

Not ready for production

CONIPHER: a computational framework for scalable

phylogenetic reconstruction with error correction

Kristiana Grigoriadis1,2,3,#, Ariana Huebner1,2,3,#, Abigail Bunkum1,4,5,#, Emma Colliver2,#, Alexander

M. Frankell1,2,#, Mark S. Hill2, Kerstin Thol1,3, Nicolai J. Birkbak1,2,6,7,8, Charles Swanton1,2,9,*,

Simone Zaccaria1,5,*, Nicholas McGranahan1,3,*

1. Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer

Institute, London, UK

2. Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK

3. Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of
Excellence, University College London Cancer Institute, London, UK

4. Cancer Metastasis Lab, University College London Cancer Institute, London, UK

5. Computational Cancer Genomics Research Group, University College London Cancer Institute,

London, UK

6. Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark

7. Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

8. Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
9. Department of Oncology, University College London Hospitals, London, UK

These authors contributed equally: Kristiana Grigoriadis, Ariana Huebner, Abigail Bunkum,

Emma Colliver, Alexander M. Frankell

* These authors jointly supervised this work

Correspondence to: Charles Swanton, Simone Zaccaria, Nicholas McGranahan

EDITORIAL SUMMARY: CONIPHER: a computational framework for accurately inferring subclonal
structure and the phylogenetic tree from multi-sample tumour sequencing, accounting for both copy
number alterations and mutation errors.

PROPOSED TWEET: CONIPHER: a computational framework for scalable phylogenetic
reconstruction with error correction from tumours

PROPOSED TEASER: CONIPHER reconstructs tumour evolutionary history

KEY POINTS:
● CONIPHER is a computational framework for accurately inferring subclonal structure and

phylogenetic relationships from multi-sample tumour sequencing, accounting for both copy
number alterations and mutation errors.

● Benchmarking analyses on simulations show that CONIPHER outperforms similar methods,

and in particular scales to a large number of tumour samples and clones. This enables
automated phylogenetic analysis which can be effectively applied to large sequencing
datasets generated with different technologies.

Abstract

Intra-tumour heterogeneity provides the fuel for the evolution and selection of subclonal tumour

cell populations. However, accurate inference of tumour subclonal architecture and reconstruction

of tumour evolutionary history from bulk DNA sequencing data remains challenging. Frequently,

sequencing and alignment artefacts are not fully filtered out from real cancer somatic mutations

and errors in the identification of copy number alterations or complex evolutionary events (e.g.

mutation losses) affect the estimated cellular prevalence of mutations. Together, such errors

propagate into the analysis of mutation clustering and phylogenetic reconstruction. In this paper

we present a new computational framework, CONIPHER (COrrecting Noise In PHylogenetic

Evaluation and Reconstruction), that accurately infers subclonal structure and phylogenetic

relationships from multi-sample tumour sequencing, accounting for both copy number alterations

and mutation errors. CONIPHER has been used to reconstruct subclonal architecture and tumour

phylogeny from 421 multi-sample tumours with high-depth whole-exome sequencing (WES) from

the TRACERx421 dataset, as well as 126 primary-metastatic cases. CONIPHER outperforms

similar methods on simulated datasets, and in particular scales to a large number of tumour

samples and clones, while completing in under 1.5 hours on average. As such, CONIPHER

enables automated phylogenetic analysis which can be effectively applied to large sequencing

datasets generated with different technologies. CONIPHER can be run with basic knowledge of

bioinformatics, and R and bash scripting languages.

Key papers using this protocol

● Frankell et al. The evolution of lung cancer and impact of subclonal selection in

TRACERx (doi.org/10.1038/s41586-023-05783-5)
● Al Bakir et al. The evolution of non-small cell lung cancer metastases in TRACERx

(doi.org/10.1038/s41586-023-05729-x)
● Martinez-Ruiz et al. Genomic–transcriptomic evolution in lung cancer and metastasis

(doi.org/10.1038/s41586-023-05706-4)
● Abbosh et al. Tracking early lung cancer metastatic dissemination in TRACERx using

ctDNA (doi.org/10.1038/s41586-023-05776-4)
● Karasaki et al. Evolutionary characterization of lung adenocarcinoma morphology in

TRACERx (doi.org/10.1038/s41591-023-02230-w)

Introduction

Cancer is an evolutionary process1, in which the heritable accumulation of somatic mutations

results in the formation of heterogeneous subpopulations of cancer cells, referred to as intra-

tumour heterogeneity (ITH)2. Most cancer evolution studies quantify ITH from DNA sequencing

data by identifying the unique complements of somatic mutations that are carried by these

different subpopulations of cells, or ‘subclones’. Accurately reconstructing the genomic profile of

each subclone, and inferring the evolutionary hierarchy between the subclones present in a

tumour is important, not only for studying the biology of the disease trajectory, but because a

tumour subclone harbouring a treatment-resistant genomic variant could have important clinical

implications, and could be used to guide therapeutic decision making3.

In recent years, progress in next-generation sequencing technology and computational

methodology has revealed significant ITH in several cancer types4. However, a single tumour

tissue biopsy sample may contain a mixture of many thousands of heterogeneous normal and

cancer cells, making the full deconvolution of subclonal populations and their phylogenetic

ordering from bulk DNA sequencing challenging. While single-cell sequencing techniques are

promising approaches providing unprecedented resolution to cancer evolutionary analysis, they

remain highly specialised techniques with various technical and financial challenges that limit their

application to large cohorts of tumour samples, particularly in clinical settings. In fact, the most

https://paperpile.com/c/Ze1jHv/FA65w
https://paperpile.com/c/Ze1jHv/oSMUQ
https://paperpile.com/c/Ze1jHv/tMBgh
https://paperpile.com/c/Ze1jHv/x35cR

recent and large cancer sequencing studies such as the TRACERx5 and PCAWG6 studies still

rely on bulk sequencing. Therefore, accurate and automatic pipelines for tumour evolutionary

analysis from bulk sequencing data, especially multi-region and multi-site datasets, still represent

an important unmet need.

Typically, subclonal reconstruction algorithms leverage the observed variant allele

frequency (VAF) of single-nucleotide mutations measured from aligned DNA sequencing reads

in order to quantify the prevalence of somatic events7. Due to the presence of somatic copy

number alterations (SCNAs) and normal cell admixtures, the VAF alone is not an accurate

estimator of the population frequency of the variant. Therefore, most existing algorithms apply

different approaches to correct the VAF for tumour purity and SCNAs to infer estimates of the

cancer cell fraction (CCF) of a mutation, which defines the proportion of cancer cells in the sample

that carry the mutation8.

To reconstruct clonal evolution, computational methods cluster together mutations with

similar CCFs in all samples sequenced into ‘subclonal clusters’, under the assumption that they

are likely present in a similar set of cells and that they represent a clonal expansion at a similar

evolutionary time point8. Then, by nesting subclonal cluster CCFs based on evolutionary

principles for constraining lineage relationships, algorithms seek to infer the evolutionary ordering

of clusters and reconstruct the full tumour phylogenetic tree2 (Table 1). Such principles include

the ‘sum condition’9, (sometimes referred to as the ‘pigeonhole principle’)10 which states that the

CCF of a parental cluster must be greater than or equal to the sum of its daughter cluster CCFs

in all tumour samples, and ‘crossing rule’, which states that for two subclonal clusters A and B, if

CCF(A) > CCF(B) in at least one tumour sample, and CCF(A) < CCF(B) in one or more distinct

tumour samples, then A and B must be on distinct branches of the phylogenetic tree11,1211.

Three key challenges make the accurate estimation of mutation CCFs from bulk

sequencing data, assigning mutations to clusters, and inferring evolutionary ordering between

mutation clusters non-trivial.

https://paperpile.com/c/Ze1jHv/OTnVq
https://paperpile.com/c/Ze1jHv/nN4zx
https://paperpile.com/c/Ze1jHv/HQEQ9
https://paperpile.com/c/Ze1jHv/s3Mn0
https://paperpile.com/c/Ze1jHv/s3Mn0
https://paperpile.com/c/Ze1jHv/oSMUQ
https://paperpile.com/c/Ze1jHv/f8o1f
https://paperpile.com/c/Ze1jHv/sSa1p
https://paperpile.com/c/Ze1jHv/YIOUM+dyIzW
https://paperpile.com/c/Ze1jHv/YIOUM

First, errors in both mutation and copy number calling (e.g., sequencing artefacts,

misalignments, etc) may result in errors in the estimated CCFs and, hence, in the identification of

false mutation clusters that do not reflect true biological signals. For example, subclonal SCNAs

undetected by copy-number calling algorithms can result in a genomically clustered group of

mutations having a distinct CCF which reflects the copy number event and not the true underlying

prevalence of the mutations. Unless explicitly removed, such clusters will be propagated and will

impact the phylogenetic tree reconstruction. However, most of the existing algorithms that cluster

mutations and reconstruct tumour phylogenetic trees assume that the input data is error free13,

either in terms of SNVs9, SCNAs14, or both15. Thus, a cluster resulting from mutation or SCNA

errors will be given equal weight to a bona-fide mutation cluster which might erroneously impact

the reconstruction of the tumour phylogenetic tree.

Second, SCNAs can result in the loss of mutations when genomic segments that contain

the locus of their mutated alleles are deleted8. Mutation losses violate the commonly enforced

infinite sites assumption (i.e., the assumption in which mutations occur at most once at a particular

genomic locus and cannot be lost by reversion mutation13). When analysing these lost mutations,

their CCFs will appear lower than the CCFs of the other mutations that represent the same clonal

expansion (i.e. that are part of the same edge of the tumour phylogenetic tree). Hence, accounting

for mutation losses is important for inferring the correct mutation cell fraction. In this paper, we

refer to the fraction of cancer cells that either carry a mutation, or whose ancestors carried the

mutation before mutation loss, as the phylogenetic cancer cell fraction (PhyloCCF)8. This concept

has been introduced and used in previous studies2.

Finally, most current subclonal reconstruction methods are limited in their ability to

accurately cluster and construct phylogenetic trees based on large multi-sample studies. In

particular, to account for SCNAs during the estimation of CCFs from the observed VAFs, some

phylogenetic reconstruction algorithms aim to jointly model the evolution of SNVs and SCNAs10.

https://paperpile.com/c/Ze1jHv/wa1CD
https://paperpile.com/c/Ze1jHv/f8o1f
https://paperpile.com/c/Ze1jHv/nTnXB
https://paperpile.com/c/Ze1jHv/wZKlU
https://paperpile.com/c/Ze1jHv/s3Mn0
https://paperpile.com/c/Ze1jHv/wa1CD
https://paperpile.com/c/Ze1jHv/s3Mn0
https://paperpile.com/c/Ze1jHv/oSMUQ
https://paperpile.com/c/Ze1jHv/sSa1p

However, due to the complexity of these models, these algorithms do not scale to the high

numbers of mutations found in the whole-genome and whole-exome sequencing studies16, and

neither to the large number of tumour samples sequenced in recent multi-sample tumour studies2.

To address previous limitations, we develop CONIPHER (COrrecting Noise In

PHylogenetic Evaluation and Reconstruction), a novel algorithm to automatically reconstruct

subclonal mutation clusters, tumour phylogeny and subclone cell proportions from bulk

sequencing data and account for uncertainty. CONIPHER is characterised by three novel features

that address key challenges in phylogenetic reconstruction described above: (1) an approach to

remove biologically improbable clusters that either are driven by likely-erroneous mutations or by

subclonal SCNAs, (2) a method to correct for complex evolutionary events, including mutation

losses8, and (3) an efficient extension of previous and new approaches that allows CONIPHER

to scale to a high number of primary tumour samples per patient.

Despite the rich literature on tumour phylogeny reconstruction14, how features of the

inferred tumour phylogenies relate to the biology of tumour growth, in terms of selection, mutation

rates and rates of chromosomal instability, remains unclear. This protocol enables a user-friendly,

straightforward computational framework for analysis of tumour phylogenies in R, including

calculation of subclone proportions in each tumour sample. CONIPHER has been used to

automatically reconstruct the tumour phylogenetic trees for 421 patients with non-small cell lung

cancers (NSCLC) with primary and metastatic disease in the recent TRACERx421 study5,17,18.

