3 Ablation Studies

In this section, we investigate and report the robustness and effectiveness of the

proposed method.

On Robustness The proposed approach enables us to have a luxury of changing

the number of ways C (i.e. the number of classes) or the number of shots K (i.e.

the number of labeled images per class) without re-training the whole model. We

study the robustness of the proposed method in these scenarios on Omniglot and

mini-ImageNet.

• Omniglot. The proposed model is trained for 5-way 5-shot or 10-way 5-shot

on the meta-training set of Omniglot. Then, during meta-testing stage for

evaluation the models’ performance, the number of ways C (Figure 6.1-a)

or the number of shots K (Figure 6.1-b) are varied. From Figure 6.1-a, it is

found that our approach still has a high mean accuracy above 96% even when

C = 50.

• mini-ImageNet. The proposed model is trained for 5-way 5-shot on the meta-

training set of mini-ImageNet, and is then tuned on the meta-validation set.

Then, we test its performance for a higher C-way classification problem dur-

ing meta-testing, which is a more challenging problem. In Table 6.3, it shows

that the proposed approach outperforms other metric-based methods. For ex-

ample, it preserves a high accuracy above 56% for 10-way 5-shot tasks with-

out the need of re-training.

5 10 15 20 25 30 35 40 45 50
(a) Way (C)

95.6

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

M
ea

n
A

cc
u

ra
cy

(%
)

10 way, 5 shot

5 way, 5 shot

2 4 5 6 8 10 12
(b) Shot (K)

98.2

98.4

98.6

98.8

99.0

99.2

99.4

99.6

10 way, 5 shot

5 way, 5 shot

Omniglot mini-ImageNet
(c)

40

50

60

70

80

90

100 KL × Dropout ×
KL
√

Dropout ×
KL
√

Dropout
√

Figure 6.1: Ablation Studies. (a)&(b): Robustness of the proposed method on Omniglot.
(c): Effectiveness of our probabilistic inference and extra dropout regulariza-
tion. Details are presented in the supplementary material.



6.4. Applications to Few-shot Image Classification 122

Figure 6.2: Reliability Diagrams on Various Image Datasets.

On Effectiveness of Inference We investigate the effectiveness of the proposed

probabilistic inference, which is to learn the posteriors of class prototypes for each

task. This is investigated by comparing with the removal of the KL term in (6.4).

Additionally, since we do not use dropout (Kingma et al., 2015; Gal and Ghahra-

mani, 2016) as an extra regularization (Gordon et al., 2019), the effectiveness of

dropout is also investigated here. We present the results of 5-way 5-shot classifi-

cation on Omniglot and mini-ImageNet in Figure 6.1-c. It shows that the proposed

probabilistic inference plays a vital role in performance as it boosts performance,

e.g., 43.08± 0.62% versus 70.44± 0.72% on mini-ImageNet. Experimental results

also indicate that dropout is not effective to the proposed approach.

Table 6.3: Ablation Study: Robustness on Mini-ImageNet. All methods are trained for 5-
way 5-shot at meta-training stage and are tested forC-way 5-shot at meta-testing
stage.

C-way C = 5 (%) C = 10 (%) C = 20 (%)
MatchingNet 63.48± 0.66 47.61± 0.44 33.97± 0.24
ProtoNet 64.24± 0.68 48.77± 0.45 34.58± 0.23
RelationNet 66.60± 0.69 47.77± 0.43 33.72± 0.22
Baseline++ 66.43± 0.63 52.26± 0.40 38.03± 0.24
Ours 70.44± 0.72 56.21± 0.47 43.43± 0.25

On Quality of Predictive Uncertainty We measure the quality of predictive un-

certainty of our approach by the expected calibration error (ECE) and maximum

calibration error (MCE) (Guo et al., 2017; Naeini et al., 2015). They are presented

jointly with reliability diagrams in Figure 6.2. As discussed in (Guo et al., 2017;

Naeini et al., 2015), a perfect calibration would have its predicting probabilities



6.5. Conclusions 123

equal to the true correctness likelihood, i.e., Pr[ŷ = y|p̂ = p] = p, where p ∈ [0, 1],

where ŷ and p̂ are the prediction of the model and its corresponding prediction con-

fidence/probability, respectively. This indicates that a well calibrated model should

have its bars close to the diagonal of reliability diagrams. Meanwhile it should also

have small values of MCE and ECE. As shown in Figure 6.2, the proposed approach

is well calibrated among various datasets and tasks.

6.5 Conclusions
In this chapter, a simple yet effective probabilistic meta-learning approach, amor-

tized Bayesian prototype meta-learning, is proposed. The proposed approach can be

trained end-to-end without pre-training. It is able to learn posteriors of latent proto-

types efficiently whenever doing meta-training or meta-testing. Inference is amor-

tized via learning a set of globally shared initializations of parameters. By doing

so, within a few steps of gradient descent, the algorithm can produce well-behaved

approximate posteriors of class prototypes. Randomness is taken into account by

the learned posteriors of latent class prototypes. The proposed approach does not

need an extra amortization network, and meanwhile it achieves competitive perfor-

mance on various real-world image datasets, e.g., mini-ImageNet, CUB-200-2011

and Stanford-dogs. We also demonstrate its robustness and effectiveness through

ablation studies.

It is possible to extend the approach. Firstly, more flexible ways of aggregating

distributions can be taken into account. For instance, one possible extension is to

utilize normalizing flows for more flexible and general distributions of latent class

prototypes. Secondly, it is possible to further improve the efficiency of the proposed

method. For instance, with careful design of the structure of neural networks, it al-

lows us to obtain posterior distributions of class prototypes by a single forward pass

of the model such as Garnelo et al. (2018) instead of the current bi-level optimisa-

tion scheme (Finn et al., 2017).



Chapter 7

Conclusions and Future Work

This last chapter consists of two sections. Section 7.1 presents concise conclusions

and reviews the key contributions of this thesis. Section 7.2 highlights additional

future research directions including federated-learning control variates and more

scalable Meta-CVs.

7.1 Conclusions
In this thesis, three novel transfer learning approaches in Monte Carlo methods and

supervised classification are proposed, which encompass a diverse range of topics

and tools, including control variates, kernel methods, Stein’s method and meta-

learning. The following paragraphs present the conclusions and contributions of

the three proposed novel methods.

Chapter 4 presents vector-valued control variates which multitask-learn con-

trol variates’ estimators for multiple related integrals. From the theoretical as-

pect, this is achieved by deriving novel matrix-valued Stein kernels and learning

vector-valued control variates in the RKHSs induced by these novel Stein kernels.

Meanwhile, extensive experiments demonstrate the effectiveness of the proposed

approach on a range of problems from multi-fidelity modelling to Bayesian infer-

ence for dynamic systems.

Chapter 5 addresses an important limitation of control variates. That is, exist-

ing control variates methods tend to perform badly when the number of samples per

task is small. Inspired by meta-learning, we propose the Meta-CVs approach which



7.2. Future Work 125

is capable of learning effective control variates even when the number of samples

per task is small. From the theoretical aspect, we establish the general conditions

when Meta-CVs can be successfully trained. Extensive experiments show that the

proposed method works well on a range of problems from Bayesian inference of

differential equation-based models to marginalisation in hierarchical Gaussian pro-

cesses.

Chapter 6 introduces amortized Bayesian prototype meta-learning for few-shot

image classification. Instead of performing Bayesian inference on neural networks’

parameters, it introduces and performs Bayesian inference on latent class prototypes

per task, which largely reduces the number of latent variables involved. Inference

is amortised by learning a set of globally shared parameters, and therefore the pro-

posed approach is capable of learning unseen new few-shot image classification

tasks fast. Extensive experiments demonstrate that the proposed method is effective

and performs well on a range of real-world image datasets.

7.2 Future Work
Potential future work of the three proposed methods has already been discussed in

detail in the respective associated chapters. In this section, we will further intro-

duce novel control variate methods that offer fresh and innovative approaches to

address various challenges and provide an insightful discussion on the application

of transfer learning control variates in machine learning.

Further Theoretical Guarantees on vv-CVs and Meta-CVs Though we have

provided numerous theoretical analyses of vv-CVs and Meta-CVs, it is still desir-

able to understand the maximum variance reduction that vv-CVs and meta-CVs

can provide from a theoretical perspective. This, however, requires sophisticated

assumptions on the properties of data points and integrands, which is very challeng-

ing.

More Scalable Meta-CVs The proposed meta-CVs method provides us with sig-

nificant advantages and improvements over existing control variates methods. How-

ever, the algorithm itself is not highly scalable due to the bi-level optimisation for



7.2. Future Work 126

learning meta-CVs. It could be particularly valuable to design more scalable al-

gorithms with better optimisation efficiency to further reduce the computational

cost. One way to move forward is to use conditional neural processes (Garnelo

et al., 2018) such that a singe forward propagation of data points can produce task-

specific CVs immediately. This, however, needs careful design of the structure of

neural networks and neural processes to ensure that they have zero-mean under tar-

get distributions.

Federated-learning Control Variates When a dataset is not allowed to be shared

directly due to privacy, how can we construct control variates efficiently in a trans-

fer learning way? One way to move forward is to use federated-learning (McMahan

et al., 2017). We will call this novel kind of control variates federated-learning con-

trol variates. Unlike vv-CVs or meta-CVs in which the original datasets from all

tasks are gathered together, the federated control variate can be optimised by com-

bining the gradient of the loss of each individual control variate and each individual

control variate can then be updated using the resulting gradient of the federated

control variate. This is similar to meta-CVs but they are fundamentally different

as no datasets are shared directly during training. This is an very important future

direction of control variates and can help to improve data privacy.

Meta Probabilistic Numerical Integration Methods Probabilistic numerical

methods, such as Bayesian quadrature (BQ), provide us with uncertainty quantifi-

cation over estimates of integrals. Ott et al. (2023) propose Bayesian Stein neworks

which are scalable for large datasets, unlike the high computational cost of other

probabilistic numerical methods like BQ. However, this approach requires a large

number of samples to ensure satisfactory performance. Therefore, the remaining

challenge is: can we have a novel probabilistic numerical integration method which

is scalable and works efficiently even with a small number of samples per task? One

way to move forward is to combine this work of Ott et al. (2023) with meta-learning.

Analogous to meta-CVs, we will call this novel probabilistic numerical integration

approach as meta Bayesian Stein networks. It is expected to provide us with the

benefits of uncertainty quantification over estimates and satisfactory accuracy even



7.2. Future Work 127

when we only have access to a small number of samples per task.

Transfer-learning Control Variates for Related Learning Objectives Control

variates have also been employed as variance reduction tools within machine learn-

ing algorithms. However, most of these algorithms only employ simple approaches

to perform variance reduction on their learning objectives. For instance, the widely

used “baseline” in reinforcement learning is actually the first-order polynomial

Stein-based CVs. One possible way forward is to apply more sophisticated CVs

like vv-CVs and meta-CVs onto related learning objectives of machine learning al-

gorithms, e.g., evidence lower bound in meta approximate variational inference (Liu

et al., 2019; Nguyen et al., 2020; Iakovleva et al., 2020). For instance, in terms of

the proposed meta-CV approach, the additional cost of incorporating it for related

learning objectives is simply one additional neural network with a predetermined

Stein operator.



Bibliography

A. Alexopoulos, P. Dellaportas, and M. K. Titsias. Variance reduction for Metropo-

lis–Hastings samplers. Statistics and Computing, 33(6), 2023.

A. Alfonsi, B. Lapeyre, and J. Lelong. How many inner simulations to compute

conditional expectations with least-square monte carlo? Methodology and Com-

puting in Applied Probability, 25(3):71, 2023.

K. Allen, E. Shelhamer, H. Shin, and J. Tenenbaum. Infinite mixture prototypes

for few-shot learning. In International Conference on Machine Learning, pages

232–241, 2019.

M. A. Álvarez, L. Rosasco, and N. D. Lawrence. Kernels for vector-valued func-

tions: A review. Foundations and Trends in Machine Learning, 4(3):195–266,

2012.

R. Amit and R. Meir. Meta-learning by adjusting priors based on extended PAC-

Bayes theory. In International Conference on Machine Learning, pages 205–214,

2018.

A. Anastasiou, A. Barp, F.-X. Briol, R. E. Ebner, B.and Gaunt, F. Ghaderinezhad,

J. Gorham, A. Gretton, C. Ley, Q. Liu, et al. Stein’s method meets computational

statistics: a review of some recent developments. Statistical Science, 38(1):120–

139, 2023.

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul,

B. Shillingford, and N. De Freitas. Learning to learn by gradient descent by

gradient descent. Advances in Neural Information Processing Systems, 29, 2016.



BIBLIOGRAPHY 129

A. Antoniou, H. Edwards, and A. Storkey. How to train your maml. In International

Conference on Learning Representations, 2019.

R. Assaraf and M. Caffarel. Zero-variance principle for Monte Carlo algorithms.

Physical Review Letters, 83(23):4682, 1999.

A. Barp, F.-X. Briol, A. Duncan, M. Girolami, and L. Mackey. Minimum Stein

discrepancy estimators. In Advances in Neural Information Processing Systems

32, pages 12964–12976. 2019.

A. Barp, C. J. Oates, E. Porcu, and M. Girolami. A Riemann–Stein kernel method.

Bernoulli, 28(4):2181–2208, 2022.

S. Bartunov and D. Vetrov. Few-shot generative modelling with generative match-

ing networks. In International Conference on Artificial Intelligence and Statis-

tics, pages 670–678. PMLR, 2018.

J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence

Research, 12:149–198, 2000.

D. Belomestny, L. Iosipoi, E. Moulines, A. Naumov, and S. Samsonov. Variance re-

duction for Markov chains with application to MCMC. Statistics and Computing,

30:973–997, 2020.

D. Belomestny, L. Iosipoi, E. Moulines, A. Naumov, and S. Samsonov. Variance re-

duction for dependent sequences with applications to stochastic gradient MCMC.

