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ABSTRACT 
Background 

Lower limb muscle magnetic resonance imaging (MRI) obtained fat fraction (FF) can 

detect disease progression in Charcot-Marie-Tooth disease 1A (CMT1A) patients. 

However, analysis is time-consuming and requires manual segmentation of lower limb 

muscles. We aimed to assess the responsiveness, efficiency and accuracy of acquiring FF 

MRI using an artificial intelligence (AI)-enabled automated segmentation technique. 

 

Methods 

We recruited 20 CMT1A patients and 7 controls for assessment at baseline and 12 

months. The 3-point-Dixon fat water separation technique was used to determine thigh- 

and calf-level muscle FF at a single slice using regions of interest (ROI) defined using 

Musclesense, a trained artificial neural network for lower limb muscle image 

segmentation. A quality control (QC) check and correction of the automated 

segmentations was undertaken by a trained observer. 

 

Results 

The QC check took on average 30 seconds per slice to complete. Using QC checked 

segmentations, the mean calf-level FF increased significantly in CMT1A patients from 

baseline over an average follow-up of 12.5 months (1.15±1.77%, paired t-test 

p=0.016). Standardised response mean (SRM) in the patients was 0.65. Without any QC 

checks, the mean FF change between baseline and follow-up, at 1.15±1.68% (paired t-

test p=0.01), was almost identical to that seen in the corrected data, and the overall 

SRM similar at 0.69. 
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Conclusions 

Using automated image segmentation for the first time in a longitudinal study in CMT, 

we have demonstrated that calf FF thus obtained has similar responsiveness to 

previously published data, is efficient with minimal time needed for QC checks and is 

accurate with minimal corrections needed. 

 

INTRODUCTION 

CMT is the most common form of inherited neuropathy, with a prevalence of 1 in 

2,500.1,2 CMT1A, resulting from a duplication of the gene encoding for peripheral myelin 

protein 22 (PMP22), accounts for more than half of all cases.2,3  

 

Genetic therapies for inherited neuropathies are already being used in diseases such as 

hereditary transthyretin amyloidosis (ATTRv).4,5 Treatments for CMT1A are on the 

horizon, with successful pre-clinical studies already published.6,7 However, a barrier in 

the development of efficacious therapies is the lack of sensitive outcome measures that 

are able to detect a clinically meaningful response to treatment during the 1 to 2-year 

duration of a clinical trial.8,9 Of importance is the responsiveness of an outcome measure 

which we define as the ability of a measure to change over a prespecified timeframe.10 

This is illustrated with the CMT neuropathy score (CMTNS) in the ascorbic acid trials for 

CMT1A, which demonstrated low responsiveness in the placebo group.11  

Highly responsive biomarkers are needed to overcome these difficulties in measuring 

slow disease progression in diseases like CMT. Using a Neuromuscular MRI Protocol, we 

have previously demonstrated quantitative calf-level MRI intramuscular FF to have large 

responsiveness in CMT1A with subsequent validation of this method at a second 

international site.12,13 Using this same protocol, we have also demonstrated its validity in 

hereditary sensory neuropathy type 1 (HSN1).14  

A limitation of the current MRI methodology is that it requires time-consuming manual 

segmentation, is mainly limited to analysis of single slices and has a risk of inter-rater 

bias. A promising technology to circumvent this, is in the form of AI-enabled automated 

segmentation which allows reduced processing times and more complex analyses, 

utilising data from numerous acquired slices and eliminates inter-observer bias.15 

Recently, we developed a trained, artificial neural network architecture in an application 

we named Musclesense for the anatomical segmentation of MRI images in 

neuromuscular diseases.15 Musclesense analysis displayed excellent overlap between 

manual and computationally derived segmentations of 571 MRI acquisitions and high 

reproducibility with low scan-rescan differences in calculated mean muscle FF measured 

at separate time-points.15  

We aimed to determine if lower limb muscle MRI FF derived using Musclesense could 

achieve similar responsiveness in CMT1A, published from our group12 and investigate 

both the efficiency and accuracy of this new AI-enabled technique. 