Development of the protocol
Automated tumour phylogenetic reconstruction from bulk DNA sequencing of tumours with

a large number of mutations enables an in depth analysis of tumour evolution. To accurately

reconstruct the tumour phylogenetic tree we posit that it is imperative to account for mutation

losses and erroneously clustered mutations. Correct tree reconstruction will affect interpretation

https://paperpile.com/c/Ze1jHv/FMNyO
https://paperpile.com/c/Ze1jHv/oSMUQ
https://paperpile.com/c/Ze1jHv/s3Mn0
https://paperpile.com/c/Ze1jHv/nTnXB
https://paperpile.com/c/Ze1jHv/OTnVq+WMNiq+uwjYg

of downstream analyses of evolutionary relationships between specific driver mutations, and

inference of metastatic seeding and dissemination patterns. Hence, we created CONIPHER to

process and construct tumour phylogenetic trees for 432 tumours from 421 patients with NSCLC

from the TRACERx lung cohort5. We will now first outline the CONIPHER method before showing

that CONIPHER outperforms previous algorithms on simulations.

Overview of the CONIPHER method

CONIPHER takes as input processed mutation data from bulk DNA sequencing (for example

using Mutect219 and Varscan20), as well as SCNAs, purity and ploidy, which can be computed by

existing and well established methods, such as ASCAT21, HATCHet22, Sequenza23, and

Battenberg24. We report recommended mutation preprocessing steps in Supplementary Methods

1. CONIPHER subsequently performs mutation clustering, followed by tumour phylogeny

reconstruction, and finally computes subclone proportions (Figure 1). Below, we describe an

overview of the method. We provide a more detailed explanation of the method in Supplementary

Methods 2, including statistical tests performed and exact values of the parameters and

thresholds.

Subclonal mutation clustering. The first stage in CONIPHER is the estimation of PhyloCCFs

and clustering of somatic mutations (Figure 1a-d). This stage can be broken down into four main

components, which were designed with attention given to minimise the error introduced at each

subsequent stage. First, copy number preprocessing of every mutation is performed (Figure 1a),

in which the PhyloCCF of every mutation is calculated, by transforming the measured VAF by

expected mutation copy number and tumour purity to compute the CCF metric25, and taking into

account both clonal and subclonal SCNAs2. Secondly, a pre-clustering stage is implemented to

split mutations in distinct groups, such that each group only contains mutations that are clearly

present or clearly absent in the same set of tumour samples (Figure 1b, Supplementary Methods

https://paperpile.com/c/Ze1jHv/OTnVq
https://paperpile.com/c/Ze1jHv/n7cfL
https://paperpile.com/c/Ze1jHv/mupKy
https://paperpile.com/c/Ze1jHv/U8WB3
https://paperpile.com/c/Ze1jHv/bjV1a
https://paperpile.com/c/Ze1jHv/StLg2
https://paperpile.com/c/Ze1jHv/E48oO
https://paperpile.com/c/Ze1jHv/lFN0y
https://paperpile.com/c/Ze1jHv/oSMUQ

2 – Section 2.1)5. Similar to recent methods26, this step prevents the mixing of these mutations in

the same cluster, an error that has been observed for most existing mutation clustering

algorithms26. In addition, insertion/deletion mutation (indel) VAFs are corrected, if indel calls are

(optionally) provided as input (as detailed in the Procedure, Supplementary Methods 2 – Section

2.1). Thirdly, CONIPHER applies Dirichlet clustering using the PyClone algorithm (v.0.13.17) to

each group of mutations separately to identify the candidate mutation clusters (Figure 1c). Finally,

post-processing and quality control is performed on the inferred mutation clusters (Figure 1d).

First, clusters that appear to be driven by copy number loss are removed2. Subsequently, mutation

clusters are removed that comprise a small number of mutations (user-defined) and pairs of

subclonal clusters are merged if their difference is driven solely by a subclonal copy number

correction (Figure 1d, Supplementary Methods 2 – Section 2.1).

Phylogenetic tree building. The second and main stage of CONIPHER is reconstruction of the

tumour phylogenetic tree. This stage takes the output from the previously performed mutation

clustering as input, namely, inferred assignments of mutations to mutation clusters, and mutation

PhyloCCF estimates. Notably, this stage is compatible with mutation clustering performed from

other methods. The phylogenetic tree building stage can be broken down into four main

components: cluster nesting, growing the tree, enumerating the solution space of alternative

phylogenies, and computing subclone proportions.

Mutation cluster nesting. First, 95% confidence intervals are computed to obtain estimates for

average PhyloCCF values for each mutation cluster identified in the clustering stage, in each

tumour sample (Figure 1e, Supplementary Methods 2 – Section 2.2). Secondly, two one-sided

tests are performed comparing PhyloCCF values between every possible pair of clusters in each

tumour sample, in order to determine whether one cluster could potentially be nested within the

https://paperpile.com/c/Ze1jHv/OTnVq
https://paperpile.com/c/Ze1jHv/tavNX
https://paperpile.com/c/Ze1jHv/tavNX
https://paperpile.com/c/Ze1jHv/HQEQ9
https://paperpile.com/c/Ze1jHv/oSMUQ

other (Figure 1f). The truncal cluster is assigned as the cluster that can nest all other clusters

(Figure 1f). A test is additionally performed to check whether each cluster could be classified as

subclonal within any given tumour sample, or whether it is indistinguishable from the truncal

cluster (Supplementary Methods 2 – Section 2.2)5.

In order to prevent artefactual mutation clusters from being assigned to a branch of the

phylogenetic tree, the genomic positions of mutations within each cluster are inspected. If all

mutations in a cluster are less evenly distributed across chromosomes than would be expected

based on the distribution of mutations across chromosomes in the truncal cluster, the cluster is

deemed as potentially copy number driven and therefore removed from subsequent analysis.

Notably, in the TRACERx primary NSCLC cohort5, we verify that the mutations removed with

clusters that do not fit the phylogenetic tree are consistent with truncal mutations subject to copy

number loss, as evidenced by mutational signature distributions (Supplementary Methods 3,

Supplementary Figure 1). Cluster nesting is summarised as a nesting matrix and can be

represented as an ancestral graph (Figure 1f).

Growing the phylogenetic tree. Then, the ancestral graph is pruned to attempt to produce a

tree structure with no cycles (Figure 1g). This method favours a more linear tree topology

structure, as opposed to a more branched structure. Subsequently, clusters are removed from

the tree that are the cause of the following issues: (i) cycles in the tree, or (ii) CCFs of tree

branches at each tree level exceeding a user-defined threshold (by default a CCF buffer of 10%

is used, Supplementary Methods 2 – Section 2.3). Clusters are removed such that the fewest

mutations possible are removed from the phylogenetic tree. This stage returns one ‘default’

tumour phylogenetic tree.

Growing the forest. After identifying the default tree, our algorithm enumerates all possible

alternative phylogenies that fit the identified cluster nesting structure of the pruned ancestral graph

(Figure 1h). First, all combinations of clusters are identified that could be moved to descend from

https://paperpile.com/c/Ze1jHv/OTnVq
https://paperpile.com/c/Ze1jHv/OTnVq

a different parental node, without causing graph cycles (i) or tree-level issues (ii) as described

above (Supplementary Methods 2 – Section 2.4). All possible phylogenetic trees are provided as

output.

After all potential trees are identified, tree branches, or edges, that are common to all trees

are classified as “consensus” branches, conversely, branches that are found in only a subset of

trees are classified as “non-consensus” branches.

CONIPHER additionally provides two methods for summarising the solution space of

multiple phylogenetic trees per tumour (Figure 1i). First, CONIPHER computes the tree(s) that

generates the lowest amount of nesting error, which we term the sum condition error (SCE).

Secondly, CONIPHER computes the tree(s) comprising branches, or tree edges, most commonly

shared amongst alternative trees in the solution space, by computing the edge probability. We

describe the calculation of the SCE and edge probability metrics in Supplementary Methods 2 –

Section 2.4.

Computing subclone proportions. Finally, CONIPHER automatically computes the proportion

of cells in each tumour sample belonging to each genomically homogeneous subclone, or the

“subclone proportions'', based on the inferred default tree and tumour phylogeny with lowest SCE

(Figure 1j, Supplementary Methods 2 – Section 2.5). Notably, subclone proportions will sum to 1

in each tumour sample and will only correspond to the mutation cluster PhyloCCF in the case of

terminal nodes on the phylogenetic tree. This enables an analysis of recent subclonal expansions

in a tumour, which was found to be prognostic in our companion manuscript5.

Benchmarking and evaluating the performance of CONIPHER

https://paperpile.com/c/Ze1jHv/OTnVq

A realistic simulation framework for tumour evolution. We benchmarked the performance of

CONIPHER using a simulation framework introduced within the TRACERx421 study, that

comprises generated tumour phylogenies, mutation clusters, and related bulk sequencing data5.

Ground truth simulations were designed to model the evolution of genetic variants frequently

observed in NSCLC, including somatic SNVs, truncal/subclonal SCNAs, and truncal/subclonal

whole genome doubling (WGD) events. In particular, the simulation framework models the effect

of such SCNAs and WGD events on the overlapping SNVs, thus resulting in SNV mutation losses

or changes in SNV multiplicity (i.e., number of copies harbouring the SNV). A cohort of 150

simulated tumours was used to benchmark CONIPHER (Simulated Dataset 1, Supplementary

Methods 4): 50 simulated tumours with 2-3 samples per tumour (low category), 50 simulated

tumours with 4-7 samples per tumour (medium category), and 50 simulated tumours with >7

samples per tumour (high category), totalling a collection of 150 simulated tumours. Full

mathematical details of the simulation framework are reported in Supplementary Methods 4 –

Section 4.1 and our companion paper5. In Simulated Dataset 1 an erroneous cluster not fitting the

ground truth tree topology was introduced. An analogous dataset comprising 150 simulated

tumours with no erroneous cluster was also generated (Simulated Dataset 2, Supplementary

Methods 4 - Section 4.2). Finally, a third simulated dataset comprising 36 simulated tumours was

generated in the same way as Simulated Dataset 1, with varying sequencing coverage (Simulated

Dataset 3, Supplementary Methods 4 - Section 4.2).

Comparison of CONIPHER with current state-of-the-art methods. Based on the ground truth

simulations generated using the simulation framework5, we compared CONIPHER for

reconstructing tumour subclonal mutation clusters and inferring tumour phylogeny with five

current state-of-the-art approaches (Figure 2). Specifically, we compared our clustering method

with PyClone, as well as our clustering and phylogenetic tree building method with PhyloWGS10,

LICHeE15, CITUP13 and Pairtree27, with each of these methods only comprising a subset of the

Commented [1]: As you refer to three datasets in
Supplementary Method 4, I just want to confirm that I
have understood correctly. Do these 150 datasets
correspond to what you call dataset 1 in Supplementary
Method 4? ie is the benchmarking data presented in
figure 2 and the discussion below is based entirely on
dataset 1.

A further small point for clarification: the results you
describe in Supplementary Method 4 seem to be based
on dataset 1. Section 4.4 describes results from dataset
3, but I can only find mention of dataset 2 in the legend
to Supplementary Figure 3, panel b. However, I can’t
find a citation to this panel in the text.

Commented [2]: Thanks. Yes, that is correct - the 150
datasets here are dataset 1. We have now updated the
terminology to refer to each simulated tumour case as a
'simulated tumour' instead of 'simulated dataset', and
the three simulated cohorts are referred to as
'Simulated Dataset 1', etc. I hope this makes it clearer.

Supplementary Figure 3b is cited further below, in the
subsection titled 'Multiple alternative tree solutions'.
We've additionally added a sentence in Supplementary
Methods - Section 4.4 to cite the Supplementary
Figures 3a and 3b.

https://paperpile.com/c/Ze1jHv/OTnVq
https://paperpile.com/c/Ze1jHv/OTnVq
https://paperpile.com/c/Ze1jHv/OTnVq
https://paperpile.com/c/Ze1jHv/sSa1p
https://paperpile.com/c/Ze1jHv/wZKlU
https://paperpile.com/c/Ze1jHv/wa1CD
https://paperpile.com/c/Ze1jHv/1FALo

features introduced in CONIPHER (Table 1). Overall, CONIPHER is able to identify mutation

clusters (Figure 2a) and reconstruct tumour phylogenies (Figure 2b) with higher accuracy than

other methods (Supplementary Methods 4 – Section 4.2), and obtains consistently high

performance with sequencing coverage >50x (validated on Simulated Dataset 3; Supplementary

Methods 4 – Section 4.3, Supplementary Figure 2). When providing the true mutation clusters,

we additionally demonstrated a similar improvement in performance when benchmarking only the

tree building method of CONIPHER with previous methods that provide the same feature, i.e.,

LICHeE, CITUP, and Pairtree (Figure 2).

