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Abstract

At zero temperature, symmetry-protected topological (SPT) order can encode

quantum information in an edge strong zero mode, robust to perturbations respecting

some symmetry. On the other hand, phenomena like many-body localisation (MBL)

and quantum scarring can arrest the approach to thermal equilibrium, contrary to the

ergodic dynamics expected of generic quantum systems. This raises the possibility

that by combining SPT order with such ergodicity breaking phenomena, one might be

able to construct a quantum memory that is robust at finite temperature. However,

MBL is threatened by thermal avalanches due to rare low-disorder grains, while

the survival of quantum scars in the thermodynamic limit is still uncertain beyond

certain finely-tuned models. To this end, we study the interaction between ergodicity

breaking and novel quantum order in spin chains. First, we look at an interacting

spin-1/2 chain hosting SPT order and protected edge modes, identify quantum scars

responsible for long-lived coherence in the bulk of the system, and show that these

scars exhibit signatures of SPT order even at finite energy density. Secondly, we

study a topological transition between two MBL phases with different topological

order. Through a renormalisation group approach, we identify many-body resonances

between the localised states; close to the transition these proliferate, link together

into an extensive network, and cause delocalisation. Additionally, we characterise

the SPT strong zero mode in the ordered phase. This has important implications for

the stability of MBL and transitions between MBL phases with different topological

orders. Finally, we investigate a model known for its use in a proof of MBL, finding

that the localised phase is destabilised by proximity to an SPT critical point even

though the system itself has no symmetries. This thesis therefore provides important

insight into the stability of quantum order at finite temperatures.
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Impact Statement

Emerging quantum technologies, in particular quantum computing, have widespread

applications including in physical simulation, drug discovery, quantum chemistry,

novel materials, and cryptography, and companies such as IBM, Google, and Microsoft

are investing billions into the race to develop viable quantum computers. A major

challenge is the preservation of quantum information over long timescales: the state

of the art in quantum memories is on the order of single milliseconds, which severely

limits the length and accuracy of computations. In this thesis, we consider two forms

of ergodicity breaking which enable systems to avoid thermal equilibrium: many-body

localisation (MBL), in which quenched disorder freezes the dynamics, and quantum

many-body scarring, where atypical eigenstates cause long-lived oscillations from

certain initial states. We show that these stabilise a novel form of quantum order

known as symmetry-protected topological (SPT) order, and in the case of MBL,

probe the stability of the MBL phase itself near topological phase transitions. SPT

order can be used to encode quantum information in a robust manner, for example in

an edge mode, while disorder is crucial to the operation of certain classes of quantum

computer, such as superconducting transmon qubit arrays. For this reason, this

thesis provides important insight into the stabilisation of quantum information, and

the development of quantum technologies, even though these applications are not the

direct focus of the research. On the academic side, ergodicity breaking is important

to the field of quantum many-body physics, as it challenges our assumptions about

conventional statistical mechanics and enables us to observe novel out-of-equilibrium

phenomena. Chapters 3 and 4 respectively are based upon research which has

been published in two separate papers in Physical Review B [1, 2]; the former was

the first to demonstrate SPT order in quantum scars without fine-tuning, while

the latter provides new insight into an ongoing debate about the stability of MBL
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in the thermodynamic limit. The results contained within this thesis have also

been disseminated through conferences, workshops, and talks, reaching not just

the condensed matter community but also the quantum information community.

In Chapter 3, we also develop an extension to a real-space renormalisation group

algorithm, with general applicability to disordered spin chains.
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Chapter 1

Introduction

Ordinary matter thermalises – that is to say, given any initial state, such as a cup of

hot coffee sitting in a cold room or a drop of dye placed into a tank of water, the

passing of time will eventually result in a state at thermal equilibrium, described only

by global conservation laws and with no memory of detailed initial conditions. The

coffee will reach room temperature, and the dye will spread throughout the water.

This equilibrium state will be described only by macroscopic conserved quantities

such as energy and particle number, while the entropy will tend towards the maximum

permitted by said constraints. Despite this empirical fact, it is still not entirely clear

how and when this process proceeds for quantum systems: indeed we have discovered

mechanisms that prevent the approach to equilibrium entirely, or even more bizarrely

cause a return to the initial conditions after apparent thermalisation.

For a generic quantum system, our intuition carries over from classical mech-

anics, and any initial state will rapidly decohere and lose all apparent memory of

initial conditions. Local observables, for example, will acquire expectation values

in agreement with conventional statistical mechanical ensembles. Such systems

are labelled “chaotic” or “quantum ergodic”, and these are well explained by the

celebrated Eigenstate Thermalisation Hypothesis (ETH) [3–6], which asserts that the

eigenstates of the Hamiltonian themselves resemble the appropriate thermodynamic

ensemble, under the lens of any local measurement. However, there are certain ways

to avoid this fate, violate the ETH, and remain far from equilibrium. Integrable

systems have an extensive number of exactly conserved quantities which constrain the

dynamics, but sit at finely-tuned points in parameter space and are therefore unstable

to any arbitrary perturbation. In many-body localisation (MBL), on the other hand,
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the application of strong quenched disorder leads to exponential localisation of the

energy eigenstates in the Hilbert space and the arrest of transport in a wide variety

of systems, robustly preventing equilibration [7, 8].

In both integrable and MBL systems, every single eigenstate violates the ETH,

a situation known as strong ergodicity breaking. But the experimental discovery of

many-body quantum scars, eigenstates of an otherwise chaotic Hamiltonian which

are non-thermal and can lead to anomalous dynamics including periodic “revivals”,

in Rydberg atom simulators [9] has shown that there is still much missing from our

understanding of quantum thermalisation. Such “scarred” systems sit in-between

fully localised and fully chaotic, with the dynamics dependent on initial conditions

and only a vanishing fraction of states violating the ETH in the thermodynamic limit:

this is known as weak ergodicity breaking. While recent theoretical developments have

connected certain such scars to “towers of states” resulting from broken symmetries

[10–16], there are also scars left unexplained by this paradigm [16–19], and we are

far from a complete and unified picture [20].

In contrast to the problem of thermalisation, which is generally concerned with

the behaviour of systems at finite or even infinite temperature, there is the seemingly

unconnected phenomenon of topological phases of matter, in which systems without

local order parameters or spontaneous symmetry breaking exhibit distinct phases

of matter at zero temperature. In particular, we will be concerned with symmetry-

protected topological (SPT) order [21–27], which is usually associated with protected

edge modes, degenerate entanglement spectra, and string order. Both topological

order and SPT order may also be exploited to encode quantum information, such as

in the edge modes [28]. These phenomena are protected at zero temperature as long

as the ground state remains gapped and perturbations to the Hamiltonian respect a

certain symmetry, but at finite temperature, interactions with the bulk can cause the

edge modes to decohere, and other signatures of topological order are lost. Hence,

topological order is generally only a property of the ground state.

Despite this limitation, there have been various approaches to preserving topolo-

gical order at finite energy density. Since MBL and quantum scarring can both arrest

the approach to thermal equilibrium, contrary to the ergodic dynamics expected of

generic quantum systems, this raises the possibility that by combining SPT order
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with such ergodicity breaking phenomena one might be able to construct a quantum

memory that is robust at finite temperature. In particular it has been shown that

MBL, induced by strong disorder, can protect topological edge modes and other

signatures of topological order, up to arbitrarily high energies [29, 30]. The question

therefore remains whether other non-ergodic phenomena, such as quantum scarring,

would be able to preserve edge modes at finite temperature without destroying

transport. Furthermore, a full picture of the interactions between topological order

and MBL is still developing. Whereas previously it was thought that localisation

could be preserved through topological phase transitions [31], recent evidence from

small-system studies has suggested this may not be possible [32–35].

The existence of an MBL phase has been rigorously proved in one dimension

given certain physically reasonable assumptions [36]. Yet in recent years, MBL

has come under renewed scrutiny, with the discovery that rare low-disorder regions

which thermalise locally can then destabilise the entire localised phase in a “thermal

avalanche” driven by many-body resonances [37–45]. In fact, it is even argued by

some that the MBL phase does not actually exist in physically realistic systems,

instead only surviving as a finite-lifetime or finite-size regime. Understanding the

precise nature of these avalanches, the role resonances play in the delocalisation

transition, and the strength of disorder necessary to ensure a localised phase in the

thermodynamic limit are therefore all key challenges facing the MBL community.

The remainder of this thesis is arranged as follows. In Chapter 2, we cover the

necessary background in detail, looking at thermalisation, MBL, quantum scarring,

and topological order. Then, in Chapter 3, we study a certain spin-1/2 chain which

hosts Z2 × Z2 SPT order, resulting in a long-lived prethermal edge mode when the

even and odd sublattices are detuned. We show that quantum many-body scars may

be responsible for this behaviour, and furthermore that these scars host signatures

of SPT order. Chapter 4 explores the infinite-temperature phase transition between

MBL phases with different SPT orders, which has gained attention recently due

to small-system studies which show an ergodic phase intervenes at this transition

[32–35]. Using a real-space renormalisation group technique, we characterise the

localised phases and uncover many-body resonances between the localised states,

showing that these proliferate near the critical point and destroy the localised phase.
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Using this same technique, as well as applying perturbation theory to free-fermion

systems, in Chapter 5 we look at a disordered spin-1/2 Ising chain with transverse

and longitudinal fields (as studied in Ref. [36]’s proof of MBL), finding evidence that

proximity to an SPT critical point destabilises the MBL phase, even through the

model itself has no symmetries. Finally, in Chapter 6, I summarise this thesis and

present my conclusions.
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Chapter 2

Background

2.1 Thermalisation and Quantum Chaos

In classical statistical mechanics, no matter how complex the initial state, a large

interacting system will eventually reach an equilibrium state described only by

macroscopic conserved quantities such as energy and particle number. It is possible

to slow this process down, for example with kinetic barriers or by lowering the

temperature, but in the infinite-time limit this fate is impossible to avoid. Likewise,

when initialised in a highly-localised pure state, a generic closed quantum system will

rapidly decohere and lose all apparent memory of initial conditions [5]. Furthermore,

it will explore every part of the Hilbert space, such that the long-time average is

described by standard statistical mechanics; such a system is said to be ergodic.

Indeed, the classical case is simply the high-energy limit of the quantum case, as

specified by the correspondence principle, and so both must exhibit similar behaviour.

This presents a paradox, however. Quantum mechanics is governed by unitary time

evolution, which implies that in a closed system no information is lost and that a pure

state will always remain a pure state. The solution comes from considering a classical

analogy: if, after reaching equilibrium, we were able to record the position and

velocity of every particle in our system, by reversing the direction of motion we would

be able to play the physical evolution backwards in time and so reconstruct the initial

conditions. However, to do so would clearly require infeasibly many measurements.

The initial conditions were never lost – they just became inaccessible.

The same idea applies to our quantum system. Under unitary time evolution,

subsystems act as heat baths to each other, scrambling the degrees of freedom and

spreading information throughout the system. In particular, the physical degrees of
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freedom become highly entangled with each other, leading to a “volume law” regime

in which bipartite entanglement entropy is proportional to the volume of the system.

As a result, only extensive global measurements can recover the initial conditions –

even though it remains in a pure state for the entire evolution, for all intents and

purposes, the system behaves as if it has reached thermal equilibrium.

This behaviour should be compared to that of an integrable system, in which

the dynamics are constrained by an extensive number of conserved quantities known

as integrals of motion [46, 47] – or equivalently, which can be mapped to a system of

non-interacting particles. In this case, memory of initial conditions is preserved for

all time via the integrals of motion, and there is no meaningful approach to thermal

equilibrium. However, these systems are unstable to generic perturbations, and so

do not represent a true phase of matter, but only a finely-tuned special case.

2.1.1 The Eigenstate Thermalisation Hypothesis

The above intuition is formalised in the Eigenstate Thermalisation Hypothesis (ETH)

[3–6, 48, 49], which in simple terms asserts that eigenstates of the system resemble

thermal ensembles, and is inspired by random matrix theory which was originally

developed to understand the excited eigenstates of heavy nuclei [5]. More precisely, it

is an ansatz for the matrix elements of local, physically reasonable operators1 which

is expected to be obeyed by a generic non-integrable quantum system, and which

numerical evidence has shown to be the case for a wide variety of such systems [51–59].

It states that,

⟨m|O|n⟩ = O(Ē)δmn + e−S(Ē)/2fO(Ē, ω)Rmn , (2.1)

where |n⟩, |m⟩ are energy eigenstates of the system, with Ē and ω their average

energy and energy separation respectively, S(E) is the thermodynamic entropy at

energy E, and Rmn is randomly distributed with zero mean and unit variance. (Rmn

and fO(Ē, ω) are real when time-reversal symmetry is present, otherwise complex;

additionally, R is Hermitian.) Additionally, and crucially, both O(Ē) and fO(Ē, ω)

are smooth functions of their arguments. The smoothness of O(Ē) in the first

1Generally, it is expected to be obeyed by generic few-body operators, even those with support
up to half the system size [50]. On the other hand, operators such as eigenstate projectors obviously
violate this ansatz.
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term ensures that the expectation value in a pure state matches the microcanonical

ensemble average, because in any narrow energy window the diagonal terms will

be near-constant. Because thermodynamic entropy is extensive, fluctuations away

from this due to the second term are then exponentially suppressed in system size,

such that local measurements of a pure state in a system obeying the ETH look

“thermal”.

To elaborate on this statement, consider now the density matrix of a pure state

|ψ(t)⟩ =
∑

n cn |n⟩ as it evolves in time, in the energy eigenbasis {|n⟩}. On the

diagonal, we have the eigenstate decomposition ρnn(t) = |cn|2, while the off-diagonals
describe the coherence between the different components, ρnm(t) = cnc

∗
me

i(En−Em)t.

It is these off-diagonals therefore that encode the precise initial conditions. However,

since the energies of states are in general irrational multiples of each other, time

evolution gives these off-diagonal terms random phases – scrambling the coherences

such that the long-time average 1
T

∫ T
0 ρ(t) dt tends to a matrix containing only the

diagonal terms, the so-called diagonal ensemble ρDE. As a result, observers at long

times record a classical mixture of the component eigenstates, without quantum

coherence, and likewise local measurements return simple weighted averages of

the eigenstate expectation values. By guaranteeing that these expectation values

match the microcanonical ensemble, the ETH therefore ensures macroscopically large

systems behave exactly as thermodynamics predicts and eventually thermalise [5].

One may note that the mean level spacing is exponentially small in system size, and

therefore some off-diagonal terms may have exponentially long lifetimes, leading to

memory of initial conditions at intermediate times. However, the weighting e−S(Ē)/2

in the second term of the ETH ensures the contribution of these terms to expectation

values remains small, enabling rapid approach to equilibrium2.

When focusing on a narrow energy window such that the spectral function

fO(Ē, ω) can be treated as constant, the second term ensures the ansatz matches the

predictions of random matrix theory. For diffusive systems, this generally requires

that ω is less than the Thouless energy ET = D/L2 = 1/τD, where τD is the diffusion

time, which, despite vanishing in the thermodynamic limit, will still contain an

exponentially large number of energy levels. Otherwise, this threshold is given by

2In fact, e−S(Ē) is exactly the level spacing (in appropriate units).
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1/τ∗, with τ∗ the longest timescale in the system [5]. (There is some disagreement;

Refs. [59] find a much tighter bound on the energy scale.) On the other hand, at

large energy separations, fO(Ē, ω) decays exponentially in ω. The spectral function

can be directly connected to two-time thermal correlation functions through the

Kubo-Martin-Schwinger (KMS) relation [60, 61] as,

⟨O(t)O(0)⟩β − ⟨O⟩2β = kβ2 (t) =

∫
|fO(E(β), ω)|2e−βω/2eiωt dω , (2.2)

where ⟨•⟩β is the thermal expectation value at inverse temperature β and E(β)

the thermodynamic energy at said temperature, and therefore provides important

insights into the dynamics of a system. fO(Ē, ω) also gives the response of a system

to an external perturbation that pushes it away from equilibrium [62].

While the ansatz (2.1) assumes independence between the matrix ⟨m|O|n⟩
elements, this is not usually true in practice. Recent work has therefore extended the

ETH ansatz to capture correlations between these with a set of generalised spectral

functions, which then lead directly to an expansion of multi-time thermal correlation

functions in terms of so-called thermal free cumulants [63, 64].

In fact, there are both strong and weak versions of the ETH [6]. The strong ETH

asserts that every eigenstate at finite energy density (within each symmetry sector)

obeys the ETH ansatz, and a generic interacting many-body system usually satisfies

this hypothesis. However, the weak ETH allows for finitely many states, or a vanishing

proportion in the thermodynamic limit, to violate the ansatz. While integrable and

many-body localised systems violate both forms of the ETH, many-body quantum

scars only violate the weak ETH. These cases are discussed in subsequent sections.

2.1.2 Level Statistics

The ETH ansatz is inspired by the observation that, when limited to small energy

windows, the Hamiltonians of chaotic complex systems resemble random matrices

whose entries only depend on the symmetries at hand. Specifically, following the

ideas of random matrix theory, after resolving symmetries one can replace these

Hamiltonians by random matrices with normally-distributed entries, drawn from

ensembles which are invariant under either orthogonal or unitary transformations.

These ensembles are known as the Gaussian Orthogonal Ensemble (GOE) and
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Gaussian Unitary Ensemble (GUE), respectively, and correspond to systems with

and without time reversal invariance [65, 66]. Equivalently, GOE and GUE matrices

have real and complex entries respectively. (There is in fact one further ensemble

with quaternionic entries, the Gaussian Symplectic Ensemble or GSE, but it is less

common). Chaotic many-body Hamiltonians therefore exhibit universal properties,

one of which is their energy level statistics. This may be measured by the r̃-

statistic [67, 68],

r̃j = min

(
Ej+1 − Ej
Ej − Ej−1

,
Ej − Ej−1

Ej+1 − Ej

)
, (2.3)

where Ej is the j
th energy level. For chaotic Hamiltonians, hybridisation between

quasiparticle modes due to interactions leads to level repulsion, which ensures that

P (r̃j = 0) = 0. The full form of the probability distribution then depends on whether

the Hamiltonian follows GOE or GUE statistics, but is universal for systems of a

particular class.

On the other hand, in large integrable systems the energy levels are uncorrelated

and follow a Poisson distribution – crucially, with P (r̃j = 0) > 0 and no level repulsion.

Hence the level statistics of many-body Hamiltonians are a robust numerical test for

quantum chaos.

2.1.3 The Quantum Information Perspective

As alluded to above, ideas from quantum information provide deep insight into

the nature of thermalisation. Instead of analysing the flow of matter and energy

throughout a system, in this picture we look at the spread of information – specifically,

how entanglement takes the information encoded by the initial conditions, and

distributes it over the physical degrees of freedom such that it becomes unrecoverable

by any experimentally-reasonable process. In this way, memory of the past is lost,

and time’s arrow applies equally well to quantum systems as it does to classical ones.

A key quantity of interest to the field of quantum information is entanglement

entropy. Suppose we divide a system into two subsystems A and B with dimA ≤
dimB, such that the total Hilbert space is given by the tensor product of the Hilbert

spaces of the respective subsystems, and we may cleanly partition degrees of freedom

between the two. Suppose furthermore that this system is in some pure state |ψ⟩,
such that the density matrix for the system is given by ρAB = |ψ⟩ ⟨ψ|. We then

define the reduced density matrix ρA = TrB{ρAB}, where we trace over the degrees
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Figure 2.1: Under unitary time evolution from an initial pure state (top left), the degrees of
freedom of a generic quantum system are strongly mixed, resulting in all-to-all
entanglement and the spreading of information throughout the system (bottom
left). Even though the system remains in a pure state throughout, any local
measurement cannot recover information about the initial state, and as such the
expectation values and distribution of measurement outcomes looks “thermal”
(bottom right). This is to be compared with local measurements immediately
after the quench, which give outcomes far from the equilibrium distribution
(top right). Likewise, the reduced density matrix of any subsystem cuts through
entanglement proportional to the volume of that subsystem, and we have a
volume-law entanglement entropy. [From Ref. [70]. Reprinted with permission
from AAAS.]

of freedom in B. If the degrees of freedom in A are entangled with those in B, then

after tracing out the latter we cannot know the state of A exactly, and so while ρAB

is a pure state, ρA is a mixed state. The bipartite entanglement entropy is then

defined as,

S = −Tr{ρA ln ρA} . (2.4)

If the total state has some Schmidt decomposition |ψ⟩ =
∑

j

√
λj |j⟩A |j⟩B, then

ρA =
∑

j λj |j⟩A ⟨j|A, and so S = −∑j λj lnλj . Therefore, when |ψ⟩ is separable,

S = 0, and otherwise grows as the two subsystems become more entangled. Intuitively,

S measures how much entanglement we need to “cut” to separate the two subsystems:

if there are n coefficients λj = 1/n, then S = lnn (and less if the weight is concentrated

among few coefficients). Due to this connection, the Schmidt coefficients λj are

also referred to as the entanglement spectrum. Remarkably, despite this being a

purely quantum mechanical quantity, it turns out that the entanglement entropy

coincides with the thermodynamic entropy at equilibrium [69]. This suggests a deep

connection between entanglement and thermalisation.
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This connection comes from considering what happens to the degrees of freedom

as they evolve under a chaotic many-body Hamiltonian. Interactions mix the degrees

of freedom, generating entanglement between them, and given enough time this

spreads throughout the system: each degree of freedom is entangled with every

other degree of freedom. Now, any local measurement only has access to a partial

set of the degrees of freedom, and cannot recover the full (pure) state, instead

seeing a classically mixed state. Because of this all-to-all entanglement pattern, the

entanglement entropy will scale extensively with the volume of the subsystem, S ∝ V

(see Fig. 2.1). States with this scaling are said to be volume law [5, 70, 71].

On the other hand, consider the ground state of a gapped Hamiltonian. Unlike

a state at high energy, which is in the bulk of the spectrum and so easily couples to

many nearby states, such states are isolated and are therefore special, with atypical

expectation values and short-range entanglement3. When we cut our system into two

subsystems A and B, the bipartite entanglement entropy will only be proportional

to the size of the boundary, S ∝ ∂V – a so-called area law. Ground states near

criticality, where the gap closes, may also exhibit a logarithmic correction, S ∝ log V

[72]. Integrable systems, with extensively many integrals of motion, also typically

exhibit a broad distribution of entanglement entropies, including both area and

volume law states. Entanglement is therefore a key diagnostic of chaotic vs integrable

dynamics.

2.2 Avoiding Thermalisation: Many Body Localisation

We have covered thermalisation, the Eigenstate Thermalisation Hypothesis, and how

systems which satisfy the latter will rapidly approach a thermal equilibrium state

with no memory of initial conditions. However, there are certain known classes of

quantum system which violate the ETH and avoid thermalisation entirely. One of

these is the class of finely-tuned integrable models – systems with an exactly solvable

spectrum, in which an extensive number of conserved quantities known as integrals

of motion constrain the dynamics [5]. For example, the transverse field Ising model

can be mapped to free fermions through a Jordan-Wigner transform. In such a

system, every single eigenstate violates the ETH, and memory of initial conditions is

3Topological order (see Sec. 2.4) can lead to long-range entanglement in the ground state, but
this leads to a constant term in the entanglement entropy.
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preserved for all time, but a generic perturbation is enough to destroy integrability,

leading to chaotic dynamics and a rapid approach to thermal equilibrium. Naturally,

this led to the question of whether there exists a way to more robustly avoid the

fate of thermalisation. One such promising mechanism comes from the fascinating

phenomenon of localisation.

2.2.1 Anderson localisation

Consider a particle on a crystal lattice, with a short-ranged hopping term and

a site-dependent on-site energy. For concreteness, we can write the free-fermion

Hamiltonian,

H =
∑

j∈Λ
εjc

†
jcj +

∑

j,k∈Λ
Vjkc

†
jck + h.c. , (2.5)

for some lattice Λ. Here, c†j (cj) is the creation (annihilation) operator at vector-

indexed site j. In the case of translational invariance, Bloch’s theorem tells us

that the single-particle eigenstates will be extended plane waves, and from such a

model we would expect to see diffusive or ballistic transport throughout the entire

lattice [73, 74]. However, if we instead allow the on-site energies {εj} to be position-

dependent (but static), picking them randomly from some probability distribution

with width W , remarkably the eigenstates become exponentially localised in space –

even for arbitrarily small W in one and two dimensions. (In three dimensions, W

must be larger than the hopping energy scale). This remains true even if the hopping

is long-range: the only requirement is that Vjk falls off faster than 1/|j−k|3. This has
dramatic consequences for the dynamics: a wavefunction initialised at a particular

location in space will remain within an exponential envelope with some localisation

length ξ, with a finite probability density at the starting location. To be precise, if the

wavefunction at t = 0 is given by ψj(t = 0) = δj0, then the long-time asymptotic form

at long distances is given by ψj(t→ ∞) ∼ exp(−|j|/ξ), and the energy eigenfunctions

have a similar form. This phenomenon is now known as Anderson localisation, after

P.W. Anderson [75].

One could compare Anderson localisation to a ball rolling around a hilly land-

scape, whose motion is impeded by the peaks and troughs in the way. But this naive

classical picture is not accurate – for sufficient disorder, the entire spectrum becomes

localised, even when the energy of highly-excited states exceeds the disorder width.
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Additionally, a quantum ball would eventually tunnel through energy barriers in

its way, whereas Anderson localisation survives even in the infinite-time limit. The

correct approach, used by Anderson in his 1958 paper [75], is to start from the infin-

ite disorder case (in which particles are trivially localised) and then perturbatively

expand the Green’s function around this point in powers of the hopping term. This is

(today) known as the locator expansion, and is equivalent to summing over the various

paths through the lattice that a particle can take to reach a particular destination.

The contributions from these paths destructively interfere, preventing the particle

from fully exploring the lattice. One can also use this approach to calculate the

amplitude at the original site – which is only non-zero in the infinite-lattice limit if

the particle is indeed localised. The requirement to account for loops makes these

calculations challenging, but simplified models on e.g. Cayley trees, which do not

contain loops, allow for exact results [76].

The existence of Anderson localisation for arbitrarily weak disorder has been

proved rigorously in one dimension [77], while strong arguments – based on a

scaling theory of localisation and conductance – have been made for the same in

two dimensions [78]. The phenomenon has also been verified experimentally in a

diverse range of media, including cases with practical applications such in optical

fibres [79–85].

There are some interesting connections between Anderson localisation and

certain other phenomena, both classical and quantum. A random walk in one or two

dimensions always returns to the origin, whereas a walk in 3D may not; likewise, an

arbitrarily small attractive potential will lead to bound states in 1D or 2D [86], but

this is not the case in 3D. This emphasises the importance of dimensionality in the

problem of localisation. Furthermore, for a weakly disordered potential in 1D, the

localisation length is equal to the mean free path derived due to backward scattering

of waves in a classical kinetic theory [87]. In fact, Anderson localisation isn’t even a

strictly quantum phenomenon, but a property of ordinary waves: for example, sound

waves have been localised in a disordered elastic network [88].

Finally, note that Anderson localisation should not be confused with Mott

localisation, which occurs due to strong repulsive interactions rather than disorder

and does not preclude thermal equilibrium; or weak localisation, a precursor to



14 BACKGROUND

Anderson localisation occurring at weaker disorder strength, in which paths that loop

back on themselves constructively interfere leading to a (finite) increase in resistivity.

2.2.2 The interacting many-body case

Even though arbitrarily weak disorder is enough to localise a single particle in fewer

than three dimensions, we do not observe localisation in our every day lives. Why?

For starters, real-world systems are not closed, like the model (2.5), but instead open

systems which can exchange energy and particles with their environment. It has

been shown that coupling an Anderson localised system to a heat bath delocalises

it – as a rough picture, by exchanging energy with the heat bath, the particle

can move between localised states that are not exactly degenerate, and so travel

through the system in a process known as variable range hopping [89]. Moreover,

even when closed, most real physical systems are interacting and their quasiparticles

can exchange energy with each other, which likewise has the potential to delocalise

particles and destroy memory of initial conditions. Another perspective would be to

consider the many-body case as a single particle hopping around a lattice representing

the Fock space and its connectivity under the Hamiltonian. Because there are far

fewer parameters in a many-body Hamiltonian than states in the exponentially large

Fock space, any disorder in the matrix elements (which give the effective hopping

strengths) would necessarily be strongly correlated, precluding the usual arguments

for Anderson localisation.

For many years therefore it was an open question whether localisation could

survive in the presence of interactions, a phenomenon now termed many-body

localisation (MBL). The existence of such a phase, robustly violating the ETH and

able to avoid thermalisation, would have substantial ramifications for conventional

statistical mechanics; we cover these consequences in Sec. 2.2.3. This was, and still is,

a challenging problem: interacting systems are vastly more complicated to simulate

than free systems, and exhibit qualitatively different phenomena. It is only in the

last two decades, especially with the rise of powerful general-purpose computing,

that we have started to gain real insight into MBL. Despite this, there are still many

open questions, and some controversy too, including some who now argue that the

critical disorder strength is infinite in the thermodynamic limit – see Sec. 2.2.4 for

details.
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tion distance d, averaged over disorder and eigenstates, for various system sizes
L = 8, 10, . . . , 16 and disorder widths h in a random-field Heisenberg model.
For h = 6.0, a clear exponential decay is shown for the correlation, indicating
localisation. [Reprinted figure with permission from Ref. [90]. Copyright (2010)
by the American Physical Society.]

Theory suggested that inelastic collisions would lead to delocalisation through

dephasing, but raised the possibility that elastic processes would not necessarily have

the same consequences, thus permitting a localised phase at finite temperature [91–93].

This prompted a slew of theoretical [94, 95] and numerical [67, 90, 96] investigations

into MBL as a distinct phenomenon from Anderson localisation, inspired by these

developments. Ref. [90] looked at the level statistics (2.3), exponential drop-off of

spin-spin correlation in the energy eigenstates (Fig. 2.2), memory of initial conditions,

and violation for the smoothness of O(Ē) in the ETH (2.1) to prove the existence

of an MBL regime in the spin-1/2 Heisenberg chain with random fields; meanwhile

Ref. [96] used entanglement growth (2.4) in tensor network simulations of a disordered

XXZ chain, showing that this saturated over time.

The consensus that emerged was that localisation could survive in the many-body

setting if the disorder was stronger than the interactions [7, 8]. For example, Ref. [90]

estimated the critical disorder width to be about 3-4 times the interaction strength

(although different measures were not in agreement, and also showed finite-size drift).

Indeed, as predicted by some of those papers, programmable quantum simulators soon
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Figure 2.3: (a) The equilibrium state for cold rubidium atoms in a 2D optical lattice
is circular, due to a rotationally symmetric confining potential. Quenched
disorder may be applied to this lattice by means of a digital mirror device.
(b) When no disorder is applied and the atoms are taken out of equilibrium
(by removing half to form a semi-circle), they rapidly thermalise and return
to equilibrium. (c) However, in the presence of sufficiently strong quenched
disorder, the atoms retain some memory of their initial condition for all time;
in fact, the imbalance between atoms on the left (L) and right (R), I = NL−NR

NL+NR
,

tends to a non-zero value (see reference for details). [From Ref. [97]. Reprinted
with permission from AAAS.]

showed strong experimental evidence for the phenomenon [97–99]. Fig. 2.3, taken

from Ref. [97], provides a particularly striking example of MBL in a two-dimensional

cold atom system, specifically Rubidium atoms in an optical lattice. The atoms were

arranged in a highly out-of-equilibrium state, confined to the left-hand side of the

system, and then allowed to hop through the lattice under the influence of varying

levels of quenched disorder. Remarkably, when the disorder was strong enough, the

atoms remained almost entirely localised to the same side of the lattice: they retained

memory of initial conditions. Analysis of the imbalance between atoms on the left (L)

and right (R) of the system, I = NL−NR
NL+NR

, showed this quantity tending to a non-zero

value, within the experimentally accessible timescale, providing a convincing proof

of many-body localisation. The experiment was also able to show that the critical

disorder depended on the interaction strength, by moderating the density of atoms.