SIAM-ASA Journal on Uncertainty Quantification, 9(1):507–535, 2021.

A. Berlinet and C. Thomas-Agnan. Reproducing kernel Hilbert spaces in probabil-

ity and statistics. Springer Science & Business Media, 2011.

B. M. Bolker. Ecological models and data in R. In Ecological Models and Data in

R. Princeton University Press, 2008.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale ma-

chine learning. SIAM Review, 60(2):223–311, 2018. ISSN 00361445. doi:

10.1137/16M1080173.



BIBLIOGRAPHY 130

S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimization. Cambridge uni-

versity press, 2004.

F. Brauer. Mathematical epidemiology: Past, present, and future. Infect. Dis.

Model., 2(2):113–127, 2017.

F.-X. Briol, C. Oates, M. Girolami, and M. A. Osborne. Frank-Wolfe Bayesian

quadrature: Probabilistic integration with theoretical guarantees. In Advances in

Neural Information Processing Systems, pages 1162–1170, 2015.

B. Calderhead and M. Girolami. Estimating Bayes factors via thermodynamic inte-

gration and population MCMC. Computational Statistics and Data Analysis, 53

(12):4028–4045, 2009.

C. Carmeli, E. De Vito, and A. Toigo. Vector valued reproducing kernel Hilbert

spaces of integrable functions and Mercer theorem. Analysis and Applications, 4

(4):377–408, 2006.

C. Carmeli, E. De Vito, A. Toigo, and V. Umanita. Vector valued reproducing kernel

Hilbert spaces and universality. Analysis and Applications, 8(1):19–61, 2010.

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt,

M. Brubaker, J. Guo, P. Li, and A. Riddell. Stan: A probabilistic programming

language. J. Stat. Softw., 76(1), 2017.

L. H. Chen, L. Goldstein, and Q.-M. Shao. Normal approximation by Stein’s

method. Springer Science & Business Media, 2010.

Q. Chen, C. Shui, and M. Marchand. Generalization bounds for meta-learning:

An information-theoretic analysis. Advances in Neural Information Processing

Systems, 34:25878–25890, 2021.

W. Y. Chen, L. Mackey, J. Gorham, F.-X. Briol, and C. Oates. Stein points. In

International Conference on Machine Learning, pages 844–853. PMLR, 2018.



BIBLIOGRAPHY 131

W. Y. Chen, A. Barp, F.-X. Briol, J. Gorham, M. Girolami, L. Mackey, and C. J.

Oates. Stein point Markov chain Monte Carlo. In International Conference on

Machine Learning, PMLR 97, pages 1011–1021, 2019a.

W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang. A closer

look at few-shot classification. In International Conference on Learning

Representations, 2019b. URL https://openreview.net/forum?id=

HkxLXnAcFQ.

C. Chu, K. Minami, and K. Fukumizu. The equivalence between stein vari-

ational gradient descent and black-box variational inference. arXiv preprint

arXiv:2004.01822, 2020.

K. Chwialkowski, H. Strathmann, and A. Gretton. A kernel test of goodness of fit.

In International Conference on Machine Learning, pages 2606–2615. PMLR,

2016.

C. Ciliberto, Y. Mroueh, T. Poggio, and L. Rosasco. Convex learning of multi-

ple tasks and their structure. In International Conference on Machine Learning,

pages 1548–1557, 2015.

R. Collobert and J. Weston. A unified architecture for natural language processing:

Deep neural networks with multitask learning. In International Conference on

Machine Learning, pages 160–167, 2008.

P. Dellaportas and I. Kontoyiannis. Control variates for estimation based on re-

versible Markov chain Monte Carlo samplers. Journal of the Royal Statistical

Society Series B: Statistical Methodology, 74(1):133–161, 2012.

J. Demange-Chryst, F. Bachoc, and J. Morio. Efficient estimation of multiple ex-

pectations with the same sample by adaptive importance sampling and control

variates. arXiv:2212.00568, 2022.

G. Denevi, C. Ciliberto, D. Stamos, and M. Pontil. Learning to learn around a

https://openreview.net/forum?id=HkxLXnAcFQ
https://openreview.net/forum?id=HkxLXnAcFQ


BIBLIOGRAPHY 132

common mean. In Advances in Neural Information Processing Systems, pages

10169–10179, 2018.

G. Denevi, C. Ciliberto, R. Grazzi, and M. Pontil. Learning-to-learn stochastic gra-

dient descent with biased regularization. In International Conference on Machine

Learning, pages 1566–1575, 2019.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-

scale hierarchical image database. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 248–255, 2009.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

F. Dinuzzo, C. S. Ong, P. V. Gehler, and G. Pillonetto. Learning output kernels with

block coordinate descent. In International Conference on Machine Learning,

2011.

T. J. Dodwell, C. Ketelsen, R. Scheichl, and A. L. Teckentrup. Multilevel Markov

chain Monte Carlo. SIAM Review, 61(3):509–545, 2019.

A. Doucet, S. Godsill, and C. Andrieu. On sequential monte carlo sampling methods

for bayesian filtering. Statistics and Computing, 10:197–208, 2000.

A. Doucet, N. De Freitas, and N. J. Gordon. Sequential Monte Carlo methods in

practice, volume 1. Springer, 2001.

D. Duvenaud. Automatic model construction with Gaussian processes. PhD thesis,

University of Cambridge, 2014.

B. Efron and C. Morris. Stein’s paradox in statistics. Scientific American, 236(5):

119–127, 1977.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel

methods. Journal of Machine Learning Research, 6:615–637, 2005.



BIBLIOGRAPHY 133

H. R. Fairbanks, A. Doostan, C. Ketelsen, and G. Iaccarino. A low-rank control

variate for multilevel Monte Carlo simulation of high-dimensional uncertain sys-

tems. Journal of Computational Physics, 341:121–139, 2017.

A. Fallah, A. Mokhtari, and A. Ozdaglar. On the convergence theory of gradient-

based model-agnostic meta-learning algorithms. In International Conference on

Artificial Intelligence and Statistics. PMLR, 2020.

S. Feldman, M. R. Gupta, and B. A. Frigyik. Revisiting stein’s paradox: multi-task

averaging. Journal of Machine Learning Research, 15(1):3441–3482, 2014.

Y. Feng, D. Wang, and Q. Liu. Learning to draw samples with amortized stein

variational gradient descent. arXiv preprint arXiv:1707.06626, 2017.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adapta-

tion of deep networks. In International Conference on Machine Learning, pages

1126–1135, 2017.

C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic meta-learning. In

Advances in Neural Information Processing Systems, pages 9516–9527, 2018.

C. Finn, A. Rajeswaran, S. Kakade, and S. Levine. Online meta-learning. In Inter-

national Conference on Machine Learning. PMLR, 2019.

M. Fisher, T. Nolan, M. Graham, D. Prangle, and C. Oates. Measure transport with

kernel stein discrepancy. In A. Banerjee and K. Fukumizu, editors, International

Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings

of Machine Learning Research, pages 1054–1062. PMLR, 13–15 Apr 2021. URL

http://proceedings.mlr.press/v130/fisher21a.html.

N. Friel and A. N. Pettitt. Marginal likelihood estimation via power posteriors.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70

(3):589–607, 2008.

N. Friel, M. Hurn, and J. Wyse. Improving power posterior estimation of statistical

evidence. Statistics and Computing, 24(5):709–723, 2014a.

http://proceedings.mlr.press/v130/fisher21a.html


BIBLIOGRAPHY 134

N. Friel, A. Mira, and C. J. Oates. Exploiting multi-core architectures for reduced-

variance estimation with intractable likelihoods. Bayesian Analysis, 11(1):215–

245, 2014b.

Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing

model uncertainty in deep learning. In International Conference on Machine

Learning, pages 1050–1059, 2016.

M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton, M. Shanahan,

Y. W. Teh, D. Rezende, and S. A. Eslami. Conditional neural processes. In

International Conference on Machine Learning, pages 1704–1713. PMLR, 2018.

G. D. Garson. Hierarchical linear modeling: Guide and applications. Sage, 2013.

G. Geraci, M. S. Eldred, and G. Iaccarino. A multifidelity multilevel Monte Carlo

method for uncertainty propagation in aerospace applications. In 19th AIAA non-

deterministic approaches conference, page 1951, 2017.

A. Gessner, J. Gonzalez, and M. Mahsereci. Active multi-information source

Bayesian quadrature. In Uncertainty in Artificial Intelligence, pages 712–721,

2020.

M. B. Giles. Multilevel Monte Carlo methods. Acta numerica, 24:259–328, 2015.

M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian

Monte Carlo methods. Journal of the Royal Statistical Society Series B: Statisti-

cal Methodology, 73(2):123–214, 2011.

J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. Turner. Meta-learning

probabilistic inference for prediction. In International Conference on Learn-

ing Representations, 2019. URL https://openreview.net/forum?id=

HkxStoC5F7.

J. Gorham and L. Mackey. Measuring sample quality with kernels. In International

Conference on Machine Learning, pages 1292–1301. PMLR, 2017.

https://openreview.net/forum?id=HkxStoC5F7
https://openreview.net/forum?id=HkxStoC5F7


BIBLIOGRAPHY 135

J. Gorham, A. B. Duncan, S. J. Vollmer, and L. Mackey. Measuring sample quality

with diffusions. Annals of Applied Probability, 29(5):2884–2928, 2019.

E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths. Recasting gradient-based

meta-learning as hierarchical Bayes. In International Conference on Learn-

ing Representations, 2018. URL https://openreview.net/forum?id=

BJ_UL-k0b.

W. Grathwohl, K.-C. Wang, J.-H. Jacobsen, D. Duvenaud, and R. Zemel. Learning

the stein discrepancy for training and evaluating energy-based models without

sampling. In International Conference on Machine Learning, pages 3732–3747.

PMLR, 2020.

P. Green, K. Latuszyski, M. Pereyra, and C. Robert. Bayesian computation: a

summary of the current state, and samples backwards and forwards. Statistics

and Computing, 25:835–862, 2015.

E. Grefenstette, B. Amos, D. Yarats, P. Htut, A. Molchanov, F. Meier,

D. Kiela, K. Cho, and S. Chintala. Generalized inner loop meta-learning.

arXiv:1910.01727, 2019.

J. Griffin and P. Brown. Hierarchical shrinkage priors for regression models.

Bayesian Analysis, 12(1):135, 2017.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural

networks. In International Conference on Machine Learning, pages 1321–1330,

2017.

J. Han and Q. Liu. Stein variational gradient descent without gradient. In Interna-

tional Conference on Machine Learning, pages 1900–1908. PMLR, 2018.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–

778, 2016.

https://openreview.net/forum?id=BJ_UL-k0b
https://openreview.net/forum?id=BJ_UL-k0b


BIBLIOGRAPHY 136

D. Hendrycks, K. Lee, and M. Mazeika. Using pre-training can improve model

robustness and uncertainty. In International Conference on Machine Learning,

pages 2712–2721. PMLR, 2019.

C. G. Hewitt. The conservation of the wild life of Canada. New York: C. Scribner,

1921.

F. J. Hickernell, C. Lemieux, and A. B. Owen. Control variates for quasi-Monte

Carlo. Statistical Science, 20(1):1–31, 2005.

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural

networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

E. Iakovleva, J. Verbeek, and K. Alahari. Meta-learning with shared amortized

variational inference. In International Conference on Machine Learning, pages

4572–4582. PMLR, 2020.

M. A. Jamal and G.-J. Qi. Task agnostic meta-learning for few-shot learning. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 11719–

11727, 2019.

G. Jerfel, E. Grant, T. Griffiths, and K. A. Heller. Reconciling meta-learning and

continual learning with online mixtures of tasks. In Advances in Neural Informa-

tion Processing Systems, pages 9119–9130, 2019.

K. Ji, J. Yang, and Y. Liang. Theoretical convergence of multi-step model-agnostic

meta-learning. Journal of Machine Learning Research, 23:29–1, 2022.

G. L. Jones. On the Markov chain central limit theorem. Probability Surveys, 1:

299–320, 2004.

H. Ju, D. Li, and H. R. Zhang. Robust fine-tuning of deep neural networks with

hessian-based generalization guarantees. In International Conference on Ma-

chine Learning, pages 10431–10461. PMLR, 2022.



BIBLIOGRAPHY 137

M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur. Gaussian pro-

cesses and kernel methods: A review on connections and equivalences. arXiv

preprint arXiv:1807.02582, 2018.

K. Kandasamy, G. Dasarathy, J. Oliva, J. Schneider, and B. Poczos. Gaussian pro-

cess optimisation with multi-fidelity evaluations. In Neural Information Process-

ing Systems, pages 992–1000, 2016.

A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li. Novel dataset for fine-grained

image categorization: Stanford dogs. In CVPR Workshop on Fine-Grained Visual

Categorization (FGVC), 2011.

D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. In Inter-

national Conference on Learning Representations, 2015.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv preprint

arXiv:1312.6114, 2013.

D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local

reparameterization trick. In Advances in Neural Information Processing Systems,

pages 2575–2583, 2015.

S. Krumscheid and F. Nobile. Multilevel monte carlo approximation of functions.

SIAM-ASA Journal on Uncertainty Quantification, 6(3):1256–1293, 2018.

A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei. Automatic dif-

ferentiation variational inference. Journal of Machine Learning Research, 2017.

B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. One shot learning of simple

visual concepts. In Proceedings of the annual meeting of the cognitive science

society, volume 33, 2011.

V. Lalchand and C. E. Rasmussen. Approximate inference for fully bayesian gaus-

sian process regression. In Symposium on Advances in Approximate Bayesian

Inference, pages 1–12. PMLR, 2020.



BIBLIOGRAPHY 138

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,

2015.

R. Leluc, F. Portier, and J. Segers. Control variate selection for monte carlo integra-

tion. Statistics and Computing, 31(4):1–27, 2021.

