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Borrowing from the
palaeolimnologists toolkit; the
use of lake sediment cores in
diagnosing the causes of
freshwater species decline
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Stephen John Brooks3, Carl Derek Sayer2, Andrew Douse4

and Geoff Mark Hilton2

1Environmental Change Research Centre, Department of Geography, University College London,
London, United Kingdom, 2Conservation Evidence Department, Wildfowl & Wetlands Trust,
Gloucestershire, United Kingdom, 3Life Sciences, Natural History Museum, London, United Kingdom,
4NatureScot, Great Glen House, Inverness, United Kingdom
Populations of freshwater species are experiencing dramatic declines globally.

Tools that facilitate the diagnosis of decline and identify management solutions

and/or restoration targets are thus vital. Typically approaches taken to diagnose

decline are carried out over short timescales and rely upon identifying spatial

associations between presence or abundance of declining species and variables

hypothesised to be driving decline. The potential to contextualise observed

declines on longer time scales, with a broader range of potential explanatory

variables is frequently dismissed, because of a perceived lack of existing long-

term data. In this study we explore the value of incorporating a longer-term

perspective to decline diagnosis using the common scoter as a case study. The

number of scoter breeding in Scotland has declined substantially since the 1970s.

Hypotheses for decline include a reduction in macroinvertebrate food available

for females and young at the breeding lakes. In this study we apply

palaeolimnological techniques to generate standardised, long-term ecological

data, enabling us to characterise recent changes at four common scoter

breeding lakes. Our results demonstrate that the (macroinvertebrate) food

resource of common scoter has, in fact, gradually increased in abundance at

all four sites from ca. 1900, and that a further statistically significant increase in

macroinvertebrate abundance occurred at ca. 1970. We draw on our

palaeolimnological data, to explore alternative hypotheses for common scoter

decline. Increases in overall abundance across multiple algal, macrophyte and

macroinvertebrate taxa, combined with specific increases in nutrient tolerant

taxa, and concurrent declines in nutrient sensitive taxa indicate that the lakes

have experienced enrichment within their current oligotrophic state during the

last 100 years, and that this trajectory has become more marked during the

period of common scoter decline. There is no evidence of changes to habitat,

turbidity or increased competition from fish. In the absence of within lake

changes that could be detrimental to the benthic (and generalist) feeding
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common scoter, we conclude that factors outside of the lake, such as increased

predation, associated with afforestation in the surrounding area, are the most

plausible drivers of common scoter decline. Prioritisation/testing of

management solutions that address these issues are indicated.
KEYWORDS

species decline, freshwater, multidisciplinary, sediment cores, water bird,
palaeolimnology, afforestation, peatland lakes
Introduction

The restoration of threatened freshwater populations is a

conservation priority (Albert et al., 2021). Globally, the average

abundance of freshwater species has declined by 83% since 1970, far

outnumbering those in terrestrial and marine systems (WWF,

2020). Conservation action undertaken to conserve threatened

and diminishing populations relies upon diagnosis of the drivers

of decline, and identification of appropriate restoration strategies

(Caughley, 1994; Sayer et al., 2016b). Conventionally, approaches

used to diagnose species decline have focused on spatial associations

between species distributions and environmental variables that are

considered important (Peery et al., 2004). However, a limitation of

this approach is that associations do not equal causality. This can be

a particular concern for highly mobile species such as birds, where

responses to environmental variables can be driven by settlement

patterns rather than direct effects. For instance, in a declining

population, birds may prefer to settle in habitats with a

particularly favoured environmental characteristic – such as a

good food supply – creating an association with sites rich in food.

But the food supply might not be the limiting factor and might have

little direct effect on the demographic rates of the population.

