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Abstract

Experimental powder diffraction patterns have improved dramatically in quality

and volume due to advancements in X-ray sources, optics, and detectors over

the past decades. During this PhD, we have established a machine

learning-based chemical image analysis pipeline to accelerate and enhance the

acquisition of chemical imaging datasets. Phase Quantification Neural Network

(PQ-Net) is a regression, deep convolutional neural network that provides

quantitative analysis of powder X-ray diffraction patterns and has been applied

to recently acquired data to accelerate data analysis. The network is trained

with simulated datasets and tested with experimental X-ray diffraction computed

tomography (XRD-CT) datasets and shows great potential as a tool for real-time

analysis of diffraction data during in situ experiments due to its ability to yield

results at least ten times faster (i.e. minutes rather than hours).

We also used a self-supervised learning approach, the SingleDigit2Image

(SD2I) network, to overcome the problem related to insufficient projections. The

network is tested with simulated data and experimental synchrotron X-ray

micro-tomography and XRD-CT data. Statistical analysis revealed that the

results are more accurate than the images reconstructed by filtered back

projection (FBP) and iterative algorithms. Based on the SD2I, we developed the

ParallaxNet to solve the parallax artefact in XRD-CT images. The parallax

artefact arises from the incorrectly recorded diffraction angle caused by the

different starting positions of scattered beams, which is the main barrier to

applying the XRD-CT to samples on the scale of centimetres. The ParallaxNet

is tested with one simulated and two real experimental datasets and correctly

refined the diffraction reflections in all pixels.

Furthermore, a new 3D image decomposition method Self2Comp is developed

to decompose the XRD-CT image with the standard diffraction patterns of

chemical components. This method requires no prior knowledge about the

sample and can extract more components than conventional

image-decomposing methods like non-negative matrix factorization (NMF).
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Statement of Impact
The advancements in this PhD research represent a significant leap forward in

the field of X-ray powder diffraction analysis and computed tomographic (CT)

artefact removal. By leveraging machine learning and neural network

technologies, the work promises to revolutionise the way chemical imaging

datasets are analysed and applied. Specifically, the Phase Quantification Neural

Network (PQ-Net) can accelerate the powder diffraction data analysis, providing

unprecedented speed that opens the door to real-time, in situ experiments.

Beyond speed, our research addresses critical limitations in the field. For

instance, the SingleDigit2Image (SD2I) network improves the accuracy of

chemical imaging data and overcomes the challenge of insufficient projections.

Our work even extends to resolving issues that have previously inhibited the

application of X-ray diffraction computed tomography (XRD-CT) on a larger

scale, such as the parallax artefact, through the development of ParallaxNet.

The impact of these innovations is not confined to academic circles; it has

substantial real-world implications. Speeding up and improving the accuracy of

diffraction data analysis will inevitably benefit a range of sectors, including

material science, healthcare, and manufacturing. Since the publication of our

paper, PQ-Net has not only gained academic recognition but has also been

officially licensed for broader applications. This advanced technology is now

being employed in new experiments and has received overwhelmingly positive

responses. By resolving long-standing technical issues on synchrotron CT

techniques and dramatically increasing the speed of analysis, this research sets

the stage for applications that could change the way we understand and interact

with material studies.
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Chapter 1: Introduction

1.1 Motivation

During the past decades, there has been a significant rise in the quantity and

quality of chemical imaging data due to progress in beam sources, optics, and

detector technologies. Nevertheless, these developments have a downside

which involves handling the large amount of data gathered in these experiments

[1]–[3]. Taking modern synchrotron experiments as an example, with the

emergence of fourth-generation synchrotron facilities globally, the potential to

obtain numerous Terabytes (TBs) of X-ray diffraction (XRD) data per dynamic

experiment is now a reality [4]. Traditional techniques for data analysis, such as

least-squares minimization methods, are unable to keep pace with the rapid

rate of XRD data collection. As a result, there is a demand for alternative

methods that can deliver results that are both swift and precise [5].

While experimental equipment continues to develop, the role of machine

learning (ML) in addressing big data challenges is constantly being explored by

experts [6]. ML generally involves using algorithms to teach the computer how

to learn based on a set of experimental or simulated data and give certain

assumptions, and it allows the computer to perform tasks that are not

specifically programmed [7]. In many fields of research, ML has demonstrated

its ability to derive more accurate and reliable results than humans, especially in

problems that involve repetition, specialization, and big data [8]. Big data often

contains many variables and factors, and the relationships between them are

complex and difficult to discern by traditional methods. However, ML can find

their connections and potential causal relationships, thus discovering hidden

information and patterns in the data [9].

It is well recognised that ML approaches, especially deep neural networks, have

great potential to be applied to chemical imaging data in terms of fast analysis

of experimental data [10], enhancing image resolution [11], and solving common

artifacts that affect data quality [12]–[14]. Previous work only used ML
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techniques in one or two stages of data acquisition. Although they have

achieved impressive results, the lack of comprehensive analysis of data from

beginning to end often leads to models that do not consider the needs of people

under laboratory conditions in terms of model size, accuracy, or generalization

[15]–[17]. This has resulted in the situation that although new models are

continuously developed, people still find it difficult to use them in real

experiments.

Therefore, we saw great potential to build up a new chemical imaging analysing

pipeline that used ML methods on all procedures that are currently

labour-intensive. We first focused on X-ray diffraction computed tomography

(XRD-CT), because it is a relatively new and advanced computed tomography

(CT) method that contains many similar components to other CT methods and

therefore suffers from a big data problem that is ripe for tackling using ML

methods [18]. Subsequently, the learnings from the application of ML methods

for XRD-CT can potentially be applied to more CT methods like neutron-CT and

X-ray absorption CT (X-ray CT).

1.2 Chemical Imaging

Chemical imaging is an approach that enables the visualization of the spatial

organization and concentration of chemical elements within a sample, often

down to the atomic level. By merging principles from analytical chemistry,

microscopy, and imaging, this technique delivers comprehensive data on the

location of various chemical compounds within the sample [19]. Chemical

imaging is versatile, as it can be applied to diverse materials such as solids,

liquids, and gasses, and is utilized across fields like materials science [19],

pharmaceuticals [20], environmental science [21], and biology [22]. Different

chemical imaging methods can be classified by their sources used, the

interaction between the sources and the sample, and the data

acquisition/processing methods [23]–[25].
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Wave sources can interact with the matter in a range of different ways which

include absorption, emission, scattering, and diffraction. Chemical imaging

methods will often quantify these interactions, and generally, different detection

setups are needed to detect different types of interactions [26]–[28].

For example, infrared (IR) spectroscopy [29] measures the absorption of IR rays

(λ ~ µm) by the sample. Data on the molecular vibrations can be obtained,

which is linked to the chemical signature of the molecules, and chemical bonds

present [30]. IR spectroscopy has a wide range of applications due to its ability

to identify and study chemical substances [31]–[33]. In IR image processing, AI

is being extensively used in image classification [34], image enhancement [35],

and both quantitative and qualitative data analysis [36].

The X-ray absorption spectroscopy (XAS) used the transmission/absorption of

different energies (λ ~ Å) of infrared and X-ray beams on the sample to

characterize the material being measured. During XAS, an adjustable X-ray

source, like a synchrotron radiation source, produces monochromatic X-rays

with a range of energies [26]. As the energy of the X-rays is adjusted, the

sample takes in the X-rays, ultimately leading to the excitation of core electrons

to unoccupied electronic states. The X-ray absorption spectrum is derived by

evaluating the absorption coefficient in relation to the energy of the incoming

X-rays [37]. Moreover, since light absorption is directly proportional to the path

length and the concentration of the solution (i.e the Beer Lambert Law), X-ray

absorption with mass attenuation is an essential physical mechanism employed

in medical imaging to produce images that depict the internal structures of

diverse organs [38].

Emission is another interaction between the source light and the sample that is

applied in chemical imaging. Fluorescence microscopy is a typical

emission-based technique [39]. This method works by illuminating a sample

with light of a particular wavelength, which excites certain molecules in the

sample. After some non-radiative transition, these molecules can emit
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fluorescence at a longer wavelength (lower energy). By detecting the emitted

light, it is possible to visualize and analyze the distribution of fluorescent

molecules. Fluorescence microscopy methods normally use UV-visible radiation

(λ ~ nm) as the source and measure the UV-Visible or near-infrared light

response at the detectors. This technique normally provides information on

molecular properties, such as structure, environment, or concentration [39]. The

X-ray fluorescence (XRF) imaging technique is based on the same

phenomenon of the visible light fluorescence techniques, however, with an

excitation source in the Å and which is, therefore, higher in energy, can

penetrate deeper into the sample [40]. XRF allows for analysing the elemental

composition information of a sample in a non-destructive way and with higher

sensitivity (~ ppm).

1.3 Chemical Computed Tomographic (CT) Methods

1.3.1 X-Ray Absorption CT

X-ray absorption CT, when the pixel size of the recreated images is on the

micrometre scale (typically 1-10 µm), is also known as micro-CT or µ-CT [41].

This technology results in a three-dimensional matrix. The original

reconstructed data volume can be utilized for localized characterization, such as

identifying morphological features in specific sample areas, or even as a model

(after segmentation and mesh creation) for assessing the material's transport

properties [42]. Recent advancements in full-field X-ray microscopy or nano-CT

have facilitated data collection with voxel sizes on the nanometer scale (tens to

hundreds of nm) [43]. This high-resolution X-ray CT data enables the

examination of a sample's microstructure and direct measurement of its

physical properties, such as porosity, tortuosity, and pore size distribution. X-ray

CT is widely used in material science and functional materials studies. This is

especially apt for examining the microstructural changes caused by fatigue.

X-ray CTs allow us to investigate the materials in a non-destructive way and

allows for repeated examination of the same sample over time without causing

damage [44]. Chowdhury et al. analyzed the micro-scale damage in
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carbon-carbon composites, intending to apply their findings in the aerospace

sector [45]. Another recent study employed in situ micro-CT to investigate the

mechanism of fracture initiation and propagation in lightweight cement foams, a

new building material with high strength and low density. The findings revealed

a distinct correlation between the occurrence of cracks and the presence of two

standard hollow glass microspheres [46]. In situ micro-CT can also be utilized

for biomimetic material analysis. In 2018, Wang et al. performed in situ

compression stress tests on pomelo peel. By employing micro-CT to analyze

the hierarchical structure of the peel, they investigated its physical properties in

terms of stress resistance, damping ability, and energy absorption [47].

Micro-CT imaging enables a thorough examination of the intricate internal

structure of energy storage devices, ranging from tiny batteries to complete fuel

cells, providing a high level of detail. This technique proves useful in quality

control processes and aids in identifying defective components [48]–[50]. In

2016, Finegan et al. used both operando and multi-scale micro-CT to analyse

the catastrophic breakdown of lithium-ion batteries that can happen at various

length scales and within a short time frame [51]. This comprehensive approach

allows for the investigation of the interdependent dynamic structural, thermal,

and electrical responses associated with the degradation process. Eastwood et

al. applied both micro-CT and nano-CT to studying low atomic number materials

that are commonly found in Li-ion battery electrodes [52]. In this paper, they

quantitively extracted crucial characteristics within a statistically representative

region of interest, encompassing over a thousand particles. Meanwhile, X-ray

CT is also widely applied in studying solid oxide fuel cells (SOFCs) [53].

Nano-CT, has become a prevalent tool for exploring the microstructure around

the Nickel electro-catalyst located at the anode [54]. This full-field X-ray

microscopy technique can deliver reconstructed data with a spatial resolution of

less than 50 nanometers. Nano-CT not only makes it feasible to measure

physical properties but also enables an investigation into the interconnectivity,

triple phase boundary, and the relative volume of the various phases present in

the sample.
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1.3.2 X-Ray Diffraction Computed Tomography (XRD-CT)

XRD-CT couples XRD with a scanning CT approach using a monochromatic

pencil beam. Then it can re-create a 3D model of a physical object layer by

layer without destroying the original sample [55]. Harding et al. initially showed

the principle of XRD-CT in 1987 with a laboratory diffractometer [56]. Over the

past ten years, however, it has become clear that its full capacity for materials

characterization can be leveraged using a synchrotron beam [57]. In

conventional X-ray tomography, the images that are obtained give maps of

density within the object and the composing pixels contain single grayscale

values. In scatter-based tomography, each pixel instead contains a scattering

pattern or equivalent chemical signal (a 1D array (or higher) of numbers). An

XRD-CT image can show the X-ray diffraction patterns on each pixel of the

reconstructed image. X-ray scatter-based tomography allows unprecedented

insight into the chemical and physical state of functional materials and devices.

Such tomographic approaches can be used as research tools but also offer the

potential for routine scanning for inspection systems and medical scanning [18].

An X-ray scatter-based tomography slice is a data cube with two spatial

dimensions and one scattering dimension.

This form of chemical tomography, similar to techniques like X-ray Fluorescence

Computed Tomography (XRF-CT) and Pair Distribution Function Computed

Tomography (PDF-CT), is capable of detecting both the chemical state and

physical form of the substances present within the system [58]. This makes it an

extremely valuable resource for characterizing catalyst reactions and

heterogeneous materials. Jacques et al. first conducted an in situ XRD-CT

study, examining the evolution of Ni species during the activation of a Ni/Al2O3

hydrogenation catalyst [59]. They claimed that this method has the potential to

facilitate the chemical imaging of substances inside bulk objects that are

ongoing physicochemical changes. Beale et al. utilized XRD-CT technology to

study the impact of sulfur (S) on Cu/ZnO/Al2O3 catalysts that are commonly

used in Water Gas Shift (WGS) reactions [60]. The spatially-resolved diffraction
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patterns derived from the XRD-CT examinations disclosed that Cu and Zn

sulfides were formed during the H2S treatment. The study also found that the

thickness of the CuS and ZnS shells increased as the concentration of H2S

increased. In 2022, Matras et al. applied the XRD-CT on Li-ion cylindrical

batteries under charge/discharge conditions [61]. By analysing the

spatially-resolved diffraction patterns, numerous chemical inconsistencies

associated with the distribution of lithium in both the cathode and anode were

determined, and they correctly detected the lattice parameter on the cathode

around the aluminium tab. Moreover, Vamvakeros et al. performed XRD-CT on

an operational catalytic membrane reactor used for the oxidative coupling of

methane [57]. Their findings showed the significance of evolving solid-state

chemistry during the catalytic reaction. Middelkoop et al. used XRD-CT to study

the reactivity of 3D-printed Ni/Al2O3 monolithic structures in relation to the

methanation reaction of CO2 [55]. They claimed that the XRD-CT disclosed the

spatial changes in physico-chemical characteristics under operating conditions.

1.4 Machine Learning in Chemical Image Processing

In recent years, due to the continuous development of experimental equipment

and their precision, the size of experimental data has increased at an

astonishing speed. Analyzing the increasingly large volume of experimental

data sometimes cannot be done using traditional data analysis methods,

because they often fall short in terms of speed and feasibility [62]. Machine

learning (ML), as an emerging discipline, is increasingly favoured in the

processing of large chemical data and high-throughput chemical image analysis

[7], [63].

Neural networks (NN) are a crucial machine learning technique with significant

implications in the fields of computer vision and image processing. The earliest

idea of NN was proposed in 1943 by McCulloch and Pitts [64], and it has grown

in popularity after the publication of the Hopfield networks in 1982 [65], along

with the introduction of the backpropagation learning algorithm for multi-layer
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networks by Rumelhart et al. in 1986 [66]. In the following two decades, NN

have become widely applied in fields such as chemical engineering [67],

principle component analysis [68], base function approximation [69], and

catalyst design [70]. However, due to the limitation of computer processing

power and memory, storage, programming languages, and the design of these

early-stage NNs, these early-stage developments in NNs did not have much

impact on chemical research [71].

Recently, Convolutional Neural Networks (CNN), a deep learning method, has

shown important potential in molecular and material sciences. For instance,

Rao and Liu implemented 3D-CNN for heterogeneous material

homogenization[72]. They used a computational homogenization approach to

generate a high-fidelity training dataset and claimed that their CNN architecture

is also suitable for facilitating material design. Ziatdinov and his colleagues

meanwhile, successfully applied 2D-CNN to analyse scanning transmission

electron microscopy images [73].

By the 2000s, with the emergence of deep neural networks (DCNN) [74] and

CNNs [75], the use of AI in image processing and chemical data analysis began

to receive increasing attention. These advanced NNs normally have more

hidden layers, so that they can handle more complex problems [71]. For

example, Zhu et al. proposed the automated transform by manifold

approximation (AUTOMAP) CNN architecture that can directly reconstruct CT

images from its sinograms [76]. Since this method is a supervised learning

technique, training a model requires a large training dataset that mixes

simulated and real experimental data, and is tested on another experimental

dataset. They utilized the widely recognized ImageNet database for simulating

CT images [77]. Since this database contains real-life images and covers all

features in the real dataset, the network became more robust and could

subsequently be applied to all experimental data that are not seen by the

model. The CNN has also been applied to solve more specific problems in
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chemical CT images like angular undersampling artefacts [78]–[81], metal

artefacts [82], image noise [83]–[85] and blurring [86].

CNN is also often used to analyze chemical data. Nowadays, XRD phase

identification has become a common bottleneck in materials characterisation

and screening [87]. Assuming we have some previous knowledge about the

crystalline phases present in the sample under investigation, phase

identification can still take hours for an expert crystallographer [88]. For an

XRD-CT image, there are normally thousands or even millions of XRD patterns

to be analysed, therefore, their recent research has focused on using machine

learning methods for phase identification.

Lee et al. proposed a CNN structure used for XRD pattern identification, which

also has the potential to predict fractions of phases approximately [10]. The

same group also demonstrated a classification CNN model that can extract

crystal-system, extinction-group, and space-group information from XRD

patterns [14]. Wang et al. demonstrated a phase identification CNN which was

trained with simulated patterns with noise extracted from real experimental data

[89]. However, most of the recent works focus on producing classification

models for phase identification. In other words, they can only predict whether a

phase is present or not in a diffraction pattern. Lee’s team expanded its model

to roughly classify the fraction range that phases lie on [10]. The authors

claimed that their model possesses the fastest training time whilst retaining

good accuracy (about 99 %). This structure can predict the weight percentages

of 38 phases of crystals in one pattern, within a matter of a few minutes.

Furthermore, this model can predict the fraction of one phase lying in the 66-99

% range, 33-66 % range or 0-33 % range as three different outputs.

However, like many other supervised learning methods, CNN phase

identification has some important shortcomings [88]. First of all, a trained model

cannot predict phases which are not included in the original training dataset,

and those new phases may also have a big influence on the performance of
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predicting other phases [90]. This disadvantage becomes very dangerous when

we attempt to use a CNN model to decipher the phases present in a diffraction

pattern, as it can produce completely incorrect results without any warning [87].

Secondly, the input scale and output scale are fixed, so it is hard to get a

generally applied CNN model that can adapt to the different Q ranges and the

number of bins.

Moreover, chemical image segmentation involves breaking down images of

chemical samples, microstructures, or chemical reactions into distinct segments

or areas, each representing a unique object or point of interest. The primary

goal is to modify or simplify the image's representation to facilitate easier

analysis [91]–[93]. The basic concept involves carrying out segmentation

through the application of filters on a 2D input image. In the research conducted

by Zhang et al., various types of information were presented as 2D images and

fed into the CNN's input layer via different image channels (like the Red, Green,

and Blue channels) [94]. Leist et al. proposed a 2D CNN architecture that allows

for automatic defect identification and strain mapping in transmission electron

microscopy (TEM) images [95]. This architecture used multiple residual blocks

that enable the gradient to be back-propagated directly to the preceding layers,

thus addressing the issue of vanishing gradients. This subsequently facilitates

the training of significantly deeper neural networks [96].

The CNN-based approach is not only restricted to the 2D domain however.

Aggarwal et al. proposed a 3D CNN architecture to predict the possible binding

site on a protein that a ligand can bind to, and then they used another 3D CNN

model to visualize the protein [97]. In 2022, Muin used CNN to capture reliable

geometrical information on foam structures in 3D micro-CT images. The model

explored in this research utilizes supervised learning based on labelled ground

truth data, aiming to precisely discern pixel distributions at air-liquid interfaces

[98].
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1.5 Research Hypothesis and Aims

We have already seen outstanding contributions from ML methods in solving

various individual analytical problems and it also becomes more possible to

design an image processing method that can solve multiple problems at the

same time. In this thesis, I will demonstrate my work on the application of

diverse machine learning algorithms for CT image reconstruction. In the

following chapters, a study of the feasibility of having a regression CNN model

to predict the scale factor, crystallite size and lattice parameters of multiple

phases in one XRD pattern simultaneously is demonstrated. The model is

trained with at least 50,000 real experimental or simulated patterns. Using

modern graphics processing units (GPUs) to accelerate the pattern-simulation

process is also an attractive secondary goal, although as back-up, diffraction

analysis software such as TOPAS can be used [99]. The simulated patterns

should have a wider range of parameters than real experimental data to include

all possible experimental patterns. We are assuming that the experimental data

are perfect powder diffraction patterns, however, many factors can affect the

shape of the real data. Therefore, measures to justify the robustness of a model

trained with simulated patterns acting on real experimental data need also to be

developed.

The second objective of this thesis is to employ a combination of supervised

and unsupervised learning techniques to reconstruct CT images that contain

multiple types of artefact, including angular undersampling and parallax

artefacts. I will introduce the Single-Digit-to-Image (SD2I) [100] and the

ParallaxNet architectures, which are designed to accurately reconstruct CT

images using fewer projection data and to handle large sample sizes in

XRD-CT, respectively. The reconstructed images were compared with filtered

back projection (FBP) results and conventional iterative methods. Meanwhile, I

use statistical methods, like the t-distributed Stochastic Neighbor Embedding

(t-SNE), to study and visualize the impact of the diversity of training datasets
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acting on the trained CNN model, which can also give an indication regarding

the extent we can trust the results from a trained CNN.

The last part of this thesis will focus on AI-based image clustering methods. We

will introduce the Self-to-Components (Self2Comp) algorithm that can serve as

a more effective replacement for conventional data clustering methods such as

Non-negative Matrix Factorization (NMF) and Principal Component Analysis

(PCA), thereby significantly reducing the number of patterns to be analyzed and

accelerating the X-ray Diffraction Computed Tomography (XRD-CT) image

processing pipeline. Successfully minimizing the volume of data for analysis

could increase the efficiency of the image processing pipeline. The validation of

this hypothesis would necessitate the design, application, and comparative

evaluation of this new AI-based image clustering method against conventional

methods, with emphasis on its capacity to reduce pattern complexity and

expedite processing times.

1.6 References

[1] S. J. Lusher, R. McGuire, R. C. van Schaik, C. D. Nicholson, and J. de
Vlieg, ‘Data-driven medicinal chemistry in the era of big data’, Drug Discov.
Today, vol. 19, no. 7, pp. 859–868, 2014.

[2] I. V. Tetko, O. Engkvist, U. Koch, J.-L. Reymond, and H. Chen, ‘BIGCHEM:
challenges and opportunities for big data analysis in chemistry’, Mol.
Inform., vol. 35, no. 11–12, pp. 615–621, 2016.

[3] H. Zheng, J. Hou, M. D. Zimmerman, A. Wlodawer, and W. Minor, ‘The
future of crystallography in drug discovery’, Expert Opin. Drug Discov., vol.
9, no. 2, pp. 125–137, 2014.

[4] G. Pacchioni, ‘An upgrade to a bright future’, Nat. Rev. Phys., vol. 1, no. 2,
Art. no. 2, Feb. 2019, doi: 10.1038/s42254-019-0019-5.

[5] C. Wang, U. Steiner, and A. Sepe, ‘Synchrotron big data science’, Small,
vol. 14, no. 46, p. 1802291, 2018.

[6] V. V. Kolisetty and D. S. Rajput, ‘A review on the significance of machine
learning for data analysis in big data’, Jordanian J. Comput. Inf. Technol.
JJCIT, vol. 6, no. 01, pp. 155–171, 2020.

[7] J. F. Rodrigues, L. Florea, M. C. de Oliveira, D. Diamond, and O. N.
Oliveira, ‘Big data and machine learning for materials science’, Discov.
Mater., vol. 1, pp. 1–27, 2021.

[8] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, ‘A survey of machine learning
for big data processing’, EURASIP J. Adv. Signal Process., vol. 2016, no.

40



1, p. 67, May 2016, doi: 10.1186/s13634-016-0355-x.
[9] D. Bhamare and P. Suryawanshi, ‘Review on Reliable Pattern Recognition

with Machine Learning Techniques’, Fuzzy Inf. Eng., vol. 10, no. 3, pp.
362–377, Jul. 2018, doi: 10.1080/16168658.2019.1611030.

[10] J.-W. Lee, W. B. Park, J. H. Lee, S. P. Singh, and K.-S. Sohn, ‘A
deep-learning technique for phase identification in multiphase inorganic
compounds using synthetic XRD powder patterns’, Nat. Commun., vol. 11,
no. 1, pp. 1–11, 2020.

[11] M. Ebner et al., ‘An automated framework for localization, segmentation
and super-resolution reconstruction of fetal brain MRI’, Neuroimage, vol.
206, 2019.

[12] M. Bal and L. Spies, ‘Metal artifact reduction in CT using tissue-class
modeling and adaptive prefiltering’, Med. Phys., vol. 33, no. 8, pp.
2852–2859, 2006.

[13] S. Ghadrdan, J. Alirezaie, J.-L. Dillenseger, and P. Babyn, ‘Low-dose
computed tomography image denoising based on joint wavelet and sparse
representation’, in 2014 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Aug. 2014, pp. 3325–3328.
doi: 10.1109/EMBC.2014.6944334.

[14] H. Lee, J. Lee, H. Kim, B. Cho, and S. Cho, ‘Deep-Neural-Network-Based
Sinogram Synthesis for Sparse-View CT Image Reconstruction’, IEEE
Trans. Radiat. Plasma Med. Sci., vol. 3, no. 2, pp. 109–119, Mar. 2019, doi:
10.1109/TRPMS.2018.2867611.

[15] N. Hampe, J. M. Wolterink, S. G. Van Velzen, T. Leiner, and I. Išgum,
‘Machine learning for assessment of coronary artery disease in cardiac CT:
a survey’, Front. Cardiovasc. Med., vol. 6, p. 172, 2019.

[16] S. Wang and R. M. Summers, ‘Machine learning and radiology’, Med.
Image Anal., vol. 16, no. 5, pp. 933–951, 2012.

[17] H. Khalid et al., ‘A comparative systematic literature review on knee bone
reports from mri, x-rays and ct scans using deep learning and machine
learning methodologies’, Diagnostics, vol. 10, no. 8, p. 518, 2020.

[18] A. M. Beale, S. D. Jacques, E. K. Gibson, and M. Di Michiel, ‘Progress
towards five dimensional diffraction imaging of functional materials under
process conditions’, Coord. Chem. Rev., vol. 277, pp. 208–223, 2014.

[19] A. Dazzi and C. B. Prater, ‘AFM-IR: Technology and applications in
nanoscale infrared spectroscopy and chemical imaging’, Chem. Rev., vol.
117, no. 7, pp. 5146–5173, 2017.

[20] A. A. Gowen, C. P. O’donnell, P. J. Cullen, and S. E. J. Bell, ‘Recent
applications of chemical imaging to pharmaceutical process monitoring and
quality control’, Eur. J. Pharm. Biopharm., vol. 69, no. 1, pp. 10–22, 2008.

[21] S. Primpke, M. Godejohann, and G. Gerdts, ‘Rapid identification and
quantification of microplastics in the environment by quantum cascade
laser-based hyperspectral infrared chemical imaging’, Environ. Sci.
Technol., vol. 54, no. 24, pp. 15893–15903, 2020.

[22] D. Kurouski, A. Dazzi, R. Zenobi, and A. Centrone, ‘Infrared and Raman
chemical imaging and spectroscopy at the nanoscale’, Chem. Soc. Rev.,
vol. 49, no. 11, pp. 3315–3347, 2020.

[23] C. Pasquini, ‘Near infrared spectroscopy: A mature analytical technique

41



with new perspectives–A review’, Anal. Chim. Acta, vol. 1026, pp. 8–36,
2018.

[24] P. Rostron, S. Gaber, and D. Gaber, ‘Raman spectroscopy, review’, laser,
vol. 21, p. 24, 2016.

[25] J. T. Irvine, D. C. Sinclair, and A. R. West, ‘Electroceramics:
characterization by impedance spectroscopy’, Adv. Mater., vol. 2, no. 3, pp.
132–138, 1990.

[26] P. Zimmermann et al., ‘Modern X-ray spectroscopy: XAS and XES in the
laboratory’, Coord. Chem. Rev., vol. 423, p. 213466, 2020.

[27] B. Wu and J. S. Becker, ‘Imaging techniques for elements and element
species in plant science’, Metallomics, vol. 4, no. 5, pp. 403–416, 2012.

[28] R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, and A. J.
Durkin, ‘Review of short-wave infrared spectroscopy and imaging methods
for biological tissue characterization’, J. Biomed. Opt., vol. 20, no. 3, pp.
030901–030901, 2015.

[29] J. Ryczkowski, ‘IR spectroscopy in catalysis’, Catal. Today, vol. 68, no. 4,
pp. 263–381, 2001.

[30] A. Barth, ‘Infrared spectroscopy of proteins’, Biochim. Biophys. Acta
BBA-Bioenerg., vol. 1767, no. 9, pp. 1073–1101, 2007.

[31] L. Fernández-Carrasco, D. Torrens-Martín, L. M. Morales, and S.
Martínez-Ramírez, ‘Infrared spectroscopy in the analysis of building and
construction materials’, Infrared Spectrosc. Sci. Eng. Technol., vol. 510,
2012.

[32] J. Luypaert, D. L. Massart, and Y. Vander Heyden, ‘Near-infrared
spectroscopy applications in pharmaceutical analysis’, Talanta, vol. 72, no.
3, pp. 865–883, 2007.

[33] J. Haas and B. Mizaikoff, ‘Advances in mid-infrared spectroscopy for
chemical analysis’, Annu. Rev. Anal. Chem., vol. 9, pp. 45–68, 2016.

[34] F. B. de Santana, W. B. Neto, and R. J. Poppi, ‘Random forest as
one-class classifier and infrared spectroscopy for food adulteration
detection’, Food Chem., vol. 293, pp. 323–332, 2019.

[35] X. Kuang, X. Sui, Y. Liu, Q. Chen, and G. Gu, ‘Single infrared image
enhancement using a deep convolutional neural network’,
Neurocomputing, vol. 332, pp. 119–128, 2019.

[36] R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, ‘Review of
multidimensional data processing approaches for Raman and infrared
spectroscopy’, EPJ Tech. Instrum., vol. 2, pp. 1–38, 2015.

[37] F. De Groot, ‘High-resolution X-ray emission and X-ray absorption
spectroscopy’, Chem. Rev., vol. 101, no. 6, pp. 1779–1808, 2001.

[38] J. H. Lovett and H. H. Harris, ‘Application of X-ray absorption and X-ray
fluorescence techniques to the study of metallodrug action’, Curr. Opin.
Chem. Biol., vol. 61, pp. 135–142, 2021.

[39] J. W. Lichtman and J.-A. Conchello, ‘Fluorescence microscopy’, Nat.
Methods, vol. 2, no. 12, pp. 910–919, 2005.

[40] T. D. T. Oyedotun, ‘X-ray fluorescence (XRF) in the investigation of the
composition of earth materials: a review and an overview’, Geol. Ecol.
Landsc., vol. 2, no. 2, pp. 148–154, 2018.

[41] S. R. Stock, Microcomputed tomography: methodology and applications.

42



CRC press, 2019.
[42] N. Dal Ferro, P. Charrier, and F. Morari, ‘Dual-scale micro-CT assessment

of soil structure in a long-term fertilization experiment’, Geoderma, vol. 204,
pp. 84–93, 2013.

[43] A. Singhal, J. C. Grande, and Y. Zhou, ‘Micro/nano-CT for visualization of
internal structures’, Microsc. Today, vol. 21, no. 2, pp. 16–22, 2013.

[44] L. Vásárhelyi, Z. Kónya, Á. Kukovecz, and R. Vajtai, ‘Microcomputed
tomography–based characterization of advanced materials: a review’,
Mater. Today Adv., vol. 8, p. 100084, 2020.

[45] P. Chowdhury, H. Sehitoglu, and R. Rateick, ‘Damage tolerance of
carbon-carbon composites in aerospace application’, Carbon, vol. 126, pp.
382–393, 2018.

[46] H. K. Bas, W. Jin, N. Gupta, and R. K. Behera, ‘In-situ micro-CT
characterization of mechanical properties and failure mechanism of
cementitious syntactic foams’, Cem. Concr. Compos., vol. 90, pp. 50–60,
2018.

[47] B. Wang, B. Pan, and G. Lubineau, ‘Morphological evolution and internal
strain mapping of pomelo peel using X-ray computed tomography and
digital volume correlation’, Mater. Des., vol. 137, pp. 305–315, 2018.

[48] J. Scharf et al., ‘Bridging nano-and microscale X-ray tomography for
battery research by leveraging artificial intelligence’, Nat. Nanotechnol., vol.
17, no. 5, pp. 446–459, 2022.

[49] F. Li and Z. Zhou, ‘Micro/nanostructured materials for sodium ion batteries
and capacitors’, Small, vol. 14, no. 6, p. 1702961, 2018.

[50] Z. Ju, X. Xu, X. Zhang, K. U. Raigama, and G. Yu, ‘Towards fast-charging
high-energy lithium-ion batteries: From nano-to micro-structuring
perspectives’, Chem. Eng. J., vol. 454, p. 140003, 2023.

[51] D. P. Finegan et al., ‘Investigating lithium-ion battery materials during
overcharge-induced thermal runaway: an operando and multi-scale X-ray
CT study’, Phys. Chem. Chem. Phys., vol. 18, no. 45, pp. 30912–30919,
2016, doi: 10.1039/C6CP04251A.

[52] D. S. Eastwood et al., ‘The application of phase contrast X-ray techniques
for imaging Li-ion battery electrodes’, Nucl. Instrum. Methods Phys. Res.
Sect. B Beam Interact. Mater. At., vol. 324, pp. 118–123, Apr. 2014, doi:
10.1016/j.nimb.2013.08.066.

[53] J. Malzbender, R. W. Steinbrech, and L. Singheiser, ‘A review of advanced
techniques for characterising SOFC behaviour’, Fuel Cells, vol. 9, no. 6,
pp. 785–793, 2009.

[54] K. N. Grew et al., ‘Nondestructive nanoscale 3D elemental mapping and
analysis of a solid oxide fuel cell anode’, J. Electrochem. Soc., vol. 157, no.
6, p. B783, 2010.

[55] V. Middelkoop et al., ‘3D printed Ni/Al2O3 based catalysts for CO2
methanation-a comparative and operando XRD-CT study’, J. CO2 Util., vol.
33, pp. 478–487, 2019.

[56] G. Harding, J. Kosanetzky, and U. Neitzel, ‘X-ray diffraction computed
tomography’, Med. Phys., vol. 14, no. 4, pp. 515–525, 1987.

[57] A. Vamvakeros et al., ‘Real time chemical imaging of a working catalytic
membrane reactor during oxidative coupling of methane’, Chem.

43



Commun., vol. 51, no. 64, pp. 12752–12755, 2015.
[58] C. Vanhoof, J. R. Bacon, U. E. Fittschen, and L. Vincze, ‘2020 atomic

spectrometry update–a review of advances in X-ray fluorescence
spectrometry and its special applications’, J. Anal. At. Spectrom., vol. 35,
no. 9, pp. 1704–1719, 2020.

[59] S. D. Jacques et al., ‘Dynamic X-Ray Diffraction Computed Tomography
Reveals Real-Time Insight into Catalyst Active Phase Evolution’, Angew.
Chem. Int. Ed., vol. 50, no. 43, pp. 10148–10152, 2011.

[60] A. M. Beale et al., ‘Chemical imaging of the sulfur-induced deactivation of
Cu/ZnO catalyst bodies’, J. Catal., vol. 314, pp. 94–100, 2014.

[61] D. Matras et al., ‘Emerging chemical heterogeneities in a commercial
18650 NCA Li-ion battery during early cycling revealed by synchrotron
X-ray diffraction tomography’, J. Power Sources, vol. 539, p. 231589, Aug.
2022, doi: 10.1016/j.jpowsour.2022.231589.

[62] Y. Chen, H. Chen, A. Gorkhali, Y. Lu, Y. Ma, and L. Li, ‘Big data analytics
and big data science: a survey’, J. Manag. Anal., vol. 3, no. 1, pp. 1–42,
Jan. 2016, doi: 10.1080/23270012.2016.1141332.

[63] G. B. Goh, N. O. Hodas, and A. Vishnu, ‘Deep learning for computational
chemistry’, J. Comput. Chem., vol. 38, no. 16, pp. 1291–1307, 2017.

[64] W. S. McCulloch and W. Pitts, ‘A logical calculus of the ideas immanent in
nervous activity’, Bull. Math. Biophys., vol. 5, pp. 115–133, 1943.

[65] J. J. Hopfield, ‘Neural networks and physical systems with emergent
collective computational abilities.’, Proc. Natl. Acad. Sci., vol. 79, no. 8, pp.
2554–2558, 1982.

[66] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘Learning
representations by back-propagating errors’, nature, vol. 323, no. 6088, pp.
533–536, 1986.

[67] A. B. Bulsari, Neural networks for chemical engineers. Elsevier Science
Inc., 1995.

[68] M. A. Kramer, ‘Nonlinear principal component analysis using
autoassociative neural networks’, AIChE J., vol. 37, no. 2, pp. 233–243,
1991, doi: 10.1002/aic.690370209.