H. Li, W. Dong, X. Mei, C. Ma, F. Huang, and B.-G. Hu. LGM-Net: Learning to

generate matching networks for few-shot learning. In International Conference

on Machine Learning, pages 3825–3834, 2019.

K. Li and Z. Sun. Multilevel Control Functional. ICML 2023 Workshop on Struc-

tured Probabilistic Inference & Generative Modeling, 2023.

K. Li, D. Giles, T. Karvonen, S. Guillas, and F.-X. Briol. Multilevel Bayesian

Quadrature. In International Conference on Artificial Intelligence and Statistics,

pages 1845–1868. PMLR, 2023.

X. Li∗, Z. Sun∗, J.-H. Xue, and Z. Ma. A concise review of recent few-shot meta-

learning methods. Neurocomputing, 2020a.

X. Li∗, J. Wu∗, Z. Sun∗, Z. Ma, J. Cao, and J.-H. Xue. Bsnet: Bi-similarity network

for few-shot fine-grained image classification. IEEE Transactions on Image Pro-

cessing, 2020b.

H. Liu, Y. Feng, Y. Mao, D. Zhou, J. Peng, and Q. Liu. Action-dependent control

variates for policy optimization via stein’s identity. In International Conference

on Learning Representations, 2018.

H. Liu, R. Socher, and C. Xiong. Taming maml: Efficient unbiased meta-

reinforcement learning. In International Conference on Machine Learning.

PMLR, 2019.

Q. Liu. Stein variational gradient descent as gradient flow. In Advances in Neural

Information Processing Systems, volume 30, 2017.



BIBLIOGRAPHY 139

Q. Liu and D. Wang. Stein variational gradient descent: A general purpose Bayesian

inference algorithm. In Advances in Neural Information Processing Systems,

pages 2378–2386, 2016.

Q. Liu, J. Lee, and M. Jordan. A kernelized Stein discrepancy for goodness-of-fit

tests. In International Conference on Machine Learning, pages 276–284. PMLR,

2016.

A. J. Lotka. Elements of physical biology. Williams & Wilkins, 1925.

A. J. Lotka. Fluctuations in the abundance of a species considered mathematically.

Nature, 119(2983):12–12, 1927.

H. Marienwald, J.-B. Fermanian, and G. Blanchard. High-dimensional multi-task

averaging and application to kernel mean embedding. In International Confer-

ence on Artificial Intelligence and Statistics, pages 1963–1971. PMLR, 2021.

J. Marino, Y. Yue, and S. Mandt. Iterative amortized inference. In International

Conference on Machine Learning, pages 3403–3412, 2018.

T. Matsubara, J. Knoblauch, F.-X. Briol, C. Oates, et al. Robust generalised

Bayesian inference for intractable likelihoods. arXiv preprint arXiv:2104.07359,

2021.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.

Communication-efficient learning of deep networks from decentralized data. In

International Conference on Artificial Intelligence and Statistics, pages 1273–

1282. PMLR, 2017.

C. Micchelli and M. Pontil. Kernels for multi–task learning. In Advances in Neural

Information Processing Systems, volume 17, 2004.

C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural Com-

putation, 17(1):177–204, 2005.



BIBLIOGRAPHY 140

M. Micheli and J. A. Glaunes. Matrix-valued kernels for shape deformation analy-

sis. Geometry, Imaging and Computing, 1(1):57–139, 2014.

H. Q. Minh, L. Bazzani, and V. Murino. A unifying framework in vector-valued

reproducing kernel hilbert spaces for manifold regularization and co-regularized

multi-view learning. Journal of Machine Learning Research, 2016.

A. Mira, R. Solgi, and D. Imparato. Zero variance Markov chain Monte Carlo for

Bayesian estimators. Statistics and Computing, 23(5):653–662, 2013.

M. P. Naeini, G. F. Cooper, and M. Hauskrecht. Obtaining well calibrated proba-

bilities using Bayesian binning. In AAAI Conference on Artificial Intelligence,

volume 2015, page 2901, 2015.

C. Nguyen, T.-T. Do, and G. Carneiro. Uncertainty in model-agnostic meta-learning

using variational inference. In IEEE Winter Conference on Applications of Com-

puter Vision, pages 3090–3100, 2020.

F. Nobile and F. Tesei. A multilevel Monte Carlo method with control variate for

elliptic PDEs with log-normal coefficients. Stochastic Partial Differential Equa-

tions: Analysis and Computations, 3:398–444, 2015.

C. J. Oates and M. Girolami. Control functionals for quasi-Monte Carlo integration.

In International Conference on Artificial Intelligence and Statistics, volume 51,

pages 56–65, 2016.

C. J. Oates, T. Papamarkou, and M. Girolami. The controlled thermodynamic inte-

gral for Bayesian model comparison. Journal of the American Statistical Associ-

ation, 111(514):634–645, 2016.

C. J. Oates, M. Girolami, and N. Chopin. Control functionals for Monte Carlo inte-

gration. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), 79(3):695–718, 2017.

C. J. Oates, J. Cockayne, F.-X. Briol, M. Girolami, et al. Convergence rates for a

class of estimators based on Stein’s method. Bernoulli, 25(2):1141–1159, 2019.



BIBLIOGRAPHY 141

K. Ott, M. Tiemann, P. Hennig, and F.-X. Briol. Bayesian numerical integration

with neural networks. arXiv preprint arXiv:2305.13248, 2023.

A. B. Owen. Monte carlo theory, methods and examples. 2013.

J. Paisley, D. M. Blei, and M. I. Jordan. Variational bayesian inference with stochas-

tic search. In International Conference on Machine Learning, 2012.

T. Papamarkou, A. Mira, and M. Girolami. Zero variance differential geometric

Markov chain Monte Carlo algorithms. Bayesian Analysis, 9(1):97–128, 2014.

C. Park, R. T. Haftka, and N. H. Kim. Remarks on multi-fidelity surrogates. Struc-

tural and Multidisciplinary Optimization, 55(3):1029–1050, 2017.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Rai-

son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Py-

Torch: An imperative style, high-performance deep learning library. In Advances

in Neural Information Processing Systems 32, pages 8024–8035, 2019.

M. Patacchiola, J. Turner, E. J. Crowley, M. O’Boyle, and A. Storkey. Bayesian

Meta-Learning for the Few-Shot Setting via Deep Kernels. In Advances in Neural

Information Processing Systems, volume 33, 2020.

B. Peherstorfer, K. Willcox, and M. Gunzburger. Survey of multifidelity methods

in uncertainty propagation, inference, and optimization. SIAM Review, 60(3):

550–591, 2018.

Y. Pu, Z. Gan, R. Henao, C. Li, S. Han, and L. Carin. VAE learning via Stein varia-

tional gradient descent. In Advances in Neural Information Processing Systems,

volume 30, 2017.

C. E. Rasmussen. Gaussian processes in machine learning. In Summer School on

Machine Learning, pages 63–71. Springer, 2003.



BIBLIOGRAPHY 142

S. Ravi and A. Beatson. Amortized Bayesian meta-learning. In International Con-

ference on Learning Representations, 2019. URL https://openreview.

net/forum?id=rkgpy3C5tX.

S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In

International Conference on Learning Representations, 2016.

M. Ren, R. Liao, E. Fetaya, and R. Zemel. Incremental few-shot learning with atten-

tion attractor networks. In Advances in Neural Information Processing Systems,

pages 5276–5286, 2019.

M. Riabiz, W. Chen, J. Cockayne, and P. Swietach. Optimal thinning of MCMC

output. Journal of the Royal Statistical Society Series B: Statistical Methodology,

2022.

C. Riou, P. Alquier, and B.-E. Chérief-Abdellatif. Bayes meets bernstein at the meta

level: an analysis of fast rates in meta-learning with pac-bayes. arXiv preprint

arXiv:2302.11709, 2023.

C. Robert and G. Casella. Monte Carlo statistical methods. Springer Science &

Business Media, 2013.

A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Had-

sell. Meta-learning with latent embedding optimization. In International Con-

ference on Learning Representations, 2019. URL https://openreview.

net/forum?id=BJgklhAcK7.

S. Si, C. J. Oates, A. B. Duncan, L. Carin, and F.-X. Briol. Scalable con-

trol variates for Monte Carlo methods via stochastic optimization. Proceed-

ings of the 14th Conference on Monte Carlo and Quasi-Monte Carlo Methods.

arXiv:2006.07487, 2021.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. In International Conference on Learning Representations,

2015.

https://openreview.net/forum?id=rkgpy3C5tX
https://openreview.net/forum?id=rkgpy3C5tX
https://openreview.net/forum?id=BJgklhAcK7
https://openreview.net/forum?id=BJgklhAcK7


BIBLIOGRAPHY 143

R. Singhal, X. Han, S. Lahlou, and R. Ranganath. Kernelized complete conditional

Stein discrepancy. arXiv preprint arXiv:1904.04478, 2019.

J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In

Advances in Neural Information Processing Systems, pages 4077–4087, 2017.

L. South, C. Oates, A. Mira, and C. Drovandi. Regularized zero-variance control

variates. Bayesian Analysis, 1(1):1–24, 2022a.

L. F. South, T. Karvonen, C. Nemeth, M. Girolami, and C. J. Oates. Semi-exact

control functionals from sard’s method. Biometrika, 109(2):351–367, 2022b.

L. F. South, M. Riabiz, O. Teymur, and C. J. Oates. Post-Processing of

MCMC. Annual Review of Statistics and Its Application, 2022c. doi: 10.1146/

annurev-statistics-040220-091727.

T. Standley, A. Zamir, D. Chen, L. Guibas, J. Malik, and S. Savarese. Which tasks

should be learned together in multi-task learning? In International Conference

on Machine Learning, pages 9120–9132. PMLR, 2020.

I. Steinwart and A. Christmann. Support vector machines. Springer Science &

Business Media, 2008.

Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele. Meta-transfer learning for few-shot

learning. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 403–412, 2019.

Z. Sun, J. Wu, X. Li, W. Yang, and J.-H. Xue. Amortized Bayesian Prototype

Meta-learning: A New Probabilistic Meta-learning Approach to Few-shot Image

Classification. In International Conference on Artificial Intelligence and Statis-

tics (AISTATS), volume 130, 2021.

Z. Sun, A. Barp, and F.-X. Briol. Vector-Valued Control Variates. In International

Conference on Machine Learning (ICML), 2023a.



BIBLIOGRAPHY 144

Z. Sun, C. J. Oates, and F.-X. Briol. Meta-learning Control Variates: Variance

Reduction with Limited Data. In Conference on Uncertainty in Artificial Intelli-

gence (UAI), 2023b.

F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning

to compare: Relation network for few-shot learning. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 1199–1208, 2018.

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for

one shot learning. In Advances in Neural Information Processing Systems, pages

3630–3638, 2016.

V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali con-

viventi. Società anonima tipografica” Leonardo da Vinci”, 1926.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD

Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California Insti-

tute of Technology, 2011.

M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, vol-

ume 48. Cambridge University Press, 2019.

R. Wan, M. Zhong, H. Xiong, and Z. Zhu. Neural control variates for variance

reduction. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, page 533–547, 2019.

C. Wang, X. Chen, A. J. Smola, and E. P. Xing. Variance reduction for stochastic

gradient optimization. In Advances in Neural Information Processing Systems,

volume 26, 2013.

D. Wang, Z. Tang, C. Bajaj, and Q. Liu. Stein variational gradient descent with

matrix-valued kernels. In Advances in Neural Information Processing Systems,

pages 7836–7846, 2019a.

Y. Wang, Q. Yao, J. Kwok, and L. M. Ni. Generalizing from a few examples: A

survey on few-shot learning. arXiv: 1904.05046, 2019b.



BIBLIOGRAPHY 145

X. Xi, F.-X. Briol, and M. Girolami. Bayesian quadrature for multiple related in-

tegrals. In International Conference on Machine Learning, pages 5373–5382,

2018.

S. Xiong, P. Z. Qian, and C. J. Wu. Sequential design and analysis of high-accuracy

and low-accuracy computer codes. Technometrics, 55(1):37–46, 2013.

J. Xu, J.-F. Ton, H. Kim, A. R. Kosiorek, and Y. W. Teh. Metafun: Meta-learning

with iterative functional updates. In International Conference on Machine Learn-

ing, pages 10617–10627, 2020.

Q. Yang, Y. Zhang, W. Dai, and S. J. Pan. Transfer learning. Cambridge University

Press, 2020.

J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn. Bayesian model-agnostic

meta-learning. In Advances in Neural Information Processing Systems, pages

7332–7342, 2018.

J. Zhuo, C. Liu, J. Shi, J. Zhu, N. Chen, and B. Zhang. Message passing stein

variational gradient descent. In International Conference on Machine Learning,

pages 6018–6027. PMLR, 2018.

B. Zoph, G. Ghiasi, T.-Y. Lin, Y. Cui, H. Liu, E. D. Cubuk, and Q. Le. Rethink-

ing pre-training and self-training. In Advances in neural information processing

systems, volume 33, pages 3833–3845, 2020.



Appendix A

Supplementary Material of

Vector-valued Control Variates

A.1 Overview
In this Appendix, we present proofs for Chapter 4 in Appendix A.2, implementation

details in Appendix A.3 and additional details and results for experimental study in

Appendix A.4 All experiments are implemented with PyTorch.

A.2 Proofs

A.2.1 First-order K0 for Polynomial-based vv-CVs

Consider the case when we are interested in using a polynomial kernel kl(x, y) =

(〈x, y〉 + c)l, together with a separable kernel K(x, y) = k(x, y)B and we decide

to use the framework of first-order K0. Note that x, y ∈ Rd.