Table 1. Comparison table of phylogenetic tree inference methods.

Method Date Mutatio

n

presenc

e

/

absence

assignm

ent

Mutatio

n loss

inferen

ce

Subclo

na l

 SC

NA

correct

io n

SNV

error

correc

tio n

Scalabl
e

Multi

ple

soluti

on s

Clone

proportions

calculation

CITUP13 2015 N N N N Y Y N

PhyloWGS1
0

2015 N Y Y N N Y N

LICHeE15 2015 Y N N Y Y Y N

PASTRI9 2017 N N N N Y Y N

Pairtree27 2022 N N Y N Y Y N

CONIPHER 2023 Y Y Y Y Y Y Y

Table comparing functionalities offered by various state-of-the-art mutation clustering and phylogenetic

Commented [3]: Given that you do not name datasets 1
or 2 above, I think it could be confusing to refer to
dataset 3.

Commented [4]: We have updated this

https://paperpile.com/c/Ze1jHv/wa1CD
https://paperpile.com/c/Ze1jHv/sSa1p
https://paperpile.com/c/Ze1jHv/sSa1p
https://paperpile.com/c/Ze1jHv/wZKlU
https://paperpile.com/c/Ze1jHv/f8o1f
https://paperpile.com/c/Ze1jHv/1FALo

reconstruction algorithms.

Scalability of method. We compared the scalability of CONIPHER with the other methods by

using the simulated tumours with increasing numbers of samples and tumour clones (low,

medium, and high categories, Simulated Dataset 1; see above). We found that CONIPHER and

Pairtree were able to infer tumour phylogeny for every simulated tumour, whereas the other

methods failed to run or complete the reconstruction for 12-98% of simulated tumours within the

time frame allowed (8 hours). In particular, PhyloWGS was unable to complete tumour

phylogenetic reconstruction on any of the simulated tumours in the medium or high category and

only able to reconstruct 3/50 trees in the low category (Figure 2c).

Presence-absence informed clustering. Distinguishing whether mutations are absent or

present in certain samples is an important feature in certain applications, for example when

assessing the presence of mutations in primary tumour samples compared to metastases17. As

such, we explicitly compared the performance of CONIPHER’s mutation clustering to other

methods, to evaluate how differences in the clustering would affect the downstream phylogenetic

tree analysis (Figure 2d). We found that CONIPHER and LICHeE had the highest mutation

presence precision in every tumour sample. In particular, the presence-absence classification

stage in CONIPHER led to improved mutation presence precision in the high category, compared

to the other methods for which performance decreased with larger simulations. We note that these

results suggest the improved accuracy of CONIPHER to distinguish presence/absence of

mutations in certain samples compared to the similar method previously introduced by LICHeE.

Measuring mutation losses. Losses of mutations due to CNAs have been observed to be

frequent in cancer5,8,17. As CONIPHER is one of the few methods that takes these events into

consideration and applies related corrections, we assessed the impact of this feature on the

accuracy of mutation clustering by evaluating the sensitivity in the identification of truncal

mutations. Truncal mutations that are affected by subclonal losses might impact downstream

https://paperpile.com/c/Ze1jHv/WMNiq
https://paperpile.com/c/Ze1jHv/OTnVq+WMNiq+s3Mn0

mutation clustering and related phylogenetic analysis if not taken into account8. Consistent with

this expectation, we found that methods that do not account for mutation loss, such as CITUP

and Pairtree, had a lower truncal sensitivity in all simulation categories (Figure 2e). We also

observed that when running Pairtree with CONIPHER clustering, the truncal sensitivity was

greatly improved, thereby indicating that Pairtree was not directly accounting for mutation losses

(Figure 2e). Clustering performance may directly impact the truncal sensitivity independently of

tree building, so we also evaluated the performance of each tree building method on the set of

ground truth simulated clusters per simulation (Figure 2f & 2g). We found that CITUP failed in all

150/150 (100%) instances, which we hypothesise is due to the inability to account for mutation

loss. Pairtree and LICHeE were able to identify the correct truncal mutation cluster in 83/150

(55%) and 84/150 (56%) of the simulated instances respectively, compared with CONIPHER that

was best able to account for mutation loss and correctly identified the truncal mutation cluster in

141/150 (94%) of ground truth instances.

Accurate error removal. Bulk DNA sequencing data may contain a significant degree of error;

however, most existing methods for phylogenetic reconstruction ignore the presence of errors

and noisy mutations in the input data (Table 1). To mitigate the impact of errors, CONIPHER aims

to identify mutation clusters driven by sequencing noise, and removes these. We evaluated the

extent to which CONIPHER correctly identifies and removes mutational sequencing noise by

injecting an artefactual cluster in the simulated tumours (Simulated Dataset 1), and comparing

the number of simulations in which the artefact cluster is removed (Figure 2h). Notably, the

artefact cluster is not necessarily incompatible with the tree structure (i.e. it was not necessarily

biologically implausible). CONIPHER was able to accurately identify and remove error-driven

mutations in 77/150 simulated tumours (51%), compared to LICHeE that removed noisy clusters

in 3/150 simulated tumours (2%), and CITUP and Pairtree which did not identify the noisy clusters

in any instances. For simulations with a low number of samples per tumour, CONIPHER also

often failed to remove the erroneous cluster (38/50 simulated tumours). In these cases, many

‘error clusters’ still fit the tree, without the need to remove any mutations. By contrast, for

https://paperpile.com/c/Ze1jHv/s3Mn0

simulations with a high number of samples, the erroneous cluster was correctly identified in 38/50

simulated tumours (76%).

Multiple alternative tree solutions. Most existing methods provide multiple solutions for the

reconstruction of tumour phylogenies and rank these solutions according to their likelihood, or to

some objective score. We thus used the ground truth simulations to assess whether the tree

ranking of CONIPHER allows the identification of the true tree as a high-rank solution. To do this,

we measured whether phylogenetic tree solutions with higher mutation descendant accuracy

gave better performing sum condition error (SCE) and edge probability metric scores. We

observed that for simulated tumour cases for which CONIPHER identified more than one potential

tree structure, the alternative trees that were reconstructed with the highest mutation descendant

accuracy had lower SCE scores compared to less accurate alternative phylogenetic trees

(Supplementary Figure 3a, Supplementary Methods 4 – Section 4.4). Evaluating the performance

of the CONIPHER tree building stage on the set of ground truth clusters from Simulated Dataset

2 (a simulated dataset with no mutation loss and no error-driver mutations, Supplementary

Methods 4 – Section 4.2), we also observed that the inferred edges that were present in the

ground truth tree were shared amongst a larger number of alternative tree solutions than edges

not present in the ground truth tree (Supplementary Figure 3b). Finally, we observed that the

highest ranking tree solutions based on the SCE and edge probability metrics had a higher

descendant accuracy than alternative tree solutions (Supplementary Figure 3c, Supplementary

Methods 4 – Section 4.4).

Realistic reconstruction of tumour evolutionary history. We assessed the impact of the

different performance of the benchmarked methods, including CONIPHER, CITUP, LICHeE and

Pairtree, by comparing their results when applied on the sequencing data previously generated

for CRUK0063, a metastatic case from the TRACERx421 cohort from our companion study17

(Supplementary Figure 4). We found CONIPHER produced the most realistic reconstruction of

mutation clusters and tumour phylogeny, as supported by a reasonable assignment of the truncal

cluster (compared with LICHeE and Pairtree) (Supplementary Figure 4a, b) and separating of

mutations by presence and absence (compared with CITUP) (Supplementary Figure 4c,

Supplementary Methods 5). Step-by-step reconstruction of the evolutionary history of CRUK0063

using CONIPHER is detailed in the Procedure.

Advantages and limitations of CONIPHER

CONIPHER performs mutation clustering and phylogenetic tree building from processed bulk

DNA sequencing data. This can be from bulk whole genome sequencing (WGS), whole exome

sequencing (WES) or a targeted sequencing approach. It is highly scalable and can reconstruct

tumour phylogenies from tumours with many samples and many clusters in a time frame of the

order of minutes. CONIPHER assigns mutations to the phylogenetic tree more accurately than

other state-of-the-art methods and in particular improves the quality of the mutations assigned to

the tree, by taking into account biological constraints in order to remove error-driven signal.

CONIPHER for phylogenetic tree building is compatible with input from mutation clustering

performed using other methods and automatically computes subclone proportions in each tumour

sample.

However, CONIPHER does have limitations. CONIPHER does not currently support raw

sequencing data as input and requires processed data from bulk DNA sequencing. In particular,

we assume that mutation and copy number calling algorithms have been applied to the raw

sequencing data.

https://paperpile.com/c/Ze1jHv/WMNiq

Required expertise

CONIPHER is straightforward to implement from the command line, using basic knowledge of

Linux/Unix syntax. CONIPHER output is in both human readable form (.tsv files) and additionally

.RDS objects for use in the R programming language. Knowledge of scripting languages would

be helpful for users who wish to use CONIPHER output for downstream analyses; however, non-

experts in bioinformatics should be able to run CONIPHER using the command line only to obtain

mutation clustering and tumour phylogenies with correct input data. The current implementation

of CONIPHER is written in the R programming language.

Experimental design

The CONIPHER Procedure is composed of two main stages: a clustering stage (Steps 1 - 3) and

a tree building stage (Step 4) (Figure 3). The clustering stage is optional, and can be replaced by

a mutation clustering method of the user’s choice. At each stage, output directories are generated

containing both data and summary plots (Boxes 1 and 2). Both stages can be run from the

command line. Alternatively, both stages can be run with a wrapper end-to-end; that is, the

clustering stage automatically generates output that is taken as input to the tree building stage

(see below). Both clustering and tree building stages can also be run in an interactive R session,

either separately, or end-to-end (see the Github page,

https://github.com/McGranahanLab/CONIPHER, for further details).

Preprocessing input data

Preprocessing of mutations. Somatic mutation calling and filtering should be carried out by the

user, before input to CONIPHER. The details on the mutation preprocessing steps used in the

TRACERx study can be found in Supplementary Methods 1 and our companion manuscript5.

Preprocessing of input.tsv. Our protocol requires as input one file, input.tsv, that is a

mutation table containing information about each point mutation in each tumour sample

https://github.com/McGranahanLab/CONIPHER
https://paperpile.com/c/Ze1jHv/OTnVq

sequenced (Figure 4). This input table can be used as input for both clustering and tree building

stages, with specific column names required for each stage. We provide a complete description

of all columns required in input.tsv for CONIPHER clustering and tree building stages in the

input table in Table 2.

The CONIPHER input table input.tsv is in long format, with a new row for each mutation,

for each tumour sample sequenced (Figure 4). Mutation clustering takes as input the genomic

position of every mutation in every tumour sample, the copy number at the genomic position of

each mutation (COPY_NUMBER_A, COPY_NUMBER_B), and an estimate of the tumour purity (or

aberrant cell fraction, ACF) and ploidy (PLOIDY) within each sample (Figure 4, pink box).

Columns COPY_NUMBER_A and COPY_NUMBER_B can represent the major and minor copy

number alleles, respectively, or alternatively, phased copy number values can be used. Tree

building takes the same table as input, with additional columns required (green box, Figure 4):

mutation cluster assignments (CLUSTER), estimates of the PhyloCCF (CCF_PHYLO) and observed

CCF (CCF_OBS), and mutation copy number estimates for each mutation in each sample

(MUT_COPY). These data and table columns are generated automatically by the clustering stage

(Figure 3).

Optionally, an additional column (MUT_TYPE) can be included in input.tsv with a flag

indicating the mutation type. Currently, there are two mutation types supported: SNV

(MUT_TYPE==“SNV”) or an indel (MUT_TYPE==“INDEL”) (Table 2).