[69] B. R. Bakshi and G. Stephanopoulos, ‘Wave-net: a multiresolution,
hierarchical neural network with localized learning’, AIChE J., vol. 39, no. 1,
pp. 57–81, 1993.

[70] S. Katare, J. M. Caruthers, W. N. Delgass, and V. Venkatasubramanian,
‘An intelligent system for reaction kinetic modeling and catalyst design’,
Ind. Eng. Chem. Res., vol. 43, no. 14, pp. 3484–3512, 2004.

[71] V. Venkatasubramanian, ‘The promise of artificial intelligence in chemical
engineering: Is it here, finally?’, AIChE J., vol. 65, no. 2, pp. 466–478,
2019.

[72] C. Rao and Y. Liu, ‘Three-dimensional convolutional neural network
(3D-CNN) for heterogeneous material homogenization’, Comput. Mater.
Sci., vol. 184, p. 109850, 2020.

[73] M. Ziatdinov et al., ‘Deep learning of atomically resolved scanning
transmission electron microscopy images: chemical identification and
tracking local transformations’, ACS Nano, vol. 11, no. 12, pp.
12742–12752, 2017.

44



[74] G. Montavon, W. Samek, and K.-R. Müller, ‘Methods for interpreting and
understanding deep neural networks’, Digit. Signal Process., vol. 73, pp.
1–15, 2018.

[75] J. Gu et al., ‘Recent advances in convolutional neural networks’, Pattern
Recognit., vol. 77, pp. 354–377, 2018.

[76] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, ‘Image
reconstruction by domain-transform manifold learning’, Nature, vol. 555,
pp. 487–492, 2018, doi: 10.1038/nature25988.

[77] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘Imagenet: A
large-scale hierarchical image database’, in 2009 IEEE conference on
computer vision and pattern recognition, Ieee, 2009, pp. 248–255.

[78] D. H. Ye, G. T. Buzzard, M. Ruby, and C. A. Bouman, ‘Deep back
projection for sparse-view CT reconstruction’, in 2018 IEEE Global
Conference on Signal and Information Processing (GlobalSIP), IEEE,
2018, pp. 1–5.

[79] A. R. Podgorsak, M. M. Shiraz Bhurwani, and C. N. Ionita, ‘CT artifact
correction for sparse and truncated projection data using generative
adversarial networks’, Med. Phys., vol. 48, no. 2, pp. 615–626, 2021.

[80] Z. Zhao, Y. Sun, and P. Cong, ‘Sparse-view CT reconstruction via
generative adversarial networks’, in 2018 IEEE Nuclear Science
Symposium and Medical Imaging Conference Proceedings (NSS/MIC),
IEEE, 2018, pp. 1–5.

[81] S. Xie et al., ‘Artifact removal using improved GoogLeNet for sparse-view
CT reconstruction’, Sci. Rep., vol. 8, no. 1, p. 6700, 2018.

[82] A. Š. Trbalić, A. Trbalić, D. Demirović, E. Skejić, and D. Gleich, ‘CT Metal
Artefacts Reduction Using Convolutional Neural Networks’, in 2019 42nd
International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), IEEE, 2019, pp. 251–255.

[83] Q. Yang, P. Yan, M. K. Kalra, and G. Wang, ‘CT Image Denoising with
Perceptive Deep Neural Networks’. arXiv, Feb. 22, 2017. doi:
10.48550/arXiv.1702.07019.

[84] B. Kim, M. Han, H. Shim, and J. Baek, ‘A performance comparison of
convolutional neural network-based image denoising methods: The effect
of loss functions on low-dose CT images’, Med. Phys., vol. 46, no. 9, pp.
3906–3923, 2019.

[85] A. A. Hendriksen, D. M. Pelt, and K. J. Batenburg, ‘Noise2inverse:
Self-supervised deep convolutional denoising for tomography’, IEEE Trans.
Comput. Imaging, vol. 6, pp. 1320–1335, 2020.

[86] D. Yim, B. Kim, and S. Lee, ‘A deep convolutional neural network for
simultaneous denoising and deblurring in computed tomography’, J.
Instrum., vol. 15, no. 12, p. P12001, 2020.

[87] F. Oviedo et al., ‘Fast and interpretable classification of small X-ray
diffraction datasets using data augmentation and deep neural networks’,
Nat. Commun., vol. 5, no. 1, pp. 2057–3960, May 2019, doi:
10.1038/s41524-019-0196-x.

[88] V. Stanev, V. V. Vesselinov, A. G. Kusne, G. Antoszewski, I. Takeuchi, and
B. S. Alexandrov, ‘Unsupervised phase mapping of X-ray diffraction data
by nonnegative matrix factorization integrated with custom clustering’, Npj

45



Comput Mater, vol. 4, p. 43, 2018.
[89] H. Wang et al., ‘Rapid Identification of X-ray Diffraction Patterns Based on

Very Limited Data by Interpretable Convolutional Neural Networks’, J.
Chem. Inf. Model., vol. 60, no. 4, pp. 2004–2011, 2020.

[90] J. A. Aguiar, M. L. Gong, and T. Tasdizen, ‘Crystallographic prediction from
diffraction and chemistry data for higher throughput classification using
machine learning’, Comput Mater Sci, vol. 173, p. 109409, 2020.

[91] M. I. Razzak, S. Naz, and A. Zaib, ‘Deep learning for medical image
processing: Overview, challenges and the future’, Classif. BioApps Autom.
Decis. Mak., pp. 323–350, 2018.

[92] J. Wei et al., ‘Machine learning in materials science’, InfoMat, vol. 1, no. 3,
pp. 338–358, 2019.

[93] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, ‘The rise
of deep learning in drug discovery’, Drug Discov. Today, vol. 23, no. 6, pp.
1241–1250, 2018.

[94] W. Zhang et al., ‘Deep convolutional neural networks for multi-modality
isointense infant brain image segmentation’, NeuroImage, vol. 108, pp.
214–224, 2015.

[95] C. Leist, M. He, X. Liu, U. Kaiser, and H. Qi, ‘Deep-Learning Pipeline for
Statistical Quantification of Amorphous Two-Dimensional Materials’, ACS
Nano, vol. 16, no. 12, pp. 20488–20496, Dec. 2022, doi:
10.1021/acsnano.2c06807.

[96] K. He, X. Zhang, S. Ren, and J. Sun, ‘Deep Residual Learning for Image
Recognition’, 2016 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR, pp.
770–778, 2016.

[97] R. Aggarwal, A. Gupta, V. Chelur, C. V. Jawahar, and U. D. Priyakumar,
‘DeepPocket: Ligand Binding Site Detection and Segmentation using 3D
Convolutional Neural Networks’, J. Chem. Inf. Model., vol. 62, no. 21, pp.
5069–5079, Nov. 2022, doi: 10.1021/acs.jcim.1c00799.

[98] S. Rubaiya Muin et al., ‘Dynamic X-ray micotomography of microfibrous
cellulose liquid foams using deep learning’, Chem. Eng. Sci., vol. 248, p.
117173, Feb. 2022, doi: 10.1016/j.ces.2021.117173.

[99] A. A. Coelho, ‘TOPAS and TOPAS-Academic: an optimization program
integrating computer algebra and crystallographic objects written in C++’,
J. Appl. Crystallogr., vol. 51, no. 1, pp. 210–218, 2018.

[100] H. Dong et al., ‘A scalable neural network architecture for self-supervised
tomographic image reconstruction’, Digit. Discov., p., 2023, doi:
10.1039/D2DD00105E.

46



Chapter 2: Methods

2.1 X-Ray Diffraction (XRD)

The phenomenon of X-ray diffraction (XRD) was discovered by Laue with his

co-workers Friedrich and Knipping in 1912, for which he was rightly awarded

the Nobel Prize [1]. The discovery was made with a single crystal of Copper

Sulphate Hydrate. Although the quality of the obtained diffraction pattern is not

anything close to what can be achieved today, it was a monumental discovery in

the 20th century, which provided a powerful tool for many subsequent pieces of

research from superconductors to the structure of DNA [2].

X-ray diffraction is the result of constructive and destructive interference of

X-ray electromagnetic waves [3]. The elastic scattering of X-ray photons by

atoms can give constructive interference and form sharp spots on a

photographic film. This collection of spots is called a diffraction pattern. When

the signal is radially integrated, the resultant spots are represented as peaks on

a 1-dimensional plot and from the position of the peak, we can easily derive the

space between crystal planes by the famous Bragg's law [4]:

(2.1)
where n is an integer that represents the order of reflection, λ is the incident
x-rays' wavelength, d is the spacing between the crystal planes and θ is the
incident angle between the beam and the normal to the lattice planes as shown
in Figure 2.1.

Figure 2.1: Schematic representation of Bragg's Law.
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Moreover, instead of using θ, more commonly 2θ is used as the x-axis for the

diffraction patterns. To make each peak more separable and patterns in the

same form as the experimental data, I will use the momentum change Q as the

x-axis for diffraction patterns in this report [6]. Here Q is defined as:

(2.2)
Here the θ and λ have the same definition as in Bragg's law. Since the

wavelength, λ is known for the chosen X-ray source. Then we can easily

convert the recorded 2θ into Q values.

Due to the phenomenon above, the different lattices will result in different

characteristic peaks in the XRD patterns [1]. By comparing the experimental

patterns with the characteristic peaks, we can determine the properties of

crystalline phases [2]. However, it is not a very easy approach because there

are many factors that can affect the position, height and broadness of

characteristic peaks [7]. For example, if the crystallite size of a lattice is below

100 nm, X-rays will start to be out of phase, which leads to incomplete

destructive interference in scattering directions, and then causes line

broadening [8]. Therefore, a more powerful and intelligent way is needed to

extract the information from XRD patterns.

After these initial discoveries of XRD, the methodology progressively evolved,

culminating in what we know today as X-ray powder diffraction. X-ray powder

diffraction analysis involves the use of a powdered form of the sample which is

composed of numerous tiny randomly oriented crystals [9]. This random

orientation allows X-rays to be scattered in all directions, resulting in a

comprehensive diffraction pattern. However, the task becomes more difficult as

the symmetry of the unit cell decreases. This is because the complexity of

indexing the peaks and measuring the various reflections escalates with the

increasing intricacy of the crystal structure. As the structure grows more

complex, the number of lines in the diffraction patterns also increases, leading

to an unavoidable overlap of reflections, especially when the unit cell symmetry

decreases.
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Conversely, Single-Crystal X-ray Diffraction (SCXRD) demands a single,

high-quality crystal of the substance under investigation [10]. It is widely applied

in determining the arrangement of atoms within a crystal [11]–[13]. Considering

the different types of information they furnish, X-ray powder diffraction and

SCXRD have diverse applications. X-ray powder diffraction is frequently

employed in the field of materials science for studying the properties of bulk

materials, whereas SCXRD is typically utilised in chemistry and biology to

explore the structures of individual and often very large molecules.

Moreover, Small-Angle X-ray Scattering (SAXS), is another analytical method

utilised to examine the structure and morphology of materials at a nanoscopic

level, irrespective of their crystalline or non-crystalline nature [14]. It has the

capability to define the dimensions, form, and arrangement of these structures,

spanning from roughly 1 nm to about 100 nm, it is an important method in

investigating polymers and biological macromolecules, particularly in their

native environment. In 2015, Kikhney et al. applied the SAXS to quantitatively

analyse intrinsically disordered proteins in solution [15]. They also claimed that

SAXS can be effectively integrated with supplementary methods like X-ray

crystallography, and nuclear magnetic resonance (NMR).

2.2 Computed Tomography (CT)

2.2.1 X-ray absorption computed tomography

X-ray radiography is based on the principle of illuminating an object with an

X-ray beam and measuring the intensity of the transmitted X-rays. The

relationship between the length of the path light travels through the sample and

the amount of light absorbed is well descriptive by the Beer-Lambert law [16]:

(2.3)

Here Io is the intensity of the incident beam and It is the intensity recorded on

the detector, xpath is the distance of the beam travels through the sample, and μ

is the linear attenuation coefficient. This formula provides a mathematical
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relationship stating that the absorbance of a sample is directly proportional to

the concentration of the absorbing species and the distance the light travels

through the sample.

X-ray absorption computed tomography (X-ray CT) is an imaging technique that

utilises X-rays to study the structure of objects. Since the first medical X-ray CT

was developed by Hounsfield, X-ray CT scanners have been widely used in

hospitals and industry for materials characterization. The key advantage of this

technique is its non-destructive nature, allowing repeated testing and further

analysis of the same sample after the tomographic measurement. The initial

version of X-ray CT employed a narrow X-ray beam, also known as a "pencil"

beam, which is discussed in more detail in a later section on X-ray diffraction

computed tomography (XRD-CT). But currently, in synchrotrons, X-ray CT

scans are commonly carried out using a parallel beam geometry [17].

In synchrotron settings, a sample is exposed to a monochromatic X-ray beam,

and numerous individual radiographs (projections) are taken as the sample

rotates, usually covering angles of 0 to 180 °. The recorded intensities are

represented in a sinogram; each row corresponds to one individual radiograph.

The schematic of the X-ray CT scan and an example sinogram is shown in

Figure 2.2.
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Figure 2.2: X-ray absorption CT sampling in the real-space domain (left). An example sinogram

that contains the spectrum of all angles and translations (right).

Each pixel in the sinogram corresponds to the detected beam strength at a

specific angle and translation step. Several algorithms exist for image

reconstruction from the recorded sinogram. Both iterative algorithms and

algorithms using Fourier analysis of the projection data are widely recognized

which will be elaborately illustrated in the following sections [18].

2.2.2 X-ray diffraction computed tomography

Unlike X-ray CT which is built on the X-ray attenuation of different materials,

XRD-CT is based on distinct diffraction signals from the crystal phases in the

sample. This allows the identification and separation of different crystals, even

those with similar densities. In the resulting XRD-CT images, each pixel is

linked to a unique diffraction pattern, and by analysing these patterns we can

extract multiple chemical information and then get a better understanding of the

material than the image from X-ray CT.
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XRD-CT is primarily utilised at synchrotron facilities where the exceptional

X-rays produced, in combination with cutting-edge detectors, allow for dynamic

XRD-CT scans with quick acquisition times (less than 100 ms for each

diffraction pattern) [19]. The spatial resolution of XRD-CT images depends on

the size of the incident X-ray beam. While using slits can reduce the beam size

to a few microns or even less, it also diminishes the brightness of the X-ray

beam and increases the time required to acquire quality data. Figure 2.3

illustrates the data acquisition procedure of XRD-CT.

Figure 2.3: X-ray diffraction CT sampling in the real-space domain. Two diffracted beams from

two crystals (red and blue) reach different positions on the detector and form the 2D powder

diffraction pattern. Then the 2D diffraction pattern is converted to a 1D pattern after integration

of the average value from the diffraction rings. By moving the pencil beam and rotating the

sample we can then get the XRD-CT sinogram where after back projection each pixel in the

image contains a full diffraction pattern. The Diffraction pattern shown in the figure is adapted

from previous work by Antonios et al. on Mn–Na–W/SiO2 fixed-bed reactor [20].
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In the process of performing XRD-CT with a pencil beam, a concentrated, slim

beam of X-rays is targeted at a sample, which is then rotated with a small angle

step. With each rotation, the diffracted X-rays from the sample's crystal

structures are captured, forming a 2D diffraction pattern. By taking the average

of all points which have the same distance from the pattern centre, the 2D

diffraction pattern is transferred to a 1D diffraction pattern and forms a pixel in

the sinogram. After the sample has finished all angular steps (by 180 or 360 °),

the sample will be moved by a translation step t which is perpendicular to the

incident X-ray beam, and preferably, each t is close to the horizontal size of the

X-ray beam. The total number of translation steps n can be calculated by n = s /

t where s is the scope size. In practice, the s is normally slightly larger than the

sample size to make sure all information from the sample has been taken.

Meanwhile, there is another way to take the XRD-CT data which swap the order

of angular and translation steps (i.e. finish all translation steps before rotating to

the next angle) [20]. Whichever the data acquisition method is applied, the best

number of angular steps obeys the Nyquist sampling theorem to ensure a

faithful reconstruction (i.e. without artefacts) [21]:

(2.4)

Where npr and ntr represents the number of projections and the number of

translation steps in a sinogram. The sinogram of XRD-CT is then a 3D volume

that contains information on the sample's crystalline components.

2.3 Computed Tomographic Image Reconstruction

The back-projection algorithm is the most straightforward of all tomographic

reconstruction methodologies. This method is a simple summation of the

projections on all projection angles. It implies that each projection spectrum is

spread across the image in the direction they were gathered during the

tomographic scan. Consequently, the reconstructed image is the cumulative
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effect of the back-projected projection spectra. Despite its simplicity, the

back-projection algorithm normally results in blurred images because of the

uneven sampling in the frequency domain during a Computed Tomography (CT)

scan. Since the sampling rates around the centre of a CT image are greater

than those around the edge of the scope, the density of radial points decreases

as one moves further from the sample's centre which results in the blurring of

the back projection images.

The Direct Fourier Reconstruction (DFR) algorithm is another technique used

for the reconstruction of images in CT scans. According to the Fourier slice

theorem, the Fourier transformed projection sinogram can be utilised to

construct the Fourier transform of the (reconstructed) image, and subsequently,

the image can be reconstructed by employing the inverse Fourier transform on

the 2D frequency spectrum of the image [22]. The Fourier transform is a

mathematical technique that allows the conversion of signals from the time (or

spatial) domain to the frequency domain. Because of the implementation of the

Fast Fourier Transform (FFT), the DFR can perform CT image reconstruction

very efficiently in modern computers and can create high-resolution images that

preserve details and minimise artefacts [23]. However, this method requires the

data to be collected from a significant number of evenly spaced angles around

the object, although this may not always be feasible or practical in real-world CT

imaging scenarios. Moreover, the quality of the final image can be influenced by

various factors, such as noise, the quality of the initial projection data, and the

specific execution of the algorithm [24].

Filtered Back Projection (FBP) is the most commonly used CT image

reconstruction technique. The FBP can take advantage of both the back

projection method and the DFR methods [25]. In this process, a sharpening

filter, such as a ramp filter, is used on the projection data before back projection

takes place. In the frequency domain of the sinogram after applying the Fourier

transformation, the ramp filter, a linear function that directly corresponds to the

absolute frequency, is applied directly to each projection’s frequency with
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multiplication operations. Then the inverse Fourier transform is applied to

convert the sinogram back to the spatial domain, and the back projection is

applied to the filtered sinogram. This arrangement allows for the dampening of

low-frequency elements while simultaneously escalating high-frequency ones,

this makes the image look sharper, particularly along edges and minute details.

However, in the spatial domain, the ramp filter is a sinc function, the infinite

range of which poses computational challenges. In order to make these

calculations practicable, the function is generally approximated and cut short,

resulting in a windowed sinc function. This is achieved by using various window

functions such as Hamming and Hanning to curtail the sinc function. This

measure assists in eliminating ring artefacts and managing noise amplification

in the final images. Moreover, the FBP can sometimes result in artefacts and

can be affected by noise [26]. In this thesis, I will show that the FBP fails when

the number of projections is insufficient (leads to angular-undersampling

artefacts), and the overall performance is worse than when using iterative

methods. Despite these potential drawbacks, the FBP algorithm continues to be

a popular choice because of its straightforward application and quick execution

time.

Apart from direct reconstruction methods like the FBP and the back projection,

iterative tomographic reconstruction algorithms are also commonly used in

modern CT techniques. For example, the Algebraic Reconstruction Technique

(ART) is an iterative method that rebuilds images from their projections [27].

The ART algorithm begins with an initial guess of the CT image and then

progresses in a series of steps. On each step, the algorithm only takes one

angle’s projection data in the sinogram and optimises the image to decrease the

difference between the selected projection data and the current projection data

of the estimated image along the same path. This cycle is repeated until the

solution stabilises. The most straightforward ART variant, known as Kaczmarz's

method, deals with each projection data separately [28]. However, more

sophisticated versions can simultaneously consider multiple line integrals [29].

The Radon transform is the most commonly used technique in converting any
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image into its sinogram domain [30], however, due to the computational

complexity of the Radon transform, the weight matrix is also sometimes used in

performing ART or other iterative methods [31]. The weight matrix is defined by

how much each pixel of the reconstruction image adds to each individual

projection. By using the weight matrix, one just needs to perform the matrix

multiplication between the weight matrix and the reconstructed image to get the

sinogram.

The Simultaneous Iterative Reconstruction Technique (SIRT) [32], is another

iterative reconstruction method. Different from ART, SIRT updates the

reconstructed image with all projections together in a loop. This approach

usually leads to more consistent convergence behaviour than the ART method,

however, it also requires larger computational resources, especially for the

reconstruction of a 3D volume.

The Simultaneous Algebraic Reconstruction Technique (SART) also utilises all

projections to update the reconstructed image on each step [33], but it uses a

weighted contribution from each projection line in the image refinement process.

Each pixel's update is weighted according to the length of the path the

projection line takes through that pixel. This accounts for the fact that a pixel

has a greater influence on a projection if the projection line covers more of that

pixel. Moreover, to prevent certain artefacts and to improve the algorithm's

convergence, the updates can be normalised by a factor associated with the

total length of all projection lines crossing each pixel. In general, SART typically

reaches the desired solution more quickly and is able to produce images with

less blurring, and more shaper details compared to SIRT. However, one

drawback is that the SART is less robust to the noise than the SIRT. Therefore,

the choice of SIRT and SART highly depends on the specific sinograms and the

goal of reconstruction.

Conjugate Gradient Least Squares (CGLS) is another iterative technique

employed for addressing large, complex image reconstruction problems [34].
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Unlike SIRT, the objective of this algorithm is to update the image by reducing

the least squares function between the generated sinogram and the original

sinogram. One key advantage of CGLS lies in its typically rapid convergence

when compared to many other iterative techniques. Nevertheless, it is important

to note that CGLS is sensitive to noise within the sinogram. As with any

reconstruction method, the selection of CGLS depends on a variety of

task-specific factors, such as the size and quality of the dataset, computational

resources available, and the balancing act between desired image clarity and

noise reduction. In this thesis, I will use these iterative methods as the basis

and explore the possibility of applying Machine Learning (ML) techniques in

designing new image reconstruction algorithms.

2.4 Simulation of diffraction patterns

Preparing various and large databases for learning is quite important in

enhancing the performance of ANN models [35]. Because of the limited number

of experimental data, simulated XRD patterns will be used to enrich the scale of

our training datasets.

There are many existing packages and software that can be used to simulate

XRD patterns like PowderCell [36], VESTA [37], and TOPAS [38]. These tools

have already been verified to simulate XRD patterns precisely. But most of them

are time-consuming for creating a large number of patterns at the same time.

For example, it takes 4 hours to create 100,000 patterns with TOPAS, but at

least 1 million patterns are required to obtain a model that can give a precise

result. This is not acceptable because we need to recreate the training data

many times for different combinations of materials in our research. Therefore,

we decided to generate a more powerful Python package using a graphics

processing unit (GPU) in the computer.

The first step is to calculate the intensity of diffraction events using the structure

factor equation [39]:
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(2.5)

Here Oj is the occupancy of atom j. xj , yj and zj are the positional coordinates.

These values come from the lattice parameters a, b, c and the angles ɑ, β, γ.

The h, k and l in the equation define a reciprocal lattice point corresponding to

the real-space plane in the Miller indices (hkl). B is the Debye-Waller factor that

describes the reduction of X-ray scattering due to the effects of thermal motion.

Finally, λ is the wavelength of the incident X-ray beam and f j is the scattering

factor of the j-th atom, which is unique for each element and can be found in

many databases such as the International Crystallographic Tables [40] and the

NIST chemistry webbook [41].

However, the structure factor is not exactly the intensity in the XRD patterns. To

convert the structure factor into actual intensity, some additional factors need to

be applied:

(2.6)

Here F2
hkl is the structure factor in the above. L, P, and A are the Lorentz,

polarisation, and absorption corrections, respectively [42], whilst jhkl is a factor

that depends on the symmetry of the material. And s is the combination of the

remaining factors that need to be taken into account like the data acquisition

time and the displacement caused by the choice of profile peak shape

functions. [43]. A diffraction pattern is then the collection of peaks for every

combination of Miller indices.

58



Figure 2.4: Constituent parts of an example peak shape in XRD patterns.

For simulating the peak shape, it is represented with some characteristic factors

as shown in Figure 2.4. The peak width Full Width at Half Maximum (FWHM)

concerns the broadness of a peak. Changing the crystallite size of a material

mainly affects the FWHM factor [44]. A peak can be asymmetric (LHS and RHS

FWHM are not the same), this is a particular problem for powder XRD patterns

from neutron spallation source instruments [45]. The tails on both sides of the

peak should approach 0, which represents how well the mathematical model

works in representing the peak shape. Then the shape of a peak can be

calculated by statistical models like the Gaussian function [46]:

(2.7)

with

(2.8)

the Lorentzian (or Cauchy) peak function [47]:

(2.9)

Or the pseudo-Voigt function [48]:
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(2.10)

Here L and G are normalised Lorentzian and Gaussian functions respectively,

which are defined as:

(2.11)

And

(2.12)

Here

In these functions, H means the peak width at FWHM, and w = 0.5H. The

pseudo-Voigt function can be simply considered as the combination of the other

two functions by applying an η factor lying between 0 and 1 to adjust the

fractions of each function used. Then, the effect of crystallite size on the FWHM

can be calculated by the famous Scherrer equation [49]:

(2.13)

Here D is the crystallite size which will be predicted by our neural networks, λ is

the X-ray wavelength, 2θ is the scattering angle in radius, and b is a constant,

normally between 0.89 and 0.94, depending on the choice of peak function.

This equation shows an inverse relationship between the broadness of the peak

and the crystallite size [49].

Lastly, we are going to combine the patterns of different phases into a whole

simulated XRD pattern. Instead of simply adding intensities all together at each

angle (or q value), we are going to multiply each phase by a unique scale factor

before adding them together. Those scale factors represent the density of a

type of crystal in the mixture material. Therefore, these scale factors can also

be used in calculating the weight percentages of each crystal. To represent it as

functions, the final simulated intensities at each angle Itot are:

(2.14)

Here cj is the scale factor for each phase [50].
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In conclusion, we are going to simulate training patterns by varying the lattice

parameters a, b, c, the crystallite size and the scale factor for each phase.

Those will also be the predictions that our neural network models make.

2.5 Rietveld Refinement

Rietveld refinement is a method employed in the field of materials science for

refining a structure model and extracting physicochemical information from

powder diffraction data without directly solving a crystal structure [51]. Unlike

the Le Bail (or Pawley) analysis [52], [53], which performs whole pattern fitting

of intensities and peaks that are not bound by the chemistry of crystals,

Rietveld refinement focuses on minimising the difference between the simulated

diffraction patterns and the experimental data with the prior knowledge about

the complete crystal structure models. Rietveld refinement offers significant

insights into various aspects of crystalline materials, including atomic positions,

thermal vibrations, and other structural parameters.

The Rietveld refinement technique utilises a least-squares minimization

algorithm and considers the positions, intensities, and shapes of the powder

diffraction peaks. The primary objective of Rietveld refinement is to minimise the

residual function, which quantifies the remaining mismatch between the model

and experimental data:

(2.15)

where yiobs is the observed intensity at point i on the experimental diffraction

pattern and yisim is the intensity of the simulated pattern at the same position,

and . The simulated diffraction pattern is calculated based on the

functions in the previous section, and to assess the accuracy of a crystal

structure model in Rietveld refinement, several statistical factors, known as R

factors, are utilised. The key factor is determined by the equation:
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(2.16)

(2.17)

(2.18)

In these equations, N represents the number of observation points, P denotes

the number of parameters that are refined, and C is the number of constraints.

However, while these statistical factors provide valuable information, the

preferred method for evaluating the Rietveld refinement is a visual inspection of

the fitted and experimental data. Ideally, the difference plot should exhibit a flat

line, indicating a successful fit between the observed and calculated data.

Visual assessment, combined with the statistical factors and conformity to

well-established chemical principles such as bond lengths and coordination

numbers consistent with the Shannon Tables of crystallographic radii [54], offers

a comprehensive evaluation of the refinement quality and the validity of the

crystal structure model.

2.6 Artificial Neural Network (ANN)

The Artificial Neural Network (ANN) is a very important tool for implementing

Artificial Intelligence (AI) and ML, which are completely different from traditional

task-specific programming; these can learn from examples and give predictions

based on the trained model [55]. An ANN normally has an input layer consisting

of a number of neurons equal to the number of input features, an output layer

which has a size that depends on the problem being solved, and several

specialised hidden layers between the input and output layers. Each hidden

layer in the network receives a signal from the previous layer or node, performs

one or multiple computations, and then sends the resultant signal to the next
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layer or node. Signals are all real numbers, and then the output layer is the sum

of a series of nonlinear functions from the input value [56].

2.6.1 Type of Layers in ANN

The fully connected layer is the most commonly used hidden layer, which is

inspired by biological neural networks [56]. Fully connected layers are made of

several nodes. Each node is connected to all outputs from the previous layer,

performs multiplications based on the weights that are trained, and passes the

output to the next layer. It can create n2 trainable weights when two fully

connected layers with n nodes are connected together, therefore, the use of

multiple large-scale fully connected layers in combination may impose a

computational burden on both training and applying the ANN model.

The dropout layer is a kind of layer that is normally used after fully connected

layers to reduce overfitting in artificial neural networks [57]. By applying a

dropout layer, a proportion of weights in the fully connected layer are omitted

while training. The omitted weights are randomly selected and will differ in each

training epoch. The dropout layers can help to prevent overfitting. Overfitting

occurs when a model obtains excellent accuracy during its training but performs

inadequately on testing. This typically happens when the training dataset is

small but the number of trainable weights is large. Applying the dropout layers

can effectively force the model to generalise and learn the overall

characteristics of the dataset rather than focusing on individual data pairs, and

then improve the performance of the model.

The batch normalisation layer is frequently utilised in neural networks for

normalising the activations of a specific layer [58]. It achieves this by dividing

the batch standard deviation and subtracting the batch mean. Its purpose is to

enhance the efficiency and stability of the model during training by mitigating

the internal covariate shift which is caused by the changing distribution of the

inputs to each layer. Batch normalisation equalises the distribution of activations
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across batches, thereby mitigating the internal covariate shift. This facilitates

faster convergence and higher accuracy in the model's predictions.

A pooling layer is used to shrink the scale of matrices. The idea of a pooling

layer is to take one only value in a section of the matrix [59], [60]. There are

many types of pooling layers, like a max-pooling layer which only takes the

maximum value in the pooling kernel, an average pooling layer that takes the

average value in the kernel, and so on. There is normally much redundancy

information in the experimental images. Disposing of unnecessary information

with pooling layers during training will not affect the performance of an ANN

model, but it can reduce the size of the model significantly.

In contrast, an upsampling layer is frequently employed in neural networks for

image or signal processing tasks, aiming to enhance the spatial resolution of

input data by expanding it in horizontal, vertical, or both dimensions. This

technique is also referred to as "deconvolution" or "transposed convolution."

Upsampling layers are commonly used in tandem with down-sampling or

pooling layers to restore the original spatial resolution of the data, and they are

pivotal in applications such as image generation, image segmentation, and

super-resolution.

There are many other operation layers that I will use in this thesis. For example,

the flattening layer can convert any output of layers into a 1D array. A reshaped

layer can convert a signal into any shape, including increasing or reducing the

dimension of a matrix. Lastly, the mathematics layers perform basic addition,

subtraction, multiplication, and division operations between two layers that have

the same shape.

2.6.2 Activation Functions

For each trainable node, an activation function is needed to define the

relationship between the output of one node and the input of the next and

determine whether a node is activated or not. The choice of activation function
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is related to the problems that the model is designed for and the positions of the

layers. For example, the linear activation function does not perform any

modification of the output number, and the Rectified Linear Unit (ReLU) function

keeps only positive values from the output signal [61]. By applying ReLU, all

negative values of one layer’s output are set as 0 before being sent to the next

layer, which helps the ANN to reduce the number of activated neurons needed

to be learned, and has fewer vanishing gradient problems [62], [63]. However,

many reports have proved that ReLU may cause dead neurons on the

last/output layer [64], [65]. Therefore, the alternatives, like the Leaky ReLU and

exponential linear unit (ELU) activation function, are becoming more popular

[65]–[68]. The leaky ReLU and ELU are defined as:

(2.19)

(2.20)

Here a and b are positive coefficients that control the shape of the function

which needs to be tuned according to the problem. Moreover, a Softplus

function, a continuous activation function that only outputs positive values, is

also a popular replacement for the ReLU function:

(2.21)

This function is suitable for problems that are strictly non-negative. The

continuous derivative makes the model easier to optimise with gradient-based

methods such as stochastic gradient descent.

The Sigmoid function only outputs numbers between 0 and 1, so it is normally

chosen as the activation function at the final layer of a classification ANN [69].

Meanwhile, the Softmax function is commonly employed as the activation

function in the output layer of a neural network that is designed for multi-class

classification tasks [70]. It works by taking in a vector containing real numbers

and converting it into a probability distribution that reflects the potential classes.

This allows the network to estimate the probability of an input being assigned to
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each of the potential classes. The Sigmoid and Softmax function is defined as

follows:

(2.22)

(2.23)

Here x represents the element in the output vector of a layer, and nneurons

represents the total number of neurons. Both activation functions are suitable

for classification methods with positive values as both inputs and outputs. For

problems with both positive and negative values as input, the tanh activation

function can limit the output within a range of -1 to 1 [71]:

(2.24)

If the input data has a mean of zero, the tanh function is beneficial since it

produces outputs that are centred around zero. This property can be helpful in

minimising the impact of bias in the network. The activation functions are

summarised in Figure 2.5. In this thesis, the ReLU function is used as the

activation function for all hidden layers in the presented architectures.

Figure 2.5: The result of different activation functions on the x values between -2 and 2. Both a
and b coefficients of leaky ReLU and ELU functions are set as 0.1.
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2.6.3 Training Algorithms

Supervised learning is one of the most commonly used ML methods to train

ANNs that can give predictions on datasets that have never been seen before

[72]. Based on the intended use of the model, supervised learning models can

be categorised into classification models and regression models. Classification

models normally only give 0s and 1s as output to identify to which cluster the

input data belongs [55]. Meanwhile, regression models can give more specific

predictions on quantities of the predictions [73]. No matter what models are

used, supervised learning approaches always need a large number of pairs of

well-labelled training data to obtain well-trained ANN models. The optimization

methods are applied to fit the model with the labelled datasets, and after the

model is well trained, the model can be applied to new unlabeled datasets.

Normally in supervised learning approaches, the dataset can be split into three

sub-datasets which are training, validation, and test datasets. The training

dataset is the largest dataset used for training the model, and the validation

dataset is a small percentage (normally 10 %) of the training dataset. The

validation dataset never takes part in the training processes, but they are

calculated at each loop to observe the performance of the model while training.

When the accuracy of the validation dataset has stopped decreasing, the

training process should be stopped immediately to avoid overfitting problems.

Finally, the testing dataset is a group of data that is used to test the

performance of the model after it is well-trained. Different from the validation

dataset, the test dataset is normally chosen from another data frame (different

experiment, different camera, etc.) that has not been seen in the training

dataset. If the model is trained with simulated data, the test dataset is normally

the real experimental data for which there is a ground truth.

In recent years, unsupervised learning has become increasingly popular,

because of the characteristic of not requiring a large amount of training data

[74]. In unsupervised learning, an ML model is trained on a dataset without any

labelled output or guidance. The objective is to identify patterns and

connections in the data without being given a specific prediction target.
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Examples of unsupervised learning algorithms include clustering [75],

dimensionality reduction [76], and image processing [77]. Unsupervised

learning is also based on modern optimization methods. In contrast to

supervised learning, the unsupervised model does not have any pre-knowledge

about the dataset, which is generally applied in more adaptable applications

[78].

To implement optimisations on both supervised and unsupervised learning

models in an efficient manner, we need to choose an appropriate loss function.

In most learning networks, the loss function is used to compute the error

between the predicted output and the ground truth value given in the training

dataset. Different loss functions will have a significant impact on the

performance of the model because they will show different errors for the same

prediction [79]. The performance of the loss function depends strongly on the

model type. The mean squared error (MSE) and mean absolute error (MAE)

functions are very useful in regression problems, but for classification problems,

binary cross-entropy function, negative log-likelihood and soft margin classifiers

are more popular [80].

Then, to achieve an accurate prediction, one needs to minimise the error

calculated by the loss function on each node. The choice of optimisation

algorithm (optimiser) can significantly affect the performance of training an ANN

[81]. In ANNs, the loss on the predictions is propagated backwards to a

previous layer, where it is used to modify the weights [82]. Then the weights are

adjusted by the chosen optimizer. Optimisation functions usually need to take

the partial derivative of the loss functions, and then the weights are adjusted in

the opposite direction.

2.6.4 Optimizers

To achieve an accurate prediction, one needs to minimise the error calculated

by the loss function on each node. In neural networks, the error is propagated

backwards to a previous layer, where it is used to modify the weights [82]. Then
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the weights are adjusted by the chosen optimisation function (Optimizer). In this

thesis, the Adaptive Moment Estimation (Adam) method will be mainly used as

the optimisation function [83]. The Adam algorithm was an extension of the

stochastic gradient descent method, which was invented by Diederik Kingma

and Jimmy Ba in 2015. The Adam algorithm is expressed in Algorithm 1. As

shown in the table, the Adam algorithm takes four hyper-parameters which are

normally set as β1 = β2 = 0.9, ε = 10-8 and a small α normally around 0.001.