Another experiment, shown in Ref. [98], placed atoms only on the even sites of a

one-dimensional system; with sufficient disorder, these too retained memory of this

initial condition.
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However, these approaches suffer drawbacks. The theoretical approaches relied

on strong assumptions or approximations. Numerics are necessarily limited to finite

system sizes, particularly in the case of exact diagonalisation where the state of

the art is L ≃ 20, and the presence of disorder prevents easy extrapolation to the

thermodynamic limit. Experiments, on the other hand, are often limited to short

timescales due to the accumulation of errors and interactions with the environment.

Even with these problems resolved, Ref. [100] claims that the microscopic timescales

necessary for a system to exhibit true many-body behaviour will always exceed the

Heisenberg time (after which a finite-size system exhibits quasiperiodic dynamics)

for achievable system sizes in experiment. A breakthrough came with J.Z. Imbrie’s

celebrated proof of MBL in 1D [36], in which the author shows that “many-body

localisation follows from a physically reasonable assumption that limits the amount of

level attraction in the system”. The work focuses on an Ising model with longitudinal

and transverse fields,

HImbrie =
∑

j

hjσ
z
j + γjσ

x
j + Jjσ

z
jσ

z
j+1 , (2.6)

where γj = γΓj with γ ≪ 1, and hj ,Γj , Jj are smaller than 1 and drawn from

independent random distributions with bounded probability density. The author

was able to show that the model could be diagonalised through a series of quasi-

local unitary transformations so long as the model did not exhibit strong level

attraction. Given that chaotic models show level repulsion and integrable models

show neutral (that is, Poisson) level statistics, this seemed a reasonable assumption,

and allowed Imbrie to deal with strong resonances that could otherwise not be dealt

with perturbatively. Since the transformations were quasi-local – meaning that spin

flips over large distances were exponentially suppressed – the model must be in the

MBL phase.

The proof only holds validity in the regime of very small γ, but regardless is

strong evidence of MBL as a robust phase of matter in the thermodynamic limit.

Chapter 5 explores the full phase diagram of the model, allowing for large γ. However,

as will be explored in Sec. 2.2.4, there are many recent signs that MBL may not be

as stable as previously thought. But before we get onto that, in the next subsection

we will cover the various key signatures and consequences of MBL, what these mean
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for statistical mechanics, and the possible real-world applications of MBL including

to quantum technologies.

2.2.3 Consequences of many-body localisation

By violating the key assumptions of conventional statistical mechanics – namely,

that systems will fully explore phase space up to the limits imposed by symmetries

and the resultant conservation laws – MBL has stark consequences for the behaviour

of quantum systems. For starters, it is clear that if memory of initial conditions is

retained for all time, then systems cannot relax to an equilibrium state determined

only by those aforementioned macroscopic conserved quantities. This was already

true for Anderson localisation – but this only held in the limit of zero interactions,

while robustness to integrability-breaking perturbations would purport to make MBL

a true phase of matter. Despite being a phase of matter, the transition from ETH

to MBL can only be detected by measuring dynamical quantities – any average

over a thermal ensemble of states will produce results corresponding to thermal

equilibrium [7]. Additionally, the unique out-of-equilibrium nature of MBL allows it

to bypass a number of results from conventional statistical mechanics. For example,

the Landau-Peierls theorem prohibits ordering and spontaneous symmetry breaking

at finite temperature in 1D quantum systems at thermal equilibrium, due to thermal

fluctuations which intrinsically destroy said ordering. But of course MBL is not

at thermal equilibrium, and thus is able to exhibit this forbidden order even in

1D [7, 31].

Many-body localisation was initially understood as an extension of Anderson

localisation, or as Anderson localisation in a many-body phase space, and interpreted

in that context. This means that early studies focused on, e.g., frozen dynamics

and the lack of DC transport. But today, MBL is usually thought of as a form of

emergent integrability, controlled by a set of quasi-local integrals of motion termed

“l-bits” which, too, are emergent [101, 102]. Focusing on the spin-1/2 case, take a

simple non-interacting model in which the energy eigenstates are product states in

the σz basis, such as (2.6) with γ = 0. [H,σzj ] = 0 for all j, and so these spins

are integrals of motion. If we then add weak interactions, such that the system

remains MBL, then the new eigenstates will still be close to product states, and in

fact we will be able to uniquely identify them by a new extensive set of integrals
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of motion τ zj = U †σzjU , such that [H, τ zj ] = 0. Here, the unitary transformation

U only creates spin flips between nearby degrees of freedom, with long-range flips

exponentially suppressed, such that the τ zj themselves have exponentially decaying

tails – a property known as quasi-locality. We can then write down a diagonalised

Hamiltonian as,

U †HU = Hdiag =
∑

i

ε
(1)
i τ zi +

∑

ij

ε
(2)
ij τ

z
i τ

z
j +

∑

ijk

ε
(3)
ijkτ

z
i τ

z
j τ

z
k + . . . , (2.7)

where in general couplings between distant l-bits are suppressed. Furthermore,

one can also define a corresponding set τxj = U †σxjU , thus providing a complete

generator set in operator space. Because they are constructed by a unitary operator

from the bare spins, the l-bits obey all the usual spin commutation relationships,

and a many-body eigenstate is specified uniquely by the eigenvalues of the l-bits.

While constructing the transformation U is non-trivial in most cases, Refs. [36]

prove the existence of this transformation, and therefore the existence of l-bits, in

one dimension (given the assumption of limited level attraction). However certain

numerical techniques, such as those based on the strong-disorder renormalisation

group [31, 103–106], flow equations [107–109], tensor networks [110–114], or otherwise

[115–117] have had substantial success in approximating l-bits for a variety of systems,

particularly in the perturbative limit of strong disorder and weak interactions – where

the l-bits may be compared to the exactly solvable integrals of motion found at a

nearby (disordered) integrable point.

The phenomenology of MBL is varied and complex, but there are a number

of key features generally agreed upon, and used to detect MBL in numerics and

experiment, which include:

• Localisation in Hilbert space

• Absence of DC transport

• Area-law entanglement of energy eigenstates

• Slow (logarithmic) growth of entanglement following a quench

• Slow (power-law) relaxation of local observables to non-equilibrium values, and

hence a failure to approach equilibrium in general.

• Strong violation of the ETH



20 BACKGROUND

• Poisson level statistics (i.e. no level repulsion)

These all neatly follow from the existence of l-bits [102]. Given the exponential

decay of l-bit support, any eigenstate of the system (which is itself a mutual eigenstate

of all of the l-bits) will be localised in Hilbert space. Unlike in clean integrable

systems, which can exhibit ballistic or diffusive transport, the quasi-local nature

of the l-bits ensures that long-range transport (beyond the localisation length) is

suppressed and that MBL systems are insulators. A rigorous argument is given in

Ref. [118]. Area-law entanglement, where the entanglement entropy is proportional

to the area of a cut (so constant in 1D, where cuts are 0D points) follows for a similar

reason – only l-bits with centres within the localisation distance of the cut contribute

substantially to the entanglement. Since the energy eigenstates are simultaneous

eigenstates of the l-bits, violation of the ETH in every eigenstate follows immediately

as the l-bits should obey the ansatz. Strictly local operators are also quasilocal

deformations of the l-bits (by definition), and these too will violate the ETH; likewise,

because the l-bits are conserved in the dynamics, the expectation value of local

operators will not relax to equilibrium. The lack of level repulsion follows from

the fact that nearby energy eigenstates will have very different l-bit configurations,

preventing them from hybridising.

Finally, we should explain the slow dynamics following a quench from out of

equilibrium. Because the interactions between l-bits [the higher order terms in

Eq. (2.7)] fall off exponentially with l-bit separation, dephasing is exponentially slow

between well-separated pairs of l-bits. This means, conversely, that the distance over

which dephasing acts grows logarithmically in time, and likewise the number of l-bits

contributing to entanglement [119, 120]. However, unlike with the energy eigenstates,

the entanglement following a quench will grow to a limit that scales with the volume

of the system (and is unbounded in the thermodynamic limit). A related argument is

made in Ref. [121] for the power-law relaxation of local observables. This dephasing

makes MBL qualitatively different from Anderson localisation, in which there are

no interactions between localised particles and so entanglement growth following a

quench is bounded.

The area-law entanglement entropy of eigenstates is particularly striking, as this

is a property that MBL states share with the ground states of gapped Hamiltonians.
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The l-bit picture makes this clearer: any product state in the l-bit basis is also the

ground state of a quasi-local, gapped Hamiltonian, so in some sense MBL eigenstates

resemble many-body ground states despite being highly excited. The area-law entan-

glement also means it is possible to accurately approximate MBL eigenstates using

tensor networks, such as matrix product states [MPS, see Eq. (2.11)] and projected

entangled-pair states (PEPS), thus making MBL amenable to efficient simulations

on classical computers such as density matrix renormalisation group (DMRG) or

time-evolving block decimation (TEBD) [122]. The entanglement spectrum (2.4) has

also been shown to have a distinctive power-law form in MBL systems, due to the

l-bit structure of the eigenstates [123].

MBL has been proposed as a form of quantum memory [124], for example

in quantum computers which currently face challenges in keeping qubits coherent

over macroscopic timescales. To reliably store quantum information, both the z-

and x-components of the l-bit must be preserved (equivalent to keeping the l-bits

in phase with each other). However, while the z-components are (by definition)

conserved by time evolution, the l-bits will precess about the z-axis due to interactions

with the other l-bits, leading to the dephasing mentioned above and a changing

x-component [7, 125]. Hence, only classical information is preserved. In principle, it

is still possible to use a modified spin-echo protocol to store quantum information in

an l-bit, and then read it out at some later time – but crucially, this only works for a

single qubit. To store multiple qubits would either take an exponentially complicated

protocol, thus entirely defeating the point of a quantum memory [126, 127], or

inefficiently require large spatial separation between the qubits. This means that

MBL would have to be combined with other phenomena, such as topological order,

to enable efficient preservation of quantum information [29, 30].

2.2.4 Breakdown of many-body localisation

There are some subtleties in the picture of MBL painted in the previous section.

Ref. [115] claims that, in two or more dimensions, the l-bits become susceptible to

boundary instabilities and become “l*-bits”, operators which are only approximately

conserved with [H, τ∗zj ] ∼ O(exp(−L/ξ)). This is reminiscent of strong zero modes

[128], which display similar scaling. In the thermodynamic limit, the dynamics is

frozen, but at finite sizes these decay exponentially slowly. Furthermore, the l*bits
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obey the ETH, but with very narrow spectral functions. With this phenomenology,

many of the defining features of MBL would vanish, including area-law entanglement,

lack of level repulsion, and the ability to sustain forbidden order. In a similar manner,

Ref. [129] claims that there are two classes of MBL, “weak” or “strong” depending

on whether the spectral functions of l-bits in an MBL system weakly coupled to

a bath remain sharp, and that all d ≥ 2 MBL is weak. We also note that some

systems appear to exhibit a mobility edge, an energy (or temperature) above which

the system becomes delocalised [93, 130]. In this case, only a portion of the spectrum

would be MBL. A similar phenomenon appears with Anderson localisation, but

the existence of mobility edges in the many-body case is still debated, with some

recent works claiming these do not exist. In particular, Ref. [131] argued that in the

presence of a mobility edge, there is a non-zero probability of a thermal excitation

sufficiently high-energy to be ergodic, and that such “hot bubbles” might be able to

travel through resonant processes, thus delocalising the entire system at any energy.

This would not be visible in system sizes accessible to numerics, accounting for why

other studies observe mobility edges.

Following on from this, Ref. [39] used similar heuristic arguments to claim

that MBL is unstable in d ≥ 2 to an ergodic inclusion – as well as in d = 1 if

the localisation length were greater than 1/ ln 2, or in the presence of interactions

which decayed slower than exponentially with distance. The idea is that the ergodic

grain would delocalise nearby degrees of freedom, incorporating them into a growing

thermal region, which would then have even greater thermalising power due to the

increased density of states. However, interactions between the grain and the bulk

drop off exponentially with the localisation length. If the density of states grows

more quickly than the interactions fall, then the grain will grow forever in a thermal

avalanche.

To make this argument more concrete, consider an ergodic grain of linear

dimension ℓb acting as a bath in an otherwise fully localised system of dimension d.

We assume that we have been able to construct perfect l-bits, and that these l-bits

have no interactions between themselves; that is, ε(k) = 0 for all k > 1 in (2.7). We

also assume (for now) that the physical interactions are short-ranged. Therefore,

their only couplings are with the bath, and these fall off exponentially with distance,
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Figure 2.4: When a rare low-disorder region leads to an ergodic grain in an otherwise
localised system – here, modelled by a chain with separate clean and disordered
regions – two possible scenarios can result. If the rare region, acting like a
thermal bath to the rest of the system, is only able to destabilise a few nearby
l-bits, the MBL phase remains stable to the inclusion (left). Far away l-bits
experience exponentially small interactions with the bath, and so the bath’s
influence spreads logarithmically slowly. On the other hand, the bath may
incorporate nearby degrees of freedom (right), which grow the bath’s density
of states and therefore increase its thermalising power. As a result, a thermal
avalanche spreads through the system and destabilises the MBL phase. Which
scenario occurs depends on the dimensionality and the localisation length.
[From Ref. [132]. Reproduced with permission from Springer Nature.]

on the scale of the localisation length ξ. The bath is also assumed to be described by

a random matrix. Following Fermi’s Golden Rule, if the coupling between an l-bit

and the bath exceeds the level spacing in the bath, then the bath will thermalise

that l-bit and grow. We can then calculate whether this expansion will eventually

halt. After growing by a linear distance ℓc, the bath will acquire on the order of

Nc = (ℓb + ℓc)
d − ℓdb new degrees of freedom, increasing the density of states in the

bath by a factor 2Nc . At the same time, one would expect the interactions with

the closest l-bits to be of a strength exp(−ℓc/ξ) relative to the original interaction

strength. The growth of the bath will then eventually halt if 2Nce−ℓc/ξ ≤ 1 for some

finite ℓc. Comparing these two factors, it is clear that in d > 1 the density of states

grows superexponentially in ℓc and outcompetes the falling interaction strength. But

in d = 1, then the condition is satisfied if ξ < 1/ ln 2, meaning that the bath will

only thermalise a finite boundary layer, otherwise the localised phase is unstable.

Likewise, if the physical interactions are long-ranged – decaying more slowly than

an exponential – then the growing density of states will outcompete the declining

interactions for any d. These two situations are illustrated in Fig. 2.4.

This threatens the existence of the MBL phase, because in any sufficiently large

system, we will get rare regions with weak disorder arising through pure chance, known

as Griffiths regions [133]. These regions will be locally thermal – and act exactly as
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the ergodic grain above. This suggests that the localisation-ergodicity transition in

the thermodynamic limit may occur at a much higher critical disorder than previously

thought, with a sudden breakdown at critical localisation length ξc = 1/ ln 2. Because

one would need very large system sizes to see one of these rare regions, especially

when compared to the length scales accessible for exact diagonalisation (∼20 spins),

these effects had not previously been explored in numerics. Additionally, it is

argued that (despite the name) the avalanche process would be extremely slow, with

the local thermalisation timescale diverging on approach to the avalanche-driven

transition from the thermal side, putting it well beyond the times accessible to

experiments [37, 134].

Meanwhile, Ref. [135] showed that J.Z. Imbrie’s proof for MBL in d = 1 [36]

does not generalise to higher dimensions, because resonances – kept controlled and

well-separated in 1D – would instead percolate through the system, with arguments

similar to those for the expansion of a thermal avalanche. These assorted phenomena

– particularly that of the thermal avalanche – have combined to sow significant

doubt in the community regarding the existence of MBL in the thermodynamic

limit, with active debate still ongoing today. The argument of Ref. [39] makes

an assumption that the bath can always be described by a random matrix – but

while the matrix has 2ℓb elements, it is representing a subsystem described by O(ℓb)

Hamiltonian parameters, and so must contain correlations. Even if the small thermal

inclusion is initially random-matrix, this may change as the bath absorbs more spins

in the higher-disorder periphery [37]. Despite this, both numerics and experiments

seem to show strong evidence of ergodic inclusions resulting in thermal avalanches

[38, 42, 43, 45, 132, 136, 137].

As an example, in one of these studies, Ref. [132] considers an effective 1D

Bose-Hubbard model constructed in an optical lattice with a site-resolved tunable

disorder potential,

HBH = −J
∑

i

(
aia

†
i+1 + h.c.

)
+
U

2

∑

i

ni (ni − 1) +
∑

i

hinj , (2.8)

where a†i (ai) is the bosonic creation (annihilation) operator at site i. The first

Lclean sites have hi = 0, while the remaining Ldis have quasiperiodic disorder hi =
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Figure 2.5: A 1D Bose-Hubbard model with clean and disordered regions models the effect
of a rare ergodic grain on an MBL system. (a) Density correlations between
all pairs of sites in the system ⟨ninj⟩c, at three different times; the cuts then

show this quantity averaged over the clean sites, g(2)(i). At short times, each
section exhibits separate dynamics, but later, anticorrelations between the two
regions indicate transport across their interface. These decay exponentially
into the disordered region, with a decay length ξd. (b) Correlations within the
clean section, with error bars indicating variation between runs. After a few
tunnelling times τ , this settles to a steady state, indicating the emergence of a
bath. (c) When the bath is small (Lclean = 2), the correlation decay length ξd
grows logarithmically in time, but when the bath is larger (Lclean = 6), growth
accelerates, indicating a thermal avalanche. (d) Single-site particle-number
entropy growth for three sites at varying distances from the bath. After initially
saturating, the entropy begins growing again after a time exponentially large
in the distance from the bath – but only when Lclean = 6. Note that the three
traces are offset for visual clarity. In all figures, solid lines and shaded regions
indicate predictions from exact numerics and their uncertainties, respectively.
[From Ref. [132]. Reproduced with permission from Springer Nature.]

W cos (2πβi+ ϕ), with β =
(
1 +

√
5
)
/2, to ensure there are no accidental rare

regions. This models an ergodic rare region within an otherwise disordered system.

The system is initialised in a state with unity filling at each site, and then proceeds

to evolve under the Hamiltonian (2.8), after which fluorescence imaging is used to

read out site-resolved occupation numbers. In Fig. 2.5(a), the authors calculate

the two-site density correlation, ⟨ninj⟩c, and then average this over all clean sites

j ∈ Lclean. At short times, the two halves of the system develop their own separate

dynamics; however, at long times (compared to the microscopic tunnelling length

τ = 1/J), anticorrelations between disordered sites and clean sites indicate particle

transport across the interface between the two regions. Matching the picture outlined

above, the influence of the thermal inclusion falls off approximately exponentially

with distance, from which a decay length ξd may be extracted. Fig. 2.5(b) shows that

the correlations within the clean region rapidly approach a steady state, confirming

that it does indeed act as a bath. Fig. 2.5(c) then depicts the growth of the measured
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decay length ξd with time, for a small bath (Lclean = 2) and a large one (Lclean = 6).

For the small bath, ξd grows logarithmically in time, confirming again the picture of

a bath which is only able to thermalise nearby l-bits at an exponentially slow rate.

However, a larger bath causes the growth of ξd to accelerate at later times – a strong

indication that the bath is successfully thermalising adjacent degrees of freedom, and

growing in strength. Finally, Fig. 2.5(d) shows the entropy of the particle number

distributions on three sites at varying distances from the clean section – while these

initially saturate, in the case of a large bath (Lclean = 6) the entropy eventually

begins growing again, and at a time which grows exponentially with distance from

the bath, showing that the bath is successively thermalising sites in the disordered

region.

Ref. [132] also found substantial multipoint correlations ⟨ninjnk⟩c between the

bath and the disordered sites, indicating the presence of non-perturbative many-

body processes believed to drive the growth of a thermal avalanche. This highlights

the importance of many-body resonances in the breakdown of the localised phase.

Ref. [33] considers the many-body Thouless parameter, G = ln
∣∣∣ ⟨n+1|Ô|n⟩
En+1−En

∣∣∣, for some

local operator Ô. In the thermal phase, Ô strong mixes nearby eigenstates, such

that ⟨G⟩ ∼ L, while in the MBL phase, matrix elements are exponentially suppressed

such that ⟨G⟩ ∼ −L. The sign of d⟨G⟩
dL therefore provides a sensitive diagnostic of loc-

alisation, and the authors find evidence of an intervening thermal phase between two

MBL phases with different topological orders even with only very weak interactions

(although it is not clear if the localised phase is unstable even to arbitrarily weak

interactions at the critical point).

Some works go even further and claim that MBL, as a stable phase of matter

in the thermodynamic limit, cannot result from random quenched disorder or at

least that the critical disorder is very large [40, 42, 43, 138]. Despite this, study of

MBL still remains relevant. Quasiperiodic potentials do not contain rare regions

and so are not believed to be susceptible to avalanche instabilities in the same

manner, but still exhibit MBL [139–141]. For finite-size systems – or, equivalently, at

finite times – we may also be able to observe a prethermal MBL regime at disorder

strengths below the critical point, which exhibits exponentially slow thermalisation

and apparent frozen dynamics [44, 138, 142]. At intermediate disorder strengths, the
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phenomenology of the MBL regime is controlled by the proliferation or absence of

many-body resonances between eigenstates close together in energy [34, 43, 143–145].

Other works argue that finite-size scaling has been incorrectly applied and conflicts

with analytical results proving the existence of MBL [146]. It is still a substantial

open question, therefore, whether MBL indeed survives in the thermodynamic limit,

and if it does, how to calculate the true critical disorder strength. Furthermore, even

in finite size systems and at finite times the behaviour of the MBL regime is still

unclear.

2.3 Quantum Scars

The discovery of MBL, a robust phase of matter in which every eigenstate violates

the ETH and thermalisation is seemingly prevented entirely, naturally led to the

question of whether there exist other classes of systems which violate the ETH. In

particular, could ETH-violating states coexist with thermal states in a physically

reasonable non-integrable system? Such a system would sit in between the regimes

of integrability and quantum chaos, breaking the strong ETH – which requires the

ansatz to hold for every state with finite energy density – but not the weak ETH,

which only requires it for almost all such states. Indeed, Ref. [6] stated that, “it

would indeed be very interesting if there existed some experimental isolated systems

that could be shown to fail to thermalise from certain states that were carefully

prepared.”

The experimental discovery in recent years of so-called quantum many-body

scars in a Rydberg atom simulator [9] showed that this phenomenon, known as

weak ergodicity breaking, is indeed possible. The system, which is equivalent at

low energies to a spin-1/2 chain in which excitations are forbidden from existing

on adjacent sites, demonstrated atypical dynamics with oscillatory behaviour and

periodic revivals from charge density wave (CDW) initial states, but thermalising

behaviour when starting in other states; see Fig. 2.6 and Fig. 2.7. These states were

dubbed quantum many-body scars (QMBS), due to their similarity to exceptional

states in single-particle quantum billiards. This stands in contrast to MBL, integrable,

and ergodic systems, where the qualitative features of the dynamics do not depend

on initial conditions: the variable nature of dynamics is a key signature of quantum

scarring, and this behaviour even holds implications for the general validity of



28 BACKGROUND

-20
0

20

¢
=
2¼

 (M
H

z)

0 0.5 1 1.5 2 2.5 3 3.5
Pulse duration (¹s)

1

5

9
P

os
iti

on

0 0.5 1
Rydberg probability

0

0.5

1

0 0.4 0.8 1.2
Time after quench (¹s)

0

0.2

0.4

0.6

D
om

ai
n 

w
al

l d
en

si
ty

9 atoms
51 atoms
MPS

0 0.4 0.8 1.2
Time after quench (¹s)

0

0.2

0.4

0.6

0.8

D
om

ai
n 

w
al

l d
en

si
ty NN blockade 1=R6 interactions

0

1

2

3

4

E
nt

an
gl

em
en

t 
en

tr
op

y

a

b c d

Ti
m

e
Figure 2.6: (a) Experiments with a Rydberg atom simulator in the Rydberg blockade

regime, in which excitations are forbidden from existing on adjacent sites, show
oscillations between two charge density wave states. (b) Domain wall density
after a quench, showing slow decay of oscillations. (d) Numerical simulations of
25 Rydberg atoms, showing also slow growth in entanglement entropy; taking
into account the full 1/R6 interactions causes the oscillations to decay more
quickly than assuming a perfect blockade. [From Ref. [9]. Reproduced with
permission from Springer Nature.]
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entanglement. Here, ∆S is the rate of entanglement entropy growth. [From
Ref. [18]. Reproduced with permission from Springer Nature.]
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statistical mechanics [6].

In subsequent sections we will look at the phenomenology of quantum scars, the

proposed theoretical underpinnings, and the connections between QMBS and their

single-particle equivalents.

2.3.1 Persistent oscillations in chaotic systems

An atom in a Rydberg state has one or more electrons in a highly-excited orbital

(that is, with large principal quantum number n). Rydberg states have a very long

lifetime and, due to the large radius of high-n electron orbitals, result in strong

repulsive van der Waals interactions. Ref. [9] realises a chain of atoms which are

resonantly driven between the ground state and a Rydberg state, forming effective

spin-1/2 particles; writing the ground state as |◦⟩ and Rydberg state as |•⟩, the
Hamiltonian may be written,

HRyd =
∑

j

Ω

2
σxj −

∑

j

∆nj +
∑

j<k

Vjknjnk , (2.9)

where σx = |◦⟩⟨•|+ |•⟩⟨◦|, nj = |•⟩⟨•|, and Vjk = C|j − k|−6 with C > 0. When C is

large, the interaction term introduces an extreme energy cost to adjacent excitations,

a regime known as the Rydberg blockade.

Fig. 2.6(a) shows how remarkably, when initialised in the charge density wave

state |Z2⟩ = |◦ • ◦ • . . .⟩ and placed in the Rydberg blockage regime with ∆ = 0, the

system exhibited coherent and persistent oscillations between |Z2⟩ and the translated

state |Z′
2⟩ = |• ◦ • ◦ . . .⟩, yet in any other state it appeared to rapidly thermalise.

Likewise, as shown in Fig 2.6(b), the domain wall density following the quench

showed continuing oscillations, although these decayed slowly over time. Numerical

simulations, in Fig 2.6(d), also showed slow growth of entanglement, and that the

oscillations were enhanced when the more realistic 1/R6 interactions were replaced

by a strong nearest-neighbour interaction which entirely forbade adjacent excitations.

As explained above, these results were extremely surprising: until this point, all

many-body systems had been found to exhibit either chaotic or integrable dynamics

at any one energy, but in this simulator, two states at the same energy could have

wildly different behaviours.

In the Rydberg blockade regime, the system can be well approximated by the
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Figure 2.8: (a) Bipartite half-chain entanglement entropy and (b) overlap with the charge
density wave state |Z2⟩ against energy for all eigenstates in the PXP model.
The labelled band of states, exhibiting low entanglement entropy, near-equal
energy spacing, and atypically high overlaps, explain the persistent oscillations
in Fig. 2.7. [Reprinted figure with permission from Ref. [19]. Copyright (2018)
by the American Physical Society.]

following Hamiltonian, known as the PXP model [18, 19]:

HPXP =
∑

j

Pj−1σ
x
j Pj+1 , Pj =

1− σzj
2

. (2.10)

This model exhibits tightly constrained dynamics, as a spin cannot flip unless both

of its neighbours are in the ground state. Crucially, as seen in Fig 2.7, it captures

the key features of the Rydberg blockade regime, including the unusual dynamics.

Numerical simulations of this model following a quench from the state |Z2⟩ also show

the rate of entanglement growth oscillating at the same frequency as the domain wall

density, and furthermore persistent (but weaker) oscillations starting from the state

|Z3⟩, in which every third atom is excited. However, the period-4 charge density wave

state |Z4⟩ and other randomly chosen states are seen to rapidly thermalise. Exact

diagonalisation of the PXP model shows a band of ETH-violating eigenstates [18, 19]

sitting in the middle of an otherwise chaotic system, as seen in Fig. 2.8. These states

have low entanglement entropies and unusually high overlaps with |Z2⟩, and are also

spaced nearly equally in energy, which explains the oscillations – a superposition of
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states with an energy spacing ∆ will return to the original state after a period 1/∆,

an occurrence known as a many-body revival. These states were dubbed many-body

quantum scars, in analogy with “scarred” states in quantum billiard models that are

the remnants of unstable but periodic classical orbits [20, 147–150] – a connection I

will elaborate on in Sec 2.3.3.

The PXP model has now become the paradigmatic example of QMBS, with

oscillatory or long-lived dynamics in an otherwise chaotic system starting from

certain special experimentally-preparable states, and this behaviour explained by a

set of exceptional energy eigenstates which violate the ETH. Another model that has

attracted considerable attention is the AKLT model, itself already a paradigmatic

toy model of symmetry-protected topological (SPT) order (see Sec. 2.4.2), which was

recently found to contain a “tower of states” related by a raising/lowering operator

algebra [10]. Unlike the states in the PXP model, the AKLT scars are perfect – exact

analytical expressions are known for them, they have integer energy spacing (in the

appropriate units), and they provably survive to the thermodynamic limit, at least at

the finely-tuned fixed point of the AKLT model. (Their survival in the wider AKLT

phase is still an open question.) Notably, the model has continuous SU(2) symmetry,

which is known to forbid MBL [151, 152] – but this does not seem to have prevented

weak ergodicity breaking.

Just as Rydberg atom simulators led to the first discovery of QMBS, experiments

continue to provide new insights into this novel form of ergodicity breaking. For

example, [153] used a superconducting quantum processor (depicted in Fig. 2.9),

Figure 2.9: A superconducting processor containing 36 qubits in a 6× 6 grid (grey) and 60
couplers (yellow), which models a chain inspired by the Su–Schrieffer–Heeger
(SSH) model of polyacetylene. The chain has alternating strong and weak
couplings Ja (dark yellow) and Je (light yellow), forming oscillating dimers in
the absence of random cross-couplings Jx (blue). [From Ref. [153]. Reproduced
with permission from Springer Nature.]
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with 36 qubits in a 6× 6 grid and 60 couplers (which are two-level systems, linking

adjacent qubits), to simulate a chain inspired by the Su–Schrieffer–Heeger (SSH)

model of polyacetylene. This chain has alternating strong and weak couplings, as well

as random cross-couplings between well-separated sites which break the integrability,

and it is best to think about this chain in terms of the dimers connected by the

strong couplings, which can be in the states |d0⟩ = |00⟩, |d1⟩ = |11⟩, |d−⟩ = |01⟩, and
|d+⟩ = |10⟩. In the absence of the cross couplings, the chain stably oscillates between

two states |Π⟩ = |d−d+d−d+ . . .⟩ and |Π′⟩ = |d+d−d+d− . . .⟩. In this limit, the

system is fully integrable, but remarkably, this particular oscillation persists even as

the integrability-breaking perturbations are included, despite the system thermalising

from any other initial state. Fig. 2.10 shows the dynamics of the superconducting

processor following a quench to either |Π⟩ or an arbitrary spin product state with

unity filling, showing clearly that significant oscillations only result from |Π⟩ or its
counterpart. We additionally note that the PXP model has been realised on a tilted

optical lattice [154], where a linear potential creates an emergent kinetic constraint –

this should be contrasted with the Rydberg atom simulators of Ref. [9], which have

strong 1/R6 van der Waals interactions that are then approximated by the PXP

constraint.

2.3.2 Theories of quantum scarring

While there exist explanations for certain classes of quantum scars, there is still

not a unified picture for quantum scarring as a whole, although it has now been

shown that many-body revivals can only be explained by a band of exceptional scar

states [155]. In many cases, just like in the AKLT model, scars take the form of a

tower of states with constant energy separation [11–16]. However, this is not the

only paradigm: quantum scars have also resulted from the existence of decoupled

or weakly coupled Krylov subspaces [156]. This is a phenomenon in which the

space of all states obtained by repeated action of the Hamiltonian on some state

|ψ⟩ – that is, span
{
|ψ⟩ ,H |ψ⟩ ,H2 |ψ⟩ . . .

}
– does not span the Hilbert space, which

means that the dynamics starting from |ψ⟩ remain within this subspace for all time.