Degree 1 polynomials When the degree l = 1, to derive the closed form expression

of first-order K0, firstly note that,

k(x, y) = 〈x, y〉+ c =
∑d

j=1 xjyj + c

⇒ ∂ryk(x, y) = xr

⇒ ∂rxk(x, y) = yr

⇒ ∂rx∂
r
yk(x, y) = 1



A.2. Proofs 147

Thus, under such cases,

(K0(x, y))tt′ = Btt′
∑d

r=1 {1 + lrt′(y)yr + lrt (x)xr + lrt (x)lrt′(y) (〈x, y〉+ c)}

Degree 2 polynomials When the degree l = 2, to derive the closed form expression

of first-order K0, firstly note that,

k(x, y) =
(∑d

j=1 xjyj + c
)2

⇒ ∂rxk(x, y) = 2yr

(∑d
j=1 xjyj + c

)
⇒ ∂ryk(x, y) = 2xr

(∑d
j=1 xjyj + c

)
⇒ ∂rx∂

r
yk(x, y) = 2xryr + 2 (〈x, y〉+ c)

Thus, under such cases,

(K0(x, y))tt′ = Btt′
∑d

j=1

{
2xryr + 2 (〈x, y〉+ c) + 2yrl

r
t′(y) (〈x, y〉+ c) + 2xrl

r
t (x) (〈x, y〉+ c)

+ lrt (x)lrt′ (〈x, y〉+ c)2

}

A.2.2 Connection between vvpolynomials and vvRKHS with

polynomial kernel

In this section, d is the dimension of x; T is the number of tasks; l is the degree of

polynomial.

A vvRKHSHK specified by a matrix-valued kernelK(x, xi) = B̃kpoly,l(x, xi) =

B̃(〈x, xi〉+ c)l, for any function f(x) ∈ HK ,

f(x) =
∑m

i=1 B̃(〈x, xi〉+ c)lθ̃i

=
∑m

i=1

(∑d
j=1 xjxij + c

)l
B̃θ̃i



A.2. Proofs 148

(f(x))t =
∑m

i=1

∑l
k=0

[
Ck
l

(∑d
j=1 xjxij

)k (
cl−k

)]
B̃t,· θ̃i︸ ︷︷ ︸
rti


=
∑m

i=1

∑l
k=0 rti C

k
l c

l−k
(∑d

j=1 xjxij

)k
(A.1)

A multivariate polynomial (where θt,α ∈ R1 and the subscript denotes the

dependence on the choice of α = (α1, . . . , αd) and task index t),

(uθ(x))t =
∑
|α|≤l

{
θt,α
∏d

j=1 x
αj
j

}
, (A.2)

When d = 1,

Eq.(A.1) =
∑l

k=0︸ ︷︷ ︸
serves as α≤l

(∑m
i=1 rti C

k
l c

l−k xki
)
xk

Eq.(A.2) =
∑

α≤l θt,α x
α =

∑l
k=0 θt,αx

k

⇒ θt,α =
∑m

i=1 rti C
k
l c

l−k xki =
∑m

i=1

(∑T
t′=1 B̃t,t′ θ̃it′

)
Ck
l c
l−kxki

When d ≥ 2,

Eq.(A.1) =
∑m

i=1

∑l
k=0 rti

(
l
k

)
cl−k (x1xi1 + · · ·+ xdxid)

k

=
∑m

i=1

∑l
k=0 rti

(
l
k

)
cl−k

∑
α1+···αd=k

(
k

α1,...,αd

) [∏d
j=1(xjxij)

αj

]
=
∑l

k=0

∑
α1+···αd=k

∑m
i=1 rti

(
l
k

)
cl−k

(
k

α1,...,αd

) [∏d
j=1(xjxij)

αj

]
=
∑l

k=0

∑
α1+···αd=k︸ ︷︷ ︸

serves as |α|≤l

∑m
i=1 rti

(
l
k

)
cl−k

(
k

α1,...,αd

) [∏d
j=1 x

αj
ij

]∏d
j=1 x

αj
j

Eq.(A.2) =
∑
|α|≤l

{
θt,α
∏d

j=1 x
αj
j

}
⇒ θt,α =

∑m
i=1 rti

(
l
k

)
cl−k

(
k

α1,...,αd

) [∏d
j=1 x

αj
ij

]
=
∑m

i=1

(∑T
t′=1 B̃t,t′ θ̃it′

) (
l
k

)
cl−k

(
k

α1,...,αd

) [∏d
j=1 x

αj
ij

]
, where

(
l
k

)
= l!

k!(l−k)!
and

(
k

α1,...,αd

)
= k!

α1!α2!···αd!
with

∑d
j=1 αj = k (which is also

required in one of those summation operators). The expression when d ≥ 2 is more



A.2. Proofs 149

general, and covers the expression of d = 1.

A.2.3 Proof of Theorem 4.2.1

We will show K0 is a kernel and derive its matrix components by constructing an

appropriate feature map. The first order Stein operator maps matrix-valued func-

tions u = (u1, u2 . . . , uT ) : Rd → Rd×T to the vv-function Svv[u] : Rd → RT given

by

Svv[u] =
(
L′Π1

[u1] , . . . ,L′ΠT [uT ]
)>

where L′Πt [ut](x) = ∇x · ut(x) +∇x log πt(x) · ut(x) ∀t ∈ [T ].

Since K ∈ C1,1(X × X ), we can use (Steinwart and Christmann, 2008, Corollary

4.36) to conclude that HK is a vector-valued RKHS of continuously differentiable

functions from Rd to RT , hence the tensor productHd
K consists of suitable functions

u ∈ Hd
K , with components ui = (ui1, . . . , u

i
T ) ∈ HK for i ∈ [d]. Now recall that

(see for example Theorem 2.11 (Micheli and Glaunes, 2014)):

〈∂jxK(·, x)et, u
i〉HK = et · ∂jui(x) = ∂juit(x) ≡ ∂uit

∂xj
(x) ∀t ∈ [T ]

where et ∈ RT is a vector of zeros with value 1 in the tth component. Then, writing

Ket
x ≡ K(·, x)et,

Svv[u](x) =
∑T

t=1

∑d
r=1(∂rxu

r
t (x) + ∂rx log πt u

r
t (x))et

=
∑T

t=1

∑d
r=1 〈∂rxKet

x + ltr(x)Ket
x , u

r〉HK et
=
∑T

t=1 〈∂•xKet
x + lt•(x)Ket

x , u〉HdK et,

where ltr(x) = ∂rx log πt(x), and ∂•xK
et
x and lt•(x) denote respectively the tuples

(∂1
xK

et
x , . . . , ∂

d
xK

et
x ) ∈ Hd

K and (lt1(x), . . . , ltd(x)) ∈ Rd.

We have thus obtained a feature map, i.e., a map γ : X → B(Hd
K ,RT ), where

B(Hd
K ,RT ) denotes the space of bounded linear maps from Hd

K to RT , via the



A.2. Proofs 150

relation

γ(x)[u] = Svv[u](x),

with adjoint γ(x)∗ =
∑T

t=1(∂•xK
et
x + lt•(x)Ket

x )et. Recall the adjoint map γ(y)∗ ∈
B(RT ,Hd

K) to γ(y), is defined for any a ∈ RT , u ∈ Hd
K by the relation

〈γ(y)∗[a], u〉HdK = γ(y)[u] · a.

In particular, by Proposition 1 of Carmeli et al. (2010) we have that:

K0(x, y) ≡ γ(x) ◦ γ(y)∗ ∈ RT×T

will then be the kernel associated to the “feature operator” (that is, a surjective par-

tial isometry whose image is HK0) Svv : Hd
K → HK0 . Subbing in the expressions

for the feature map and its adjoint derived above, and using the equalities

〈
∂sxK(·, x)et, ∂

r
yK(·, y)et′

〉
HK

= et · ∂sx∂ryK(x, y)et′ = (∂sx∂
r
yK(x, y))tt′ ∀t, t′ ∈ [T ]

and
〈
∂ssx K(·, x)et, ∂

r
yK(·, y)et′

〉
HK

= (∂ssx ∂
r
yK(x, y))tt′ ∀t, t′ ∈ [T ],

which hold for any C1,1(X ×X ) mv-kernel (Micheli and Glaunes, 2014), we obtain

the following expression for the components of K0

(K0(x, y))tt′ =
∑d

r=1(∂rx∂
r
yK(x, y))tt′ + lt′r(y)(∂rxK(x, y))tt′

+ ltr(x)∂ry(K(x, y))tt′ + ltr(x)lt′r(y)(K(x, y))tt′ .

In particular for separable kernels (i.e. K(x, y) = Bk(x, y)) we have

(K0(x, y))tt′ = Btt′
∑d

r=1 ∂
r
x∂

r
yk(x, y) + lt′r(y)∂rxk(x, y) + ltr(x)∂ryk(x, y) + ltr(x)lt′r(y)k(x, y).



A.2. Proofs 151

A.2.4 Proof of Theorem 4.2.3

Recall that if a scalar kernel k satisfies
∫
X k(x, x)dµ(x) < ∞, then its RKHS

consists of square µ-integrable functions (for any finite measure µ) (Steinwart and

Christmann, 2008, Theorem 4.26).

If g ∈ HK0 then gt belongs to the RKHS with scalar-valued kernel (this follows

from (Carmeli et al., 2010, Prop. 1), using as feature operator the dot product with

respect to et, where et is defined in appendix A.2.3)

(K0(x, y))tt =
∑d

r=1(∂rx∂
r
yK(x, y))tt + ltr(y)∂rx(K(x, y))tt

+ ltr(x)∂ry(K(x, y))tt + ltr(x)ltr(y)(K(x, y))tt ∀t ∈ [T ].

In particular since K is bounded with bounded derivatives, and

Πt [|ltr|] + Πt [|ltr|2] ≤
√

Πt [|ltr|2] + Πt [|ltr|2] ∀t ∈ [T ], r ∈ [d]

then
∫
X (K0(x, x))ttdΠt(x) < ∞ if ‖∇x log πt(x)‖2 is square integrable with re-

spect to Πt, and the result follows.

A.2.5 Proof of Theorem 4.2.4

Proof. We want to find

arg ming∈HK0
Lvv
m(g, β)

where Lvv
m(g, β) :=

∑T
t=1

1
mt

∑mt
j=1(ft(xtj)− gt(xtj)− βt)2 + λ‖g‖2

HK0
.

Note that the objective is the same as that in (4.8), with the only difference being that

the first input is now a function as opposed to the parameter value parameterising

this function. We will abuse notation by using the same mathematical expression

for both objectives.

By Ciliberto et al. (2015, Section 2.1), any solution of the minimization prob-

lem has the form ĝ(·) ≡ ∑T
t′=1

∑mt′
j′=1K0(· , xt′j′)θt′j′ . Subbing this solution into



A.2. Proofs 152

Lvv
m(g, β) yields

Lvv
m(ĝ, β) =

∑T
t=1

1
mt

∑mt
j=1(ft(xtj)− (

∑T
t′=1

∑mt′
j′=1K0(xtj, xt′j′)tθt′j′ − βt)2

+ λ
∑T

t′,t′′=1

∑mt′
j′=1

∑mt′′
j′′=1 θ

T
t′j′K0(xt′j′ , xt′′j′′)θt′′j′′

= λ
∑T

t′,t′′=1

∑mt′
j′=1

∑mt′′
j′′=1 θ

T
t′j′K0(xt′j′ , xt′′j′′)θt′′j′′

+
∑T

t=1
1
mt

∑mt
j=1

(
y2
tj + (

∑T
t′=1

∑mt′
j′=1K0(xtj, xt′j′)tθt′j′)

2

− 2
∑T

t′=1

∑mt′
j′=1 ytjK0(xtj, xt′j′)tθt′j′

)
,

where ytj ≡ ft(xtj)− βt. The problem thus becomes a minimization problem over

the coefficients θ,

arg minθ∈R|D| λ
∑T

t′,t′′=1

∑mt′
j′=1

∑mt′′
j′′=1 θ

T
t′j′K0(xt′j′ , xt′′j′′)θt′′j′′

− 2
∑T

t,t′=1
1
mt

∑mt
j=1

∑mt′
j′=1 θ

T
t′j′K0(xt′j′ , xtj)·tytj +

∑T
t=1

1
mt

∑mt
j=1 y

2
tj

+
∑T

t,t′,t′′=1

∑mt
j=1

∑mt′
j′=1

∑mt′′
j′′=1 θ

T
t′j′K0(xt′j′ , xtj)·t

1
mt
K0(xtj, xt′′j′′)t·θt′′j′′ .

Since the quadratic terms are semi-positive definite, the resulting objective is a con-

vex function of θ, thus, by differentiating it, we obtain that the solution θ is the

solution to

∑T
t′=1

∑mt′
j′=1

(∑T
t=1

1
mt

∑mt
j=1 K0(xt′′j′′ , xtj)·tK0(xtj, xt′j′)t· + λK0(xt′′j′′ , xt′j′)

)
θt′j′

=
∑T

t
1
mt

∑mt
j=1 K0(xt′′j′′ , xtj)·t(ft(xtj)− βt),

∀t′′ ∈ [T ], j′′ ∈ [mT ].

A.2.6 Proof of Theorem 4.2.2

Proof. We proceed as for the proof of Theorem 4.2.1 and shall derive a feature

map for K0. Recall that g = Svv[u] = (L′′Π1
[u1], . . . ,L′′ΠT [uT ])>, where L′′Πi is

the second-order Stein operator, which maps scalar functions to scalar functions.