Then, we can see from the last update step; that the updated weight is

approximately bound by the learning rate, thus making it relatively easier to

choose the scale of the learning rate, especially in some situations where it is

possible to estimate the scale of optimised result in advance. In many recent

publications, it has been determined that the convergence speed of Adam is

much faster than traditional optimisers like the Adaptive Gradient (AdaGrad)

and the Stochastic Gradient Descent (SGD), especially when treating large

models and datasets [84].

However, there are also many reports arguing that although Adam reaches

convergence quicker, SGD has better generalisation capabilities compared to

Adam, leading to enhanced performance in the end, especially for image

detection networks [84], [85]. In standard Gradient Descent, the model's

parameters are adjusted according to the gradient of the error with respect to

the entire dataset. This means for just a single update, gradients for the whole

dataset have to be calculated. In contrast, SGD updates parameters for each

individual training data pair, which proves more computationally efficient for
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large datasets. In essence, it picks one data point (or a small group of data

points) at random from the complete dataset during each iteration, significantly

reducing the computational load. However, due to its random nature, it can also

cause convergence to the minimum to be less accurate. As a result, variations

of SGD, such as mini-batch SGD and SGD with momentum, are more

frequently employed to balance the speed of convergence and stability of the

final parameters [86].

Moreover, there are more candidate optimizers that have shown their

advantages in specific situations. For example, RMSprop, AdaGrad, and

AdaDelta offer distinct benefits when it comes to ANN optimization [86], [87]:

RMSprop adapts the learning rate for each weight, which is particularly useful

for non-stationary objectives or scenarios with significant noise; AdaGrad

implements varying updates for features based on their frequency of

occurrence, advantageous for handling sparse data; and AdaDelta, as an

improvement on AdaGrad, seeks to mitigate the continuous reduction of its

learning rate, thereby enhancing its overall performance.

2.6.5 Loss Functions

In machine learning, a loss function serves as a metric to evaluate the

difference between the predicted outcomes of a model and the real values. The

main goal during the training of the model is to minimise the loss function,

Depending on the task at hand, various types of loss functions are employed.

Mean Absolute Error (MAE) and Mean Squared Error (MSE) are commonly

used loss functions for regression problems. MAE calculates the average of the

absolute differences between the predicted and actual values, ignoring their

positive or negative direction, making it more resistant to outliers. Conversely,

MSE squares the differences before taking the average, leading to larger errors

having a disproportionately larger impact and being sensitive to outliers. The

MAE and MSE are defined as [88]:

(2.25)
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(2.26)

The Structural Similarity Index Measure (SSIM) is another commonly used loss

function when comparing the differences between images. Compared to

pixel-based loss measures such as MAE and MSE, it more accurately aligns

with human visual perception. By taking into account changes in texture,

brightness, and contrast, SSIM can help generate models that yield more

visually pleasing results. The SSIM loss can be expressed as [89]:

(2.27)

Here,

(2.28)

(2.29)

(2.30)

The µx, µy are the average of all pixels in the input sinograms and the σx, σy

represent their standard deviations. LD is the dynamic range of the input

images. K1 and K2 are two constants that are set as 0.01 and 0.03.

For classification tasks, the role of a loss function is to quantify the dissimilarity

between the class predicted by the model and the true classes. Cross-entropy

loss is frequently employed in binary and multi-class classification tasks. The

cross-entropy loss is defined as [90]:

(2.31)

Here M is the number of clusters, yic is the label of the sample (0 or 1), and pic is

the confidence that the sample belongs to the cluster c. In binary classification
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problems, the sum of pic values for the two predicted classes is typically equal to

1, so pic can be considered as the predicted probability distribution of the

classes. However, in multi-class classification problems, depending on the

choice of activation functions, the sum may not necessarily be 1, as the

confidence for each class is independent. The most commonly used activation

function to ensure that the sum of confidences for all classes equals 1 is

softmax. Moreover, there are many other loss functions that are used for

classification models. For example, the Hinge loss, originally used with Support

Vector Machines (SVMs), aims to discover a decision boundary that enlarges

the separation between classes and is also applicable in the classification ANNs

[91], [92]. Negative log likelihood is an expansion of binary cross-entropy for

scenarios with more than two classes [93]. And the Zero-one Loss is the loss

function to test incorrect classifications [94]. It is typically employed for

assessing the model's performance rather than for the training process.

2.7 Machine Learning Architectures

2.7.1 Convolutional Neural Network (CNN)

The Convolution Neural Network (CNN), a type of ANN, is widely applied to

image identification, natural language processing, financial time series, etc. [95].

A CNN normally contains one or a series of convolutional layers and other

common ANN layers like pooling layers and fully connected layers. Figure 2.6

shows a regression CNN developed for quantitative analysis of the XRD pattern

[96]. For processing a 2D image, the input tensor should have three dimensions

for each picture, height, width, and colour channels (depths). In a convolutional

layer, this image will be abstracted by a kernel which will only look at a small

part of the image each time. The kernel will take and record the features of this

part of the image and then jump to the next part and repeat the steps. Then the

collection of features can form a feature map which will be passed to the next
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layer. The nodes in the kernel are the parameters refined during the training

process of the CNN, and they are the same for taking features of different parts

of an image [97]. For the 1D XRD pattern identification problem, the process is

similar but uses only two dimensions for each pattern.

Each convolutional layer will have some definition factors, the n x n kernel size

defines the scope of kernels, the number of filters defines the number of kernels

used in this layer (how many features this layer will take), stride defines the

pixel shifts over the input image (the gap a filter going to the next part of the

image), and padding is the number of pixels added on the edges of original

pictures to make sure the feature map is not too small.

A complete CNN will have many other types of layers. As shown in Figure 2.6,

A pooling layer is used to shrink the scale of pictures. For a 9x9 matrix, after

applying a pooling layer with kernel 3x3 size, it will become a 3x3 matrix with all

features remaining. Secondly, a flatten layer is used to convert multidimensional

layers into a 1D layer with 1D output [98]. This layer is always used in those

multi-dimension identification problems like word embedding and image

identification. A flatten layer does not have any trainable weight. Lastly, a

traditional fully connected layer takes all values in the previous layer to all

values in the next layer. There are many other types of layers that were used in

our CNN architecture, such as a dropout layer to avoid model over-fitting, a

batch normalisation layer to decrease the learning time, and an up-sampling

layer to increase the data size [99].
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Figure 2.6: The single-phase phase quantification neural network (PQ-Net) CNN [96], all
parameters are shown in the figure. This CNN contains 1D convolutional layers (CONV),
max-pooling layers (POOL), fully connected layers (FC), a flatten layer and dropout layers. This
network receives diffraction patterns as input and outputs the scale factor, lattice parameter a
and lattice parameter c of the crystal.

2.7.2 Dilated CNN

A CNN with dilated convolutional layers is called dilated CNN. Compared to the

traditional convolutional layers, a kernel in the dilated convolutional layer is not

a square (or rectangular) which covers all pixels in the region, instead, it leaves

a blank between each node of the kernel [100]. The number of empty pixels

between two nodes in the kernel is the so-called dilation rate. Therefore,

assuming we have a convolutional kernel with the size of 3x3, it can cover 5X5

regions in a picture if the dilation rate is equal to 1. It covers larger regions with

fewer trainable nodes than a traditional convolutional layer, so it is very useful

when the computer resources are limited. The dense dilated CNN was

74



developed by Sethian and co-workers in 2018 [100]. They made all layers

densely connected to each other, so the model could learn the best route and

find the most suitable dilation rate to use. However, because of the large

number of connections in the architecture, the training time will be longer than

normal CNN architectures like U-Net and AUTOMAP. In our experience, when

the trainable parameters are the same, this architecture can take twice as long.

2.7.3 Encoder-Decoder Network

An encoder-decoder network is a kind of neural network design frequently

employed for tasks like generating images, translating languages, domain

transferring, and more [101]–[103]. This type of architecture normally has two

parts: an encoder takes the input, processes it, and creates a condensed

representation known as the context vector, and a decoder uses the context

vector created by the encoder to generate the output, which could be a series of

words, an image, or another type of data. For tasks that involve transforming

one domain into another (like sinogram-image reconstruction), where input and

output lengths can differ and vary, the context vector acts as a means of

packing information from a variable-length sequence into a static-sized

representation.

For autoencoders, a specific kind of encoder-decoder network is used in image

processing, the aim during training is to reduce the disparity between the input

and output images [104]. This encourages the network to learn how to

effectively recreate the original image from the context vector, making the

context vector capture the image's most significant features. This means that

the context vector itself can be used for clustering images and represents the

inputs into a vector of features [105].
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2.7.4 U-Net

Figure 2.7: An example of 5 levels U-Net architecture with 512x512 image size as input [106].

All convolutional layers in the figure are 2D convolutional layers, and their kernel numbers and

sizes as shown in the legend.

The U-Net architecture was first developed for biomedical image segmentation

problems [106]. A U-Net architecture contains one down-scaling part and one

up-scaling part as shown in Figure 2.7. Each part has multiple levels connected

by max-pooling and up-sampling layers, and inside the levels, there are normal

convolutional 2D layers. In the up-scaling levels, they do not only take the

output from lower levels as input, but they also acquire output images from the

same level in the down-scaling part. As a result, each level in the up-scaling

part has two inputs containing the features captured in the previous level and in

the down-scaling convolutional layers, which makes the model more robust.

Compared to traditional CNN architectures, the U-Net can yield more precise

segmentation with fewer training datasets [107], [108]. According to the original

paper, the segmentation of a 512 x 512 image takes less than a second on a

modern GPU [106]. Depending on the image size and how deep the

architecture people want, users can easily add or remove levels to fit their
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problem. Therefore, its applications are expanding into many areas like image

de-noising and clearing [109].

The U-Net has already been well used in refining images. In 2019, a paper

appeared using the U-Net to reconstruct an incomplete CT image [110]. They

demonstrated that the U-Net could also be useful to enhance the resolution of

CT images with a low number of projections. In the same year, Ebner's team

used U-Net to do localisation, segmentation and super-resolution reconstruction

of magnetic resonance imaging results for analysing foetal brains [111]. A very

important paper published recently shows U-Net to be a very powerful method

for tackling sinogram-image reconstruction problems [29]. They fed the U-Net

with Gaussian noise and trained it with experimental images. The loss function

is calculated according to the sinograms while training, so therefore can be

considered a type of unsupervised learning method without requiring

pre-training. They claimed that the method improved the state-of-the-art results

in the low data regime. In their paper, they also compare the results with many

other structures like the AUTOMAP and Autoencoder [112].

2.7.5 Generative Adversarial Network (GAN)

A Generative Adversarial Network (GAN) is a powerful unsupervised learning

method designed by Goodfellow and his colleagues in 2014 [113]. As shown in

Figure 2.8, A GAN structure contains at least two parts: a generator and a

discriminator. The generator and the discriminator in GAN are trained together

in a competitive setup. In this arrangement, the generator aims to produce new

images that look similar to the input images, while the discriminator tries to

accurately distinguish between real and artificially generated data. This

technique prompts the generator to create data that is more and more

convincing and realistic as the training evolves. In the original theory, the two

parts do not have to be neural networks, but in modern GAN architectures, both

of them are normally deep neural networks [114]. Applications of a GAN cover

many image processing fields. For example, Javid and co-workers use a GAN
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to remove the rain inside normal pictures taken by camera [115]. And Putra's

team used GAN to generate real faces from portrayals [114].

Of course, GAN is also becoming a very important tool for CT image

reconstruction. A paper in 2020 used both a GAN and U-Net to remove noise

and artefacts in low-dose CT to avoid damage that high amounts of radiation

can have on patients [116]. Another team led by Liu created the TomoGAN,

another image-denoising model based on a GAN developed for low-dose X-ray

imaging [109]. Yang's team proposed GANrec architecture in 2019 [117]. They

added the Radon transformation into the architecture to enable GANrec to

reconstruct the image. The back-projection image from the sinogram is used as

the input to the generator, and then the generator learns how to reconstruct an

image from the back-projection.

Figure 2.8: A typical GAN architecture for generating similar images. Reproduced from its

original paper written by I. Goodfellow et al. [113]. Random noise is fed into the generator to

generate a fake image. Then the discriminator predicts whether the generated image is real or

not. Those two parts of GAN contest with each other while training to make the generator

produces similar images.
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Chapter 3: Fast Analysis of Big Powder

Diffraction Data

3.1 Abstract

We present the Parameter Quantification Network (PQ-Net), a regression deep

convolutional neural network providing quantitative analysis of powder X-ray

diffraction patterns from multi-phase systems. The network is tested against

simulated and experimental datasets of increasing complexity with the last one

being an X-ray diffraction computed tomography dataset of a multi-phase

Ni-Pd/CeO2-ZrO2/Al2O3 catalytic material system consisting of ca. 20,000

diffraction patterns. It is shown that the network predicts accurate scale factors,

lattice parameters and crystallite size maps for all phases, which are

comparable to those obtained through full profile analysis using the Rietveld

method, whilst also providing a reliable uncertainty measurement of the results.

The main advantage of PQ-Net is its ability to yield these results, orders of

magnitude faster than via conventional data processing (i.e. Rietveld refinement

of individual diffraction datasets) demonstrating its potential as a new tool for

real-time diffraction data analysis during in situ/operando experiments.

Note this work has been published in the following journal:

Dong, H., Butler, K.T., Matras, D. et al. A deep convolutional neural network for

real-time full profile analysis of big powder diffraction data. NPJ Comput. Mater.

7, 74 (2021) as well as being applied in a recent paper as the data analysis

approach in place of conventional full profile Rietveld analysis [1].
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3.2 Introduction

Over the past decade, advancements in X-ray sources, optics and detector

technologies have led to a dramatic increase in the volume and data quality of

experimental powder diffraction patterns [2]–[8]. These technical advances are

beginning to make high-throughput powder diffraction measurements a reality

not just at synchrotron facilities but also in the laboratory [9], [10]. It is now

common to acquire diffraction patterns with a sufficient signal-to-noise ratio in

matters of minutes with laboratory diffractometers and in milliseconds at X-ray

diffraction (XRD) dedicated beamlines at synchrotron facilities. In situ and

operando ultra-fast and/or spatially-resolved multi-dimensional XRD

experiments of functional materials and devices previously considered

technically infeasible have already been demonstrated [11], [12]. The first 5D

operando tomographic diffraction imaging experiment (three spatial, one

scattering and one dimension to denote time/imposed state) to study a

multi-component catalytic reactor for the partial oxidation of methane was

presented for example in 2018 [13]. However, these advances come at a cost

and this is related to the challenge of handling the large volume of data

collected during these experiments.

It is now possible to acquire many Terabytes (TBs) of XRD data per dynamic

experiment and this is expected to increase significantly with the advent of the

fourth generation synchrotron facilities all around the world, such as the

Extremely Brilliant Source (EBS) of the European Synchrotron Radiation

Facilities (ESRF) and MAX IV (Sweden) and the scheduled upgrades for

Diamond-II (United Kingdom), Petra IV (Germany) and Advanced Photon

Source-Upgrade (USA) [14]. It is currently well-accepted that it is the data

analysis that is emerging as the bottleneck for measurement science and not

the data acquisition and/or the experiment itself. Conventional data analysis

methods, such as least-squares minimisation approaches, are not able to keep

up with the data collection rates and there is a need for alternative methods

which can provide both fast and accurate results [15]. As an example, the

Rietveld method, often employed in XRD data when performing full profile
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analysis, can yield invaluable physicochemical information regarding the

material system under investigation (e.g. lattice parameters, crystallite

sizes/strain, atom/site occupancies and weight percentages for mixed-phase

systems) but does not scale well with big data. Equally important is the data

crunching/visualisation capabilities which are not developed in tandem with the

data acquisition capabilities and as a result, dynamic beamtime experiments are

largely driven 'blind'.

Nowadays, XRD phase identification has become a common bottleneck in

material characterisation and screening [16]. Assuming we have some previous

knowledge about the crystalline phases present in the sample under

investigation, phase identification can still take hours even for an expert

crystallographer [17]. Therefore, there is currently great interest in exploiting

machine learning methods for phase identification.

In recent years, deep learning methods involving convolutional neural networks

(CNNs) have gained popularity and attracted a lot of attention due to the

aforementioned properties and also due to their unique scalability (i.e. ability to

handle big data) [18]–[20]. Although primarily explored for applications in

medical imaging and tomography [21], [22], their potential for materials science

and especially for spectroscopic/scattering techniques is gaining momentum

[23], [24]. Regarding XRD, previous studies have mainly focused on developing

CNNs for crystal structure prediction, space group classification and phase

identification [22], [25]–[30]. For example, Park et al. demonstrated a

classification CNN model that can extract crystal-system and space-group

information from an XRD pattern [25]. Tatlier used an Artificial Neural Network

(ANN) to predict the structures of crystalline materials and zeolites from XRD

patterns and it was claimed that the ANN performed better than manual

regression [31]. There are also some algorithms that can achieve phase

identification without Neural Networks, but they are generally less efficient

and/or less accurate than Neural Network models [32]–[37]. It should be pointed

out though that most studies focus on developing classification models for
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phase identification; that is predicting whether a phase is present or not in an

XRD pattern.

Lee et al. proposed a CNN structure used for XRD pattern identification, which

also has the potential to roughly predict fractions of phases [22]. The same

group also demonstrated a classification CNN model that can extract

crystal-system, extinction-group, and space-group information from XRD

patterns [38]. However, most of the recent works focus on producing

classification models for phase identification. In other words, they can only

predict whether a phase is present or not in a diffraction pattern. For example,

Lee et al. expanded its model to roughly classify the fraction range that phases

lie on [22]. The authors claimed that this particular approach has the fastest

training time whilst retaining a good accuracy (about 99 %). For example this

approach can predict 38 phases in one pattern simultaneously whilst only taking

a few minutes. Furthermore, by adding more nodes in the later layers, the

expanded model (shown as blue arrows) has the potential to predict the

fractions of phases. For example, for 114 output layers, the model can predict

the fraction of one phase lying in the 66-99, 33-66 or 0-33 % range. It is a very

smart way to convert a classification problem to a regression problem and

serves as a good starting point for the work presented herein. The goal here

though is to build up a powerful model that can retrieve not only accurate

fractions but also reliable lattice parameters. Therefore, a true regression model

is desired.

Another recent work used a similar CNN structure to perform phase

identification [30]. This CNN model possesses 1012 nodes inside the last fully

connected layer, which means their structure has the potential to predict 1012

different materials. For data preparation, they added the noise taken from real

experimental data into the simulated patterns to enhance the robustness of the

training models. To use the model, they applied a Fast Fourier Transformation

(FFT) on the real data with a high error to get better predictions. They claimed
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they got a 96.7 % accuracy rate for the top 5 rankings on many test datasets

with 30 hold-out samples.

However, like many other supervised learning methods, CNN phase

identification has some important shortcomings [17]. First of all, a trained model

cannot predict phases which are not included in the original training dataset,

and those new phases may also have a big influence on the prediction of other

phases [39]. This disadvantage is risky when trying to use CNN to figure out

which phases are in a diffraction pattern because it can give a wrong output

without any warning [16]. Secondly, the input scale and output scale are fixed,

so it is hard to get a generally applied CNN model that can adapt to the different

q ranges and the number of bins. A recurrent neural network (RNN) can solve

this problem [40], but it is necessary to balance the adapted input range and

required accuracy since the training dataset cannot be infinitely large.

In this chapter, a neural network for parameter quantification (PQ) is

demonstrated that we term PQ-Net, the first regression CNN model to be

applied in 1D powder diffraction data for extracting physico-chemical

information. Specifically, PQ-Net is trained with simulated 1D XRD patterns and

it is shown that it can yield accurate predictions for scale factors, crystallite

sizes and lattice parameters for both simulated and experimental XRD data. For

the latter, a very challenging X-ray diffraction computed tomography (XRD-CT)

dataset was chosen in order to test the performance of the network and its

feasibility for deployment for real-world applications. We focus on the scale

factors, lattice parameters and crystallite sizes because they are sufficient to

describe and understand the materials and process performance under

operational conditions [13], [41], [42]. This exemplar dataset was acquired using

a multi-component Ni-Pd/CeO2-ZrO2/Al2O3 catalyst and consists of ca. 20,000

diffraction patterns. The results from the analysis of this five-phase system are

also compared with results obtained using the Rietveld method with the TOPAS

software [43].
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3.3 Method

3.3.1 Simulated diffraction libraries

To use the PQ-Net, one needs to simulate the training library according to their

experimental data frame. In this chapter, All diffraction libraries were simulated

using MATLAB scripts and the TOPAS software v7 with CPU. The neural

networks were trained using GPU and a CPU/GPU comparison Table is shown

in Table 3.1. A 10 % validation split was applied to the training data for each

diffraction library used in this work to train the PQ-Net. The scale factors, lattice

parameters and crystallite size values for each pattern were created using

random sampling from a fixed range. For each parameter, the minimum value

was subtracted from the corresponding array and subsequently normalised.

This step proved very important for the stability of the network as it allowed all

parameters to have values in the same range (0-100). The minimum and

maximum values are recorded in a text file, and then the models’ predictions on

the experimental dataset can be easily converted to real values before

normalisation. A 3XS Data Science Workstation C264X2 with 2x Intel Xeon

Silver 4216, 350 GB Random Access Memory (RAM) and 2x Quadro RTX 8000

was used for the development and training of the neural networks used in this

work and the Rietveld analysis of the diffraction patterns.

Table 3.1: Differences in Models’ Performance with CPU and GPU on the single-phase PQ-Net.

Training library size Training time per epoch (s) Predicting time on 1k

patterns (s)

1,000 CPU 27 5.54

GPU 2 0.61

10,000 CPU 279 5.54

GPU 14 0.61

50,000 CPU 1396 5.54

GPU 70 0.61
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3.3.2 XRD-CT dataset

In this chapter I’ll use the previously published XRD-CT measurements of a

Ni-Pd/CeO2-ZrO2/Al2O3 catalyst that were performed at beamline station ID31 of

the ESRF using a 70 keV monochromatic X-ray beam focused to have a spot

size of 20 × 20 μm as our test dataset [13]. The 2D powder diffraction patterns

were collected using the state-of-the-art Pilatus3 X CdTe 2 M hybrid photon

counting area detector. The total acquisition time per point was 20 ms.

Tomographic measurements were made with 225 translation steps (translation

step size of 20 μm) covering 0–180 ° angular range, in steps of 1.125 ° (i.e. 160

line scans). The detector calibration was performed using a CeO2 NIST

standard. Every 2D diffraction image was converted to a 1D powder diffraction

pattern after applying an appropriate filter (i.e. 1 % trimmed mean filter) to

remove outliers using in-house developed MATLAB scripts [44]. The final

XRD-CT images were reconstructed using the filtered back projection algorithm

and were cropped to a 151 × 151 × 2048 reconstructed data volume (22801

diffraction patterns in total).

3.3.3 Rietveld analysis

Full profile analysis of the spatially-resolved diffraction patterns present in the

XRD-CT data was performed using the Rietveld method. MATLAB scripts were

used in combination with the TOPAS software v7 to perform the analysis in a

sequential manner, processing one diffraction pattern at a time. A mask was

applied so that only the pixels in the images corresponding to sample regions

would be processed which can significantly decrease the number of patterns to

be analysed. Rietveld analysis was performed using the summed diffraction

pattern of each XRD-CT dataset prior to the Rietveld analysis of the XRD-CT

data in order to have a good starting model before performing the batch

Rietveld analysis. A 2nd-degree Chebyshev polynomial was used to model the

background as it was observed to be fairly linear and the scale factor, lattice

parameters and crystallite size were refined for each phase in the model. The

results from the refinements were imported into MATLAB in order to create the

various figures presented in this work (e.g. phase distribution maps based on
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the scale factors or weight percentages, lattice parameters, and so on). The

Rietveld analysis of the XRD-CT data presented in this work was based on the

intensity of the scale factors.

3.4 Results & Discussion

3.4.1 Single-phase PQ-Net architecture and simulated XRD-CT

dataset

The architecture of the PQ-Net for a single-phase of cubic symmetry is

presented in Figure 3.1. The PQ-Net architecture can be divided into three main

parts. The first part (pattern-block), which decreases the size of the XRD pattern

and extracts local features, involves three convolutional layers (128 filters,

kernel size of 35 and stride equal to one) followed by a max-pooling layer (stride

equal to two). The second part, which is replicated for each crystalline phase

used in the model, includes a sequence of five convolutional and max-pooling

layers ending with a flatten layer; this extracts features from the XRD pattern

related to the specific phase (phase-block). The third and final part

(parameter-block) contains two fully connected (dense) layers ending with one

single output per phase parameter. A glossary explaining the various layers in

more depth is available in the SI.

The parameter-block part of the architecture contained the majority of the

trained weights so our initial work focused on minimising both the depth and

width of the dense layers. It was found that the width of the second dense layer

has to be doubled for the crystallite size and lattice parameters as these are

more challenging parameters to quantify compared to scale factors. A dropout

layer has been used after each fully connected layer (apart from the final layers)

to prevent overfitting. Regarding the training process, it was seen that using

mean absolute error (MAE) as the loss function instead of mean squared error

(MSE) yielded a more accurate model; this is not surprising as MAE is known to

better handle outliers present in the training data. This feature is crucial as there

are diffraction patterns in the training data that contain low intensity reflections
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and the network has to adapt and learn to ignore them. It should be noted that

the various parameters were normalised prior to the training of the network

since their magnitude varied significantly (i.e. between scale factors, lattice

parameters and crystallite sizes). Adam was used as the optimisation algorithm

and the learning rate was set to 0.0005 for all case studies presented in this

chapter[45].

Figure 3.1: Regression CNN architecture for Ni phantom experimental system featuring a single
phase. CONV represents 1-D convolutional layers, Pool represents max-pooling layers, FC
represents fully connected layers, and Dropout represents dropout layers with 10 % dropout
rate. The network consists of eight convolutional layers, six max-pooling layers, one flatten
layer, nine fully connected layers and six dropout layers in total. There are three routes
connected to the flatten layer which give predictions for scale factor, crystallite size and lattice
parameter a, respectively. Each route has three fully connected layers whose scales are shown
in the figure. The number of filters, kernel sizes and the stride of convolutional layers are also
given in the figure. All max-pooling layers have stride equal to 2.

As a proof-of-concept study, the PQ-Net was first trained with noiseless and

zero-background XRD patterns of a Ni fcc structure (ICSD: 64989) simulated
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with the TOPAS software v7 [43]. Each simulated diffraction pattern has 2000

bins which cover 0-10 Å-1 Q-range, and the parameters are randomly selected

from the range:

● Ni scale factor range: random sampling between 0 - 4 × 10-9

● Ni lattice parameter range: 3.55 ± 0.025 Å

● Ni crystallite size range: 2-25 nm

These diffraction patterns were used as the training data with a 10 % validation

split. The impact of the diffraction library size (i.e. size of the training data) was

investigated and the results are summarised in Table 3.2 there was no apparent

change in performance with libraries containing more than 100 K patterns.

There is also a sudden drop in MAE above 10 K patterns, implying that accurate

results could be obtained with libraries as small as 20 K. It should also be

pointed out that the MAE values provide an indication of accuracy regarding the

predictions of the network but a PQ-Net model trained with relatively high MAE

can potentially still yield accurate predictions. All models are trained with a

batch size of 32.
Table 3.2: Impact of Library Size.

Library size Epochs MAE Val MAE

1K 21 17.3640 28.2726

2K 24 7.8272 7.7344

5K 17 6.0237 7.1791

10K 13 5.8395 8.1244

20K 12 4.0839 3.8190

50K 11 2.8442 3.0839

100K 25 1.2830 1.4234

250K 13 1.2046 1.6934

To evaluate the performance of the PQ-Net we simulated a phantom XRD-CT

dataset using a scale factor map derived from the Rietveld analysis of an

experimental XRD-CT dataset from a catalyst sample [46]. One advantage of
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this dataset is the realistic nature of this intensity map compared to idealised

ones, such as the Shepp-Logan phantom. More important though is that one

can easily segment the various particles, assign different properties to them and

generate multiple XRD-CT datasets with varying chemistry in an efficient

manner. More details regarding the phantom simulation can be found in our

previous work [47]. These 120 x 120 (14400) diffraction patterns were used as

test data for the single-phase PQ-Net. The results from a single-phase PQ-Net

trained with 100 K patterns applied to this test set are presented in panel in

Figure 3.2. The ground truth (GT) maps for the various parameters are

presented in the first row, the results from the PQ-Net in the second row and the

difference between the two maps in the third row. The scale factor is the easiest

parameter to train the PQ-Net for, so it is not surprising that it yields very

accurate maps with a relative error per pixel of less than 5 % (Figure 3.2).

Figure 3.2: Left: Relative error map for the Ni scale factor by comparing the results obtained
with the PQ-Net and the ground truth. Right: Rwp map as calculated with TOPAS software v7.

Impressively though it can be seen that the error for the crystallite size is below

1 nm for all catalyst particles and similarly the error for the lattice parameter is

below 10-3 Å. The weighted profile R-factor (Rwp) also is below 5 % for the

majority of pixels(Figure 3.2). To illustrate this further, the mean diffraction

pattern from three catalyst particles exhibiting different properties were

extracted and analysed with PQ-Net. The results are presented in panel b of

Figure 3.3 and it can be clearly seen that the network is able to accurately

predict the three patterns (Rwp of 3.144, 1.191 and 1.835 % respectively). The

corresponding Ni parameters are summarised in Table 3.3.
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Figure 3.3: Panel a: Ground truth maps (top row), results obtained with the PQ-Net (middle row)
and their absolute difference (bottom row). First column corresponds to scale factors, second
column to crystallite sizes (nm) and third column to lattice parameter (Å). The colour scale bars
represent the values obtained through Rietveld analysis for each pixel in the maps. Panel b:
Comparison between the average diffraction patterns extracted from three particles of interest
and the TOPAS generated patterns using the parameters predicted by the PQ-Net.
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Table 3.3:The predicted and ground truth lattice parameters and crystallite sizes of the three
selected particles that are shown in Figure 3.3.

Ni Lattice Parameter (Å) Crystallite Size (nm)

Particle 1 Ground Truth 3.544 21.6

PQ-Net 3.543 23.4

Particle 2 Ground Truth 3.539 7.6

PQ-Net 3.539 7.6

Particle 3 Ground Truth 3.558 4.5

PQ-Net 3.558 4.6

3.4.2 Influence of layer sizes and optimizers.

During our network development, we explored the impact of various parameters

related to network architecture and the training process itself. Based on the

simulated single-phase Ni dataset I showed above, we tested the influence of

the numbers of filters and the layer sizes of the 1D convolutional layers and the

fully connected layers respectively. Table 3.4 shows the MAEs of the validation

dataset when the parameters are halved or doubled. We then draw the

conclusion that increasing the filter numbers does not necessarily mean better

performance, but it can easily lead to local minima especially when the training

dataset is small. By considering the balance of the model’s performance and

the training time, we chose to use the parameter settings shown in Figure 3.1.

Table 3.4: The MAEs of Validation Dataset with Different Layer Sizes in Single-Phase PQ-Net

With 0.5 x filter
numbers

With original convolutional
layer size

With 2 x filter
numbers

With 0.5 x nodes in
fully connected layers

5.3 5.49 6.08

With original fully
connected layer size

3.47 3.28 4.07

With 2 x nodes in fully
connected layers

3.21 3.23 3.01
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The choice of optimisation algorithms (optimizers) is another factor that

influences the models’ performance. We tested five commonly used optimizers

which are Stochastic Gradient Descent (SGD) [48], Adam [45], SGD with

momentum [49], Adagrad [50], and RMSProp [51]. All training is performed on

single-phase PQ-Net architectures on 10,000 simulated patterns and assessed

using the MAE loss function. Their performance is shown in Figure 3.4. We then

decided to use the Adam optimizer on all our works shown in this chapter,

because it works the best among all methods tested in terms of both

convergence speed and accuracy.

Figure 3.4: Comparison among the performance of common optimizers. MAE is chosen as the
loss function. The training was performed on single-phase PQ-Net architectures with 10,000
training patterns with learning rates as 0.0005. Not all optimizers reach 16 epochs because they
have got enough accuracy, and the validation loss did not improve anymore.

3.4.3 Multi-phase deep ensemble PQ-Net and simulated XRD-CT

dataset

The next logical step was to test the PQ-Net against simulated multi-phase XRD

patterns which is a closer approximation to most experimental data and closer

to real-world applications. Here, we chose a five-phase system that

corresponds to the chemistry encountered in the experimental XRD-CT dataset
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presented in the next section. The choice of this material system was based on

the complexity and its challenging nature; it is a multi-component system with

various phases exhibiting different symmetries and their physico-chemical

properties vary spatially as it will be shown in the next section.

The five crystalline phases modelled here are NiO (ICSD: 9866), PdO (ICSD:

24692), CeO2 (ICSD: 72155), ZrO2 (ICSD: 66781) and theta-Al2O3 [52]. The

parameters refined here are the scale factors, lattice parameters and crystallite

size for each phase. Poisson noise and a varying linear background (2nd degree

Chebyshev polynomial) were also introduced in the diffraction libraries used to

train the multi-phase PQ-Net. The parameter ranges for simulating the training

diffraction patterns are shown in Table 3.5.

Table 3.5:The ranges of parameters used in simulating the five-phase POX dataset.

Phase 1

NiO

Phase 2

CeO2

Phase 3

ZrO2

Phase 4

PdO

Phase 5

Al2O3

Scale Factor 0-1 × 10-9 0-1 × 10-10 5.350 ± 0.05 3.010 ± 0.02 0-1 × 10-11

Crystallite

Size (nm)

2-50 2-50 2-50 2-50 2-50

Lattice

Parameter a

(Å)

4.137 ± 0.02 5.350 ± 0.05 3.589 ± 0.02 3.010 ± 0.02 11.965 ± 0.02

Lattice

Parameter c

(Å)

5.230 ± 0.02 5.350 ± 0.02 11.133 ± 0.02

Lattice

Parameter b

(Å)

11.071 ± 0.02

Lattice

Parameter

beta (°)

103.246 ± 1
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To predict all 20 parameters with one architecture, we firstly tried the one-go

CNN architecture shown in Appendix 1, Figure S1.1. and it can be seen that it is

a simple extension of the one presented in Figure 3.1. However, the network

easily converges to focus on only a few parameters due to the different

difficulties of refining each parameter. We split the CNNs according to the

number of phases used in the dataset to force the CNN not to ignore any minor

phase or parameter. To balance the scale of different parameters during

training, and make all parameters have equal contribution to the loss function,

all the parameters are normalised from 0-100 during training, and the

normalisation factors are recorded to refine the correct values afterwards. The

multi-phase PQ-Net architecture we finally used is presented in Figure 3.5. [52]
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Figure 3.5: Regression CNN architecture for POX catalyst experimental system with five
phases. CONV represents 1-D convolutional layers, POOL represents max-pooling layers, FC
represents fully connected layers, and FC+D represents a fully connected layer and a dropout
layer. The CNN splits after the first max-pooling layer and forms five sub-CNNs corresponding
to the five phases in the experimental system. As shown in the schematic, each parameter has
its own route after flattening layers. Scales of fully connected layers are shown above them.
There is also a 10 % dropout layer after each hidden fully connected layer. The number of
filters, kernel sizes and the stride of convolutional layers are also given. All max-pooling layers
have strides equal to 2. The sf, cls, lpa, lpb, lpc, and lpbe represent the scale factor, crystallite
size, lattice parameters a, b, c, and beta respectively.
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The Influence of training library size on the models’ accuracy is shown in Table

3.6. Each training pattern contains 740 bins which cover the 1.8-8 Å-1 Q range.

All models are trained with a batch size as 32 and it takes 53 ms per step on

our computer. We used an early stopping factor of 3 so that the training process

can automatically stop when the validation loss does not improve after three

epochs.

Table 3.6: The influence of the training library sizes on the performance of 5-phases PQ-Net
model.

library size Epochs MAE Val MAE

1K 81 130.18 243.57

2K 78 76.31 164.31

5K 43 88.65 135.48

10K 53 88.29 125.91

20K 47 84.54 115.32

50K 31 71.32 99.79

100K 38 85.49 96.31

250K 34 71.94 80.57

To improve the performance and robustness of our model, necessary for

complex tasks such as this, we implemented and evaluated deep ensembles of

the PQ-Net [53]–[55]. Deep ensembles are based on the assumption that

different initial weights of a CNN will lead to different local minima which may

not necessarily be a minimum on the validation data. However, these local

minima are evenly distributed in parameter space and therefore sample

different possible solutions efficiently [56]. Therefore, simply retraining a CNN

model several times and taking the average of the outputs can usually yield

better results than using only one model.
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To introduce more randomness in the training of our model, we used random

initial weights and also added a dropout layer after each fully connected layer

apart from the final layers. As expected, due to the dropout layers added,

individual models in deep ensembles show worse performance during training

compared to the models without dropout layers. However, the distribution of the

predicted values is narrower and more centred around the ground truth value.

Figure 3.6: The influence of the deep ensemble sizes on models’ performance. The points in the
chart represent the sum of 20 outputs’ MAEs in the simulated validation dataset. All curves tend
to flatten out as the number of models in a deep ensemble increases; and the larger the training
dataset is, the faster it flattens out. Since the uncertainties of individual models are very large,
when the deep ensemble size is less than 5, the MAE shown in the figure is the average MAE
among five same-sized deep ensemble models (All individual models are unique).