Such subspaces may be integrable or chaotic, coexisting within the same system,

and hence some may be classified as a set of quantum scars. In the extreme case,

this results in Hilbert space fragmentation [157, 158], in which the Hilbert space
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Figure 2.10: Oscillating quantum scars in the superconducting quantum processor from
Fig. 2.10. (a, b) Dynamics of the on-site occupation number ni, starting
respectively from either the scarred state |Π⟩ or an arbitrary spin product
state with unity filling, with L = 30. In (a), oscillations between |Π⟩ and
|Π′⟩ are clearly observed, but in (b) the system appears to decay to thermal
equilibrium. (c, d) Generalised imbalance I(t) ∝ (1/L)

∑
i ⟨σzi (t)⟩ ⟨σzi (0)⟩,

for the two states in (a)and (b) respectively. For the scarred state in (c), the
imbalance shows clear periodic oscillations, but for the random initial state
in (d), the imbalance rapidly decays to zero. (e, f) Fourier transform of the
imbalance I(t), gα(ω), for the two states respectively. Both traces exhibit
peaks at a particular frequency ω1, but the peak is much larger for the scarred
state in (e). (g) The height of the Fourier peak gα(ω1) for the scarred state,
extracted from (e), against the ratio between intra- and inter-dimer couplings
Ja/Je. (h) Height of the Fourier peak, g2α(ω1), for all states with unity filling.
Green stars highlight the two quantum scars |Π⟩ and |Π′⟩, which are the
only states with a substantial peak. In the insets of (c-f) and in (g), solid
lines depict exact numerics for a smaller system L = 20. [From Ref. [153].
Reproduced with permission from Springer Nature.]

is split into exponentially many disconnected subspaces (some of which may only

contain one or a handful of states). However, such scars are not usually equally

spaced in energy and do not always lead to revivals. Moreover, it is also possible to

systematically construct models that violate the ETH, using a technique known as

projector embedding [17] to insert arbitrary subspaces into otherwise chaotic systems.

While of theoretical interest, this final construction provides little insight into the

physical origin of scars.

It has been shown that many of the aforementioned towers of states may in

fact derive from broken symmetries in the Hamiltonian [15], due to the presence of

spectrum-generating algebras (SGAs). Specifically, consider a Hamiltonian Hsym with

some continuous non-Abelian symmetry G: take G = SU(2), which has raising and
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lowering operators Q± and a generator Qz such that [Qz, Q±] = ±Qz. In this case,

the spectrum will contain degenerate multiplets of eigenstates, with each multiplet

labelled by the Casimir operator Q2 and the states within each multiplet by Qz. By

applying an additional term HSG e.g. ωQz), the degeneracy may be broken without

altering the eigenstates, creating towers of states. Finally, some integrability-breaking

term HA is chosen which annihilates one particular tower, leaving it unchanged as

a set of equally spaced quantum scars in an otherwise chaotic spectrum. This is a

generalisation of previous work which connected scars to an effective SU(2) picture

[14, 159]; the difference here is that this construction can be applied to any continuous

non-Abelian symmetry.

Despite being the first scarred system to be discovered experimentally, the PXP

model on the other hand so far appears to have defied neat categorisation, and the

origin of the scars within it is still an open question. Unlike in the SGA construction

above, the scars in it are not known exactly, and have only been approximated

analytically. In spite of this, some progress has been made towards understanding

them. It has been shown that the PXP model may be deformed to an integrable

point, but such a deformation destroys the scars, implying this is not connected

to their presence [19]; but other deformations appear to move the model closer to

integrability and enhance the oscillations [160]. The scars also appear to be linked

to critical states at an Ising-type phase transition induced by a transverse field [161]

(although these critical states exhibit thermalising dynamics), while it has been

shown that PXP scars can survive a quench through a (different) critical point [162].

Additionally, a certain weak quasi-local deformation to the model leads to emergent

SU(2)-spin dynamics, making the revivals virtually perfect [163] – which could mean

that the scars do in fact originate from an SGA. The PXP model also continues

to exhibit scarring when looking at higher-spin equivalents; it has been suggested

recently that combining dynamical constraints with large local degrees of freedom

makes systems amenable to quantum scarring [164].

Finally, let us talk about the interplay between disorder, MBL, and quantum

scars. This is an important question for experiments, as certain quantum simulators

which may be used to investigate scars exhibit natural variations due to imperfections.

It has been shown that scars may exist in disordered systems [13, 165], but these
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works concerned models in which the disorder was fine-tuned to not affect the scars.

Recent work on the PXP model has shown that not only can the scars survive weak

generic disorder, but that such disorder helps uncover a deeper multi-tower structure

which had previously gone unnoticed [166]. Increasing the disorder strength then

leads to fully ergodic behaviour (as the scars are destroyed), followed by constrained

and then unconstrained MBL. However, there is still some dispute over whether such

constrained systems are able to localise at all. While Ref. [167] claims that transverse

field disorder in the PXP model leads to a stable MBL regime, it also notes that the

constraints can frustrate the ability of spins to align with this field, and instead lead

to ergodic or critical behaviour. Likewise, Ref. [168] finds that the combination of

constraints and disorder in fact leads to an induced interaction, which can prevent

MBL entirely in the thermodynamic limit no matter how strong the disorder.

As quantum scarring is a relatively young field, numerical techniques for studying

it remain limited: most studies have either shown the existence of scars analytically,

or used exact diagonalisation or certain MPS-based techniques. One recent helpful

development is a variant of DMRG, dubbed DMRG-S, which is able to systematically

locate low-entanglement states and derive an MPS representation [169]. One other

technique, the time-dependent variational principle (TDVP) [170, 171], allows one to

construct effective equations of motion within a variational manifold, which has led

to new theoretical insights via connections to QMBS’s single-particle namesake – we

will discuss these in the next section.

2.3.3 Connection to single-particle quantum scars

Consider a classical particle moving around inside a box, bouncing elastically off the

walls with equal angles of incidence and reflection – a problem known as dynamical

billiards. Depending on the shape of the box, the dynamics could be integrable or

chaotic. On one hand, a circular box results in a predictable trajectory (e.g. every

bounce has the same angle of incidence) and so the ball does not fully explore the

phase space4 available to it, entirely avoiding the centre of the circle in almost all

cases. On the other hand, by extending this circle into a lozenge made of a rectangle

with semicircular ends – known as the Bunimovich stadium [172] – the dynamics

becomes completely unpredictable; see Fig 2.11(a). Particles launched close together

4The phase space here is the set of all points in the box combined with the direction the ball
moves in.
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Figure 2.11: (a-b) The motion of a particle launched along an arbitrary trajectory in
the Bunimovich stadium (a) is unpredictable. However, there exist certain
periodic orbits (b, red) which make up a vanishing fraction of phase space.
These orbits are unstable: a slight deviation (b, blue) will eventually result
in chaotic dynamics. (c-d) A typical eigenstate of the quantum stadium (c)
appears random. However, there exist certain rare eigenstates (d) clustered
around the unstable periodic orbits of the classical stadium, which make up a
vanishing fraction of the spectrum as ℏ → 0. These are identified as quantum
scars. (e) Time-evolved fidelity of a wavepacket launched either at a 45 deg
angle (red) or vertically between the straight walls (blue). The former rapidly
decays, while the latter shows periodic revivals. (f) Spectral decomposition
of the two initial states from (e). The state which leads to revivals (blue)
exhibits strong overlaps with equally-spaced eigenstates, which are exactly
the quantum scars of (d). [From Ref. [20]. Reproduced with permission from
Springer Nature.]

will diverge exponentially and explore the entirety of phase space. Likewise, when

one quantises these problems, turning them into the case of a single particle in an

infinite well, the systems match their classical counterparts. There is no ETH or a

notion of thermalisation for single particle systems, but in chaotic cases such as the

Bunimovich stadium, the eigenstates display level repulsion and appear essentially

random [20] – see Fig 2.11(c) – while the circular well will have analytic solutions

with well-defined quantum numbers.

Yet if we look closely at the Bunimovich stadium in Fig 2.11(b), we notice that

we can bounce a particle vertically between the two straight walls of the rectangle to

obtain a perfectly periodic orbit, albeit an unstable one: it is not perfectly ergodic.

These orbits have vanishing measure in phase space, so the stadium is still considered

chaotic. Remarkably, when we look at the energy eigenstates of the stadium, we

find certain special states whose probability density clusters around the unstable

orbits [20]; one of these is shown in Fig 2.11(d). Like the classical orbits, these states

are a vanishing proportion of the full spectrum, disappearing in the classical limit
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ℏ → 0 (equivalent to going to very high energies). Furthermore, if we launch a tight

wavepacket along one of these orbits, we observe quantum revivals in Fig 2.11(e),

and the eigenstate decomposition of this initial state shows a strong overlap with the

aforementioned special states in Fig 2.11(f). This was termed quantum scarring, and

is the namesake of QMBS due to the strong similarity between the two phenomena.

But there is one piece missing: single-particle quantum scars corresponded to unstable

periodic orbits in classical systems, but there are no obvious classical counterparts

to systems like the PXP or AKLT model, which are quantum in origin.

There is a way to create one, though. The time-dependent variational principle

(TDVP) can be used to determine the best approximation to full Hilbert space

dynamics in a state constrained to a variational manifold [170, 171] such as an

MPS of fixed bond dimension. TDVP yields a set of (coupled) ordinary differential

equations for the parameters of the state, which then may be integrated to obtain a

semiclassical trajectory through the manifold. It also naturally respects conserved

quantities, providing a symplectic integrator is used to obtain the final trajectory.

By using a simple ansatz for the PXP model, expressed in the form of an MPS,

Ref. [173] was able to apply the TDVP to the model and uncover unstable, periodic

orbits passing through the same two |Z2⟩ states between which oscillations were

observed in Rydberg simulators [9, 18], thus establishing the missing link between

the single- and many-body cases. One can also directly quantify the error between

the variational approximation and full many-body time evolution – this was shown

to be substantially reduced by the deformations applied in Ref. [160]. By converting

quantum mechanical time evolution into classical equations of motion, within which

periodic orbits can be clearly identified and analytically studied, TDVP has been

useful for investigating the changing behaviour of QMBS across a wide variety of

parameter regimes [162] as well as systematically constructing new families of scarred

Hamiltonians [174]. Furthermore, Ref. [175] uncovers a set of quasimodes in the PXP

model which also arise from a “requantisation” of the semiclassical TDVP system,

demonstrating a correspondence between classical and quantum cases similar to that

observed in single-particle scars.
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2.4 Topological Order

Many-body localisation and quantum many-body scars both concern highly excited

states, up to and including those at infinite temperature. However, we now look

at a very different topic: that of topological order, which captures how systems

can undergo phase transitions at zero temperature without spontaneous symmetry-

breaking or a local order parameter. Topologically non-trivial systems have a gapped

ground state, which may be degenerate, and which cannot be continuously deformed

to a trivial product state by perturbations to the Hamiltonian without closing the

gap. The gap and the degeneracy as well as certain signatures of this order are said to

be topologically protected, and the closure of the gap is identified with a topological

phase transition. In this thesis, we are more interested in symmetry protected

topological (SPT) order, in which only perturbations which respect a particular

symmetry of the Hamiltonian will preserve topological order [176]. SPT order is

typically associated with protected edge modes, degenerate entanglement spectra,

and non-local order such as string order or topological entanglement [21–27], but

at finite temperature interactions with the bulk cause the edge modes to decohere,

and other signatures of SPT order are lost. Unlike l-bits, which can only store

classical information efficiently, edge modes can store quantum information at zero

temperature. However, if these could be preserved beyond the ground state, they

could be used to build a robust quantum memory [124]. Quenched disorder has

been shown to preserve signatures of SPT order even up to infinite temperature

[29–31, 35, 177, 178], while topological quantum scars have been inserted into the

spectrum of otherwise chaotic models [179, 180]. The interplay between SPT order

and ergodicity breaking phenomena is a core thread in this thesis: in the following I

will briefly review the main properties of SPT order, as well as methods for stabilising

it at finite temperature.

2.4.1 Classification of topological order

Until the discovery of topological order, phase transitions were believed to be fully

explained by Landau’s paradigm of spontaneous symmetry breaking, in which all

phases could be classified by a local order parameter. However, beginning with the

discovery of the fractional quantum Hall effect in the 1980s, it was becoming clear

that there was more to quantum mechanical phases than symmetry breaking, and
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that an entirely new theory of phase transitions would be needed to describe such

phenomena. This led to the idea of topological order, which describes the phases

of gapped quantum systems at zero temperature and classifies their ground states.

A perturbation to such a system, so long as it does not close the gap, will only

result in a local restructuring of the ground state, and so all systems that can be

smoothly transformed into one another without closing the ground state gap form an

equivalence class, labelled by topological invariants. This is reminiscent of topological

invariants in geometry, for example the number of holes in a manifold, which cannot

be altered by a smooth deformation. In particular, the topological order of a state

cannot be changed by finite-time evolution under a local Hamiltonian or, equivalently,

under a finite-depth circuit of local unitaries.

In one dimension, the ground state of gapped Hamiltonians, which follow an

area law and have short-range correlations, can be described by a matrix product

state (MPS),

|ψMPS⟩ =
∑

{j}
Tr
(
A

[1]
j1
A

[2]
j2
. . . A

[L]
jL

)
|j1j2 . . . jL⟩ (2.11)

where for each site ℓ, A
[ℓ]
jk

are a set of d tensors A
[ℓ]
1 , A

[ℓ]
2 , . . . , A

[ℓ]
d , each of size

χ× χ, where χ is known as the bond dimension and d is the local Hilbert dimension.

(The above equation is for periodic boundary conditions; for open boundaries, the

matrices on the ends are replaced by vectors and there is no trace.) By applying a

renormalisation group technique to these states, it is possible to show that there is

no topological order in one dimension: all possible ground states flow towards the

same fixed point, in the equivalence class of a product state, and are therefore in

the trivial phase [176]. However, this all changes if we introduce symmetries. If we

demand that the Hamiltonian respects a particular symmetry, then we likewise have

to respect that symmetry during the RG, and the proof is no longer valid. Instead,

we can classify phases by the action of this symmetry (or symmetries) on the state;

this may be combined with spontaneous symmetry breaking, in which case we look

at the action of the unbroken subgroup. These phases are called symmetry-protected

topological (SPT) phases, and are only robust to perturbations that respect the

protecting symmetry.

If we act on an MPS tensor Aj,αβ with a symmetry g ∈ G that acts on-site (such
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as Z2 spin flip symmetry), we can “push” it through the tensor onto the bonds:

u(g)jkAk,αβ = a(g)R(g)−1
αα′Aj,α′β′Rβ′β(g) , (2.12)

where u(g) is a representation of g on the local Hilbert space, a(g) a one-dimensional

representation (i.e. a complex phase), and R(g) a representation on the bonds.

But because a quantum state is only defined up to an overall phase, the R(g) can

form a projective representation, such that R(g1)R(g2) = ω(g1, g2)R(g1g2). The

equivalence classes of projective representations are labelled by elements of the

second cohomology group ω ∈ H2(G,C), and it is these that define the SPT phase.

Using these techniques, Refs. [176, 181] exhaustively classify SPT phases in 1D spin

systems (and by the Jordan-Wigner transform, fermionic systems too).

At the same time, other groups made similar insights into SPT order, through

from slightly different perspectives. Refs. [24, 182] instead classified SPT phases by

their entanglement spectra (2.4), again using projective representations of symmetries.

Meanwhile, Refs. [183, 184] looked at the edge modes associated with topological

order in chains of Majorana fermions with open boundary conditions, and the action

of symmetries on these edges, finding that there were just 8 distinct SPT phases in

fermionic chains when interactions were present.

2.4.2 Edge modes, entanglement spectra, and string order

SPT order typically leads to phenomena such as protected edge modes, degeneracies in

the entanglement spectrum, and non-local ordering such as string order or topological

entanglement [21–27]. Consider, for example, the celebrated AKLT (Affleck, Kennedy,

Lieb, Tasaki) model, a spin-1 chain with the following Hamiltonian:

HAKLT =
∑

j

P
(2)
j,j+1 , P

(2)
j,j+1 ∝ S⃗j · ⃗Sj+1 +

1

3

(
S⃗j · ⃗Sj+1

)2
. (2.13)

Here, P
(2)
j,j+1 is the projector from two spin-1s onto spin-2. Since a projector is positive

semi-definite, the ground state is the state annihilated by all projectors. This can be

satisfied by splitting each spin-1 into two virtual spin-1/2 degrees of freedom, and

then placing virtual spins from adjacent sites into spin-singlet states. As each singlet

has total spin 0, and every adjacent pair of physical spin-1 contains one of these
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singlets, it is impossible for the total spin to be 2. Therefore by construction, this

state is annihilated by HAKLT and is the ground state. It can also be represented

exactly by an MPS of bond dimension χ = 2, given by A+ =
√

2
3σ

+, A0 = −
√

1
3σ

z,

A− = −
√

2
3σ

−, and analysis of this state shows that is in an SPT phase [21, 22, 24]

now known as the Haldane phase, protected by any one of three symmetries – the

Z2 × Z2 group of π-rotations around the x, y, and z axes; time reversal symmetry;

and spatial inversion [25].

However, now consider what happens when we introduce open boundary condi-

tions. Every virtual spin-1/2 in the bulk is paired into a singlet, but at the edges

these are left dangling. Remarkably, spin-1 degrees of freedom have been fraction-

alised into spin-1/2s, whose signatures can be measured in experiment. Crucially,

these edge modes are unconstrained by the Hamiltonian, and take zero energy to

flip, meaning that the ground state is four-fold degenerate, with the ground state

manifold encoding the edge degrees of freedom. If we move away from the AKLT

point (for example, by changing the coefficient of the biquadratic term (S⃗j · ⃗Sj+1)
2),

this degeneracy is preserved in the ground state so long as we do not close the gap

and leave the SPT phase.

We can also look at measuring the entanglement across a bipartition of the chain.

Because we are always cutting a single spin singlet, there is a constant S = ln 2

entanglement entropy, and furthermore the entanglement spectrum is exactly two-

fold degenerate. Refs. [24, 182] show that this entanglement degeneracy is more

general, and persists even in the absence of edge modes (which only appear in certain

cases), allowing one to classify SPT phases through the projective representations

of symmetries acting on the MPS representation of ground states (similarly to

Refs. [176, 181]). Where the irreducible representations of these symmetries are all

multi-dimensional, this leads to protected degeneracies in the entanglement spectrum.

This can be illustrated by considering a variation of the MPS ansatz, where the

matrices A
[ℓ]
m are split into on-site matrices Γ

[ℓ]
m and a bond matrix Λ

[ℓ]
such that

Γ
[ℓ]
mΛ

[ℓ]
= A

[ℓ]
m . The eigenvalues of Λ[ℓ] are exactly the Schmidt coefficients of a

bipartition at that bond, and so give the entanglement spectrum. Furthermore,

and suppressing the ℓ-dependence, we can always choose Γm, Λ such that the
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transfer matrix,

Taa′;bb′ =
∑

m

Γmab(Γ
m
a′b′)

∗ΛbΛb′ , (2.14)

has a unique largest eigenvalue 1 with right eigenvector δbb′ = I.

To summarise an example from Ref. [24], consider the action of a bond-centred in-

version symmetry, which acts locally as Γm → ΓTm = eiθIU †
IΓmUI with UI unitary [c.f.

R(g) in Eq. (2.12)]. By iterating this twice, we arrive at Γm = e2iθI (UIU
∗
I )

†
IΓmUIU

∗
I ,

which in fact implies that UIU
∗
I is an eigenvector of the transfer matrix with ei-

genvalue e2iθI . But by assumption, the transfer matrix has a unique unit-modulus

eigenvalue 1, with eigenvector I, so e2iθI = 1 and UIU
∗
I = eiϕI I for some phase ϕI .

Since UI is unitary, then UTI = UIe
−iϕI and e−2iϕI = 1, which crucially implies that

ϕI = 0 or π. ϕI cannot change continuously, and so can only change at a phase

transition, hence defining two SPT phases. If ϕI = π, UI is antisymmetric, and

since the states in a Schmidt decomposition also transform under UI , this causes

the entanglement spectrum to be doubly degenerate. One can show that inversion

symmetry acts upon the AKLT matrices with ϕI = π, and therefore this degeneracy

is associated with the entire Haldane phase.

Since σ±(σz)nσ± = 0 for any n ≥ 0, we can also see from the MPS representation

that if we write the ground state out in the spin product-state basis and filter out the

sites in the |0⟩ state, every basis state will be formed of alternating |+⟩s and |−⟩s (for
example, |+00−0+00−+−⟩). This defines a non-local order parameter, known as

the string order parameter, which is constructed to be equal to 1 when this condition

is satisfied and 0 otherwise. Again, this parameter remains non-zero throughout the

entire SPT phase. This can be generalised: Ref. [185] provides a construction for

detecting any SPT phase in one dimension using a string order parameter.

These features of the AKLT model are exemplary of the phenomena associated

with SPT order in general. For example, the transverse field Ising model (TFIM)

can be written in terms of Majorana fermions using the Jordan-Wigner transform,

with a pair of fermions making up each spin-1/2:

HTFIM =
∑

j

−Jσzjσzj+1 − Γσxj (2.15)

In the ferromagnetic phase these fermions become paired up analogously to those in
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the AKLT ground state – again leaving an unpaired fermion at each end of an open

chain. This results in a two-fold ground state degeneracy, protected by Z2 spin flip

symmetry, and a single spin-1/2 edge zero mode (bilocalised to the two ends of the

chain). However, unlike in the AKLT model, where the protected degeneracy only

exists in the ground state, in the TFIM it is replicated through the entire spectrum:

the edge mode forms what is known as a strong zero mode.

A strong zero mode results from any operator Ψ satisfying the following three

properties [128, 186]:

1. ∥[H,Ψ]∥ = O
(
e−αL

)
as L→ ∞ for some α > 0 and a chain of length L,

2. {D,Ψ} = 0 for some finite symmetry D (that is, where [H,D] = 0 and Dm = I
for some integer m > 1),

3. Ψn ∝ I for some integer n > 1.

Because Ψ anticommutes with the symmetry, its action maps states onto a different

symmetry sector, but the first property ensures that this new state will also be an

eigenstate (up to exponentially small corrections). The third property simply ensures

the new states are normalisable. In the thermodynamic limit, therefore, there is an

exact pairing of states across symmetry sectors.

In the TFIM, it is easy to show that in the Γ = 0 limit, Ψ = σz satisfies these

properties for the spin-flip symmetry D =
∏
j σ

x
j , and in fact is an exact zero mode

with [H,Ψ] = 0. One can the perturbatively construct the operator in the entire

|J | > |Γ| phase, solving order by order to eliminate [H,Ψ], as,

Ψ ∝ σz1 +
Γ

J
σx1σ

z
2 +

Γ2

J2
σx1σ

x
2σ

z
3 + · · · =

L∑

j=1

(
Γ

J

)j−1

∏

k<j

σxk


σzj . (2.16)

This now has nonzero commutator with the Hamiltonian, but still satisfies all three

conditions, and remains localised to the edge with an exponentially decaying tail.

This means that the edge mode can be addressed at the edge, without disturbing the

state deep into the bulk, and moreover that the physical edge spin σz1 has an infinite

coherence time in the thermodynamic limit at any temperature. It is non-trivial that

this should exist – for example, condition 3 requires precise cancellation between a

large number of terms – and the construction does not work starting from e.g. σz2

(although it will for σzL) or for all models with edge modes.
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Figure 2.12: (a) Time evolution of ⟨σz1(t)⟩ following a quench from a random σz basis
product state in the hj = 0 and g > 0.5 regime, and the corresponding Fourier
transform, showing peaks due to single-particle modes. The two sharp peaks
near ω = π are attributed to the π edge modes. (b) The single-particle
quasienergy spectrum against g for L = 6, 12, and 18. The spectra exhibit
a splitting ∆ between the edge modes, and a bulk-edge gap Ξ. (c) Sections
of the spectra near ω = π, for various system sizes L, showing that the edge
mode splitting ∆ shrinks with increasing L. Plotting ∆ against L for various
g, we see that the splitting shrinks exponentially with L for g sufficiently
far from the critical point, exactly as predicted by theory. [From Ref. [187].
Reprinted with permission from AAAS.]

Figure 2.13: (a) In the Majorana representation, the Ising model has two edge modes,
each formed of a sum of single fermions with decreasing weights away from
the edges. In the spin representation, these single fermions are replaced by
non-local Pauli strings C. (b) The magnitudes of the coefficients in the Pauli
string expansion of the edge modes, as a function of how far into the bulk
these Pauli strings extend (here labelled “Correlator index, n”). This shows a
clear exponentially decay, matching predictions. [From Ref. [187]. Reprinted
with permission from AAAS.]
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These edge modes have been detected directly in experiment. For example,

Ref. [187] implements a kicked Ising model, a Floquet system with time evolution

operator,

UF = e−
i
2

∑L
j=1 hjσ

z
j e−

iπJ
2

∑L−1
j=1 σ

z
j σ

z
j+1e−

iπg
2

∑L
j=1 σ

x
j , (2.17)

on an array of superconducting qubits. With hj = 0, this model is integrable with

a Z2 spin-flip symmetry, and exhibits two different phases: with g > J = 0.5, each

eigenstate of UF with quasienergy θ (such that the eigenvalue is eiθ) has a partner

with quasienergy θ + π, connected by a pair of Majorana edge modes (MEMs) χL

and χR known as π-MEMs. On the other hand, with g < 0.5, each state has a

partner with the same quasienergy, connected by a pair of “0-MEMs”, but these

were not a focus of this experiment. These edge modes can be expressed as a sum of

Majorana fermions, decaying away from the edge with some localisation length ξ –

upon application of a Jordan-Wigner transform, these become non-local operators

with long parity strings (see Fig. 2.13). Fig. 2.12(a) shows the time evolution of

⟨σz1(t)⟩ following a quench from a random σz basis product state in the hj = 0 and

g > 0.5 regime. Looking at the Fourier transform of this quantity, the single-particle

modes can be resolved as peaks at the corresponding quasienergies, with two sharp

peaks near ω = π due to the π-MEMs. Fig. 2.12(b) then plots this spectrum against

g for L = 6, 12, and 18, showing that near g = 0.5 there is a large splitting δ between

the the two π-MEMs, but this narrows as g gets larger and L increases. On the

other hand, there is also a bulk-edge gap Ξ that remains nonzero for all g even with

increasing L. If our understanding of SPT edge modes is correct, the splitting ∆

should shrink exponentially with L – and this is exactly observed in Fig. 2.12(c), at

least for g sufficiently far from the critical point.

Intriguingly, after the integrability-breaking perturbations hj are turned on (with

the hj distributed i.i.d. in [−1, 1]), signatures of the edge modes are preserved in the

dynamics:
〈
σzj (t)

〉
for j = 1, L alternate in sign with slowly-decaying magnitude,

even as the same quantity in the bulk rapidly decays to zero. These long lifetimes

are attributed to prethermalisation, caused by the bulk-edge gap Ξ depicted in

Fig. 2.12(b). Additionally, the quantity ⟨σz1(0)C(t)⟩ exhibits similar slow exponential

decay for certain Pauli strings C =
(∏

j<k σ
x
j

)
σy,zk , which the authors attribute to

overlap with the corresponding π-MEM. By calculating the decay rate for a number
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of such C the left π-MEM, χL, can be reconstructed, and the magnitudes of the

coefficients – shown in Fig. 2.13(b) – are found to decay exponentially into the bulk,

exactly as predicted by theory. A similar method can also be used to find the right

π-MEM, χR. The localisation length ξ of this decay was also found by Ref. [187] to

diverge approaching the critical point g = 0.5, as expected.

2.4.3 Robust topological order at finite temperature

Many quantum technologies require the ability to coherently store quantum informa-

tion, protected from noise, for long time periods: for example, a quantum computer

may need to store intermediate results of calculations. But this is still some way off

at present: state-of-the-art quantum memories, even with error-correcting codes, are

only able to achieve coherence times of about 2ms [188]. For this reason, there is

considerable interest in mechanisms which can lead to long coherence times, and one

obvious candidate is topological order – in particular the edge modes. However, at

finite temperatures topological order typically vanishes, and so methods to stabilise

it beyond the ground state are needed.

Eq. (2.16) suggests the use of a strong zero mode, but unfortunately, upon

adding integrability-breaking interactions (such as a nearest-neighbour
∑

j Γ2σ
x
j σ

x
j+1

or next-nearest-neighbour
∑

j J2σ
z
jσ

z
j+1 term), the expression becomes vastly more

complicated, with a combinatorial increase in terms per order of perturbation theory

[189]. Furthermore, the expression no longer converges to an exact strong zero mode,

with the error ∥[H,Ψ]∥ now growing after some critical order n∗ (which depends upon

the model parameters), even in the thermodynamic limit. As a result the perturbative

expansion must be truncated at this order, resulting in a strong almost zero mode

which is only approximately conserved; that is, it has a finite coherence time, with

σz1 . The expansion is also expected to break down at some order in perturbation

theory when J2/J is rational due to poles in the expansion, which presents further

problems: these represent resonant processes enabled by the interaction terms which

can decohere the edge mode. One might hope to pick an irrational J2/J , but since

the rationals are dense in the reals, there will always be a pole nearby at a sufficiently

high order in perturbation theory. However, with the right choice of J2/J , this may

take a very long time to affect the dynamics. This can also be looked at through

the lens of prethermalisation, in which a system relaxes at short times to a state
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described by an effective Hamiltonian with potentially very different features to the

true Hamiltonian (or Floquet operator), before later approaching thermal equilibrium

[190].

Even so, at finite temperatures and with finite interaction strengths, this edge

mode is also only able to store classical information: while σz1 is conserved, to store

quantum information phase coherence must be preserved [191]. Another way to

put this is that, in terms of logical operators, we need both σz and σx to have

a long-lived qubit. Ref. [28] finds that in a certain spin-1/2 chain with three-site

“cluster” operators and Z2 × Z2 SPT order, a coherent edge qubit is able to survive

at infinite temperature when the odd and even sublattices are detuned from each

other. Our research in Chapter 3 suggests that quantum scars may be responsible

for this behaviour, that these scars display signatures of SPT order, and additionally

finds that the scarred manifold exhibits coherence in the bulk of the chain. This

points the way towards using quantum scars to preserve topological order at finite

temperatures, and potentially using this to construct robust quantum memories.

Indeed, projector embedding has been used to insert topologically-ordered scars into

otherwise chaotic models [17, 179], but it is not clear if these scars would be stable

away from fine-tuned points. The AKLT model, which hosts quantum scars [10] but

also topological order [21, 22, 24, 25], would also appear to be a good candidate.

However, despite being directly related to the SPT-ordered ground state by a set of

raising operators, the scars do not appear to exhibit SPT order. Additionally, the

chain hosts a continuous SU(2) symmetry, which is known to prevent MBL [192] –

this would suggest that an edge mode could not survive at finite temperatures either.

Clearly, ergodicity breaking through quantum scars can be used to preserve

SPT order, which suggests an alternative strategy of using MBL. In MBL systems,

excited states resemble the ground states of gapped Hamiltonians, which likewise

implies that when the ground state is topologically ordered, the excited states might

replicate that order. Indeed, studies have shown that applying quenched disorder

to a model which hosts topological order can extend it throughout the spectrum

[29–31, 112, 124, 177, 178, 193], and in fact create multiple MBL phases, one for

each kind of topological order (including the topologically trivial phase). However,

as discussed in Sec. 2.2.4, the stability of MBL in the thermodynamic limit is an
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ongoing debate, and in Chapter 4 details our research into the breakdown of MBL

near an SPT phase transition, recently reported by a number of small-system exact

diagonalisation studies [32–35]. We also show how, in the topologically non-trivial

phase, one of the l-bits becomes the SPT strong (almost) zero mode.

Regardless of the mechanism for avoiding thermalisation, it is clear that inter-

actions between ergodicity breaking and quantum order lead to many varied and

complex phenomena, with important lessons for condensed matter physics and even

potential applications in emerging quantum technologies. It is my hope that this

thesis shines some light on this rich area of research.
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Chapter 3

Quantum scars in a symmetry

protected topological phase

3.1 Introduction

SPT order is usually associated with protected edge modes, degenerate entanglement

spectra, and non-local order such as string order or topological entanglement [21–27],

but at finite temperature interactions with the bulk cause the edge modes to decohere,

and other signatures of SPT order are lost. Despite this, there have been various

approaches to preserving topological order at finite energy density. In particular it

has been shown that many body localisation (MBL), induced by strong disorder,

can protect topological edge modes and other signatures of topological order, up to

arbitrarily high energies [29, 30]. However, since a system in an MBL phase cannot

sustain bulk transport, the distinguishing features of decoupled edge modes are

weakened. More recent work has shown that dimerising a certain spin chain which

has SPT order, the so-called ZXZ model, energetically decouples the bulk from the

topological edge modes [28], enabling lifetimes that are exponentially long in system

size and circumventing this problem.