Here u belongs to a RKHS of RT -valued functions with matrix kernel K. From the



A.2. Proofs 153

differentiability assumption on K, we have HK ⊂ C2, i.e., it is a space of twice

continuously differentiable functions. Note that (here ∂jj = ∂j∂j = ∂2

∂xj∂xj
)

〈∂jjx K(·, x)et, u〉HK = ∂jjut(x) ≡ ∂2ut
∂xj∂xj

(x) ∀t ∈ [T ],

where et is the tth standard basis vector of RT as before. Thus

L′′Πt [ut](x) = ∆xut(x) +∇x log πt(x) · ∇xut(x)

=
∑d

s=1 ∂
ssut(x) +

∑d
s=1 lts(x)∂sut(x)

=
∑d

s=1 〈∂ssx K(·, x)et, u〉HK +
∑d

s=1 〈lts(x)∂sxK(·, x)et, u〉HK
=
∑d

s=1 〈∂ssx K(·, x)et + lts(x)∂sxK(·, x)et, u〉HK ∀t ∈ [T ].

Hence

Svv[u](x) =


〈∑d

s=1 ∂
ss
x K(·, x)e1 + l1s(x)∂sxK(·, x)e1, u

〉
HK...〈∑d

s=1 ∂
ss
x K(·, x)eT + lTs(x)∂sxK(·, x)eT , u

〉
HK

 ∈ RT .

Note that for each x ∈ X , each component of the above is a bounded linear operator

HK → R (i.e., the map u 7→ (Svv(u)(x))s ∈ R to the s-component is a bounded

linear operator), then we have obtained a a feature map, i.e., a map γ : X →
B(HK ,RT ), where B(HK ,RT ) denotes the space of bounded linear maps fromHK

to RT . Specifically

γ(x) ≡ Svv[·](x) ∈ B(HK ,RT ).

In particular, as before

K0(x, y) ≡ γ(x) ◦ γ(y)∗ ∈ B(RT ,RT )

will thus be the kernel associated to the “feature operator” Svv : HK → HK0 .

Recall that γ(y)∗ ∈ B(RT ,HK) is the adjoint map to γ(y), i.e., it satisfies for any



A.2. Proofs 154

a ∈ RT , u ∈ HK :

〈γ(y)∗[a], u〉HK = γ(y)[u] · a.

From this we obtain

γ(y)∗ : a 7→∑d
r=1

∑T
t=1 at

(
∂rry K(·, y)et + ltr(y)∂ryK(·, y)et

)
∈ HK .

From K0(x, y)a = γ(x) ◦ γ(y)∗[a] for all a ∈ RT and the above expressions we can

finally calculate K0. We have

K0(x, y)a = Svv[γ(y)∗a](x) =


〈∑d

s=1 ∂
ss
x K(·, x)e1 + l1s(x)∂sxK(·, x)e1, γ(y)∗a

〉
HK...〈∑d

s=1 ∂
ss
x K(·, x)eT + lTs(x)∂sxK(·, x)eT , γ(y)∗a

〉
HK

 .

We obtain that K0(x, y)a is a vector with components:

(K0(x, y)a)t =
∑d

r,s=1

∑T
t′=1 at′

(
(∂ssx ∂

rr
y K(x, y))tt′ + lt′r(y)(∂ssx ∂

r
yK(x, y))tt′

+ lts(x)(∂sx∂
rr
y K(x, y))tt′ + lts(x)lt′r(y)(∂sx∂

r
yK(x, y))tt′

)
,

∀t ∈ [T ].

Thus the components of K0(x, y) ∈ RT×T are

(K0(x, y))tt′ =
∑d

r,s=1(∂ssx ∂
rr
y K(x, y))tt′ + lt′r(y)(∂ssx ∂

r
yK(x, y))tt′

+ lts(x)(∂sx∂
rr
y K(x, y))tt′ + lts(x)lt′r(y)(∂sx∂

r
yK(x, y))tt′ ,

∀t, t′ ∈ [T ].

Analogously to the mv-kernel in Theorem 4.2.1, there are several cases of

practical interest. The first is when K(x, y) = Bk(x, y) is a separable kernel, in



A.3. Implementation Details 155

which case:

(K0(x, y))tt′ = Btt′
∑d

r,s=1 ∂
ss
x ∂

rr
y k(x, y) + lt′r(y)∂ssx ∂

r
yk(x, y)

+ lts(x)∂sx∂
rr
y k(x, y) + lts(x)lt′r(y)∂sx∂

r
yk(x, y) ∀t, t′ ∈ [T ].

The second is when K is separable and Π1 = . . . = ΠT , in which case lr(x) :=

l1r(x) = . . . = lTr(x) ∀r ∈ [d] and:

(K0(x, y))tt′ = Btt′
∑d

r,s=1 ∂
ss
y ∂

rr
x k(x, y) + lr(x) ∂ssy ∂

r
xk(x, y)

+ ls(y) ∂sy∂
rr
x k(x, y) + ls(y)lr(x)∂sy∂

r
xk(x, y) ∀t, t′ ∈ [T ].

A.3 Implementation Details

In this appendix, we focus on implementation details which may be helpful for

implementing the algorithms in the main text. Firstly, in Appendix A.3.1 we derive

the derivatives of several common kernels; this is essential for the implementation

of Stein reproducing kernels. Then, in Appendix A.3.2, we provide details on how

to select hyperparameters.

A.3.1 Kernels and Their Derivatives

We now provide details of all the kernels used in the paper, as well as expressions

for their derivatives.

Polynomial Kernel The polynomial kernel kl(x, y) = (x>y + c)l with constant

c ∈ R and power l ∈ N has derivatives given by

∇xkl(x, y) = l(x>y + c)l−1y, ∇ykl(x, y) = l(x>y + c)l−1x,

∇x · ∇ykl(x, y) =
∑d

j=1
∂2

∂xj∂yj
kl(x, y) =

∑d
j=1

∂
∂xj

[
l(x>y + c)l−1xj

]
=
∑d

j=1 l(l − 1)(x>y + c)l−2yjxj + l(x>y + c)l−1

= l(l − 1)(x>y + c)l−2x>y + dl(x>y + c)l−1.



A.3. Implementation Details 156

Squared-Exponential Kernel The squared-exponential kernel (sometimes called

Gaussian kernel) k(x, y) = exp(−‖x−y‖22
2λ

) with lengthscale λ > 0 has derivatives

given by

∇xk(x, y) = − (x−y)
λ
k(x, y), ∇yk(x, y) = (x−y)

λ
k(x, y),

∇x · ∇yk(x, y) =
∑d

j=1
∂2

∂yj∂xj
k(x, y) =

∑d
j=1

∂
∂yj

[
− (xj−yj)

λ
k(x, y)

]
=
∑d

j=1

[
1
λ
− (xj−yj)2

λ2

]
k(x, y) =

[
d
λ
− (x−y)>(x−y)

λ2

]
k(x, y).

Preconditioned Squared-Exponential Kernel Following Oates et al. (2017), we

also considered a preconditioned squared-exponential kernel:

k(x, y) = 1
(1+α‖x‖22)(1+α‖y‖22)

exp
(
−‖x−y‖22

2λ2

)
.

with lengthscale λ > 0 and preconditioner parameter α > 0. This kernel has

derivatives given by:

∇xk(x, y) =
[
−2αx

1+α‖x‖22
− (x−y)

λ2

]
k(x, y), ∇yk(x, y) =

[
−2αy

1+α‖y‖22
+ (x−y)

λ2

]
k(x, y),

∇x · ∇yk(x, y) =
∑d

j=1
∂2

∂xj∂yj
k(x, y) =

∑d
j=1

∂
∂yj

[(
−2αxj

1+α‖x‖22
− (xj−yj)

λ2

)
k(x, y)

]
=
∑d

j=1

(
1
λ2
k(x, y) +

[
−2αxj

1+α‖x‖22
− (xj−yj)

λ2

]
∂
∂yj
k(x, y)

)
=
∑d

j=1

(
1
λ2
k(x, y) +

[
−2αxj

1+α‖x‖22
− (xj−yj)

λ2

] [
−2αyj

1+α‖y‖22
+

(xj−yj)
λ2

]
k(x, y)

)
= k(x, y)

[
4α2x>y

(1+α‖x‖22)(1+α‖y‖22)
+ 2α(x−y)>y

λ2(1+α‖y‖22)
− 2α(x−y)>x

λ2(1+α‖x‖22)
+ d

λ2
− (x−y)>(x−y)

λ4

]
.

Product of Kernels Finally, some of our examples will also use products of well-

known kernels. Consider the kernel k(x, y) =
∏d

j=1 kj(xj, yj). The derivatives of

this kernel can be expressed in terms of the components of the product and their



A.3. Implementation Details 157

derivates as follows:

∇xk(x, y) =
(
∂k1(x1,y1)

∂x1

∏
j 6=1 kj(xj, yj), . . . ,

∂kd(xd,yd)
∂xd

∏
j 6=d kj(xj, yj)

)>
∇yk(x, y) =

(
∂k1(x1,y1)

∂y1

∏
j 6=1 kj(xj, yj), . . . ,

∂kd(xd,yd)
∂yd

∏
j 6=d kj(xj, yj)

)>
∇y · ∇xk(x, y) =

∑d
j=1

∂2

∂xj∂yj
k(x, y) =

∑d
j=1

∂
∂yj

(
∂kj(xj ,yj)

∂xj

∏
i 6=j ki(xi, yi)

)
=
∑d

j=1

[
∂2kj(xj ,yj)

∂yj∂xj

∏
i 6=j ki(xi, yi)

]
.

A.3.2 Hyper-parameters Selection

Most kernels (whether scalar- or matrix-valued) will have hyperparameters which

we will have to select. For example, the squared-exponential kernel will often have

a lengthscale or amplitude parameter, and these will have a significant impact on

the performance.

We propose to select kernel hyperparameters through a marginal likelihood

objective by noticing the equivalence between the optimal vv-CV based on the ob-

jective in (4.8) and the posterior mean of a zero-mean Gaussian process model with

covariance matrix K0(x, y); see Oates et al. (2017) for a discussion in the sv-CV

case. Unfortunately, computing the marginal likelihood in the general case can be

prohibitively expensive due to the need to take inverses of large kernel matrices;

the exact issue we were attempting to avoid through the use of the stochastic opti-

misation approaches. For simplicity, we instead maximise the marginal likelihood

corresponding to B = IT :

ν∗ := arg maxν −1
2

∑T
t=1

(∑mt
j,j′=1 ft(xtj)(KΠt(ν) + λImt)

−1
jj′ft(xtj′) + log det[KΠt(ν) + λImt ]

)
.

where KΠt(ν) is a matrix with entries KΠt(ν)ij = kΠt(xti, xtj; ν) where kΠt is a

Stein reproducing kernel of the form in (3.5) specialised to Πt which has hyperpa-

rameters given by some vector ν. This form is not optimal when B 6= IT , but we

found that it tend to perform well in our numerical experiments. The regularisation

parameter λ can also be selected through the marginal likelihood. However, in prac-

tice we are in an interpolation setting and therefore choose λ as small as possible



A.4. Additional Details and Results for the Experimental Study 158

whilst still being large enough to guarantee numerically stable computation of the

matrix inverses above.

A.4 Additional Details and Results for the Experi-

mental Study
This last Appendix provides additional details on our numerical experiments from

Section 4.3.

A.4.1 Experimental Details of the Illustration Example

The experiment was replicated 100 times for all methods. The exact details of the

implementation are as follows.

• CV

– Sample size: 50.

– Hyper-parameter tuning: batch size 5; learning rate 0.05; total number

of epochs 30.

– Base kernel: squared exponential kernel

– Optimisation: λ = 0.001; batch size is 5; learning rate is 0.001; total

number of epochs 400.

• vv-CV (estimated B)

– Sample size: (50, 50) from (Π1,Π2) for (f1, f2).

– Hyper-parameter tuning: batch size 5 (10 in total for (f1, f2)); learning

rate 0.05; total number of epochs 30.

– Base kernel: squared exponential kernel

– Optimisation: B(0) is initialized at the identity matrix I2. λ = 0.001;

batch size is 5 (10 in total for (f1, f2)); learning rate is 0.001; total num-

ber of epochs 400.

A.4.2 Experimental Details of the Multifidelity Univariate Step

Functions

The experiment was replicated 100 times for all methods. Details of their imple-

mentation is given below:



A.4. Additional Details and Results for the Experimental Study 159

Squared-exponential kernel

• CV

– Sample size: 40.

– Base kernel: squared exponential kernel.

– Hyper-parameter tuning: batch size is 10; learning rate 0.02; total num-

ber of epochs 15.

– Optimisation: λ = 1× 10−5; batch size is 10; learning rate is 3× 10−4;

total number of epochs 400.

• vvCV (estimated B/fixed B)

– Sample size: (40, 40) from (N (0, 1),N (0, 1)) for (fL, fH).

– Hyper-parameter tuning: batch size is 5 (10 in total for (fL, fH)); learn-

ing rate 0.02; total number of epochs 15.

– Base kernel: squared exponential kernel.

– Optimisation: When B is fixed, we set B11 = B22 = 0.5, B12 = B21 =

0.01; otherwise, B(0) is initialized at the identity matrix I2. λ = 1 ×
10−5; batch size is 5 (10 in total for (fL, fH)); learning rate is 3× 10−4;

total number of epochs 400.

First-order polynomial kernel

• CV

– Sample size: 40.

– Base kernel: first order polynomial kernel.

– Optimisation: λ = 1× 10−5; batch size is 10; learning rate is 3× 10−4;

total number of epochs 400.

• vv-CV (estimating B/fixed B)

– Sample size: (40, 40) from (N (0, 1),N (0, 1)) for (fL, fH).

– Base kernel: first order polynomial kernel.

– Optimisation: When B is fixed, we set B11 = B22 = 0.5, B12 = B21 =

0.01; otherwise, B(0) is initialized at the identity matrix I2. λ = 1 ×
10−5; batch size is 5 (10 in total for (fL, fH)); learning rate is 3× 10−4;

total number of epochs 400.



A.4. Additional Details and Results for the Experimental Study 160

Random variable Distributions Random variable Distributions
rw N (0.1, 0.01618122) r N (100, 0.01)
Tu N (89335, 20) Tl N (89.55, 1)
Hu N (1050, 1) Hl N (760, 1)
L N (1400, 10) Kw N (10950, 30)

Table A.1: Prior Distributions for the inputs of the Borehole function.