Figure 3.6 shows the influence of deep ensemble acting on the results mean

absolute error (MAE). It can be seen that the more individual models in a deep

ensemble model, the more accurate results it can generate. Another benefit of

deep ensembles is that the method can give a referable uncertainty of the

results. We tested twenty different deep ensemble sizes with four training

dataset sizes. Because the predictions may have large standard deviations

while the deep ensemble sizes are small, while the deep ensemble sizes are

less than four, the mean absolute errors are the average mean absolute errors

among five deep ensemble models. According to Figure 3.6, deep ensembles

105



can significantly reduce the mean absolute error on models with the same

training dataset size.

By taking the standard deviation among all individual models’ predictions on a

parameter, one can easily estimate the precision of a deep ensemble result.

However, because the time taken by training and merging individual models can

rise proportionally as the number of models in a deep ensemble increases and

the curve tends to flatten out, using a deep ensemble of size between five to ten

is the most realistic option for real-world applications. It is worth mentioning that

the MAEs for the validation dataset have a lower limit which cannot be

surpassed by increasing the size of the training dataset or the deep ensemble

because the crystallite sizes and lattice parameters are very hard to predict

when scale factors are approaching zero.

The performance of the trained multi-phase PQ-Net was evaluated with a

simulated XRD-CT dataset using the same intensity image as for the

single-phase dataset. Here, the same strategy was followed creating five

single-phase XRD-CT datasets, one for each component which was then added

together to form the multi-phase simulated XRD-CT dataset. This dataset was

then passed to the PQ-Net for analysis and quantification of the various

parameters. Each phase’s scale factor, lattice parameter, and scale factor

results from the deep ensemble PQ-Net consisting of ten models and trained

with 100 K patterns are presented in Figures 3.7 to 3.11. It can be clearly seen

that the PQ-Net is able to create accurate phase distribution maps for all

components and retain the local features and relative intensities. Importantly, it

is able to also create accurate crystallite size and lattice parameter maps for all

phases while the Rwp remains <10 % for all particles (Figure 3.12).
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Figure 3.7: Comparison of the scale factor, lattice parameter and crystallite size maps obtained
with the PQ-Net (ten model deep ensemble trained with 100 K patterns) for the NiO phase and
the ground truth values.

Figure 3.8. Comparison of the scale factor, lattice parameter and crystallite size maps obtained
with the PQ-Net (ten model deep ensemble trained with 100 K patterns) for the CeO2 phase and
the ground truth values.
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Figure 3.9: Comparison of the scale factor, lattice parameter and crystallite size maps obtained
with the PQ-Net (ten model deep ensemble trained with 100 K patterns) for the ZrO2 phase and
the ground truth values.

Figure 3.10: Comparison of the scale factor, lattice parameter and crystallite size maps obtained
with the PQ-Net (ten model deep ensemble trained with 100 K patterns) for the PdO phase and
the ground truth values.
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Figure 3.11: Comparison of the scale factor, lattice parameter and crystallite size maps obtained
with the PQ-Net (ten model deep ensemble trained with 100 K patterns) for the Al2O3 phase and
the ground truth values.
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Figure 3.12: Comparison of Rwp maps obtained with a 10-model deep ensemble PQ-Net trained
with 10 and 100 K patterns respectively.

To further illustrate the ability of the PQ-Net to handle multi-phase systems, we

also extracted three diffraction patterns from the XRD-CT which correspond to

the mean diffraction patterns from three particles. The results from the analysis

of these three patterns are presented in Figure 3.13 where it is clearly shown

that the PQ-Net with 100 K training patterns is able to model them accurately

(Rwp of 5.024, 5.419 and 4.798 % respectively; see also Appendix 1 Tables S1.1

- S1.5).

Figure 3.13: Comparison between the average diffraction patterns extracted from three particles
of interest and the TOPAS generated patterns using the parameters predicted by the PQ-Net.
The main reflections for NiO (blue ticks), PdO (green ticks), CeO2 (red ticks) and ZrO2 (cyan
ticks) are also presented
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3.4.4 Experimental XRD-CT dataset

The final and most challenging dataset is an experimental XRD-CT dataset

acquired using the Ni-Pd/CeO2-ZrO2/Al2O3 catalyst. Details regarding its

preparation and phase identification are provided in our previous work [13].

Here we use the previous deep ensemble PQ-Net consisting of 10 models and

trained with 100 K patterns (training data) to analyse the 22801 XRD patterns

(test data) present in the XRD-CT dataset (XRD-CT images of 151 x 151

pixels). We also perform conventional Rietveld analysis which serves as an

approximation to the ground truth and the benchmark to assess the

performance of the PQ-Net.

The results for the scale factors for all phases using the Rietveld method and

the PQ-Net are presented in Figure 3.14. It can be seen that the PQ-Net is able

to accurately predict the scale factors of both the main phases, such as Al2O3,

NiO and ZrO2, and also minor components such as the PdO. It should be noted

here that the PdO should not have been detectable at this resolution due to its

low content (<1 wt.% ) and it is only possible due to areas of high concentration

near the surface of some particles. Importantly, the PQ-Net results are

consistent with the ones obtained with the Rietveld method showing for

example that the ZrO2 (or Zr-rich CexZr1-xO2 phase, where x≤1) is located only at

the periphery of the catalyst particles while the CeO2 (or Ce-rich CexZr1-xO2

phase) is present also at the interior of the catalyst particles. The Al2O3

distribution is correctly shown to be homogeneous in all catalyst particles while

NiO, the primary catalyst active component, is also present in all particles. The

uncertainty maps shown in the last row of Figure 3.14 correspond to the

standard deviation of the calculated values from the 10 models of the deep

ensemble PQ-Net.
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Figure 3.14: Scale factor maps obtained with the Rietveld method (top row), results obtained
with the PQ-Net (second low), their absolute difference for the experimental multi-phase
NiO-PdO-CeO2-ZrO2-Al2O3 system (third row) and the uncertainty maps of the deep ensemble
PQ-Net (last row).

Importantly, apart from the scale factors, the PQ-Net is able to capture the

chemical gradients present in this challenging XRD-CT dataset. As shown in

Figure 3.15, it is able to resolve the heterogeneities in the crystallite size and

lattice parameter of the CeO2-ZrO2 phases. As we have previously reported, the

CeO2 crystallite size and lattice parameter follow an egg-shell distribution in this

catalyst with lower values for lattice parameter and crystallite size at the shell

compared to the core of the particles. As expected, this result is reproducible

with the Rietveld method but it can also be seen that the PQ-Net yields the

same results. Moreover, the difference between the CeO2-ZrO2 lattice

parameter maps obtained with the Rietveld method and the PQ-Net is below 2

× 10-2 Å for the majority of the particles while for the crystallite size maps the

difference is in the order of 1-2 nm. The uncertainty maps presented in the last

row of Figure 3.15 indicate that the error for the crystallite size for both phases

is in the order of 1 nm.
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Figure 3.15: Crystallite size (columns 1 and 2 with colourbar axis corresponding to nm) and
lattice parameter a (columns 3 and 4 with colourbar axis corresponding to Å) maps for CeO2

and ZrO2 obtained with the Rietveld method (top row), results obtained with the PQ-Net (second
row), their absolute difference for the experimental multi-phase NiO-PdO-CeO2-ZrO2-Al2O3

system (third row) and the uncertainty maps of the deep ensemble PQ-Net (last row).

Diffraction patterns from two representative regions of interest were extracted

from the XRD-CT for further analysis. As shown in Figure 3.16, one pattern is

derived from the periphery of three particles (light blue region) while the second

is derived from the whole area of two other particles (magenta region). The first

region corresponds to an area where the ZrO2 phase is present while the

second is where it is absent. Both patterns are the mean XRD patterns from the

respective regions in the sample. These two patterns were then analysed with

the PQ-Net and the results are presented in Figure 3.16. It can be clearly seen

that the PQ-Net is able to model accurately the data (Rwp of 8.353 and 7.749 %

respectively).
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Figure 3.16: Comparison between the average diffraction patterns extracted from two regions of
interest and their modeling with PQ-Net. The main reflections for NiO (blue ticks), PdO (green
ticks), CeO2 (red ticks) and ZrO2 (cyan ticks) are also presented.

The multi-phase PQ-Net can not only predict the results precisely, but also do so

efficiently. Figure 3.17 shows the time-taken difference between the multi-phase

PQ-Net and the traditional Rietveld method. It shows the PQ-Net model and the

PQ-Net with 10 deep-ensembled models only take 6 and 20 % of the time of the

conventional Rietveld method respectively. It is worth mentioning that the time

taken shown here includes the simulated library generation time and the model

training time, and these procedures can be performed before the experiment.

The prediction time normally takes just a few seconds for a PQ-Net model and

at most a few minutes for the deep ensemble model, so the PQ-Net has a great

potential to be applied to the in situ/operando experiments to observe the

results during the experiments.
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Figure 3.17: Performance comparison between the Rietveld method, single-model PQ-Net and
PQ-Net Deep Ensemble with 10 models.

3.5 Extending PQ-Net: Retrieving Site Occupancy Factor
(sof)

Within the chapter we have focused on the extraction of scale factors, lattice

parameters and crystallite sizes which in the exemplar are sufficient to describe

and understand the materials and process performance under operational

conditions, and from our experience is that which is most commonly desired

from XRD-CT and indeed the majority of multiphase in situ experiments. In

principle, though PQ-Net can be extended to other parameters and to illustrate,

we demonstrate its use for extracting occupancy where the architecture is

illustrated in Figure 3.18 for a single-phase problem. There are only two sites in

this system, and the sum of their occupancy factors is equal to 1, so there is

only one site occupancy factor being predicted in the architecture to reduce the

computational resources needed. 100,000 simulated NiPd patterns were used
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to train the PQ-Net with a validation split rate of 10 %. And the parameter

simulation ranges are set as:

● NiPd scale factor range: 0-4 × 10-9

● NiPd lattice parameter range: 3.6 ± 0.2 Å

● NiPd crystallite size a range: 2-25 nm

● Ni site occupancy factor: 0-1

Figure 3.18: Single Phase PQ-Net architecture for NiPd crystal with an additional site
occupancy factor. The uncertainty analysis of this architecture is shown in Table 3.7.

The NiPd lattice parameter range is given a much larger range than that

introduced in the previous libraries to reflect real-world lattice parameter

changes that would accompany the occupancy ranges introduced. As

previously, all parameters are normalised to 0-100 based on their sampling
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range while training. The errors before and after normalisation are shown in

Table 3.7. The results validate that site occupancy can be extracted in this way.

Table 3.7: The accuracy of the single-phase PQ-Net model with site occupancy factor.

Parameter Name Validation MAE
(normalised)

MAE on original unit

Scale factor 1.62 6.48 × 10-9

Crystallite size 2.54 0.0102Å

Lattice parameter a 1.97 0.453 nm

site occupancy factor 2.46 0.0246

3.6 Summary and Conclusion

The results presented in this work demonstrate that the PQ-Net model is able to

extract accurate physico-chemical information from XRD patterns. Its

performance was evaluated with different datasets of increasing complexity,

varying from simulated noiseless single-phase to experimental five-phase

systems. In all cases, PQ-Net was able to quantify the scale factors, lattice

parameters and crystallite sizes of the various phases providing predictions with

errors within acceptable ranges (i.e. compared to the ground truth and Rietveld

results for the simulated and experimental data respectively). The work

presented here therefore serves also as an exemplar study demonstrating

PQ-Net’s flexibility and scalability as the method applied to datasets of different

complexity and it can be scaled up or down depending on the data

requirements. The robustness of the PQ-Net was further improved through the

implementation of deep ensembles that allow for uncertainty quantification.

The optimised deep ensemble PQ-Net model was able to provide results with

less than a 2 % difference in Rwp compared to the one obtained from the

analysis of the same data using the Rietveld method. These results were

obtained (i.e. analysis of ca. 50K XRD patterns) in ca. 10 s while the

state-of-the-art Rietveld required ca. 4.4 h. It should be noted though that the
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PQ-Net was not designed to replace the Rietveld method but to assist and

provide a very fast and good approximation to the global minimum; conventional

least-square minimisation techniques, such as the Rietveld method, can be

used for fine parameter tuning using the PQ-Net results as the starting point.

The PQ-Net in its current form, similar to the Rietveld method, requires some a

priori knowledge of the sample and its chemistry. However, in case there is

evolving/unpredictable chemistry or unknown phases form/are present in the

system, it can be easily spotted through the Rwp and the difference between the

experimental and predicted patterns.

The key advantage of the PQ-Net is that the diffraction libraries can be

generated prior to an experiment and used to pre-train the model. This

approach will allow for real-time assessment of diffraction data acquired during

a dynamic experiment and enable the user to better guide the experiment (e.g.

through the applied operating conditions) and intervene when necessary. In

future, we plan to increase the complexity of the PQ-Net and explore its ability

to model other parameters such as complex backgrounds, to quantify

amorphous/crystalline components and to perform simultaneous calculation of

weight percentages and strain analysis.

We would like to emphasise though that the benefit of the PQ-Net is really seen

when one collects big datasets (i.e. fast acquisitions as we mention in the

introduction). For example, the training of a PQ-Net can take tens of mins to a

few hours depending on the library size but it is done only once. It is then able

to yield predictions in seconds to a few minutes for 10,000 diffraction patterns.

In contrast, even the fastest of the conventional full profile analysis methods

using least-square minimisation approaches (employed in XRD analysis) take

many hours per 10,000 datasets. So this is essentially a scale-up problem and

that’s where the deep learning approaches thrive. Another crucial point to make

is that the trained PQ-Net can be used to fit multiple experimental data with

varying chemistry. For example, one can train the PQ-Net with a dataset that

contains both reduced and oxidised forms of metals and apply it to all
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experimental datasets collected from an in situ/operando experiment where the

material is exposed to varying chemical environments and changing forms (e.g.

from reduced to oxidised and vice versa). In contrast, with the conventional

approaches, one has to build and refine a new model every time; a model that

is close to the results. Last but not least, I expect that the PQ-Net has the

potential to become an essential tool for diffraction applications beyond

synchrotron experiments such as real-time quality inspection in

manufacturing/synthesis.
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Chapter 4: Deep-Learning-Based Tomographic

Image Reconstruction

4.1 Abstract

In recent years, machine-learning methods have offered the promise of

transforming image reconstruction across the life and physical sciences. In this

chapter, it will show how both supervised learning and self-supervised learning

ways to reconstruct computed tomographic data. It will also explore the

possibility of using machine-learning methods to solve the common artefacts in

computed tomographic (CT) image reconstruction. It will demonstrate the effect

of and present a method for avoiding, training set bias in deep neural networks

for tomographic image reconstruction. This is done by firstly, trying to remove

the angular undersampling artefacts with convolutional neural networks (CNNs)

trained by the DIV2K dataset, however, the image-to-image cleaning is

problematic since minor features are difficult to retain. Therefore, a new,

lightweight and scalable artificial neural network architecture, SingleDigit2Image

(SD2I), to reconstruct tomographic images directly from their sinogram domain

was developed. The SD2I is a self-supervised learning approach leading to

more robust results and better transferability among different experimental data

frames. Because of the unique design of our generator network, this new

method can reconstruct images that are more than 2k x 2k large. The network's

performance on both simulated and experimental synchrotron tomographic

images of X-ray diffraction CT (XRD-CT), micro-CT and neutron-CT was then

tested. It is shown that the method can correctly reconstruct images with fewer

projection data, and the results are more accurate than conventional

reconstruction methods such as Filtered Back Projection (FBP), Simultaneous

Algebraic Reconstruction Technique (SART), Simultaneous Iterative

Reconstruction Techniques (SIRT), and Conjugate Gradient Least Squares

(CGLS). Note that the SD2I architecture has been published in Digital Discovery

as ‘A scalable neural network architecture for self-supervised tomographic

image reconstruction’ on June 2023 [1]:
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4.2 Introduction

4.2.1 CT Image artefacts

In the last few decades, computed tomography (CT) imaging has become

increasingly popular in measuring and sampling in a non-destructive way. Many

physical measurements, however, will introduce noise in CT image

reconstruction, such as the high background radiation noise and

software/hardware [2]–[4]. Although the noise can come from many different

sources, the final cumulative noise can be accurately characterised by a

Poisson distribution, because the noise on each pixel is independent [2].

Depending on the CT method, the Gaussian noise or an additive Gaussian

noise can also be found in CT images [5]–[7]. Spatial filters applied directly to

noisy images are traditionally used for reducing Poisson or Gaussian noise. A

spatial filter, such as a mean filter or median filter, is based on the assumption

that the noise occurs at a higher frequency, but it inevitably introduces blurring

into the images [8]. There are several standard performance metrics used to

assess the accuracy of CT image denoising algorithms, including mean

absolute error (MAE), mean square error (MSE), root mean square error

(RMSE), structural similarity (SSIM) and peak signal-to-noise ratio (PSNR)

[9]–[11].

The angular undersampling artefact can occur when reconstructing CT images

with insufficient sparsely-selected projections [12]. The primary purpose of

undersampling is to reduce the size of the dataset which in turn reduces the

processing time. Similar to the artefact created by reconstruction with an

incomplete sinogram (a number of projections are missing), traditional methods

to solve this problem focus on inpainting the missing angles/projections with

interpolations [13]–[17], however, they all effect some sort of blurring on the

images. Recently, deep neural network (DNN) methods are becoming more

popular with supervised-learning methods shown to be very promising in

completing sinograms without introducing other artefacts [18]–[20].
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Metal artefacts or high Z-containing materials are another significant issue in

reconstructed CT images [21]. Methods to correct metal artefacts have been

researched and developed for nearly four decades [22]. Metal objects in the CT

scanning area will weaken the transmitted X-ray signal or even block the X-ray

from penetrating through the sample. This leads to a false projection being

recorded on the sinogram resulting in a reconstructed image that will have

bright or dark streaks which are called metal artefacts [22], [23]. A very common

method to correct the metal artefact is to manually remove the area influenced

by metal objects on the sinogram domain, and then apply sinogram inpainting

methods to complete the missing data [16], [24]–[26]. More recently it has been

shown that traditional supervised learning image-domain cleaning methods can

also help [27].

4.2.2 Supervised-learning-based CT image reconstruction

During the past few years, machine-learning methods have been applied as a

powerful new tool for removing the artefacts in CT images. A number of notable

exceptions do exist, where supervised learning and generative models have

been used to automatically map from sinogram to real space images [28]–[34].

Supervised learning has already been applied to all procedures in the

conventional image reconstruction pipeline [35]. Many papers have already

demonstrated that convolutional neural networks (CNNs) can carry out image

reconstruction directly. But they normally require a large number of computing

resources because they require a domain transfer [35]–[37]. For example, a

stable AUTOMAP CT reconstruction network for images with sizes of 512x512

requires over 340 Gigabytes (GBs) of graphic processing unit (GPU) memory

which is way beyond the capacity of modern GPUs of only tens of GBs of

memory [28]. Therefore, using CNN to perform a pretreatment on sinograms

[18], [19], [38], [39] or else a posttreatment on reconstructed images [40]–[42] is

a more common method used to remove a certain artefact.
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4.2.2.1 CT Image Reconstruction by DNN

Although deep neural networks (DNNs) have emerged as a powerful and

promising new tool for CT image reconstruction, bottlenecks still exist to their

application for image reconstruction due to their scalability (i.e. their ability to

handle large images), their network size (large networks can be computationally

very expensive) and particularly for applications where absolute values (as

opposed to normalised values) are important in the reconstructed image, such

as in chemical tomography and in quantitative analysis of attenuation-based

tomography data [43]–[45]. For example, the AUTOMAP published in 2018 by

Zhu et al and shown in Figure 4.1, is a CNN architecture that was specifically

developed for tomographic reconstruction [28]. This architecture has one flatten,

one fully connected layer with 2 x m x n nodes, two fully connected layers with

n2 nodes and several convolutional layers before the output of the reconstructed

image is created (here m and n represent the number of projections and image

size, respectively). The authors tested this architecture with Radon projection

imaging [28], conjugate-gradient sensitivity encoding reconstruction [46], and

more datasets with non-uniform Fourier transformation [47]. Although these

works showed that AUTOMAP can yield very respectable results, it has been

remarked elsewhere that the architecture has some shortcomings [36], [37]. For

example, the first two fully connected layers in AUTOMAP can produce

trainable weights [37], where m and n represent the two

dimensions of sinograms. If we consider a 2D input sinogram with 128 x 512

pixels and the required reconstructed image has 512 x 512 pixels then

AUTOMAP needs over 340 Gigabytes to save all weights, which is currently

impossible for modern GPUs [36]. The original article only attempted to

reconstruct images up to 128 x 128 pixels, which is not big enough for modern

CT images.
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Figure 4.1: The AUTOMAP CNN architecture [28]. It starts with a 2D input layer which has the
same size as the sinograms n x m, here n denotes the number of X-ray sensor pixels and m
denotes the number of signals at different projection angles taken from the object. Then the 2D
input sinogram is reshaped into a 1D array and sent to a fully connected (FC) layer with 2 x n x
m nodes inside. It follows with two more fully connected layers n2 nodes, and the 1D output of
the final fully connected layer will be reshaped to a 2D array and sent to two convolutional
layers to get the output layer or reconstructed image.

4.2.2.2 Artefact removal on image domain

Another very popular way to solve the artefact problem in CT images is to

directly clean the reconstructed image. During the past few years, CNNs have

become increasingly popular for image denoising [48]. While the widely used

CNN models like the AlexNet [49], VGG [50], and GoogleNet [51] were applied

to computer vision and image classification, image-denoising CNNs have more

recently been applied to scale up the images with more sharp details on the

higher resolution domain which is called image ‘super-resolution’. Since there is

no domain transfer involved in this way, the models are generally CNN-based

and have fewer parameters than the methods that do a domain transfer. The

residual learning networks have been proven to have a good performance in CT

image denoising and artefact removal [52], [53]. Lee et al. used U-Net to obtain

good-quality images from sparse-view medical CT images [12]. The U-Net

architecture was first developed for biomedical image segmentation problems

[54], [55]. Formally, a U-Net architecture contains one down-scaling part and

one up-scaling part. In the up-scaling section, they do not only take the output

from lower levels as input, but they also acquire output images from the same

level in the down-scaling part. As a result, each level in the up-scaling part has

two inputs containing the features captured in the previous level and in

down-scaling convolutional layers, which makes the model more robust.
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Compared to traditional CNN architectures, the U-Net can yield more precise

segmentation with fewer training datasets [56], [57]. According to the original

paper, segmentation of a 512 x 512 image takes less than a second on a

modern GPU [54]. Different from the original U-Net architecture, Lee et al. used

an overall residual learning between the input and output layers, so that U-Net

can learn the artefacts caused by the sparse selected angular undersampling

directly. They concluded that they can use only 20 % of X-ray projections to

form a good CT image, and the results are better than combined interpolation

methods [38], [58], [59]. An encoder-decoder CNN architecture proposed by

Chen et al. also shows a good performance on Filtered back projection (FBP)

de-noising problems [60]. In this work, they used three residual learning

connections between the encoder and the decoder. As with the U-Net described

above, they also claimed the necessity of residual learning to enhance the

resulting quality. In 2020, Liu et al. published TomoGAN which also used a

generative adversarial network (GAN) to train a U-Net that can remove the

angular-undersampling artefact on the image domain [61]. In this approach, the

GAN is used as a special supervised CNN training method because the

generator will be used alone with a real experimental dataset after the generator

is well-trained. Jelmer et al. also used a GAN in training their image denoising

CNN [62]. The input to the CNN was low-dose CT images and the output was

routine-dose CT images. They compared the results with and without GAN loss,

and they concluded that the GAN-like architecture did not improve the results.

In 2021, Sidorenko’s team applied the Residual Encoder-Decoder Network

(RED-Net) in micro-CT image noise removal [63]. They found that by applying

the SSIM loss [9] and the perceptual loss [64], the network yields better image

quality with all metrics than the traditional mean squared error (MSE) loss.

4.2.2.3 Sinogram cleaning and inpainting networks

Performing sinogram cleaning and inpainting before applying conventional

methods like FBP to reconstruct images are very popular approaches to

improve reconstruction quality. In 2014, Li et al. used dictionary learning to

inpaint the sparse sampled Shepp-Logan sinogram into a complete sinogram
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[14]. In 2013, Pelt and Batenburg developed the NN-FBP and used the DNN to

learn the filters for FBP [65]. They claimed that the NN-FBP could yield more

accurate results than both FBP and SIRT methods on simulated data. The

same approach was subsequently applied to experimental electron tomographic

data with only a few projections [66], The results showed that the

angular-undersampling artefact is clearly improved using NN-FBP. Ding et al.

demonstrated a CNN can inpaint the missing parts of a sinogram with a limited

angle range rather than sparse-selected sinograms [67]. The CNN is trained by

a GAN combined with the MSE loss between the generated sinogram and the

ground truth. In 2019, Li et al. used a similar approach to perform sinogram

inpainting with a U-Net [18], and they also illustrated the

sinogram-inpainting-generative adversarial network (SI-GAN) which combined

the image domain MAE loss in their joint loss function [68]. Although the image

domain loss slows the training down because an FBP is used at each training

step, the final result is an improved image. To use the U-Net as the generator,

they leave the missing angles’ data blank in the input to keep the dimension of

the sinogram. Work carried out by Dong et al. also used a similar U-Net

architecture [69] although instead of inputting the sinograms with blank on the

missing angles, they applied a Radon transformation on the FBP images of the

under-sampled sinograms to obtain new sinograms with the same size as the

original sinograms before under-sampling. In this way, they could keep the input

and output sizes of the U-Net the same without any mathematical interpolation

methods.

In 2022, Xie et al. combined the sinogram inpainting and image domain artefact

removal networks into a single large network called SIAR-GAN [20]. In this

work, networks are trained together in two local GAN-like training loops which

combine the supervised learning and unsupervised learning approaches to

handle the insufficient training data. In addition, they used a new discriminator

that not only outputs a binary true/false result based on the overall similarity

between two images but also outputs a 59 × 19 image block. Each pixel in the

block is used to calculate the individual discriminator loss in the corresponding
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block of the original image. By applying the new regional discriminator, the

resultant images showed higher resolution and greater details. The most recent

work published by Liu et al. illustrated a new CNN-based method that combined

residual learning and multi-head attention that can precisely recover the original

sinogram with only 20 % of randomly sampled projection data [70]. They

claimed that the trained network can also be used to reconstruct the full image

in batches. However, they only showed the simulated images with different

regular shapes and as such it will need some transfer learning before applying

the trained CNN to real experimental data.

4.2.3 Self-supervised learning approaches

While powerful supervised learning approaches have been developed over a

relatively short period of time, most of them require many matched pairs of

noisy and clean images similar to the experimental data, which is not always

applicable in real life. This is particularly so when it comes to solving the

denoising problem where very clean images are hard to obtain due to

instrument or dose limitations. To overcome this problem, self-supervised

learning has become more popular recently in solving the problem of artefacts

in CT images because it is more controllable, robust, and requires no

pre-training [71]–[73]. Although self-supervised learning methods like the GAN

and self-attention CNN focus on the experimental data itself, there are still very

few networks doing the sinogram-to-image reconstruction directly because of its

difficult nature.

4.2.3.1 Self-supervised CT image enhancement

As previously discussed for the supervised learning methods, deep image

denoising normally uses advanced neural network architectures such as

ResNet [74], U-Net [54], and their variants [75]–[77]. In 2018, Lehtinen et al.

published the Noise2Noise network which is trained by image pairs of a noisy

image and many noisier images by adding artificial Poisson noise [78]. The

premise here is that CNN is not able to learn the noise itself because the noise

does not have any features. On this basis, the nearest image that the CNN can
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determine, and close to all images with artificial noise is the unknown clean

image. This method can clean data with different noise distributions (Poisson,

Gaussian, and Bernoulli), and even Monte Carlo synthesis noise. The Self2Self

architecture also tried to generate multiple different image pairs from the same

noisy image using Bernoulli sampling to randomly drop out pixels from one

image [79].

While the Noise2Noise and Self2Self do not need any clean images for training,

it still needs a lot of training data to maintain the stability and robustness of the

trained CNN, which means they are unable to denoise one image at a time.

Krull et al. moved a step forward by developing a Noise2Void architecture that

requires no image pairs at all. They used the self-supervised learning approach

to train a blind-spot network which is trying to predict the central pixel by looking

at the surrounding pixels in an 11 x 11 square [80]. They claimed that the

Noise2Void has a wider range of uses and requires fewer training resources.

However, their results are not necessarily better than the Noise2Noise’s results

in terms of the peak signal-to-noise ratio (PSNR). Subsequently, in 2019, Laine

et al. proposed an architecture that used four blind-spot networks in which

receptive fields are restricted to different directions. By taking the average of the

four outputs, the results are determined to be more stable than those obtained

using Noise2Void. Moreover, Batson and Royer introduced the Noise2Self

which introduced the blind-spot self-supervised loss into both machine-learning

and traditional methods to find the most optimal result. With their method, the

CNN is capable of denoising one image [81]. Hendriksen et al. also determined

that the training pair do not have to be different images [82]. They proposed the

Noise2Inverse architecture that is specifically designed for denoising CT

images. Noise2Inverse uses image pairs of the FBP images reconstructed with

a quarter of sparsely selected projections and the FBP image reconstructed by

the rest of the sinograms. This method can create a large training dataset

without any artificially added noise and keeps all information in the training

process. The most recent paper published in 2022 introduced the Noise2Fast

architecture which also uses the same phenomenon, but the method can be
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applied to all kinds of images [83]. They used chequerboard downsampling to

split one image into two sub-images, and each of them contains half of the

original image’s information. They claimed that the Noise2Fast performs very

well in terms of both speed and accuracy. It is worth mentioning that the method

is based on the assumption that there is much redundant information in the

image, and major features occupy more than one pixel in both dimensions.

In 2017, Johnson et al. first proposed perceptual loss which used the

pre-trained VGG feature maps as the loss function in comparing the similarity

between two images [84], [85]. This method has then been applied to the

self-supervised CT image denoising by Li et al. [86]. The self-attention

convolutional neural network (SACNN) combined the perceptual loss with the

GAN-like architecture to denoise the low-dose CT image. During training, an

encoder-decoder type of CNN uses the same noisy image as both the training

input and target. They claimed that the new loss function can yield more

accurate images in terms of the SSIM and PSNR than the traditional MSE loss

function, and keeps more fine structural objects. In 2021, Zhang et al. proposed

the SADIR-Net which tried to denoise the image in the image domain, feature

domain, and sinogram domain simultaneously [87]. The architecture pursues

the three different routes and then combines later to form a denoised image.

After three such learning blocks, a joint loss function with MSE and SSIM is

then used to compare the third block’s output and the input noisy image. Kim et

al. proposed a method that denoises low-dose CT images on both image and

sinogram domains [88]. By using Poisson Unbiased Risk Estimator (PURE) loss

to denoise sinograms and then comparing the results with those determined in

the image domain, very convincing results in terms of best RMSE among all

compared methods in the paper were obtained.

CycleGAN is another popular unsupervised learning method to translate a CT

image from an experimental noisy image domain to a target clean image

domain without a paired dataset [89]. A CycleGAN normally needs two

generators which use each other’s output as the input image. Harms et al. used
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the paired CycleGAN generators to correct the artefacts in cone-beam CT

images and map the cone-beam CT image to traditional CT images [90]. Gu

and Ye used the CycleGAN to denoise the low-dose CT image, by introducing

adaptive instance normalisation (AdaIN) layers in the generator [91], so the one

generator can be used for both low-dose CT image to a routine-dose CT image

and high-dose to low-dose images. In this way, the CycleGAN can be trained

twice on each loop, thereby reducing the total number of parameters. The

CycleGAN-like architecture can also be used to remove metal artefacts [92].

They applied the convolutional block attention module (CBAM) [93] in the

generators, which can effectively force them to focus on the metal artefacts.

Meanwhile Yang et al. applied the CycleGAN on magnetic resonance (MR) to

CT image transformation [94], [95]. They introduced the structure-consistency

loss to compare the structural consistency between the MR and CT images

during training. They claimed that the new structure-consistency loss can

effectively improve the CT image. In 2022, Sun et al. also used CycleGAN to

perform an MR-to-CT transformation. They used a very special U-Net

discriminator in the CycleGAN to perform pixel-wise classifications [96].

Compared to the traditional-GAN-based MR-to-CT transformation method [97],

CycleGAN’s results are generally more stable and accurate.

The most recent self-supervised image-denoising methods have been

highlighted above and from this it can be concluded that most of them can be

applied to the sinogram domain because CNN can treat sinograms as images.

However, there are very few works to modify the sinogram directly with a

self-supervised learning method, because that may introduce other artefacts or

blur into the reconstructed image [98]. In 2021, Yu et al. proposed an

architecture to remove the metal artefact [99] by training two networks in one

loop; one for the sinogram completion network, and the other one is the general

CT refinement output to enhance the FBP result afterwards. To train the

sinogram completion network, they used a joint loss function of the MAE on the

sinogram domain and the MAE on the FBP images. Niu et al. also proposed a

dual-domain network for low-dose CT image denoising [100]. Dual-domain
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methods can generally generate images with more minor features because they

keep full information on both domains.

4.2.3.2 Self-supervised CT sinogram-to-image reconstruction

Reconstructing images with self-supervised learning generally requires lighter

generator architectures than the supervised learning method. In 2019, Zhou et

al. developed a Tomo-GAN architecture which can reconstruct clean CT images

from a limited number of projections [101] and which consists of two parts: The

CycleGAN-based Sino-Net continues to generate simulated sinograms with

limited angular input whereas the Recon-GAN takes the simulated sinogram

and its FBP as input, then outputs the reconstructed image. A

Long-Short-Term-Memory (LSTM) layer is used in the Recon-GAN generator to

learn the features of projections from different angles. This architecture used six

loss functions in total and the two parts can be trained separately. On the

sinogram with a limited angle of 120°, Tomo-GAN can generate better images

than all traditional methods tested in the paper. However, Tomo-GAN is a very

heavy architecture and in order to achieve the results shown in the paper, 5935

real experimental sinograms and 232,228 simulated sinograms were used,

which took about 48 h to finish the training.

In 2019, Yang et al. proposed the GANrec architecture which comprises a

CNN-based generator that receives back projection images as inputs and

outputs the generated artefact-free images. A Radon transformation is used

afterwards to convert the generated image back to sinograms, and the MSE is

used to compare the generated sinogram and input sinogram. This architecture

is very simple and powerful, but it only works for normalized images. It means

that the information on intensities will be lost with this method. Subsequently,

Zang et al. developed the IntraTomo architecture which can reconstruct images

with retention of the intensity information [102]. They used a generator with

Fourier feature projection layers and multiple fully connected layers, in addition

to a geometry refinement module, to improve the reconstruction in the image

domain. This method can also be applied to reconstructing limited-angle

tomographic images. Unal et al. used a similar architecture to reconstruct
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low-dose CT images [103]. They combined the GAN architecture with the

Noise2Self architecture to achieve a one-goal reconstruction method with image

denoising. Based on the above precis of the current state of the literature, we

see great potential for self-supervised learning methods for solving multiple

image artefacts together. However, as outlined below there are some pitfalls

that need careful consideration when the self-supervised learning methods are

applied.

4.2.4 Identifying and avoiding training set bias in the supervised

learning approach

In recent years neural networks have offered the promise of transforming image

reconstruction across the life and physical sciences, however, there are still

many concerns to be addressed before this promise can be fully realised; not

least of which is the problem of biased deep neural networks resulting from

biased training datasets [104].

With all supervised learning models, the issue of training set bias is of utmost

importance. Typically studies of neural networks for image reconstruction have

focussed on limited data domains. However, in many reports of neural networks

for tomographic reconstruction, the models are trained and tested on only a

limited data domain [105], [106]. The area of understanding when a new test

example is outside the distribution of training examples is an active field of

research in deep learning with many schemes for uncertainty quantification and

out-of-distribution detection proposed [107]–[111]. A recent study in materials

discovery showed how a so-called leave-one-out cross-validation can be used

to assess the ability of a model to perform on previously unseen data [112].

This chapter addresses the question of biased datasets when developing DNN

models for tomographic image reconstruction, focusing on the domain of

materials science. It will show how biased datasets result in poor model

performance on new, out-of-distribution test examples. The neural networks

trained on a well-balanced dataset of diverse materials systems can match or
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outperform the filtered back projection method. A representative architecture,

based on convolutional layers which were trained on a diverse set of materials

samples, was developed which we note has not previously been applied to

XRD-CT data. It will be shown that models trained on one sample type perform

very well on that sample type, but very poorly on the other types of samples.

Then, it will be demonstrated that balancing the training set with different

sample types can yield a DNN capable of reconstructing all sample types in the

test set. Finally, and most importantly, it will illustrate how the application of

manifold learning allows us to assess in advance if a sample belongs to the

same set of data that was used for training the DNN, resulting in it being

possible to make a statement about the reliability of the DNN for the

reconstruction of a given sample without having to compare the reconstruction

to a known ground-truth. A 3XS Data Science Workstation C264X2 with 2x Intel

Xeon Silver 4216, 350 GB RAM and 2x Quadro RTX 8000 was used to perform

the development and training of the neural networks used in this work.