Preprocessing of input_seg.tsv. Optionally, a copy number segmentation file

input_seg.tsv can be provided as input (see example CRUK006317 in PROCEDURE), which

is used in the clustering stage to generate a copy number plot across the genome with overlaid

mutation copy numbers. This table is in long format, with a new row for one copy number segment

in one tumour sample. The first column SAMPLE describes the tumour sample identifier. Columns

https://paperpile.com/c/Ze1jHv/WMNiq

CHR, STARTPOS and ENDPOS indicate the genomic segment. Columns COPY_NUMBER_A and

COPY_NUMBER_B indicate the copy number of the major and minor alleles, respectively. These

values can be integer copy number or raw fractional copy number.

Conventions

In our companion manuscripts5,17, the naming convention is to refer to “tumour regions” when

referring to multiple distinct bulk samples taken from one tumour. In this manuscript we instead

refer to the more general term “tumour samples” (SAMPLE) when referring to any sample with

available sequencing data to be processed through CONIPHER. Chromosome names can be

either with or without ‘chr’ prefix (e.g. ‘1’ or ‘chr1’). Chromosomes X and Y are ignored in this

procedure.

Execution of full pipeline

An example wrapper script to run both stages of the pipeline end-to-end

(wrapper_conipher.sh) is available to download from the CONIPHER-wrapper GitHub page

(https://github.com/McGranahanLab/CONIPHER-wrapper). This wrapper is designed to be run

for one case in the analysis cohort. A description of how to run each CONIPHER step individually

is detailed in the Procedure below, in which both the CONIPHER clustering and tree building

wrappers are run on processed WES data from a patient with metastatic disease from the

TRACERx421 cohort, case CRUK006317.

MATERIALS

EQUIPMENT

https://paperpile.com/c/Ze1jHv/OTnVq+WMNiq
https://github.com/McGranahanLab/CONIPHER-wrapper
https://paperpile.com/c/Ze1jHv/WMNiq

● Data files are required for each tumour in the analysis cohort (input.tsv, optionally

input_seg.tsv) as described in section Input data of the Experimental Design.

● A standard computer system with a Linux or macOS operating system is required to run

CONIPHER from the command line. CONIPHER can be run using access to Conda.

Details can be found in Software Requirements.

● Programme source code is publicly available for our CONIPHER R package at

https://github.com/McGranahanLab/CONIPHER, and for our CONIPHER clustering and

tree building wrapper at https://github.com/McGranahanLab/CONIPHER-wrapper.

EQUIPMENT SETUP

Hardware requirements

Memory requirements depend on whether the input data is from whole exome or whole genome

sequencing data. It is recommended to run the method using at least 8GB memory.

Software requirements

Access to a high performance computing (HPC) system is recommended for tumours with a large

number of samples and mutations, but CONIPHER clustering and tree building can also be run

on a local machine. CONIPHER clustering relies on the PyClone algorithm7 and therefore needs

to be run within a Conda environment (see instructions in section Installation). If only running

CONIPHER tree building, the CONIPHER package can be installed directly in R (3.6.1 <= version

< 4.2).

Installation

CONIPHER code repository can be downloaded from GitHub and installed using Bioconda. We

have created an R package for CONIPHER clustering and tree building with full package

installation and interactive run instructions at (https://github.com/McGranahanLab/CONIPHER).

We have additionally created a Github repository with a CONIPHER wrapper to run both

https://github.com/McGranahanLab/CONIPHER
https://github.com/McGranahanLab/CONIPHER-wrapper
https://paperpile.com/c/Ze1jHv/HQEQ9
https://github.com/McGranahanLab/CONIPHER

CONIPHER clustering and tree building end-to-end from the command line

(https://github.com/McGranahanLab/CONIPHER-wrapper/). Instructions for creating the Conda

environment required to run clustering and tree building are detailed below and in the README.md

file in the CONIPHER-wrapper Github repository.

● To install the CONIPHER Bioconda package, open the terminal and run the following

command:

conda create -n conipher -c conda-forge -c bioconda pyclone conipher

● To install the CONIPHER-wrapper, navigate to a desired directory and run the following

command:

git clone git@github.com:McGranahanLab/CONIPHER-wrapper.git

Table 2. Description of required and optional columns in input.tsv.

Column name Column description Required for clustering
input

Required for tree
building input

CASE_ID Tumour case identifier Required Required

SAMPLE Sample identifier Required Required

CHR Chromosome identifier Required Required

POS Genomic position of
mutation in
chromosome

Required Required

REF Reference
allele
nucleotide

Required Required

ALT Alternative nucleotide Required Required

REF_COUNT No. reads of reference
allele

Required Required

https://github.com/McGranahanLab/CONIPHER-wrapper/

VAR_COUNT No. reads of variant
allele

Required Required

DEPTH Sequencing depth Required Required

COPY_NUMBER_A Copy number at
mutation position,
allele A

Required Required

COPY_NUMBER_B Copy number at
mutation position,
allele B

Required Required

ACF Aberrant cell
fraction/purity in
tumour sample

Required Required

PLOIDY Tumour ploidy in
tumour sample

Required Required

MUT_TYPE Optional flag for
mutation type (either
“SNV” or “INDEL”)

Optional Not required

MUT_COPY Mutation copy
number/multiplicity

Not required Required

CCF_PHYLO Mutation PhyloCCF Not required Required

CCF_OBS Mutation CCF Not required Required

CLUSTER Mutation
cluster
assignment

Not required Required

Columns from left to right: (1) input.tsv column name, (2) description of column input data, (3) requirement
of column for input into clustering, and (4) requirement of column for input into tree building.

PROCEDURE

Stage 1: Mutation clustering - TIMING: 10 min - 6 hrs

! CRITICAL. The tumour identifier in column CASE_ID and tumour sample identifier in column

SAMPLE must include a prefix character string common to all patients in the cohort, for example

prefix ‘CRUK’ in the toy case CRUK0000 (Figure 4). The input table should be in tab-separated

format (input.tsv), should have no additional column with row names or numbers, and should

have no quotation marks for character string entries.

! CRITICAL. In cases of multiple genomically distinct tumours detected within one patient,

CONIPHER should be implemented separately for each tumour (Supplementary Note 1,

Considering patients input to CONIPHER with multiple genomically distinct tumours).

1| Prepare input.tsv file. An example input.tsv for TRACERx case CRUK0063 is shown

below. The case CRUK0063 has WES data available for 5 primary tumour samples

(CRUK0063_SU_T1.R3 - CRUK0063_SU_T1.R7) and two metastatic samples

(CRUK0063_SU_FLN1 - CRUK0063_BR_T1.R1):

CASE_ID SAMPLE CHR POS REF ALT REF_COUNT VAR_COUNT DEPTH
 COPY_NUMBER_A COPY_NUMBER_B ACF PLOIDY MUT_COPY CCF_PHYLO CCF_OBS CLUSTER
CRUK0063 CRUK0063_BR_T1.R1 1 1854811 C G 406 0 406 3 0
 0.19 2.85 0 0 0 1
CRUK0063 CRUK0063_SU_FLN1 1 1854811 C G 111 26 137 2 1
 0.16 3.44 2.51 1.33 1 1
CRUK0063 CRUK0063_SU_T1.R3 1 1854811 C G 222 0 222 2 1
 0.12 3 0 0 0 1
CRUK0063 CRUK0063_SU_T1.R4 1 1854811 C G 155 43 198 2 1
 0.26 3.65 1.9 0.949 1 1
CRUK0063 CRUK0063_SU_T1.R5 1 1854811 C G 184 43 229 2 1
 0.25 3.83 1.71 0.857 1 1
CRUK0063 CRUK0063_SU_T1.R6 1 1854811 C G 205 42 247 2 1
 0.14 3.64 2.59 1.3 1 1
CRUK0063 CRUK0063_SU_T1.R7 1 1854811 C G 177 32 209 2 1
 0.13 3.6 2.5 1.27 1 1
CRUK0063 CRUK0063_BR_T1.R1 1 2525963 - A 105 25 130 3 0
 0.19 2.85 2.58 1.13 1 4

When running the clustering and tree building pipeline for a cohort of tumours, it is recommended

to save the input and output in a distinct directory for each tumour case ${CASE_ID}, for

example:

inputTSV="${CASE_ID}/input.tsv"

outDir="${CASE_ID}/"

2| (Optional) Prepare input_seg.tsv file. This table can optionally be provided as input to

create an across-genome copy number plot. This file describes the estimated copy number across

the genome for each tumour sample. An example input_seg.tsv for case CRUK0063 is

shown below:

SAMPLE CHR STARTPOS ENDPOS COPY_NUMBER_A COPY_NUMBER_B
CRUK0063_SU_T1.R3 1 1154343 24194770 1.84 0.819
CRUK0063_SU_T1.R4 1 1154343 24194770 2.06 0.987
CRUK0063_SU_T1.R5 1 1154343 24194770 2.03 1.02
CRUK0063_SU_T1.R6 1 1154343 24194770 1.99 0.969
CRUK0063_SU_T1.R7 1 1154343 24194770 1.97 0.995
CRUK0063_BR_T1.R1 1 1154343 24194770 3.28 0.264
CRUK0063_SU_FLN1 1 1154343 24194770 1.89 0.843
CRUK0063_SU_T1.R3 1 24200891 24201115 0.802 0

! CRITICAL STEP. For file input_seg.tsv, the tumour sample identifiers in column SAMPLE

and chromosome identifiers in column CHR should correspond to those in input.tsv.

3| Run mutation clustering for one patient with the following command, specifying inputs for the

parameters of file names: –-patient, --out_dir, --input_tsv_loc, and optionally --

input_seg_tsv_loc:

Rscript run_clustering.R --case_id ${CASE_ID} --out_dir ${outDir} --

input_tsv_loc ${inputTSV}

A full description of all parameters available for the clustering stage can be found in Table 3. For

anticipated outputs see Box 1 and Figure 5.

Table 3. Description of parameters as input into CONIPHER clustering stage.

Parameter Parameter description Parameter data
type (in R)

Default value

 --case_id A tumour case identifier Character Please specify

 --out_dir File path to desired output directory Character Please specify

--input_tsv_loc File path to input mutation table in
correct format

Character Please specify

--input_seg_tsv_loc File path to a copy number segment
table used for plotting only

Character Optionally specify
(default = NULL)

--
subclonal_copy_corr
ection

Should subclonal copy number
correction be used?

Logical TRUE

--
only_truncal_subclo
nal_copy_correction

Should only truncal subclonal copy
number correction be used?

Logical TRUE

--pyclone_yaml_loc File path to template yaml file for
PyClone (to specify Dirichlet
clustering parameters). If not
specified, the default CONIPHER
yaml file is used

Character Optionally specify
(default = NULL)

--min_cluster_size Minimum number of mutations
required in a cluster to be included in
the analysis

Integer 5

--
multiple_test_correct
ion

Should multiple testing correction be
applied for the copy number correcting
mutations?

Logical TRUE

--clean_clusters Should the clusters be cleaned and
merged?

Logical TRUE

--clonal_cutoff Lower threshold of PhyloCCF to be
considered truncal

Double 0.9

--
propClonal_thresh
ol d

Proportion of mutations in a cluster
that need to be considered truncal in
order to merge back into the trunk

Double 0.25

--fix_absentCCFs Should PhyloCCF of absent mutations
be set to 0?

Logical TRUE

--burn_in Burn in for Dirichlet Process Integer 1000

--seed Seed for PyClone Integer 1024

--nProcs Number of cores allocated to run script
in parallel

Integer 1

Box 1: ANTICIPATED CLUSTERING OUTPUT

Running the clustering stage will output the following files in patient-specific directory

"${CASE_ID}/Clustering/":

OUTPUT DATA:

● <CASE_ID>.SCoutput.CLEAN.tsv. This is a mutation table in the same format as

input.tsv, including columns for: mutation cluster assignments (CLUSTER); mutation

cell fraction estimates, including the PhyloCCF (CCF_PHYLO) and observed CCF

(CCF_OBS); and mutation copy number estimates for each mutation in each sample

(MUT_COPY). Additionally, there is a column mutation_id, which is an identifier for the

mutation in the form: <CASE_ID>:<CHR>:<POS>:<REF>:<ALT>. By convention, cluster

names are integers, ordered by the number of mutations assigned to that cluster (so the

cluster with the largest number of mutations will be labelled as CLUSTER==1, and so forth).