Following the observation of long-lived oscillations in a Rydberg atom simulator,

a new type of ergodicity breaking was discovered: weak ergodicity breaking, caused

by a discrete set of highly-atypical eigenstates in the middle of an otherwise chaotic

spectrum [9, 18] (see Sec. 2.3). “Towers” of exact scarred eigenstates have also

been discovered in the AKLT chain [10, 14], a paradigmatic toy model of symmetry-

protected topological (SPT) order [21, 22, 24, 25] (see Sec. 2.4.2), while the Shiraishi-

Mori construction [17] allows arbitrary eigenstates to be embedded into chaotic
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Figure 3.1: Top: AKLT ground state with periodic boundary conditions. Each spin-1
(open ellipses) is split into two virtual spin-1/2 degrees of freedom (filled circles).
These spin-1/2s are then paired into singlets (black lines), ensuring that no
two adjacent sites have total spin S = 2. Bottom: AKLT ground state with
open boundary conditions. The virtual spin-1/2s at the ends are left unpaired,
becoming measurable edge zero modes and leaving the ground state fourfold
degenerate.

Hamiltonians at finite energy density, including states with topological order [179,

180, 194]. Given the role that quantum scars play as ETH-violating islands in a

chaotic sea of thermal states, usually with highly atypical operator expectation values,

it is reasonable to wonder whether they may too be able to preserve signatures of

SPT order in systems without fine-tuning at finite temperature, without destroying

the distinguishing features of decoupled edge modes. This led to investigations into

two different spin chains known to host SPT order: the AKLT model in Sec. 3.2, and

the ZXZ or “cluster” model in Sec. 3.3. While we did not find evident of SPT order

in excited states in the AKLT model, we found that a dimerised ZXZ model with

weak interactions hosts scarred states in a non-integrable phase, with evidence of the

preservation of SPT order in excited non-thermal states.

3.2 Lack of SPT order in AKLT scars

The AKLT model, named after Affleck, Kennedy, Lieb, and Tasaki who first for-

mulated it [21, 22], is a spin-1 Heisenberg chain with an additional biquadratic

interaction, and has become the paradigmatic example of SPT order in spin chains.

The model is specified by,

HAKLT =
∑

j

P
(2)
j,j+1 , P

(2)
j,j+1 ∝ S⃗j · ⃗Sj+1 +

1

3

(
S⃗j · ⃗Sj+1

)2
, (2.13)
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and has a unique ground state under periodic boundary conditions. The projectors

P
(2)
j,j+1 map two spin-1s onto the joint spin-2 subspace. As shown in Fig. 3.1, by

splitting each physical spin-1 into two virtual spin-1/2 degrees of freedom and then

pairing spin-1/2s from adjacent physical sites into spin singlets, it becomes impossible

to form a spin-2 from any two adjacent sites, and so the projectors annihilate this

state. Since the projectors are positive semi-definite, this state at E = 0 must be

the ground state. However, under open boundary conditions, there is a spin-1/2

degree of freedom left unpaired on each end of the system, and left unconstrained

by the Hamiltonian. As a result, the ground state becomes four-fold degenerate

(since each spin-1/2 has local dimension 2), and the system acquires the edge zero

modes associated with SPT order. The ground state also has a two-fold degenerate

entanglement spectrum (2.4), with total entanglement entropy a constant S = ln 2,

which follows from the fact that any bipartite cut must sever one of these spin singlets.

Finally, the ground state may be represented as a translationally invariant MPS with

local tensors,

A+ =

√
2

3
σ+, A0 = −

√
1

3
σz, A− = −

√
2

3
σ− . (3.1)

Given that σ±(σz)nσ± = 0 for any n ≥ 0, in the Sz basis the ground state is formed

of alternating |+⟩s and |−⟩s with some number of intervening |0⟩s – for example,

|+00−0+00−+−⟩. This leads to string order in the ground state, which may be

quantified by the string order parameter [185],

Oα
str = lim

|j−k|→∞

〈
Sαj e

iπ
∑

j≤ℓ<k S
α
ℓ Sαk

〉
. (3.2)

For α = z, the exponent counts the balance between |+⟩s and |−⟩s, and so it can

be seen that any basis state satisfying the above condition will leave a negative

contribution, such that Oz
str = −1 in the SPT-ordered phase. Since there is nothing

special about the z direction under the Hamiltonian (2.13), this will also hold true

for α = x, y or indeed any spin unit vector.

Recently, exact scarred eigenstates were discovered in the AKLT model [10, 14],

with the majority of these scars taking the form of a “tower of states” built from the
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ground state. These states are given by

|S2n⟩ = N (Q†)n |g.s.⟩ , (3.3)

Q† =
∑

j

(−1)j(S+
j )

2 , (3.4)

where S+
j is the spin-1 raising operator on site j, N is a normalisation constant, and

|g.s.⟩ is an appropriate ground state for the boundary conditions. Each (S+
j )

2 forces

the spin at site j to be in the spin-up, m = 1 state, and breaks the adjoining singlet

bonds. Therefore, each application of Q† creates a spin-2 magnon excitation with

momentum k = π, and so the state |S2n⟩ has total spin S = 2n. Remarkably, these

states also have exact energies E2n = 2n and exhibit log-law entanglement entropies,

meaning that they violate the strong ETH. Note that, due to the SU(2) symmetry

of the model, each of these scars in fact forms a multiplet of rotated states, and the

construction here gives the highest-weight (mz = 2n) state.

Given the known SPT order in the AKLT ground state, this naturally leads

to the question of whether any of these scars also exhibit SPT order. However,

we would appear to run into problems even from an analytical perspective. The

magnons explicitly break the spin-singlet bonds, which means it is unlikely the scars

would have the same two-fold degenerate entanglement spectrum, while also acting

on the edge modes. Furthermore, the pattern of alternating |+⟩s and |−⟩s is broken,
since the magnon operator acts locally to flip spin downs to spin ups. Numerical

simulations (not shown here) also failed to show detectable SPT order in the scar

states, although I cannot rule out that it persists in some hidden form.

3.3 Quantum Scars in the ZXZ Model

It is a known result that unbroken continuous non-Abelian symmetries – such as the

SU(2) symmetry in the AKLT model – prohibit MBL [151, 152, 192]. The intuitive

explanation is that the l-bits transform under representations of the symmetry,

promoting the global symmetry to a local one, and thus introducing an exponential

degeneracy of eigenstates which is unstable to even an infinitesimal perturbation.

In this case, either the symmetry must break or localisation fails, and so localised

topological phases protected by non-Abelian symmetries would be impossible. In

light of this, having failed to find evidence of SPT order in the excited states of
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the AKLT model, it seemed reasonable to expect greater success looking at models

whose topological order is only protected by discrete symmetries.

Hence in this section, we study a spin-1/2 chain with three-site “cluster” terms

which is known to host a Z2×Z2 SPT phase, known as the ZXZ or cluster model [195].

This model is also equivalent in a non-interacting limit to two copies of the transverse

field Ising model (TFIM). The ZXZ model initially gained interest in the quantum

information literature as a universal resource state for entanglement [196], allowing

measurement-based quantum computation protected by symmetry [197, 198], and

can be reproduced in optical lattices [28, 199] or as the low-energy subspace of a

simple two-body Hamiltonian [200, 201].

However, more recently, the model has provided insight into thermalisation,

and in particular how SPT order may be preserved at finite temperature. There

have been two successful approaches towards this. By applying quenched disorder

and inducing many-body localisation, it was found that the topological edge modes

were able to survive up to arbitrarily high energies [30]. However, this technique

also arrests bulk transport, masking the distinguishing features of the protected

edge mode. More recently, it was shown that dimerising the model, by energetically

detuning the cluster terms on odd and even sites respectively, is able to prevent edge

mode excitations from being absorbed by the bulk, enabling lifetimes exponentially

long in system size [28]. Inspired by this work, we considered whether these long

lifetimes might be related to quantum scarring, and whether it would be possible to

preserve the bulk given the correct initial conditions.

Fig. 3.2(a) shows a schematic depiction of the model. While it is formulated

as a 1D spin chain, it is better viewed in this context as a triangular ladder, with

the three-body terms (known as cluster operators) acting on the sites surrounding

each plaquette. The legs of the ladder are comprised of the odd and even sublattices

respectively. Studying the eigenstates of the ZXZ model in the weakly interacting

regime λ = 0.6, Γ = 0.1 and V = 0.05, we discover a class of non-thermal states

in the spectrum, with sub-volume law entanglement entropies and atypical cluster

operator expectation values; see Fig. 3.2(b). Notably, these eigenstates appear to

come in sets with almost-equal energy spacing, and have one or both sublattices

fully polarised. Labelling states by the expectation values of cluster operators, as in
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Figure 3.2: (a) The ZXZ Hamiltonian (3.5) describes a spin-1/2 chain dominated by
three-site “cluster” terms, σzℓ−1σ

x
ℓ σ

z
ℓ+1, with a global field Γσxℓ at each site.

However, it is best thought of as a triangular ladder, with the odd and even
sublattices respectively comprising the legs, and an additional integrability
breaking term V σxℓ σ

x
ℓ+1 acting across each rung. (b) With V ̸= 0, the model

is non-integrable, with the spectrum showing level repulsion. Despite this, we
find eigenstates throughout the spectrum with sub-volume law entanglement
entropies, coexisting with thermal states obeying a volume law. These atypical
states have fully-polarised cluster operators on one or both sublattices. (c)
It is possible to construct a set of mutual eigenstates of the cluster operators
which we label by their eigenvalues on each site, forming a complete basis
within each symmetry sector; see Sec. 3.4.1. These are also eigenstates of the
Γ = V = 0 model. (d) Initial states with fully-polarised sublattices, like the
atypical states in (b), show unusual dynamics including preservation of the

Loschmidt echo |⟨ψ(t)|ψ⟩|2, while states without this feature rapidly thermalise
with cluster operators approaching the thermal ensemble average. Here, we
choose L = 12, Γ = 0.1, V = 0.05, λ = 0.6.

Fig. 3.2(c), we then show that states with fully-polarised sublattices exhibit atypical

dynamics, while states without this feature decayed to an equilibrium value. This is

demonstrated in Fig. 3.2(d), showing the Loschmidt echo |⟨ψ(t)|ψ⟩|2 tending quickly

to zero for a typical state but to a large constant value for the state |11̄11̄ . . .⟩.

The rest of this section is structured as follows. First, in Sec. 3.3.1, we formally

introduce the ZXZ model and its known properties, and then Sec. 3.3.2 contains a

brief account of the techniques used to study the model. Having set up the problem

and methods, in Sec. 3.3.3 we present the major results, namely the presence of a
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tower of quantum scars in the ZXZ model with non-thermal properties and signatures

of SPT order. Sections 3.3.4 and 3.3.5 cover two important areas which are necessary

for a complete understanding of the model: the approach to full quantum chaos and

Wigner-Dyson statistics in the former, and the unusual dynamics of the model in

the latter. Finally, we round off the section with a discussion of the results, their

implications and potential directions of future research.

3.3.1 Model

The ZXZ Hamiltonian for a chain with L lattice sites and open boundary conditions

(OBC) is given by

H =

L/2−1∑

ℓ=1

(λK2ℓ +K2ℓ+1) + Γ

L∑

ℓ=1

σxℓ + V

L−1∑

ℓ=1

σxℓ σ
x
ℓ+1 , (3.5)

where the cluster operators Kℓ are given by,

Kℓ = σzℓ−1σ
x
ℓ σ

z
ℓ+1 , (3.6)

and σxℓ , σ
z
ℓ are the Pauli spin operators at site ℓ. While this nominally describes a

1D spin chain, the model can be best thought of as a triangular ladder with the odd

and even sublattices each corresponding to a leg, as was shown earlier in Fig. 3.2(a).

The cluster operators link three sites around each triangular plaquette, while the

integrability-breaking interaction terms σxℓ σ
x
ℓ+1 form the rungs of the ladder. A

local field σxℓ is also applied to each site. With just these three terms, H has a

Z2 × Z2 symmetry, given by spin inversion on odd and even sites respectively, and

additionally when λ = 1 there is an additional Z2 parity symmetry corresponding

to the transformation ℓ→ L− ℓ+ 1 (which swaps odd and even sites). Note that,

throughout this work, it is understood that while H has L lattice sites with subscripts

1 ≤ ℓ ≤ L, due to OBC there are only L−2 cluster terms Kℓ labelled by 2 ≤ ℓ ≤ L−1.

The cluster operators Kℓ are mutually commuting, and hence there exists a basis

of states which are mutual eigenstates of all the Kℓ, labelled by their eigenvalues

on each site, which we call the cluster basis (see Sec. 3.4.1). These states are exact

eigenstates of the model when Γ = V = 0, and when λ > 0 this means that the
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unique ground state in each symmetry sector is the state |g.s.⟩ such that,

⟨g.s.|Kℓ|g.s.⟩ = −1 , 2 ≤ ℓ ≤ L− 1 . (3.7)

This also implies that the spectrum of H is trivial when Γ = V = 0, and that the

model is integrable. Surprisingly, the model also remains integrable for Γ ̸= 0, and it

is only the two-body interaction term which breaks integrability. It can be shown

that the cluster operators are equivalent through a Jordan-Wigner transform to a

fermionic next-nearest neighbour interaction [28, 29, 195, 202] such that when V = 0,

the odd and even sublattices become entirely disconnected. This means that the even

sites and odd sites become entirely disconnected, and the model can be separated

into two copies of the transverse-field Ising model (TFIM), H(V = 0) ∼ He
TFIM(λe =

λ,Γ) +Ho
TFIM(λo = 1,Γ), which is well known to be integrable [203],

He/o
TFIM(λ,Γ) = λ

∑

ℓ ∈ e/o

σzℓσ
z
ℓ+2 + Γ

∑

ℓ ∈ e/o

σxℓ , (3.8)

where the sums in Eq. (3.8) should be understood as either running over the even

(e) or odd (o) lattice sites. However, turning on nearest-neighbour interactions with

nonzero V breaks integrability, and couples the two chains.

The ZXZ model (3.5) exhibits symmetry-protected topological order, protected

by the Z2×Z2 spin-flip symmetry [195]. As a result, the model hosts robust boundary

degrees of freedom at zero temperature, with other signatures of this phase including

a four-fold degenerate entanglement spectrum and string order in the ground state.

Such edge modes typically decohere at finite temperature, due to interaction with

thermal excitations in the bulk, but Ref. [30] demonstrated that they can be stabilised

by inducing MBL through strong quenched disorder. In this case, the life time of the

zero modes grows exponentially with the size of the system, such that the boundary

qubit remains coherent on indefinite time scales in the thermodynamic limit.

Additionally, it has recently been shown in Ref. [28] that if λ ̸= 1 in Eq. (3.5),

such pre-thermal boundary modes can also survive at infinite temperature without

disorder. (Note that while λ ̸= 1 preserves the SPT-protecting Z2 × Z2 spin-flip

symmetry, it breaks the Z2 “swap” symmetry between the legs.) This choice leads

to a dimerisation of the chain such that each leg of the ladder has a different cost
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for excitations, resulting in an energetic detuning. Crucially, this detuning ensures

that excitations on one leg cannot be resonantly converted into excitations on the

other leg, which prevents the bulk from absorbing the boundary modes. Just like in

Ref. [30], the lifetime of the pre-thermal edge modes is exponential in system size and

both the x & z components are preserved, allowing the edge mode to store quantum

information.

To elaborate, this exponentially long-lived qubit is explained by two conjugate

almost strong zero modes (see Sec. 2.4.2) localised to the edge of the system. Under

the mapping to two copies of the TFIM, in the V ̸= 0 regime, the system is now dual

to one described by the Hamiltonian,

He
TFIM(λeλ,Γ) +Ho

TFIM(λo = 1,Γ) + V

L−1∑

ℓ=1

σxℓ σ
x
ℓ+1 . (3.9)

In the ferromagnetic phase [λ > Γ in Eq.(3.8)], the non-interacting TFIM is known

to contain an exact strong zero mode or SZM (2.16) at the edge [189]. With the

addition of interaction terms this no longer converges in the thermodynamic limit,

becoming instead an almost strong zero mode which must be truncated at some

finite order of perturbation theory, and furthermore when parameters take rational

values with small denominators, the lifetime becomes extremely small. Additionally,

the SZM in the interacting TFIM only conserves the z component of the edge spin,

making it a store of classical and not quantum information. However, the ZXZ model

contains two copies of the TFIM (3.9). As explained by Ref. [28], the respective edge

modes are σz1 and σz2 to leading order, but these are not conjugate to each other and

so do not form a qubit. However, the global spin-flip symmetry operator on odd

sites, Go =
∏
ℓ∈odd σ

x
ℓ , commutes with the Hamiltonian, and so we can multiply the

second edge mode by this to obtain σz2Go which is conjugate to σx. Upon mapping

back to the original ZXZ model, these become Σz = σz1 and Σx = σx1σ
z
2 respectively,

and it is these that form the leading-order components of the conserved qubit.

In the Ising picture, when V = 0, the Ising chains are decoupled, and neither

SZM can decay without absorbing or emitting a domain wall. These domain walls

incur an energy cost of 2λe/o, making this an off-resonant process. However, with

nonzero V , these domain walls can hop between the chains, which means that when
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λ = 1 the two edge modes can resonantly exchange excitations – causing both to

rapidly decohere. However, if λ ̸= 1, then there is an additional energy cost to

convert a domain wall from one chain to another, obstructing this process – but

with rational λ, higher order processes will still lead to resonances. This is made

manifest when perturbatively expanding the two SZMs starting from Σx and Σz,

order by order – here, the expansions acquire poles corresponding to rational values

of λ. Since the rationals are dense in the real numbers, even an irrational choice of

λ will lead to large coefficients in the SZM expansions at some order, limiting the

maximum coherence time of the edge qubits – Ref. [28] found an optimal value of

λ = 0.6 for system sizes accessible by exact diagonalisation.

In this work, we looked at the ZXZ model in the weakly interacting regime

Γ = 0.1, V = 0.05, similar to the values chosen in Refs. [28, 30], and likewise set

λ = 0.6. H becomes non-integrable with this parameter choice, however for the

system sizes studied here, the model is not strongly thermalising, sitting in an

intermediate regime between full quantum chaos and integrability. This can be seen

in the comparatively broad distributions of entanglement entropies (Sec. 3.3.3.3) and

cluster operator expectation values (Sec. 3.3.3.4), as well as in level spacing statistics

(Sec. 3.3.4).

3.3.2 Methods

Results were obtained using exact diagonalisation (ED) methods, in which the

Hamiltonian on a finitely-sized system is written down exactly as a matrix in some

computational basis, and then diagonalised to find the full spectrum of energy

eigenstates and eigenvalues. In principle, this allows the calculation of arbitrary

observables, at any energy. However, the technique comes at the cost of the compu-

tational resources required (in particular memory) scaling polynomially with Hilbert

space dimension. Since this in turn grows exponentially with system size, this strongly

limits the maximum system size that can be studied even in principle, and strategies

are required to either split up the Hilbert space into smaller disconnected sectors

(such as by taking advantage of symmetries in the problem [204, 205]), or to obtain

only a limited selection of eigenstates in return for reduced memory usage. In this

case, we were able to use the Z2×Z2 symmetry to reduce the Hilbert space dimension

by a factor of 4, in turn enabling calculations of system sizes up to L = 18. The
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specific software I used was QuSpin 0.3.4 [206], an open-source Python package for

fast, multi-threaded ED and quantum dynamics calculations.

The general procedure for this project was as follows. We started our investiga-

tions by exploring the transition between integrable and chaotic behaviour in the

model (see Sec. 3.3.4), in order to determine appropriate parameter choices such

to ensure the model was in a non-integrable regime. Following this, I diagonalised

the Hamiltonian for these parameter choices, and investigated the distributions of

various operator expectation values and the bipartite entanglement entropy among

the energy eigenstates: the aim here was to discover states with atypical values

which would be candidates for quantum scars. This led to the discovery of the

towers of states detailed in this chapter, which were then carefully characterised

using further ED techniques to obtain the data presented below. Jonas Richter

additionally contributed simulations of the dynamics, in order to probe the behaviour

of the model following quenches from the scarred manifold.

3.3.3 Eigenstate Analysis

Quantum many-body scars are eigenstates of an otherwise ergodic Hamiltonian

which violate the ETH, meaning that they are non-thermal, despite having finite

energy density. This should be contrasted with integrable and many-body localised

systems, in which every eigenstate violates the ETH, and correspondingly with fully

chaotic systems, in which every state with non-zero energy density is thermal. In

this subsection, we will first relate excitations in the TFIM to those in the ZXZ

model, showing that they are equivalent in the regime of perturbatively small Γ

and zero V . We will then present evidence that a set of non-thermal eigenstates

exists in the ZXZ model, with some occupying the middle of the spectrum, and

that these are well-approximated by a generalisation of these excitations. These

states form a “tower’ of states connected by a raising operator (c.f. Refs. [10–16]),

and are representable as matrix product states (MPS). Finally, we will characterise

these eigenstates in detail, showing that they have bipartite entanglement entropies

obeying a sub-volume law and exhibit atypical expectation values of local cluster

operators. Additionally, we will show that these states may preserve a four-fold

degenerate entanglement spectrum, a key signature of Z2 × Z2 SPT order.
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3.3.3.1 Low-lying excitations

The non-interacting (V = 0) Hamiltonian is separable into two copies of the transverse-

field Ising model, corresponding to the odd and even sublattices. As such, the

low-energy excitations of the model should be equivalent to the excitations of the

TFIM. In the regime we investigate, the ZXZ model maps onto the ferromagnetic

phase of the TFIM – that is, where λ≫ Γ in Eq. (3.8). In this phase of the TFIM,

excitations are given by domain walls between two regions of aligned spins, while the

σxj term causes these walls to hop, leading to delocalised excitations [29]. The domain

walls in the TFIM map onto cluster excitations in the ZXZ model [28, 29, 195], and

so we can apply the same techniques as used to solve the TFIM. Consider the cluster

raising (lowering) operator, which creates (destroys) an excitation at a given site,

K±
ℓ =

1

2

(
σzℓ ∓ iσzℓ−1σ

y
ℓ σ

z
ℓ+1

)
. (3.10)

By expressing a bulk σxj operator in terms of these operators,

(
K+
j−1 +K−

j−1

)
Kj

(
K+
j+1 +K−

j+1

)
= σxj , (3.11)

it is clear that the σxj term causes two next-nearest neighbour cluster operators to

flip. This will cause an isolated cluster excitation to hop two sites at a time, at zero

energy cost, or create and destroy a pair of excitations while changing the energy

of the state. Considering a perturbatively small Γ, the zero-energy parts of this

term mix the cluster states under degenerate perturbation theory, with a first order

effect in the energy, while the other parts act only to higher orders. Therefore, when

this condition is satisfied, the low-lying eigenstates in the ZXZ model with periodic

boundary conditions should resemble delocalised cluster excitations.

If we are in a regime such that Γ ≪ λ ≤ 1, then we can work in the space of a

fixed number of cluster excitations, which greatly simplifies calculations. Assume

that there is just one excitation and that it is on the odd sublattice. The effective

Hamiltonian in this space is then,

Heff |2ℓ+ 1⟩ = |2ℓ+ 1⟩ − Γ (|2ℓ− 1)⟩+ |2ℓ+ 3⟩) , (3.12)



3.3 Quantum Scars in the ZXZ Model 61

where |ℓ⟩ = K+
ℓ |g.s.⟩ is a single excitation localised at site ℓ. This can be solved by

introducing delocalised momentum states |k⟩ via a Fourier transform,

|k⟩ =
√

2

L

L/2−1∑

ℓ=0

e+ikℓ |2ℓ+ 1⟩ , (3.13)

|2ℓ+ 1⟩ =
√

2

L

L/2−1∑

k=0

e−ikℓ |k⟩ , (3.14)

where k can take the values 2πη/(L/2) for integer η, 0 ≤ η < L/2. Substituting into

Eq. (3.12), and noting that the states |k⟩ are mutually orthogonal, we obtain:

Heff |k⟩ = (1− 2Γ cos k) |k⟩ . (3.15)

This is the same as for an excitation in the transverse-field Ising model, showing again

the mapping between the ZXZ model and two copies of the TFIM. Note that with

minor changes, similar excitations can be shown to exist as holes in a fully-excited

sublattice, and also when the other sublattice is fully excited.

This result is only strictly valid with periodic boundary conditions, perturbatively

small Γ, and V = 0. Yet with some modifications, we find that these states also

convincingly approximate low-lying excitations in the ZXZ model with open boundary

conditions and non-zero V . More surprisingly, we also find that states with multiple

such excitations are still close to a generalisation of the above result.

3.3.3.2 Approximate tower of states

Working with OBC, the sum over ℓ in Eq. (3.13) now starts at ℓ = 1, as the first

odd cluster site is K2ℓ+1 = K3, c.f. Eq. (3.5). Moreover, the allowed values of k are

k = 2πη/(L/2− 1), 0 ≤ η < L/2 − 1, and the normalisation changes. With these

changes, we find that the states (|+k⟩ ± |−k⟩) /
√
2 each have a high overlap with a

particular eigenstate of the model, for every allowed value of k, even with V > 0.

To generalise this result to multiple excitations, we will introduce an operator

which creates a single delocalised excitation at a time. To start with, consider the

cluster raising (lowering) operator (3.10), which creates (destroys) an excitation at a

given site. Using this and focusing on excitations at zero momentum (k = 0), we
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then construct an operator acting upon the entire chain by,

O =

L/2−1∑

ℓ=1

K+
2ℓ+1 . (3.16)

We then apply the operator repeatedly to the ground state |gs⟩ (3.7) of the clean

ZXZ model to produce a tower of states [10–16]. That is, we generate a set of states

|Tj⟩ given by,

|Tj⟩ =
Oj |gs⟩
|Oj |gs⟩| . (3.17)

Because the operator (3.16) produces a single delocalised excitation, each set of states

has an energy spacing of approximately 2 – this spacing is exact in the Γ = V = 0

model. In the insets of Fig. 3.3(a) and (b), we show that the states |Tj⟩ have large

overlaps with certain eigenstates of H in both the non-interacting (V = 0) and the

interacting (V = 0.05) case.

In the following, we label those eigenstates |n⟩ which maximise the overlap

|⟨n|Tj⟩|2 for a given tower index j by |Sj⟩. In particular, the comparatively simple

structure of the |Tj⟩ already indicates that the eigenstates |Sj⟩ might exhibit atypical

properties, which we will analyse in more detail below. Note, however, that |T7⟩ in
fact has large and comparable overlaps with a pair of adjacent eigenstates, but it

is only the one with the larger overlap that we label |S7⟩. This feature of |T7⟩ may

indicate that the corresponding scar state loses stability for increasing L, as this was

not observed for any of the |Tj⟩ in the L = 14 case and is only weakly apparent for

L = 16 for certain j.

If an initial state |ψ⟩ can be found whose spectral decomposition is dominated

by the scarred eigenstates |Sj⟩, such a |ψ⟩ should yield periodic oscillations in time.

As shown in Fig. 3.3(a) and (b), such a state indeed exists and can be constructed by

applying cluster-lowering operators on the even cluster sites to a spin-basis product

state (for details, see Appendix 3.4.1). The resulting state
∣∣ψ1̄/0

〉
is a superposition

of cluster basis states and has expectation values,

〈
ψ1̄/0

∣∣K2ℓ

∣∣ψ1̄/0

〉
= −1,

〈
ψ1̄/0

∣∣K2ℓ+1

∣∣ψ1̄/0

〉
= 0 , (3.18)

although it is important to note that these expectation values alone do not define
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Figure 3.3: [(a), (b)] Squared overlaps of the eigenstates of H with the state
∣∣ψ1̄/0

〉
, plotted

against energy, for L = 18, in the subspace with positive spin-flip symmetry
on both sublattices. Panel (a) shows the results for the non-interacting case
(V = 0) and (b) for the interacting case (V = 0.05). The highlighted eigenstates
|Sj⟩ exhibit a significant and atypically high overlap with

∣∣ψ1̄/0

〉
, and can be

well approximated by the tower of states |Tj⟩ [see insets to panels (a) and
(b)]. (c) Fourier-transformed Loschmidt echo of the state

∣∣ψ1̄/0

〉
for system

sizes from L = 12 up to L = 20, with V = 0.05. The inset shows the original
time-domain data. [Other parameters: λ = 0.6, Γ = 0.1]

this state uniquely. In Fig. 3.3 (c), we show the Fourier-transformed Loschmidt

echo L(ω) = F [L(t)] of the state
∣∣ψ1̄/0

〉
. As expected from the high overlap with

the almost equidistant states |Sj⟩, L(ω) exhibits peaks at frequencies ω which are

multiples of 2. For increasing system size L, the spectral contributions of peaks at

higher ω become slightly less pronounced. Correspondingly, we find that the revivals

of L(t) in time [see inset of Fig. 3.3 (c)] become less distinct for increasing L.

Note that in addition to the |Tj⟩ discussed above, there are in fact three other

towers starting from the ground state of each symmetry sector. These can be
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obtained by replacing the raising operators in Eq. (3.16) with lowering operators

and starting from the most excited state, or by applying the operators to even sites,

or by a combination of both. Physically, these correspond to the transformations

Kℓ → −Kℓ and K2ℓ ↔ K2ℓ+1 respectively. Moreover, while the operator O produces

a zero-momentum excitation, we find that generalisations to k ̸= 0 as well as to

half-integer values of η seem to also yield good approximations to eigenstates of H
(see Appendix 3.4.3 for details). Intriguingly, if we start the construction of the tower

from some state besides the ground state (e.g. adding odd excitations to an initial

state with a single excitation on the even sites), the above results do not hold, i.e.,

the states generated are poor matches to eigenstates of H.

Eventually, let us mention one technical detail. Specifically, the operator O in

Eq. (3.16) changes the Z2 spin-flip symmetry on the odd sublattice such that the

tower produced starting from a state in one symmetry sector will alternate between

that and one other symmetry sector. For computational convenience, we choose to

shift the entire tower into the same symmetry sector. This is achieved by applying

the operator σz1 after every application of the operator O, as σz1 anticommutes with

the spin flip symmetry on odd sites, but commutes with all cluster operators. As the

states |Tj⟩ in each symmetry sector are equivalent, this should not affect the results,

and we have checked this by performing the same analysis in different symmetry

sectors.

3.3.3.3 Entanglement entropy

Given a state |ψ⟩, its entanglement entropy for a bipartition into subsystems A and

B is given by,

SA = −Tr[ρA ln ρA] , ρA = TrB{|ψ⟩⟨ψ|} , (2.4)

where ρA is the reduced density matrix for a subsystem A. For an eigenstate of a

Hamiltonian obeying the ETH, one generally expects that SA scales with the system

size, and at infinite temperature it approaches the Page value [207], which is the

average entropy for a random pure state. A state with an extensive entanglement

entropy is said to be obeying a volume-law, while the ground state of gapped systems is

always area-law [208]. Surprisingly, states with sub-extensive entanglement entropies

have been found even at finite energy densities in a number of otherwise chaotic

models, now usually referred to as quantum many-body scars (see Sec. 2.3).
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Figure 3.4: (a) Half-system bipartite entanglement entropy of the eigenstates of the non-
interacting (V = 0) Hamiltonian, plotted against energy, for L = 18 in the
subspace with positive spin-flip symmetry on both sublattices. Darker colours
indicate a greater number of states at that value. Additionally, the tower of
states |Tj⟩ and their corresponding eigenstates |Sj⟩ are highlighted by crosses.
(b) The same as (a), but for the interacting (V = 0.05) model. (c) The scaling
of entanglement entropy with subsystem size in the non-interacting model is
shown for the states |Sj⟩. A typical thermal eigenstate (dotted black line)
exhibiting a volume law is shown for comparison. (d) The same as (c), but for
the interacting (V = 0.05) model. [Other parameters: λ = 0.6, Γ = 0.1]

Figures 3.4(a) and (b) show the half-system bipartite entanglement entropy for

the eigenstates of the ZXZ model (3.5) when LA = L/2, in both the non-interacting

(V = 0) and the interacting (V = 0.05) models. While the entanglement entropies

take a broad range of values in both cases, with V = 0.05 and especially towards the

middle of the spectrum, the distribution becomes strongly skewed towards higher

entropies, and most of the states become volume law.