4.3 Results and Discussion

4.3.1 Supervised-Learning Reconstruction CNN

The CNN architecture used for reconstructing the images from the sinograms is

depicted in Figure 4.2. The architecture consists of a block of convolutional

layers, followed by a block of fully connected layers followed by another block of

convolutional layers. The inclusion of the initial block of convolutional layers

before the dense layers means that we can reduce the parameter size of the

network and therefore it can be applied to larger sinograms and images, without

causing severe memory problems, as encountered when applying the

AUTOMAP network [28]. The full details of the network architecture and training

are provided below. It is worth mentioning that the model architecture that has

been used in this work is not novel, but rather a common type of architecture

and our intention is to highlight the potential pitfalls of applying this type of

model without due consideration.
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Figure 4.2: A representation of the CNN reconstruction architecture. The green blocks represent
convolutional layers, the orange blocks represent fully connected layers. The first convolutional
block of the CNN reconstruction network has four convolution layers, each with 16 (3 x 3) filters
and a stride of two. The outputs are flattened and passed into a block of 4 fully connected
layers, each with 100 nodes and 10 % dropout between dense fully connected layers. The
output of the fourth fully connected layer is passed to another fully connected layer with
dimensions of the number of pixels width and height of the final image. These outputs are
reshaped to the final image dimensions and then passed through three convolutional layers with
16 (3x3) filters and a stride of one, finally the output of the final of these convolutional layers is
passed through a convolutional layer with one (3 x 3) filter, which produces the final image.

4.3.1.1 Training/Testing Datasets

For the datasets examined in this study we have chosen a set of four diverse

materials science use cases, each of which has been studied previously using

X-ray diffraction computed tomography (XRD-CT). XRD-CT is particularly

powerful in materials systems where the spatial and chemical composition of

the system determines utility [113], [114]. The materials systems examined have

just such chemical/spatial dependencies. We examine three heterogeneous

catalyst systems, one for the partial oxidation of methane (POX) [115] which

consists of Ni-Pd/CeO2-ZrO2/Al2O3, one for CO2 methanation (3D printed

catalyst) consisting of Ni/Al2O3 [116] and a dataset of a commercial AAA Li-ion

battery (Battery), which contains diffraction patterns for seven phases including

Fe, Al, Cu, LiC12, LiC6, and two LiCoO2. We also include a dataset of a

simulated pure Ni catalyst system (Ni) consisting of Ni crystallites of different

sizes and lattice constants [117].
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The datasets chosen are not only representative of typical systems where

XRD-CT is particularly powerful but also provide a diversity of morphologies.

For example, the battery dataset is arranged as spiral filaments, while the Ni

catalyst consists of a range of differently sized and dispersed crystallites. This

kind of structural diversity can present a particular challenge to convolutional

neural networks if they have not been exposed to a particular type of feature in

the training set.

The datasets are generated from the XRD-CT diffraction maps - the maps

consist of 128 x 128 pixels, each pixel containing 2048 points in the 2θ

dimension of the diffraction pattern. 2D maps of each point in the diffraction

pattern are built, resulting in 2048 different maps per sample, each of these is

then augmented by random rotations to increase the dataset and each 2D

image is Radon converted to a sinogram to provide a sample (sinogram) and

label (map) pair for training the networks and this process is illustrated in Figure

4.3. Before data augmentation, 10 % of the maps for each sample are removed

and kept as an independent test set which is used to check the performance of

the models on data not used in the training in any capacity.

Figure 4.3: The dataset generation procedure. Diffraction patterns for each pixel in the XRD-CT
data are divided into 2048 points along 2θ for each pixel in a 2D map which is produced from
the diffraction intensity at that location in the sample. The 2048 maps are augmented to result in
20000 maps by applying random rotations of the data, these are then converted to sinograms
by radon transform.
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The images from each XRD-CT dataset (i.e. the two experimental and two

simulated datasets) were resized to images with 128 x 128 pixels using bilinear

interpolation. A 10 % random split was applied to each library in order to extract

the test dataset. The remaining 90 % of each library was augmented to 20,000

images by applying a random rotation in the angular range of 0-360 °. The

images in each library were then randomly mixed and each image was

normalised. The sinogram volumes were calculated from these augmented

libraries using the Astra toolbox using 128 projections covering a 0-180 °

angular range [118].

4.3.1.2 t-SNE Analysis

In order to analyse the datasets and see if it was possible to know, in advance,

if a pre-trained CNN would be applicable to a previously unseen dataset, a

manifold learning approach was employed. In manifold learning, the

dimensionality of the data is reduced in order to better interpret them. In this

case, the training sinograms are projected into two-dimensional space, in order

to see if data from the same training sets tend to cluster together. If the data

from the same underlying datasets cluster together and separate from the data

in other datasets, then it is possible to tell in advance if a previously unseen

piece of data is covered by the training set, by looking at where it lies in this

two-dimensional space.

To reduce the dimensions we combine a pre-trained CNN, the ResNet-50 model

[74], with the t-distributed stochastic neighbour embedding (t-SNE) [119]

approach. The CNN initially reduces the dimensionality of the input data to

2048-D by successive convolution and pooling operations, this 2048-D vector is

reduced to 200-D by principal component analysis (PCA) and is then used as

input for tSNE, which calculates probabilities that data points in the

high-dimensional space are related and then finds a lower dimension (in this

case in 2-D) embedding which keeps related points together. In this way, the

input data is converted into a 2-D representation which can be investigated to

determine if related datasets cluster together. The advantage of this approach is
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that the initial CNN reduction can pick unbiased features out of the images,

which are most useful for separating between different classes, while the

subsequent t-SNE reduction allows for mapping the relationship between the

most important of these features in a non-linear way into a low-dimensional

space. For example using just PCA to project down to 2D would miss any

non-linear dependencies between the most important features of the CNN

learned features.

For the t-SNE analysis, 224 projections were used covering a 0-180 ° angular

range as the required image size is 224 x 224 for the ResNet. All filtered back

projection (FBP) images presented in this work were also obtained using the

Astra toolbox. A 10 % validation split was applied to the data for the training of

the reconstruction CNN.

4.3.1.3 CNN performance influenced by the training dataset size

Before looking at the individual libraries we first investigated the amount of data

required to achieve the best-performing network. Taking a mixture of all four

libraries as our test case we trained the CNN with sets of 1000, 2000, 5000,

10000, 20000, 40000, and 80000 sinogram/image pairs; the results are

presented in Figure 4.4. After an initial large improvement of the mean squared

error (MSE) calculated between test outputs and ground-truth images the model

performance begins to plateau after around 20,000 training examples and has

almost stopped improving by 80,000 pairs.
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Figure 4.4: Validation performance versus training set size of the reconstruction network for the
Ni system.

4.3.1.4 Individual Libraries

We begin by assessing the performance of the reconstruction CNN within a

single application domain, i.e. training on a given sample type and then

reconstructing on that same sample type. We compare the performance of the

trained models on datasets of 18,000 sinogram/image pairs with the

performance of filtered back projection (FBP). For each sample type, we have

calculated three common image quality metrics to compare the reconstructions

to the ground truth, i.e. the SSIM, the PSNR and the MSE on test sets of

sinograms/image pairs that were not included in the training or validation sets.

The values are reported in Table 4.1 and representative results are shown in

Figure 4.5. From Table 4.1 we find that the CNN outperforms the FBP algorithm

in all metrics for all samples. These results clearly demonstrate the ability of the

CNN architecture to reconstruct images from sinograms, matching or bettering

the best available physics-based reconstruction methods.
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Table 4.1: Comparison of CNN reconstruction (trained on single set data) to FBP for the
different materials test data sets studied. Metrics compared are the SSIM, MSE, and PSNR.
The metrics are calculated on the test sets as described in the Training/Testing Datasets
section.

Testing
library

Algorithm SSIM PSNR MSE

Ni Phantom CNN 0.9933 38.0883 0.0002

FBP 0.9496 32.7723 0.0005

Battery CNN 0.9800 29.3750 0.0012

FBP 0.9250 23.8939 0.0041

POX
Experimenta

l

CNN 0.9689 31.4884 0.0007

FBP 0.9663 30.6442 0.0009

Printed
catalyst

CNN 0.9752 30.1523 0.0009

FBP 0.9280 27.9155 0.0016

4.3.1.5 CNN transferability

The CNNs in the previous section were applied to reconstruct sinograms from

the types of the same material as those on which they are trained. The question

now is: how well can a model trained on one dataset perform on another, very

different dataset? In other words, how does data bias affect model

performance? To assess this, we have applied the models trained on each

individual material system to reconstruct each of the other systems. The full

results of all tests are reported in Appendix 2, and representative results are

presented in Figure 4.5.
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Figure 4.5: Representative examples of reconstructed images using CNNs trained on different
test data sets. The reconstruction algorithm is given along the top and is constant for each
column, whereas the sample used for reconstruction is constant across the rows. The ground
truth image is given in the first column, the FBP reconstructed image is given in the second
column and the subsequent columns are CNNs trained on different datasets. Since the signal
intensities of different experimental dataset are not the same, for a better performance when
training the model, all input images are normalised from 0-1.

Figure 4.5 presents randomly chosen representative examples of reconstructed

images from each of the test sets; the results are striking. We can see clearly

that the CNN trained for one material system does not perform well on the other

systems. The training set bias means that the CNN has learned to reconstruct

only images that resemble the training set so that even given a new sinogram

the CNN attempts to reconstruct something similar to the training data. This

represents a significant bottleneck for the routine application of CNNs for

tomographic reconstruction from sinograms. Each CNN we trained here used

20,000 image pairs with 32 as batch sizes. The Adam optimizer and the MSE

loss function are used for training the networks. All images are 128 x 128 large,

and they are normalised, so the trained CNNs are comparable on the same

order of magnitude. For training and testing the CNN, each step takes 16 ms on

average.
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4.3.1.6 Combined Library

We next tested how diversifying the training dataset affects the performance of

the reconstruction CNN. We built libraries of 80,000 and 20,000

image/sinogram pairs, drawn uniformly from all four materials systems and

retrained the CNN on these. We then applied this CNN to previously unseen

examples from each of the types of material. The full results are again

presented in the Appendix 2, Tables S2.2-S2.5. In Table 4.2 we present the

results for the CNN trained on the combined library of 80,000 image/sinogram

pairs and the FBP, representative examples are presented in Figure 4.6.
Table 4.2: Comparison of CNN reconstruction (trained on mixed data) to FBP for the different
materials data sets studied. Metrics compared are the SSIM [120], the peak signal-to-noise ratio
(PSNR) and the mean squared error (MSE). The metrics are calculated on the test sets as
described in the Training/Testing Datasets section.

Testing
Library

Algorithm SSIM PSNR MSE

Ni Phantom CNN (20K) 0.9783 33.7930 0.0004

CNN (80K) 0.9871 35.5392 0.0003

FBP 0.9496 32.7723 0.0005

Battery CNN (20K) 0.9629 27.2021 0.0019

CNN (80K) 0.9710 27.7324 0.0017

FBP 0.9250 23.8939 0.0041

POX
Experimental

CNN (20K) 0.9668 30.2381 0.0009

CNN (80K) 0.9664 30.8215 0.0008

FBP 0.9663 30.6442 0.0009

Printed
Catalyst

CNN (20K) 0.9632 29.7243 0.0011

CNN (80K) 0.9727 30.1083 0.0010

FBP 0.9280 27.9155 0.0016

144



Table 4.2 and Figure 4.6 clearly demonstrate that diversifying the training set

has, to a large extent, overcome the problems introduced by training set bias in

the previous examples. The CNN now performs similarly, if not better than, the

FBP algorithm for all of the datasets across all three metrics considered here.

This demonstrates the importance of a dataset with sufficient diversity and

moreover shows that transferable CNN models are possible, given the correct

training data, therefore they can be applied as a generic tool for reconstructing

images from sinograms. However, a final question remains: How can we know if

the dataset we wish to apply the CNN on is covered by the data in the training

set of the CNN?

Figure 4.6: Representative examples of reconstructed images using CNNs trained on mixed
data sets. The reconstruction algorithm is given along the top and is constant for each column,
whilst the sample used for reconstruction is constant across the rows. The ground truth image is
given in the first column, the FBP reconstructed image is given in the second column and the
subsequent columns are CNNs trained on different datasets. All scale bars represent the
diffraction intensities that the network predicted. For a better balance among all experimental
datasets which possess different intensities, all images are normalised before conversion to the
sinogram by Radon transformation.

145



4.3.1.7 t-SNE result map

In Figure 4.7 each of the points from each of the four datasets is coloured

differently with representative examples of the images are also shown in the

plot for reference. Note that we have also included a new dataset formed by

blending the data from the POX and Ni-catalyst datasets (coloured purple). The

2-D map shows clear clustering of data points; moreover, the clusters are

formed of data points from the same dataset, showing that it is possible with the

reduction and projection approach to identify, in advance, whether a new data

point is likely to be represented well by the training data.

Figure 4.7: Reduced dimension projection of the different training/testing libraries. The data
were passed through a CNN and then the dimensionality reduced further by the tSNE algorithm.
The colours of the points indicate which original library the data were taken from; Battery (blue),
Ni (red), POX (ochre), printed catalyst (green), and POX/Ni blend (purple). Representative
images of the materials in the data sets are presented on the map to aid interpretation, these
images are the reconstructed images, but the clustering was performed using the sinograms as
input. Note that x and y coordinates are the units of the reduced dimensional space from the
analysis and do not necessarily have physical meaning.
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It is important not to over-interpret tSNE projections for example, while

individual clusters indicate the relatedness of the constituent points, the size

and shape of the clusters and the distance between clusters should not be

attributed any particular meaning, so two clusters close together in the 2D

projection are not necessarily more similar than two clusters far apart [121].

While the Ni and battery datasets (red and blue) lie almost exclusively in one

cluster, other datasets have some clusters separated by a large distance. In

those cases the separate clusters are related to some differences in the data,

the two distinct clusters of the printed catalyst (green) represent scans at

different sections of the catalyst system where new geometric features are

present in the different sections.

We have also looked at what happens if a model is trained on two distinct

datasets, and then applied to a blend of these datasets, which was not used in

training. The t-SNE projection clearly indicates that this data belongs to a third

cluster distinct to either of the parent structures (the purple cluster in Figure

4.7), suggesting that the CNN will not work well on this new data. When we test

the reconstruction, as suggested by the clustering the results are quite poor;

Figure 4.8 presents these results visually and Table 4.3 gives the numerical

results. This is a further indication of the ability of the clustering approach to

assess the applicability of a CNN reconstruction model in advance of use.

Table 4.3: Ni-POX test dataset images. Metrics calculated with respect to the ground truth
images.

Training library SSIM PSNR MSE

Combined (20 K) 0.8862 23.8185 0.0042

Combined (80 K) 0.8746 24.2387 0.0038

FBP 0.9889 37.0308 0.0002
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Figure 4.8: Ni-POX test dataset images. The CNN is trained with two separate datasets and
then applied on composite images. CNN (20K) and CNN (80K) represent the CNNs trained with
twenty thousand and eighty thousand images respectively. It is shown that even if the CNN has
already seen similar structures during training, it is difficult to use the trained CNN with the new
dataset directly.

The projection of the data into a lower dimensional space in this manner is

therefore likely to highlight similarities and differences in the datasets. The

reduced dimensionality map possibly over-emphasises differences in the data

points, but we can clearly see that if a data point is part of a given cluster, then

we can say with a high degree of confidence that the data point is likely to be

closely related to the rest of the data in that cluster and therefore if the CNN

was trained on the data in that cluster then it is also likely to perform well on the

new data point. This provides a critical tool for applying CNNs in the

reconstruction of tomographic data with increased confidence that the network

is well suited to the given use case.

4.3.1.8 Summary
In this section, the utility of CNNs for reconstructing tomographic data in a

diverse range of materials systems, with the ability to outperform traditional
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direct methods like filtered back projection has been demonstrated. It has been

shown that training set bias can be a serious burden to the application of CNNs

for the reconstruction of images from sinograms, a point rarely discussed

openly in the literature. It was then demonstrated that balancing the training

dataset leads to CNNs that perform well across the range of applications while

sacrificing very little in performance relative to those trained exclusively for one

type of material system. In all systems tested the CNNs achieve similar or better

performance than the standard FBP image reconstruction. Finally, we provide a

method, based on manifold learning, which allows one to assess, in advance,

whether a new data point for which we wish to apply the reconstruction CNN is

likely to be well represented by the training data for that CNN. This reduced

dimensional mapping approach can be a key ingredient for the widespread,

trusted, generic application of CNNs in tomographic image reconstructions.

4.3.2 Image-to-image supervised artefact removal

During the past few years, CNN-based methods have previously been shown to

be effective in reliably learning nonlinear relationships between high and low

resolution [122]–[124]. Unlike the sinogram-to-image reconstruction networks,

the image-to-image artefact removal networks do not normally require many

fully connected layers and many parameters. Figure 4.9 shows the artefact

removal U-Net (ARU-Net) with dilated convolutional layers that has been used

to remove angular undersampling artefacts created by the FBP reconstruction

with only a quarter of the sinogram.
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Figure 4.9: Artefact removal U-Net (ARU-Net) architecture for image artefact correction. Red
layers are dilated convolutional layers with a dilation rate of 2, and blue layers represent normal
convolutional layers. All filter sizes are equal to 3, and filter numbers are shown above or below
each layer. A residual learning connection (marked as a red line) between the input and output
layers is used to force the network to focus only on artefacts.

The architecture is trained on a combined training dataset with DIV2K images in

a Python environment. The DIV2K is a very popular open-source image pack

for training artificial neural networks (ANNs) [125], [126]. Since the images from

this dataset are not from the same data frame, it covers and balances all the

features that an image may encounter in real life, therefore, it is possible to

avoid training bias and apply the trained model to more data frames. First

Radon transformation was used to obtain 512 x 512 sinograms, subsequently,

each sinogram is splitted into four sparsely angular-undersampled 512 x 128

sinograms so that each of them contain only 25% projections as the full

sinogram. Next the order of sinograms to form 10,000 undersampled sinograms

was disrupted and FBP images of the sinograms to form 10,000 training

datasets together with their ground truth were created. As illustrated before, the
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architecture is based on the maximum computation resources of our computer,

so it takes 52 min for each training iteration. Fortunately, the model's results are

rather good and it is even possible to reduce the number of parameters in the

architecture to give a faster performance on training and predicting.

Figure 4.10 shows the prediction of this CNN with a test DIV2K image. It shows

the ARU-Net can correctly detect the artefacts caused by the FBP method with

fewer projections in sinograms. Comparing the input FBP and the ARU-Net

result in the figure, the ARU-Net correctly cancels most of the straight noise

lines and sharpens the image quality. To further reduce the noise level on the

predicted results, it is possible to adjust the loss functions and also use a

learning rate scheduler in the training process. Then it is possible to apply the

trained model into an experimental dataset to test its robustness.

Figure 4.10: Performance of the image-to-image angular-undersampling artefact correction
U-Net with dilated convolutional layers. The image on the left is the ground truth, the image in
the middle the input to the model and the U-Net result shown on the right. The picture is from
the test dataset from DIV2K [125], and the input is the 512 x 512 FBP image that comes from
the 512 x 128 under-sampled sinogram. The grey-scale bar represents the signal intensities
(brightness) at each point. The ground truth image is a real-world image normalised from 0 to 1.

Figure 4.11 shows the improved resolution of a neutron-CT image reconstructed

using only 25 % of the projections after being processed using the trained

ARU-Net CNN. The model never sees similar pictures in the training dataset,

but it can still suppress the angular-undersampling artefact on the right.

Different from the sinogram-to-image reconstruction results, because this model
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is trained with generalised DIV2K images which covers all features in the real

life image, the well-trained network can be applied directly on CT datasets

without transfer-learning. The ARU-Net processed reconstruction shows

comparable if not of qualitatively better resolution than the ground truth image.

This demonstrates that it is possible to obtain satisfactory CT reconstructions

with less information; in principle, this technique could be used to collect

datasets faster. The current collection time for neutron tomography

measurements with 70 and 100 um resolution on a sample of a few centimeters

size is 4 and 6 h respectively. This could be reduced to 1 and 1.5 h respectively,

increasing the amount of time available to run other samples during beamtime.

Figure 4.11: Artefact removal with ARU-Net. Ground truth neutron-CT image (i.e. the original
images constructed from the complete set of sinograms) (left), the image reconstructed with 1/4
of the sinograms (centre), and the image reconstructed with 1/4 of the sinograms after being
passed through the ARU-Net super-resolution CNN (right). The slice is from the metal phantom,
with a metal rod (light blue) and glue residues (red). The scale bar represents the reconstructed
signal intensities in each pixel.

However, we found it is not always safe to trust the results predicted by CNN.

This is because the CNN processes the images directly and the

angular-undersampling artefacts look similar in all images, with minor structures

in the CT image likely to have been removed, especially those structures that

appear to be artefacts. Figure 4.12 shows an example of the experimental

XRD-CT image in which the minor structure is not reconstructed correctly.
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Figure 4.12: Performance of the image-to-image angular-undersampling artefact correction
ARU-Net with dilated convolutional layers on real experimental data. The image on the left is the
ground truth, the image in the middle is the input to the model with the ARU-Net result shown on
the right. The ground truth is an XRD-CT image of a Li-ion battery reconstructed by full
sinogram projections [127], and the input is an FBP image that comes from the 25 %
under-sampled sinogram. The enclosed parts are not reconstructed correctly by the CNN. The
scale bar represents the reconstructed signal intensities in each pixel.

To build a more robust network that can retain such minor features, more

information from the sinogram domain must be considered and fed into the

network. In the next section, a more robust, reliable and stable self-supervised

learning architecture to directly reconstruct images from their sinograms, and

remove the angular undersampling artefacts simultaneously is introduced.

4.3.3 SD2I: A flexible, scalable self-supervised learning

reconstruction network

The SingleDigit2Image (SD2I) network is a simple, scalable self-supervised

learning generative network that can be used for direct conversion of sinogram

to image [128]. This approach utilises a GAN-like architecture, but in contrast

during the tests, it was observed that the discriminator does not greatly improve

the reconstruction image quality. Therefore, the discriminator was abolished,

and the network is trained only based on the joint loss function with SSIM and

MAE. This new approach leads to a series of tomography images of differing

modality with a comparable accuracy to the FBP algorithm. Importantly the

scalability of the new method is improved compared to state-of-the-art

networks. In this section, it will also be shown that this method is able to deal
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with a commonly encountered challenge to FBP reconstruction, specifically

angular undersampling in sinograms. This approach has been verified on a

Shepp-Logan phantom as well as on experimental X-ray diffraction computed

tomography (XRD-CT) and micro-CT sinogram data highlighting the flexibility

and applicability of the method.

4.3.3.1 Training loop

Figure 4.13: The flowchart of the SD2I training algorithm. To adapt to sinograms with different
signal strengths, and make it easier for transfer learning, the input of the SD2I is a control
number which preferably has a similar order of magnitude as the mean signal of the
reconstructed image. The generator creates an image based on the single input; the generated
image is then converted into a sinogram by the forward operator, which is compared with the
sinogram from the experimental dataset. The weights of the generator are updated by
minimising the joint loss function with the mean absolute error (MAE) and structural similarity
index measure (SSIM).

The SD2I training loop is shown in Figure 4.13. This architecture only requires a

single control number as input. Theoretically, this number can be any positive

real number but is typically of a similar order of magnitude as the reconstructed

image signal, which can help to use transfer learning on all image channels in a
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dataset. This architecture has excellent potential to be applied to solve other

image reconstruction problems by modifying the forward operator and loss

functions.

4.3.3.2 Generator architecture

The architecture of the ANN used for reconstructing the images from the

sinograms is depicted in Figure 4.14. Two types of SD2I generator architecture

are considered that differ depending on whether the upsampling layers are

used. These two architectures will be delineated as the SD2I with upsampling

layers (SD2Iu) and the ‘SD2I uses only full image resolution’ (SD2If).

There are two novelties in this design compared to other architectures

previously proposed for tomographic image reconstruction. First, the SD2I

networks, as the name suggests, start from a single neuron rather than a 2D

image which significantly reduces the number of parameters in the architecture.

In other networks, the input is a 2D image which is either flattened and

connected to a dense layer containing 100s of neurons (e.g. 256 in the GANrec)

or is followed by a series of 2D convolutional and downsampling layers with the

final layer being flattened and connected to the aforementioned dense layer.

The second novelty is related to the large dense layer and the convolutional

layers that are connected to it which dramatically reduces the number of

parameters in the network’s architecture. To clarify, the initial single neuron is

followed by three small dense layers, each containing 64 neurons. This third

small dense layer is then connected to a larger dense layer consisting of m × m

× k neurons for the SD2If, and (m/4) × (m/4) × k neurons for the SD2Iu, where

m is the number of pixels in one dimension of the fully reconstructed images

which have a size equal to m × m. The k factor is an integer and increasing it

can lead to better performance of the neural network but also increases the

number of parameters.
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Figure 4.14: (a) A representation of the CNN reconstruction SD2I architecture with upsampling
layers (SD2Iu). (b) A representation of the CNN reconstruction SD2I architecture without
upsampling (SD2If). The kernel types and parameter settings are shown in the bottom part of
the figure. The final fully connected layer size is adjusted by an integer k, which adjusts the
number of kernels used as the input of the following reshape, upsampling and convolutional
layers.
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For the SD2Iu, the last large dense layer is reshaped to a 2D layer with a size of

(m/4, m/4), followed by an upsampling layer resulting in an image with a size of

(m/2, m/2). This is followed by three 2D convolutional layers and a second

upsampling layer resulting in an image with a size of (m, m). Each of these 2D

convolutional layers has 64 filters with a kernel size of 3 and a stride equal to 1.

The final layer of the architecture is a 2D convolutional layer with one kernel

(kernel size of 3) and stride equal to 1. Overall, the network starts with a single

neuron and yields a 2D image with size of (m, m) which is equal to the image

size obtained with the conventional tomographic reconstruction algorithms. The

advantage of the SD2I’s architecture is that it allows for a radical decrease in

the number of parameters and allows it to reconstruct images that are more

than 1028 × 1028 large.

While several deep learning approaches have proved very successful for CT

reconstruction, a major barrier to their widespread adoption is that the number

of parameters (and hence required computational resources) scales poorly as

the size of the sinogram increases. The new architecture proposed here has at

least an order of magnitude fewer parameters than existing deep learning

approaches (e.g. Automap and GANrec), as shown in Table 4.4.

Table 4.4: Number of parameters (nop) per network as a function of image size.

Sinogram
/ Image
size

(pixels)

Automap
(nop)
x103

GANrec
(nop)
x103

SD2If
(factor 8)
(nop)
x103

SD2If
(factor 4)
(nop)
x103

SD2Iu
(factor 8)
(nop)
x103

SD2Iu
(factor 4)
(nop)
x103

64 x 64 79,356 2,444 4,361 2,308 331 263

128 x 128 1,304,960 8,698 16,910 8,583 731 462

256 x 256 - 33,815 67,370 33,813 2,328 1,261

512 x 512 - 134,477 269,741 134,998 8,718 4,456

1024 x

1024

- 537,523 1,080,283 540,269 34,277 17,235
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Note that for these tests it was not possible to use Automap on images larger

than 128 x 128 pixels, due to memory constraints. To find the best k factor, we

tested values from 1 to 16 on reconstructing the 256 x 256 Shepp-Logan image,

the results of which are shown in Figure 4.15. The figure shows that the

performance of SD2I is increasing as the k factor is increased from 1 to 8, but

the performance of SD2I then stops improving or even becomes worse when

the k factor is larger than 8. It may be because the ratio of the number of

parameters between the final two fully connected layers also increased, which

makes it harder for the network to converge. In this work and after this testing, a

range of k between 4 and 8 were chosen; this range providing a good balance

between network size/ training speed and the quality of reconstructed images

Figure 4.15: The influence of different k factors used in SD2I on the result’s (a) PSNR and (b)
SSIM. Using larger k factors can improve the quality of reconstructed results on both metrics. In
practice, using a k factor between 4 and 8 is more appropriate for achieving a good balance
between model size and accuracy.
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4.3.3.3 The impact of discriminator

Figure 4.16: (a) The flowchart of the SD2I training algorithm with a discriminator. The input of
the SD2I is a control number which should ideally have a similar order of magnitude as the
reconstructed image’s signal. The generator creates an image based on a single input. The
generated image is converted into a sinogram by the forward operator, and then both the
generated sinogram and the original experimental sinogram are sent into the discriminator for
calculating the GAN loss. The weights of the generator are then updated by minimising the joint
loss function with the GAN loss, MSE and SSIM while the discriminator is updated by the GAN
loss only. (b) A representation of the Discriminator network used. The kernel types and
parameter settings are shown in the figure. There are no fully connected (dense) layers in the
discriminator so the number of parameters is very low compared to the generator networks used
in this work.

A GAN-like architecture, shown in Figure 4.16(a), is also used as the SD2I

training loop. Although many papers use the GAN loss to train their networks,

the SD2I results seem not to improve by applying the discriminator. This may be
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because the simplicity of the SD2I networks makes it easier to converge, and

the joint loss function is good enough in this case.

Figure 4.17: The images show the impact of the discriminator in the training loop. (a) The image
is reconstructed from a Shepp-Logan simulated sinogram with 256 x 64 projections as input.
The SD2Iu (k=8) is used as the generator. (b) The micro-CT experimental image with 779 x 223
sinograms as input. The SD2Iu (k=8) is used as the generator. The gray scale bars indicate the
signal strength for each pixel in the reconstructed images after normalization.

The results from the testing of both loops on the simulated and experimental

data are shown in Figure 4.17. The results with the discriminator not only look
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worse but also are confirmed to be demonstrably worse according to all the

metrics shown in Table 4.5. More importantly, the addition of a discriminator

network makes the training more complex and requires more GPU memory

while training. At this point we abandoned the loop with the discriminator and

only applied the simpler training loop shown in Figure 4.13 in all datasets

shown.

Table 4.5: Comparison of the results obtained by training loops with and without discriminator
for both experimental (using CGLS of the full projection set as the ground truth image) and
simulated data. The generator architecture is the SD2Iu. The metrics used to examine the
quality of the reconstructed images are the MAE, MSE, SSIM and PSNR when compared to
their ground truth.

(a) Shepp-Logan (b) Micro-CT

Without
discriminator

With
discriminator

Without
discriminator

With
discriminator

MAE 0.00315 0.00647 0.03191 0.03220

MSE 0.000125 0.000542 0.002306 0.002372

SSIM 0.9941 0.9853 0.7897 0.7887

PSNR 39.74 33.39 30.95 30.82
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4.3.3.4 Simulated data

Figure 4.18: Comparison between the SD2I result and conventional reconstruction methods.
The image size is 256 x 256 and reconstructed from the 256 x 400 Shepp-Logan sinogram. The
gray scale bars indicate the signal strength for each pixel in the reconstructed images after
normalization.

We start by comparing the performance of the new architecture against the FBP

and other neural network-based reconstruction algorithms. For this comparison

we use a sinogram created using the Shepp-Logan phantom with an image size

of 256 x 256 pixels; the sinogram size is 256 x 400 pixels, corresponding to
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detector elements and a number of projections respectively. The reconstructed

images are presented in Figure 4.18 while Table 4.6 compares the results from

the various reconstruction methods applied, using several common image

quality metrics and specifically MAE, MSE, SSIM and PSNR. We find that all

variants of our SD2I architecture outperform both GANrec and FBP across all

metrics. The SD2I architectures that perform best are those where the

convolutional part of the network is a single size, rather than including

upsampling layers.

Table 4.6: Comparison of approaches for a 256 x 400 Shepp-Logan sinogram. Metrics were
calculated using four significant figures for SSIM and PSNR and three significant figures for
MAE and MSE. The bold text highlights the best scores achieved for each metric.

GANrec SD2If
(k = 4)

SD2If
(k = 8)

SD2Iu
(k = 4)

SD2Iu
(k = 8)

FBP

MAE 0.00484 0.00238 0.00188 0.00262 0.00247 0.00785

MSE 0.000191 0.000031 0.000018 0.000097 0.000087 0.000786

SSIM 0.9837 0.9933 0.9958 0.9958 0.9968 0.9614

PSNR 37.54 45.44 48.26 40.49 41.31 31.77

As we can see from the table, although the SD2Iu models perform worse on this

full projection case, they still work better than the conventional FBP method.

Changing the size of the final dense layer in the SD2I architecture (the factor k)

has a small but appreciable effect on the image quality. Nonetheless, the main

point is that all SD2I models shown in the table perform better than FBP on the

standard Shepp-Logan phantom, regardless of architecture hyperparameters

(within a reasonable range). The Adam optimiser was used as the optimisation

algorithm [129], a combined MAE and SSIM loss function [130] was used and

the learning rate was set to 0.0005 for networks presented in this work. The

impact of the different loss functions is shown in Table 4.7. The learning rate

was automatically reduced during training if the loss function was not

decreasing after 300 iterations using a downscaling factor of 0.5 (Tensorflow

ReduceLROnPlateau implementation [131]); 4000 epochs were used during the
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image reconstruction process. It is important to note here that the various

metrics provide only an indication of the image quality reconstruction and one

should always inspect the resulting images regardless of the values of the

various metrics.

4.3.3.5 Impact of loss function

The choice of loss functions has a great influence on the results’ accuracy.

Besides the traditional MAE or MSE function, we also introduced the SSIM loss

function as many previous works suggested [5], [67]. Since the SSIM does not

include the absolute difference among pixels, it is normally used as a joint loss

function with MAE or MSE. Table 4.7 shows the accuracies of four

reconstructed Shepp-Logan images from the same 512 x 128 sinogram with

different loss functions.

Table 4.7: Comparison of approaches for a 512 x 128 Shepp-Logan sinogram with different loss
functions.

MSE MAE MSE + SSIM MAE +SSIM

MAE 0.00346 0.00291 0.00337 0.00246

MSE 0.000241 0.000202 0.000212 0.000116

SSIM 0.9899 0.9937 0.9912 0.9952

PSNR 36.1844 36.9427 36.7385 39.3724

Our result shows that the joint loss function of MAE and SSIM works the best

among all loss functions. However, the ratio between the two parts of the joint

loss function should be carefully selected. Since we are keeping the relative

intensities of the reconstructed images, the maximum value of the individual

image and its MAE and MSE loss can be significantly different in order of

magnitude. As such the ratios need to be adjusted for each reconstruction to

keep a reasonable balance since whilst the SSIM loss is always between 0-1

the order of MAE is changing according to the signal strength.
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4.3.3.6 Reconstruction Time

The reconstruction time is highly dependent on the number of parameters of the

generator architecture and the image size. We examined the time taken by

each generator on different image sizes. As shown in Table 4.8, the SD2I

architectures work better than the GANrec and Automap when the image size is

less than 512 x 512. However, when the image size is larger than 1024 x 1024,

the improvement is not as significant. This is because the forward operator

takes most of the time when the image is large, and it cannot be reduced by

changing the generator architecture.

Table 4.8: Reconstruction times (time per epoch) for different image sizes (number of pixels).

Sinogram/
Image
size

(pixels)

Automap
(s)

GANrec
(s)

SD2If
(k = 8) (s)

SD2If
(k = 4) (s)

SD2Iu
(k = 8)
(s)

SD2Iu
(k = 4)
(s)

64 x 64 0.0131 0.0118 0.0081 0.0079 0.0110 0.0092

128 x 128 0.1285 0.0121 0.0103 0.0105 0.0136 0.0093

256 x 256 - 0.0220 0.0206 0.0176 0.0144 0.0137

512 x 512 - 0.1491 0.0940 0.0798 0.0653 0.06558

1024 x
1024

- 0.5835 0.6625 0.5962 0.5373 0.53529

The impact of the forward operator on the reconstruction time is examined in

Table 4.9 where the image size is maintained whilst the number of projections in

the sinogram increases. Since the generator sizes are not influenced by the

sinogram size, and the time taken to calculate the loss function can be

eliminated, we can clearly see that it is the Radon transformation that took most

of the reconstruction time as the size of the sinogram increases.
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Table 4.9: Impact of sinogram size (number of projections) for the SD2Iu (factor 8).

Sinogram size
(pixels)

Number of
parameters

Time per epoch
(s)

Total
reconstruction

time (s)

512 x 64 4,455,873 0.03270 130.8

512 x 128 4,455,873 0.03518 140.72

512 x 256 4,455,873 0.04335 173.4

512 x 512 4,455,873 0.06534 261.36

512 x 1024 4,455,873 0.12548 501.92

4.3.3.7 Angular undersampling

A striking advantage of many deep learning based reconstruction approaches,

when compared to traditional methods, such as FBP, is their ability to achieve

high-quality reconstructions when only challenging data are practically

available. These can be sinograms with angular undersampling, low

signal-to-noise ratio or incomplete sinograms (e.g. not covering the full 0-180°

angular range) [132], [133]. However, most of the approaches are applied on

the FBP reconstructed images (i.e. post-processing of the reconstructed

images) rather than performing directly the tomographic reconstruction and

importantly rely on supervised learning which assumes: a) that artefact-free

images (labelled data) are available and b) that the networks can generalise

(e.g. train with non-scientific datasets typically used for developing neural

networks and yield high-quality images when applied to experimental data).

Unfortunately, these assumptions are rarely valid and the applicability of such

networks to real experimental data is limited at best. Here, we show that SD2I,

in addition to its ability to reconstruct large tomographic images in a

self-supervised manner, is able to suppress the angular undersampling

artefacts while performing the tomographic reconstruction. In Figure 4.19, we

show the reconstruction of the Shepp-Logan phantom with severe angular

undersampling where we have less than ¼ of the original sinogram projections

(projections corresponding to ¼ of the detector elements). For comparison, also

shown are the results obtained from the most often used iterative algorithms
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(SART, CGLS and SIRT) using the Astra toolbox as well as from GANrec [118].

According to the determined loss functions, for all conventional reconstruction

algorithms tested, SD2I produces results with significantly fewer artefacts and

much closer to the ground truth reconstruction. Importantly, it is clearly shown

that the SD2Iu, which corresponds to the smallest possible network in terms of

the number of parameters, yields the best results. The use of the upsampling

convolution layers actually improves the quality of the reconstruction,

performing a function similar to denoising on the resultant images. It should be

noted though that the network does not denoise the reconstructed images, it

removes the angular undersampling artefacts. It, therefore, requires

projection/sinogram data with a high signal-to-noise ratio; it does not lead to

higher-quality reconstructed images than the FBP algorithm when the

signal-to-noise ratio is low.