● <CASE_ID>.SCoutput.FULL.tsv. This is a mutation table in the same format as the

file <CASE_ID>.SCoutput.CLEAN.tsv described above, except with one additional

column: CLEAN, which is a logical flag indicating whether this mutation was deemed ‘dirty’

and removed (CLEAN==FALSE), or deemed ‘clean’ and kept (CLEAN==TRUE). The subset

of this table based on CLEAN==TRUE is identical to the table

<CASE_ID>.SCoutput.CLEAN.tsv.

● <CASE_ID>.removed.muts.txt. This is a mutation table containing the mutations that

were removed during the clustering stage. Each row is a new mutation. Tumour sample-

specific information is found in columns that begin with <SAMPLE>.*. NOTE: this file will

not be generated if no mutations are removed.

Deleted: Wrapper script filename: run_clustering.R.

Commented [6]: We have decided to remove this

OUTPUT PLOTS:

● <CASE_ID>_pyclone_cluster_assignment_copynumber_clean.pdf. This

output is a series of across-genome plots of each mutation plotted at its genomic position

(x-axis) against its mutation copy number (y-axis), coloured by the cluster it was assigned

to in mutation clustering. Each new row shows a new tumour sample. If the

input_seg.tsv file was additionally provided, the copy number of each segment will

be plotted: black indicates allele A, while green indicates allele B. The first page of the pdf

displays all mutations from every cluster. The subsequent pages display the same

segment copy number information for each sample, with mutations from only one cluster

overlaid. Histograms on the right hand side of cross-genome plots (on all pages except

the first page) indicate the frequency of mutations at each copy number value. An example

of sample 5 from page 1 of the pdf for case CRUK0063 is shown in Figure 5a.

● <CASE_ID>.removedCPN.muts.pdf. This output plot is identical to the above, except

restricting to only mutations that were removed during the mutation clustering post-

processing step. Each mutation is coloured by the cluster it was assigned to in mutation

clustering. Each new row shows a new tumour sample. Histograms on the right hand side

indicate the frequency of mutations at each integer copy number value. NOTE: this file will

not be generated if no mutations are removed. An example of samples

CRUK0063_BR_T1.R1 and CRUK0063_SU_FLN1 for case CRUK0063 are shown in

Figure 5b.

● <CASE_ID>.heatmap.pdf. This output shows a heatmap of presence/absence of each

mutation (rows) in each tumour sample (columns). The colour bar on the left indicates

removed mutations (blue) and kept mutations (yellow).

● <CASE_ID>.cluster.ccf.heatmap.pdf. This output shows a heatmap of the

inferred PhyloCCF of each mutation (rows) in each tumour sample (columns). The colour

bar on the left indicates the assigned cluster.

● <CASE_ID>.pyclone_cluster_assignment_phylo_clean.pdf. This output

shows a scatter plot of the PhyloCCF of each (non-removed) mutation between each

pair of samples. Each mutation is coloured by the assigned cluster. An example of one

pair of samples from case CRUK0063 is shown in Figure 5c.

[Production: end of Box 1]

Stage 2: Phylogenetic tree building - TIMING: 1 min - 1 hrs

4| Run tree building for one patient with one of the following commands:

● If running CONIPHER tree building from CONIPHER clustering output:

Rscript run_treebuilding.R --input_tsv_loc

${outDir}"/Clustering/"${CASE_ID}".SCoutput.CLEAN.tsv" --out_dir

${outDir} --prefix CRUK

● If running CONIPHER tree building directly from an input.tsv file:

Rscript run_treebuilding.R --input_tsv_loc ${inputTSV} --out_dir

${outDir} --prefix CRUK

A full description of all parameters for the tree building stage can be found in Table 4. For

anticipated outcomes see Box 2 and Figures 6 and 7. Guidance on exploring the mutations

removed during the CONIPHER tree building stage can be found in Supplementary Note 2.

Additional output produced by CONIPHER includes data for analysis in R, described in the

Supplementary Note 3.

Commented [7]: Your Supplementary Notes are
currently callout out of sequence. I therefore suggest
moving this citation to Supplementary Note 3 from the
Troubleshooting section to here.

Commented [8]: Thanks, we have now renumbered
these and checked they are cited in the right order.

Table 4. Description of parameters as input into CONIPHER tree building stage.

Parameter Parameter description Paramete
r data
type (in
R)

Default value

–input_tsv_loc File path to input mutation table in
correct format

Character Please specify

–out_dir File path to desired output directory Character Please specify

–prefix Tumour identifier prefix Character Please specify

–ccf_buffer PhyloCCF buffer allowance for testing
tree level issue

Integer 10

–pval_cutoff P-value cut off for testing tree level
issue

Double 0.01

–use_boot Should bootstrapping be used to
compute confidence intervals?

Logical TRUE

–merge_clusters Should similar clusters be merged if
possible?

Logical TRUE

–correct_cpn_clusters Should clusters driven by copy number
errors be removed?

Logical TRUE

–adjust_noisy_cluster s Should noisy clusters be adjusted? Logical FALSE

–adjust_noisy_cluster
s_prop

What is the minimum proportion of
mutations required to be present in a
sample to avoid cluster adjustment?

Double 0.05

–min_ccf What is the minimum CCF threshold to
consider a mutation as present in a
sample?

Double 0.01

–min_cluster_size What is the minimum number of
mutations required in a cluster to be
included in analysis?

Integer 5

–multi_trees Should alternative plausible tumour
phylogenies be explored?

Logical TRUE

Wrapper script filename: run_treebuilding.R.

! CRITICAL STEP. NOTE: CONIPHER tree building implements its own cluster merging process

in addition to cluster merging in the CONIPHER clustering stage (Supplementary Methods 2). By

default similar clusters are merged if possible (merge_clusters==TRUE) and bootstrapped

confidence intervals are used (use_boot==TRUE). These settings are recommended.

! CRITICAL STEP. If running tree building only, it is required that all columns in the input file

${inputTSV} are present. NOTE: if an alternative clustering method is used, which does not

output an estimate of PhyloCCF as well as observed CCF per mutation, the column CCF_PHYLO

should be manually added to the input table, with identical entries to column CCF_OBS.

Box 2: ANTICIPATED TREE BUILDING OUTPUT

Running the tree building stage will output the following files in patient-specific directory

“${CASE_ID}/Trees/”:

OUTPUT DATA:

● allTrees.txt. This is a text file containing all potential inferred phylogenetic trees, in

the format below. This file can be parsed into any scripting language for further analysis.

11 trees
tree 1
2 1
8 3
21 4
1 5
…
tree 2
2 8
8 21
2 1
17 20
…

The first row of the file indicates how many alternative phylogenies were detected by the

tree building algorithm. Each alternative tumour phylogeny number X begins with a

header: # tree X. For each tree, each new row of allTrees.txt is a tree branch, or

edge, connecting a pair of distinct clusters. The first column indicates the parental node;

the second column indicates the child node.

! CRITICAL. Tree number 1 (# tree 1) always refers to the default tree generated by

the tree building algorithm.

● alternativeTreeMetrics.txt. This is a tab-delimited text file containing summary

metrics of all alternative phylogenetic trees, whereby each row of the table indicates one

alternative tree (treeID).

treeID sum_condition_error SCE_ranking lowest_SCE edge_probability_score
 edge_probability_ranking highest_edge_probability
1 2.46 1 Lowest SCE tree -13.8 1 Highest edge probability tree
2 2.67 2 Alternative tree -13.8 1 Highest edge probability tree
3 2.85 4 Alternative tree -28.2 6 Alternative tree
4 3.19 8 Alternative tree -17.1 3 Alternative tree
5 2.8 3 Alternative tree -18.3 5 Alternative tree

6 3.09 6 Alternative tree -14.9 2 Alternative tree
7 3.47 11 Alternative tree -17.1 3 Alternative tree
8 3.05 5 Alternative tree -18.3 5 Alternative tree
9 3.36 9 Alternative tree -14.9 2 Alternative tree
10 3.47 10 Alternative tree -18.2 4 Alternative tree
11 3.19 7 Alternative tree -18.2 4 Alternative tree

The treeID column value directly corresponds to the alternative tree number in the full

alternative tree list allTrees.txt. The second column sum_condition_error gives the

sum condition error value for that tree, and subsequent column SCE_ranking is an ordering of

the trees from lowest error (SCE_ranking==1) to highest. Correspondingly, lowest_SCE is a

binary flag to indicate whether this tree had the lowest error (‘Lowest SCE tree’) or not

(‘Alternative tree’). Similarly, the fourth column edge_probability_score gives the

edge probability score for that tree, and subsequent column edge_probability_ranking is

an ordering of the trees from highest edge probability (edge_probability_ranking==1) to

lowest. Column highest_edge_probability is a binary flag to indicate whether this tree had

the maximal edge probability score (‘Highest edge probability tree’) or not

(‘Alternative tree’). Any ties within either SCE_ranking or

edge_probability_ranking are labelled with the same rank.

● clusterInfo.txt. This is a tab-delimited text file containing a table detailing

information about each mutation cluster, whereby each row of the table indicates one

cluster (clusterID) in one tumour sample (SAMPLE), as shown below.

clusterID truncal treeClust cpnRemClust nMuts SAMPLE meanCCF CCF_CI_low
 CCF_CI_high clonality clone_proportions_default

1 FALSE TRUE FALSE 174 CRUK0063_SU_T1.R3 0 0 0 absent 0

1 FALSE TRUE FALSE 174 CRUK0063_SU_T1.R4 99 96.4 102 clonal 0

1 FALSE TRUE FALSE 174 CRUK0063_SU_T1.R5 99 96.9 101 clonal 0

1 FALSE TRUE FALSE 174 CRUK0063_SU_T1.R6 98 95 100 clonal 28

1 FALSE TRUE FALSE 174 CRUK0063_SU_T1.R7 100 96.5 103 clonal 0

1 FALSE TRUE FALSE 174 CRUK0063_SU_FLN1 103 99.2 107 clonal 0

1 FALSE TRUE FALSE 174 CRUK0063_BR_T1.R1 0 0 0 absent 0

2 TRUE TRUE FALSE 91 CRUK0063_SU_T1.R3 101 95.3 106 clonal 0

The cluster name in clusterID matches the cluster names input into tree building (in either

<CASE_ID>.SCoutput.CLEAN.tsv or input.tsv). The second column truncal indicates

whether this cluster was assigned to be the truncal cluster of the phylogenetic tree. Only one

unique cluster will be assigned to be truncal. The third column treeClust indicates whether the

cluster was assigned to a branch of the phylogenetic tree (treeClust==TRUE). If a cluster was

identified as erroneous due to being composed of biologically implausible mutations only, column

treeClust will have a value of FALSE. If the cluster was identified as erroneous due to subclonal

copy number alterations undetected during clustering, column treeClust will have a value of

FALSE and cpnRemClust will have a value of TRUE. Column nMuts describes the number of

SNVs assigned to that cluster. The columns meanCCF, CCF_CI_low, and CCF_CI_high

describe the distribution of PhyloCCF values for all mutations in that clusterID in that SAMPLE.

Column clonality describes whether that clusterID in that SAMPLE was classified as being

either: absent, subclonal or clonal within that sample (Supplementary Methods 2). Finally, column

clone_proportions_default describes the subclone proportion of that clusterID in that

SAMPLE, computed from the default phylogenetic tree (tree 1).

● cloneProportionsMinErrorTrees.txt. This is a tab-delimited text file containing

subclone proportion tables in long format from only phylogenetic trees with the lowest

SCE. Each row corresponds to one clusterID from one treeID. In example

CRUK0063 below, the lowest SCE tree was the default tree (tree 1). Values in the table

indicate the subclone proportion of the subclone resulting from that clusterID within

that sampled tumour sample (column). For each treeID, columns should sum to 100.