One way of substantiating the findings from spatial based

associations is to undertake experimental manipulations and

measure (or model) demographic or behavioural responses (Norris,

2004), but this can be difficult and expensive (Peery et al., 2004). An

alternative is to add a temporal perspective and establish whether the

onset of decline is also temporally associated with a change in

environmental conditions. Not only does the identification of

temporal associations validate spatial associations, it also enables

the effects of spatially inseparable drivers to be separated, for example

where multiple pressures that may be acting upon a single or small

number of sites. Temporal data are of most value when species and

environmental data are of a high resolution, generated using

consistent methods and cover sufficiently long-time scales. The

addition of a temporal perspective, derived from long term

datasets, is commonly dismissed in species decline diagnoses as it is

believed that datasets covering both the temporal range, and the

necessary scope of physcio-chemical and biological variables do not

exist (Bonebrake et al., 2010; Mihoub et al., 2017). We argue that is a

misconception for freshwaters. Such data do exist, however they are

locked away in the natural archives of lake sediments, and require an

approach known as palaeolimnology to retrieve and interpret them
02
(Battarbee, 1999; Brooks et al., 2012; Gillson and Marchant, 2014;

Roberts et al., 2020). Palaeolimnological data are highly standardised,

and can cover a range of physico-chemical and biological variables,

for time periods ranging from tens to hundreds, or even thousands of

years (Willis et al., 2010). We advocate, using the example of the

common scoter (Melanitta nigra), that combining spatial and

temporal approaches can provide more robust evidence upon

which to base decline diagnosis.

The common scoter is a migratory seaduck that breeds close to

freshwater lakes in north Scotland. Whilst numbers remain stable in

other parts of the north European breeding range (Keller et al., 2020),

declines and site abandonment have occurred throughout Scotland

and Ireland since the 1970s and 80s, leading to the species being red

listed in the UK and Ireland (Stanbury et al., 2021). Common scoter

nest close to oligotrophic lakes (Balmer et al., 2013). Geolocator

studies in Scotland, Iceland and Norway have shown that common

scoters from a single breeding site disperse throughout the wintering

range, and are highly site faithful, using the same wintering grounds

in successive years and often returning to nest within a few hundred

metres of previous nest sites each year (I.K. Peterson pers. comm).

The stability of breeding populations in other parts of the range

(Keller et al., 2020; Petersen et al., 2021) suggests that the declines

observed in Scotland are a consequence of local, breeding ground

factors, rather than those associated with wintering grounds.

The breeding stronghold for common scoter in Scotland is the

Flow Country in North Scotland, where declines have occurred less

rapidly than at other sites (Gregory et al., 2002). An internationally

important peatland, the Flow Country extends over 440,000

hectares, and includes hundreds of small (between 1 and 3,371

ha, mean area of 40ha), predominantly acidic, oligotrophic lakes

(Underhill et al., 1998; SNH, 2001). Common scoter typically arrive

in the Flow Country from their marine wintering areas in April.

Groups of males and females initially move between lakes, before

pairing and mating, after which the majority of the males return to

the sea, whilst the females remain to nest and rear young. Common

scoter are diving ducks that feed on benthic invertebrates, from

marine environments during the winter and freshwater sources

during the breeding season (Cramp and Simmons, 1977; Fox et al.,

2003). Chironomids, trichoptera and ephemeroptera are all

important components of common scoter diet in freshwaters

(Bengtson, 1972; Kondratyev, 1999). Zooplankton, such as

cladocera and emerging diptera, such as chironomids, have been

shown to be a particularly important diet component for young
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birds before they are able to dive for sustained periods (Bengtson,

1971; Gardarsson and Einarsson, 1994; Fox, 2003; Gardarsson and

Einarsson, 2004). Anecdotal evidence suggests that females

breeding in the Flow Country continue to use multiple lakes for

feeding prior to hatching. However once hatched, the female and

her young are more reliant on a single, or smaller number of lakes

until the young have fledged.