Table 4.10: Comparison of approaches for a 256 x 64 Shepp-Logan sinogram. 250 iterations
were used for the SART, SIRT and CGLS algorithms. Metrics were calculated using four
significant figures. The bold text marks the best scores achieved for each metric.

MAE MSE SSIM PSNR

FBP 0.01873 0.001400 0.6441 29.27

SART 0.01722 0.001834 0.7656 28.09

CGLS 0.01726 0.001693 0.7465 28.44

SIRT 0.01768 0.002298 0.8089 27.11

GANrec 0.01294 0.000912 0.8800 31.12

SD2If
(k = 4)

0.00832 0.000398 0.9360 34.72

SD2If
(k = 8)

0.00735 0.000318 0.9473 35.70

SD2Iu
(k = 4)

0.00343 0.000171 0.9930 38.40

SD2Iu
(k = 8)

0.00315 0.000125 0.9941 39.74
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Figure 4.19: Comparison between conventional and neural network reconstruction approaches
with different parameter settings. The image size is 256 x 256 and is reconstructed from the 256
x 64 Shepp-Logan sinogram. The gray scale bars indicate the signal strength for each pixel in
the reconstructed images after normalization.

Table 4.10 also shows the performance of the FBP, SIRT, CGLS, SART,

GANrec and various SD2I architectures on undersampled Shepp-Logan

sinograms. These metrics confirm what is shown in the figures, with the SD2I

outperforming other methods and the SD2I architecture with convolutional

upsampling performing the best. The results in Figure 4.20 show that this
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approach can be applied to larger image reconstruction tasks and the

performance gains remain for SD2I. For calculating the SSIM and PSNR, we

used the maximum possible pixel value as 1. A larger Shepp-Logan phantom

image (512 x 512) was also tested (sinogram with size equal to 512 x 128) and

the SD2I results are presented in Figure 4.20 and Table 4.11.

Figure 4.20: Comparison between the SD2I result and conventional reconstruction methods.
The image size is 512 x 512 and reconstructed from the 512 x 128 Shepp-Logan sinogram. The
gray scale bars indicate the signal strength for each pixel in the reconstructed images after
normalization.
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Table 4.11: Comparison of approaches for a 512 x 128 Shepp-Logan sinogram. The bold text
indicates the best scores achieved on each metric.

FBP GANrec SD2If
(k = 8)

SD2If
(k = 4)

SD2Iu
(k = 8)

SD2Iu
(k = 4)

MAE 0.01690 0.02589 0.00502 0.00596 0.00246 0.00254

MSE 0.000670 0.003531 0.000159 0.000207 0.000116 0.000136

SSIM 0.7123 0.6855 0.9614 0.94723 0.9952 0.9951

PSNR 31.5536 24.5201 37.9828 36.8326 39.3724 38.6760

It should be noted here that the results for the various metrics strongly depend

on the choice of the ground truth image. This is not an issue for the

Shepp-Logan phantom but it is a problem for the experimental data where there

is no ground truth image available. This means that the quality of the

reconstructed images has to be done primarily through visual inspection as the

results from the various metrics can be misleading. To illustrate this problem, we

measured the performance of SD2I as well as FBP, SART, SIRT and CGLS

using different images as the ground truth image for the Shepp-Logan image

(Figure 4.21, Tables 4.12 and S2.6 in Appendix 2).

If the FBP reconstructed image using the full projection set (400 projections) is

used as the ground truth, then the metrics suggest that SIRT and CGLS

outperform the SD2I. However, this is clearly not the case as shown in Figure

4.21 and from the fact that the clean (real ground truth) Shepp-Logan phantom

image shows worse results for all metrics (Table 4.12). The result obtained with

the CGLS method using the full projection set (400 projections) looks closer to

the ground truth image compared to the FBP, SART and SIRT results obtained

using the full projection set and for this reason, it is used as the ground truth for

evaluating the performance of the SD2I network for the experimental data.

Finally, it is important to note that when the clean Shepp-Logan image (real

ground truth) or the CGLS image obtained using the full projection set is used

as the ground truth, it can be seen that the SD2I with less than ¼ projections

(64 projections) outperforms FBP, SART and SIRT reconstructions using the full
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projection set (400 projections). This result further illustrates the accuracy of the

SD2I reconstructions and the potential of this new network for data exhibiting

angular undersampling.

Figure 4.21: Comparison between the SD2I results and conventional reconstruction methods on
256 x 256 Shepp-Logan images with either 64 or 400 projections. All SD2I-based methods were
generated using k = 8. The gray scale bars indicate the signal strength for each pixel in the
reconstructed images after normalization.
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Table 4.12: Comparison of the different reconstruction methods’ performance with the reference
of the clean Shepp-Logan image. The bold text indicates the best scores achieved for each
metric.

MAE MSE SSIM PSNR

Clean Image
as reference

SD2Iu 0.00315 0.000125 0.9941 39.7403

FBP 0.01873 0.001400 0.6441 29.2653

SIRT 0.01768 0.002298 0.8089 27.1113

SART 0.01722 0.001834 0.7656 28.0914

CGLS 0.01726 0.001693 0.7465 28.4376

FBP with
400 proj.

as reference

SD2Iu 0.00776 0.000640 0.9672 32.6609

FBP 0.01409 0.000598 0.6980 32.9616

SIRT 0.01216 0.000682 0.8708 32.3845

SART 0.01190 0.000501 0.8281 33.7261

CGLS 0.01210 0.000484 0.8085 33.8781

Clean image 0.00785 0.000786 0.9614 31.7733

CGLS with
400 proj.

as reference

SD2Iu 0.00533 0.000126 0.9498 39.7353

FBP 0.01836 0.001196 0.6908 29.9491

SIRT 0.01787 0.002074 0.8499 27.5563

SART 0.01709 0.001607 0.8169 28.6654

CGLS 0.01723 0.001481 0.7960 29.0201

Clean image 0.00444 0.000074 0.9480 42.0577
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4.3.3.8 Why SD2I Works and Its Noise Performance

In this section, I will evaluate various architectural designs of SD2I and

demonstrate how each component of SD2I enhances image results with

angular under-sampling artifacts. Initially, I will explore the pixel learning

method, which lacks neural network layers. This architecture, devoid of

convolutional layers, employs the same training loop as SD2I. The map is

initialized with random noise ranging from 0 to 1. The results are presented in

Figure 4.22.

Figure 4.22: Images reconstructed from the 256 x 64 and 256 x 256 sinograms with the pixel
learning method with the ground truth. The pixel learning leads to noisier images than the one
reconstructed by the SD2I shown in Figure 4.19.

The architecture is trained using two sinograms: one with angularly

undersampled 64 projections and the other with a full range of 256 projections.

These outcomes are compared with the ground truth image. It becomes clear

that the SD2I, compared to the pixel learning, can produce much more accurate

and refined results as shown in Figure 4.19. This may be because the

reconstructed image and the sinogram are not strictly one-to-one matched,

implying numerous local minima during the training process. Therefore, certain

measures must be implemented to encourage the network to view the image

holistically rather than focusing on individual pixels to achieve a noise-free

image.
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I also tested two additional architectures on the SD2If framework. The first

modification involved removing the initial few small fully connected layers, while

the second modification entailed removing all convolutional layers. These two

architectures are depicted in Figure 4.23 and were tested using full projection

sizes from the 256 x 256 sinogram. The results of these tests are presented in

Figure 4.24.

Figure 4.23: Two additional possible image reconstruction generator architectures: (a) SD2If
with a single fully connected layer followed by multiple convolutional layers; (b) SD2If with only
fully connected layers and a single convolutional layer as the output layer. The final
convolutional layer serves to suppress the k features generated by the fully connected layer. In
both architectures, k is set to 8.
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Figure 4.24: Results of the simulated Shepp-Logan images reconstructed using the two
additional architectures shown in Figure 4.23, compared with the SD2If depicted in Figure
4.14(b), and the ground truth image. The zoomed-in sections are normalized to display a wider
dynamic range, making more details visible. The input sinogram for all architectures is a 256 x
256 sinogram, and the reconstructed images are also 256 x 256 in size. The f factor is set to 8
for all architectures.

We can observe that, compared to Figure 4.22, both the initial small dense

layers and the subsequent convolutional layers can to some extent reduce the

noise in the reconstructed image. The current SD2I architecture, which utilizes

both of these elements, has achieved the best results. This is because the initial

few small fully connected layers ensure greater randomness in the network,

where a slight change can alter all pixels. This forces the network to focus on a

more general architecture and features during training. Convolutional layers are
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inherently less sensitive to noise, allowing them to extract features from a noisy

map and reconstruct a noiseless image. Therefore, the current SD2I

architecture takes advantage of these two aspects to achieve the best results.

Figure 4.25: Image reconstructed by SD2If, SD2Iu, and FBP with 64 and 256 projections in the
noisy sinograms with 256 translation steps. All images have the same size of 256 x 256. Both of
SD2If and SD2Iu failed in this case while the FBP remained some features.

However, the biggest drawback of SD2I is its high sensitivity to noise in the

sinogram. After artificially adding Poisson Noise to the sinogram, neither SD2Iu
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nor SD2If can accurately reconstruct a noisy image as it should be. As

previously mentioned, the design of SD2I forces the image to become easiser

to converge to a local minima contains small features but not pixel-wise noise.

Figure 4.25 displays the comparison of reconstructions by SD2Iu and SD2If at

64 and 256 projections, respectively, against FBP. Since noise is added directly

to the sinogram, obtaining a noisy ground truth image is impossible.

Nevertheless, these images sufficiently demonstrate that SD2I loses some

features and produces some unrealistic features during the reconstruction

process, whereas FBP correctly reconstructs some features. Fortunately, in

actual experiments, the noise levels in XRD-CT and micro-CT images are not as

high as in the simulated data. With a minor noise level, SD2I architectures still

produce more accurate images than traditional methods, as I will demonstrate

in the next section.

4.3.3.9 Experimental data

We now turn our attention to testing the SD2I architecture on real experimental

synchrotron X-ray tomography data. We obtain a ‘ground truth’ reconstruction in

this case by reconstructing the images using CGLS with the full projection set.

We then decrease the projection set to ¼ of the original size and compare the

results of the reconstruction using CGLS, FBP, SART, SIRT and SD2I on the

decreased sinogram. In Figure 4.26 we show the results for XRD-CT data,

using two sinograms selected from two diffraction peaks of interest (i.e.

NMC532 and Cu phases respectively). This XRD-CT dataset was acquired

using a commercially available 10440 NMC532 Li-ion battery [127]. The ground

truth image was obtained using the CGLS algorithm on the 547 x 400

sinograms which already have fewer projections (i.e. 400 projections) than the

Nyquist sampling theorem dictates (i.e. 𝛑/2 x 547) [134]. All the reconstruction

algorithms and neural networks were tested using 547 x 100 sinograms which

are severely undersampled data.
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Figure 4.26: Two example XRD-CT reconstruction images: a) chemical image corresponding to
the NMC532 phase, b) chemical image corresponding to the Cu phase. All SD2I results are
produced using k factors equal to 8. The image sizes are 547 x 547. The SD2I and FBP results
are reconstructed from the sinogram size of 547 x 100. The ground truth is obtained by the
CGLS reconstruction of the 547 x 400 sinogram. The gray scale bars indicate the signal
strength for each pixel in the reconstructed images after normalization.
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As shown in Figure 4.26, both reconstructed images indicate that the SD2I

reconstructions have suppressed the angular undersampling artefacts while

these are clearly present in the traditional methods.

Table 4.13: Comparison of approaches for the example XRD-CT experimental images shown in
Figure 4.26. The CGLS with 400 projections is considered as the ground truth. 250 iterations
were used for the SART, SIRT and CGLS algorithms. Metrics were determined to four
significant figures. The bold text marks the best scores achieved for each metric.

FBP SART CGLS SIRT SD2Iu

(a) MAE 0.3690 0.3011 0.3617 0.3270 0.2599

MSE 0.4485 0.3216 0.3976 0.3648 0.2564

SSIM 0.6662 0.6636 0.6841 0.6470 0.6936

PSNR 23.18 24.62 23.70 24.07 25.61

(b) MAE 0.7082 0.6030 0.6466 0.5697 0.5694

MSE 1.809 1.922 1.631 1.770 0.752

SSIM 0.5894 0.5460 0.6100 0.5074 0.3251

PSNR 23.06 22.80 23.51 23.16 26.88

The metrics shown in Table 4.13 show that SD2I outperforms all other

approaches but, as discussed previously, visual inspection and assessment of

the reconstructed images is more important as there is no real ground truth

image available for the experimental data. The hyperparameters for the SD2I

networks used in this work were kept the same for all datasets and no tweaking

was required (initial learning rate of 0.0005 with a decaying rate and a safe

margin of 6000 epochs). This is another advantage of the network compared to

iterative approaches such as SART, SIRT and CGLS where there is no standard

loss function one can use to calculate the optimal number of iterations

(convergence criterion), especially when trying to reconstruct different datasets.

The visual results clearly demonstrate that the SD2I reconstructions are

considerably better quality than all other methods (FBP, CGLS, SART and

SIRT) on the undersampled sinogram. Finally, it should be noted that, although

the images have been normalised for ease of visualisation/presentation, the
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SD2I, in contrast to other neural network reconstruction methods such as

GANrec, maintains the absolute intensity information which is essential in

chemical tomography methods, such as XRD-CT.

Figure 4.26 and Table 4.13 present the results from the reconstructions of

synchrotron X-ray micro-CT data acquired from the same 10440 NMC532 Li-ion

battery corresponding to two different cross-sections. These two sinograms

correspond to two different positions along the length of the battery (Figure

4.27); in position (a) only the Cu current collector is primarily visible in the

battery jelly roll while in position (b) the NMC532 cathode can also be observed.

Figure 4.27. Normalised (dark current and flat field corrected) radiograph of the NMC532 Li-ion
battery. Positions a) and b) correspond to the two sinograms (battery cross-sections) used in
this work.

As with the XRD-CT data above, the ground truth is obtained by CGLS of a full

projection and the sinogram is then decreased to ¼ of the original size and

reconstructions obtained with FBP, SD2I as well as the SIRT, CGLS and SART

iterative methods. As with the XRD-CT data, the SD2I reconstructions have
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fewer artefacts than the images obtained with all other methods. It is important

to note here the image size; the resulting images are 779 x 779 pixels. To the

best of our knowledge, there is currently no other available self-supervised

neural network that can perform direct reconstruction of such large

sinograms/images without requiring a tremendous amount of GPU memory.

Furthermore, in Figure 4.28 and Table 4.14 we also show that the SD2I is able

to reconstruct images with 1559 x 1559 pixels which demonstrate the scalability

of this new architecture.

Table 4.14: Comparison of approaches for the example micro-CT experimental images shown in
Figure 4.28. The CGLS with 1561 projections is considered the ground truth. Metrics were
calculated to four significant figures. The text in bold marks the best scores achieved for each
metric.

FBP SART CGLS SIRT SD2Iu

(a) MAE 0.1668 0.1332 0.1608 0.1383 0.0839

MSE 0.06497 0.06762 0.06295 0.07868 0.01673

SSIM 0.6327 0.7861 0.6289 0.7643 0.8377

PSNR 27.57 27.40 27.71 26.74 33.46

(b) MAE 0.04751 0.04282 0.04880 0.04561 0.03191

MSE 0.005068 0.005341 0.005101 0.006328 0.002306

SSIM 0.6737 0.7614 0.6557 0.7304 0.7897

PSNR 27.53 27.30 27.50 26.56 30.95
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Figure 4.28: Two example micro-CT reconstruction images. All images shown in this figure
comprise 779 x 779 pixels. The SD2Iu results are produced using k factors equal to 8. The
SD2Iu, FBP, SART and SIRT results are reconstructed from a sinogram size of 779 x 223. The
CGLS images reconstructed from 1561 projections are considered as the ground truth in
calculating the metrics shown in Table 4.14. The gray scale bars indicate the signal strength for
each pixel in the reconstructed images after normalization.
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4.3.4 Summary and Conclusions
In this chapter, we have presented a new, self-supervised, deep-learning

approach for tomographic reconstruction. The SD2I approach uses a generator

network to produce a sample image, which is then converted to a sinogram via

the Radon transform; the parameters of the network are updated by

backpropagation to minimise the difference between the sample sinogram and

the sinogram produced by the network. Similar to other deep-learning

reconstruction approaches, our SD2I approach is much more robust to angular

undersampling than traditional reconstruction approaches. However, SD2I is

also considerably more computationally efficient than other deep-learning

reconstruction methods. This means the SD2I can be applied to much larger

sinograms and can produce results with a significantly lighter hardware

requirement than other deep-learning approaches. The advantages of the new

architecture can be summarised as the following:

● Scalability: Two new approaches in the architecture which radically

reduce the number of parameters.

● Single-digit initial input Instead of using an FBP or sinogram as input to

the generator, which can avoid using an encoder network and reduce the

number of parameters.

● Upsampling-type architecture after the last dense layer - this allows for

decreasing the number of neurons in the last dense layer by a factor of at

least 16. This allows the network to reconstruct a much bigger image

than the GANrec and AUTOMAP in the condition of the same number of

training parameters in the network.

● Ability to suppress angular undersampling artefacts which we

demonstrated using both simulated and experimental data.

● Information regarding absolute intensities are maintained; the images are

not normalised.

● Simplicity: The addition of a discriminator network makes the training

more complex and does not necessarily improve the resulting images.
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In this chapter, both supervised learning and self-supervised learning ways to

reconstruct CT images and also remove the angular undersampling artefacts

with CNN and SD2I have been presented. Meanwhile, we showed how manifold

learning can be applied to learn reduced dimensionality representations of the

data, facilitating the generation of 2D maps of training and test data which allow

us to know in advance if a new data point is likely to be well reconstructed by a

pre-trained network.

Many papers have used GAN-like architectures to train both supervised and

self-supervised learning models, but here we found that the discriminator does

not significantly improve the results of SD2I. We also did some quick checks

with the regional discriminator suggested in the paper by Liu et. al. [70],

however, the results did not improve significantly. This might be because GANs

and discriminators were originally invented to work with random input, without

which the discriminator can easily overfit to a few pixels in the reconstructed

image. As a result, after a few loops, the output of the discriminator will

permanently lose its function as a loss function. The joint loss function of MAE

and SSIM dominates the training process after the first few loops. Considering

that the discriminator does not play any positive role in subsequent training, and

in order to maintain its local minima, it introduces misleading information into

the entire training process. Therefore, we found the image reconstructed by the

GAN-like architecture is worse than the SD2I as shown in Figure 4.17.

However, the existing SD2I architecture is not very effective in solving the

image reconstruction problem under conditions of high noise. As shown in

Figure 4.25, when sinograms experience strong noise, both SD2Iu and SD2If

are unable to accurately restore small features in the images, and their

performance is even inferior to FBP. This may be due to its design, particularly

the convolutional layers, which force the reconstructed image to have more

small, block-like pixel groups, and are ineffective in expressing pixel-level

features like noise. Additionally, the image and sinogram are not 1-to-1

matched, as expressed by the loss function. To effectively address this, it may
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be necessary to add additional elements to the SD2I, such as a penalty function

or mean kernel to reduce the noise level in the images, or to find a generator

architecture that is more sensitive to noise.

The ability to accurately reconstruct images from sparsely-sampled sinograms

is critical for time-resolved in situ/operando tomography experiments as well as

for reducing X-ray doses in medical CT. In its current form, both supervised

learning and self-supervised learning cannot be compared to FBP in terms of

accuracy and speed, but we have demonstrated its potential to suppress

angular undersampling using real experimental data. Furthermore, the SD2I

network could potentially be applied to other tomographic methods and

modalities, such as neutron tomography and X-ray fluorescence tomography.

Last but not least, the network has been developed for tomographic image

reconstruction using 2D parallel/pencil beam geometries but we can foresee its

application for other inverse problems in imaging if the appropriate forward

model is known, such as the parallax problem in XRD-CT.

However, the
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Chapter 5: Self-Supervised Parallax Artefact

Removal

5.1 Abstract

In this chapter, I will introduce an innovative method, ParallaxNet, designed to

eliminate parallax artefacts present in X-ray powder diffraction computed

tomography data acquired from large samples. Based on the SigleDigit2Comp

(SD2I) architecture introduced in the previous chapter, ParallaxNet integrates a

unique 3D neural network architecture with a forward projector that accounts for

the experimental geometry. This self-supervised technique for tomographic

volume reconstruction is designed to be chemistry-agnostic, eliminating the

need for prior knowledge of the sample's chemical composition. At the time of

this writing, the work presented in this chapter is prepared and ready for

submission to a peer-reviewed journal.

ParallaxNet is faster and more scalable compared to the pure mathematical

solution, DLSR [1]. We showcase the efficacy of this method through its

application on both simulated and experimental X-ray diffraction tomography

data, acquired from a phantom sample and a commercially available and

industrially relevant NMC532 cylindrical Lithium-ion battery.
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5.2 Introduction

Deep learning, an advanced subset of machine learning, has been a

game-changer across a diverse array of fields, including image recognition and

text translation [2]–[5]. Unlike traditional 'hand-crafted' algorithms that operate

on fixed principles, deep learning harnesses flexible neural networks that evolve

based on exposure to existing examples. This dynamic, data-driven, learning

process allows deep learning models to continually refine their performance,

driving significant advancements in complex tasks where flexibility and

adaptability are key.

One of the key areas in which deep learning has made a significant impact is in

the field of tomographic image reconstruction [6], [7]. Traditionally, tomographic

image reconstruction has relied on direct methods like filtered back projection

(FBP) or iterative methods that depend on prior knowledge and fine-tuning.

However, these methods face their own limitations, especially when it comes to

scalability, handling noise and angular undersampling data, computational

demand, and the necessity for absolute values in certain applications [8]–[10].

Deep neural networks (DNNs) have emerged as a compelling solution, offering

the potential to surpass the performance of these traditional physics-based

approaches.

In recent years, there has been a burgeoning interest in the application of DNNs

in tomography, notably in enhancing the quality of real-space reconstructed

images generated from sinograms. Besides, some innovative applications even

leverage supervised learning and generative models to automatically map from

sinogram to real space [11]–[18]. Despite certain bottlenecks such as handling

large images and the computational cost of large networks, the promise of deep

learning in this sphere is quite palpable.

The advent of X-ray (powder) diffraction computed tomography (XRD-CT), a

specialised form of tomography, has added a new dimension to the mix. This
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technique uses a pencil beam scanning method to yield reconstructed images

corresponding to a sample's cross-section [19]–[22]. What sets XRD-CT apart is

its ability to resolve chemical species of similar density, a task that conventional

X-ray CT often struggles with. As such, XRD-CT has found applications in

various fields ranging from cultural heritage conservation to nuclear reactor

materials, as well as biological samples [23]–[26]. More importantly, XRD-CT

has become an invaluable tool to investigate non-destructively functional

materials and devices, such as catalytic reactors [27]–[33], fuel cells [34], [35]

and secondary/rechargeable batteries in custom-made laboratory cells [35]–[40]

as well as in commercially available and industrially relevant cylindrical form

[41]–[43], under operating conditions (in situ /operando studies). These studies

have shown that the spatially-resolved diffraction patterns in XRD-CT data can

yield unique physicochemical information regarding these complex materials

systems and their evolving solid-state chemistry. Recently, Due to

advancements in XRD-CT experimental methods, rapid XRD-CT scans have

now made it possible for us to track reactions in materials within a time frame of

tens to several tens of minutes [44]–[46].

Given the prowess of deep learning and the unique capabilities of XRD-CT, the

combination of these two could potentially revolutionize tomographic image

reconstruction. Deep learning methods could not only accelerate the XRD-CT

on both data acquisition and analysis but also enhance it by addressing

challenges like image super-resolution using high-resolution region-of-interest

CT scans, data denoising, as well as single-crystal diffraction, self-absorption

and parallax artefacts. This combination, if realised, could unlock new

possibilities, including higher spatial and temporal resolution in chemical

imaging and better handling of complex data sets, paving the way for

breakthroughs in various fields.
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Figure 5.1: (a) Schematic representation of a 2D XRD pattern collected during the XRD-CT
scanning of a small sample when there is no parallax artefact. (b) 2D XRD pattern collected
during the XRD-CT scanning of a large sample with parallax artefacts present; the X-rays
scattered/diffracted along the sample at certain 2θ angles arrive at different detector elements,
leading to peak broadening and peak splitting.

One major obstacle that prohibits the scale-up of the XRD-CT technique and its

widespread adoption to study large samples is the parallax artefact. In

scattering-based CT experiments, it is generally assumed that the X-rays,
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whether scattered or diffracted, arrive at the same detector element when

measured at any given scattering angle 2θ across the sample's thickness, as

depicted in Figure 5.1a. This assumption holds when the sample thickness is

relatively small, typically on the order of a few millimetres. However, for thicker

samples, this assumption becomes invalid. In these cases, diffracted X-rays

measured at a specific 2θ angle are detected by multiple detector elements due

to the significantly varying distances between elements within the sample and

the detector. This phenomenon, known as the parallax effect, exhibits a tan(2θ)

dependency [19], [22]. The parallax effect is further illustrated in Figure 5.1b. As

a result of this effect, artefacts may manifest as shifts in peak position, peak

broadening, or even peak splitting [47].

In our previous work, we developed a new reconstruction approach, termed the

“direct least-squares reconstruction” (DLSR) algorithm, which overcomes the

parallax artefact in XRD-CT data. Conventionally, the XRD-CT sinogram data

are reconstructed one by one, typically using the filtered back projection

algorithm, yielding an XRD-CT reconstructed volume. The next step involves

the analysis of all the local diffraction patterns in this reconstructed XRD-CT

volume which can be single, multi-peak fitting or full profile analysis using

methods such as LeBail or Rietveld. The DLSR was implemented using the

TOPAS software [48] and combines the reconstruction and full profile analysis

steps into a single step. To clarify, the sinogram XRD-CT (projection) data are

fitted and the results are real-space maps corresponding to the various

properties of the model that are being refined (e.g. scale factor, lattice

parameter and crystallite size maps for each phase). This approach yields

parallax artefact-free images but has severe limitations:

● It requires a priori knowledge about the chemistry of the sample before

reconstruction

● It requires the construction of a robust physical model that models all

chemistry accurately in the sinogram data; minor components being
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overlooked during the inspection of diffraction patterns when preparing

the physical model will not be part of the final results

● DLSR in its TOPAS implementation suffers from scalability; even

XRD-CT images that are nowadays considered standard (e.g. 256 x 256)

cannot be handled due to RAM requirements and the data have to be

rebinned losing spatial resolution.

● Typically requires laborious pre-processing to decrease memory

requirements (to that realistically available) and yield stable

reconstructions. For example, one needs to create a separate binary

mask for each crystalline phase present by analysing the FBP

reconstructed XRD-CT volume (which contains parallax artefacts) and/or

subtract the background from the sinogram data (in order to make it

linear/ use a simple background model)

Therefore, our motivation was to develop a new method that overcomes all

these limitations of the DLSR approach and yields parallax artefact-free

XRD-CT images.

5.2.1 Self-supervised parallax artefact removal

We developed a self-supervised parallax XRD-CT data reconstruction

architecture by integrating a forward operator that can transfer an XRD-CT

volume without parallax artefacts to the sinograms with parallax artefacts. A

schematic representation of the method is shown in Figure 5.2. We use an

artificial neural network which acts as an XRD-CT volume generator i.e. it

creates a stack of real-space XRD-CT images. The input to the generator is a

non-zero constant. Next, the generated images are converted into sinograms

with the addition of parallax artefacts using a differentiable forward operator.

The forward operator contains two parts, the first part adds artificial parallax

artefacts into the images by taking into account the geometry of the

experimental setup, and the second part is the Radon transformation that can

convert the images to sinograms. This generated XRD-CT sinogram volume is

then compared with the experimental sinogram dataset using a designated loss
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function. Based on this comparison, the weights of the generator network are

updated accordingly.

Building on the innovative SD2I architecture shown in Chapter 4 [6], which is a

lightweight and scalable CNN architecture that utilizes a single control number

input for CT image reconstruction and addresses angular undersampling

artefacts, we introduce a new generator architecture for enhanced diffraction

channel stack reconstructions. By transitioning from 2D to 3D convolutional

layers and reducing layer parameters, the new generator architecture offers

both tailored 3D capability and greater efficiency, marking a significant step

forward in CT image reconstruction. Figure 5.3 illustrates the design of the

generator network employed for 3D diffraction channel stack reconstruction

from the sinograms.

Figure 5.2: The self-supervised ParallaxNet flow chart. The generator architecture is shown in
Figure 5.3. The generator takes a single-digit control number as input and outputs a full-volume
size, which includes two spatial dimensions comprising the diffraction maps and a third
dimension of diffraction patterns associated with each pixel. A forward operator is applied to
convert these images into simulated sinograms containing parallax artefacts. A joint loss
function, combining SSIM and MAE, is then used to compare the differences between the
generated sinogram and the input experimental sinograms.
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The generator network begins with a single input control value (specifically, 1 is

used in this work), and is followed by a decoder to reconstruct the image based

on the single number. After the input layer, three fully connected layers with 32

nodes and another fully connected layer where the number of nodes equal to

the total number of voxels in the reconstructed volume are used. Next, the

output of the final fully connected layer is reshaped to a 3D volume followed by

four 3D convolutional layers. All activation functions are chosen as ReLU,

except for the last layer we used the linear activation function. This architecture

has a great ability to be scaled up, it allows to reconstruction of the images with

m x m x c sizes reaching 550 x 550 x 51 or 100 x 100 x 4010 with parallax

artefacts

Figure 5.3: The generator architecture with a single constant as input. CONV represents 3-D
convolutional layers, and FC represents fully connected layers. The filter numbers and layer
sizes are shown above each layer. Here n represents the number of translation steps, and m
represents the volume size of the output image. The ReLU function is used to connect the
layers, except the Leaky ReLU function is used on the last fully connected layer to adapt
possible negative values generated.

203



Figure 5.4: The maximum spectral range that ParallaxNet can take with different sinogram sizes
under the condition of GPU memory limits of 47Gb, 32Gb, 16Gb and 8Gb respectively. This test
is operated on volumes of simulated sinograms where the number of translation steps and the
number of projections are equal.

The maximum volume size that ParallaxNet can reconstruct is depicted in

Figure 5.4. The test was carried out under the constraints of GPU memory sizes

of 47, 32, 16 and 8 GB, respectively. The tested sinograms are assumed to

have the same number of translation steps and projections, referred to as the

"sinogram size" in the figure. The figure shows that ParallaxNet can reconstruct

a volume consisting of 200 x 200 sinograms with up to 742 channels

simultaneously. Alternatively, it can also handle larger sinograms of 550 x 550

dimensions with 51 channels, covering an entire diffraction peak.

A joint loss function with the Mean Squared Error (MSE) and the Structural

Similarity Indexing (SSIM) was used in training this network. The loss function

compares the real experimental sinograms with the generated sinograms and

updates the weights in the generator to give a generated sinogram volume that

resembles better the experimental sinogram volume on the iteration. Normally,

the architecture can give a very decent result after 1000 iterations. The

reconstruction process of this self-supervised method can be expressed as:
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(5.1)

Here, G(ac) is the generated reconstruction image by sending a control constant

‘ac’ into the generator. The constant does not change while training. The LMSE

and LSSIM represent the MSE loss and SSIM loss respectively, and their sum is

adjusted by the fraction r. The MSE loss is defined as [49]:

(5.2)

Then, the SSIM loss can be expressed as [50]:

(5.3)

Here,

(5.4)

(5.5)

(5.6)

The μx, μy are the average of all pixels in the input sinograms and the σx, σy

represent their standard deviations. L is the dynamic range of the input images.

K1 and K2 are two constants that are set as 0.01 and 0.03.

To adapt varying signal strengths across each chemical (diffraction/scattering

angle) channel and facilitate easier training of the generator, all sinogram

channels along the 2θ axis are normalised based on the maximum value of

each channel. Additionally, to ensure the output images from the generator

maintain a consistent relative intensity, they are divided by the same

normalisation factors used for the sinograms before applying the forward

operator. Then the forward operator processes images at their actual intensity
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scale, yielding generated sinograms with accurate intensities. Subsequently,

these generated sinograms are multiplied by the normalisation factors and the

loss is calculated in comparison to the normalised input reference sinograms.

During training, a circular mask is applied to the images to filter out signals

outside the CT reconstruction area. The 3D grid is calculated considering the

experimental setup and specifically the 2 theta diffraction angles (1D vector),

the sample-to-detector distance, the translation step size and the X-ray

wavelength. Starting with a tomographic angle of 0 °, the forward operator

accounts for nT voxels across the sample's thickness and simulates the parallax

effect with an nT 2θ axis vector yielding the 3D grid. The modelling of the 3D

grid is based on a relationship between the new 2θ axis, its offset from the

centre of rotation, and the distance from the sample to the detector, as defined

by Scarlett et al. [47] :

(5.7)

(5.8)

The sinogram volume with parallax can be created from parallax-free images by

rotating the 3D grid, interpolating the XRD-CT data over it, and calculating the

3D Radon transform at each CT angle. The pseudocode for creating the 3D grid

based on the experimental setup can be found in Algorithm 1, while the

pseudocode for the forward operator is in Algorithm 2.
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5.3 Results & Discussion

5.3.1 Simulated XRD-CT data

To test the performance of ParallaxNet on XRD-CT images with parallax

artefacts, we first use a simulated XRD-CT dataset with noiseless and

zero-background using XRD patterns of a Ni fcc structure (ICSD: 64989) as

presented in the DLSR paper [6]. When testing the performance of algorithms

designed to solve inverse problems, it is crucial to ensure the forward projector

used to generate simulated data is different from the forward projector the

algorithm employs to solve the inverse problem. This differentiation helps

maintain the rigour and validity of the evaluation. Being conscious of this, we

coded different forward models for testing our approach with the simulated

XRD-CT data. Specifically, we used an A matrix (ray tracing) calculated from

astra-toolbox [51] as the forward projector to produce the simulated Ni XRD-CT

dataset and a custom Radon using image rotation with bilinear interpolation for

our ParallaxNet algorithm. This approach ensures a more unbiased assessment

of ParallaxNet's capabilities.

We take into account the non-constant sample-to-detector distance for large

samples by creating a 3D grid, where each pixel represents a distinct 2θ axis.

The XRD-CT data, both the simulated and the experimental data presented in
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the following sections, are interpolated using this 3D grid and subsequently,

their 3D Radon transform is calculated. The simulated data were created using

a sample-to-detector distance of 1000 mm, a translation step size of 0.2 mm,

and a 100 keV X-ray energy. The final simulation results contain 121 translation

steps, 121 projections and 2000 diffraction channels, which form a sinogram

volume with the size 121 x 121 x 2000. The ParallaxNet can reconstruct the

dataset in one go with 7.43 h and 5000 epochs.

The mean image and diffraction patterns, along with selected channels of maps,

are shown in Figure 5.5. By visually inspecting the maps reconstructed by FBP

and ParallaxNet, we can conclude that ParallaxNet accurately reconstructs the

signals in the correct positions and addresses the parallax artefacts present in

the simulated data.
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Figure 5.5: Overall result obtained with ParallaxNet on the simulated Ni dataset. (a) The mean
image of the Simulated Ni dataset. (b) The average diffraction patterns of FBP and ParallaxNet
were reconstructed by 0-180 ° scans. (c) Selected interesting diffraction channels which are
marked in (b). The colour scale bars indicate the diffraction intensity for each pixel in both the
reconstructed and ground truth images. This figure demonstrates that the diffraction signals are
accurately reconstructed by ParallaxNet, whereas the FBP method exhibits significant parallax
artifacts.

Figure 5.6 shows the results obtained from the sequential Rietveld analysis of

both FBP and ParallaxNet reconstructed volumes using the TOPAS software

which is guided by in-house developed Python scripts [48]. As presented in

Figure 5.6, compared to the Rietveld analysis results of the FBP volume, the

maps of Ni scale factor, crystallite size, and lattice parameter a from ParallaxNet
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are almost identical to the ground truth maps while the FBP significantly

diverge; this is apparent when one observes the lattice parameter and crystallite

size maps. This suggests that the diffraction peak positions and shapes

reconstructed by ParallaxNet closely match the ground truth patterns. The

differences between the crystallite size and lattice parameter maps and their

ground truth values are presented in Figure 5.7.

Figure 5.6: The results derived from the sequential Rietveld analysis of the reconstructed
XRD-CT data using both FBP and ParallaxNet, alongside their ground truth values. The colour
scale bars display the parameters refined through Rietveld analysis for each pixel in both the
reconstructed and ground truth images. Additionally, the scale bar for the scale factor maps has
been normalized.
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Figure 5.7: The error maps of the crystallite sizes and lattice parameters which are shown in
Figure 5.6. The colour scale bars represent the absolute differences between the crystallite size
and lattice parameter maps derived from Rietveld analysis compared to the ground truth values.

In a pixel-wise analysis, we select three regions of interest as depicted in Figure

5.8. It can be seen that within each region, the lattice parameter and crystallite

size have the same value in the simulated dataset. As illustrated in Figure 5.8,

the parallax artefact causes the FBP reconstructed patterns to exhibit significant

shifts in peak positions, broadening, and some instances of splitting when

reconstructed using the conventional 0-180 ° CT acquisition. However, the

ParallaxNet can accurately reconstruct the volume without these artefacts and

the reconstructed diffraction peaks are well aligned with the ground truth.