METHODS 
Study design and participants 

We performed a prospective longitudinal observational study of 20 CMT1A patients  

recruited from inherited neuropathy clinics at the Queen Square Centre for 

Neuromuscular Diseases, London. Participants were screened to ensure they had no 

contraindications to MRI scanning and all CMT patients had genetically proven CMT1A 

(chromosome 17p11.2 duplication). Seven Healthy control participants were recruited 

and screened to exclude any neuromuscular disease. 

 

 

 

 



 

Procedures 

Patients with CMT1A were assessed with the CMT examination score version 2 

(CMTESv2), a subscore of the CMTNS where neurophysiology is excluded. This 28-point 

score is based on signs and symptoms where 28 is very severely affected.16 

 

Our Neuromuscular MRI Protocol acquired 2-dimensional multi-slice 3-point-Dixon fat-

water separation images to create FF maps (0-100%) as published previously.12-14 Calf- 

and thigh-level 3-point Dixon MRI was performed centred at a fixed distance from the 

knee joint. Whole muscle segmentation was performed using Musclesense (figure 1A, 

1B).15 A trained observer (LFO) selected the slice for analysis as previously 

published.12,13 The automated segmentation at each slice was visually QC checked, and 

any necessary minor corrections performed (figure 1A, 1B). The observer was blinded to 

participant identification and timing of the MRI scan. The finalised segmentations were 

applied to the generated FF maps using custom written software to extract FF for all 

muscle voxels at this level and calculate their mean (figure 1A, 1B). This process was 

repeated for the same Musclesense derived segmentations prior to any QC checks to 

assess the accuracy of the AI technique (figure 1A, 1B). All FF maps were visually 

checked for artefact and any data outliers were also cross checked.  

 

Statistical analysis 

IBM-SPSS Statistics version 28.0 was used. Longitudinal changes were assessed with 

paired samples t-tests and group data were compared with independent samples t-tests. 

Correlation between measures were assessed with Spearman correlation. Outcome 

measure responsiveness was determined using the SRM, calculated by dividing the 

group mean change by the standard deviation of the change. 

 

ETHICS 

This study (IRAS project ID: 261343) has been approved by the local ethics committee 

(London-Fulham Research Ethics Committee, REC reference 19/LO/0868). Written 

informed consent was obtained from each participant.  

 

RESULTS 
AI-enabled automated segmentation process  

Once the computational segmentation was complete, the average time needed to check 

and manually correct one individual slice per limb was approximately 30 seconds for the 

AI generated ROI, comparing with 10 minutes and 15 minutes required for conventional 

manual segmentation of individual muscles on one slice for the calf and thigh 

respectively.12 The average percentage of voxels added to visually correct the selected 

AI generated ROI was 0.43% for the calf and 0.25% for the thigh. The average 

percentage of voxels trimmed was 1.09% for the calf and 0.64% for the thigh. 

  

Accuracy of longitudinal analysis using automated segmentation 

Two CMT1A patient follow-up MRI scans (one thigh-level and one calf-level MRI scan) 

were excluded from analysis due to significant artefact. The mean calf-level FF increased 

significantly from baseline over an average follow-up of 12.5 months in the CMT1A 

patients (1.15±1.77%, paired t-test p=0.016) but not in controls (0.07±0.19%, paired 

t-test p=0.54). The change in CMT1A patients at calf-level was also significant when 

compared with the change in controls (independent t-test p=0.02, figure 1C) but not at 

thigh-level (mean change 0.44±1.3% vs 0.3±0.47%, independent t-test p=0.84, figure 

1C). The overall SRM of the change in the patients was 0.65. These results were nearly 

identical when this process was completed without the QC checks (figure 1C; blue 

boxplots). This resulted in an overall mean calf-level FF change between baseline and 

follow-up for the pure AI group of 1.15±1.68% (paired t-test p=0.01, independent t-test 

p=0.02, figure 1C), which was almost identical to that seen in the corrected data. The 

overall SRM was also very similar at 0.69. A highly significant correlation was 

demonstrated between mean baseline FF results obtained using Musclesense alone 



versus those obtained with Musclesense after QC changes, for both calf and thigh (rs 

0.998, p=<0.001, figure 1D).   