However, some states retain much lower entropies, and this is especially true for

the eigenstates |Sj⟩ which we identified in Sec. 3.3.3.2 as exhibiting a large overlap

with the tower of states |Tj⟩. In particular, the |Sj⟩ have very low entanglement

entropies in the non-interacting case, and most retain these when interactions are

turned on. Surprisingly, some of the |Sj⟩ have even lower entropies than their

approximations |Tj⟩. On the other hand, some of the states |Sj⟩ with larger j do
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attain significantly higher entanglement entropies in the interacting case, though

still small compared to most states nearby in energy: we attribute this to the large

number of excitations in these states, which increases their complexity and provides

more ways for the interaction V to destabilise them. In addition to the half-chain

entanglement entropy, Fig. 3.4(c) and (d) show SA versus subsystem size LA for the

states |Sj⟩. The data show that the entanglement of the |Sj⟩ scales sub-extensively
both for V = 0 and V = 0.05, except for |S7⟩ where this is not clear. This is in

contrast to eigenstates which are nearby in energy, which obey a clear volume law.

In fact, we show in Appendix 3.4.2 that the exact states |Tj⟩ may be represented

by a matrix-product state (MPS) of bond dimension χ = 4 [min(j + 1, L/2− j)] ≤
L + 4. Since the entanglement entropy of an MPS is at most lnχ, this places a

logarithmic bound on their entropy. We note, however, that it does not necessarily

follow that the eigenstates |Sj⟩ will obey this bound as well.

3.3.3.4 Distribution of cluster excitations

The ETH predicts that the expectation values of (local) physical operators, evaluated

with respect to individual eigenstates of chaotic Hamiltonians H, should form a

smooth function of energy and agree with the microcanonical ensemble average for

that operator. As a result, a distinguishing feature of ETH-violating eigenstates is a

significant departure of these expectation values from the energy-resolved average.

In the case of the ZXZ model, it is instructive to consider the expectation values of

the cluster operators Kℓ for the eigenstates of the model, taking particular note of

the values for the eigenstates |Sj⟩.

Figures 3.5(a) and (b) show the histogram of matrix elements ⟨Kℓ⟩ = ⟨n|Kℓ|n⟩
for two central sites in the chain with L = 16, for the non-interacting and interacting

Hamiltonians respectively. The states |Sj⟩ are highlighted. They show that in the

non-interacting case, the expectation values for the central two sites fall close to a

discrete set of values with little systematic dependence on energy. This discretisation

might be explained by proximity to the Γ = V = 0 point at which the Kℓ are

constants of motion. Once interactions are turned on, the distribution of ⟨Kℓ⟩
becomes smoother, though there is still substantial variation. However, some states

stay close to their original values, and this is particularly prominent for the states

|Sj⟩ which clearly deviate from the microcanonical average.
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Figure 3.5: (a) ⟨Kℓ⟩ at sites ℓ = 8, 9 for energy eigenstates of the non-interacting (V = 0)
model, L = 16, in the subspace with positive spin-flip symmetry on both
sublattices. Darker colours indicate a greater number of states at that value.
Circular markers indicate the states |Sj⟩. (b) The same, but for the interacting
model (V = 0.05). (c) Probability distribution of ⟨Kℓo⟩ for eigenstates in
a narrow window around the state

∣∣SL/2−2

〉
, relative to the microcanonical

ensemble average Kℓo . ℓo = 7, 9, 9 for L = 14, 16, 18 respectively. The values
for the states

∣∣SL/2−2

〉
are indicated by open circles with vertical dashed lines,

and we include data from all four symmetry sectors. (d) ⟨Kℓ⟩ v.s. ℓ, for the
state

∣∣SL/2−2

〉
and a volume-law state adjacent to it in energy, for L = 16.

[Other parameters: λ = 0.6, Γ = 0.1]
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For a more refined analysis, Fig. 3.5(c) looks at the distribution of expectation

values on a central odd site ℓo, focusing on a narrow energy window centred around

the penultimate tower state
∣∣SL/2−2

〉
. This state was chosen as it is closest to zero

energy for the chosen parameters. While the distribution appears to narrow down

with increasing system size L, we find that the expectation values ⟨Sj |Kℓo |Sj⟩ remain

distinct outliers for all L.

The behaviour of the cluster excitations is explored further in Fig. 3.5(d) by

looking at their expectation values for particular states and their variation in space.

On the one hand, the expectation value ⟨n|Kℓ |n⟩ for an eigenstate |n⟩ directly

adjacent to |Sj⟩ is fairly uniform and thermal (as it is the case for the majority

of states once interactions are turned on). However since eigenstates |Sj⟩ are well

approximated by the tower states |Tj⟩, they have similar cluster expectation values.

In particular, this means that the values between sublattices differ substantially with

the even sublattice being almost fully polarised.

3.3.3.5 Signatures of SPT order

SPT order is usually associated with properties of the ground state of a system, and

in normal circumstances lost at any finite energy density. Despite this, it has been

shown that eigenstates in a many-body localised system can remain in a sharply

defined topological phase, even at infinite temperatures [29, 30, 177]. More recently,

it has been shown that quantum many-body scars embedded into the spectrum

of a topologically ordered model can themselves have topological order, despite

having a finite energy density relative to the ground state [179, 180, 194]. It is

therefore natural to wonder whether the nonthermal states |Sj⟩ discussed in this

work might also retain signatures of topological order. To this end, we study the

so-called entanglement spectrum [23, 24], defined here as the eigenvalues φα of an

“entanglement Hamiltonian”,

Hent = − ln(ρA) , (3.19)

and we choose subsystem A to be the first L/2 sites of the system. (Note that an

alternate convention is to use the eigenvalues of ρA directly.)

A consequence of SPT order in the ZXZ model (3.5) is that the entanglement

spectrum is four-fold degenerate in the ground state, as long as Γ and V are chosen
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Figure 3.6: Ordered entanglement energy spectra φα [c.f. Eq. (3.19)] of selected exemplary
states in {|Sj⟩} (crosses). For comparison, we also show the entanglement
spectrum of a typical eigenstate close to zero energy (open circles). We have
L = 18, Γ = 0.1, V = 0.05 in all cases.

such that H remains in the Z2 × Z2 SPT phase. This statement is also true of every

eigenstate in the Γ = V = 0 model. However for nonzero Γ, V , the entanglement

spectrum of a state in the middle of the energy spectrum should not have this

degeneracy.

In spite of this, we find signs of this degeneracy for all of the states in the

tower, |Sj⟩. Figure 3.6 gives illustrative examples, as follows. As |S0⟩ is of course
also the ground state, the four-fold degeneracy is clear throughout the entanglement

spectrum, and there is a large gap between the “ground” quadruplet and the next

set of values. This serves as a benchmark for the behaviour of the other |Sj⟩. States
|S1⟩ and |S2⟩ still retain a four-fold degeneracy, though with smaller gaps, and a

slight breakdown of this degeneracy at higher entanglement energies. Moreover, even

though |S7⟩ is close to the middle of the spectrum, the first dozen φα clearly form

well-separated quadruplets. Finally even the highest state in the tower, |S8⟩ keeps
the degeneracy in the first quadruplet with a gap almost comparable to that of the

ground state |S0⟩. This may be a signature that these nonthermal states retain SPT

order. In particular, the entanglement spectrum of the |Sj⟩ is in stark contrast to

a typical state in the spectrum (in this case, chosen to have close to zero energy),

which shows no signs of the four-fold degeneracy.

We leave it to future work to study this finding in more detail, e.g., by looking

at other indicators such as the topological entanglement entropy or the appropriate

string order parameter [209].
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distributions for different level statistics. Level spacings are calculated per
symmetry sector, in the middle 1/3 of energies, but values from all sectors are
included. (b) Finite size scaling of the mean value ⟨r̃⟩, for two different choices
of Γ and V . The dashed horizontal lines indicate the values corresponding to
Poisson, semi-Poisson, and GOE level statistics.

3.3.4 Level statistics and onset of chaos

A useful indicator of whether a system is integrable or chaotic is given by the ratio

of adjacent level spacings r̃ [67, 68],

r̃ =
min{∆n,∆n+1}
max{∆n,∆n+1}

, (3.20)

where ∆n = En+1 − En is the spacing between consecutive energy levels. An

integrable system, with extensively many conserved quantities, reduces to a system of

non-interacting particles. As a result, its many-body energy levels are independent of

one another, such that when considering a macroscopic number of degrees of freedom

it is as if the levels have been drawn from a random distribution. This means that

the level spacings follow a Poisson distribution [210], with no level repulsion observed.

On the other hand, for a non-integrable “chaotic” system, it has been shown that the

levels will remarkably follow a similar distribution to that of a random matrix drawn

from a Gaussian ensemble [65, 66], e.g. the Gaussian orthogonal ensemble (GOE)

when H has real entries, even though the Hamiltonian of the system is typically

very non-random. In this case the energies show clear level repulsion. Such “chaotic”

systems are expected to obey the ETH [5, 211].

In Fig. 3.7(a), the probability distribution P (r̃) of the ZXZ model is shown for

the weakly interacting regime Γ = 0.1, V = 0.05. Data is obtained from the central
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third of the spectrum of H with system size L = 16. We find that P (r̃) exhibits clear

level repulsion and is inconsistent with a Poissonian distribution. Thus, the small

but nonzero V is sufficient to break the integrability of H. However, comparing P (r̃)

to the theoretically expected GOE distribution, we also observe distinct deviations.

Instead, it appears that P (r̃) is much better described by a so-called semi-Poisson

distribution [212], indicating that while H is non-integrable, full quantum chaotic

behaviour is absent. This is consistent with our findings from Figures 3.4 and 3.5,

which is that there are many states throughout the spectrum of H which appear to

be not entirely in accord with the predictions of the ETH.

In order to analyse the onset of quantum chaos further, Fig. 3.7(b) shows the

mean value ⟨r̃⟩ versus system size L. In agreement with our previous observation

in Fig. 3.7(a), we find that ⟨r̃⟩ does not reach the expected value ⟨r̃⟩GOE ≈ 0.53,

although we can not rule out that this value is eventually reached for even larger

values of L. In contrast, if we consider slightly larger values of the perturbations,

V = 0.1 and Γ = 0.2, we find a convincing agreement ⟨r̃⟩ ≈ ⟨r̃⟩GOE for the largest

system with L = 16. This suggests that full quantum chaos is restored in this

parameter regime. Importantly, however, we note in Sec. 3.3.5 that the atypical

dynamics of some initial states can still be qualitatively observed for these larger

values of Γ and V .

3.3.5 Non-equilibrium dynamics

Note that, while they were obtained in collaboration and build off of my own work

on quantum scars, the calculations in this section were performed by Jonas Richter.

However, I include them in order to provide a more complete picture of scarring in

the ZXZ model.

A key signature of quantum scarring is the strong dependence of dynamics

on initial conditions. For a randomly chosen initial state, the dynamics will be

indistinguishable from that of a generic quantum ergodic system, and the expectation

values of local observables will quickly decay to the ensemble average. However, when

prepared in specific states whose spectral decomposition is dominated by the scarred

eigenstates, very different behaviour is observed. For example, the Loschmidt echo

L(t) = |⟨ψ(t)|ψ(0)⟩|2, which in an ergodic system should decay quickly to (almost)

zero and stay there as the dynamics explore the Hilbert space, instead periodically



72 QUANTUM SCARS IN AN SPT PHASE

0

1

10−1 101 103 105

(a)

L = 8

ℓ = 1

ℓ = L
2 10, 12

0

1

10−1 101 103 105

(b)

L = 12, 14, 16

ℓ = L
2

|〈Z
ℓ(

t)
Z

ℓ〉 ∞
|

time t

|〈K
ℓ(

t)
K

ℓ〉 ∞
|

time t

1
L−2

Figure 3.8: Infinite-temperature autocorrelation functions (3.21) at the edge and in the
bulk for (a) Zℓ and (b) Kℓ. Data is obtained by exact diagonalisation for
different system sizes L as indicated by the arrows. Note that data in (a) is
analogous to Ref. [28]. The dashed lines in (b) signal the equipartition value
1/(L− 2). The other parameters are chosen as V = 0.05, Γ = 0.1, and λ = 0.6.

returns to a large value at later times or decays extremely slowly. Local observables

likewise may depart far from equilibrium values, but again only for certain initial

states. Additionally, Ref. [28] showed that the SPT edge modes in the ZXZ model

were protected by dimerisation, but did not find evidence of preservation of bulk

cluster operators. We therefore considered whether the presence of scars, and a

prudent choice of initial state, would in fact produce anomalous dynamics in the

bulk. Particularly, as the unique feature linking the non-thermal states is that one or

both sublattices are fully polarised, we focus on cluster basis states (see Sec. 3.4.1)

with this property.

Firstly, consider the infinite-temperature autocorrelation functions of local

operators Aℓ,

⟨Aℓ(t)Aℓ⟩∞ =
Tr[Aℓ(t)Aℓ]

2L
, (3.21)

where Aℓ(t) = e+iHtAℓe−iHt, for both Pauli spin (Aℓ = σzℓ ) and cluster (Aℓ = Kℓ)

operators. In the first case, Fig. 3.8(a), there is a clear difference in behaviour

between the edge spin and the bulk, with a rapid decay for ℓ = L/2 but a lifetime

exponentially long in system size for ℓ = 1. This is in fact the main result from

Ref. [28]. For the cluster operators in Fig. 3.8(b), looking at the bulk (ℓ = L/2),

the autocorrelation function again decays rapidly, but strangely does not reach

either zero or the equipartition value 1/(L− 2) which would be given if the cluster
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Figure 3.9: Quench dynamics ⟨Kℓ(t)⟩|ψ⟩ = ⟨ψ(t)|Kℓ |ψ(t)⟩ for three exemplary states |ψ1⟩-
|ψ3⟩ from the cluster basis. Panels (a)-(c) show data for the dimerised model
with λ = 0.6, while panels (d)-(f) show data for λ = 1. [(a),(d)] Three
excitations on even sublattice, |ψ1⟩ = |11̄11̄11̄1̄ · · · ⟩; [(b),(e)] Fully excited
even sublattice, |ψ2⟩ = |11̄11̄ · · · ⟩; [(c),(f)] Excitations on both sublattices,
|ψ3⟩ = |1̄1̄1̄1̄1111111̄1̄⟩. We have Γ = 0.1, V = 0.05 and L = 14 in all cases.

expectation spread throughout the system, instead reaching a larger constant value

which nevertheless decays with increasing L.

We suggest that this may be a consequence of scars in the model – since the

infinite temperature ensemble is an equal mixture of all eigenstates, the decay as L

increases would then be attributed to the declining proportion of eigenstates that are

scars. In particular, we claim that the nonzero long-time value of the autocorrelation

can be understood in terms of the stability of ⟨ψ(t)|Kℓ(t)|ψ(t)⟩ for specific states,

and we exemplify this through studying quantum quenches from such states.

Consider a state in the cluster basis, that is, an eigenstate of the clean ZXZ

model with Γ = V = 0. This state is an eigenstate of every cluster operator and

therefore has definite expectation values Kℓ = ±1. However, with Γ, V > 0, the

cluster operators do not commute with the Hamiltonian, and so their value is not

conserved, nor is any combination of the operators. Hence if we take |ψ(0)⟩ to be just

such a cluster state, then at a later time t we should expect the expectation values

⟨ψ(t)|Kℓ(t)|ψ(t)⟩ to have decayed towards the microcanonical ensemble average as

stipulated by the ETH. However, we show that this does not occur for states with a

fully polarised sublattice – a clear indication of the effect of the non-thermal states

on the dynamics.
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In Fig. 3.9, we elucidate the effect of λ on the quench dynamics ⟨Ke(t)⟩|ψ⟩ for
three exemplary initial states |ψ1⟩, |ψ2⟩, |ψ2⟩,

⟨Kℓ(t)⟩|ψ⟩ = ⟨ψ(t)|Kℓ|ψ(t)⟩ , (3.22)

with Γ = 0.1, and V = 0.05 in all cases. Panels (a)-(c) have λ = 0.6, which is in

the dimerised regime in which scars were detected and Ref. [28] found enhanced

coherence of the edge modes, while panels (d)-(f) have λ = 1. For |ψ1⟩ and |ψ2⟩, the
odd sublattice is fully in the ground state, and so these states fall into the scarred

manifold in the dimerised model. In fact, |ψ2⟩ can be exactly identified with the

approximation to the highest energy state in the tower,
∣∣TL/2−1

〉
. However, |ψ3⟩ has

cluster excitations on both sublattices, and we would therefore expect it to thermalise

rapidly regardless of the value of λ. This is exactly what we observe: in Fig. 3.9(a)

and (b), we observe that excitations remain confined to their respective legs and

the even sublattice remains in the ground state. However, in (c), the excitations

spread uniformly throughout the system and the end result is a thermal state. When

we leave the dimerised regime in panels (d)-(f), all three states thermalise rapidly.

This difference in dynamical behaviour was already shown in Fig. 3.2(d) through the

Loschmidt echo L(t), which exhibited clear revivals for a charge density wave state,

but not a different cluster state with both odd and even excitations.

Additionally, in Fig. 3.10, we show for |ψ2⟩ =
∣∣TL/2−1

〉
the average cluster
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operator expectation
〈
Ke/o(t)

〉
|ψ⟩ on the even (e) and odd (o) sublattices,

⟨Ke(t)⟩|ψ⟩ =
2

L− 2

L/2−1∑

ℓ=1

⟨ψ(t)|K2ℓ|ψ(t)⟩ , (3.23)

and with K2ℓ → K2ℓ+1 in the case of ⟨Ko(t)⟩|ψ⟩. We show this data in three regimes:

in both of (a) and (b) we set λ = 0.6, and either Γ = 0.1 and V = 0.05 in (a), or

double these values in (b). Panel (a) shows that the cluster excitations are stable

for times at least up to t ≃ 180, and in fact we have further numerical evidence

(not shown here) that the values remain far from zero up to t > 105. Panel (b)

repeats this numerical experiment in a regime in which the level statistics are clearly

Wigner-Dyson (see Sec. 3.3.4), in which case we still see preservation of the cluster

excitations although the decay is quicker (c.f. Fig. 3.9). However, for λ = 1 in panel

(c), the values decay rapidly to zero by t ≃ 20.

It is hence clear from Figures 3.9 and 3.10 that dimerising the model enables

dynamics with long coherence times not only at the edges like in Ref. [28], but also

in the bulk when choosing appropriate operators and initial states.

Furthermore, the spectral decomposition of the states |ψ1,2,3⟩ in Fig. 3.11 shows

that the first two are dominated by a small number of energy eigenstates at the

same energy, which appear to have sub-volume law entanglement entropies. However,

|ψ3⟩ contains contributions from a large number of eigenstates, each with a small

coefficient, and these are clearly volume law. This provides a clear link between the
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existence of non-thermal sub-volume law entangled eigenstates in the spectrum of

H, and the stable nature of certain initial states which overlap heavily with these

eigenstates.

Finally, we studied quench dynamics from the wide class of cluster basis states,

using the time- and space-averaged correlation function K|ψ⟩(t) (similar to that used

in Ref. [213]),

K|ψ⟩(t) =
1

L− 2

L−1∑

ℓ=2

1

t

∫ t

0
⟨ψ|Kℓ(τ)Kℓ(0)|ψ⟩ dτ . (3.24)

If the long-time value of K|ψ⟩(t) is non-zero or even close to one, this would indicate

that memory of initial conditions, specifically that of local cluster operators, is

preserved. Here we consider only those states with an energy close to the middle of

the spectrum,

−0.5 ≤ E|ψ⟩ ≤ 0.5 , E|ψ⟩ = ⟨ψ|H |ψ⟩ . (3.25)

If the system obeys the strong ETH, then initial states at roughly the same energy

would yield very similar values of local observables at long times. Yet Fig. 3.12(a)

shows that actually, for a certain class of states in the dimerised model, this is

violated: while the correlator K|ψ⟩(t) decays quickly to zero for the majority of

initial states, for a small number of states the long-time value is clearly non-zero.
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And in fact, this class of states is exactly those with a fully polarised sublattice,

identified earlier as the non-thermal manifold. Focusing also on the Loschmidt echo

L = |⟨ψ(t)|ψ(0)⟩|2 in Fig. 3.12(b), we see that while for all states the echo decays

rapidly to zero, for certain states in which one sublattice is polarised the data exhibits

distinct revivals. These revivals do not occur when λ = 1. We argue that this is the

direct result of the decoupling of the two sublattices under λ ≠ 1, which in turn leads

to an effective fragmentation of the Hilbert space into weakly connected subspaces.

Specifically, those subspaces where one sublattice is polarised are weakly coupled to

the rest of the Hilbert space, and so initial states in these manifolds initially fail to

explore the full Hilbert space under time evolution such that some local memory of

initial conditions is preserved. This is strong evidence, therefore, of the existence of

quantum scars in the ZXZ model.

3.3.6 Discussion

In this section, we have studied the eigenstate properties and out-of-equilibrium

dynamics of an interacting spin-1/2 chain with three-site “cluster” terms, which

is known to host a Z2 × Z2 symmetry-protected topological phase. In particular,

we worked in a regime with weak interactions where the dimerisation parameter

λ ̸= 1, such that cluster excitations on the odd and even sublattices respectively are

energetically detuned, and which Ref. [28] found stabilises a long-lived boundary

mode even at infinite temperature.

In this regime, we uncovered a set of atypical states throughout the spectrum

which do not obey the ETH ansatz, and which we identify as quantum many-body

scars. These scars form a number of “towers of states”, connected by raising and

lowering operators, and approximated by a simple ansatz expressible in matrix-

product state form. Looking at the properties of the scars, we find that their key

signature is a fully polarised sublattice with regards to cluster excitations, such

that the even and odd sublattices have very different filling fractions. Additionally,

they have abnormally high overlaps with certain low-entanglement states which

might be prepared experimentally, and sub-volume law entanglement entropies. Most

intriguingly, there is evidence that these scar states preserve signatures of SPT order,

namely a four-fold degenerate entanglement spectrum.

With the parameters chosen, the ZXZ model is not strongly chaotic, but in fact
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in an intermediate regime between integrable and chaotic level statistics. This is

different to the phenomenology of other scar models, which are typically fully ergodic

with Wigner-Dyson level statistics. On the one hand, this may be due to the scarred

manifold occupying a relatively large fraction of the total Hilbert space at the system

sizes accessible to numerics, compared to in these other models. On the other hand,

this may be unconnected to the scars, for example being due to the presence of edge

modes or the relatively weak interaction term.

We also looked at the out-of-equilibrium dynamics of the model, establishing the

importance of the dimerisation parameter λ and the effect of scars on the dynamics.

With λ = 1, cluster excitations are free to spread out over the entire system, which

rapidly thermalises to a uniform state no matter the initial configuration. However,

with λ = 0.6 as in Ref. [28], we observe that the cluster excitations remain confined

to the odd or even sublattices, weakly fracturing the Hilbert space and preventing

full thermalisation. This effect is also seen to preserve or lead to the revivals of

certain dynamical signatures, such as correlation functions or the Loschmidt echo,

when the initial state has a fully-polarised sublattice, which shows that the atypical

dynamics may be due to the quantum scars discovered in this model. We note that

these discoveries do not rely on the presence of edge modes – we have observed

similar phenomena to that in Fig. 3.9 with periodic boundary conditions.

This work raises a number of questions. While the ZXZ model in the regime

we have investigated is certainly not integrable, there is evidence that it is not fully

chaotic either. Furthermore, we found that the scars we discovered were also present

in the integrable regime with V = 0. Therefore, we consider whether it may be worth

extending the notion of scars to integrable models. While these do not thermalise in

the traditional sense, they may be described by the generalised Gibbs ensemble (GGE)

which takes account of the extensively many local conservation laws [214, 215], and

so it is reasonable to wonder whether scars might also interfere with thermalisation

to the GGE. Noting also that the non-interacting ZXZ model is equivalent to two

copies of the transverse-field Ising model (TFIM), it would be interesting to explore

connections between these scars and the well-known local conservation laws in the

TFIM with open boundary conditions, as well as the stability of these laws to

perturbations. We note that the connection between scars and proximity to an
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integral point has already been discussed in Refs. [160, 216].

The role of disorder on the topological nature of quantum scars in the ZXZ model

is a question of interest in the context of many-body localisation. It has been shown for

example that the PXP model can be localised [167], but the constraints in the model

also induce interactions which may prevent MBL in the thermodynamic limit [168].

Moreover, relatively weak disorder may destroy scars [166], even though at strong

disorder many-body localisation reinstates the topological edge modes. Studying the

phase transition between various finite-temperature phases with topological features,

in intermediate regimes between scars and localisation, could therefore provide new

insights into all three of these phenomena, and the relationships between them. On

the topic of topological order, one could also consider searching for (naturally arising)

scars in higher-dimensional systems which preserve full topological order, as opposed

to its weaker symmetry-protected cousin. The ZXZ model also has higher-dimensional

extensions [196, 200, 201] – it is unknown at present if such systems host a scarred

manifold. Ref. [28] also notes that the ZXZ chain can be realised through Floquet

engineering applied to a 1D optical-tweezer array, raising the possibility that the

unusual dynamics observed in this work could be verified in experiment.

Finally, we note that while single particle quantum scars have typically been

connected to an unstable periodic orbit in a corresponding classical system [20, 147–

150] (see Sec. 2.3.3), there is no such obvious connection for quantum many-body scars.

However, recent work applying the time-dependent variational principle (TDVP),

a method for constructing semiclassical trajectories through a variational manifold

which best approximate dynamics in the full Hilbert space [170, 171, 217], to the

PXP model has uncovered evidence of exactly these unstable orbits [20, 173, 218].

These orbits are able to explain the oscillatory dynamics observed in Rydberg atom

simulators in Ref. [9], as well as quantify their stability, providing for the first time a

clear connection between quantum scars and semiclassical dynamics. This research

was expanded upon later to also uncover such semiclassical trajectories corresponding

to a |Z3⟩ initial state, as well as applying the method to a 2D model using a tensor

tree state ansatz [218]. We could therefore consider applying this same method

to the ZXZ model, utilising a variational ansatz based on the MPS description in

Appendix 3.4.2; a similar construction was used in Ref. [173], whereby a spin product
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state was projected into the subspace without adjacent excitations. However, there

is no guarantee this is the correct choice of ansatz.

Since the research in this chapter was performed, there have been many further

developments in the field of QMBS, including some involving the ZXZ model. In

Ref [219], it is shown that a certain version of the ZXZ model, which has spatial

inversion symmetry but anticommutes with the spin parity operator
∏
j σ

z
j , acquires

an exponentially degenerate nullspace containing low-entanglement eigenstates. This

property is not specific to the ZXZ model, but instead arises through a generic

mechanism dependent only on the symmetry considerations above. While small

modifications to the Hamiltonian (3.5) would cause it satisfy these conditions, it

is not clear if the scars would survive these changes. Additionally, rather than

using TDVP to explain known examples of quantum scars, Ref. [174] has used the

method to engineer families of Floquet models which contain desired scarred orbits.

Specifically, this work was able to enhance the stability of the orbits by suppressing

leakage from the TDVP manifold. While that work considers a driven AKLT model,

the technique can also be applied to a driven ZXZ model [220]. We also note that

Ref. [221] suggests that, in models whose classical limits exhibit certain kinds of

frustration, SPT order could in fact lead to quantum scars (although this is not

demonstrated).

3.4 Supplementary Material

3.4.1 Exact eigenstates of the clean ZXZ model

There exists a set of states |ψge,go{±ℓ}⟩ which are mutual eigenstates of the cluster

operators and have definite Z2 × Z2 symmetry values, forming a complete basis

within each symmetry sector.

Let us define the state |ψge,go{±ℓ}⟩ such that,

Ĝe/o

∣∣∣ψge,go{±ℓ}

〉
= ge/o

∣∣∣ψge,go{±ℓ}

〉
, (3.26)

Kℓ

∣∣∣ψge,go{±ℓ}

〉
= ±ℓ

∣∣∣ψge,go{±ℓ}

〉
, 2 ≤ ℓ ≤ L− 1 , (3.27)

where Ĝe/o are the symmetry operators for even and odd site spin-flip symmetry

respectively, and ge/o = ±1 their eigenvalues. This does not uniquely specify the
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phase of these states, but they can be defined concretely for our purposes as,

∣∣∣ψge,go{±ℓ}

〉
=

1√
2L−2



L−1∏

j=2

K±ℓ
ℓ


P g

′
e

e P
g′o
o |↑⟩⊗L , (3.28)

where P±
e/o = (1± Ĝe/o)/2, and g

′
e/o = g

L/2−1
e/o = ±1. The state |ψ1̄/0⟩ is constructed

by applying lowering operators only on the even sites, and adjusting the normalisation

accordingly.

It is easy to check that these states have the correct symmetry eigenvalues, after

noting that {K±
2j , Ge} = [K±

2j , Go] = 0 and likewise [K±
2j+1, Ge] = {K±

2j+1, Go} = 0.

Noting also that KℓK
±
ℓ = ±K±

j shows it has the correct cluster-operator eigenvalues.

It is simple to show that these states are mutually orthogonal. Take two states

which differ in their cluster eigenvalues at at least one site. Since (K±)† = K∓,

taking the inner product of these states, substituting in (3.28) and grouping the

operators by site (using the fact that operators on different sites commute) will lead

to at least one factor (K±)2 = 0. Hence the inner product must vanish. It is clear

also that states with different symmetry eigenvalues must be orthogonal.

Since there are L− 2 sites each with two choices for cluster eigenvalues, and also

four symmetry sectors, there are 4× 2L−2 = 2L cluster states – exactly the number

of states in a system of size L. Hence this is a complete, orthonormal basis.

3.4.2 Matrix Product State representation

In this section we show that the states |Tj(k)⟩ in fact admit a matrix product

state (MPS) representation with a maximum bond dimension linear in L. This is a

representation of a quantum state in the form,

|ψ⟩ =
∑

{σi}
Mσ1

1 Mσ2
2 . . .MσN

N |σ1σ2 . . . σN ⟩ , (3.29)

where the Mi are rank-3 tensors with a “physical” index σi and two “auxiliary”

indexes of dimension χ (suppressed in the above equation), typically represented

using a tensor network [222]. These are usually very efficient representations of

low-entanglement states, and in particular translationally-invariant area-law states

can be represented with a finite number of elements. Conversely, an MPS of constant

bond dimension χ is guaranteed to be area law, as the Schmidt decomposition of
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K2 K3 K4 K5 K6 K7

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

j B A B A B A 0

Cl C C C C C C Cr

Figure 3.13: Matrix product state representation of a tower state |Tj(k)⟩. The tensors A,B
generate j delocalised excitations with momentum k on the odd sublattice,
and the tensors C map this from a cluster basis description to the physical
spin basis. When the vertical edges Kℓ are contracted, we obtain an MPS
of maximal bond dimension χ = 4 [max(j + 1, L/2− j)] ≤ L+ 4. Triangles
indicate legs which are held constant (achieved by contracting with boundary
vectors Al and Ar).

some partition can be obtained directly from the MPS and the number of coefficients

is equal to χ.

We do this in two steps; see Fig. 3.13 for reference. First, we construct j cluster-

wave excitations of momentum k on the odd sublattice (tensors A,B, in blue), and

then we map that state from the cluster basis to the spin basis via a matrix-product

operator (MPO) of dimension χ = 4 (tensors C, in green).