CRUK0063_SU_T1.R3 CRUK0063_SU_T1.R4 CRUK0063_SU_T1.R5 CRUK0063_SU_T1.R6 CRUK0063_SU_T1.R7 CRUK0063_SU_FLN1
 CRUK0063_BR_T1.R1 clusterID treeID

0 0 0 28 0 0 0 1 1

0 0 0 0 0 0 0 2 1

6.65 0 0 0 0 0 0 3 1

0 0 0 0 0 0 38 4 1

0 0 0 0 0 5.92 0 5 1

0 25 0 27 25 0 0 6 1

0 0 0 23 1 0 0 7 1

0 0 0 0 0 0 0 8 1

57 0 0 0 0 0 0 9 1

17 0 0 0 0 0 0 10 1

0 0 0 0 0 0 37 11 1

0 6.68 11.5 0 0 0 0 12 1

0 0 0 0 0 0 13 15 1

0 0 0 0 0 0 12 16 1

0 17.8 0 0 18.3 0 0 17 1

0 0 0 0 0 33.1 0 18 1

0 0 0 0 0 61 0 19 1

0 0 25.5 0 0 0 0 20 1

19.4 0 0 0 0 0 0 21 1

0 0 14 0 27 0 0 22 1

0 50.5 0 22 28.7 0 0 23 1

0 0 49 0 0 0 0 24 1

● subclonalExpansionScoreMinErrorTrees.txt. This is a tab-delimited text file

containing subclonal expansion scores (column subclonal_expansion_score) for each

tumour sample (column sample) computed from the phylogenetic tree(s) with the lowest

SCE (column treeID). The subclonal expansion score is computed as the maximum

PhyloCCF of all terminal (leaf) nodes present in that tumour sample. NOTE: for multi-sample

tumour cases, there may exist a sample with no terminal node present, in which case the

subclonal expansion score for this sample is set to 0. The tumour level subclonal expansion

score is taken as the maximum subclonal expansion score across tumour samples.

sample subclonal_expansion_score subclonal_expansion_score_tumour treeID

CRUK0063_SU_T1.R3 0.568 0.619 1

CRUK0063_SU_T1.R4 0.509 0.619 1

CRUK0063_SU_T1.R5 0.493 0.619 1

CRUK0063_SU_T1.R6 0.505 0.619 1

CRUK0063_SU_T1.R7 0.619 0.619 1

CRUK0063_SU_FLN1 0.613 0.619 1

CRUK0063_BR_T1.R1 0.366 0.619 1

● consensusBranches.txt. This is a text file containing all branches (parent-child pairs)

of the phylogenetic tree that were identified to be present across all alternative

phylogenies, as shown in example CRUK0063 below. First column: parent node; second

column: child node.

1 18

1 5

10 9

12 6

…

● consensusRelationships.txt. This is a text file containing all ancestor-descendent

pairs that were identified to be present across all alternative phylogenies, as shown in

example CRUK0063 below. First column: ancestral node; second column: descendent

node.

1 12

1 17

1 18

1 19

…

● treeTable.tsv. This is a tab-separated mutation table in the format of input.tsv,

except with extra columns: originalCLUSTER and treeCLUSTER. originalCLUSTER

indicates the cluster ID this mutation was assigned to in the clustering stage (and will

correspond to column CLUSTER in the input.tsv to the tree building stage).

treeCLUSTER indicates the final cluster name the mutation is assigned to after

treebuilding. Note: originalCLUSTER and treeCLUSTER are identical, except in cases

of cluster merging (Supplementary Methods 2).

CASE_ID SAMPLE CHR POS REF ALT REF_COUNT VAR_COUNT DEPTH COPY_NUMBER_A
 COPY_NUMBER_B ACF PLOIDY MUT_COPY CCF_PHYLO CCF_OBS originalCLUSTER
 treeCLUSTER

CRUK0063 CRUK0063_SU_T1.R3 1 1854811 C G 222 0 222 2
 1 0.12 3 0 0 0 1 1

Commented [9]: The spacing between the columns here
is uneven. Please confirm that this is how you want it to
be reproduced, otherwise, please adjust the spacing.

Commented [10]: This is because it's a tab separated
table copied in, with column names that are different
lengths. Is there a way to get the spacing to be
consistent?

CRUK0063 CRUK0063_SU_T1.R3 1 2525963 - A 301 2 303 2
 1 0.12 3 0.14 0 0.11 4 4

CRUK0063 CRUK0063_SU_T1.R3 1 6311357 A G 473 46 519 2
 1 0.12 3 1.54 0.833 1 2 2

CRUK0063 CRUK0063_SU_T1.R3 1 11845281 G C 287 0 287 2
 1 0.12 3 0 0 0 1 1

CRUK0063 CRUK0063_SU_T1.R3 1 19683908 G C 133 0 133 2
 1 0.12 3 0 0 0 1 1

CRUK0063 CRUK0063_SU_T1.R3 1 24082766 C T 145 0 146 2
 1 0.12 3 0 0 0 1 1

CRUK0063 CRUK0063_SU_T1.R3 1 25784848 - T 458 0 458 2
 1 0.12 3 0 0 0 1 1

CRUK0063 CRUK0063_SU_T1.R3 1 27105550 C T 312 4 316 2
 1 0.12 3 0.219 0.219 0.22 21 21

OUTPUT PLOTS:

● pytree_and_bar.pdf. The left side of the output shows a barplot of the mean estimated

PhyloCCF values of each mutation cluster (rows) in each sample (columns), with a

bootstrap computed 95% confidence interval (Figure 1, Supplementary Methods 2). If the

cluster was classified as ‘clonal’ within that tumour sample, the corresponding bar has a

black outline (for example, bars for truncal cluster 2 have a black box in every tumour

sample). The right hand side of the figure shows the inferred default phylogenetic tree.

Each node pie chart corresponds to the same mutation cluster shown in the barplot,

whereby each piece of the pie corresponds to a tumour sample sampled and is shaded

by the mean PhyloCCF of that mutation cluster in that sample. The numbers of mutations

per cluster are shown, as well as clusters identified as comprising erroneous mutations

and removed (right side). If copy number driven clusters are removed, these are indicated

on the right-hand side in the middle. Tree removed clusters are indicated on the bottom

right-hand side. Tree branches that are black indicate this branch is a consensus branch

and was found to be present in all alternative phylogenies. Grey branches indicate non-

consensus branches. An example is shown in Figure 6.

● pytree_multipletrees.pdf displays all alternative phylogenetic trees identified in

the tree building procedure. Black branches indicate consensus branches and grey

branches indicate non-consensus branches. An example is shown in Figure 7.

[Production: end of Box 2]

?TROUBLESHOOTING

A troubleshooting table is provided (Table 5)..

Table 5. Troubleshooting.

Procedure Step Problem Possible Reason Possible Solution

Step 3 | Clustering Error message:
‘Sample IDs do not
match between
input_tsv and
input_seg_tsv’

This means that the
sample ID character
strings do not match in the
two input files.
input_tsv and
input_seg_tsv’

Ensure the sample
identifiers in the
input_seg.tsv file are
identical to the sample
identifiers in the
input.tsv file.

Step 4 | Tree building Error message:
’No prefix
specified. Please
indicate a prefix
for the current
tumour case.’

This means no tumour
sample prefix was
specified when running
the tree building wrapper.

To fix the error, indicate a
character string that
represents the tumour
case prefix using flag --
prefix when running
the tree building stage
from command line.

Step 4 | Tree building Error message:
‘Incorrect prefix
specified. Please
input the correct
prefix for the
current tumour
case.’

This means a prefix was
specified that does not
match a string within the
values in the CASE_ID or
SAMPLE columns in the
input table.

To fix the error, input the
correct prefix using flag --
prefix.

Timing

Step 1, Data preprocessing: 5 min

Step 2, Data preprocessing (optional): 5 min

Step 3, Mutation clustering: 10 min - 6 hrs

Step 4, Phylogenetic tree building: 1 min - 1 hrs

We report average time to run CONIPHER mutation clustering and tree building stages on

simulated tumours with varying numbers of samples and clones in Supplementary Note 4. For

tumours with a large number of samples or mutations run time may be longer.

Commented [11]: This Note is called out of sequence.
Please either include an earlier citation (before Note 2),
or renumber you Notes. Alternatively, given that the
note is essentially just a citation to Supplementary
Table 1, you could remove the note entirely and just
keep the table (although this would still need the
remaining notes to be renumbered).

Commented [12]: Thanks, we have updated this - see
response to comment above

ANTICIPATED RESULTS

A successful completion of the procedure results in, at least, the following output files:

CLUSTERING STAGE:

● <CASE_ID>.SCoutput.CLEAN.tsv

● <CASE_ID>.removed.muts.txt (if mutations were removed)

● <CASE_ID>.pyclone_cluster_assignment_copynumber_clean.pdf

● <CASE_ID>.removedCPN.muts.pdf (if mutations were removed)

● <CASE_ID>.heatmap.pdf

● <CASE_ID>.cluster.ccf.heatmap.pdf

● <CASE_ID>.pyclone_cluster_assignment_phylo_clean.pdf

TREEBUILDING STAGE:

● allTrees.txt

● alternativeTreeMetrics.txt

● cloneProportionsMinErrorTrees.txt

● clusterInfo.txt

● cloneProportionsMinErrorTrees.txt

● subclonalExpansionScoreMinErrorTrees.txt

● consensusBranches.txt

● consensusRelationships.txt

● treeTable.tsv

● pytree_and_bar.pdf

● pytree_multipletrees.pdf

A detailed description of the anticipated output files for clustering is given in Box 1 and Figure 5

and for tree building in Box 2 and Figures 6 and 7. Additional files produced during the Procedure

are listed in Supplementary Note 3.

Code availability

Code to run the CONIPHER clustering and tree building wrapper functions can be found with

documentation and run examples on the Github page

https://github.com/McGranahanLab/CONIPHER-wrapper. The source code for the CONIPHER R

package can be found on the Github page https://github.com/McGranahanLab/CONIPHER. The

simulation framework can be found on the Github page https://github.com/zaccaria-

lab/TRACERx_simulation_tool.

Data access statement

The Whole Exome Sequencing data (from the TRACERx study) used during this study has been

deposited at the European Genome–phenome Archive (EGA), which is hosted by The European

Bioinformatics Institute (EBI) and the Centre for Genomic Regulation (CRG) under the accession

codes EGAS00001006494; access is controlled by the TRACERx data access committee. Details

on how to apply for access are available on the linked page.

Acknowledgements

The TRACERx study (Clinicaltrials.gov no: NCT01888601) is sponsored by University College

London (UCL/12/0279) and has been approved by an independent Research Ethics Committee

(13/LO/1546). TRACERx is funded by Cancer Research UK (C11496/A17786) and coordinated

through the Cancer Research UK and UCL Cancer Trials Centre which has a core grant from

CRUK (C444/A15953). We gratefully acknowledge the patients and relatives who participated in

the TRACERx study. We thank all site personnel, investigators, funders and industry partners that

Commented [13]: Many thanks for the suggestion. We
think the most convenient way for people to download
the package and stay up to date with the latest version
of CONIPHER is by hosting the code on GitHub.
However we are looking into how we can get citable link
of the current release version. Would it be ok to update
this during the proof stage?

Commented [14]: Adding citations during proofing could
be a problem if it means adding to the reference list (in
case this requires renumbering references). If you
cannot get a citable link, what you have here is good.

Commented [15]: If this is ok, then we would prefer to
keep the github link as the main source of package
installation/usage. Thanks

https://github.com/McGranahanLab/CONIPHER-wrapper
https://github.com/McGranahanLab/CONIPHER
https://github.com/zaccaria-lab/TRACERx_simulation_tool
https://github.com/zaccaria-lab/TRACERx_simulation_tool
http://clinicaltrials.gov/

supported the generation of the data within this study.

This work was supported by the Francis Crick Institute that receives its core funding from Cancer

Research UK (CC2041), the UK Medical Research Council (CC2041), and the Wellcome Trust

(CC2041). This work was also supported by the Cancer Research UK Lung Cancer Centre of

Excellence, the CRUK City of London Centre Award (C7893/A26233) and the UCL Experimental

Cancer Research Centre.

Author contributions
K.G., A.H., E.C., A.M.F., K.T., N.J.B. and N.M. helped develop the protocol and wrote the

manuscript. A.B. and S.Z. created the simulations, performed the benchmarking and wrote the

manuscript. M.S.H. helped with bioinformatics pipeline development. C.S., S.Z. and N.M. jointly

designed and supervised the study and helped write the manuscript.