211



Figure 5.8: (a) The mean image of the simulated Ni XRD-CT dataset with three marked regions.
(b) Selected diffraction peaks of the average diffraction pattern in Region A. (c) Selected peaks
of the average diffraction pattern in Region B. (d) Selected peak from the average diffraction
pattern in Region C. This figure shows the ParallaxNet correctly solving the diffraction peak
splitting and shifting caused by parallax artefacts and that the diffraction pattern is aligned with
the ground truth.

5.3.2 Experimental XRD-CT data

5.3.2.1 Phantom

Next, we evaluate the efficacy of the method using experimental XRD-CT data.

The first dataset is a custom-made phantom consisting of four pipettes filled

with different powder samples. The mean image of the phantom XRD-CT

sample can be found in Figure 5.9a, which provides a view of the cross-section

containing the powder samples within the four glass pipettes. This dataset

contains two crystalline MgO (ICSD 9863; Sasaki et al., 1979), one SiC (ICSD

603798; Li & Bradt, 1986) and one TiO2 rutile (ICSD 33837; Sugiyama &
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Take´uchi, 1991) phases respectively. The three powder samples were mounted

into separate glass pipettes with an outer diameter of ca. 7.5 mm supported by

quartz wool from both ends. Two pipettes were prepared using the same MgO

powder sample. The four glass pipettes containing the powder samples were

mounted onto a 3D printed sample holder designed for the parallax experiment

[1].

XRD-CT measurements of the phantom sample were performed at beamline

station P07 (EH2) at PETRA III, DESY, using a 103.5 keV (λ = 0.11979 Å)

monochromatic X-ray beam focused to a spot size of 20 × 3 μm (H × V). 2D

powder diffraction patterns were collected using a Pilatus3 X CdTe 2 M hybrid

photon counting area detector. The 3D-printed sample holder was mounted

directly on the rotation stage. The rotation stage was mounted perpendicularly

to a hexapod; the hexapod was used to translate the sample across the beam.

The XRD-CT scans were measured by performing a series of zigzag line scans

in the z (vertical) direction using the hexapod and rotation steps. Two XRD-CT

scans were performed, in both cases, the number of translation steps was 300

with a 80 μm step size and a 10 ms exposure time per point. The first XRD-CT

scan was performed over a 0-180 ° range while the second over a 0-360 °

range, both using 300 angular steps.

Figure 5.9b presents the mean diffraction patterns derived from both FBP and

ParallaxNet using 180 ° scans. It can be seen that the diffraction peaks in the

FBP pattern are significantly broader compared to the ParallaxNet. Selected

channels from the reconstructed XRD-CT dataset are depicted in Figure 5.9c. It

can be clearly seen that the new approach reconstructs artefact-free images

while the conventional FBP method displays pronounced parallax artefacts that

are readily observable upon visual inspection.

Unlike the dataset presented in the DLSR paper, here we utilise the full size of

the image dataset with ParallaxNet without any image rebinning/resizing. This is

because the new ParallaxNet method boasts better scalability compared to the
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DLSR. The XRD-CT sinogram volume dataset comprises 269 translation steps,

300 projections, and 670 selected diffraction channels. According to Figure 5.4,

the 269 x 300 x 670 sinogram cannot be reconstructed as a one-go since it has

exceeded the limit of our GPU memory, and the maximum spectral range we

can handle is around 270-300. We then split the dataset into three batches, and

each batch contains 250 channels. To mitigate the edge effect between the

batches, we incorporated an overlap of 40 channels for each batch. As a result,

the three batches are defined with channel numbers 0-250, 210-460, and

420-670, respectively. The three batches are merged afterwards by taking the

average of the overlapped channels.

For each batch, we ran 5,000 epochs, which took 5.28 h excluding the

initialization time. To improve image quality and reduce the number of required

epochs, we pre-trained the generator using FBP images from 180 ° projections.

This preliminary step required only 1,000 iterations and was completed in 4 min

for each batch. In total, the image reconstruction with ParallaxNet took 16.43 h.

The ParallaxNet training was performed using a workstation equipped with an

NVIDIA Quadro RTX8000 GPU, Intel Xeon W-2155 CPU at 3.30GHz and using

PyTorch version 1.13.1.
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Figure 5.9: (a) The mean image of the Phantom XRD-CT dataset which contains crystalline
TiO2, MgO, and SiC. (b) The average diffraction patterns of FBP and ParallaxNet were
reconstructed by 0-180 ° scans. (c) Selected interesting diffraction channels which are marked
in (b). The scale bars represents the diffraction intensity of each pixel in the images
reconstructed using both FBP and ParallaxNet.

Selected reflections corresponding to each of the three phases are shown in

Figure 5.10. It can be clearly observed that the XRD-CT reflections

reconstructed by FBP from both 180 and 360 ° scans exhibit significant peak

broadening artefacts. Additionally, the diffraction peaks generated by FBP with a

180 ° scan range exhibit peak shifting artefacts. In contrast, the diffraction

peaks generated with a 360 ° scan range using FBP are in good alignment with

the ones obtained by the ParallaxNet with a 180 ° scan range. This

demonstrates that Parallax effectively reduces various artefacts brought about

by parallax and also that it simply requires a 0-180 ° scan range to reconstruct

parallax artefact-free data.
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Figure 5.10: (a) The mean image of the Phantom XRD-CT dataset with three marked regions.
(b) A selected peak of the average diffraction pattern in Region A. (c) A selected diffraction peak
from the average diffraction pattern in Region B. (d) A selected peak from the average
diffraction pattern in Region C. This figure shows the ParallaxNet can solve the peak
broadening artefacts, and peak positions reconstructed by the ParallaxNet with 0-180 ° scans
are aligned with the FBP reconstructed with 0-360 ° scans. In contrast, the FBP reconstructed
diffraction peaks over the 0-180 ° scan range exhibit significant diffraction peak shifting which
was caused by the parallax artefacts.
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Figure 5.11: Lattice parameter maps associated with the four components are shown in Figure
5.9a. The colour scale bars represent the lattice parameters refined by the Rietveld method
from the volumes reconstructed using both ParallaxNet and FBP.
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The Rietveld analysis of the reconstructed volumes further demonstrates the

efficacy of our method. From the lattice parameter maps shown in Figure 5.11, it

can be clearly seen that the lattice parameter maps from the ParallaxNet with

180 ° scans have almost identical values with those from the maps of the FBP

derived from the 360 ° scan range. FBP images reconstructed using a 360 °

scan range should not exhibit any peak shifting, even when significant parallax

artefacts are present; to clarify, the centroid position of the peaks will be in the

correct position as if it were a dataset without parallax. As such, the lattice

parameter maps of the ParallaxNet can be considered close to the ground truth.

It is also worth mentioning that the ParallaxNet maps exhibit less noise

compared to those from the FBP. The distribution of the lattice parameters is

shown in histograms in Figure 5.12. These results also demonstrate that

ParallaxNet can yield lattice parameters that align with the results from the FBP

with 360 ° scans.

Figure 5.13 presents the scale factor and crystallite size maps obtained from

the Rietveld analysis. A key observation is that the parallax artefact significantly

affects the crystallite sizes obtained by conventional approaches. Specifically,

on both 180 ° and 360 ° XRD-CT scans, it leads to broadened diffraction peaks

and reduced crystallite values when using the FBP reconstruction algorithm.

The maps suggest that ParallaxNet has, to a certain extent, solved the peak

broadening artefact instigated by parallax. This correction is particularly

pronounced for the two MgO components, where their crystallite sizes offer

mutual validation. Based on these observations, we can deduce that

ParallaxNet can correctly solve the parallax artefact on the real phantom

experimental dataset.

In reviewing Figure 5.10c and 5.10d, it is evident that even with a 360 ° scan,

the FBP reconstructed peak shape does not conform to a Gaussian distribution.

While 360 ° scans can accurately identify peak positions, the artefact of peak

splitting remains unresolved. Consequently, fitting FBP images with Gaussian

(or Lorentzian) models may introduce errors. Additionally, it is worth noting that
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peaks at higher 2θ angles are easier to succumb peak splitting artefacts，

therefore, there are more mismatched in the lattice parameter 'a' distribution of

the FBP with 360-degree scans and the ParallaxNet than in the lattice

parameter 'c' distribution for the TiO2 phase shown in Figure 5.12.

Figure 5.12: The distribution of lattice parameters for the experimental phantom dataset.
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Figure 5.13: Top row: Scale factor maps (normalised) associated with four components. Button
row: Crystallite size maps associated with four components. The colour scale bars represent the
parameters refined by Rietveld analysis for each pixel in images reconstructed using both
ParallaxNet and FBP.

5.3.2.2 NMC532 cylindrical Li-ion battery

In addition to the phantom dataset presented in the previous section, the

efficacy of the method was evaluated with a second experimental dataset.

Specifically, a dataset acquired from a commercially available and industrially

relevant 10440 NMC532 Li-ion battery was used [41]. This dataset was

scanned using the same beamline and experimental setup using a 73.89 keV (λ

= 0.16779 Å) monochromatic X-ray beam focused on the same spot size of

20 × 3 μm. An XRD-CT dataset was acquired using 521 translation steps with a

20 μm step size and a 10 ms exposure time per point. The XRD-CT scan was

performed over a 0-360 ° range using 1000 angles in total.

The detector calibration was performed using a CeO2 standard. Every 2D

diffraction image was calibrated and azimuthally integrated to a 1D powder

diffraction pattern with a 10 % trimmed mean filter using the pyFAI software

package and in-house developed scripts [52]. The integrated diffraction patterns

were reshaped into sinograms and centred; the air scatter signal was
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subtracted from the data. For the conventional data analysis approach, the

XRD-CT images (i.e. reconstructed data volume) were reconstructed using the

FBP algorithm. A pseudo-voigt peak shape function was used for the

refinements after the analysis of the CeO2 pattern. Rietveld analysis was

performed on the reconstructed diffraction patterns with the TOPAS software

[48] on a voxel-by-voxel basis. Rietveld analysis was first performed using the

summed diffraction pattern of each XRD-CT dataset (i.e. to provide a good

starting model) before running the voxel-by-voxel Rietveld analysis to provide

the spatially-resolved physicochemical information. The parameters refined

were the scale factor, lattice parameter and crystallite size for each phase. A

2nd-order Chebyshev polynomial was used to model the background as it was

fairly flat in all reconstructed patterns.

This dataset consists of 521 translation steps, 1000 projections and 1800

channels of sinograms. To train this big dataset, we divided it into batches of 55

channels, and each batch took ca. 8 h to process using 5000 epochs. To

address this large dataset, we first selected an XRD diffraction peak from the

Cu phase and reconstructed only the images without parallax corresponding to

this peak within the 55-channel range. Then, we performed Rietveld analysis on

this 521 x 521 x 55 XRD-CT dataset to get the chemical information of the Cu

phase presented in this Li-ion battery dataset. The original dataset was

performed using a 0-360 ° scan range, but for testing the ParallaxNet, we only

used the part of the data corresponding to the 0-180 ° scan range so for each

batch, the size of the reference sinogram was 521 x 500 x 55. For comparison,

the XRD-CT data were also reconstructed using the FBP algorithm using both

the 180 and 360 ° ranges and were analysed using the Rietveld method i.e. on

the 55 selected channels of the Cu XRD peak. The ParallaxNet also utilized the

FBP with 180 o projections to pre-train the generator for faster convergence.

Figure 5.14a displays the average image from the selected 55 channels of the

Cu XRD peak (reflection with a hkl value of 111), highlighting three regions of

interest. Figures 5.14b-d depict the average XRD peaks from the marked

regions. As illustrated in the figure, ParallaxNet can accurately reconstruct the
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Cu peak, producing a significantly sharper peak. The peak positions align with

the XRD-CT data reconstructed by the FBP from the full 360 ° scan. This result

shows that the ParallaxNet correctly removed both the peak shifting and

broadening artefacts caused by the Parallax on this Cu XRD peak. It is

important to note here that the centres of the peaks obtained from the FBP 360

° scan align with those of the ParallaxNet-reconstructed peaks. However, it

becomes evident that the peak shape cannot be effectively described using a

single peak shape model. This observation is distinctly apparent across all

peaks illustrated in Figure 5.14, with a particularly noticeable manifestation in

the Cu diffraction peak from Region B. This observation bears significance, as

attempting to fit these peaks using a single model, such as Gaussian or

pseudo-Voigt models—commonly employed in XRD data analysis—can

potentially yield inaccurate data interpretations. Such an approach might result

in artificial shifts of the peaks, given that the employed model does not

adequately capture the intricacies of the data's true behaviour. This is especially

crucial when high precision is required for the calculated lattice parameter

values, e.g. in the order of <10-3 Å such as when attempting to capture shifts

in the Cu peak introduced by temperature gradients in these battery systems

[53].
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Figure 5.14: (a) The mean image of the Cu phase of Li-ion battery XRD-CT dataset with three
marked regions. (b) The selected peak of the average diffraction pattern in Region A. (c) The
selected peak of the average diffraction pattern in Region B. (d) The selected peak of the
average diffraction pattern in Region C. This figure shows that ParallaxNet can solve the peak
broadening and peak splitting artefacts.

Figure 5.15a displays the lattice parameter maps obtained through Rietveld

analysis. As seen in the FBP with the 180 ° scan range lattice parameter map,

the parallax artefact results in unevenly distributed lattice parameter values (as

determined by the Rietveld analysis) across different positions of the same

material (Cu phase). However, both the FBP with the 360 ° scan range and the

ParallaxNet results with 180 ° scan range yield lattice parameter maps that are

evenly distributed across all positions. The histogram depicting the distribution

of lattice parameters for the three maps is shown in Figure 5.15b. The mean

values of the lattice parameters for the FBP with 360 ° scan range, the FBP with
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180 ° scan range, and the ParallaxNet result are 3.6047 Å, 3.6045 Å, and

3.6048 Å, respectively. The scale factor maps can be found in Figure 5.16.

Figure 5.15: (a) The lattice parameter maps were obtained by the Rietveld method for a Li-ion
battery dataset. (b) the distribution of lattice parameters for the maps shown in (a). The colour
scale bar represents the lattice parameter for each pixel, refined by Rietveld analysis.

It was therefore demonstrated that ParallaxNet can accurately reconstruct

XRD-CT images/diffraction patterns of this experimental Li-ion dataset and that

it is possible to extract meaningful chemical information from just a single peak

of the XRD pattern. Subsequently, a broader range of diffraction channels was

chosen, encompassing 555 out of the 1800 channels from the original dataset.

These channels span a native 2θ value range from 1.203 to 4.877 °. We divided

these 555 channels into 11 segments, each containing 55 channels, consistent
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with the phantom dataset approach. To mitigate edge effects between the

reconstructed images of each batch, we incorporated a 5-pixel overlap on either

side of each segment. We then averaged the overlapping sections to produce

the final XRD-CT image volume with dimensions of 521 x 521 x 555.

Figure 5.16: The scale factor map (normalized) of the Cu phase from an experimental AAA
Li-ion battery dataset. The colour scale bar represents the value of the refined scale factor for
each pixel after normalization.

To reconstruct this expanded dataset, ParallaxNet required 90 h of training time,

which includes both initialization and pre-training with FBP. Since each batch is

independent, we utilised two workstations with three NVIDIA Quadro RTX8000

GPUs to process these 11 batches in parallel using PyTorch. In the end, it took

ca. 33 real-world h to complete this dataset. It is worth noting that this

represents the most extreme scenario encountered in real-world experimental

datasets, and the DLSR method cannot handle a dataset of this magnitude.

Figure 5.17 shows the NMC532 phase of the reconstructed dataset, highlighting

three specific regions of interest. Additionally, this figure displays the selected

average XRD peaks corresponding to the NMC532 phase. Another NMC532

peak of these three regions is also shown in Figure 5.18. These figures confirm

that ParallaxNet can accurately reconstruct the same peak positions as those

derived from the FBP reconstructed with the 360 ° scan range. Furthermore,

ParallaxNet effectively addresses the issue of peak broadening artefacts,

producing peaks that are sharper and narrower compared to those in the FBP

images.
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Figure 5.17: (a) The mean image of the NMC532 phase of Li-ion battery XRD-CT dataset with
three marked regions. (b) The selected peak of the average diffraction pattern in Region A. (c)
The selected peak of the average diffraction pattern in Region B. (d) The selected peak of the
average diffraction pattern in Region C. This figure shows that ParallaxNet can solve the peak
broadening artefacts, and reconstruct correct peak positions compared to the FBP with a 0-180
° scan range.

Maps obtained from the Rietveld analysis of the NMC532 phases are shown in

Figure 5.19 and Figure 5.20. The crystallite sizes obtained with the three

different methods on the top line of Figure 5.20 indicate the crystallite sizes

calculated from the ParallaxNet reconstructed volume are larger than both FBP

methods with 180 ° and 360 ° scans respectively. The average crystallite sizes

raised from ca. 91 nm (for FBP with 180 ° scans) and 92 nm (for FBP with 360 °

scans) to 137 nm (for the ParallaxNet), which also supports the conclusion we
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drew from visual inspection: the diffraction peaks are sharper and narrower than

those produced by conventional methods.

Figure 5.18: (a) The mean image of the Cu phase of Li-ion battery XRD-CT dataset with three
marked regions. (b) The selected peak of the average diffraction pattern in Region A. (c) The
selected peak of the average diffraction pattern in Region B. (d) The selected peak of the
average diffraction pattern in Region C. This figure shows that ParallaxNet can solve the peak
broadening artefacts, and reconstruct correct peak positions compared to the FBP with 0-180 °
scans.
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Figure 5.19: The Scale factor maps of the NMC532 phase. The colour scale bar represents the
value of the refined scale factor for each pixel after normalization.

Figure 5.20: Top row: crystallite size maps of the NMC532 phase. Mid row: lattice parameter a
maps of the NMC532 phase. Bottom Row: lattice parameter c maps. All maps are obtained by
Rietveld analysis on the Li-ion battery XRD-CT dataset. The colour scale bars represent the
values of parameters refined through Rietveld analysis for each pixel.
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Figure 5.21: The distribution of lattice parameters a and c for the NMC532 phase. The results
demonstrate that ParallaxNet can accurately reconstruct peak positions, yielding lattice
parameters that align with the results from the FBP with 360 ° scans.

The lattice parameter maps of the NMC532 phase also indicate that the

ParallaxNet can correctly reconstruct the evenly distributed lattice parameter

maps which aligns with the FBP with 360 ° scan. The peak shifting artefact in

the images reconstructed by the FBP with a 180 ° scan range has been

effectively eliminated by ParallaxNet. The distribution of the lattice parameters

of the NMC532 is presented in Figure 5.21. The distribution maps show the

lattice parameters derived using ParallaxNet are closer to the FBP with 360 °
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projections than the FBP with 180 ° projections, which is a clear indication that

the parallax artefact has been successfully removed.

5.4 Summary & Conclusions

In this chapter, we introduced a novel and robust XRD-CT reconstruction

approach, ParallaxNet, designed to reconstruct images from XRD-CT data

containing parallax artefacts. The ParallaxNet strategy employs a 3D neural

network generator framework together with a customised forward projector to

produce parallax artefact-free images/diffraction patterns. This is achieved

through an iterative approach by comparing the difference between the

generated sinogram volume and the input reference sinogram volume. We

evaluated ParallaxNet's performance using three datasets: a simulated XRD-CT

dataset, a measured phantom object, and an experimental dataset recorded on

an NMC532 cylindrical Li-ion battery.

For all three datasets, this new approach accurately reconstructed the peak

positions using only a 0-180 ° angular range, eliminating the need for a 0-360 °

scan which halves the required acquisition time (i.e. half the number of

projections). Furthermore, the reconstructed peaks were sharper and narrower

than those produced by traditional FBP methods, both with 180 ° and 360 °

scans. It should also be noted that in this work it was also shown that using a

360 ° scan approach as a means to remove parallax artefacts is insufficient and

should be avoided as it leads to peaks with shapes that cannot be modelled

with single peak profile (e.g. Gaussian peak). This was clearly demonstrated

with the experimental XRD-CT presented in this work, an example being the Cu

component in the cylindrical Li-ion battery.

ParallaxNet presents distinct advantages over the previously developed DLSR

methodology, addressing several inherent limitations:

● Firstly, ParallaxNet operates without requiring a priori knowledge about

the chemical composition of the sample being measured.
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● DLSR also requires the identification of all phases and the construction

of a robust physical model; this can potentially lead to some minor

components being overlooked during the inspection of diffraction

patterns in the sinogram data.

● Furthermore, ParallaxNet is more scalable. In this work, we applied the

ParallaxNet on the full-size experimental phantom XRD-CT datasets.

However, the DLSR can only be applied on the scaled-down version of

the same dataset(s) as shown in the DLSR paper (e.g. with 121 x 121

image sizes for the Li-ion battery). Moreover, ParallaxNet does not need

as much RAM requirements as the DLSR approach, especially when

DLSR is used in conjunction with TOPAS.

● ParallaxNet does not require any data preprocessing. ParallaxNet can be

applied to the raw sinograms, but DLSR needs the manually created

masks for each phase and background subtraction on the sinograms in

order to use a simple background model.

● We have demonstrated that the conventional method of employing a

0-360 ° scan with FBP to eliminate parallax artefacts and obtain precise

lattice parameter values can be precarious. For instance, the FBP

reconstruction of the Cu peaks in the 0-360 ° scan revealed peaks that

cannot be modelled using a single peak shape model (such as Gaussian

or pseudo-Voigt). This could potentially result in wrong lattice parameter

values and misinterpretation of the data, especially if lattice parameter

values with high precision are required to be extracted from the data.

At this stage, while ParallaxNet presents a promising approach to XRD-CT

image reconstruction with parallax artefact, it is not without its limitations. A

significant constraint is the extended computational time required for large

datasets. For instance, the Li-ion dataset, with sinogram dimensions of 521 x

500 x 540, demanded a staggering 90 h of computational time. Currently, due to

GPU memory constraints, there's a necessity to divide datasets into smaller

batches for processing. Moving forward, there is potential to explore a more

streamlined generator, which could significantly minimise the computational
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resources needed and address some of these challenges. Last but not least, it

should be noted that the developed method can be applied to other X-ray

scattering-based computed tomography data suffering from parallax artefacts,

such as pair distribution computed tomography
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Chapter 6: XRD-CT Image Decomposition

6.1 Abstract

Modern chemical imaging techniques generate vast amounts of high-resolution,

multidimensional data, capturing both spatial and spectral information. Image

clustering methods are widely applied in categorising chemical imaging

datasets into meaningful groups, and reducing the amount of data that needs to

be analysed. In this chapter, I will introduce the Self-to-Components

(Self2Comp) algorithm, a novel neural network structure designed to

decompose complex imaging datasets into component clusters without the

need for predefined cluster numbers. This architecture was primarily designed

for clustering X-ray diffraction Computed tomography (XRD-CT) images into

clusters and corresponding X-ray diffraction (XRD) patterns. The Self2Comp

utilises three Deep Neural Networks (DNNs) and essentially works like

Non-negative Matrix Factorization (NMF) which factorises datasets into two

matrices. The Factor-Net, particularly, controls the scale of each component,

which allows the automatic selection of the necessary cluster numbers. Through

a combined loss function of Mean Squared Error (MSE), Structural Similarity

Index Measure (SSIM), and regularisation of the predicted factor vector using

the sigmoid function, the architecture is optimised.

To evaluate its effectiveness, the architecture was tested on both simulated

XRD-CT datasets and experimental Li-ion battery XRD-CT images. In the

simulated environment, Self2Comp excelled in differentiating the Zn

component, a feat that was challenging for conventional methods like NMF. The

architecture also performed admirably on experimental datasets, showing its

capability to capture phases with weak signals and determine phases like LiC30

and polymer separator that NMF could not.
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6.2 Introduction

6.2.1 Conventional image clustering methods

Before introducing the new machine learning-based image clustering methods, I

will first present the most prevalent and popular conventional techniques used

for image clustering. These methods have been widely adopted in various fields

due to their effectiveness in categorising datasets based on their similarities and

differences.

6.2.1.1 K-means

The K-means clustering algorithm is one of the most popular unsupervised

algorithms for multi-dimensional data clustering [1]. It can be used to partition

the input data set into k pre-setted clusters. The initial centroid positions are

randomly chosen from data points, each data point is assigned to its nearest

centroid’s cluster S and then the new centroid can be updated according to:

(6.1)

Here |Si| represent the total number of points in the cluster Si, and ci is the new

position of the centroid. To compute the best centroid positions, the sum of the

distance between all points to their centroids is optimised until it is not changing

any more [2]:

(6.2)

The performance of the K-means clustering algorithm can be influenced by the

choice of initial points. To counter this, Arthur et al. proposed a K-means++

algorithm that selects the initial centroids in a more intelligent way instead of

choosing the random starting points [3], [4]. With K-means++, the initial points

are determined as sparsely as possible on the map, and then the traditional

K-means algorithm is used to learn the clusters based on these initial points.

Since K-means methods generally perform badly on datasets with irregular

cluster borders and are computationally difficult for a large number of clusters,

the they are often used together with other image pre-processing methods such
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as: wavelet transformation [5], density-based spatial clustering of applications

with noise (DBSCAN) [6] and the convolutional neural networks (CNNs) [7]

before applying K-means methods are applied for image segmentation.

6.2.1.2 Hierarchical Agglomerative Clustering (HAC)

HAC is a hierarchical clustering method that starts by considering each data

point as a cluster, and then gradually merging the closest clusters [8]. This

merging process is repeated until the desired number of clusters is obtained.

The distance metric used to determine which clusters to merge can be based

on various measures such as Euclidean distance, cosine similarity, or

correlation coefficient [8]–[11].

HAC is widely used in areas of biology [12], social science [13], and image

processing [11]. Meanwhile, this method is commonly applied to X-ray

diffraction (XRD) data clustering [14]. In 2015, Sarhaddi-Dadian et al. applied

HAC to analyse XRD data from archaeological property shards to draw the

conclusion that a small cluster of shards had differing chemical compositions

due to their being manufactured in different places [15]. Meier et al. used both

HAC and principal component analysis (PCA) clustering methods on an XRD

dataset with heavy mineral sands and which were revealed to contain FeTiO3,

TiO, ZrSiO4, SiO2 and other minor components [16]. They claimed that these

clustering methods successfully identified the outliers before Rietveld analysis

and provided two cluster standard XRD patterns among 64 XRD experimental

patterns, which can accelerate data processing in industrial production control.

Although HAC has been widely used, its shortcomings cannot be ignored. HAC

has a time complexity of O(N3) i.e. that the running time grows cubically as the

size of the input increases, which can become computationally expensive for

large datasets [17]. Meanwhile, it is not robust to noise and outliers, which can

cause the formation of spurious clusters or the merging of unrelated clusters

[18]. Therefore, some new linkage methods to select the closest clusters are

implemented to improve the performance of HAC. The most commonly used
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linkage method is Ward’s linkage which typically calculates the distance

between clusters using a minimum variance criterion, which measures the

increase in the total within-cluster sum of squares when two clusters are

merged [19].

6.2.1.3 Spectral Clustering

Spectral clustering is a method that groups data by utilising eigenvectors

derived from a similarity matrix [20]. This technique is widely used for clustering

high-dimensional and non-linear data [21]. If we represent the original dataset in

the form of an adjacency matrix A, the graph Laplacian (L) can then be

represented as [22]

(6.3)

Here D is a diagonal degree matrix that each element is the row sum of the

matrix A:

(6.4)

By taking the smallest eigenvectors of the Laplacian matrix first and doing the

K-means analysis on their elements, the original dataset can then be clustered

into K groups.

Due to the purpose of applying spectral clustering, the normalised graph

Laplacian is also popular in dimension reduction [22]:

(6.5)

The random walk normalised Laplacian Lrw tends to cluster the dataset into

groups where data points are evenly presented, instead of forcing all clusters to

have a similar number of points.

Spectral clustering and its extensions are widely used in image segmentation

and decomposition problems. Chang et al. applied the robust path-based

spectral clustering measure to define the similarity between data points. They

claimed that, compared with the conventional spectral clustering, k-means
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clustering and the path-based spectral clustering, the new method has the

smallest standard deviation of errors against the manually segmented dataset.

It also indicates that the robust path-based spectral clustering becomes more

accurate on both supervised and unsupervised occasions against noise and

outliers [23]. In 2019, Xia et al. proposed the oriented grouping-constrained

spectral clustering (OGCSC) method that takes into account the prior

knowledge about the dataset in defining the similarities between points [24].

They applied the new method to medical images and showed that OGCSC

could utilise semi-supervised data to fulfil the needs of image segmentation,

however, due to the multiple matrix inversion used in their algorithm, this

method is inefficient on large datasets like decomposing XRD-CT images. Yoon

et al. applied spectral clustering to classify 7214 single-particle X-ray diffraction

images [25]. Among the 24 predicted clusters, the agreement between the

manually clustered images and their predicted groups was 90 % while the

manually defined clusters have only 95 % confidence of correctness. They also

claimed that this method can handle over 107 images at the same time, which

has great potential to be applied to high throughput image analysis. Li et al.

proposed a new combined method that uses One-versus-One (OVO)

decomposition on the multi-dimensional dataset first and then applies spectral

clustering on the low dimensional data points to group the data into classes

[26]. They claimed that the new joint method can yield more accurate results

than directly applying the spectral clustering on high dimensional datasets in

terms of the precision of the cluster with the smallest size (Pmin) [27] and the

average precision of all clusters (Pavg) [28]. Here the precision is defined as

(6.6)

6.2.1.4 Principal Component Analysis (PCA)

PCA is another commonly used method for decomposing large datasets that

have many dimensions or features into several components that are sorted by
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importance [29]. Its purpose is to enhance data interpretability while retaining as

much information as possible and making it easier to visualise data with multiple

dimensions [30]. PCA has wide usage in analysing XRD data. In 2005, Chen et

al. applied the smoothed PCA (SPCA) to identify weak but important diffraction

peaks that are masked by noise in individual patterns and then de-noising the

patterns by combining back with the main principal components [31]. By

introducing a smoothing filter before applying PCA to the real XRD patterns,

SPCA becomes more robust to noise compared to traditional PCA, resulting in

a higher peak ratio of the suspensions and the solvent. In 2019, Conterosito et

al. used PCA in analysing in situ single-crystal X-ray diffraction experiment data.

The utilisation of PCA made it possible to identify and remove problematic data

sets while also gaining a more comprehensive understanding of the trends

related to the occupancies of CO2, Na+, and water [32]. One year later, the

same group applied PCA to both the unprocessed intensities acquired from in

situ X-ray powder diffraction experiments and to the parameters acquired

through Rietveld refinement [33]. The use of PCA proved highly beneficial in

recognizing and assigning all alterations that took place during the

adsorption/desorption experiments. Oddershede et al. applied a combination of

powder diffraction and PCA to analyse the inner radius of bulk multi-walled

carbon nanotubes [34]. They claimed that by applying the PCA, the data

dimensionality was strongly reduced, and it was easier to extract physical

information from the enhanced principal component images.

6.2.1.5 Non-negative matrix factorization (NMF)

Non-negative matrix factorization (NMF) is an unsupervised learning dimension

reduction method that was created by Lee & Seung in 1999 [35]. It is a versatile

algorithm that makes a parts-based representation of input data with all positive

values [36]. This method is widely used in image clustering, data compression

and signal separation. The NMF can factorise the original dataset matrix V with

two matrices W and H with the following function:

(6.7)
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Where: V is the original matrix with m x n elements, W represents a matrix

including a set of basis images, and H contains the coefficients for each basis

image. W and H have m x p and p x n elements respectively, where p

represents the number of clusters to be identified. After the number of clusters

is determined, the two matrices can be updated simply by gradient descent with

its Euclidean distance to the original matrix [37].

Apart from the basic Euclidean NMF, the Kullback-Leibler NMF (KL-NMF) that

minimises the Kullback-Leibler divergence between the original matrix V and

the reconstructed matrix WH tends to use only a small number of basis vectors

to represent the data [38], [39]. This is beneficial for reducing the dimensionality

of the data and extracting meaningful features. β-divergence NMF is another

type of NMF that combines both traditional NMF and KL-NMF by introducing a

parameter β that controls the ratio of the types of divergence [40]. Because this

kind of NMF allows negative values on reconstruction errors, the β-divergence

NMF is generally more robust to noise and outliers than other types of NMF on

real experimental data [41]. The NMF with Itakura-Saito Divergence is also very

popular in spectra/audio decomposing problems [42]. It has been shown to be

effective in reducing noise and redundancy in the data [43]. General

normalisation methods like the L1 or L2 norm can also be applied to reduce the

dimension of features [44]. Adding a regularisation term to the objective function

encourages the learned coefficients to be sparse, and focus on the most

important and relevant features [45].

In recent years, the NMF method has shown great potential for fast analysis of

X-ray diffraction (XRD) data. For example, Long et al. used NMF to extract the 9

basic component X-ray diffraction patterns in hundreds of XRD patterns from a

combinatorial materials library. In this way, they dramatically reduced the time

taken for patterns to be analysed in the real experimental system [46]. In 2018,

Stanev et al. applied the NMF to determine the basic phases’ present in a large

number of diffraction patterns [47]. They showed that the NMF method can help

to identify possible peak-shifted patterns and decompose both the simulated
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and the real Fe-Ga-Pd experimental data. In 2021, Maffettone et al. applied

constrained NMF with prior knowledge about physical components on

synchrotron X-ray total scattering data [41]. They claimed that the constrained

NMF can yield XRD decomposition that is more scientifically relevant than the

conventional NMF method, demonstrated by lower R-weighted pattern (Rwp)

errors in the Le Bail refinement results of the individual components. In 2021,

Bordet et al. used the PCA, Multivariate Curve Resolution-Alternating

Least-Squares (MCR-ALS) and NMF on 3D XRD-CT images to reduce the

number of data that need to be analysed [48]. They applied the Rietveld

analysis on the six clusters predicted by the NMF and found some minor

phases that were not easily seen in the summed data although could be clearly

identified as component patterns. However, they also mentioned that the

number of components should be specified beforehand for the NMF to predict

the components accurately.

6.2.2 Self to Components (Self2Comp) Architecture

Figure 6.1: Self2Comp construction. The model consists of three networks all trained in parallel;
one network creates the component images (Image-Net, top), one the component
spectra/patterns (Pattern-Net, middle) and one the adjustment (scale) factors (Factor-Net,
bottom). The component images and spectra are normalised before being combined with the
adjustment factors to yield a simulated chemical imaging dataset; this is compared with the
original one through the network’s loss function. Finally, the networks’ weights are updated.
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The Self2Comp structure is shown in Figure 6.1. Self2Comp consists of three

networks, each one having five dense layers with only a single number as input:

Image-Net, Pattern-Net and Factor-Net. Specifically, regarding the three

networks: (1) The output layer of the Image-Net comprises m x n x p neurons

where m and n represent the image sizes and p represents the number of

clusters. The output array is reshaped as a 3D matrix W which contains p

normalised images which are the cluster maps that the architecture predicts. (2)

The output of the Pattern-Net is a 1D array with c x p elements where c

represents the number of diffraction channels before it is reshaped to a 2D

matrix H with p normalised patterns corresponding to the maps predicted by the

Image-Net. (3) The Factor-Net is a very small neural network which only has c

outputs. The output array f contains the predicted adjustment (scale) factors

added to combine the normalised images and the normalised patterns to match

the original chemical imaging dataset. The basic idea of Self2Comp is similar to

the NMF that factorises the original dataset into two matrices W and H.

However, the W and H are normalised according to each component and

generated by two Deep Neural Networks (DNNs). To make the Self2Comp

automatically select the number of clusters needed, we introduce the Factor-Net

which has only p outputs. Since each component in the W and H is normalised,

the only factor controlling each component's scale is the vector f created by the

third CNN, which can be regularised easily to use only necessary components.

Each element in the n x m x c simulated matrix S can then be represented as:

(6.8)

To optimise the Self2Comp, we compare the loss between the simulated matrix

S and the original dataset V. In this case, we use a combined loss function with

MSE and SSIM and a regularisation penalty on the predicted f vector. In this

case, we choose the sigmoid equation as the regularisation function. The

impact of different regularisation functions on the performance of the network

will be discussed later. Therefore, the overall loss function we use to optimise

the Self2Comp can be written as:

(6.9)
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All works shown in this chapter are performed in the Tensorflow 2.8

environment with Intel Xeon Silver 4216 CPU, 350 GB RAM and a Quadro RTX

8000 GPU. Adam was used as the optimisation algorithm with the learning rate

set to 0.0005 for all case studies that will be presented in this chapter.

6.3 Results & Discussion

6.3.1 Self2Comp on Simulated XRD-CT image

To test the performance of the Self2Comp architecture, we first tried a simulated

clean XRD-CT that is generated by the nDTomo package [49]. The nDTomo

package is a simulation tool that was developed for the building of complex

phantom data comprising 2D to 5D hyperspectral datasets. We first generated

five simulated component maps and then defined five noiseless diffraction

patterns corresponding to the Al, Cu, Fe, Pt, and Zn phases of the simulated

maps. Each individual pattern has 250 channels. Then the five maps with the

patterns are combined together to form a simulated 200 x 200 x 250 XRD-CT

data volume. Therefore, each pixel of the XRD-CT image will have a

corresponding composition diffraction pattern of the five phases.

For the initial testing, as a comparison, we performed the HAC, K-means,

Spectral clustering and NMF together with the Self2Comp on the simulated

datasets. The sci-kit-learn python-based machine learning package performs all

of these conventional methods [50]. As we can see from Figure 6.2, among all

conventional methods, NMF performed the best in decomposing the dataset.

However, it struggles to give an accurate prediction of the Zn phase, which may

be because it appears everywhere in the volume, and is hard to differentiate

from the other components.