We demonstrate this construction first for the simple case j = 1, i.e. a single

delocalised cluster excitation on the odd sublattice. We can write this state in the

cluster basis (App. 3.4.1) as,

|ψ⟩ =
L/2−1∑

ℓ=1

eikℓ |1̄1̄ · · · 12ℓ+1 · · · 1̄1̄⟩ . (3.30)

We can then write this in matrix product form as,

|ψ⟩ =
∑

{Kℓ}
Al



L/2−1∏

ℓ=1

BK2ℓ
AK2ℓ+1


Ar |K2K3 · · ·KL−1⟩ , (3.31)

A+1 =


0 0

1 0


 , A−1 =


1 0

0 α


 , (3.32)

where Al = (0, 1) and Ar = (1, 0)T, α = eik, and BK = IδK,−1 selects states with

K2ℓ = −1 on even sites.

Consider a single element of the summation in Eq. (3.31). Note that An−1Ar = Ar

but An−1A+1Ar = αnAT
l , and A2

+1 = 0. Hence it is clear there must be exactly one
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A+1 in the matrix product or else it will vanish, while we accumulate a factor α for

each site to the left of this A+1. This gives the desired state, up to a constant phase

factor which we can ignore.

In the above example, the index n of the nonzero entry in the vector as we

moved from right to left counted the number of excitations to the right of the current

site. To extend this idea to j such excitations, we need a bond dimension of j + 1

such that 0 ≤ n ≤ j,

A+1 =




0

1 0

α
. . .

. . . 0

αj−1 0




, A−1 =




1

α

α2

. . .

αj




, (3.33)

where we now take Al = (1, 0, . . . , 0) and Ar = (0, . . . , 0, 1)T. Note that now a factor

αn is accumulated at each site when there are n excitations to the right.

We now transform this state |ψ⟩ = |Tj(k)⟩ to the physical spin basis using an

MPO formed of the rank-4 tensors CKσ = diag
(
cKσ , c

K
σ

)
where,

cK↓ =


0 K

0 −K


 , cK↑ =


1 0

1 0


 . (3.34)

The tensors cK↕ here form the known MPS description for a cluster state, where

K = ±1 is the eigenvalue of Kℓ for the state at each site [222]. Finally, the tensors

Cl and Cr are the contraction of the left or right leg respectively of C+1
σ with an

appropriate boundary vector – this determines the symmetry sector. This MPO

hence has bond dimension χC = 4

When the vertical edges representing Kℓ are contracted, the resultant MPS will

have maximal bond dimension χ = χAχC = 4(j + 1), which is O(L) since j < L/2.

Certain optimisations can improve this to 4max(j + 1, L/2− j). This bounds the

entropy growth of the |Tj(k)⟩ by O(logL).
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Figure 3.14: Overlaps of the states
∣∣S±
j (k)

〉
and

∣∣T±
j (k)

〉
, in analogy with the inset of

Fig. 3.3, for states constructed with a generalised excitation operator O(k)
(3.35). Data for the non-interacting (V = 0) model is in blue, and for the
interacting model (V = 0.05) in orange. [Other parameters: L = 16, λ = 0.6,
Γ = 0.1, Ge = Ge = +1]

3.4.3 Non-zero momentum excitations

We can generalise Eq. (3.16) to create excitations with an arbitrary momentum k

simply by introducing a location-dependent phase,

O(k) =

L/2−1∑

ℓ=1

eikℓK+
2ℓ+1 . (3.35)

Because the Hamiltonian is real symmetric, the eigenstates can be taken to

be real. However, the towers |Tj(k)⟩ formed from these operators are in general

complex, so we must take linear combinations to produce real states. Since |Tj(k)⟩
and |Tj(−k)⟩ are complex conjugates, we can consider the states,

∣∣∣T±
j (k)

〉
=

1√
2
(|Tj(k)⟩ ± |Tj(−k)⟩) , (3.36)

which are either real or have a global phase which can be eliminated by multiplication

by a constant. We can also define
∣∣∣S±
j (k)

〉
in analogy with the definition in the main

text. Note that |T0(k)⟩ = |gs⟩, and
∣∣TL/2−1(k)

〉
is the state with a fully-excited odd

sublattice and ground-state even sublattice, for all values of k, and so for these states

we do not take linear combinations.

Figure 3.14 provides some data on the squared overlap,
∣∣∣
〈
T±
j (k)

∣∣∣S±
j (k)

〉∣∣∣
2
,

between these states and the eigenstates of the model. As an indicative example,

in the first two panels we show data for η = 2, 3, where k = 2πη/(L/2 − 1). For
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η = 2, the first excited state (j = 1) and the penultimate state (j = L/2 −
1) are close approximations, regardless of interactions, however the states in the

middle of the tower are significantly worse. For η = 3, all the states are close

approximations to eigenstates in the non-interacting model, and remain the majority

spectral contribution when interactions are turned on. The overlaps for other values

of η generally follow a similar pattern to one of these two cases.

The final panel shows that half-integer values of η can produce good overlaps

too; particularly, we found that for η = 1/2, the overlap for the first excited state is

very high, and even better than for k = 0 in Sec. 3.3.3.2.
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Chapter 4

Resonance proliferation between

many-body localised phases

4.1 Introduction

For generic interacting quantum systems, time evolution scrambles quantum in-

formation on the approach to a thermal state, which limits our ability to efficiently

process that information. The eigenstates of thermalising systems satisfy the ei-

genstate thermalisation hypothesis (ETH) [3, 5, 49, 223] and encode information

in exponentially complex observables, rendering them irretrievable (see Sec. 2.1).

Exceptions to the ETH are therefore important for the encoding and manipulation

of information in weakly entangled quantum states; likewise, attempts to control

and manipulate quantum systems for processing quantum information have inspired

great advances in our understanding of quantum dynamics. In clean systems, the

prototypical examples are the integrable systems, which possess an extensive number

of integrals of motion [46, 47], and scarred many-body Hamiltonians with a manifold

of ETH-violating eigenstates [9, 10, 18]. These both require an element of fine-tuning

which leaves them unstable to perturbation. Instead, many-body localisation (MBL)

[7, 8, 36, 67, 75, 90, 93, 97, 98] (see Sec. 2.2) provides a promising avenue towards

robustly avoiding thermalisation. The emergence of local integrals of motion (l-bits)

in the MBL phase [101, 108, 113, 116, 117, 224, 225] allows for the effective protection

of classical information but, as explained in Sec. 2.2.3, this performs poorly with

quantum information [126, 127].

The situation at zero temperature is a little different, where topological order

and symmetry-protected topology (SPT) allow for the robust encoding of quantum
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information into a degenerate ground-state manifold [27] (see Sec. 2.4). These are

stable to (symmetry preserving) perturbations, provided the energy gap to the

excited states does not close, but typically fail in the presence of thermal noise

and delocalised excitations [24, 176, 184] as the degeneracy in the ground states

is usually not replicated in the highly-excited states. The addition of disorder

to a system with ground-state SPT order provides an avenue to stabilise that

order at finite energy densities [29–31, 35, 178] – producing a system with multiple

topologically distinct MBL phases and possibly direct eigenstate-ordering phase

transitions between them. Additionally, even in clean systems the presence of a

strong zero mode (SZM) imposes a spectrum-wide energy pairing [128, 186, 226] and

can enable coherent storage of quantum information [28], as per Sec. 2.4.2. However,

recent exact diagonalisation studies demonstrate that an ergodic phase may intervene

at arbitrarily small interaction strengths, and some even claim that an MBL-to-

MBL phase transition is forbidden [32–35]. Avalanches induced by rare regions

and resonances [37–45] play a crucial role in destabilising MBL at the localisation

transition, and are candidates for generating the intervening delocalised phase here

(see Sec. 2.2.4).

Finite-depth tensor network techniques [110–114], flow-equations [107–109],

and renormalisation group (RG) approaches [103–105] for approximating weakly

entangled excited states provide access to dynamical properties, critical behaviour,

and l-bit operators, and have enriched our understanding of MBL. The RG techniques

progressively eliminate or “decimate” degrees of freedom from a system, typically

starting with the smallest length scales and highest frequencies, to arrive at a

long-range or low-energy effective model. For example, one may integrate out the

highest-momentum excitations while preserving long-distance correlations, or coarse

grain in real space by grouping local degrees of freedom (such as spins). At each

stage, the Hamiltonian is then renormalised to best recreate the physics prior to

rescaling, with the change in parameters known as the RG flow. It is generally then

hoped that the RG flow will lead to certain terms in the Hamiltonian dominating

while others, known as irrelevant operators, vanish, with the flow terminating at

certain stable fixed points in parameter space. These fixed points, and all those

regions of parameter space flowing into them, are then identified with phases of



88 RESONANCE PROLIFERATION BETWEEN MBL PHASES

matter whose physics is controlled by the properties of the fixed point.

For disordered systems, we may make use of the real space RG for excited

states (RSRG-X) [31, 106]. In the traditional ground-state RSRG (also known in

the literature as the strong disorder RG, or SDRG), one locates the local term in the

Hamiltonian responsible for the largest gap in the system and then solves for the

ground-state manifold, removing one or more degrees of freedom in the process [227–

229]. The Hamiltonian is then replaced by the effective Hamiltonian on this manifold,

and the process repeats until a low-energy description of the system is obtained.

RSRG-X extends this by instead allowing one to pick either the ground-state or

excited manifold at each step, hence arriving at an effective description of a state

at finite energy density. The coarse-graining process lends itself to identifying the

real-space structure of resonances, and studying their size and statistics; indeed, this

has been looked at for a certain model with SU(2) symmetry, which exhibits an

MBL-like regime a finite times and finite sizes [151, 152], showing also that RSRG-X

can be used to model states that are not in fact strictly localised.

In this work we have applied RSRG-X to an interacting spin-1/2 chain with

two MBL phases: a trivial paramagnetic phase and a spin glass phase with SPT

order protected by a global Z2 symmetry. We have extracted a Clifford circuit

and Schrieffer-Wolff transformation which together approximately diagonalise the

Hamiltonian to first order [106]. These encode the localised basis that would best

fit the eigenstates of the Hamiltonian if the system were localised, and we probe

its stability to the off-diagonal part of the Hamiltonian by searching for many-body

resonances [135, 151, 152, 230] between these basis states. Additionally, the geometry

of these resonances, and in particular how these link l-bits together into thermal

clusters, allows us to investigate the breakdown of localisation through the use of a

finite size scaling analysis. While Ref. [33] looked at the size of resonances in this

same model, this is the first study to look at the structure of resonances in this

manner.

We find that the marginal MBL phase, as found in Ref. [31], is indeed destabilised

to an ergodic phase for even relatively small interaction strengths, and that this phase

may be extended in parameter space even with infinitesimal interactions. We show

that the resonances filter through the system to form clusters that scale extensively
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with system size in the ergodic phase. We also look at the variance of the energy δH2

of the RSRG-X basis, which quantifies the accuracy of these states as approximations

to the true eigenstates.

The rest of this chapter proceeds as follows. In the next section, we lay out the

details of the interacting Ising-Majorana model, and develop the Clifford RSRG-X

technique as well as its application to this model. Then, in Sec. 4.3, we present

the results of this work, including: the discovery of a strong edge zero mode in the

localised SPT phase in Sec. 4.3.1; the calculation of energy variance in Sec. 4.3.2;

a description of resonant mixing in the RSRG-X basis in Sec. 4.3.3; the spatial

distribution of these resonances in Sec. 4.3.4; and finally the scaling with increasing

system size in Sec. 4.3.5, a key result of this work. We finish in Sec. 4.4 with a

discussion of these results, giving our conclusions and suggesting future avenues of

research.

4.2 Model and RSRG-X

We consider a transverse field Ising model with nearest-neighbour and next-nearest-

neighbour interactions, also known as the interacting Ising-Majorana model, described

by the Hamiltonian

HIM =
∑

i

hiσ
z
i + Jiσ

x
i σ

x
i+1 + g

(
σzi σ

z
i+1 + σxi σ

x
i+2

)
, (4.1)

with hi ∼ Uniform[0, h] and Ji ∼ Uniform[0, J ], which we normalise by setting

hJ = 1. We also use open boundary conditions. This model is statistically self-

dual under the exchange h ↔ J , and is known to have two distinct MBL phases

[29, 31, 178]. On one hand, when h is large, the local fields dominate and the

model enters a topologically trivial paramagnetic (PM) phase, where the energy

eigenstates are products states of frozen spins aligned along the z-axis. On the

other hand, when J is large, the model enters a spin glass (SG) phase, with spins

forming large entangled clusters due to the action of the nearest-neighbour σxi σ
x
i+1

terms. In this phase, the system is topologically ordered, protected by the global

parity symmetry G =
∏
σzi , and hosts a Majorana edge zero mode [186, 189]. This

zero mode leads to spectral pairing between the two parity sectors, with the gap

exponentially small in system size [32]. We characterise the phase of the model by
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the quantity δ = ln |Ji| − ln |hi| = 2 ln J , such that the model is dual about δ=0

with positive and negative delta in the SG and PM phases respectively.

In fact, if we choose to represent this Hamiltonian (via the Jordan-Wigner

transformation) in terms of Majorana fermions such that two such fermions (γ2i, γ2i+1)

represent each physical spin σi, in an infinite or periodic chain the statistical duality

above is made exact by regrouping the fermions into a new set of spins σ̃i each

represented by (γ2i−1, γ2i):

σ0

γ0 γ1

σ1

γ2 γ3

σ2

γ4 γ5

σ3

γ6 γ7

σ̃1 σ̃2 σ̃3

(4.2)

Ground state RSRG has been used extensively to characterise similar models,

including the model (4.1) in the fermionic representation [231], but here we are

interested in the excited states. Applied rigorously, RSRG-X relies on an assumption

of strong disorder, with relevant couplings distributed according to some power law

P (x) ∝ xα (with α > 1), leading to a good separation of energy scales in the system.

In many cases the assumption of strong disorder may be relaxed: the system will

quickly flow towards the infinite-randomness fixed point, and so the validity of the

procedure is preserved. For all work in this chapter, we set g ≪ max(h, J), ensuring

that one of the couplings hi and Ji is always the largest in the system and thus

the only couplings that need to be directly considered by the RSRG-X procedure.

This keeps the Hamiltonian to a closed form. While the procedure can in principle

generate a dominant interaction coupling, this is rare so long as g is not too large,

and we assume that this occurs infrequently enough not to meaningfully affect the

disorder-averaged data.

We therefore consider two types of decimation: the freezing of a single spin due

to a dominant local field hiσ
z
i (“site decimation”) and the merger of two spins into one

due to a dominant bond Jiσ
x
i σ

x
i+1 (“bond decimation”). In each case, the local Hilbert

space is first rotated via an approximate Schrieffer–Wolff (SW) transformation [232],

truncated at second order, towards a basis aligned with the gap [31, 106], and then

projected onto the subspace above or below this gap where the (transformed) local

operator corresponding to the leading term (σzi or σxi σ
x
i+1) is equal to c = ±1. The
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perturbative transformation removes terms that anticommute with the leading term,

but also produces new terms which are second order in sub-leading energy scales.

These new terms physically originate from the combination of two removed terms,

mediated by the decimated spin: for example, when the term h2σ
z
2 is decimated,

two nearest-neighbour terms J1σ
x
1σ

x
2 and J2σ

x
2σ

x
3 (which both anticommute with

h2σ
z
2) are combined to form a term c(J1J2/h3)σ

x
1σ

x
3 . At higher orders there can

be contributions producing the same terms as those produced at second order and

these interfering contributions are not included. The full RG rules may be found in

Appendix 4.5.1.

We will later incorporate the SW transformations into our ansatz but if we

neglect these, the successive merger of spins due to bond decimations causes the

RG states to acquire a tree-like structure. As such these states can in fact be

represented by tree tensor networks (TTNs) [151, 152, 233] where each node in the

network represents a decimation, with n incoming legs of bond dimension d = 2

for the spins to be decimated, and n − 1 outgoing legs for the new effective spins

after the decimation. The network takes us from L physical spins and successively

removes each degree of freedom, narrowing with each RG step. The tensor for a

bond dimension is a projector from two spins onto one of the σxi σ
x
i+1 = ±1 subspaces,

an isometry with two incoming legs and one outgoing leg. To represent spin up and

down in the renormalised σz basis, we choose respectively:

|ac⟩ =
1√
2
(|↑↑⟩+ c |↓↓⟩) , (4.3)

|bc⟩ =
1√
2
(|↑↓⟩ − c |↑↓⟩) , (4.4)

with c = ±1, such that the isometry is given by |↑⟩⟨ac|+ |↓⟩⟨bc|. The site decimation

tensors are then projections of a single spin onto σzi = ±1 – just the two basis vectors

in d = 2. This is represented pictorially in column (i) of Fig. 4.1, where we show

typical tree tensor networks for three points in the phase diagram: the spin glass

phase, the paramagnetic phase, and the critical phase at δ=0.

At each step we must choose between the excited and ground state manifolds, by

selecting ck = ±1. Since the energy shift of each decimation step typically decreases

throughout the procedure, producing a hierarchy of energy scales, we can view the



92 RESONANCE PROLIFERATION BETWEEN MBL PHASES

0

5

10

15

(i) RSRG-X Trees (ii) τ zk (iii) τxk

0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15 0 5 10 15

I σz σx iσy

(a
)
δ

=
1.

5
(b

)
δ

=
0.

0
(c

)
δ

=
−

1.
5

D
ec

im
at

io
n

st
ep

&
l-

b
it

in
d

ex
,
k

Position in spin chain

Figure 4.1: For each of (a) the spin glass (SG) phase, δ = 1.5; (b) the critical phase,
δ = 0.0; and (c), the paramagnetic (PM) phase, δ = −1.5, we generate a
disorder realisation for L = 20 sites and apply RSRG-X. Additionally g = 0.2
and we use open boundary conditions. The columns respectively show: (i) The
tree tensor network corresponding to each state. Bond decimations are shown
as green rectangles linking two effective spins into one; site decimations are
red circles which freeze an effective spin. The y-axis shows the step in which
each decimation occurred, corresponding also to a rough energy scale. (ii) The
z-components of the l-bits {τk}, which can also be seen as the stabilisers of
this state. Each row, corresponding to a decimation on the left, shows a single
l-bit, with the colour giving the Pauli operator acting on each site. (iii) The
x-components of the l-bits {τk}, which can also be seen as the destabilisers.

full set of possible choices as building up a branching tree of approximate eigenstates

[31]. (This is not to be confused with the tree tensor network structure of the states

themselves.) For this reason, we refer to a full set of choices and the corresponding

approximate eigenstate as a “leaf” of the RSRG-X tree. The geometry of the TTN

depends on the set of choices made for decimation directions {ck}. However, if

we choose to fix the geometry, we can re-interpret these TTNs by considering the

choice of decimation direction ck = ±1 as an additional outgoing leg. In this picture,
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degrees of freedom are not removed, but converted into the decimation choices {ck}
which we then interpret as approximate l-bits. Hence, site decimations are the

identity (since the resultant l-bit is exactly the Pauli σz operator on that site), while

bond decimations require us to map σxi σ
x
i+1 → σzi . Bearing in mind the Majorana

duality between the PM and SG phases, we note that these are both fermion bilinear

operators, and interpret the bond decimation as swapping γ2i ↔ γ2(i+1), which indeed

achieves this mapping. This has the added benefit that the Clifford circuit preserves

fermion order for all inputs, so that (for example) fermion bilinears never become

four-fermion interaction terms and vice versa. This Majorana swap operation on

adjacent spins may in fact be written as the following Clifford gate Rb,

γ0γ1γ2 γ3

γ0 γ1 γ2 γ3

ℓ r

c t

= Rb =

ℓ

c

r

t

H (4.5)

where ℓ and r = ℓ+ 1 are the left- and right-hand spins, t is the merged spin, and c

the decimation choice. This structure means that the operator mapping the spin basis

onto the basis of decimation choices is a Clifford circuit, which we call R, and can be

efficiently simulated [234, 235]. By applying the inverse transformation (from the

l-bits to physical spins) to Pauli σz and σx operators, we obtain the representation

of the l-bits on the spin basis, {τ zk} and {τxk }. As an aside, these can also be viewed

respectively as the stabilisers and destabilisers for the TTN states, under the stabiliser

formalism [234–236].

In columns (ii) and (iii) of Fig. 4.1, we show the z- and x-components respectively

of the l-bits {τk} for the states corresponding to those in column (i). The PM phase

in the bottom row (c) contains mostly site decimations, where a single effective spin

is frozen. This means that the l-bits are almost all single-site Pauli spins. On the

other hand, the SG phase in the top row (a) contains mostly bond decimations,

which successively merge effective spins into large clusters represented by a tree-

shaped network. A site decimation also freezes the final state of each tree. The

stabilisers {τ zk} for these trees are two-site σxℓ σ
x
ℓ+1 operators, and then the final site
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decimation is represented by a long operator −σyl σzl+1 . . . σ
z
r−1σ

y
r across all the sites

in the tree. The final site decimation in the SG phase typically has a very small

energy scale associated with it, and may correspond to a strong zero mode linking

the two symmetry sectors (see Sec. 4.3.1). Finally, the critical phase in the middle

row (b) is a mixture of these two phases, containing both PM and SG regions. There

is some freedom in how we define the l-bits, and in particular we may multiply any

l-bit τ zk by some other τ zk′ (which it must commute with) to obtain other valid l-bits.

The Clifford circuit representation allows us to efficiently calculate the action of

any Pauli string (an operator that is the product of single-site Pauli operators) on a

TTN state, by transforming it from the spin basis to the l-bit basis [234, 235]. Since

the Clifford group maps Pauli strings to Pauli strings, this means such an operator

maps one TTN state to exactly one other (with the same geometry), which may in

fact be the same state. The Hamiltonian (4.1) is simply a sum of O(L) Pauli strings

which means that it retains this form in the l-bit basis, and so maps one TTN to at

most O(L) others. Therefore, we can efficiently calculate all matrix elements from a

particular state, as well as expectation values.

The geometry of these tree tensor networks is largely informed by the balance

of local fields and bonds, quantified by the value of δ. In order to better capture

the effect of the interaction strength g, we also include the SW transformations

in our wavefunction analysis. This is captured through an interaction picture: at

each decimation the appropriate first-order SW transformation is calculated, USW =

exp
(
iS(1)

)
. We then apply the Clifford circuit, followed by SW transformations

(expressed in the appropriate basis) up to first order to the Hamiltonian (or indeed

to any operator), as H(1) = R†HR +
[
iS(1), R†HR

]
. These SW transformations

are analogous to the disentangling unitaries found in the multiscale entanglement

renormalisation ansatz (MERA) [237], which sit in between layers of isometries on a

TTN. By connecting adjacent branches, these capture short-ranged entanglement

locally and enable MERA to efficiently describe entanglement at all length scales.

Applying the Clifford circuit and SW transformations gives an effective Hamiltonian

on the basis of l-bit product states, with those l-bits captured to first order. Each

generator S(1) has support over a bounded number of sites, and so the effective

Hamiltonian still has O(L) terms. Despite this, computational complexity is still
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significantly increased, limiting the maximum system size accessible to the order of

hundreds of spins rather than thousands for the “zeroth-order” calculations. For

full details of the Clifford RSRG-X method, including the application of the SW

transformations, see Appendix 4.5.2.

The core output of our method therefore is a series of decimations, and associated

SW transformations, which combine to create the localised state at a particular

energy and also give us the effective local integrals of motion at that energy. These

in turn are derived directly from the renormalised Hamiltonian at each step. Looking

at the RG rules (Sec. 4.5.1), one can see that the terms in this Hamiltonian generally

have contributions from multiple sources, and so at a late stage in the process the

coefficients encode the detailed history of decimation choices. One can view these

rules as summing up different processes that interfere with each other, constructively

or destructively, and as a result the dominant term at some RG step is conditioned on

previous choices. This also means that the geometry of the TTNs is energy-dependent.

This can be compared to the related spectrum bifurcation renormalisation

group (SBRG) technique [106]. Unlike RSRG-X, SBRG aims to diagonalise the

entire spectrum at once, extracting l-bit degrees of freedom but keeping these active

(rotating them to σz operators) instead of removing them from the Hilbert space.

This means crucially that the dominant term at any step only has contributions from

a single process, without interference, and the RG flow is not energy-dependent. Our

method, in comparison, is therefore able to capture more detailed information about

the states, at the cost of requiring us to select a particular target energy.

4.3 Results

4.3.1 Spin-glass order

In Fig. 4.2(a) and (b), we show the scaling of the final l-bit’s energy ∆Ef (that is,

the energy shift associated with the final RSRG-X decimation) with the parameter δ,

averaged across disorder realisations and decimation choices, for two different values

of g and a range of values of L. This should be the smallest energy scale in the

system. Since the spin glass phase features spectral pairing [32], we should expect

this energy difference to be exponentially small in system size L in the spin glass

phase, but O(1) in the paramagnetic phase. To test this, we plot L−1/2 ln |∆Ef |
against δL1/2 in panels (c) and (d). We observe a data collapse for both g = 0 and
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Figure 4.2: (a, b) Energy scale of the final l-bit ∆Ef produced during the RSRG-X
procedure, as a function of δ, for g = 0 and g = 0.2 respectively, and for various
system sizes. (c, d) The same, but rescaled to show a clear data collapse and
a phase transition at δ=0 for all interaction strengths. The data is truncated
(at the hollow circles) where ln |∆Ef | < −250, as this is beyond the limits
of numerical precision. Note since RSRG-X assumes strong randomness, we
cannot find evidence of an ergodic phase directly from calculations like this.

g = 0.2, although the collapse is much cleaner for the non-interacting case, with

the line tending quickly to zero for δ < 0 and to a straight line through the origin

for positive δ > 0. (It is possible therefore that this collapse is not universal, but

that the exponents of L here depend on the value of g.) Multiplying through by the

factor of L1/2, this clearly shows us that ln |∆Ef | ∝ −L for fixed values of g and

δ > 0, agreeing with predictions. The final l-bit in the SG phase, to leading order,

also always takes the form of two σy operators acting on either end of the largest

spin cluster, with a string of σz operators in between. Expressed in terms Majorana

fermions, this is in fact a bilocalised operator acting on the two fermions at either

ends of this string. Deep into the SG phase, the largest cluster spans the system, so

this becomes an edge mode, reminiscent of those found in superconducting quantum

wires [226]. This operator anticommutes with the global parity operator
∏
j σ

z
j which,

given the exponentially small energy scale, this means that the final l-bit in the

system in the SG phase is the strong zero mode (SZM) [128, 186, 189]. However,

in the presence of interactions or in the marginal regime, sub-leading corrections

become significant. We could use the Schrieffer-Wolff transformation to find these,

but leave this to future work.

In applying RSRG-X we make an assumption of flow towards strong disorder,
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and the infinite-randomness fixed point – implying the system is localised. Where

we attempt to apply the method to a system which is in fact thermal, RSRG-X

will produce inaccurate results. Previous work using exact, albeit small system size,

numerical techniques [32, 33, 152], suggests that such a thermal phase exists for

δ ≃ 0. Hence the collapse found above, which would ordinarily tell us that the

transition at δ=0 becomes sharp in the thermodynamic limit, cannot be relied on

as-is. What it does imply is that, where we do in fact have localisation and δ > 0,

we have an edge SZM. Therefore spectral pairing is always associated with the MBL

SG phase, at least for the interaction strengths that we have looked at here.

If we carefully probe the results from RSRG-X for accuracy, we can instead

show by contradiction that the assumption of flow to strong disorder is violated, and

therefore that we are in an ergodic phase. In particular, we can use Clifford RSRG-X

to investigate the approximate eigenstates produced as leaves of the RSRG-X tree,

and their stability to off-diagonal parts of the Hamiltonian.

4.3.2 Energy variance

For each disorder realisation, we generate an RSRG-X leaf state |ψ0⟩ by picking a

random set of decimation choices {ck} (that is, at infinite temperature), and then

calculate the effective Hamiltonian on this state in the l-bit basis up to first order in

SW transformations. We call this state the root state. This effective Hamiltonian

is a sum of Pauli strings, with each Pauli string mapping the root state to exactly

one state of definite l-bit configuration, |ψα⟩. We can then test the accuracy of the

approximation by considering the “energy variance” [106],

〈
δH2

〉
= ⟨ψ0|H2|ψ0⟩ − |⟨ψ0|H|ψ0⟩|2 , (4.6)

which measures to what extent the root state |ψ0⟩ is a good approximation of an

actual eigenstate of the Hamiltonian H. It can also be written as
∑

i ̸=0 |⟨ψ0|H|ψα⟩|2,
leading to an interpretation of

〈
δH2

〉
as the degree to which the Hamiltonian maps

the state away from itself. For perfect eigenstates,
〈
δH2

〉
= 0.

Since
〈
δH2

〉
scales with the square of the total energy, which grows with

system size and is not consistent for different choices of parameters, we choose to

normalise this quantity by the square of the Hamiltonian averaged across all states,
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Figure 4.3: Normalised energy variance
〈
δH2

〉
/
〈
H2
〉
of RSRG-X leaf states across the δ-g

plane, averaged over disorder realisations, for L=500. A perfect eigenstate has
zero energy variance, but this quantity increases as the quality of approximation
worsens. Since RSRG-X leaf states are localised, a large energy variance may
indicate delocalisation and the approach to ergodicity. Also shown are selected
contour lines (black).

⟨H2⟩ = 1
2L

TrH2, which is basis independent. In Fig. 4.3, we plot this in the δ-g

plane for a system of length L=500, showing that this quantity peaks towards the

critical line δ = 0 and especially for larger values of g. One thing to note is that

it appears to peak for small positive values of δ, rather than exactly at δ=0, and

similar results are seen for many of the other quantities we calculate – this is due

to the open boundary conditions which leave fewer (spin-glass) order terms in the

Hamiltonian relative to (paramagnetic) disorder terms.

The data show that the energy eigenstates in the critical region are less localised

and cannot be well described by a single RSRG-X leaf state – it is likely that as

we approach the critical line, the eigenstates pick up large fluctuations, and hence

multiple l-bit basis states are needed to capture them. This may imply delocalisation

of the eigenstates, but this depends on the details: if the number of basis states

required grows extensively, then the system will thermalise in the thermodynamic

limit, but otherwise these states will still occupy a vanishing fraction of the Hilbert

space. To properly understand how the RSRG-X basis states hybridise to form the

true eigenstates, we must therefore look at the resonances induced between them by

off-diagonal Hamiltonian terms.
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4.3.3 Many-body resonances

Each term of the transformed Hamiltonian maps the root state |ψ0⟩ to exactly one

other tree tensor network state with the same geometry, which we label |ψα⟩. We

can then calculate the many-body Thouless parameter [238] for each term,

Gα =

∣∣∣∣
⟨ψ0|H|ψα⟩
E0 − Eα

∣∣∣∣ . (4.7)

When Gα ≪ 1, the Hamiltonian only weakly couples the root state to nearby states

in the Hilbert space, implying that the true eigenstate is close to the root state

with only small contributions from other states at low orders in perturbation theory.

However, as this quantity grows larger, perturbation theory begins to break down,

with the root state becoming strongly resonant with other nearby states. This implies

that the true eigenstates are superpositions of multiple states in the computational

basis.

To make this a little more precise, for perturbation theory to converge the typical

amplitude assigned to a diagram needs to decay faster than the combinatorial growth

in the number of diagrams as the order of perturbation increases. We take Gα as

a rough estimate of this decay rate, and we choose to consider a resonance to have

occurred when Gα > G∗ = 0.1. We believe this to be a slightly cautious threshold for

what can be handled perturbatively. Any non-zero value of Gα implies mixing of the

tree tensor network basis; however, when small, we can take this to mean that the

root state remains a good approximation of the true eigenstates up to some time, of

order 1/G∗. Beyond that time perturbation theory would be required. In Sec. 4.5.4

we give some data for the alternative choice G∗ = 1, which is a much more optimistic

threshold for what can be handled perturbatively.

The existence of a resonance does not necessarily mean that the eigenstates

are no longer localised: when these resonances only connect a small number of

states together (implying a small inverse participation ratio in the computational

basis), the eigenstates may remain localised. Even if the number grows with system

size, ergodicity is still avoided so long as the fraction of states involved vanishes

in the thermodynamic limit. However, if resonances proliferate, they will connect

an extensive number of states, leading to an ergodic phase. This is not the same

as a thermal avalanche, wherein the resummation of one resonance creates a so-
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Figure 4.4: Probability density of ln(Gα) for various points in the δ-g plane, on a logarithmic
scale. The columns show (i) the PM phase with δ = −2, (ii) the critical regime
with δ=0, and (iii) the SG phase with δ = 2, while the rows show (a) the
non-interacting case g = 0, (b) g = 0.05, and (c) g = 0.2. The distributions
peak at large values of Gα when δ=0, with more strongly decaying left-hand
tails indicating that the weight of said distributions are much more concentrated
at these large values. Note that we only include states |ψα⟩ with nonzero matrix
elements to |ψ0⟩. The resonance threshold G = 0.1 is indicated with a dashed
vertical line.

called superspin which, through the increased density of states, has an increased

susceptibility to forming resonances with other l-bits. Here, we only consider the

independent effects of off-diagonal terms and take clusters of directly resonant l-bits.