A.4.3 Experimental Details of the Multifidelity Modelling of

Waterflow

In this section, we provide details on the Borehole example from the main text,

and provide complementary experiments. The distributions with respect to which

the integral is taken is an eight-dimensional Gaussian with independent marginals

provided in Table A.1.

A.4.3.1 Experiment in the main text: Balanced vv-CVs

The number of replications is 100 for all methods. Details of their implementation

is given below:

• Base kernel: Instead of using k(x, x′) = exp(−‖x − x′‖2
2/2ν) with l > 0

which implicitly assumes that the length-scales are identical in all directions,

we now allow that each dimension can have its own length-scale. That is,

k(x, x′) :=
∏d

j=1 kj(xj, x
′
j) where kj(xj, x

′
j) = exp

(
− (xj−x′j)22

2νj

)
.

Each of the components has its own length-scale νj > 0 to be determined.

• Since π(x) =
∏d

j=1 πj(xj), the score function is ∇x log π(x) =(
∂ log π1(x)

∂x1
, . . . , ∂ log πd(x)

∂xd

)>
.

• Hyper-parameter tuning: batch size 5 (10 in total for (fL, fH)); learning rate

of tuning 0.05; epochs of tuning 20.

• Optimisation (estimated B/pre-fixing B): When B is fixed, we set B11 =

B22 = 5 × 10−4, B12 = B21 = 5 × 10−5; otherwise, B(0) is initialized

at 1 × 10−5 × I2. λ = 1 × 10−5; batch size 5 (10 in total for (fL, fH));

learning rate for the cases when sample sizes are (10, 20, 50, 100, 150) are



A.4. Additional Details and Results for the Experimental Study 161

(0.09, 0.06, 0.012, 0.0035, 0.002), respectively.

A.4.3.2 Additional Experiments: Unbalanced vv-CVs

In Figure A.1, we present the results of vv-CVs when the sample sizes are unbal-

anced; that is, we have a different number of samples for the low-fidelity and high-

fidelity models. The exact setup is given below, and we replicated the experiment

100 times.

• Sample size: mH is fixed to be 20, while mL ∈ {20, 40, 60}.
• Base kernel: product of squared exponential kernels. k(x, x′) :=∏d

j=1 kj(xj, x
′
j), where each kj(xj, x

′
j) = exp(−(xj − x′j)

2
2/2νj) has its

own length-scale νj > 0 to be determined.

• Hyperparameter tuning: batch size of tuning 5 (10 in total for (fL, fH)); learn-

ing rate of tuning is 0.05; epochs of tuning is 20.

• Optimisation (estimated B/pre-fixing B): When B is fixed, we set B11 =

B22 = 5 × 10−4, B12 = B21 = 5 × 10−5; otherwise, B(0) is initialized

at 1 × 10−5 × I2. λ = 1 × 10−5; learning rate is (0.06, 0.04, 0.02) when

mL ∈ {20, 40, 60}, respectively.

Interestingly, we notice that not much is gained when increasing the number of

samples for the low-fidelity model. In fact, in the case of a fixedB, the performance

tends to decrease with a larger mL. This is likely due to the “negative transfer” phe-

nomenon which is well-known in machine learning. This phenomenon can occur

when two tasks are not similar enough to provide any gains in accuracy. In this case,

there is clearly no advantage in using a largermL since this increases computational

cost and does not provide any gains in accuracy.

A.4.4 Experimental Details of the Computation of the Model

Evidence through Thermodynamic Integration

To implement our vv-CVs, we need to derive the corresponding score functions.

For a power posterior, the score function is of the form:

∇θ log p(θ|y, t) = t∇θ log p(y|θ) +∇θ log p(θ)



A.4. Additional Details and Results for the Experimental Study 162

Estimated B Fixed B

0

2

4

6

8

A
bs

ol
ut

e 
E

rr
or

 o
f v

v-
C

V

Low-fidelity model

Estimated B Fixed B

High-fidelity model

mL = 20
mL = 40
mL = 60

Figure A.1: Performance of vv-CVs with unbalanced sample sizes. Here we fix mH = 20,
and changing mL to be 20, 40, 60. Each experiment is repeated 100 times.

where ∇θ log p(θ) is the score function corresponding to the prior. In our case, the

prior is a log-normal distribution log θ ∼ N (µ, σ2) (where σ = 0.25), and its score

function is given by:

∇θ log p(θ) = −1
θ
− log θ−µ

xσ2 .

The score functions for all temperatures are plotted in Figure A.2; as observed,

temperatures’ consecutive score functions are very similar to one another.

In order to keep the computational cost manageable, we split the T = 62 inte-

gration problems into groups of closely related problems. In particular, we jointly

estimate the means in terms of 4 consecutive temperatures on the ladder ( group 1

is µ1, µ2, µ3, µ4, group 2 is µ5, µ6, µ7, µ8, etc...). Since 31 is not divisible by 4, our

last group consists of three means µ29, µ30, µ31. Then, the same approach is taken

to create groups of 4 (or 3 for the last group) variances.

The number of replications was 20 for each method. Details are given below:

• CV

– Base kernel: Preconditioned squared-exponential kernel (Oates et al.,

2017).

– Hyperparameter tuning: we use the values (0.1, 3) in (Oates et al.,



A.4. Additional Details and Results for the Experimental Study 163

2017).

– Optimisation: λ = 1 × 10−3; batch size is 5; total number of epochs is

400.

• vv-CV(estimated B)

– Base kernel: Preconditioned squared-exponential kernel (Oates et al.,

2017).

– Hyperparameter tuning: we use the values (0.1, 3) in (Oates et al.,

2017).

– Optimisation: λ = 1 × 10−3; batch size is 5; learning rate is 0.01;

number of epochs is 400.

A.4.5 Experimental Details of the Lotka-Volterra System

We implement log− exp transform on model parameters and avoid constrained pa-

rameters on the ODE directly. Lotka—Volterra system can be re-parameterized as,

dv1(s)
ds

= α̃v1(s)− β̃v1(s)v2(s)

dv2(s)
ds

= δ̃v1(s)v2(s)− γ̃v2(s),

where

α̃ = exp(α), β̃ = exp(β),

δ̃ = exp(δ), γ̃ = exp(γ),

where v1 and v2 represents the number of preys and predators, respectively.

The model is,

y10 ∼ Log-Normal(log ṽ1(0), σ̃y1)

y20 ∼ Log-Normal(log ṽ2(0), σ̃y2)

y1s ∼ Log-Normal(log v1(s), σ̃y1)

y2s ∼ Log-Normal(log v2(s), σ̃y2)



A.4. Additional Details and Results for the Experimental Study 164

50
0

50

lo
gp

(
|y

,t
) Temp t = 0.000e+00 Temp t = 1.348e-03 Temp t = 4.315e-02 Temp t = 3.277e-01

50
0

50

lo
gp

(
|y

,t
) Temp t = 4.115e-08 Temp t = 2.430e-03 Temp t = 5.843e-02 Temp t = 4.019e-01

50
0

50

lo
gp

(
|y

,t
) Temp t = 1.317e-06 Temp t = 4.115e-03 Temp t = 7.776e-02 Temp t = 4.889e-01

50
0

50

lo
gp

(
|y

,t
) Temp t = 1.000e-05 Temp t = 6.628e-03 Temp t = 1.019e-01 Temp t = 5.905e-01

50
0

50

lo
gp

(
|y

,t
) Temp t = 4.214e-05 Temp t = 1.024e-02 Temp t = 1.317e-01 Temp t = 7.082e-01

50
0

50

lo
gp

(
|y

,t
) Temp t = 1.286e-04 Temp t = 1.528e-02 Temp t = 1.681e-01 Temp t = 8.441e-01

50
0

50

lo
gp

(
|y

,t
) Temp t = 3.200e-04 Temp t = 2.213e-02 Temp t = 2.121e-01 Temp t = 1.000e+00

0.5 1.0 1.5 2.0 2.5

50
0

50

lo
gp

(
|y

,t
) Temp t = 6.916e-04

0.5 1.0 1.5 2.0 2.5

Temp t = 3.125e-02

0.5 1.0 1.5 2.0 2.5

Temp t = 2.649e-01

Figure A.2: Score functions corresponding to the power posteriors at different temperatures
on the temperature ladder.

where

ṽ1(0) := exp(v1(0)), ṽ2(0) := v2(0)

σ̃y1 := exp(σy1), σ̃y2 = exp(σy2).

By doing so, x := (α, β, δ, γ, v1(0), v2(0), σx, σy)
> can be defined on the whole R8

since the exponential transformation will make them be larger than zero. There-

fore, x can be assigned priors on R8, e.g., Gaussian. As a result, the expectations

associated with π(x) are defined on R8 and Stan will return the scores of these

parameters directly as these 8 parameters x themselves are unconstrained through



A.4. Additional Details and Results for the Experimental Study 165

manual reparameterisation.

Priors are,

α, γ ∼ Normal(0, 0.52)

β, δ ∼ Normal(−3, 0.52)

σx, σy ∼ Normal(−1, 12)

v1(0), v2(0) ∼ Normal(log 10, 12)

The fitting for predators y1s and v1(s) at points s1, . . . , sm are shown in Figure A.3.

The fitting for predators y2s and v2(s) at points s1, . . . , sm are shown in Figure A.4.

19
01

19
05

19
09

19
13

19
17

Year

0

20

40

60

80

100

120

Ha
re

Observed
mean of posterior predictive
credible intervals

19
01

19
05

19
09

19
13

19
17

Year

0

20

40

60

80

100

120
v 1

mean of v1
credible intervals

Figure A.3: Bayesian inference of abundance of preys of Lotka-Volterra system. Dots are
observations; lines are the posterior means while dotted lines are the corre-
sponding 95% credible intervals. Tasks are chosen in the area between the two
vertical red lines.

The number of replications was 10 for each method and for each task. Details are

given below:

• Tasks Π[ft] at time s′1, . . . , s
′
T (the base unit is 1 year):

* T = 2: 1913., 1913.2;

* T = 5: 1912., 1912.2, 1912.4, 1912.6, 1912.8;

* T = 10: 1912., 1912.2, 1912.4, 1912.6, 1912.8, 1913., 1913.2, 1913.4, 1913.6, 1913.8.

• Base kernel: same one as in A.4.3: product of squared-exponential kernels.

• Hyperparameter tuning: batch size is 10; learning rate 0.01; total number of

epochs 10.



A.4. Additional Details and Results for the Experimental Study 166

19
01

19
05

19
09

19
13

19
17

Year

0

20

40

60

80

100

120

Ly
nx

Observed
mean of posterior predictive
credible intervals

19
01

19
05

19
09

19
13

19
17

Year

0

20

40

60

80

100

120

v 2

mean of v2
credible intervals

Figure A.4: Bayesian inference of abundance of predators of Lotka-Volterra system. Dots
are observations; lines are the posterior means while dotted lines are the corre-
sponding 95% credible intervals. Tasks are chosen in the area between the two
vertical red lines.

Table A.2: Lotka Example: Sum of mean absolute error of each task. Number of replication
is 10.

T m vv-CV- Estimated B vv-CV-Fixed B CF MC
2 500 0.169 0.144 0.242 0.275
5 500 0.322 0.245 1.246 0.661

10 500 0.916 0.792 5.835 1.797

• Optimisation: λ = 10−5; batch size 10; learning rate 10−3; total number of

epochs 400.

A.4.5.1 Addition Experiments for Bayesian inference of abundance

of preys of Lotka-Volterra system

We present additional experiments in Table A.2 under the same settings as those in

the above section. We consider to estimate Π[ft] at time s′1, . . . , s
′
T (the base unit is

1 year),

• T = 2: 1915., 1915.2;

• T = 5: 1915., 1915.2, 1915.4, 1915.6, 1915.8;

• T = 10: 1914., 1914.2, 1914.4, 1914.6, 1914.8, 1915., 1915.2, 1915.4, 1915.6, 1915.8.



Appendix B

Supplementary Material of

Meta-learning Control Variates:

Variance Reduction with Limited

Data

B.1 Overview
In Appendix B.2, we provide the proof of the theoretical results stated in the main

text. In Appendix B.3, we provide more details on the implementation of Neural-

CVs and Meta-CVs, together with the full experimental protocol.

B.2 Proof of Theorems
In this section, we will firstly review the assumptions and theorems in Ji et al. (2022)

in Appendix B.2.1 as the proof of the theorems follows the results of (Ji et al.,

2022). We then give the proof of Theorem 5.5.1 in Appendix B.2.2 and proof of

Corollary 5.5.1.1 in Appendix B.2.3.

B.2.1 Convergence of Model-Agnostic Meta-Learning

Ji et al. (2022) analysed the convergence of model-agnostic meta-learning, as we

will adapt their results to the training of CVs. Letting Ot be either St or Qt, and

phrasing in terms of the notation and setting used in this work, the assumptions of



B.2. Proof of Theorems 168

(Ji et al., 2022) are:

(A1) mint infγ JOt(γ) > −∞;

(A2) χ := maxt supγ 6=ζ
‖∇γJOt (γ)−∇ζJOt (ζ)‖2

‖γ−ζ‖2 <∞;

(A3) ρ := maxt supγ 6=ζ
‖∇2

γJOt (γ)−∇2
ζJOt (ζ)‖2

‖γ−ζ‖2 <∞;

(A4) σ2 := maxt supγ ‖∇γJOt(γ)‖2
2 <∞;

(A5) bt := supγ ‖JSt(γ)− JQt(γ)‖2 <∞.