Common scoter were first recorded in the Flow Country in the

1850s, with the breeding population in the area reaching its highest

numbers (55 pairs) between 1970 and 1980 (Underhill et al., 1998),

before experiencing substantial declines to fewer than 20 pairs by

2007 (Eaton et al., 2008). Although common scoter declines are well

documented in the Flow Country (Hancock, 1991; Underhill and

Hughes, 1996; Hancock and Avery, 1998; Cranswick, 1999), very

little data concerning changes in other environmental variables,

such as physico-chemical conditions within the lakes, nesting

habitat quality/quantity, predator numbers or macroinvertebrate

food availability, exist for the time-period of decline, and none as a

baseline for the period prior to that. What little data do exist are

typically a single survey of a single variable (Lindsay et al., 1988;

Coulson et al., 1995; Downie et al., 1998; NatureScot, 2014), and

therefore give no insight into temporal trends and/or natural levels

of variability. In 2009 a three-year study was commissioned which

examined associations between contemporary common scoter lake

use and a number of variables that were hypothesised as being

ecologically relevant to breeding common scoter (Hancock et al.,

2015). The key findings from this study were that i) female and

brood presence at a lake was significantly associated with the

abundance of large bodied macroinvertebrates, and ii) lakes with

a higher abundance of large bodied macroinvertebrates contain

more small fish (sticklebacks, Gasterosteus aculeatus) and fewer

larger fish (brown trout, Salmo trutta). Hypotheses for common

scoter decline were therefore refined to focus more specifically on a

possible lack in the macroinvertebrate food resource (Hancock

et al., 2020b).

This approach taken to diagnose the decline of the common

scoter in Scotland is not unusual, and therefore is an appropriate

case study for which we can examine the value of adding a temporal

perspective derived from palaeolimnological data.

Palaeolimnology is reliant on the sediments within a lake being

deposited in a time-depth sequence, remaining undisturbed until a

core is extracted intact for analysis (Smol, 2008). The number of

samples generated from a sediment core depends on the resolution

at which the core is sub-sampled. Each of these slices or samples

represent a time period, and can be analysed for a range of physico-

chemical and biological variables, depending on the hypothesis

under investigation. Physico-chemical variables such as dry weight,

wet density, organic matter content (loss-on-ignition, (LOI)) and

heavy metal content (determined by x-ray fluorescence (XRF)

analysis) along with radiometric dating techniques such as 210Pb

are used to establish that the time-depth sequence of the core is

intact -which is particularly important at shallow, wind stressed

sites, such as those used by common scoter in the Flow Country.

Biological remains in lake sediments can provide direct evidence

of community composition (by reconstructing species composition
Frontiers in Conservation Science 03
and abundance), and indirect indications of the physio-chemical

conditions (by complementing species composition and abundance

with known physio-chemical and ecological tolerances)(Smol et al.,

2001). Diatoms (Bacillariophyta) dominate freshwater algal

communities and leave robust siliceous valve remains in sediment

cores (Battarbee et al., 2001). Diatoms are well-studied, with distinct

ecological optima and tolerances, meaning species assemblages can be

used to reconstruct a range of chemical conditions including pH and

nutrient levels (Bennion et al., 2010; Jones, 2013). Macrofossil

analysis involves the examination of both macrophyte and

macroinvertebrate remains. Aquatic plants leave a variety of

identifiable remains, such as seeds, spores, leaves and fruits (Birks,

2002). Of the macroinvertebrate remains preserved in lake sediments,

chironomids and cladocera are perhaps the most well-established,

with known species level tolerances for a range of geochemical and

biological conditions. The abundance of other macroinvertebrate

groups, such as trichopera, ephemeroptera and coleoptera, can also

be determined by their chitinous remains and are also commonly

used in palaeolimnological research (Smol et al., 2001).

This study data from lake sediment cores is used to i) determine

the extent to which macroinvertebrate food availability has changed

at the lakes during, and prior to, the period of common scoter

declines, ii) reconstruct ecological and physico-chemical change at

the lakes since ca. 1900 and identify alternative hypothesise for

common scoter decline, and iii) assess the implications of findings

from i) and ii) for common scoter decline diagnosis and future

conservation management prioritisation.
Materials and methods

Site selection

The sites selected for use in this study were chosen based upon

several factors. Firstly, we identified lakes which had records of

common scoter. The four Flow Country lakes ultimately selected for

use in this study all had records of breeding common scoter since

coordinated monitoring began in the 1980s and ad-hoc records

prior to that. We then refined our list of sites by targeting those for

which contemporary ecological and physico-chemical data existed.