We show the distribution of Gα across disorder realisations and root states in

Fig. 4.4, for various values of δ and g. Close to the critical line δ = 0 and with

increasing interaction strength, these distributions peak more sharply (with faster-

decaying left hand tails) at large values of Gα. Note that since each Hamiltonian

term couples at most one other state to the root state, the total number of nonzero

matrix elements is O(L). Where two terms map to the same state, we combine their

coefficients.

In Fig. 4.5(a), we count the number of terms for which the condition Gα > G∗ is

satisfied (that is, the number of resonances induced by the Hamiltonian), normalised
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Figure 4.5: (a) Density (count per spin) of resonances with Gα > G∗ = 0.1, and (b)
probability that a particular l-bit in a random disorder realisation is flipped by
at least one such resonant term in the Hamiltonian. Both quantities calculated
for randomly selected RSRG-X leaf states across the δ-g plane, averaged over
disorder realisations, for L=500. Also shown are selected contours (black or
white dashed lines). While the precise phase boundary between localisation and
ergodicity cannot be located with this method, it is clear that the leaf states
become unstable at increasingly small interaction strengths as one approaches
the critical line δ=0, in agreement with the findings of Ref. [32].

by the size of the system. Towards the critical line δ=0 and at large (non-perturbative)

interaction strengths g, we see this quantity peaking strongly, such that there is more

than one resonance per spin in the system. This indicates a strong probability of

crossover to an ergodic regime, although this does not allow us to locate the phase

boundary precisely.

We also consider the chance that a particular l-bit will be flipped by at least one

resonance in Fig. 4.5(b). This is subtly different to the average number of resonances

per l-bit shown in (a) – in that it is less strongly influenced by rare regions with

large numbers of resonant terms affecting a small subset of the l-bits. This peaks at

a small positive value of δ=0 and grows with increasing interaction strength g, to
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Figure 4.6: Probability that a particular l-bit is in a resonant cluster of size s, for nine
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This should tend to a constant in the thermodynamic limit. For this figure, a
value of 0 indicates that an l-bit is unaffected by a resonant transition.

a greater than 90% chance – with almost every l-bit affected by a resonance, this

makes it likely that the system is thermal in this portion of the phase diagram. To

draw a more definitive conclusion however, we should look at the spatial distribution

of these resonances.

4.3.4 Resonant Clusters

Consider the sets of l-bits respectively flipped by each resonant term. By taking the

union of those sets with non-zero intersection, one arrives at a natural definition

of “resonant clusters”: sets of degrees of freedom which are strongly mixed and

locally thermal. This is analogous to percolation through a lattice where the links

are formed by resonances. When resonances proliferate in a thermal phase [151, 152],

these clusters grow to occupy a significant fraction of the system size.

In Fig. 4.6 we look at the distribution given by picking a random l-bit from a

random disorder realisation and calculating the number of l-bits in (the size of) the
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Figure 4.7: Maximum size of an l-bit cluster induced by resonances, averaged over disorder
realisations, in the δ-g plane for L=500. (This quantity is considered to be 1
for a realisation with no resonances). The data here is shown on a logarithmic
scale. Also shown are selected contour lines (white).

cluster it belongs to. (Here, an l-bit unaffected by resonances belongs to a cluster of

size one.) When interactions are small and away from the critical line δ=0, the l-bits

form small clusters, and the probability of a larger cluster forming rapidly tails off,

exponentially with cluster size. However, as interactions get stronger and we move

towards δ=0, the clusters grow larger, and in fact we can see these distributions are

truncated by the finite system sizes accessible. For example, with g = 0.2 and δ=0,

we see the distribution peaking at the size of the system – it is overwhelmingly likely

here that the resonances percolate through the entire system.

Fig. 4.7 then shows the per-realisation maximum size of these clusters, averaged

over disorder, for a chain of length L = 500. Note that this is length-dependent since

longer systems give more opportunities for large clusters to form. This appears to

peak for small but positive δ, with the largest resonant clusters occupying almost the

full system on average towards g = 0.2 and δ=0. However, even at small interaction

strengths, the largest cluster typically spans a substantial fraction of the system. In

Sec. 4.5.3, we also show the probability distributions of the maximum cluster size

over disorder realisations.

The data support the hypothesis that at the critical line the l-bits strongly

hybridise and move the system towards an ergodic phase, even for smaller interaction

strengths. To get a complete picture, we need to understand the scaling behaviour
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Figure 4.8: (a) Disorder-averaged maximal resonant cluster size ⟨max{sres}⟩ against system
size L, for δ=0 (blue) and δ = −1 (orange), each for g = 0 (dots) and g = 0.2
(triangles). Solid and dotted lines indicate power-law (⟨max{sres}⟩ ∝ Lγ) or
log-law (∝ log(L/L0)) fits respectively, to minimise the reduced-χ2 statistic.
(b) Fitted power-law exponent γ against δ for fixed g = 0.2. The shaded region
shows where the power-law fit is favoured over a log-law fit. Here, γ approaches
1, indicating the emergence of an extensive resonant cluster. (c) Difference in
the reduced-χ2 statistic between power-law and log-law fits, shown across the
δ–g plane. For larger magnitude δ, the dependence on L grows weaker and the
two hypotheses are more difficult to distinguish.

with system size. This will tell us whether resonances proliferate in the thermo-

dynamic limit, indicating the breakdown of localisation as the dynamics become

ergodic; or whether resonances grow much slower than the system size, such that

each eigenstate only occupies a vanishing fraction of the Hilbert space.

4.3.5 Scaling of resonance behaviour with system size

In order to uncover the behaviour of the system in the thermodynamic limit, we

need to understand how the resonant clusters scale with system size. To this end,

in Fig. 4.8(a) we fit the mean maximal resonance size (see Figs. 4.6 and 4.7) to a

power law in L, ⟨max{sres}⟩ ∝ Lγ , and to a log law, ⟨max{sres}⟩ ∝ log(L/L0). In

the localised phase, where resonances are rare and well-separated spatially, we should

expect cluster sizes to be exponentially distributed and therefore ⟨max{sres}⟩ ought
to scale as a logarithm, following the maximum order statistic of an exponential

distribution. By contrast in the ergodic phase, when resonances proliferate, we should
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expect the resultant clustering to percolate through the l-bits and form a cluster of

size O(L) such that γ → 1. If the data follow a power law for smaller values of γ,

this could still imply a power law in correlations and hence a diverging localisation

length, even if the largest cluster does not extend across the entire system.

The data show that on the critical line δ=0, the size of the maximum cluster

scales as a power law with L, with γ ≃ 1.0. This implies that resonances proliferate

such that the largest cluster occupies a finite fraction of the Hilbert space in the

thermodynamic limit, destabilising the localised basis. Hence we conclude that the

system is thermal at δ=0. Looking away from the critical line, in Fig. 4.8(b), we

show the fitted power-law exponent γ against δ, for fixed interaction strength g = 0.2.

Additionally, we shade the region in which a power law is favoured over a log law.

This shows that the power-law regime is accompanied by γ → 1 and hence extensive

resonant cluster scaling, verifying the intuition that this corresponds to a thermal

phase.

Finally, Fig. 4.8(c) gives the difference between the reduced-χ2 statistic between

the power-law and log-law fits. The red region indicates that a power law is a

better fit; the blue region corresponds to a log law. This shows clear evidence of an

intervening ergodic phase, manifesting as a power law in resonant cluster scaling.

The width of this phase grows with increasing g, but it is not entirely clear if this

narrows to a single point for small but finite interaction strengths. (In our numerics,

the smallest non-zero value we looked at was g = 0.002.)

4.4 Discussion

In this work we have developed a method to apply real-space renormalisation group to

excited states (RSRG-X) of disordered spin-1/2 Hamiltonians and implicitly construct

their wavefunctions as stabiliser states, even for large systems with many hundreds

of spins, in the process also uncovering the l-bits for the system. This is done by

constructing a Clifford circuit representing these approximate l-bits. Additionally, we

have applied the Schrieffer-Wolff transformations to first order in order to improve

accuracy, though at the cost of increased numerical complexity.

We have then applied this Clifford RSRG-X to the interacting Ising-Majorana

chain, a model known to host two distinct MBL phases, and investigated the crossover

between localised and ergodic behaviour in the supposed marginal MBL regime
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between those two phases. By calculating the many-body Thouless parameter giving

the strength of perturbative mixing between basis states, we show that resonances

proliferate in the marginal MBL regime. This is shown to result in an intervening

ergodic phase with boundaries similar to those found in studies of small systems

[32–35].

Additionally, we have used Clifford RSRG-X to find the lowest-energy l-bit

in the spin-glass phase. We show that this is a strong zero mode reminiscent of

those found in superconducting quantum wires [226], with the leading term being

a bilocalised Majorana fermion operator acting on either end of the largest spin

cluster. Using this technique, it is possible to calculate higher-order corrections to

this strong zero mode; however, we leave a systematic analysis to future work, instead

focusing on the resonance picture and the ergodic regime in this work. Modifications

of this technique may also allow access to higher-spin systems, enabling detailed

characterisation of their MBL phases through determination of the l-bits and their

higher-order corrections.

An ergodic phase has been argued to exist over an extended parameter regime

even at arbitrarily weak interaction strength using ideas of a thermal avalanche,

triggered by rare regions of weak disorder [32]. In contrast, we argue for an intervening

thermal phase due a different mechanism unrelated to avalanches or rare regions. This

is similar to the situation in small size numerics around the localisation transition,

where MBL is destabilised despite the low likelihood of rare regions [239]. Still,

avalanches may yet produce a wider ergodic phase than we find here. In the absence

of a rigorous proof disallowing a direct MBL-MBL transition, it would be insightful

to investigate other models of disorder such as stronger (power-law) disorder where

this might occur. It is also noteworthy that resonance proliferation in this model

seems to be confined to the region of the critical point, and directly heralds the

breakdown of localisation.

Another promising direction would be to turn to quasiperiodic systems where

rare regions do not occur, thus cannot precipitate an avalanche, and correlations in

the disorder could be tunable independently of the transition. These effects could

potentially stabilise MBL, as has been suggested for arrays of superconducting qubits

[139], or even lead to a direct MBL-MBL transition. There has also been recent work
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in constructing effective Hubbard models from continuous quasicrystalline models

[140], and these may provide a more physically realistic testbed for these ideas than

toy models such as the Aubry-Andre model.

Finally, we note that the Clifford RSRG-X machinery may be applied to other

spin-1/2 models. For example, J.Z. Imbrie’s proof of MBL [36] considers a transverse

field Ising model with added longitudinal fields, limited to a regime where the

transverse fields are perturbatively small; it would be interesting to consider variations

on this model and see where localisation breaks down, especially given that the

longitudinal fields break the Z2 symmetry protecting the Ising-Majorana model’s

topological phase. Chapter 5 describes exploratory work in that direction.

4.5 Supplementary Material

4.5.1 RSRG-X Decimation Rules

In these equations we consider any coupling that crosses the open boundary of the

system to be zero. Additionally let J ′
i and Ki be the strength of the term σzi σ

z
i+1

and σxi σ
x
i+2 respectively.

Site decimation rules: Suppose the largest gap is due to h3. Then we decimate

site 3, setting σz3 = c, and renormalise the couplings as follows (with all unspecified

couplings unaltered):

h̃2 = h2 + cJ ′
2 , h̃4 = h4 + cJ ′

3 , (4.8)

J̃1 = J1 + c
K1J2
h3

, J̃2 = K2 + c
J2J3
h3

,

J̃4 = J4 + c
K3J3
h3

,

(4.9)

J̃ ′
2 = 0 , K̃1 = c

K1J3
h3

, K̃2 = c
K3J2
h3

. (4.10)

We also calculate the change in the energy as,

∆E = c

(
h3 +

J2
2 + J2

3 +K2
1 +K2

3

2h3

)
. (4.11)

Bond decimation rules: Suppose the largest gap is due to J3. Then we decimate

the bond between sites 3 and 4, and the two sites are merged to create a new spin

labelled c, renormalising the couplings as follows (with all unspecified couplings
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unaltered):

h̃2 = h2 + c
h3J

′
2

J3
, h̃5 = h5 + c

h4J
′
4

J3
,

h̃c = J ′
3 + c

h3h4
J3

,

(4.12)

J̃2 = cJ2 +K2 , J̃c = J4 + cK3 , (4.13)

J̃ ′
2 = c

h4J
′
2

J3
, J̃ ′

c = c
h3J

′
4

J3
, (4.14)

K̃1 = cK1, K̃2 = 0, K̃c = K4. (4.15)

We also calculate the change in the energy as,

∆E = c

(
J3 +

h23 + h24 + J ′2
2 + J ′2

4

2h3

)
. (4.16)

4.5.2 Clifford RSRG-X

The starting point of the Clifford RSRG-X method is to apply traditional RSRG-X

to a system, as per Ref. [31] – specifically, to a system described by a Hamiltonian in

which each term is a Pauli string (a product of single-site Pauli operators). RSRG-X

starts with the full system of L spins, and successively “decimates” degrees of freedom

through the following prescription:

1. Locate the strongest term in the Hamiltonian H0 = λA, responsible for the

largest energy gap.

2. Find and apply the Schrieffer-Wolff (SW) transformation eiS which transforms

the Hamiltonian to commute with H0 – making the gap manifest.

3. Apply a Clifford transformation R to rotate H0 to a Pauli σzℓ on some site ℓ,

and decimate that site by freezing σzℓ = ±1.

4. Return to step 1 and repeat until all degrees of freedom are frozen.

At each step, two transformations are generated: one, a Clifford rotation which

maps Pauli strings to Pauli strings, and two, a Schrieffer-Wolff transformation which

is more complicated. In order to analyse the properties of wavefunctions (and other

related features, such as the effective Hamiltonian on the localised basis and matrix

elements of operators), in many cases it has been sufficient to only include the

Clifford rotations. One can combine these to form a Clifford circuit which prepares
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the (approximate) localised basis from product states or, equivalently, maps operators

on the physical spins to operators on the l-bits. Other RSRG-based methods have

avoided additionally applying the SW transformation due to the increased complexity

involved.

However, this process only obtains the localised basis to zeroth-order: each l-bit,

which acts as a stabiliser to the basis, is a single Pauli string in the computational

basis. In this work we found that this was not sufficient to capture the variation due

to the interaction terms, motivating us to include the SW transformations in order

to compute the localised basis to higher order. The transformation S at each step is

given by the solution to,

[
eiS(H0 + V )e−iS , H0

]
= 0 , (4.17)

where H = H0 + V . This can be expanded out and solved order-by-order in V . In

the case of a Hamiltonian expressed in terms of Pauli strings, with a leading term

H0 = λA where A is a Pauli string, this is solved to first order by S(0) = 0 and,

S(1) =
1

4iλ2
[H0, V ] . (4.18)

Let us define eiSi and Ri to be the transformations at the ith decimation step (here,

we drop the superscript (1)). Then, we may write down the complete transformation

which approximately diagonalises the Hamiltonian as,

U = (RLe
iSL)(RL−1e

iSL−1) . . . (R2e
iS2)(R1e

S1)

= (eiS̃LeiS̃L−1 . . . eiS̃1)(RLRL−1 . . . R1)

≃ eiS̃R .

(4.19)

Here, we have defined the notation,

S̃i = R[i,L]SiR
†
[i,L] , (4.20)

R[i,L] = RLRL−1 . . . Ri , (4.21)

such that R[i,L] is the partial Clifford circuit which transforms Si (defined on the

effective spins at that RG step) so that it instead acts upon the l-bit basis. In
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Figure 4.9: Distribution of maximal resonant l-bit cluster sizes for nine choices of para-
meters: g = 0, 0.05, 0.2 respectively in each row, for models in the spin-glass,
critical, and paramagnetic phases respectively in each column. See Fig. 4.7 for
comparison.

this way, we separate the transformation into two parts: a Clifford circuit R, and

a product of unitaries eiS̃ . We are free here to treat the SW transformations as

commuting, such that eAeB = eA+B, since we are working to first order in V . We

may then transform any operator (expressed as a sum of Pauli strings) to act upon

the localised basis to first order by first pushing it through the Clifford circuit then

applying the first-order SW transformation: Ô → R†ÔR+ [iS̃, R†ÔR] . This is still

expressed as a sum of Pauli strings, and so calculation of matrix elements etc. on

l-bit product states is straightforward – each Pauli string maps a product state to

exactly one state (perhaps itself). Correspondingly, we can calculate the first-order

l-bits in the spin basis as τx,z = R[−iS̃, σx,z]R†. For the purpose of implementing

these calculations, we make use of the formalism in Ref. [234], representing Clifford

circuits as binary matrices and Pauli strings as binary vectors (with an associated

coefficient).

4.5.3 Distribution of maximal resonant cluster sizes

In Fig. 4.9 we show histograms across disorder realisations of the maximum resonant

cluster size, max{sres}, for various system sizes L. The data show the maximum

increasing with system size – this is to be expected, as a larger system gives more
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chances for a large cluster to develop. Note also that in the thermal regime, the

right-hand edge of the histograms is truncated by the system size with very little

probability density on sizes smaller than this, showing that resonances dominate and

are overwhelmingly likely to percolate throughout the entire system.

4.5.4 Higher resonance threshold

Throughout this work we have considered a resonance with G > G∗ = 0.1 to be

a resonance capable of destabilising the localised basis. In this section, we show

some data for a higher threshold, G∗ = 1, meaning that we only consider very

strong resonances which are certain to destabilise the basis. Fig. 4.10 is an analogue

of Fig. 4.6, and shows the distribution of cluster sizes across disorder realisations.

Additionally, Fig. 4.11 is an analogue of Fig. 4.9, and shows the distribution of

maximum cluster sizes across disorder realisations.

Despite taking a much more conservative estimate of what is necessary to

destabilise the system, there is still a trend towards delocalisation towards δ ≃ 0 and

g ≃ 0.2. The technique cannot (at present) be extended significantly beyond g = 0.2

because this would violate the assumption that the leading coupling comes from the

relevant terms hi and Ji, but the trend is clear and it seems likely that the scaling of

the maximum cluster size would become extensive for larger g.
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Figure 4.10: Similar to Fig. 4.6, but only considering very strong resonances with G > 1.
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Figure 4.11: Similar to Fig. 4.9, but only considering very strong resonances with G > 1.
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Chapter 5

Disordered Ising model with local fields

5.1 Introduction

While a rigorous proof of Anderson localisation in one dimension has existed for half

a century [77], it was only a little under a decade ago that J.Z. Imbrie did the same

for MBL in 1D [36]. This firmly established the phenomenology of MBL, with the

existence of a complete set of quasi-local1 integrals of motion [101, 102] which allow

the system to avoid thermalisation indefinitely as detailed in Sec. 2.2.3. Specifically,

the proof perturbatively constructs a unitary transformation which diagonalises the

Hamiltonian. This unitary is itself a product of quasi-local rotations, and these are

close to the identity except on certain sparse “resonant blocks” where perturbation

theory breaks down.

While the formal proof of the existence of MBL was a remarkable achievement,

there are a number of weaknesses in terms of the applicability. The assumption

in the proof of limited energy-level attraction is reasonable given that all chaotic

systems exhibit level repulsion while integrable systems (and numerically-studied

MBL systems) show neutral Poisson statistics. However, the proof also strongly

restricts the strength of the integrability breaking term in the model studied, in order

to control resonances and maintain the validity of perturbation theory2; furthermore,

the model has no symmetries besides time-reversal symmetry, and all terms are

disordered. The proof should generalise to any model with similar properties, but

this also precludes many of the models widely used in numerical and experimental

studies of MBL, such as those with U(1) particle-conservation symmetry [67, 90, 96]

1That is, with exponentially localised support.
2The exact expression in the proof is “γ1/20 ≪ 1”, where γ is the strength of the perturbation,

implying γ is smaller than the 20th power of a small number!
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and those with SPT order [31–35]. We are also usually interested in stronger

integrability-breaking terms, particularly when considering the stability of MBL to

external influences. For this last reason, in this chapter we choose to study the

infinite-temperature phase diagram of the model studied in Ref. [36], for a broad

range of parameters.

We introduce the precise model in the following Sec. 5.2, then in Sec. 5.3 we

apply the Clifford RSRG-X machinery developed in the previous chapter. In Sec. 5.4,

we apply perturbation theory to free-fermion states, with the intent of uncovering

the extents of the MBL phase in the part of the phase diagram where the model is

close to the transverse field Ising model (TFIM). Finally, in Sec. 5.5, we summarise

and present a tentative phase diagram.

5.2 Model

The model studied in Ref. [36], up to a simple Clifford rotation, is given by:

HImbrie =

L−1∑

i=1

Jiσ
x
i σ

x
i+1 +

L∑

i=1

hiσ
x
i +

L∑

i=1

Γiσ
z
i . (5.1)

We choose this definition as two of the three terms are the same as the dominant terms

in HIM (4.1), allowing us to re-use some of the machinery defined in the previous

chapter. Every term in this model is disordered, and in Ref. [36] the transverse

field Γi plays the role of a quantum perturbation, preventing the model from being

classical and integrable. Γi is also deliberately chosen to be perturbatively small, in

order to allow the proof to work.

While we are considering this model in the context of excited-state MBL, the

ground state behaviour has been studied extensively, including using RSRG. Fig. 5.1

depicts the ground-state RG flow in HImbrie, with Ji, γi and hi distributed i.i.d. in

[−1, 0], [-Γ0, 0], and [−h0/2, h0/2] respectively, as found by Ref. [240]. The symmetric

distribution for h ensures that there is no preferred longitudinal direction. With

h0 = 0, an infinite-randomness fixed point (IRFP) separates the quantum ordered

and disordered phases of the TFIM; upon adding nonzero transverse fields, the

quantum ordered phase is rendered unstable and now flows into the fixed point of

the classical random-field Ising model, while the quantum disordered phase remains

an attractive fixed point, with a separatrix extending from the IRFP. Of course, the
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Figure 5.1: Schematic ground-state RG phase diagram of HImbrie, with Ji, Γi and hi
distributed i.i.d. in [−1, 0], [-Γ0, 0], and [−h0/2, h0/2] respectively. (Note
that the ordering terms Ji are therefore ferromagnetic.) Arrows indicate
the direction of RG flow. With h0 = 0, an infinite-randomness fixed point
(IRFP, red circle) separates the quantum ordered phase (black circle) from the
quantum disordered phase (blue circle) of the TFIM. However, in the presence
of longitudinal fields, the IRFP extends into a separatrix (red dashed line)
between the quantum disordered phase and the fixed point of the classical
random-field Ising model (green circle); the separatrix bends somewhat towards
smaller Γ0 with increasing h0. [From Ref. [240]. Reproduced under the CC BY
4.0 Licence.]

ground state is not necessarily related to the excited-state phase diagram, and in

particular provides no indication as to whether the spectrum will be many-body

localised or not; on the other hand, MBL states resemble the ground states of gapped

systems, so this may provide some indications as to what kind of states we can

expect if the system remains localised. The model HImbrie can also be realised by

placing the compound LiHoxY1−xF4 in a transverse magnetic field [241], and so has

experimental relevance. Besides this exact model, random-field Ising models have

long been studied in the context of phase transitions and infinite-randomness fixed

points [242].

We expect from the analysis in Ref. [36] (see also Sec. 2.2.2) that when Γi is

comparable to the other terms in the model, the system will be in an ergodic phase,

but when small, it will be in an MBL phase. Likewise, when Γi is large, the model is

a weakly perturbed version of HIM from Eq. (4.1), and so the model should also be

MBL. In fact, removing any one of the three terms makes the model integrable. With

Ji = 0, the Hamiltonian is a sum of local fields, and therefore a trivial paramagnet

with no interactions: a depth-1 unitary circuit (made up of local rotations at each

site) will diagonalise this model. With Γi = 0, we have a classical Ising model, and the

eigenstates are product states in the {σxi } basis. Depending on the relative strength

of Ji and hi, this will be a paramagnet or a ferromagnet. Finally, when hi = 0, we

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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have the transverse field Ising model (TFIM), which is representable as free fermions

via a Jordan-Wigner transform. Note also that with all three terms nonzero, there

are no symmetries besides time reversal, and as such the only conserved quantity is

energy. This means that there is only a single MBL phase, and no SPT order.

5.3 RSRG-X on Imbrie’s Model

The Hamiltonian HImbrie is very similar to the Ising-Majorana model HIM of Eq. (4.1):

both take the disordered transverse field Ising model as a root, but add different

interacting terms. On one hand, the Ising-Majorana interaction terms are local

four-body Majorana operators written in a spin language, and this affords the model

a Z2 spin-flip symmetry (which corresponds to fermionic parity symmetry after a

Jordan-Wigner transform). On the other hand, HImbrie uses longitudinal fields Γiσ
x
i

that explicitly break this symmetry, leaving only time reversal intact. This term

is also both fermion-odd and non-local after a Jordan-Wigner transform, making

interpretation in the fermion language tricky. However, as noted in the previous

section, the model becomes integrable when any one of the three terms are removed,

and so it is a matter of perspective which term is considered the “interaction” term.

Due to the similarities between the models, an obvious first approach would be to

reuse the RSRG-X machinery developed in the previous chapter (see Sec. 4.5.2),

slightly modifying the decimation rules to deal with the altered interaction term.

These derived decimation rules are laid out in the following section.

5.3.1 Decimation Rules

Bond decimation: The bond decimation, due toH0 = Jiσ
x
i σ

x
i+1 is straightforward;

in fact, because the longitudinal field commutes with H0 here, it plays no direct role.

The Schrieffer-Wolff transformation is given by:

S
(1)
Bond = −

(
Γiσ

y
i σ

x
i+1 + Γi+1σ

x
i σ

y
i+1

2Ji

)
. (5.2)

We apply this to the effective Hamiltonian on the local four sites {i− 1, i, i+ 1, i+ 2}
and then apply a Clifford rotation to bring σxi σ

x
i+1 → σzi , finally projecting out cross-

terms and fixing σzi = c = ±1. This gives the following effective Hamiltonian on
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three sites {i− 1, c, i+ 2}:

Heff = cJi +
cΓ2

i

2Ji
+
cΓ2

i+1

2Ji
+ hi−1σ

x
i−1 + (chi + hi+1)σ

x
c + hi+2σ

x
i+2

+ cJi−1σ
x
i−1σ

x
c + Ji+1σ

x
c σ

x
i+2 +

ΓiΓi+1σ
z
c

Ji
+ Γi−1σ

z
i−1 + Γi+2σ

z
i+2 .

(5.3)

Therefore, the decimation rules are:

∆E = c

(
Ji +

Γ2
i + Γ2

i+1

2Ji

)
, (5.4)

hc → chi + hi+1 , Ji−1 → cJi−1 , Jc → Ji+1 , Γc →
ΓiΓi+1

Ji
, (5.5)

with all unspecified couplings unaltered (if still defined).

Site decimation: This is more complicated, because we have both a transverse

field Γiσ
z
i and a longitudinal field hiσ

x
i . We could choose to decimate each type

of field individually, here. However, it is possible to apply a single-site rotation,

Urot = exp (iθσyi /2) with tan θ = hi/Γi, to eliminate the longitudinal field, producing

one single term Λiσ
z
i with Λi =

√
h2i + Γ2

i . This is equivalent to treating these terms

as a single off-axis field Λi · σi with Λi = (hi, 0,Γi)
T . Following this, we perform

the same procedure as for the bond decimation. First, we find the Schrieffer-Wolff

transformation,

S(1) =
Γi
2Λ2

i

(
Ji−1σ

x
i−1σ

y
i + Jiσ

y
i σ

x
i+1

)
, (5.6)

and then we apply this to the Hamiltonian on three local sites {i − 1, i, i + 1},
eliminating the central site i through a Clifford rotation σxi → σzi (specifically, the

Hadamard gate) followed by projecting out cross-terms and fixing σzi = c = ±1. This

gives the following effective Hamiltonian on two sites {i− 1, i+ 1}:

Heff = cΛi +
cJ2
i−1Γ

2
i

2Λ3
i

+
cJ2
i Γ

2
i

2Λ3
i

+

(
hi−1 +

chiJi−1

Λi

)
σxi−1 +

(
hi+1 +

chiJi
Λi

)
σxi+1

+ Γi−1σ
z
i−1 + Γi+1σ

z
i+1 +

cJi−1JiΓ
2
i

Λ3
i

σxi−1σ
x
i+1 .

(5.7)
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Figure 5.2: Probability distribution of (a) the maximal squared overlap between RSRG-X
and ED, and (b) The inverse participation ratio of RSRG-X leaf states across
the exact eigenstate basis. The legends in (a) and (b) also show, respectively,
the arithmetic or geometric mean for each distribution. In both cases we sample
20 RSRG-X states in each of 100 disorder realisations, for L = 10.

Therefore the RG rules are:

∆E = c

(
Λi +

Γ2
i (J

2
i−1 + J2

i )

2Λ3
i

)
, (5.8)

hi−1 → hi−1 +
chiJi−1

Λi
, hi+1 → hi+1 +

chiJi
Λi

, Ji−1 →
cΓ2

i Ji−1Ji
Λ3
i

, (5.9)

with all unspecified valid couplings unaltered.

5.3.2 Results

5.3.2.1 Validity of RSRG-X

We first must ensure that the RSRG-X procedure is valid for the model, has been

implemented correctly, and determine the portions of the phase diagram over which

it gives accurate results. The gold standard for quantum mechanical calculations

is exact diagonalisation (ED), but it is only able to access relatively small system

sizes. For this section, we pick i.i.d. coefficients from uniform distributions, with

Ji ∈ [0, J0], Γi ∈ [0,Γ0], and hi ∈ [−h0/2, h0/2] – by picking ⟨hi⟩ = 0, we ensure that

we break the Z2 symmetry of the TFIM in an unbiased manner.

For each of 30 disorder realisations on a chain of length L = 10, we generate 50

randomly-selected RSRG-X leaf states |ψ0⟩ and directly construct these, including

applying the appropriate SW transformations at each step. We then compare these

to the exact eigenstates |n⟩, calculating the eigenstate decomposition of each leaf

state cn = ⟨n|ψ0⟩. In Fig. 5.2, we show the histogram of (a) the maximal squared

overlap for each leaf state, maxn |⟨n|ψ0⟩|2, and (b) the inverse participation ratio
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(IPR) of each leaf state across the exact eigenstate basis, across a number of different

parameter regimes. The IPR is defined as,

IPR =
D∑

n=1

|⟨n|ψ⟩|4 = 1/|cn|2 , (5.10)

for a state |ψ⟩ and some orthonormal basis |n⟩ with dimension D. The IPR approaches

1 for a state localised in the basis, and 1/D for a state that is totally delocalised (or a

random state) – therefore, we hope that it is close to 1 for leaf states in the eigenstate

basis. Another interpretation is that 1/IPR is the number of basis states required

to faithfully recreate the state. Together, these show that RSRG-X produces good

approximations to the true eigenstates, with 1/IPR ≲ 2 and maxn |cn|2 > 75%, so

long as J0 and Γ0 are not large and comparable. That is to say, the procedure appears

to work well in two of the three regimes described above: the trivial paramagnet

where J0 is small, and the classical Ising model where Γ0 is small. However, the

procedure appears to struggle in the TFIM limit by comparison (although it should

be noted that this is a “limit” in a very loose sense: the small term here is quite

large, h0 = 0.1), and in the case where all three terms are large.