Theorem B.2.1 (Theorem 9 and Corollary 10 (Ji et al., 2022)). Let the above as-

sumptions (A1) to (A5) hold. Then, with a meta step-size η = 1
80χηe

in Algorithm 6 ,

we attain a solution γ̂meta such that

E‖Et[∇Jt(γ̂meta)]‖2 = O
(

1
Itr

+ σ2

B
+
√

1
Itr

+ σ2

B

)
,

where χηe = (1 + αχ)2L + Cbb + CχEt[‖∇JQt(γ̂meta)‖2], with b = Et[bt] and

Cb = Cχ = (αρ+ ρ/χ(1 + αχ)L−1)(1 + αχ)2L.

Lemma B.2.2 (Lemma 19 (Ji et al., 2022)). Under assumptions (A1) - (A5), for any

t and any γ ∈ Rp+1, we have

‖Et[∇JQt(γ)]‖2 ≤ 1
C′1
‖Et[∇Jt(γ)]‖2 +

C′2
C′1
,

where C ′1 > 0 and C ′2 > 0 are constants given C ′1 = 2 − (1 + αχ)2L and C ′2 =

((1 + αχ)2L − 1)σ + (1 + αχ)L((1 + αχ)L − 1)b.

B.2.2 Proof of Theorem 5.5.1

To prove Theorem 5.5.1, we firstly derive three useful propositions (P1-P3) based

on our Assumption 5.5.1 and Assumption 5.5.2 in Section 5.5, and then give the

proof based on the above results from (Ji et al., 2022).

For each task t, we claim that

(P1) supγ 6=ζ
‖∇γJOt (γ)−∇ζJOt (ζ)‖2

‖γ−ζ‖2 <∞;

(P2) supγ 6=ζ
‖∇2

γJOt (γ)−∇2
ζJOt (ζ)‖2

‖γ−ζ‖2 <∞;

(P3) supγ ‖∇γJOt(γ)‖2 <∞,

for both Ot ∈ {St, Qt}.



B.2. Proof of Theorems 169

Proof of P1-P3. Denote the additive contribution of a single sample to the loss

function as lt(x, γ) = (ft(x) − g(x; γ))2. First we will show that under Assump-

tion 5.5.1 and Assumption 5.5.2, we have: for each t and x ∈ Dt, the func-

tion γ 7→ ∇γ`t(x; γ) is bounded and Lipschitz; and for each t and x ∈ Dt,

the function γ 7→ ∇2
γ`t(x; γ) is Lipschitz. Then (P1-P3) follow immediately as

JQt(γ) = 1
|Qt|
∑

x∈Qt lt(x; γ) and JSt(γ) = 1
|St|
∑

x∈St lt(x; γ).

From direct calculation, we have:

∇γ`t(x; γ) = −2(ft(x)− g(x; γ))∇γg(x; γ)

∇2
γ`t(x; γ) = 2(ft(x)− g(x; γ))∇γg(x; γ)∇γg(x; γ)> − 2(ft(x)− g(x; γ))∇2

γg(x; γ)

= 2(ft(x)− g(x; γ))
[
∇γg(x; γ)∇γg(x; γ)> −∇2

γg(x; γ)
]

and taking differences:

‖∇γ`t(x; γ)−∇ζ`t(x; ζ)‖2 = ‖ − 2(ft(x)− g(x; γ))∇γg(x; γ) + 2(ft(x)− g(x; ζ))∇ζg(x; ζ)‖2

≤ 2|ft(x)|‖∇γg(x; γ)−∇ζg(x; ζ)‖2

+ 2‖g(x; γ)∇γg(x; γ)− g(x; ζ)∇ζg(x; ζ)‖2

≤ 2|ft(x)|‖∇γg(x; γ)−∇ζg(x; ζ)‖2

+ 2|g(x; γ)|‖∇γg(x; γ)−∇ζg(x; ζ)‖2 + 2‖∇ζg(x; ζ)‖2|g(x; γ)− g(x; ζ)|.

So, for each t and x ∈ Dt, the function γ 7→ ∇γ`t(x; γ) is bounded and Lipschitz

when the functions γ 7→ g(x; γ) and γ 7→ ∇γg(x; γ) are bounded and Lipschitz

(i.e. Assumption 5.5.1).

Then taking differences and bounding terms in a similar manner, we have,

‖∇2
γ`t(x; γ)−∇2

ζ`t(x; ζ)‖2 ≤ 2|ft(x)|‖∇γg(x; γ)∇γg(x; γ)> −∇2
γg(x; γ)

−∇ζg(x; ζ)∇ζg(x; ζ)> +∇2
ζg(x; ζ)‖2

+ 2|g(x; γ)|‖∇γg(x; γ)∇γg(x; γ)> −∇2
γg(x; γ)

−∇ζg(x; ζ)∇ζg(x; ζ)> +∇2
ζg(x; ζ)‖2

+ 2‖∇ζg(x; ζ)∇ζg(x; ζ)> −∇2
ζg(x; ζ)‖2|g(x; γ)− g(x; ζ)|



B.2. Proof of Theorems 170

So for each t and x ∈ Dt, the function γ 7→ ∇2
γ`t(x; γ) is Lipschitz when the

functions γ 7→ ∇γg(x; γ)∇γg(x; γ)> − ∇2
γg(x; γ) are bounded and Lipschitz (i.e.

Assumption 5.5.2).

Proof of Theorem 5.5.1:

Proof. (A1) is automatically satisfied. (P1) and (P2) above imply (A2) and (A3).

(P3) above implies (A4).

Note that Assumption 5.5.1 implies (A5). This is because, for each t,

x ∈ Dt, we have supγ lt(x; γ) := supγ(ft(x) − g(x; γ))2 < ∞ as we assume

that γ 7→ g(x; γ) is bounded and ft(x) is constant in γ. Thus, supγ JOt(γ) =

1
|Ot|
∑

x∈Ot lt(x; γ) < ∞ where Ot can be either St or Qt. So supγ ‖JSt(γ) −
JQt(γ)‖2 <∞.

Then, Theorem 5.5.1 follow from the conclusion of Theorem B.2.1.

B.2.3 Proof of Corollary 5.5.1.1

Proof. Since Assumption 5.5.1 and Assumption 5.5.2 imply (A1) to (A5) in Ap-

pendix B.2.1, we will use the constants defined earlier in Appendix B.2.1 here as

well. Firstly, note that given γ̂ε, with

α <
exp( log 2

2L
)−1

χ
= 2

1
2L−1
χ

,

we have: E‖Et[∇JQt(γ̂ε)]‖2 ≤ 1
C′1
ε+

C′2
C′1

by taking γ = γ̂ε in Lemma B.2.2.

If then additionally ∇2JQt(γ) � µIp+1 holds, by (9.11) in Boyd et al. (2004)

we have,

‖γ − γ∗t ‖2 ≤ 2
µ
‖∇JQt(γ)‖2.

Taking the expectation of both sides, we then have

Et[‖γ − γ∗t ‖2] ≤ 2
µ
Et[‖∇JQt(γ)‖2]

(i)

≤ 2
µ
(‖Et[∇JQt(γ)]‖2 + σ),



B.3. Experimental Details 171

where (i) follows from (Ji et al., 2022) (Page 35, Line 8). Take γ = γ̂ε and take the

expectation of both sides. Then by Theorem 5.5.1,

E[Et[‖γ̂ε − γ∗t ‖2]] ≤ 2
µ
E[‖Et[∇JQt(γ̂ε)]‖2] + 2σ

µ

≤ 2
µ

(
1
C′1
ε+

C′2
C′1

)
+ 2σ

µ

= 2
µC′1

ε+
2(σC′1+C′2)

µC′1

= C1

µ
ε+ C2

µ
,

where C1 = 2
C′1

and C2 =
2(σC′1+C′2)

C′1
.

B.3 Experimental Details
In this section, we provide more experimental details and implementation details of

Neural-CVs and Meta-CVs. Details of the synthetic example are presented in Ap-

pendix B.3.1. Details of the boundary-value ODE are provided in Appendix B.3.2.

Details of Bayesian inference for the Lotka–Volterra system are provided in Ap-

pendix B.3.3. Details of the Sarcos robot arm are presented in Appendix B.3.4.

B.3.1 Experiment: Oscillatory Family of Functions

Our environment ρ consists of independent distributions on each element of a. For

a1, we select a Unif(0.4, 0.6), whilst for all other parameters we select a Unif(4, 6).

Each task is of the form Tt = {ft(x; at), πt}where at := (at,1, at,2:d+1)> is a sample

from ρ. This creates potentially infinite number of integral estimation tasks as a is

continuous. The target distributions are π1(x) = . . . = πT (x) = Unif(0, 1)d where

d is the dimension of x.

For all experiments of this example, we set the neural network identical for

both Meta CVs and Neural CVs. That is, a fully connected neural network with

two hidden layers. Each layer has 80 neurons while the output layer has 1 neuron

(the output then is multiplied by an identity matrix Id to be used as ũ where d is the

dimension of the input x). The total number of parameters of the neural network

p = 80d+6641 where d the dimension of the input x. The activation function is the

sigmoid function. The neural network is served as ũ and we apply Langevin Stein



B.3. Experimental Details 172

operator onto ũ(x)δ(x) where δ(x) =
∏d

j=1 xj(1 − xj) to satisfy assumptions in

(Oates et al., 2019). For experiments in this example, we use Adam as the UPDATE

rule in this example and the penalty constant λ is set to be 5× 10−6.

2-dimensional Oscillatory Family of Functions

• For Meta-CVs: The inner learning rate α = 0.01. The number of inner

gradient steps is L = 1. The meta learning rate η = 0.002 for all meta

iterations. The number of meta iteration Itr is set to be 4, 000. The meta batch

size of tasks B is set to be 5.

• For Neural-CVs: The learning rate is 0.002. The number of training epochs

for each task is set to be 20 with batch size 5.

• For Control functionals: we use radius basis function k(x, x′) =

exp(−‖x−x′‖22
2v

) with kernel hyperparameter v > 0 as the base kernel for con-

trol functionals. The hyper-parameter v is tuned by maximising the marginal

likelihood of the Stein kernel on St for each task. Optimal control functionals

are selected by using St and then unbiased control functional estimators are

constructed by using Qt of each task.

Impact of the Number of Inner Updates L

• For Meta-CVs: The inner learning rate α = 0.01
50×L for L ∈ {1, 3, 5, 7, 10}.

The meta learning rate η = 0.002 for all meta iterations. The number of meta

iteration Itr is set to be 4, 000. The meta batch size of tasks B is set to be 5.

Impact of Dimensions

• For Meta-CVs: The inner learning rate α = 0.01. The number of inner

gradient steps is L = 1. The meta learning rate η = 0.002 for all meta

iterations. The number of meta iteration Itr is set to be 4, 000. The meta batch

size of tasks B is set to be 5.

• For Neural-CVs: The learning rate is 0.002. The number of training epochs

for each task is set to be 20 with batch size 5.

• For Control functionals: we use radius basis function k(x, x′) =

exp(−‖x−x′‖22
2v

) with kernel hyperparameter v > 0 as the base kernel for con-

trol functionals. The hyper-parameter v is tuned by maximising the marginal



B.3. Experimental Details 173

likelihood of the Stein kernel on St for each task. Optimal control functionals

are selected by using St and then unbiased control functional estimators are

constructed by using Qt of each task.

B.3.2 Experiment: Boundary Value ODEs

For all experiments of this example, we set the neural network identical for both

Meta-CVs and Neural-CVs. That is, a fully connected neural network with three

hidden layers. Each layer has 80 neurons while the output layer has 1 neurons.

The total number of parameters of the neural network p = 13, 201. The activation

function is the sigmoid function. We use Adam as the UPDATE rule in this example

and the penalty constant λ is set to be 5× 10−6.

• For Meta-CVs: The inner learning rate α = 0.01 and the meta learning rate

η = 0.002 for all meta iterations. The number of inner updates is L = 1. The

number of meta iteration Itr is set to be 2, 000. The meta batch size of tasks is

set to be 5.

• For Neural-CVs: The learning rate is 0.002. The number of training epochs

for each task is set to be 20 with batch size 5.

B.3.3 Experiment: Bayesian Inference of Lotka-Volterra Sys-

tem

The log-exp transform is used on the model parameters x to avoid constrained pa-

rameters on the ODE directly. We reparameterised the Lotka—Volterra system as,

du1(s)
ds

= x̃1u1(s)− x̃2u1(s)u2(s)

du2(s)
ds

= x̃3u1(s)u2(s)− x̃4u2(s),

where

x̃1 = exp(x1), x̃2 = exp(x2),

x̃3 = exp(x3), x̃4 = exp(x4),

where u1 and u2 represents the number of preys and predators, respectively.



B.3. Experimental Details 174

The model is,

y1(0) ∼ Log-Normal(log x̃5, x̃7)

y2(0) ∼ Log-Normal(log x̃6, x̃8)

y1(s) ∼ Log-Normal(log u1(s), x̃7)

y2(s) ∼ Log-Normal(log u2(s), x̃8)

where

x̃5 := exp(x5), x̃6 := exp(x6)

x̃7 := exp(x7), x̃8 = exp(x8).

By doing so, x is then on the whole R8. As a result, the prior distribution π(x) is

defined on R8 and Stan will return the scores of these parameters directly as these

8 parameters x themselves are unconstrained through manually reparameterisation

directly.

Priors are,

x1, x4 ∼ Normal(0, 0.52)

x2, x3 ∼ Normal(−3, 0.52)

x5, x6 ∼ Normal(log 10, 12)

x7, x8 ∼ Normal(−1, 12)

Inference of x1 and x2

• For both Meta-CVs and Neural-CVs: We use a fully connected neural net-

work with 3 hidden layers. Each layer has 5 neurons while the output layer

has 8 neurons. The total number of parameters of the neural network p = 153.

The activation function is the tanh function. All parameters of neural net-

works are initialised with a Gaussian distribution with zero mean and stan-

dard deviation 0.01 except of γt,0 is initialised at the Monte Carlo estimator



B.3. Experimental Details 175

of each task. We use Adam as the UPDATE rule in this example and the

penalty constant λ is set to be 5× 10−5.