At 18 of these sites, we established the stratigraphic integrity of the

sediments within the lakes by taking short sediment cores and

carrying out geochemical analyses (Robson et al., 2019). This

analysis showed that, despite concerns about potential surface

sediment mixing in these shallow lakes, the stratigraphy (and

therefore the chronology) of the sediment in the lakes was intact.

The selection of our final four sites, Loch a’Mhuillinn (AMHU),

Loch nam Fear (FEAR), Loch Leir (LEIR), Loch Talaheel (TALA)

(Table 1), was based on the above in addition to logistical

accessibility and ability to represent a mixture of landcover

settings. Common scoter breeding numbers at all four study sites

have declined since the 1970s. Lakes AMHU and TALA have had

only intermittent records of single breeding common scoter 1980s,

whereas FEAR and LEIR have annual records of use by multiple

breeding birds during the same period.
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Fieldwork

Wide bore (8cm) sediment cores (Patmore et al., 2014) were

taken from the lakes using a bespoke piston corer in April 2016.

Cores, of between 32 and 47 cm in length, were taken from the

littoral zone of each lake (Table 2), and sliced at 0.5cm intervals into

sealed plastic bags in the field. Samples were then refrigerated and

stored in a cool box for transport back to the laboratory and cold

room storage.
Laboratory analysis -geochemical and
radiometric

There is potential for sediment resuspension and mixing in

shallow, wind stressed lakes, such as our study sites. To ensure cores

were not homogonised standard palaeolimnological approaches of

loss on ignition (Dean, 1974) and XRF (Boyle, 2001) were first

undertaken (see Supplementary Materials).

Radiometric dating (Appleby, 1997) of the cores was

undertaken at the Bloomsbury Environmental Isotope Facility

(BEIF) at University College London (UCL). The timescale

covered by each slice of the cores was established by measuring

naturally occurring lead-210 (210Pb) radionuclides in addition to

artificially produced Caesium-137 (137Cs) and Americium-241

(241Am) released by nuclear weapons testing and nuclear reactor

accidents (Appleby et al., 2023). The accuracy of the dates from the

Constant Rate of Supply (CRS) models was further assessed by cross

correlation of the LOI’s of short cores and lead profiles generated

from the XRF analyses (see Supplementary Materials and

(Robson, 2017).
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Laboratory analysis -biological indicators

Diatom samples were prepared following standard techniques

(Battarbee et al., 2001). Concentration was determined using a

known volume of microspheres, and identification (a minimum of

300 valves per sample) was based on (Krammer and Lange-Bertalot,

1986; Camburn and Charles, 2000).

Palaeolimnological analysis of chironomid remains was based

on Brooks et al. (2007) and involved the identification (Brooks et al.,

2007; Anderson et al., 2013) of larval head capsule remains picked

from a known weight of wet sediment, slide mounted in Epural.

The remains of non-chironomid macroinvertebrate and

macrophyte taxa are also preserved within lake sediments,

although typically in much lower quantities than chironomids or

diatoms and therefore a larger amount of sediment is required to be

analysed. Macrofossil samples were prepared for analysis using 25-

60cm3 of wet sediment (Birks, 2007). The material was gently

washed using a stack of two sieves of 355µm and 125µm mesh

size, examined under a 4-40x magnification stereomicroscope and

identified with reference to (Birks, 2002) and the macrofossil

collection at ECRC in UCL.
Statistical analysis and data presentation

Stratigraphic plots were produced using C2 (Juggins, 2007) to

visualise the trends in biological indicators over time. Abundances

of diatoms, macrofossils and chironomids are expressed as

abundance per cm3 of dry sediment per year.

Principal component analysis (PCA) was used to explore

patterns of community change over time at each of the lakes.
TABLE 2 Information of the coring locations, including water depth and total core length.

Core Code Date Location
(Lat, Long)

Water Depth
(m)

Total Core Length
(cm)

AMHU_BB 20/4/15 58.354821, -3.6790538 1.7 48

FEAR_BB 23/4/15 58.366105, -3.6679649 1.8 33

LEIR_BB 21/4/15 58.388878, -3.7863750 1.6 48

TALA_BB 22/4/15 58.416145, -3.7893992 0.8 33
TABLE 1 Lake name, code and location.