Competing interests

A.M.F. is co-inventor to a patent application to determine methods and systems for tumour

monitoring (PCT/EP2022/077987).

N.J.B. is a co-inventor to a patent to identify responders to cancer treatment

(PCT/GB2018/051912).

C.S. acknowledges grant support from AstraZeneca, Boehringer-Ingelheim, Bristol Myers Squibb,

Pfizer, Roche-Ventana, Invitae (previously Archer Dx Inc - collaboration in minimal residual

disease sequencing technologies), and Ono Pharmaceutical. He is an AstraZeneca Advisory

Board member and Chief Investigator for the AZ MeRmaiD 1 and 2 clinical trials and is also Co-

Chief Investigator of the NHS Galleri trial funded by GRAIL and a paid member of GRAIL’s

Scientific Advisory Board. He receives consultant fees from Achilles Therapeutics (also SAB

member), Bicycle Therapeutics (also a SAB member), Genentech, Medicxi, Roche Innovation

Centre – Shanghai, Metabomed (until July 2022), and the Sarah Cannon Research Institute. ad

stock options in Apogen Biotechnologies and GRAIL until June 2021, and currently has stock

options in Epic Bioscience, Bicycle Therapeutics, and has stock options and is co-founder of

Achilles Therapeutics. C.S. holds patents relating to assay technology to detect tumour

recurrence (PCT/GB2017/053289); to targeting neoantigens (PCT/EP2016/059401),

identifying patent response to immune checkpoint blockade (PCT/EP2016/071471), determining

HLA LOH (PCT/GB2018/052004), predicting survival rates of patients with cancer

(PCT/GB2020/050221), identifying patients who respond to cancer treatment

(PCT/GB2018/051912), US patent relating to detecting tumour mutations (PCT/US2017/28013),

methods for lung cancer detection (US20190106751A1) and both a European and US patent

related to identifying insertion/deletion mutation targets (PCT/GB2018/051892) and is co-inventor

to a patent application to determine methods and systems for tumour monitoring

(PCT/EP2022/077987).

N.M. has received consultancy fees and has stock options in Achilles Therapeutics. N.M. holds

European patents relating to targeting neoantigens (PCT/EP2016/ 059401), identifying patient

response to immune checkpoint blockade (PCT/ EP2016/071471), determining HLA LOH

(PCT/GB2018/052004), predicting survival rates of patients with cancer (PCT/GB2020/050221).

References

1. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

2. Jamal-Hanjani, M. et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. N. Engl. J. Med.

376, 2109–2121 (2017).

3. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma.

Nat. Genet. 38, 468–473 (2006).

4. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

5. Frankell, A. M. et al. The evolution of lung cancer and impact of subclonal selection in

TRACERx. Nature 616, 525–533 (2023).

6. Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer

http://paperpile.com/b/Ze1jHv/FA65w
http://paperpile.com/b/Ze1jHv/FA65w
http://paperpile.com/b/Ze1jHv/FA65w
http://paperpile.com/b/Ze1jHv/FA65w
http://paperpile.com/b/Ze1jHv/FA65w
http://paperpile.com/b/Ze1jHv/oSMUQ
http://paperpile.com/b/Ze1jHv/oSMUQ
http://paperpile.com/b/Ze1jHv/oSMUQ
http://paperpile.com/b/Ze1jHv/oSMUQ
http://paperpile.com/b/Ze1jHv/oSMUQ
http://paperpile.com/b/Ze1jHv/oSMUQ
http://paperpile.com/b/Ze1jHv/oSMUQ
http://paperpile.com/b/Ze1jHv/oSMUQ
http://paperpile.com/b/Ze1jHv/tMBgh
http://paperpile.com/b/Ze1jHv/tMBgh
http://paperpile.com/b/Ze1jHv/tMBgh
http://paperpile.com/b/Ze1jHv/tMBgh
http://paperpile.com/b/Ze1jHv/tMBgh
http://paperpile.com/b/Ze1jHv/tMBgh
http://paperpile.com/b/Ze1jHv/tMBgh
http://paperpile.com/b/Ze1jHv/tMBgh
http://paperpile.com/b/Ze1jHv/x35cR
http://paperpile.com/b/Ze1jHv/x35cR
http://paperpile.com/b/Ze1jHv/x35cR
http://paperpile.com/b/Ze1jHv/x35cR
http://paperpile.com/b/Ze1jHv/x35cR
http://paperpile.com/b/Ze1jHv/x35cR
http://paperpile.com/b/Ze1jHv/x35cR
http://paperpile.com/b/Ze1jHv/OTnVq
http://paperpile.com/b/Ze1jHv/OTnVq
http://paperpile.com/b/Ze1jHv/OTnVq
http://paperpile.com/b/Ze1jHv/OTnVq
http://paperpile.com/b/Ze1jHv/OTnVq
http://paperpile.com/b/Ze1jHv/OTnVq
http://paperpile.com/b/Ze1jHv/OTnVq
http://paperpile.com/b/Ze1jHv/OTnVq
http://paperpile.com/b/Ze1jHv/nN4zx
http://paperpile.com/b/Ze1jHv/nN4zx
http://paperpile.com/b/Ze1jHv/nN4zx

genomes. Cell 184, 2239–2254.e39 (2021).

7. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat.

Methods 11, 396–398 (2014).

8. Satas, G., Zaccaria, S., El-Kebir, M. & Raphael, B. J. DeCiFering the Elusive Cancer Cell

Fraction in Tumor Heterogeneity and Evolution. bioRxiv 2021.02.27.429196 (2021).

9. Satas, G. & Raphael, B. J. Tumor phylogeny inference using tree-constrained importance

sampling. Bioinformatics 33, i152–i160 (2017).

10. Deshwar, A. G. et al. PhyloWGS: reconstructing subclonal composition and evolution from

whole-genome sequencing of tumors. Genome Biol. 16, 35 (2015).

11. Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of Reconstructing the Subclonal

Architecture of Cancers. Cold Spring Harb. Perspect. Med. 7, (2017).

12. Tarabichi, M. et al. A practical guide to cancer subclonal reconstruction from DNA sequencing.

Nat. Methods 18, 144–155 (2021).

13. Malikic, S., McPherson, A. W., Donmez, N. & Sahinalp, C. S. Clonality inference in multiple

tumor samples using phylogeny. Bioinformatics 31, 1349–1356 (2015).

14. El-Kebir, M., Oesper, L., Acheson-Field, H. & Raphael, B. J. Reconstruction of clonal trees and

tumor composition from multi-sample sequencing data. Bioinformatics 31, i62–70 (2015).

15. Popic, V. et al. Fast and scalable inference of multi-sample cancer lineages. Genome Biol. 16,

91 (2015).

16. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520,

353–357 (2015).

17. Al Bakir, M. et al. The evolution of non-small cell lung cancer metastases in TRACERx. Nature

616, 534–542 (2023).

18. Martínez-Ruiz, C. et al. Genomic-transcriptomic evolution in lung cancer and metastasis. Nature

616, 543–552 (2023).

19. Benjamin, D. et al. Calling Somatic SNVs and Indels with Mutect2. bioRxiv 861054 (2019)

doi:10.1101/861054.

20. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in

http://paperpile.com/b/Ze1jHv/nN4zx
http://paperpile.com/b/Ze1jHv/nN4zx
http://paperpile.com/b/Ze1jHv/nN4zx
http://paperpile.com/b/Ze1jHv/nN4zx
http://paperpile.com/b/Ze1jHv/nN4zx
http://paperpile.com/b/Ze1jHv/HQEQ9
http://paperpile.com/b/Ze1jHv/HQEQ9
http://paperpile.com/b/Ze1jHv/HQEQ9
http://paperpile.com/b/Ze1jHv/HQEQ9
http://paperpile.com/b/Ze1jHv/HQEQ9
http://paperpile.com/b/Ze1jHv/HQEQ9
http://paperpile.com/b/Ze1jHv/HQEQ9
http://paperpile.com/b/Ze1jHv/HQEQ9
http://paperpile.com/b/Ze1jHv/s3Mn0
http://paperpile.com/b/Ze1jHv/s3Mn0
http://paperpile.com/b/Ze1jHv/s3Mn0
http://paperpile.com/b/Ze1jHv/s3Mn0
http://paperpile.com/b/Ze1jHv/f8o1f
http://paperpile.com/b/Ze1jHv/f8o1f
http://paperpile.com/b/Ze1jHv/f8o1f
http://paperpile.com/b/Ze1jHv/f8o1f
http://paperpile.com/b/Ze1jHv/f8o1f
http://paperpile.com/b/Ze1jHv/f8o1f
http://paperpile.com/b/Ze1jHv/sSa1p
http://paperpile.com/b/Ze1jHv/sSa1p
http://paperpile.com/b/Ze1jHv/sSa1p
http://paperpile.com/b/Ze1jHv/sSa1p
http://paperpile.com/b/Ze1jHv/sSa1p
http://paperpile.com/b/Ze1jHv/sSa1p
http://paperpile.com/b/Ze1jHv/sSa1p
http://paperpile.com/b/Ze1jHv/sSa1p
http://paperpile.com/b/Ze1jHv/YIOUM
http://paperpile.com/b/Ze1jHv/YIOUM
http://paperpile.com/b/Ze1jHv/YIOUM
http://paperpile.com/b/Ze1jHv/YIOUM
http://paperpile.com/b/Ze1jHv/YIOUM
http://paperpile.com/b/Ze1jHv/YIOUM
http://paperpile.com/b/Ze1jHv/dyIzW
http://paperpile.com/b/Ze1jHv/dyIzW
http://paperpile.com/b/Ze1jHv/dyIzW
http://paperpile.com/b/Ze1jHv/dyIzW
http://paperpile.com/b/Ze1jHv/dyIzW
http://paperpile.com/b/Ze1jHv/dyIzW
http://paperpile.com/b/Ze1jHv/dyIzW
http://paperpile.com/b/Ze1jHv/dyIzW
http://paperpile.com/b/Ze1jHv/wa1CD
http://paperpile.com/b/Ze1jHv/wa1CD
http://paperpile.com/b/Ze1jHv/wa1CD
http://paperpile.com/b/Ze1jHv/wa1CD
http://paperpile.com/b/Ze1jHv/wa1CD
http://paperpile.com/b/Ze1jHv/wa1CD
http://paperpile.com/b/Ze1jHv/nTnXB
http://paperpile.com/b/Ze1jHv/nTnXB
http://paperpile.com/b/Ze1jHv/nTnXB
http://paperpile.com/b/Ze1jHv/nTnXB
http://paperpile.com/b/Ze1jHv/nTnXB
http://paperpile.com/b/Ze1jHv/nTnXB
http://paperpile.com/b/Ze1jHv/wZKlU
http://paperpile.com/b/Ze1jHv/wZKlU
http://paperpile.com/b/Ze1jHv/wZKlU
http://paperpile.com/b/Ze1jHv/wZKlU
http://paperpile.com/b/Ze1jHv/wZKlU
http://paperpile.com/b/Ze1jHv/wZKlU
http://paperpile.com/b/Ze1jHv/wZKlU
http://paperpile.com/b/Ze1jHv/wZKlU
http://paperpile.com/b/Ze1jHv/FMNyO
http://paperpile.com/b/Ze1jHv/FMNyO
http://paperpile.com/b/Ze1jHv/FMNyO
http://paperpile.com/b/Ze1jHv/FMNyO
http://paperpile.com/b/Ze1jHv/FMNyO
http://paperpile.com/b/Ze1jHv/FMNyO
http://paperpile.com/b/Ze1jHv/FMNyO
http://paperpile.com/b/Ze1jHv/FMNyO
http://paperpile.com/b/Ze1jHv/WMNiq
http://paperpile.com/b/Ze1jHv/WMNiq
http://paperpile.com/b/Ze1jHv/WMNiq
http://paperpile.com/b/Ze1jHv/WMNiq
http://paperpile.com/b/Ze1jHv/WMNiq
http://paperpile.com/b/Ze1jHv/WMNiq
http://paperpile.com/b/Ze1jHv/WMNiq
http://paperpile.com/b/Ze1jHv/WMNiq
http://paperpile.com/b/Ze1jHv/uwjYg
http://paperpile.com/b/Ze1jHv/uwjYg
http://paperpile.com/b/Ze1jHv/uwjYg
http://paperpile.com/b/Ze1jHv/uwjYg
http://paperpile.com/b/Ze1jHv/uwjYg
http://paperpile.com/b/Ze1jHv/uwjYg
http://paperpile.com/b/Ze1jHv/uwjYg
http://paperpile.com/b/Ze1jHv/uwjYg
http://paperpile.com/b/Ze1jHv/n7cfL
http://paperpile.com/b/Ze1jHv/n7cfL
http://paperpile.com/b/Ze1jHv/n7cfL
http://paperpile.com/b/Ze1jHv/n7cfL
http://paperpile.com/b/Ze1jHv/n7cfL
http://paperpile.com/b/Ze1jHv/n7cfL
http://dx.doi.org/10.1101/861054
http://paperpile.com/b/Ze1jHv/n7cfL
http://paperpile.com/b/Ze1jHv/mupKy
http://paperpile.com/b/Ze1jHv/mupKy
http://paperpile.com/b/Ze1jHv/mupKy

cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

21. Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl. Acad. Sci. U. S. A.