 

Baseline and longitudinal clinical results 

Baseline demographic and clinical parameters are represented in table 1. In the CMT1A 

patients, the CMTES did not change significantly over an average interval of 12.5 months 

(p=0.15), resulting in low responsiveness (SRM 0.36).  

 

Discussion 

This is the first study to demonstrate the responsiveness of lower limb muscle MRI FF in 

CMT obtained using AI-enabled automated segmentation. This technique was sensitive 

enough to reproduce similar change in calf-level FF at 12 months versus baseline in 

patients seen in our other published studies of CMT1A patients.12,13 The SRM from this 

study was slightly lower at 0.69 versus 0.83 in our original study.12 This may reflect the 

patients’ disease severity distribution, as SRM is lower in more mildly affected patients.13 

We have developed a foot muscle MRI protocol and shown it is sensitive to change over 

12 months in these milder patients (unpublished data). Similarly to our previous studies, 

we did not see significant change in CMTES over 12 months.12,13 

 

We have demonstrated practical advantages to using our AI-enabled automated 

segmentation technique, namely reduced analysis time, more numerous slice analysis 

with high accuracy. The process is on average 20 times faster per slice for the calf than 

the conventional manual segmentation of individual lower limb calf muscles. The speed 

of the process allowed for the QC check of all 10 calf MRI slices per limb in half the time 

taken to manually segment the individual muscles of one calf slice. This is reflected in 

the minimal average percentage voxel changes required following visual QC check per 

selected slice for the calf and thigh, reaching an average of just over 1% of voxels 

trimmed for the calf slices. In the outlier that did require the largest number of voxels to 

be trimmed (figure 1A, 1D), the resultant FF change (36.8% vs 40.7%), does highlight 

that currently the QC process is worthwhile to ensure complete accuracy of the 

technique. However, despite this, the mean FF longitudinal change in this pure AI 

example was 4.58%, which was very similar to the mean FF longitudinal change 

obtained with manual QC changes of 4.94%. This meant that even without the QC 

corrections, the combined overall mean fat fraction change calculated between baseline 

and follow-up was nearly identical, at 1.15±1.68% (paired t-test p=0.01), to that 

calculated with the corrected data, along with the SRM of 0.69. This provides evidence 

as to the overall accuracy of the technique for analysing longitudinal data.  

 

Several limitations exist for this study. This is a new AI technique in a small sample size. 

Hence definitive conclusions cannot be made regarding overall validity and 

responsiveness. However given our previous successful experience with this AI-enabled 

automated segmentation technology15 coupled with prior evidence of quantitative FF MRI 

in CMT1A,12,13 it is likely that this approach will be an alternative, much faster option to 

manual segmentation. Although there were a reduced number of control patients in this 

study compared to our previous work, those studies provided evidence that control 

patient muscle MRI FF does not significantly change over these timescales.12 This study 

has also only investigated longitudinal changes over a mean interval of 12.5 months; 

longer studies with larger patient numbers are thus underway.17  

 

In conclusion, this study has demonstrated the effectiveness of a novel AI-enabled 

automated segmentation approach, with similar responsiveness to other published 

studies of MRI FF quantification in CMT1A patients over time.12 Given the potential 

therapies for CMT1A,6,7 this new technique has the potential to support the efficiency and 

timely completion of clinical trials in CMT where lower limb MRI FF is being used as an 

outcome measure.    
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Table 
 
Demographics CMT1A group Control group p value 

Sex 

Male 

Female 

 

10 

10 

 

3 

4 

0.76 

 

Age (years) 45.0 (14.8) 47.4 (18.5) 0.72 

Clinical parameters    

Age of onset (years)* 6.5 (4.1) NA NA 

Disease duration (years)* 36.2 (14.9) NA NA 

CMTES (0-28)* 10.6 (3.2) NA NA 
Table 1: Baseline characteristics. Data are presented as mean values (SD). NA=not applicable. 
CMTES=Charcot-Marie-Tooth disease examination score. *Controls had no neuromuscular symptoms and were 
normal on neurological examination, hence CMTES, age of onset and disease duration were not applicable.  
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