Lake name Lake code Lat-Long Lake Surface Area (ha) Common scoter status

Loch a’Mhuillinn AMHU 58.357236
-3.6798350

22 Historic

Loch Talaheel TALA 58.415923
-3.7904836

9.5 Historic

Loch nam Fear FEAR 58.365472
-3.6682599

9.4 Present

Loch Leir LEIR 58.388095
-3.7890724

6 Present
Historic lakes are defined as having a record of common scoter use prior to 1995. Present status are those sites which have records of common scoter between 1980s and annually since ca. 1995.
Common scoter status based on unpublished coordinated survey data.
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PCA was carried out in Canoco ver5 (ter Braak and Smilauer, 2012)

on data that were log transformed and centred by species, PCA was

selected as the compositional gradient of these data was 0.5

standard deviation units long (Legendre and Legrendre, 2012).

Statistically significant splits or zones in the stratigraphic plots

were determined using constrained incremental sum-of-squares

clustering (CONISS) analysis (Grimm, 1987), carried out in R (R

Core Team, 2016), using the rioja package (Juggins, 2012). CONISS

is based on cluster analysis, constrained by agglomeration of

stratigraphically adjacent samples (Birks et al., 2012). A pairwise

dissimilarity matrix is first created (in this case using Euclidean

distances) and a sum-of-squares statistic calculated for each cluster,

which is recalculated as clusters are merged. Stratigraphically

adjacent clusters that, when merged, result in the least increase in

total dispersion are identified (Legendre and Birks, 2012). The

number of significant zones was determined using the broken

stick model (Bennett, 1996).
Results

Stratigraphic integrity and radiometric
dating of the cores

Loss on ignit ion and x-ray fluorescence analyses

(Supplementary Materials) demonstrated that the material in the

cores was not homogenised. Core chronology was determined using
210Pb dating techniques. The chronologies of the cores from

AMHU, FEAR and LEIR were confirmed by the cross-correlation

with Pb XRF profiles which placed 1900 at between 5 and 8 cm

depth for these sites (Figure 1). There was some uncertainty with

the 210Pb dates for TALA, it was not possible to fully validate the

CRS modelled dates with confidence as it was difficult to identify

points for cross correlation in the LOI profiles.
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Macroinvertebrate food availability

Trends in invertebrate taxa that make up a substantial

component of common scoter diet are summarised in Figure 2,

alongside diatoms and macrophytes (discussed below). Data on other

invertebrate groups are provided in the Supplementary Materials.

There is no evidence of a reduction in invertebrate food availability

for common scoters since the period of common scoter decline in the

1970s. At all four sites invertebrate abundance increased towards the

top of the cores (Figure 2). Chironomids, cladocera, ephemeroptera

and trichoptera all showed similar, gradual increases at three of the four

sites. At FEAR there was a distinct peak in all macroinvertebrate taxa at

ca. 1920, following which abundance remained relatively stable or

increased. Between-site comparisons indicate that the abundance of

macroinvertebrates is lower in TALA relative to the other three lakes.
Long term changes in lake status relative
to common scoter abundance

The total abundance of diatoms increased towards the top of all

four cores (Figure 2). Diatom species data (Supplementary Materials)

indicated that taxa typical of oligotrophic lakes dominate the cores

especially small benthic species of Staurosira, Staurosirella and

Pseudostaurosira (formerly Fragilaria spp.); Achnanthes,

Aulacoseira, Naviculacae and Eunotia species. Commonly

occurring Fragilaria sensu lato species include Staurosira construens

var. venter, Fragilaria exigua and Staurosira elliptica. Similarly the 16

macrophyte taxa recorded in the cores, including Lobelia dortmanna,

Najas flexilis, Littorella uniflora and aquatic mosses such as Fontinalis

antipyretica (Supplementary Materials) are all commonly associated

with oligotrophic lake conditions. All of the macrophyte species

identified in the cores were also recorded in the contemporary

macrophyte surveys (Robson et al., 2019), with the exception of

Najas flexilis remains found in the LEIR core, which had not been

recorded previously at the site.