It is also possible to directly quantify the error produced by the RSRG-X

algorithm. At each step, the Hamiltonian is rotated via a SW transformation into a

basis which aligns the largest spectral gap with the largest term H0, followed by a

projection into either the ground state or excited manifold of this term. At this point,

any terms which anticommute with H0 are discarded. We quantify the size of these

terms by the operator norm of the commutator between the rotated Hamiltonian

and A = H0/|H0|, up to second order in V ,

δHeff
=
∥∥∥
[
eiS

(1)
(H0 + V )e−iS

(1)
, A
]∥∥∥ . (5.11)

This must be calculated numerically, by finding exact solutions to the small system

described by the non-commuting part. The procedure is valid as long as δHeff
≪ ∆E.

Alternatively we may look at the sum of the squares of the coefficients in the Pauli

string decomposition of this commutator, equivalent to the Frobenius norm, which
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Figure 5.3: Probability distributions of the per-realisation maximum for (a) the operator
errors δHeff

/H0, (b) the Frobenius errors εHeff
/H0, and (c) the Schrieffer-Wolff

coefficients
∣∣S(1)

∣∣, for each possible choice of dominant terms. The distributions
show the errors are controlled except for the two cases (pink and orange) where
both JXX and ΓZ are large and comparable. In all cases we choose L = 1024.
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Figure 5.4: The disorder-averaged per-realisation maximum for (a) the operator errors
δHeff

/H0, (b) the Frobenius errors εHeff
/H0, and (c) the Schrieffer-Wolff

coefficients
∣∣S(1)

∣∣, against the size α of the small parameters in the Hamiltonian
and for each possible choice of dominant terms. In all cases we choose L = 1024.

we call ε2Heff
. For a bond decimation, we have:

ε2Heff,bond
= 4

(
Γ2
i

(
h2i + J2

i−1

)
+ Γ2

i+1

(
h2i+1 + J2

i+1

)

J2
i

)
, (5.12)

and for a site decimation, we have:

ε2Heff,site
=

4Γ2
i

[
h2i
(
J2
i−1 + J2

i

)2
+ Λ2

i

(
J2
i−1Γ

2
i−1 + J2

i Γ
2
i+1

)]

Λ6
i

. (5.13)

This time taking L = 1024, we generate one RSRG-X leaf state per disorder
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realisation, and compare the size of the off-diagonal terms produced at each step to

the decimation energy scale H0, using δHeff
/|H0| and εHeff

/|H0|, and also look at the

coefficients of the SW transform generators
∣∣S(1)

∣∣, which we have implicitly assumed

are small3. Therefore, in Fig. 5.3, we look at the distribution over disorder of the

maximum value attained by each of these error measures in each single RSRG-X

run, using the same parameter choices as in the comparison to ED. This confirms

again that the renormalisation procedure is controlled, so long as at least one of J0

or Γ0 is small compared to the dominant term(s) in the Hamiltonian. In Fig. 5.4

we additionally take the geometric mean of these maximum values across disorder

realisations, and show how these reduce when we change the size of the small terms.

This shows that in the regime where both J0 and Γ0 are large, the RSRG-X errors

do not decrease significantly when h0 is made small, but in other regimes reducing

the small terms likewise scales back the errors. This is despite the fact that the

case with h0 = 0 is known to be (Anderson) localised, and so it is reasonable to

expect also that the h0 ≪ 1 case is MBL. This suggests that RSRG-X errors do not

necessarily mean that the system delocalises in the regime, but it is clear we will

need a different approach to successfully capture the eigenstates. We note also that

the typical maximum error (not shown) is very close to the mean, implying that the

mean is not strongly affected by rare disorder realisations (which could correspond

to rare regions).

5.4 Fermion Perturbation Theory

When hi is small, the model HImbrie is close to the TFIM, which can be solved exactly

by a Jordan-Wigner transform to free fermions [243]. With Ji and Γi comparable,

this exactly the regime in which RSRG-X performs poorly, and suggests a better

approach might be to start from the non-interacting TFIM limit and then treat the

longitudinal fields hiσ
x
i as a perturbation.

3For a site decimation, this does not include the coefficient of the rotation Urot, which is calculated
and applied exactly
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5.4.1 Method

We start by transforming the model HImbrie to free fermions, using a Jordan-Wigner

transform:

σzj −→ aja
†
j − a†jaj ,

σxj −→


∏

k≤j
σzk


 (a†j + aj) ,

σxj σ
x
j+1 −→

(
a†j − aj

)(
a†j+1 + aj+1

)
,

(5.14)

where we interpret a†j and aj as the fermion creation and annihilation operators at

site j. Hence, we can write the transformed Hamiltonian as Hfree + V ,

Hfree =

j=L∑

j=1

Γj

(
aja

†
j − a†jaj

)
+ Jj

(
a†j − aj

)(
a†j+1 + aj+1

)
, (5.15)

where V is our perturbation. If we further define Majorana fermion operators

r2j−1 = (aj + a†j)/
√
2 and r2j = (aj + a†j)/

√
2i, then we can write Hfree = ir†hr

where h is a real antisymmetric matrix and r is the vector (r1, r2, . . . , r2L). Crucially,

this means we can diagonalise h via a real Schur decomposition, obtaining the free

Majorana modes sj =
∑

k Ojkrk given by the orthogonal matrix Ojk, and the energies

{εj} [243]. For a particular choice of occupied free modes, it is then easy to calculate

the expectation value of any fermion-even observable using Wick’s theorem. If νj

is the occupation number of the jth Dirac fermion mode, then we write down the

Majorana covariance matrix in the free-fermion basis, γD, as

γD =

L⊕

j=1


 0 1

2 − νj

νj − 1
2 0


 , (5.16)

and then transform this to the physical basis by γ = OγDO
T . Finally, the expectation

value of some observable V = rq1rq2 . . . rqN is given by ⟨V ⟩ = Pf(γ|{q}), where γ|{q}
is the submatrix of γ on the sites {q} and Pf(A) is the Pfaffian.

The tricky part is then extending this to cover matrix elements, which are needed

for perturbation theory calculations. Furthermore, V =
∑

j hjσ
x
j is fermion-odd

and non-local (containing a long parity string to the left), which presents additional

complications. Ref. [244] suggests adding a “ghost” (auxiliary) particle to the system,
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which can be used to make the odd operators even, so long as the state of this

extra particle is chosen carefully, while Ref. [245] is able to calculate entanglement

entropies for a system with boundary fields (which are also fermion-odd). These

do not work for our system, but there are simplifications we can make. We aim to

calculate two quantities of interest using perturbation theory up to second order in

V ,

∥|δj⟩∥2 =

∥∥∥∥∥∥
∑

k ̸=j

⟨k|V |j⟩
Ej − Ek

|k⟩

∥∥∥∥∥∥

2

=
∑

k ̸=j

∣∣∣∣
⟨k|V |j⟩
Ej − Ek

∣∣∣∣
2

, (5.17)

δE = ⟨j|V |j⟩+
∑

k ̸=j

|⟨k|V |j⟩|2
Ej − Ek

. (5.18)

Because these only depend on the squared magnitude of the matrix element |⟨k|V |j⟩|2

and the expectation value ⟨j|V |j⟩, we do not need to worry about the phase of |k⟩.
We therefore can write |k⟩ in terms of the initial state |j⟩ as |k⟩ = sℓ1sℓ2 . . . sℓn |j⟩,
noting that an N -body V can flip at most N modes in |j⟩, and so n ≤ N for any

nonzero matrix elements. Letting V = rq1rq2 . . . rqN again, we can write it in the

free-fermion basis as V =
∑

{q′}Oq1q′1Oq2q′2 . . . OqN q′N sq′1sq′2 . . . sq′N , such that V is

expressible as a rank-N tensor with dimension 2L, Vq′1q′2...q′N = Oq1q′1Oq2q′2 . . . OqN q′N .

Hence,

⟨j|V |k⟩ = ⟨j|V sℓ1sℓ2 . . . sℓn |j⟩

=
∑

{q}
⟨j|Vq1q2...qN sq1sq2 . . . sqN sℓ1sℓ2 . . . sℓn |j⟩ ,

(5.19)

which is an O
(
(2L)N

)
calculation when done exactly4. However, σxL is (2L− 1)-body,

which means this is super-exponential in system size if V =
∑

j hjσ
x
j . For this reason,

we decide to look at a slightly different perturbation,

V =

L−1∑

j=1

λjr2j−1r2jr2j+1 =

L−1∑

j=1

λj


∏

k<j

σzk


σxj+1 . (5.20)

This perturbation is fermion-odd and integrability breaking, just like V =
∑

j hjσ
x
j ,

and so we hope that it will capture the same underlying physics as a longitudinal

field.

4A smarter way of doing this may be to sample the matrix elements randomly, bounding the
complexity but increasing uncertainty, but we leave this to future work.
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Finally, we arrive at one minor complication. In the spin glass phase of the

disordered TFIM, a strong zero mode imposes a spectrum-wide degeneracy, with

the energy gap exponentially small in system size (see Sec. 4.3.1). As a result,

we need to use nearly-degenerate perturbation theory: conceptually, one makes a

minimal perturbation to the system to make the degeneracy exact, performs standard

degenerate perturbation theory using V , and then reverses the initial perturbation

in the new non-degenerate basis.

5.4.2 Results

Similarly to the model in Chapter 4, we take as our unperturbed system Hfree (5.15),

with Γj and Jj i.i.d. uniformly in [0,Γ] and [0, J ] respectively. We then normalise by

max(J,Γ) = 1 and define the phase parameter δ = ln J − ln Γ, such that the critical

point is at δ = 0 and δ > 0 indicates the spin glass phase. Of course, V breaks

the symmetry responsible for this phase transition, so we do not expect to see two

different phases following the perturbation. When the state shift ∥|δj⟩∥ becomes

large, we expect that perturbation theory has failed to converge and the system has

undergone a phase transition. For our purposes, we ignore any shift at 0th order due

to V breaking the degeneracy, as this mixes precisely two states, and instead look

only at the size of the first order shift. We consider two cases

(a) λ1 = λ and all others zero (that is, the field acts only on the left edge,

V = λ1r1r2r3);

(b) λj i.i.d. uniformly in [−λ, λ].

In case (a), we calculate the critical perturbation strength λ⋆ by the conditions

∥|δj⟩∥ = 1, corresponding to there being at least one resonance induced by the

perturbation. In case (b), we use the condition ∥|δj⟩∥ = L, which roughly corresponds

to a resonance density of one. In both cases, we average over disorder realisations

We also considered an extended but uniform perturbation λj = λ, but this produced

very similar results to case (b).

Fig. 5.5 depicts the dependence of λ⋆ on the phase parameter δ for various

system sizes L and each of these two cases [respectively, Figs. 5.5(a) and 5.5(b)]. We

can see that in both cases, we have a much smaller critical field near the critical

point δ = 0. There is also very different behaviour in the δ > 0 regime between case

(a), when the perturbation acts only on the left-hand edge of the system, and case
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Figure 5.5: The disorder-averaged critical field λ⋆ (defined in the text), as a function of
the tuning parameter δ and for a selected set of system sizes L, for each of two
cases: (a) The perturbation V acts only on the left edge; (b) The perturbation
is disordered and acts over the length of the chain. While there is uncertainty
in λ⋆, we suppress the error bars to avoid cluttering the figure.
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Figure 5.6: The critical field λ⋆ against the inverse system size 1/L, for selected values
of δ, in each of the two cases (a) and (b). Error bars depict uncertainty due
to disorder averaging. We also fit linear trendlines in 1/L, allowing us to
extrapolate the critical field as L→ ∞.

(b), where the perturbation is extended. In the former, the critical field grows very

large for all L, indicating that the localised phase is stable to a perturbation of this

kind, whereas in the latter case, the critical field stays constant. (We note that in

actual fact, we would not be able to use perturbation theory when λ≫ 1, but we can

conclude from λ⋆ ≫ 1 that the system is stable to smaller perturbations.) However,

we would also like to know the critical field in the thermodynamic limit, limL→∞ λ⋆.

Therefore in Fig. 5.6, we show the finite-size scaling of λ⋆ for cases (a) and (b),

plotting the critical field against 1/L for selected values of δ. We also fit the critical

field to a straight line, allowing us to extrapolate to L→ ∞. Then, in Fig. 5.7, we
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Figure 5.7: The extrapolated critical field λ⋆ in the thermodynamic limit L → ∞, as a
function of δ, for (a) a perturbation acting on the left edge and (b) an extended
and disordered perturbation. This gives us a rough phase diagram, showing
where we have either no resonances (green), some resonances (blue), and many
(∼L) resonances (orange).

plot this critical field as a function of δ, to obtain a phase diagram in each case.

We see in Fig. 5.7(a) that an arbitrarily weak edge field can induce a resonance

at the critical point Γ = J , but away from this point, the localised phase appears

to remain intact for small field strengths. On the Γ > J side, it appears that the

critical field plateaus at λ⋆ ≃ 0.7, while when J > Γ, the critical field grows without

bound. That being said, it is only for λ ≳ 0.5 that we see asymmetry between

positive and negative δ, which is a relatively large value of λ where perturbation

theory may not hold – and so the true phase diagram may look different to this. It

is not clear whether this resonance would destabilise the MBL phase: it may cause a

local thermal grain, which could potentially spread via a thermal avalanche, or it

may just non-perturbatively change nearby l-bits.

On the other hand, in Fig. 5.7(b), we see that the perturbation induces sparse

resonances for most portions of the phase diagram, except for a cone extending from

the critical point δ = 0, where we get a unit density of resonances (that is, ≳L

resonances). While sparse resonances may or may not destabilise the MBL phase,

this latter scenario is likely to cause a return to an ETH phase, as the resonances

cause the state to be rearranged almost everywhere. Note that as well-separated

parts of the chain do not communicate under the assumption of localisation, and each

term in the perturbation has a finite chance of causing a resonance, there will always

be O(L) resonances in the case of an extended perturbation, so there is no portion

of the phase diagram with no resonances in the thermodynamic limit. Interestingly,

the δ > 0 side is more susceptible to resonances; this was also observed in Chapter 4.
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5.5 Phase Diagram and Discussion

Finally, we combine our results to arrive at a provisional phase diagram from the

model, in Fig. 5.8. When h = 0 and Γ > J , we have the paramagnetic phase of

the TFIM, and this connects smoothly through the Γ = J = 0 point to the trivial

paramagnet when J = 0 (where eigenstates are product states of spins aligned along

the local fields). On the other hand, when h = 0 and J > Γ, we have the spin glass

phase of the TFIM, which has SPT order (but of course this is broken immediately

for h > 0). Finally, with Γ = 0, we have a classical Ising model, since the Hamiltonian

only contains σx terms. Moving away from these integrable points, Fig. 5.4 tells us

that the MBL phase is likely to be stable so long as one of J or Γ is small; that is,

the trivial paramagnet remains localised for small J , while if we add small Γ to the

classical Ising model, we also know from Ref. [36] that this will be MBL. We can

therefore be fairly confident about these parts of the phase diagram.

From the results in Fig. 5.7(b), we see that the free-fermion localised states of the

TFIM are unstable to an arbitrarily weak fully-disordered fermion-odd term at the

critical point, and so we can conjecture that it will also be unstable to a perturbation

V =
∑

j hjσ
x
j . Near the critical point, the 3-fermion perturbation only induces some

resonances, which may cause local ergodic grains to form. The MBL phase is expected

to be unstable to thermal avalanches starting from such grains when the localisation

length ξ > 1/ ln 2; such grains will also form in the thermodynamic limit due to rare

low-disorder regions. Ref. [32] suggests that in the TFIM, the localisation length

is 1/|δ|, which would mean the phase boundary intersects the TFIM at δ = ± ln 2.

Regardless, we would expect close proximity to the TFIM critical point to induce

a large correlation length, and likely a large localisation length as well: this would

ensure that an ETH phase would intervene with finite width sufficiently close to

the transition. However, we have not determined the localisation length in our own

calculations, and the extrapolation from the three-fermion term to a longitudinal

field also introduces additional uncertainty.

We therefore leave the exact shape of the phase boundary to future research,

particularly near the TFIM line. To answer this question, we could for example

incorporate the resonance analysis from Chapter 4, or we could extend the perturba-

tion theory technique with some other (to be determined) observable which better
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Figure 5.8: The full schematic phase diagram for the disordered TFIM with longitudinal
fields, shown on ternary axes. Solid, dashed, and dotted gridlines indicate
lines of constant h, J and Γ respectively, and each corner represents the limit
where one of these terms dominates. On the right-hand edge, with Γ = 0, we
have a classical Ising model (green); on the left-hand edge, we have the trivial
paramagnet with no nearest-neighbour term J (blue); and on the bottom edge,
we have the non-interacting TFIM with h = 0. The TFIM is further split into
the paramagnetic phase (blue) and the SPT-ordered spin glass phase (red),
with a critical point (purple) between these. When one of Γ or J are small, we
have an MBL phase (light blue); however, when Γ and J are both comparable
and significant, we have an ETH phase (orange). This is expected to extend
up to the TFIM line, but the exact intersection of the phase boundary with
this line is unclear, indicated by dotted lines.

indicates the stability of the MBL phase. It is also possible that the states found by

free-fermion diagonalisation could be used as a starting basis for an RSRG-X-like

procedure, improving the accuracy: this would likely be able to handle non-local

operators such as a longitudinal field in the fermion basis. We have also not determ-

ined the limits of the MBL phase in the regimes well-described by RSRG-X, and this

would be a priority for obtaining a more accurate phase diagram. Further research

would ideally also obtain the localisation length (or otherwise) in order to ascertain

the susceptibility to thermal avalanches. However, it seems likely that the MBL

phase in this model extends well beyond the very narrow limits set out in Imbrie’s

proof of MBL.
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Chapter 6

Conclusions

In this thesis, we have explored the interactions of both strong and weak ergodi-

city breaking with symmetry-protected topological order: how these novel out-of-

equilibrium phenomena can stabilise quantum order, but also how quantum phase

transitions can return a system to ergodicity.

In Chapter 3, we look at a certain spin-1/2 chain with Z2×Z2 SPT order that can

be interpreted as a staggered ladder, which exhibits a long-lived coherent edge qubit

when the even and odd sublattices are detuned [28]. In this same regime, we uncover

towers of quantum many-body scars – atypical, low-entropy, ETH-violating states

in an otherwise thermal spectrum – which preserve signatures of SPT order even

at finite energy density, thus extending it out of the ground state. Furthermore, we

show that quenches from initial states in the scarred manifold lead to bulk coherence

in the dynamics. While previous studies were able to construct Hamiltonians which

contained topologically-ordered scars in the middle of the spectrum [179, 180], these

were finely-tuned models, whereas this result holds across a broad parameter range

and should be stable to perturbations that do not break the symmetry. Furthermore,

an approximation to this chain can be realised by periodically driving a 1D optical-

tweezer array [28], raising the possibility of experimentally verifying the presence of

these SPT-ordered scars.

In Chapter 4, we probe the phase transition between two MBL phases with

different SPT order, at infinite temperature, in a spin-1/2 disordered Ising model

with next-nearest neighbour interactions. This model can be mapped exactly onto a

Majorana fermion chain with all possible two- and four-body local terms. Recent

studies, albeit limited to small system sizes, found evidence in this model of an
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intervening ergodic phase for arbitrarily weak interaction strengths, thus preventing

a direct MBL-MBL transition [32–35]. At the same time, a series of recent results

show many-body resonances and thermal avalanches [37–45] destroying MBL above

a critical localisation length, and suggest that very high or even infinite disorder

strength may be needed to stabilise MBL in the thermodynamic limit. We therefore

studied the aforementioned SPT-MBL transition using a real space renormalisation

group (RSRG-X) up to very large system sizes, showing that close to the transition

many-body resonances overwhelm the localised phase and mix extensively many

degrees of freedom. Crucially, we did not rely on any avalanche arguments to

do so, showing that while thermal avalanches are important to understanding the

phenomenology of MBL, they need not necessarily be involved in the breakdown of

localisation. We also showed that one of the l-bits becomes the SPT strong zero edge

mode in the topologically ordered phase. Our results have important implications for

the nature of quantum order in the presence of disorder, suggesting that localisation

(and the information stored in the l-bits) cannot survive when moving between

different topological phases.

Finally, in Chapter 5, we study a similar model to the one in which J.Z. Imbrie

proved the existence of MBL [36] using RSRG-X and methods from perturbation

theory, with the aim of going beyond the narrow regime considered in that work.

The ground state of this model has also previously been studied in the context of

LiHoxY1−xF4, which gains an induced longitudinal field when placed in a transverse

magnetic field [240, 241]. Our research uncovers an infinite-temperature phase

diagram, showing that while MBL in this model appears stable in regimes where the

non-interacting limit is a paramagnet or classical Ising model (and at much larger

interaction strengths than considered in Ref. [36]), it is destabilised by proximity to

the SPT critical point of the transverse field Ising model – even in the absence of the

symmetry protecting this critical point. While this was only an exploratory study

and further research is needed, it is intriguing to see how the proof of MBL holds up

as the assumptions in it are pushed, and one pertinent question (in the context of

recent interest in the breakdown of localisation) would be to explore exactly how the

ergodic phase emerges in this simple model.

These studies, as well as the wider literature over the past few years, raise a
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number of crucial questions. This thesis has focused on the situation in one dimension,

where the only kind of topological order permitted is that protected by a symmetry

(which also only results in short-range entanglement, rather than the long-range

entanglement associated with true topological order). The use of ergodicity breaking

to preserve topological order out of the ground state in two or more dimensions

has been less well studied, and this would pose additional challenges. Unlike in 1D,

where we have a rigorous proof of MBL given physically reasonable assumptions [36],

in two or more dimensions it is not even clear if MBL exists at all as a proper phase

of matter. True topological order would also require the protection of long-range

entanglement, which would appear to be incompatible with localisation. However,

quantum scars have been constructed in two and three dimensions with topological

order [179, 180], and it would be interesting to see if topologically ordered scars could

also be found in systems without fine tuning, similar to the SPT-ordered scars in

Chapter 3. Furthermore, in four dimensions of space it is possible for topological order

to extend to finite energy densities, even in clean systems without scarring [124, 246].

While we of course live in a three dimensional universe, certain quasicrystals (which

may be realised e.g. in optical lattices [141]) may be interpreted as the projection of

a higher-dimensional lattice and therefore could realise such exotic topological order.

One also wonders about alternative mechanisms to protect SPT order, beyond

those explored in this thesis. Time-dependent driving appears to provide a route to

novel out-of-equilibrium SPT order, including phases of matter that cannot be realised

in thermal equilibrium – for example, those protected by discrete time translational

symmetry [247], or which spontaneously break multiple time translational symmetries

arising from a quasiperiodic drive [248]. Additionally, Ref. [249] shows that, even

when SPT order is lost in static properties of the ground state, proximity to an SPT

phase can lead to a measurable effect on the dynamics, and long-lived edge modes

even within the symmetry broken phase. It is possible that some combination of

these various phenomena with ergodicity breaking may lead to even further enhanced

stability.

Topological order aside, the survival of MBL itself in the thermodynamic limit

is a pressing question in the community. The discovery that rare low-disorder regions

may precipitate thermal avalanches which then destabilise the entire MBL phase
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[39] has thrown into doubt the previous consensus that MBL was a fairly generic

phenomenon (somewhat like Anderson localisation), and the optimism following

the celebrated proof of MBL in 1D [36]; now, some works question whether the

disorder strength required to stabilise MBL is unreasonably large, or even infinite

[40, 42, 43, 138]. Of course, no technical errors have been found in the proof, but

it only claims validity in the regime of perturbatively small interaction strengths,

and considers just one particular model with no symmetries, while numerical studies

have considered a number of different models (e.g. with U(1) particle number

conservation, or SPT order). And despite some promising experimental evidence

[97], theory has somewhat dampened expectations of a stable MBL phase in d > 1

[250] – most importantly, it seems that MBL would always be unstable to thermal

avalanches in higher dimensions, because the level spacing of an ergodic grain would

fall superexponentially with size [39], and Ref. [135] suggests the proof of MBL would

fail in d > 1. Since thermal avalanches are believed to spread through the mechanism

of many-body resonances, the machinery developed in Chapter. 4 may be useful in

answering some of these questions.

So is MBL and ergodicity breaking still relevant? Our experience of everyday

life and classical physics suggests that avoiding thermalisation indefinitely should

be impossible – the second law of thermodynamics always wins. The best we can

hope for, outside of the idealised settings of perfectly isolated toy models (as per

Ref. [36]), is therefore to protect systems from thermalisation over long timescales,

and the evidence certainly suggests this is possible. Thermal avalanches, while

destroying MBL in the infinite-time limit, should proceed on an extremely slow

timescale [37, 134], thus allowing MBL to operate as a finite-time prethermal regime.

Previous experimental results that appear to show MBL would not be invalidated

by the recent arguments against the phenomenon: these only show the danger of

extrapolating data for finite sizes and finite times out to the thermodynamic limit.

We could also look to consider quasiperiodic disorder: this was not covered by

Imbrie’s proof in Ref. [36], which only considered random disorder, but has the

advantage of avoiding rare regions at the cost of inducing long-range correlations in

disorder. Numerical and experimental evidence has shown that quasiperiodic disorder

can induce MBL, and this may be a way to circumvent the avalanche phenomenon
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[98, 139, 140, 251]. It would be simple to apply the Clifford RSRG-X method to a

simple quasiperiodic model such as the Aubry-Andrè model, while methods similar to

those developed in Chapter 5 could be used for e.g. the Hubbard models (with U(1)

particle conservation) in Ref. [140]. In the absence of a rigorous proof disallowing

direct MBL-MBL transitions, it would also be interesting to see if quasiperiodic or

power-law disorder may prevent an ergodic phase from intervening: these questions

would also be amenable to Clifford RSRG-X. Meanwhile, recent discoveries such as

quantum many-body scars prove that we still have a lot to learn about ergodicity

breaking.

This research also has clear practical applications: today’s quantum technologies

struggle with short decoherence timescales and shielding from noise, and qubits in a

quantum computer do not need to survive forever – only long enough to fall below

the error threshold for quantum error correcting codes to kick in. Lessons learnt from

MBL and quantum scars should help overcome these barriers and achieve this goal:

indeed, the use of disorder to stabilise qubits is an active area of research [252], and

scars have been used to generate entangled states on quantum simulators [253]. In the

other direction, the ergodicity-breaking community has a lot to learn from quantum

information theory; in recent years, the state of the art in quantum many-body

physics has incorporated a number of more advanced measures of entanglement,

including mutual information, topological entanglement, and entanglement negativity

[254], as well as new ways of thinking about thermalisation [255], and these all

provide novel insights. Dual-unitary circuits also provide an exactly-solvable toy

model of ergodicity and prethermalisation [256], which could lead to new ways of

understanding these phenomena.

We should also consider some of the differences between the two ergodicity-

breaking phenomena considered in this thesis, in terms of the state of the respective

fields of study. Ever since Anderson first discovered single-particle localisation over

half a century ago there have been predictions of localisation in a many-body setting,

and since the first studies providing strong evidence of its existence [67, 90, 92–96]

almost two decades ago, it has been an incredibly active area of research. There is

also a general mechanism for producing MBL (namely, applying quenched disorder),

allowing researchers to investigate a wide variety of systems with different properties.
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This means that we now have a number of strong results about MBL, including

a good understanding of the internal structure (through l-bits) and a proof of its

existence. We are also now beginning to understand the limits of MBL, in particular

whether it survives in the thermodynamic limit, and the nature of the prethermal

localised regime in the case that it does not. On the other hand, quantum many-

body scars were first detected in an experiment in 2017, making them a very new

phenomenon. While there are specific mechanisms for inducing quantum scarring

in systems (e.g. the projector-embedding form [17]), there is a strong element of

fine tuning in many of these, and there are few generalisable results about scars.

In particular, it is still an open question if there exist scars which are robust to

perturbations in the thermodynamic limit. There are some frameworks which connect

certain classes of scarred systems, such as Krylov-restricted thermalisation [156–158]

or spectrum-generating algebras [15, 163], but it is still not clear if there is one single

unifying structure to scars. Hopefully we will gain a clearer picture over the next

few years: QMBS have attracted an incredible amount of interest as a form of weak

ergodicity breaking, and there is still a lot to uncover. Likewise, regardless of its

survival as a true phase of matter in the thermodynamic limit, MBL still holds

relevance as a long-lived prethermal regime: rumours of its death have been greatly

exaggerated.
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dynamics on a 51-atom quantum simulator.”, Nature 551, 579 (2017).

[10] S. Moudgalya, S. Rachel, B. A. Bernevig, and N. Regnault, “Exact excited states of
nonintegrable models”, Phys. Rev. B 98, 235155 (2018); S. Moudgalya, N. Regnault,
and B. A. Bernevig, “Entanglement of exact excited states of Affleck-Kennedy-Lieb-
Tasaki models: Exact results, many-body scars, and violation of the strong eigenstate
thermalization hypothesis”, Phys. Rev. B 98, 235156 (2018).

[11] T. Iadecola and M. Schecter, “Quantum many-body scar states with emergent kinetic
constraints and finite-entanglement revivals”, Phys. Rev. B 101, 24306 (2020).

[12] S. Chattopadhyay, H. Pichler, M. D. Lukin, and W. W. Ho, “Quantum many-body
scars from virtual entangled pairs”, Phys. Rev. B 101, 174308 (2020).

[13] M. Schecter and T. Iadecola, “Weak Ergodicity Breaking and Quantum Many-Body
Scars in Spin-1 XY Magnets”, Phys. Rev. Lett. 123, 147201 (2019).

[14] D. K. Mark, C.-J. Lin, and O. I. Motrunich, “Unified structure for exact towers of
scar states in the Affleck-Kennedy-Lieb-Tasaki and other models”, Phys. Rev. B 101,
195131 (2020).

https://doi.org/10.1103/PhysRevB.104.014424
https://doi.org/10.1103/PhysRevB.108.094205
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevB.98.235155
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1103/PhysRevB.101.024306
https://doi.org/10.1103/PhysRevB.101.174308
https://doi.org/10.1103/PhysRevLett.123.147201
https://doi.org/10.1103/PhysRevB.101.195131
https://doi.org/10.1103/PhysRevB.101.195131


136 BIBLIOGRAPHY

[15] N. O’Dea, F. Burnell, A. Chandran, and V. Khemani, “From tunnels to towers:
Quantum scars from Lie algebras and q-deformed Lie algebras”, Phys. Rev. Research
2, 043305 (2020).

[16] S. Moudgalya, E. O’Brien, B. A. Bernevig, P. Fendley, and N. Regnault, “Large classes
of quantum scarred Hamiltonians from matrix product states”, Phys. Rev. B 102,
085120 (2020).

[17] N. Shiraishi and T. Mori, “Systematic Construction of Counterexamples to the Eigen-
state Thermalization Hypothesis”, Phys. Rev. Lett. 119, 30601 (2017).

[18] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, “Weak
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Z. Papić, “Bridging quantum criticality via many-body scarring”, Phys. Rev. B 107,
235108 (2023).

[163] S. Choi, C. J. Turner, H. Pichler, W. W. Ho, A. A. Michailidis, Z. Papić, M. Serbyn,
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[212] A. M. Garćıa-Garćıa and J. Wang, “Semi-Poisson statistics in quantum chaos”, Phys.
Rev. E 73, 036210 (2006).

https://doi.org/10.1103/PhysRevB.104.L121103
https://doi.org/10.1103/PhysRevB.104.L121103
https://doi.org/10.1209/0295-5075/95/50001
https://doi.org/10.1209/0295-5075/95/50001
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1103/PhysRevLett.103.020506
https://doi.org/10.1088/1367-2630/14/11/113016
https://doi.org/10.1103/PhysRevLett.93.056402
https://doi.org/10.1103/PhysRevA.74.040302
https://doi.org/10.1103/PhysRevA.78.062306
https://doi.org/10.1103/physrevb.96.165124
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1063/1.3518900
https://doi.org/10.1063/1.3518900
https://doi.org/10.21468/SciPostPhys.2.1.003
https://doi.org/10.21468/SciPostPhys.2.1.003
https://weinbe58.github.io/QuSpin/index.html
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1038/s41567-020-01112-z
https://doi.org/10.1038/s41567-020-01112-z
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/10.1103/PhysRevE.73.036210
https://doi.org/10.1103/PhysRevE.73.036210


BIBLIOGRAPHY 147

[213] N. Pancotti, G. Giudice, J. I. Cirac, J. P. Garrahan, and M. C. Bañuls, “Quantum
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