107, 16910–16915 (2010).

22. Zaccaria, S. & Raphael, B. J. Accurate quantification of copy-number aberrations and whole-

genome duplications in multi-sample tumor sequencing data. Nat. Commun. 11, 4301 (2020).

23. Favero, F. et al. Sequenza: allele-specific copy number and mutation profiles from tumor

sequencing data. Ann. Oncol. 26, 64–70 (2015).

24. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

25. Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer

genomes. Cell 184, 2239–2254.e39 (2021).

26. Myers, M. A., Satas, G. & Raphael, B. J. CALDER: Inferring Phylogenetic Trees from

Longitudinal Tumor Samples. Cell Syst 8, 514–522.e5 (2019).

27. Wintersinger, J. A. et al. Reconstructing Complex Cancer Evolutionary Histories from Multiple

Bulk DNA Samples Using Pairtree. Blood Cancer Discov 3, 208–219 (2022).

Figure Legends

Figure 1. Overview of the CONIPHER clustering and tree building methods. a. Minor
subclonal copy number alterations affecting the locus of mutations are corrected for, e.g. a gain
affecting two mutations on chr3q of allele B (green line) in tumour sample S3. b. Mutations are
grouped based on presence/absence within each tumour sample. c. Dirichlet clustering7 is
performed separately on each group of mutations determined in the previous step. This returns
an estimate of the PhyloCCF of each mutation and its assigned cluster. d. Finally mutation copy
number post-processing is applied to correct for errors propagated through mutation clustering.
Clusters are removed if they are evidenced to be driven by copy number loss, and if subclonal
copy number correction has created an additional subclonal cluster, this subclonal cluster’s
mutation PhyloCCF values are un-corrected and merged with the most similar cluster. e. The
mean (bar plot, value) and 95% confidence intervals (black line) of the distribution of mutation
PhyloCCFs for each inferred mutation cluster in each sample are computed. The total number of
mutations per cluster are shown in brackets. Pie chart shading represents the mean CCF of that
cluster in each sample. f. For each pair of clusters, PhyloCCF distributions are compared using
two one-sided Wilcoxon tests, to test whether one cluster can be nested within the other. The
truncal cluster is defined as that cluster which can nest all other clusters. The chromosomal

Commented [16]: Regarding your supplementary
materials, currently you have your supplementary
figures and table embedded in your supplementary
methods and notes. Given that you have citations to
your supplementary figures in your main text, I think it
would be clearer if you separated them out eg the
supplementary materials should be presented in the
order: Methods, Notes, Figures, Table.

Commented [17]: Thanks, we have now moved the
supplementary figures to the end of the supplementary
materials, but kept the singular supplementary table in
place (in Supplementary Note, Section 4- Expected run
time).

http://paperpile.com/b/Ze1jHv/mupKy
http://paperpile.com/b/Ze1jHv/mupKy
http://paperpile.com/b/Ze1jHv/mupKy
http://paperpile.com/b/Ze1jHv/mupKy
http://paperpile.com/b/Ze1jHv/mupKy
http://paperpile.com/b/Ze1jHv/U8WB3
http://paperpile.com/b/Ze1jHv/U8WB3
http://paperpile.com/b/Ze1jHv/U8WB3
http://paperpile.com/b/Ze1jHv/U8WB3
http://paperpile.com/b/Ze1jHv/U8WB3
http://paperpile.com/b/Ze1jHv/U8WB3
http://paperpile.com/b/Ze1jHv/U8WB3
http://paperpile.com/b/Ze1jHv/U8WB3
http://paperpile.com/b/Ze1jHv/bjV1a
http://paperpile.com/b/Ze1jHv/bjV1a
http://paperpile.com/b/Ze1jHv/bjV1a
http://paperpile.com/b/Ze1jHv/bjV1a
http://paperpile.com/b/Ze1jHv/bjV1a
http://paperpile.com/b/Ze1jHv/bjV1a
http://paperpile.com/b/Ze1jHv/StLg2
http://paperpile.com/b/Ze1jHv/StLg2
http://paperpile.com/b/Ze1jHv/StLg2
http://paperpile.com/b/Ze1jHv/StLg2
http://paperpile.com/b/Ze1jHv/StLg2
http://paperpile.com/b/Ze1jHv/StLg2
http://paperpile.com/b/Ze1jHv/StLg2
http://paperpile.com/b/Ze1jHv/StLg2
http://paperpile.com/b/Ze1jHv/E48oO
http://paperpile.com/b/Ze1jHv/E48oO
http://paperpile.com/b/Ze1jHv/E48oO
http://paperpile.com/b/Ze1jHv/E48oO
http://paperpile.com/b/Ze1jHv/E48oO
http://paperpile.com/b/Ze1jHv/E48oO
http://paperpile.com/b/Ze1jHv/E48oO
http://paperpile.com/b/Ze1jHv/lFN0y
http://paperpile.com/b/Ze1jHv/lFN0y
http://paperpile.com/b/Ze1jHv/lFN0y
http://paperpile.com/b/Ze1jHv/lFN0y
http://paperpile.com/b/Ze1jHv/lFN0y
http://paperpile.com/b/Ze1jHv/lFN0y
http://paperpile.com/b/Ze1jHv/lFN0y
http://paperpile.com/b/Ze1jHv/lFN0y
http://paperpile.com/b/Ze1jHv/tavNX
http://paperpile.com/b/Ze1jHv/tavNX
http://paperpile.com/b/Ze1jHv/tavNX
http://paperpile.com/b/Ze1jHv/tavNX
http://paperpile.com/b/Ze1jHv/tavNX
http://paperpile.com/b/Ze1jHv/tavNX
http://paperpile.com/b/Ze1jHv/1FALo
http://paperpile.com/b/Ze1jHv/1FALo
http://paperpile.com/b/Ze1jHv/1FALo
http://paperpile.com/b/Ze1jHv/1FALo
http://paperpile.com/b/Ze1jHv/1FALo
http://paperpile.com/b/Ze1jHv/1FALo
http://paperpile.com/b/Ze1jHv/1FALo
http://paperpile.com/b/Ze1jHv/1FALo
https://paperpile.com/c/Ze1jHv/HQEQ9

distributions of all mutations in a cluster are checked and clusters are removed if all mutations are
localised, indicating a missed copy number alteration. All clusters are additionally tested against
the truncal cluster to determine cluster clonality in each tumour sample. This step returns a nesting
matrix and ancestral graph. g. The ancestral graph is pruned to create a phylogenetic tree
structure. Issue clusters that either (i) create cycles in the graph, or (ii) result in PhyloCCF values
that sum to more than the user-defined threshold per tree level are identified and removed, to
return a default phylogenetic tree. h. Clusters on the default tree are permuted to determine all
possible alternative trees that do not cause issues (i) or (ii). i. Alternative phylogenetic trees are
ranked according to two metrics, 1) trees generating the smallest amount of Sum Condition Error
(SCE) (average amount of CCF error generated at each tree level), and 2) trees with the highest
edge probability (trees comprising edges which appear most frequently across the solution space
of alternative trees). j. Subclone proportions based on each mutation cluster on the tree are
computed for the default tree and tree with lowest SCE.

Figure 2. Benchmarking CONIPHER against current state-of-the-art methods. The
performance of CONIPHER was evaluated against existing methods on 150 simulated tumours
(Simulated Dataset 1 – see Supplementary Methods 4). All existing methods were run using
default parameters. Three categories of simulations were generated with different numbers of
samples - low (2-3 samples), medium (4-7 samples), and high (>7 samples). a. CONIPHER
clustering performance is compared against PyClone using the mutation clustering Adjusted Rand
Index (ARI). b. CONIPHER tree building performance is compared against LICHeE, CITUP, and
Pairtree using mutation descendent accuracy. c. Scalability of combined CONIPHER clustering
and tree building is compared with LICHeE, CITUP, PhyloWGS and Pairtree. Bar plots indicate
the success status of simulations run in the time frame allowed (8 hours). Opaque coloured bars
indicate successfully completed simulations, transparent coloured bars indicate failed
simulations, and grey bars indicate simulations that did not complete execution within the set time.
d. Mutation presence precision is computed to compare presence/absence of mutations in
CONIPHER, LICHeE, CITUP, and Pairtree. e. Truncal sensitivity is computed for truncal
mutations to assess performance in the presence of mutation losses between CONIPHER,
LICHeE, CITUP, Pairtree, and Pairtree tree building run with CONIPHER clustering. f. Run
success of tree building methods based on the ground truth simulated clusters. g. Truncal
sensitivity computed from tree building methods run on the ground truth simulated clusters. h.
Detection of error-driven clusters is compared between CONIPHER, LICHeE, CITUP, and
Pairtree using noisy cluster sensitivity. The box plots represent the upper and lower quartiles (box
limits), the median (centre line) and the vertical bars span 1.5x the interquartile range).

Figure 3. Method workflow. CONIPHER is composed of two stages that are run sequentially:
mutation clustering and tree building. The tree building stage is compatible with other clustering
methods.

Figure 4. Example input table for clustering and tree building: input.tsv. The clustering stage
only considers the columns in the pink box. The tree building stage considers all columns in both
pink and green boxes. This toy tumour example CRUK0000 has two sequenced tumour samples
CRUK0000_R1 and CRUK0000_R2.

Figure 5. Example panels from CONIPHER clustering stage output. a. Panel of estimated
mutation copy number of each mutation from each cluster in one sample from
CRUK0063_pyclone_cluster_assignment_copynumber_clean.pdf. Mutations are coloured

Commented [18]: A few of your plots have error bars.
What do they represent? Similarly, what range do the
boxes in your box plots represent?

Commented [19]: Thanks, we have added this at the
end of the figure legend

according to their assigned cluster. The y-axis corresponds to the copy number, and the x-axis to
the position along the genome. b. Panel of estimated mutation copy number of every mutation
removed from the clustering stage in metastatic samples CRUK0063_BR_T1.R1 and
CRUK0063_SU_FLN1 from CRUK0063.removedCPN.muts.pdf. Mutations are coloured
according to their assigned cluster. The y-axis corresponds to the copy number, and the x-axis to
the position along the genome. c. Scatter plot comparing estimated PhyloCCF of all mutations in
two tumour samples CRUK0063_BR_T1.R1 and CRUK0063_SU_T1.R3 in
CRUK0063.pyclone_cluster_assignment_phylo_clean.pdf. Mutations are coloured by their
assigned cluster.

Figure 6. Example pytree_and_bar.pdf for case CRUK0063. This plot is produced in the tree
building stage, and contains the estimated PhyloCCF bar plots for each cluster in each tumour
sample (left), the inferred default tree structure (middle) and the number of mutations in each
cluster kept in the tree (right top) and removed from the tree (right bottom).

Figure 7. Example pytree_multipletrees.pdf for case CRUK0063. This output plot contains all
potential alternative phylogenetic trees inferred by CONIPHER in the tree building stage. The
alternative trees are plotted by row, i.e. the top left tree plot is alternative tree # 1 (the default
tree), to the right of this is alternative tree # 2, and so on.