Whilst the taxa at the sites remain those characteristic of

oligotrophic sites, multi taxa ordination analysis (Figure 3)

indicates there have been substantial shifts in both community

composition and abundance covering the time period of common

scoter decline (1970-2015). At all of the sites, the oldest samples

(from the core bottoms) are associated with a low abundance of

invertebrate, diatom and cladocera remains, and are more closely

associated with communities dominated by Isoëtes spp. of

macrophyte and low abundance of invertebrate groups. This

suggests that historically, 1900 and earlier, there were low levels

of nutrient availability at the sites. Common scoter populations

peaked in the 1970s and declined thereafter. At around the 1970s a

shift towards a more productive lake state is indicated by a shift

towards a community associated with greater overall abundance of

invertebrate and diatom taxa, and fewer nutrient sensitive taxa, such

as Isoëtes spp. An increase in productive state at this time period is

further supported by the species data (Supplementary Materials) in

which increases in planktonic diatom taxa (such as the diatoms

Asterionella formosa and Aulacoseira ambigua), more typical of

more eutrophic waters, are observed in the more recent sediments.
FIGURE 1

Age-depth profiles of sediment cores from the study lakes, derived
from radiometric (210Pb) dating. Depth of 1900 for TALA inferred
(dotted line) as radiometric dating was only possible with confidence
to 1925 ± 15 years at 1-1.5cm depth.
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These increases are concurrent with decreases in other nutrient

sensitive taxa, such as the chironomid Diamesinae.

The stratigraphic plots (Figure 2) clearly show a change in

community structure in the lakes since ca. 1900. Ordination

analysis indicates substantial community change occurred around

the period common scoter began to decline, ca 1970s (Figure 3).

The results of the CONISS analysis are summarised in Figure 4,

which shows statistically significant change points along the core.

CONISS analysis was carried out for diatoms, macrophytes and

macroinvertebrates separately to explore taxon specific responses to

potential state changes. Separating this analysis also allowed us to

explore the extent of commonalities between the timings of

significant zones for different groups of taxa. Across all sites and
Frontiers in Conservation Science 06
taxa between two to three significant zones were identified. At each

of the four sites a statistically significant split was identified for the

diatom communities at or around the 1970s +/- ca. 10 years

(Figure 4). At some sites a concurrent shift was identified in the

macrophyte and/or invertebrate communities, however in some

cases the macroinvertebrate and/or macrophyte shift occurred more

recently, ca. 1990 onwards.

Discussion

Data from lake sediment cores has shown that macroinvertebrate

abundance in Flow Country lakes has increased since ca. 1900,

indicating that there is more macroinvertebrate food available for
FIGURE 2

Temporal change in the relative abundance of selected taxa in the four study lakes over the period of increasing and subsequently declining
common scoter abundance. Abundance values are mass of preserved material per unit volume of deposited sediment per year. The horizontal line
represents the centroid 1970 of the period (1960s-1980s) at which common scoter decline began.
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common scoter now than there was in the recent past. Following a

period of steadily increasing abundance in the early part of the

twentieth century (during which time common scoter numbers were

also increasing), a stepped increase in macroinvertebrate abundance is

demonstrated at all study sites at/around the 1970s -coinciding with the

time common scoter declines began. Contemporary ecological studies

have demonstrated a spatial correlation between common scoter lake

use and the abundance of large-bodied macroinvertebrates (Hancock

et al., 2015). However, the addition of a temporal perspective, using

palaeolimnology, has demonstrated that common scoter numbers have

declined even at sites where macroinvertebrate abundance has

increased. There is no evidence that the foraging effort of either

common scoter females or ducklings varies throughout the season

(Hancock et al., 2019), indicating that there were not periods during
Frontiers in Conservation Science 07
which food was more difficult to obtain, as has been suggested

elsewhere (Fox et al., 2015). Our findings suggest that whilst large-

bodied macroinvertebrate abundance may be driving the current

distribution of common scoter on Flow Country lakes, as the

population contracts towards the best sites, a reduction in food is not

driving the observed breeding population decline.

Data from palaeolimnology may have refuted our original

hypothesis for decline, however an advantage of taking a multi-

indicator palaeolimnological approach is that the wealth of

ecological information generated can be used to identify

alternative hypotheses for decline.