• For Meta-CVs: The inner learning rate α = 0.0001. The number of inner

gradient steps is L = 1. The meta learning rate was η = 0.001 for all meta

iterations. The number of meta iteration Itr is set to be 2, 000. The meta batch

size of tasks B is set to be 5.

• For Neural-CVs: The learning rate is 0.001. The number of training epochs

for each task is set to be 20 with batch size 5.

Inference of x3 and x4

• For both Meta-CVs and Neural-CVs: We use a fully connected neural net-

work with 3 hidden layers. Each layer has 3 neurons while the output layer

has 8 neurons. The total number of parameters of the neural network p = 83.

The activation function is the tanh function. All parameters of neural net-

works are initialised with a Gaussian distribution with zero mean and stan-

dard deviation 0.01 except of γt,0 is initialised at the Monte Carlo estimator

of each task. We use Adam as the UPDATE rule in this example and the

penalty constant λ is set to be 5× 10−5.

• For Meta-CVs: The inner learning rate α = 0.001. The number of inner

gradient steps is L = 1. The meta learning rate was η = 0.001 for all meta

iterations. The number of meta iteration Itr is set to be 2, 000. The meta batch

size of tasks B is set to be 5.

• For Neural-CVs: The learning rate is 0.001. The number of training epochs

for each task is set to be 20 with batch size 5.

B.3.4 Experiment: Sarcos Robot Arm

Approximate Inference of Full Bayesian Gaussian Process Regression We learn

full Bayesian hierarchical Gaussian processes by variational inference (Kucukelbir

et al., 2017; Lalchand and Rasmussen, 2020).

We set σ = 0.1, π(x1) = Gamma(25, 25) and π(x2) = Gamma(25, 25),

which is the prior used in (Oates et al., 2017). We transform the kernel hyper-

parameters x ∈ R2+ to η = g(x) = log x such that we can learn a variational



B.3. Experimental Details 176

distribution qφ(η) of η in R2 and then transform back to q(x). We use full rank

approximation which means the variational family takes the following form:

qφ(η) = N(µ, V V >),

with variational parameter φ := {µ, V } ∈ Rp+p(p+1)/2 where µ is a column vector

and V is a lower triangular matrix. The objective of variational inference is to

maximize the evidence lower with respect to φ, which is given by,

ELBO(φ) = Eqφ [log p(y1:q, e
η) + log |Jacobiang−1(η)|]− Eqφ [log qφ(η)]

= Eqφ [log p(y1:q|eη) + log π(eη) + log |Jacobiang−1(η)|]− Eqφ [log qφ(η)]

The expectations involved in ELBO(φ) are approximated by Monte Carlo estima-

tors and we use re-parametrization trick (Kingma and Welling, 2013) to learn φ.

Figure B.1 demonstrates the prior and the corresponding posterior of the kernel

hyper-parameters x = (x1, x2) (in the form of 2d histograms).

0.5 1.0 1.5 2.0
x1

0.5

1.0

1.5

2.0

x 2

Prior of x

0.7 0.8 0.9 1.0
x1

1.0

1.2

1.4

1.6

x 2

Posterior of x

Figure B.1: Priors and posteriors of kernel hyper-parameters x.

Settings

• For both Meta-CVs and Neural-CVs, a fully connected neural network with

5 hidden layers. Each layer has 20 neurons while the output layer has 2 neu-

rons (the output then is timed by a identity matrix I2 to used as u since 2 is

the dimension of the input x). The total number of parameters of the neural

network p = 10, 401. The activation function is the sigmoid function. All pa-

rameters of neural networks are initialised with a Gaussian distribution with



B.3. Experimental Details 177

zero mean and standard deviation 0.001. We use Adam as the UPDATE rule

in this example and the penalty constant λ is set to be 1× 10−10.

• For Meta-CVs: The inner learning rate α = 0.01. The meta learning rate was

η = 0.001 for all meta iterations. The number of meta iteration Itr is set to be

1, 000. The meta batch size of tasks B is set to be 1.

• For Neural CV: The learning rate is 0.001. The number of training epochs for

each task is set to be 20 with batch size 5.

• For Control functionals: we use radius basis function k(x, x′) =

exp(−‖x−x′‖22
2v

) with kernel hyperparameter v > 0 as the base kernel for con-

trol functionals. The hyper-parameter v is tuned by maximising the marginal

likelihood with the Stein kernel on St for each task. Optimal control function-

als are selected by using St and then unbiased control functional estimators

are constructed by using Qt of each task.

Extra Experiments In addition, we test the performance of Meta-CVs on the same

tasks used for learning the Meta-CV. Under the same setting described above, the

comparisons between Meta-CVs and other methods are presented in Figure B.2.

MC CF NCV MCV-1 MCV-5 MCV-20 MCV-50 MCV-100

0.050

0.075

0.100

0.125

0.150

0.175

E
st

im
at

ed
 A

bs
ol

ut
e 

E
rr

or

Figure B.2: Estimated absolute errors over the same training states (which are used for
learning the Meta-CV) of the Sarcos anthropomorphic robot arm (CF: Control
functionals; NCV: Neural-CVs; MCV-L: Meta-CVs with L inner steps).



Appendix C

Supplementary Material of

Amortized Bayesian Prototype

Meta-learning

C.1 Overview
In this appendix, we present details of experimental settings, including hyper-

parameters including batch size and learning rates. We also provide detailed statis-

tics in plots and figures. All experiments are implemented with PyTorch.

C.2 Experimental Details
At the meta-training stage, except that the maximum training epoch is 12000 for

1-shot classification on mini-ImageNet, the maximum training epoch is set to be

3500 epochs for all the other experiments. We use a mini-batch of tasks consisting

T tasks to update the shared θ during meta-training.

We select the optimal meta-training epoch on the meta-validation set accord-

ing to classification accuracy. At the meta-testing stage, we randomly sample 600

novel tasks from the meta-testing set, and report the mean accuracy with its 95%

confidence interval, i.e., mean acc. ± 1.96 std√
600

. For C-way K-shot, a task is con-

structed by sampling C classes and then subsequently sampling K + M instances

for each class, with K being the number of support images in each class. In our



C.3. Details of Figures 179

experiments,

• Omniglot: M = 15 for meta-training/meta-validation/meta-testing;

• mini-ImageNet: M = 16 for meta-training and meta-validation, M = 15 for

meta-testing;

• CUB-200-2011: M = 16 for meta-training and meta-validation, M = 15 for

meta-testing;

• Stanford-dogs: M = 16 for meta-training and meta-validation, M = 15 for

meta-testing.

The values of B, L, α and η in Algorithm 8 are set to be

• Omniglot: B = 32, L = 1, α = 0.1, η = 0.001;

• mini-ImageNet: B = 4, L = 5, α = 0.01, η = 0.001;

• CUB-200-2011: B = 4, L = 5, α = 0.01, η = 0.001;

• Stanford-dogs: B = 4, L = 5, α = 0.01, η = 0.001.

In addition, we use standard stochastic gradient descent to generate variational pa-

rameters φi, during meta-training/meta-validation/meta-testing, for a task Ti and for

all i. We use the Adam optimizer to update the shared parameter θ at meta-training

stage.

C.3 Details of Figures

In this section, we present details of Figure 6.1 in the following tables, i.e. Ta-

ble C.1, Table C.2 and Table C.3. In particular, the setting of dropout used in Ta-

ble C.3 is set to be:

• Omniglot: Dropout with a keep probability of 0.9.

• mini-ImageNet: Dropout with a keep probability of 0.5.

C.4 Comparisons of Convolution Networks

Here, we present details of shallow convolution networks used in the probabilistic

meta-learning methods in Table C.4. CONV-X means a convolution network with

X convolution blocks.



C.5. Effect of L 180

Table C.1: Ablation study in Figure 6.1-(a).

Meta-training conditions

C-way at meta-testing 5-way 5-shot (%) 10-way 5-shot (%)

C = 5 99.45± 0.09 99.44± 0.08

C = 10 98.97± 0.08 99.14± 0.08

C = 15 98.45± 0.09 98.80± 0.09

C = 20 98.14± 0.09 98.52± 0.08

C = 25 97.85± 0.09 98.20± 0.08

C = 30 97.44± 0.09 97.87± 0.08

C = 35 97.17± 0.09 97.63± 0.08

C = 40 96.84± 0.08 97.34± 0.08

C = 45 96.57± 0.08 97.12± 0.08

C = 50 96.30± 0.08 96.85± 0.08

Table C.2: Ablation study in Figure 6.1-(b).

Meta-training conditions

K-shot at meta-testing 5-way 5-shot (%) 10-way 5-shot (%)

K = 2 98.65± 0.27 98.38± 0.15

K = 4 99.47± 0.11 99.00± 0.11

K = 5 99.60± 0.10 99.17± 0.09

K = 6 99.53± 0.11 99.19± 0.10

K = 8 99.59± 0.10 99.06± 0.13

K = 10 99.61± 0.09 99.32± 0.10

K = 12 99.60± 0.09 99.34± 0.09

Table C.3: Ablation study in Figure 6.1-(c).

KL Dropout Omniglot (%) mini-ImageNet (%)

- - 96.16± 0.28 43.08± 0.62

X - 99.54± 0.08 70.44± 0.72

X X 99.50± 0.08 69.92± 0.67

C.5 Effect of L
In Table C.5, we also take the effect of L into account. Recall that L is the number

of updates of the inner loop for the approximate inference. We consider the cases



C.5. Effect of L 181

Table C.4: Convolution networks of methods in Table 6.1.

Omniglot mini-ImageNet
BMAML CONV-5 CONV-5
PLATIPUS CONV-4 CONV-4
VAMPIRE CONV-4 CONV-4
ABML CONV-4 CONV-4
Amortized VI CONV-4 CONV-5
VERSA CONV-4 CONV-5
Meta-Mixture CONV-4 CONV-4
DKT CONV-4 CONV-4
Ours CONV-4 CONV-4

when L = 1, L = 3 and L = 5. Performance for each choice of L is measured on

the meta-testing set.

Table C.5: Effect of L.

mini-ImageNet L = 1 L = 3 L = 5
5-way 1-shot 52.79± 0.94(%) 53.29± 0.89(%) 53.28± 0.91(%)
5-way 5-shot 69.63± 0.70(%) 70.56± 0.70(%) 70.44± 0.72(%)


	Introduction
	Background and scope of the thesis
	Contributions

	Transfer Learning in Monte Carlo Methods and Machine Learning
	Transfer Learning
	Transfer Learning in Monte Carlo Methods
	Transfer Learning in Supervised Learning

	Background: Kernel Methods, Stein's Method, Control Variates and Meta-learning
	Kernel Methods
	Reproducing Kernel Hilbert Spaces
	Kernel Methods in Statistical Learning

	Stein's Method
	Stein Identity and Stein Operators
	Stein's Operators on RKHSs
	Applications of Stein's method in Statistical Learning

	Scalar-valued Control Variates
	Control Variates
	Constructing and Selecting Control Variates
	Choices of  U

	Relevant Work on Information Sharing Across Integral Estimation Tasks
	Meta-learning
	Gradient-based Meta-learning
	Metric-based Meta-learning


	Vector-valued Control Variates
	Introduction
	The Proposed Method
	Construction Vector-valued RKHSs with Zero Means
	Alternative Kernel-based vv-CVs based on the Second Order Langevin Stein operator
	Learning Vector-valued Control Variates
	Computational Complexity of Vector-valued Control Variates

	Experimental Results
	A Synthetic Example
	Multi-fidelity Modelling
	Computation of the Model Evidence for Dynamical Systems
	Bayesian Inference of Lotka-Volterra System

	Conclusions

	Meta-learning Control Variates: Variance Reduction with Limited Data
	Introduction
	Recap of Control Variates
	The Proposed Method
	Problem Set-up
	Meta-learning CVs

	Experimental Assessment
	A Synthetic Example
	Uncertainty Quantification for Boundary Value ODEs
	Bayesian Inference for the Lotka–Volterra System
	Marginalization in Hierarchical Gaussian Processes

	Theoretical Analysis
	Conclusions

	Amortized Bayesian Prototype Meta-learning for Few-shot Image Classification
	Introduction
	Related Work
	The Proposed Method
	Meta-learning via Maximizing Expectation of Posterior Predictive Likelihood
	Amortized Bayesian Prototype Meta-learning

	Applications to Few-shot Image Classification
	Implementation Details
	Experimental Results
	Ablation Studies

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Supplementary Material of Vector-valued Control Variates
	Overview
	Proofs
	First-order K0 for Polynomial-based vv-CVs
	Connection between vvpolynomials and vvRKHS with polynomial kernel
	Proof of thm:K0kernelfirstorder
	Proof of thm:squared inegrable RKHS
	Proof of thm:closedformminimiser
	Proof of thm:K0kernelsecondorder

	Implementation Details
	Kernels and Their Derivatives
	Hyper-parameters Selection

	Additional Details and Results for the Experimental Study
	Experimental Details of the Illustration Example
	Experimental Details of the Multifidelity Univariate Step Functions
	Experimental Details of the Multifidelity Modelling of Waterflow
	Experimental Details of the Computation of the Model Evidence through Thermodynamic Integration
	Experimental Details of the Lotka-Volterra System


	Supplementary Material of Meta-learning Control Variates: Variance Reduction with Limited Data
	Overview
	Proof of Theorems
	Convergence of Model-Agnostic Meta-Learning
	Proof of Theorem 5.5.1
	Proof of Corollary 5.5.1.1

	Experimental Details
	Experiment: Oscillatory Family of Functions
	Experiment: Boundary Value ODEs
	Experiment: Bayesian Inference of Lotka-Volterra System
	Experiment: Sarcos Robot Arm


	Supplementary Material of Amortized Bayesian Prototype Meta-learning
	Overview
	Experimental Details
	Details of Figures
	Comparisons of Convolution Networks
	Effect of L