Palaeolimnological data from algae, plants and invertebrates

indicate a shift towards communities typical of more productive lakes,

containing more nutrient tolerant taxa and fewer nutrient intolerant
FIGURE 3

Temporal changes in community composition of the four study lakes over the period of increasing and subsequently declining common scoter
abundance. Data are from multi-taxa Principal Component Analyses (PCA). Black arrows show PC1 and PC2 scores of the selected taxa. Blue lines
join PCA scores of the loch communities for each successive time-slice in the core, from the period of scoter increase (green triangles) through to
the period of scoter decline (red triangles).
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taxa. Whilst there is generally a pattern of gradually increasing

productivity between 1900 and 1970, this trend is accelerated in the

post 1970 period, when common scoter decline began.

Common scoter typically breed in areas of low breeding

wildfowl density, suggesting they may be poor competitors for

resources. As diving ducks, common scoter feed primarily in

benthic habitats where their main competitors (other than diving

wildfowl) are fish. In the Flow Country brown trout (Salmo trutta)

are the lakes’ apex aquatic predators and have been recorded in the

majority of the lakes (Crawford, 1991), particularly those that are

popular with breeding common scoter (Hancock et al., 2023). It has

been hypothesised that alterations in the abundance and/or

structure of brown trout populations, resulting from fish stocking

and/or reduced management for angling, could have implications

for lake ecology at multiple trophic levels, including common scoter

that are competing for the same invertebrate food resources

(Hancock et al., 2020b; Hancock et al., 2023). When fish stocking

occurs its effects are visible in the palaeolimnological record of a site

(Jeppesen et al., 1996; Davidson et al., 2003). The total abundance of

invertebrates is reduced (Schilling et al., 2009), and in particular

those taxa sensitive to predation (Sayer et al., 2016a; Eloranta et al.,

2022). No decline in macroinvertebrate abundance was observed in

our sites, indeed invertebrate abundance was shown to have

increased at the sites over the period of common scoter decline.

We did not observe a decline in taxa particularly sensitive to fish

predation (such as planktonic cladocera and/or the diptera

chaoboridae) and indeed as common scoter are generalist feeders

(Bengtson, 1971; Cramp and Simmons, 1977; Fox, 2003; Fancourt,

2016), it is unlikely that a change in invertebrate composition would

be driving decline, when overall abundance of invertebrates has

been shown to have increased.

A significant land use change in the Flow Country during the 1970s

and 1980s was the introduction of commercial forestry, which led to
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thousands of hectares of peatland being planted with non-native tree

species, primarily Sitka spruce (Picea sitchensis) and Lodgepole pine

(Pinus contorta) (Stroud et al., 1988). There are two primarymechanisms

via which afforestation of the lake catchments could negatively influence

breeding common scoter; either by changing water chemistry

(particularly water clarity) which has been shown to be correlated with

abundance of breeding waterbirds in other studies (Fox et al., 2020) or by

providing habitat for predators directly feeding on the birds themselves

(Holopainen et al., 2021; Holopainen et al. (submitted)1).

Ploughing, drainage and fertiliser application are typically

required for plantations to be successful on deep peat, and have

all been shown to affect the physical, hydrological and chemical

characteristics of nearby waterbodies (Miller et al., 1996; Prévost

et al., 1999; Cummins and Farrell, 2003; Räsänen et al., 2007;

Ramchunder et al., 2009; McElarney et al., 2010; Drinan et al.,

2013a; Drinan et al., 2013b) Afforestation and subsequent

deforestation has occurred to different extents in the catchments

of all of the study sites. The hydrological complexities of water

movement in ombrotrophic peatlands, particularly in the surface

and subsurface areas of the peat, mean the extent to which

afforestation affects nearby waterbodies can be variable and

complex (Howson et al., 2021a; Gaffney et al., 2021; Howson

et al., 2021b; Shah et al., 2021). The compositional shifts in lake

communities demonstrated in this study coincide with the timing of

afforestation, which took place between the 1970 and 1990s, and are

consistent with the changes in communities (such as the appearance

of Asterionella sp.) documented at other boreal lakes (Turkia et al.,

1998). Whilst declines in species such as Isoëtes spp could indicate a
FIGURE 4

Change-points in community composition in the four study lakes, 1890-2015. Black lines represent significant change points for diatom, macrophyte
and macroinvertebrate communities determined by hierarchical cluster analysis using constrained incremental sum-of-squares clustering (CONISS) with
Euclidian distances.
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decrease in water clarity, no significant change is observed in the

proportion of benthic to planktonic diatoms, or in other submerged

macrophytes such as mosses and lobelia. This suggests Isoëtes spp

decline is more likely caused by nutrient increases than substantial

reductions in water clarity.

Besides altering food availability, afforestation of the [previously

treeless (Charman, 2002)] Flow Country, could impact ground-nesting

birds, such as the common scoter, in other ways. Prime among these is

that forestry can support an increased density of generalist predators

and ground-nesting waterbird populations are known to be vulnerable

to high levels of nest and chick predation (Roos et al., 2018). Indeed

Pöysä and Linkola (2021) found that predation had a greater impact

than eutrophication on the abundance of breeding waterbird species in

other north European boreal wetlands. In our Flow Country study area,

Hancock et al. (2020a) showed that the density of mammalian

predators was substantially higher in bogs that were near forestry

plantations compared to open, treeless bog areas. We suggest that

increases in nest predation, resulting from increased predator densities

that arise from afforestation is a plausible alternative cause of scoter

decline that merits investigation.

This study has provided evidence of the effects of plantation

forestry on peatland lakes, with signs of rapid eutrophication evident

in the sediment core records associated with the post tree planting

period. However, there is no indication that afforestation has resulted in

within lake changes (such as a reduction in food availability or changes

to habitat) that are likely to have affected breeding common scoter.

Management solutions that focus solely on within lake interventions,

such as increasing invertebrate abundance in the lakes (Hancock et al.,

2023), should therefore be complemented by the testing of mitigation

measures that address pressures associated with an increased predator

population that are supported by plantation forests.
Future directions

Despite alarming statistics indicating the rapid degradation of

freshwater habitats and an increasing number of species losses

(WWF, 2020), resources and funding opportunities for wetland

conservation continue to be limited (Gordon et al., 2020). An

evidence-based approach, that ensures effective resource

allocation and ongoing best practice, is therefore vital. Both

palaeolimnological and contemporary ecological approaches have

their strengths and limitations, however we would advocate

strongly that a combined approach can bring the strengths of

both approaches to the fore. The value of palaeolimnology to

wetland conservation is beginning to be recognised (Froyd and

Willis, 2008; Davies and Bunting, 2010; Goodenough and Webb,

2022), however its use in applied conservation management

scenarios is still limited (Chambers et al., 2007; Sayer et al., 2010;

Brooks et al., 2012; Davidson et al., 2013; Bishop et al., 2019; Roberts

et al., 2020). The limited uptake of palaeolimnology for

conservation has been attributed to a lack of understanding

between respective fields (Davies and Bunting, 2010), perhaps not

surprising given the different approaches taken to study design and
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analysis. As was the case here, cross-disciplinary collaborations

between experts are key. Typically, palaeolimnological studies are

descriptive in nature -examining multiple indicators that provide a

narrative of change over time for a site and its catchment.

Generalisation from such studies to inform wider conservation

management practice is difficult without a spatial context in

which to view any site-specific idiosyncrasies. However, by

identifying hypotheses at an early stage, and selecting a small

number of sites and indicators accordingly, the implications of

both contemporary conditions and longer-term change can be more

robustly assessed. There is an added value of integrating

palaeolimnological datasets into decline diagnosis approaches. If

the spatial association does not turn out to be causal, there is a

wealth of data which can be used to develop and explore

alternative hypotheses.

Using the case of the common scoter this study has highlighted

a limitation of only using spatial comparisons to diagnose species

decline. Where there are multiple putative pressures that could be

causing decline, and especially where these pressures are pervasive

across an area, then a temporal perspective, such as that provided by

palaeolimnology, may give novel insights into the causes of decline.
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