The result from the Self2Comp method is presented in the last line of Figure

6.2. It can be clearly seen that the Self2Comp outperforms the NMF in this case

as it is able to capture clearly the presence of the Zn component. The

quantitative analysis of Self2Comp indicated that the overall SSIM score for the
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five clusters with the patterns to the ground truth is over 99.5 %, in the

meanwhile, the NMF only achieved 98.3 % accuracy.

We also applied these methods to the pattern domain. Figure 6.3 shows the

comparison between the ground truth patterns and the standard patterns we

obtained for the clusters predicted with the different methods. Except for the

NMF and Self2Comp methods, since the patterns and the clusters are not

predicted at the same time with the other methods, the HAC, K-means, spectral

clustering and PCA are performed solely on the pattern domain. This figure

shows that the NMF and Self2Comp can also yield patterns which are matched

with the ground truth, however, the NMF patterns contain more errors (minor

peaks) than Self2Comp’s. Since the original dataset contains no noise, those

minor peaks captured by NMF on each pattern are incorrectly taken from other

phases, which may weaken the strengths of the diffraction patterns of other

components.

The quantitative analysis is shown in Table 6.1. Taking the maximum of each

pattern as 1, the XRD-CT volume is composed of five equal-strength

normalised diffraction patterns. The numbers in the table show the weight of the

maximum value on the five maps shown in Figure 6.2. According to the table,

the Al phase was over-predicted by the NMF when the other phases’ maximum

values were similar to the ground truth. This result is aligned with the dark

patterns we can see from the NMF’s Pt map from Figure 6.2, which means that

some parts of the Zn phase are predicted incorrectly as the Al phase is with the

NMF method.
Table 6.1: The quantitive analysis of the phases predicted by the NMF and Self2Vol methods.
The numbers in the tables correspond to the maximum signal strength of each cluster’s maps
shown in Figure2.

Al Cu Fe Pt Zn

Ground Truth 1 1 1 1 1

NMF 1.3382 0.9995 1.0306 1.0357 1.0452

Self2Comp 1.0311 1.0131 1.0381 1.0500 0.9936
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Figure 6.2: Comparison between the Self2Comp and conventional methods on the simulated
noise-free dataset. The dataset contains five simulated phases with the same signal strength,
and all output classes presented in the figure are normalised. The image size is 200 x 200 and
each pixel contains 250 channels of diffraction patterns. The NMF and Self2Comp predicted
diffraction pattern associated with the clusters is presented in Figure 6.3.
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Figure 6.3: Comparison between the Self2Comp and conventional methods on the simulated
noise-free dataset’s diffraction patterns. The dataset contains five simulated phases with the
same signal strength, and all output classes presented in the figure are normalised. The NMF
and Self2Comp results are obtained simultaneously with the maps shown in Figure 6.2, The
HAC, K-means, Spectral clustering and PCA results are trained separately in the pattern
domain.

Furthermore, for a better representation of real-life experimental data, we then

created a new composited dataset with unbalanced phases and Poisson noise.

Except for the Al phase, which retained a 100 % signal strength compared to

the previous dataset, the Cu, Fe, Pt and Zn phases were set to 80, 60, 40 and
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20 % signal strength respectively. We then reperformed both the conventional

and the Self2Comp network again on the new XRD-CT dataset and the results

are shown in Figure 6.4 and Figure 6.5. These two figures indicate that the

Self2Comp works well on clustering the Al, Cu, Fe and Pt maps, but it struggled

with the presence of the Zn phase which is the weakest of all components.

Meanwhile, the NMF can correctly predict the standard patterns and their

corresponding signal strength maps for the first four components, and predict

accurate diffraction patterns for the Zn phase. Because of the noise added and

the more complex nature of this dataset, the SSIM score for the Self2Comp

model is reduced to 99.1 %, which is calculated among all pixels on each

cluster whereas NMF achieved 97.3 % accuracy.

A quantitative analysis of the results are shown in Table 6.2. It is worth

mentioning that this table only represents the signal strength of the strongest

component of the signal present in Figure 6.5; it does not give the general

difference between the ground truth and the predicted clusters, especially for

the Zn phase. According to the table, the Cu phase predicted by NMF is much

stronger (0.8847) than the ground truth (0.8), which is not as good as the

Self2Comp result (0.8096). Both methods’ performance on the Pt clusters is

worse than the other clusters and which may be because the two peaks of the

Pt pattern overlap with the 2-3 peaks from the Al pattern, which is much more

intense.

Table 6.2: The quantitative analysis of the phases predicted by the NMF and Self2Comp
methods. The numbers in the tables correspond to the maximum signal strength of each
cluster’s maps shown in Figure 6.4.

5 clusters 10 clusters 15 clusters 20 clusters

Ground

Truth

1 0.8 0.6 0.4

NMF 1.0397 0.8847 0.6119 0.4232

Self2Comp 1.0113 0.8096 0.6019 0.4247
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Figure 6.4: Comparison between the Self2Comp and conventional methods on the simulated
noisy dataset. The relative signal strength of the metal components compared to Figure 6.2 for
the Al, Cu, Fe, Pt and Zn phases were 100, 80, 60, 40, and 20 % respectively, in order to give a
better simulation of real experimental data. The image size is 200 x 200 and each pixel contains
250 channels of diffraction patterns. The NMF and Self2Comp predicted diffraction patterns
associated with the clusters is presented in Figure 6.5.
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Figure 6.5: Comparison between the Self2Comp and conventional methods on the simulated
noisy diffraction patterns. The relative signal strength of the metal components compared to
Figure 6.2 for the Al, Cu, Fe, Pt and Zn phases were 100, 80, 60, 40, and 20 % respectively, in
order to give a better simulation of real experimental data. The NMF and Self2Comp results are
obtained simultaneously with the maps shown in Figure 6.4, The HAC, K-means, Spectral
clustering and PCA results are trained separately in the pattern domain.

The Self2Comp clustering technique offers many advantages, one of which is

eliminating the need to pre-define the number of components. By applying the

sigmoid regularisation function, this network can automatically detect the

number of clusters needed [51]. Figure S3.1 in Appendix 3 displays the same
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scenario as the unbalanced simulated dataset, with ten components for

Self2Comp to predict. Self2Comp can accurately identify the five components,

while the remaining five components exhibited very low signal strength

compared to the other five components.

The nature of the sigmoid function makes it more sensitive to weak signals than

strong signals, which means the regularisation function does not alter the loss

function too much for the correct components. Therefore, the Self2Comp can

critically evaluate the dataset and determine that fewer components could more

accurately represent the dataset. This approach enhances the network's

robustness by preventing overfitting that might occur if all components,

including those with low signal strength, were given equal consideration.

6.3.2 Self2Comp on Experimental Li-ion Battery XRD-CT Image

We further tested the Self2Comp dataset on an experimental XRD-CT image of

a commercial Li-ion AAA battery during its discharge phase with a C/20 rate

[52]. The dataset comprises 285 x 285 x 570 voxels and since they are real, has

various artefacts such as noise, parallax, and self-absorption. We first applied

the ParallaxNet to remove the parallax artefact and then used both Self2Comp

and NMF to decompose this experimental dataset. We used ten components in

both methods and all the results, along with their corresponding diffraction

patterns, are displayed in Appendix 3. Figure 6.6 summarises the comparison

between the components obtained from the two methods and the ground truth

image. The ground truth is obtained by taking the average among the diffraction

channels where the phase’s diffraction peak exists (the background is then

subtracted). Compared to the results shown in the paper, the eight components

shown below cover all important phases present in the dataset. As shown in the

figure, the NMF failed to detect the LiC30 and the polymer separator phases,

and these two phases have the weakest signal strengths among the eight

components.
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Figure 6.6: Comparison between the Self2Comp and NMF on the experimental AAA Li-ion
battery XRD-CT dataset during the discharge phase at C/20 rate. The ground truth image was
acquired by averaging the images around the standard peaks of the phases and subtracting the
background signal. Both Self2Comp and NMF were configured to predict ten clusters for this
dataset. Self2Comp accurately predicted all eight components displayed in the figure, while
NMF identified only six.
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Figure 6.7: Selected XRD pattern peaks associated with the (a) LiC30 cluster (b) NMC532
clusters predicted by the Self2Comp. Both phases undergo a peak shift at various positions of
the sample. The different behaviour of the Self2Comp on the number of output clusters is highly
related to the phase’s signal strength and the ratio of regularisation factor in the Loss function.

Since the NMC532 is a hexagonal lattice and its lattice parameters are varied,

the peak shifting occurs among all positions where this phase is present.

Therefore, both methods failed to summarise the NMC532 material in the same

cluster, instead, they are splitting the NMC532 phase into two sub-clusters

which are marked as NMC532(a) and NMC532(b). Interestingly, for another

hexagonal lattice, the LiC30, Self2Comp correctly identifies the phase as one

cluster, however, the peak splitting is observed in its corresponding diffraction
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pattern. The selected peaks of the detected NMC532 and LiC30 XRD patterns

by Self2Comp are presented in Figure 6.7. In conclusion, for phases with

weaker signals, Self2Comp and its Sigmoid function tend to group them into

one cluster to seek a lower loss with regularisation. In contrast, for stronger

phases, Self2Comp is more inclined to use multiple clusters to reflect different

peak positions for a better representation of the original dataset.

6.4 Summary and conclusion

In this chapter, we have presented a new CNN-based image clustering method,

Self2Comp. In order to evaluate the performance of the Self2Comp

architecture, we first applied it to a clean, simulated XRD-CT dataset generated

by the nDTomo package. We generated five simulated component maps and

associated noiseless diffraction patterns corresponding to the Al, Cu, Fe, Pt,

and Zn phases, each containing 250 channels. These were composited

together to form a simulated 200 x 200 x 250 XRD-CT data volume.

For the initial testing, we performed HAC, K-means, Spectral clustering, and

NMF, in comparison with Self2Comp on the simulated datasets using the

sci-kit-learn python-based machine learning package. NMF performed the best

among conventional methods in decomposing the dataset, albeit with difficulty

in accurately predicting the Zn phase. However, Self2Comp outperformed NMF,

as it was able to clearly capture the Zn component. The quantitative analysis

indicated an overall SSIM score of over 99.5 % for Self2Comp, while NMF only

achieved 98.3 % accuracy.

For a more accurate representation of real-life experimental data, we created a

new dataset with unbalanced phases and Poisson noise. We then reapplied

both conventional and Self2Comp networks again on this new dataset. Although

Self2Comp struggled with the weakest phase (Zn), it outperformed NMF in the

overall SSIM score (99.1 versus 97.3 %).
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One significant advantage of Self2Comp is the elimination of the need to

pre-define the number of clusters. Through the application of a sigmoid

regularisation function, the network can automatically detect the number of

required clusters. This prevents overfitting that might occur if all clusters,

including those with low signal strength, were given equal consideration. We

further tested the Self2Comp model on an experimental XRD-CT image of a

commercial Li-ion AAA battery during its discharge phase at C/20 rate.

Compared to the ground truth, Self2Comp accurately predicted eight

components, whereas NMF only managed to identify six. The failure of NMF to

detect the LiC30 and the polymer separator phases, both of which have the

weakest signal strengths among the eight components, further highlights the

robust performance of Self2Comp.

Self2Comp could potentially be applied to other data frames as an alternative

choice to NMF. For faster performance, the Self2Comp can directly adapt the

NMF clusters as the input and only focus on the remaining components that are

missed by the NMF or other conventional techniques. However, at this stage

Self2Comp may not necessarily supersede NMF since Self2Comp has more

trainable parameters, it generally takes more time (For the simulated dataset

NMF took 34 s, and Self2Comp took 380 s. For the experimental dataset, NMF

took 13 min, and Self2Comp took 44 min.), and for some simpler problems (with

fewer components and without strong artefacts), their performance is actually

quite similar. In the future, we could explore potential applications of Self2Comp

in various situations. For instance, we could directly cluster sinogram data to

eliminate metal artefacts or denoise XRD-CT images by merging components.

Furthermore, Self2Comp could have implications in other fields such as audio

signal processing, as well as document clustering and topic modelling [53]–[56].

6.5 References

[1] S. Shukla and S. Naganna, ‘A review on K-means data clustering
approach’, Int. J. Inf. Comput. Technol., vol. 4, no. 17, pp. 1847–1860,
2014.

256



[2] K. Krishna and M. Narasimha Murty, ‘Genetic K-means algorithm’, IEEE
Trans. Syst. Man Cybern. Part B Cybern., vol. 29, no. 3, pp. 433–439, Jun.
1999, doi: 10.1109/3477.764879.

[3] D. Arthur and S. Vassilvitskii, ‘k-means++: The advantages of careful
seeding’, Stanford, 2006.

[4] A. Kapoor and A. Singhal, ‘A comparative study of K-Means, K-Means++
and Fuzzy C-Means clustering algorithms’, in 2017 3rd international
conference on computational intelligence & communication technology
(CICT), IEEE, 2017, pp. 1–6.

[5] N. Gurudath and H. B. Riley, ‘Drowsy driving detection by EEG analysis
using wavelet transform and K-means clustering’, Procedia Comput. Sci.,
vol. 34, pp. 400–409, 2014.

[6] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, ‘DBSCAN
revisited, revisited: why and how you should (still) use DBSCAN’, ACM
Trans. Database Syst. TODS, vol. 42, no. 3, pp. 1–21, 2017.

[7] X. Dong, L. Qian, and L. Huang, ‘Short-term load forecasting in smart grid:
A combined CNN and K-means clustering approach’, in 2017 IEEE
international conference on big data and smart computing (BigComp),
IEEE, 2017, pp. 119–125.

[8] D. Müllner, ‘Modern hierarchical, agglomerative clustering algorithms’,
ArXiv Prepr. ArXiv11092378, 2011.

[9] A. Bouguettaya, Q. Yu, X. Liu, X. Zhou, and A. Song, ‘Efficient
agglomerative hierarchical clustering’, Expert Syst. Appl., vol. 42, no. 5, pp.
2785–2797, 2015.

[10] L. Muflikhah and B. Baharudin, ‘Document clustering using concept space
and cosine similarity measurement’, in 2009 International conference on
computer technology and development, IEEE, 2009, pp. 58–62.

[11] F. Murtagh and P. Contreras, ‘Algorithms for hierarchical clustering: an
overview’, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 2, no. 1,
pp. 86–97, 2012.

[12] R. Nugent and M. Meila, ‘An overview of clustering applied to molecular
biology’, Stat. Methods Mol. Biol., pp. 369–404, 2010.

[13] J. R. Fonseca, ‘Clustering in the field of social sciences: That is your
choice’, Int. J. Soc. Res. Methodol., vol. 16, no. 5, pp. 403–428, 2013.

[14] Y. Iwasaki, A. G. Kusne, and I. Takeuchi, ‘Comparison of dissimilarity
measures for cluster analysis of X-ray diffraction data from combinatorial
libraries’, Npj Comput. Mater., vol. 3, no. 1, pp. 1–9, 2017.

[15] H. Sarhaddi-Dadian, Z. Ramli, A. Rahman, and R. Mehrafarin, ‘X-ray
diffraction and X-ray fluorescence analysis of pottery shards from new
archaeological survey in south region of Sistan, Iran’, Mediterr. Archaeol.
Archaeom., vol. 15, no. 3, pp. 45–56, 2015.

[16] U. König and E. Spicer, ‘X-ray diffraction (XRD) as a fast industrial analysis
method for heavy mineral sands in process control and
automation—Rietveld refinement and data clustering’, in The 6th
International Heavy Minerals Conference ‘Back to Basics’; The Southern
African Institute of mining and Metallurgy, Nyala Game Lodge: Natal, South
Africa, 2007.

[17] P. Franti, O. Virmajoki, and V. Hautamaki, ‘Fast agglomerative clustering

257



using a k-nearest neighbor graph’, IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 11, pp. 1875–1881, 2006.

[18] G. K. Chen, E. C. Chi, J. M. O. Ranola, and K. Lange, ‘Convex Clustering:
An Attractive Alternative to Hierarchical Clustering’, PLoS Comput. Biol.,
vol. 11, no. 5, p. e1004228, May 2015, doi: 10.1371/journal.pcbi.1004228.

[19] F. Murtagh and P. Legendre, ‘Ward’s hierarchical clustering method:
clustering criterion and agglomerative algorithm’, ArXiv Prepr.
ArXiv11116285, 2011.

[20] A. Ng, M. Jordan, and Y. Weiss, ‘On spectral clustering: Analysis and an
algorithm’, Adv. Neural Inf. Process. Syst., vol. 14, 2001.

[21] H. Jia, S. Ding, X. Xu, and R. Nie, ‘The latest research progress on
spectral clustering’, Neural Comput. Appl., vol. 24, pp. 1477–1486, 2014.

[22] U. Von Luxburg, ‘A tutorial on spectral clustering’, Stat. Comput., vol. 17,
pp. 395–416, 2007.

[23] H. Chang and D.-Y. Yeung, ‘Robust path-based spectral clustering’, Pattern
Recognit., vol. 41, no. 1, pp. 191–203, Jan. 2008, doi:
10.1016/j.patcog.2007.04.010.

[24] K. Xia, X. Gu, and Y. Zhang, ‘Oriented grouping-constrained spectral
clustering for medical imaging segmentation’, Multimed. Syst., vol. 26, no.
1, pp. 27–36, Feb. 2020, doi: 10.1007/s00530-019-00626-8.

[25] C. H. Yoon et al., ‘Unsupervised classification of single-particle X-ray
diffraction snapshots by spectral clustering’, Opt. Express, vol. 19, no. 17,
pp. 16542–16549, Aug. 2011, doi: 10.1364/OE.19.016542.

[26] Q. Li, Y. Song, J. Zhang, and V. S. Sheng, ‘Multiclass imbalanced learning
with one-versus-one decomposition and spectral clustering’, Expert Syst.
Appl., vol. 147, p. 113152, Jun. 2020, doi: 10.1016/j.eswa.2019.113152.

[27] X. Yang, Q. Kuang, W. Zhang, and G. Zhang, ‘AMDO: An Over-Sampling
Technique for Multi-Class Imbalanced Problems’, IEEE Trans. Knowl. Data
Eng., vol. 30, no. 9, pp. 1672–1685, Sep. 2018, doi:
10.1109/TKDE.2017.2761347.

[28] C. Ferri, J. Hernández-Orallo, and R. Modroiu, ‘An experimental
comparison of performance measures for classification’, Pattern Recognit.
Lett., vol. 30, no. 1, pp. 27–38, Jan. 2009, doi:
10.1016/j.patrec.2008.08.010.

[29] K. Pearson, ‘LIII. On lines and planes of closest fit to systems of points in
space’, Lond. Edinb. Dublin Philos. Mag. J. Sci., vol. 2, no. 11, pp.
559–572, 1901.

[30] I. T. Jolliffe and J. Cadima, ‘Principal component analysis: a review and
recent developments’, Philos. Trans. R. Soc. Math. Phys. Eng. Sci., vol.
374, no. 2065, p. 20150202, 2016.

[31] Z. P. Chen et al., ‘Enhancing the signal-to-noise ratio of X-ray diffraction
profiles by smoothed principal component analysis’, Anal. Chem., vol. 77,
no. 20, pp. 6563–6570, 2005.

[32] E. Conterosito, L. Palin, R. Caliandro, W. van Beek, D. Chernyshov, and M.
Milanesio, ‘CO2 adsorption in Y zeolite: a structural and dynamic view by a
novel principal-component-analysis-assisted in situ single-crystal X-ray
diffraction experiment’, Acta Crystallogr. Sect. Found. Adv., vol. 75, no. 2,
Art. no. 2, Mar. 2019, doi: 10.1107/S2053273318017618.

258



[33] E. Conterosito, M. Lopresti, and L. Palin, ‘In situ x-ray diffraction study of
Xe and CO2 adsorption in y zeolite: Comparison between Rietveld and
PCA-based analysis’, Crystals, vol. 10, no. 6, p. 483, 2020.

[34] J. Oddershede, K. Nielsen, and K. Stahl, ‘Using X-ray powder diffraction
and principal component analysis to determine structural properties for bulk
samples of multiwall carbon nanotubes’, Z. Für Krist. - Cryst. Mater., vol.
222, no. 3–4, pp. 186–192, Mar. 2007, doi: 10.1524/zkri.2007.222.3-4.186.

[35] D. D. Lee and H. S. Seung, ‘Learning the parts of objects by non-negative
matrix factorization’, Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[36] Y.-X. Wang and Y.-J. Zhang, ‘Nonnegative matrix factorization: A
comprehensive review’, IEEE Trans. Knowl. Data Eng., vol. 25, no. 6, pp.
1336–1353, 2012.

[37] D. Lee and H. S. Seung, ‘Algorithms for non-negative matrix factorization’,
Adv. Neural Inf. Process. Syst., vol. 13, 2000.

[38] Z. Yang, H. Zhang, Z. Yuan, and E. Oja, ‘Kullback-Leibler divergence for
nonnegative matrix factorization’, in Artificial Neural Networks and Machine
Learning–ICANN 2011: 21st International Conference on Artificial Neural
Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I 21,
Springer, 2011, pp. 250–257.

[39] M. Sun, Y. Li, J. F. Gemmeke, and X. Zhang, ‘Speech enhancement under
low SNR conditions via noise estimation using sparse and low-rank NMF
with Kullback–Leibler divergence’, IEEEACM Trans. Audio Speech Lang.
Process., vol. 23, no. 7, pp. 1233–1242, 2015.

[40] C. Févotte and J. Idier, ‘Algorithms for nonnegative matrix factorization with
the β-divergence’, Neural Comput., vol. 23, no. 9, pp. 2421–2456, 2011.

[41] P. M. Maffettone, A. C. Daly, and D. Olds, ‘Constrained non-negative matrix
factorization enabling real-time insights of in situ and high-throughput
experiments’, Appl. Phys. Rev., vol. 8, no. 4, p. 041410, Dec. 2021, doi:
10.1063/5.0052859.

[42] C. Févotte, N. Bertin, and J.-L. Durrieu, ‘Nonnegative matrix factorization
with the Itakura-Saito divergence: With application to music analysis’,
Neural Comput., vol. 21, no. 3, pp. 793–830, 2009.

[43] C. Févotte, ‘Itakura-Saito nonnegative factorizations of the power
spectrogram for music signal decomposition’, in Machine Audition:
Principles, Algorithms and Systems, IGI Global, 2011, pp. 266–296.

[44] P. O. Hoyer, ‘Non-negative sparse coding’, in Proceedings of the 12th IEEE
workshop on neural networks for signal processing, IEEE, 2002, pp.
557–565.

[45] S. Sra and I. Dhillon, ‘Generalized nonnegative matrix approximations with
Bregman divergences’, Adv. Neural Inf. Process. Syst., vol. 18, 2005.

[46] C. J. Long, D. Bunker, X. Li, V. L. Karen, and I. Takeuchi, ‘Rapid
identification of structural phases in combinatorial thin-film libraries using
x-ray diffraction and non-negative matrix factorization’, Rev. Sci. Instrum.,
vol. 80, no. 10, p. 103902, 2009.

[47] V. Stanev, V. V. Vesselinov, A. G. Kusne, G. Antoszewski, I. Takeuchi, and
B. S. Alexandrov, ‘Unsupervised phase mapping of X-ray diffraction data
by nonnegative matrix factorization integrated with custom clustering’, Npj
Comput Mater, vol. 4, p. 43, 2018.

259



[48] P. Bordet, F. Kergourlay, A. Pinto, N. Blanc, and P. Martinetto, ‘Applying
multivariate analysis to X-ray diffraction computed tomography: the study
of medieval applied brocades’, J. Anal. At. Spectrom., vol. 36, no. 8, pp.
1724–1734, 2021, doi: 10.1039/D1JA00143D.

[49] A. Vamvakeros and H. Dong, ‘nDTomo software suite’, 2019, doi:
https://doi.org/10.5281/zenodo.7139214.

[50] F. Pedregosa et al., ‘Scikit-learn: Machine Learning in Python’, J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

[51] T. Doan and A. Takasu, ‘Kernel Clustering With Sigmoid Regularization for
Efficient Segmentation of Sequential Data’, IEEE Access, vol. 10, pp.
62848–62862, 2022, doi: 10.1109/ACCESS.2022.3182345.

[52] A. Vamvakeros et al., ‘Cycling Rate-Induced Spatially-Resolved
Heterogeneities in Commercial Cylindrical Li-Ion Batteries’, Small Methods,
vol. 5, no. 9, p. 2100512, 2021, doi: 10.1002/smtd.202100512.

[53] J. Le Roux, J. R. Hershey, and F. Weninger, ‘Deep NMF for speech
separation’, in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Apr. 2015, pp. 66–70. doi:
10.1109/ICASSP.2015.7177933.

[54] S. Nie, S. Liang, W. Liu, X. Zhang, and J. Tao, ‘Deep learning based
speech separation via NMF-style reconstructions’, IEEEACM Trans. Audio
Speech Lang. Process., vol. 26, no. 11, pp. 2043–2055, 2018.

[55] N. Guan, X. Huang, L. Lan, Z. Luo, and X. Zhang, ‘Graph based
semi-supervised non-negative matrix factorization for document clustering’,
in 2012 11th International Conference on Machine Learning and
Applications, IEEE, 2012, pp. 404–408.

[56] G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. Schuller, ‘A deep
semi-nmf model for learning hidden representations’, in International
conference on machine learning, PMLR, 2014, pp. 1692–1700.

260



Chapter 7: Conclusion and Future Works

7.1 Conclusion

In this thesis, I have established a pipeline for analysing the chemical imaging

data, especially the X-ray diffraction Tomographic (XRD-CT) data, with the help

of Convolutional Neural Networks (CNNs), supervised and self-supervised

learning techniques. The code and dataset availability for this thesis can be

found in Appendix 4.

The PQ-Net shown in Chapter 3 successfully extracts physicochemical data

from X-ray diffraction (XRD) patterns. Its efficacy was tested across diverse

datasets, ranging from simulated single-phase to complex experimental

five-phase systems. The study highlighted the principal advantage of the

PQ-Net: the capacity to generate diffraction libraries in advance and pre-train

the model. This feature allows for real-time assessment of diffraction data

during an in situ/operando experiment. It is important to stress that PQ-Net's

benefits become particularly apparent when dealing with large datasets. The

model, once trained, can rapidly generate predictions for numerous diffraction

patterns, offering a time-efficient alternative to conventional full-profile analysis

methods like the Rietveld method. The PQ-Net is projected to become an

indispensable tool for diffraction applications beyond synchrotron experiments,

potentially providing a real-time quality inspection in manufacturing or synthesis.

The PQ-Net, however, is not intended to supersede the Rietveld method,

because PQ-Net requires a large amount of training data, it does not have an

advantage over the Rietveld method when the amount of diffraction data that

needs to be analysed is small, but rather to augment it by providing a speedy

and solid approximation to the global minimum.

Both supervised and self-supervised learning approaches for CT image

reconstruction and angular undersampling artefact removal are shown in

Chapter 4. In this chapter, a self-supervised deep-learning method SD2I for
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tomographic reconstruction is presented, and this architecture has become the

fundamental architecture of the ParallaxNet shown in Chapter 5. The SD2I

approach exhibits remarkable resilience to angular undersampling,

outperforming both conventional iterative and analytical methods. Its

computational efficiency surpasses other deep-learning reconstruction

techniques, enabling SD2I to handle larger sinograms with lighter hardware

requirements. The simplicity of the architecture is maintained by excluding a

discriminator network, which adds complexity but not necessarily image quality.

The ability to accurately reconstruct images from sparsely sampled sinograms

is pivotal for time-sensitive in situ/operando tomography experiments and

reducing X-ray doses in medical CT. Despite the current limitation in matching

FBP's accuracy and speed, both supervised and self-supervised learning

methods have shown potential in suppressing angular undersampling artefacts

with real experimental data. The SD2I network could be extended to other

tomographic methods and modalities, such as neutron and X-ray fluorescence

tomography.

We also illustrated an updated version of SD2I architecture, the ParallaxNet, in

Chapter 5. It successfully eliminates parallax artefacts by using a 3D neural

network generator framework and a customized parallax forward projector. This

approach is validated using three different datasets and offers several

advantages over traditional methods, such as the ability to reconstruct accurate

peak positions using only half of the CT rotation scans, thereby reducing

acquisition times. The peaks are also sharper and more defined compared to

those from conventional Filtered Back Projection (FBP) methods.

Compared to the Direct Least-Squares Reconstruction (DLSR), which is a

purely mathematical solution for correcting parallax artefacts, ParallaxNet does

not require prior knowledge about the sample's chemistry, is more scalable, has

lower RAM requirements, and does not require data preprocessing. Despite its

promising results, ParallaxNet does have limitations, primarily its computational
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time. For example, a large dataset took up to 90 h to process due to GPU

memory constraints.

In Chapter 6, we introduced the Self2Comp architecture, a new Convolutional

Neural Network (CNN)-based image clustering method, and evaluated its

performance against several conventional techniques. Initial tests were

conducted on a simulated XRD-CT dataset with and without Poisson noise.

Then the Self2Comp was applied to an experimental dataset from a commercial

Li-ion AAA battery. Self2Comp was able to detect eight components, whereas

the Non-negative Matrix Factorization (NMF) only identified six, failing to detect

components with weak signal strengths. However, Self2Comp is

computationally more intensive due to its additional trainable parameters. For

example, Self2Comp took 380 s on the simulated dataset and 44 min on the

experimental one, compared to NMF's 34 s and 13 min, respectively. In future

research, experimenting with various optimizers and regularization techniques

on Self2Comp could lead to improved speed and enhanced reliability.

7.2 Future Plans

In this thesis, I have illustrated image machine-learning methods to solve

individual problems we met in the chemical imaging analysis pipeline. In the

future, combined machine learning methods that can solve multiple issues we

encountered in one go are worth exploring. For example, the Self2Comp

method can be combined with the PQ-Net to indicate the phases that are not

included in the training dataset of the PQ-Net. The ParallaxNet can be

combined with PQ-Net to directly extract the chemical information from the

dataset with parallax artefact. And more other advanced image-denoising

methods can also be included in the SD2I and ParallaxNet loops to reconstruct

noise-free CT images. For each individual method I presented in this thesis,

there are also some improvements that can be made, which will be discussed in

the following sections.
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7.2.1 Phase Quantification Neural Network (PQ-Net)

The PQ-Net is an adjustable architecture, which can potentially be extended to

solve various problems which includes measuring different materials and

performing weight and parameter refinement at the same time. At the moment,

PQ-Net utilises convolutional layers with filter sizes 25 to 35. However, using

multiple convolutional layers with 3 filters instead of a convolutional layer with a

large filter can possibly yield better results and make the CNN more flexible. We

have conducted some initial tests on this and observed some improvement in

the result’s accuracy on the simulated test dataset. The optimal number of

layers to use and the use of other kinds of feature extraction layers, like the

dilated convolutional layers, are worth exploring.

Moreover, currently, PQ-Net is based on the traditional supervised learning

approach, which requires a large dataset that is used to train the model, which

will be used multiple times during training in order to get the best-fit minimum.

This approach, in our experience, can never avoid the overfitting problem, and

the dataset will introduce bias to the network. Increasing the number of patterns

in the training dataset is the current solution to this. In the paper, we have

illustrated how the model is improved when the training dataset size increased

from 10,000 patterns to 250,00 patterns. In the future, a potential

self-supervised learning approach could mitigate overfitting and bias problems

caused by the training dataset. By allowing PQ-Net models to see each

simulated diffraction pattern only once during training, and by using a fast,

GPU-based forward operator to simulate diffraction patterns based on random

input parameters, we could minimise the bias associated with a specific training

dataset.

In the future, we also plan to test the PQ-Net's applicability in other analytical

methods like X-ray absorption fine structure spectroscopy (XAFS), and fast

analysis of powder diffraction data with more than 20 phases present. Finally,

we anticipate that the PQ-Net could be a valuable resource for diffraction uses
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beyond just synchrotron experiments, including real-time quality checks in

manufacturing and synthesis processes.

7.2.2 Image Reconstruction Methods

In Chapter 5, we have illustrated many studies that have utilised Generative

Adversarial Networks (GAN) architectures for supervised and self-supervised

learning models, but we found that the discriminator did not significantly

enhance the final SD2I results. However, we also found that discriminators do

help the convergence speed, especially at the early stage of training. Therefore,

we are considering the use of a pre-trained discriminator for future studies to

potentially accelerate the convergence of the joint loss to a local minimum.

At this stage, the SD2I has shown its ability to reconstruct clean images with

only a few parameters. In the future, the pixel learning methods combined with

reliable denoising methods may be explored to further reduce the number of

parameters needed for running the self-supervised image reconstruction.

7.2.3 XRD-CT Image Decomposition

Currently, the Self2Comp algorithm is only applied to XRD-CT datasets. Future

applications of Self2Comp could extend to other data types and fields like audio

signal processing and document clustering, because these data are naturally

non-negative, like the XRD-CT dataset, and the interpretability of the

decomposed components is important [1]–[4]. Meanwhile, a more optimised

architecture design is also worth exploring. Now the Self2Comp consists of

three neural networks that share the same loss function. However, the different

convergence rates of the three networks render the results easier to fall into

local minima. In the future, using only one big neural network to replace the

three small neural networks is a possible way to improve the current Self2Comp

architecture.
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Appendix 1

No-Splitting PQ-Net Architecture for Multi-Phase System

Figure S1.1: Regression CNN architecture for POX catalyst experimental system with five
phases. CONV represents 1-D convolutional layers, POOL represents max-pooling layers, FC
represents fully connected layers, and FC represents the fully connected layers. This
architecture contains 20 outputs which are the same as the outputs in Chapter 3, Figure 5.
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Phase parameters for particles-of-interest

Table S1.1:

NiO Lattice Parameter a (Å) Crystallite Size (nm)

Particle 1 Ground Truth 4.153 22

PQ-Net 4.1525 22.2

Particle 2 Ground Truth 4.144 47

PQ-Net 4.1441 45.9

Particle 3 Ground Truth 4.132 31

PQ-Net 4.1328 31.2

Table S1.2:

CeO2 Lattice Parameter a (Å) Crystallite Size (nm)

Particle 1 Ground Truth 5.345 46

PQ-Net 5.346 45.6

Particle 2 Ground Truth 5.325 2

PQ-Net 5.329 2.4

Particle 3 Ground Truth 5.305 42

PQ-Net 5.305 43.1
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Table S1.3:

ZrO2 Lattice

Parameter a

(Å)

Lattice

Parameter c

(Å)

Crystallite Size

(nm)

Particle 1 Ground Truth 3.609 5.217 26

PQ-Net 3.610 5.217 26.8

Particle 2 Ground Truth 3.618 5.267 21

PQ-Net 3.624 5.263 8.4

Particle 3 Ground Truth 3.62 5.245 47

PQ-Net 3.621 5.245 42.9

Table S1.4:

PdO Lattice

Parameter a

(Å)

Lattice

Parameter c

(Å)

Crystallite Size

(nm)

Particle 1 Ground Truth 2.998 5.366 48

PQ-Net 2.999 5.366 47.4

Particle 2 Ground Truth 2.995 5.339 42

PQ-Net 2.996 5.339 42.5

Particle 3 Ground Truth 3.003 5.337 14

PQ-Net 3.003 5.338 15.2
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Table S1.5:

Al2O3 Lattice

Parameter

a (Å)

Lattice

Parameter

b (Å)

Lattice

Parameter

c (Å)

Lattice

Parameter

beta (°)

Crystallite

Size (nm)

Particle 1 Ground

Truth

11.962 11.146 11.089 104.068 19

PQ-Net 11.964 11.146 11.087 103.838 19.8

Particle 2 Ground

Truth

11.957 11.14 11.072 103.501 30

PQ-Net 11.963 11.137 11.070 103.382 31.8

Particle 3 Ground

Truth

11.963 11.15 11.068 104.219 9

PQ-Net 11.959 11.139 11.074 103.870 9.3
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Appendix 2

CNN-rec: Impact of training data type

Library sizes: 20,000

Learning rate : 0.000025

Loss function: mean squared error (mse)

Image Size: 128 × 128 pixels

Batch size: 32

Training time: 16ms/step

Early stopping (patience) : 5

The mse for the validation data is lower due to the dropout layers in the CNN-rec

Table S2.1: The details of training details of reconstruction networks with single training data

type

Training library Epochs MSE Val MSE

Ni Phantom 56 2.24 × 10-4 1.24 × 10-4

Battery 200 7.50 × 10-4 6.04 × 10-4

POX Experimental 117 5.74 × 10-4 4.25 × 10-4

3D printed catalyst

Experimental

67 8.19 × 10-4 7.30 × 10-4

Combined (20 K) 160 9.01 × 10-4 6.92 × 10-4

Combined (80 K) 75 8.33 × 10-4 6.07 × 10-4
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CNN-rec: Metrics and Comparison with FBP

Table S2.2: Ni test dataset images. Metrics calculated with respect to the ground truth images.

Training library SSIM PSNR MSE

Ni Phantom 0.9933 38.0883 0.0002

Battery 0.3677 13.4364 0.0453

POX Experimental 0.4072 13.8146 0.0415

3D printed catalyst 0.5744 16.9376 0.0202

Combined (20 K) 0.9783 33.7930 0.0004

Combined (80 K) 0.9871 35.5392 0.0003

FBP 0.9496 32.7723 0.0005

Table S2.3: Battery test dataset images. Metrics calculated with respect to the ground truth

images.

Training library SSIM PSNR MSE

Ni Phantom 0.1133 11.7616 0.0667

Battery 0.9800 29.3750 0.0012

POX Experimental 0.3555 12.1973 0.0603

3D printed catalyst 0.3740 12.2542 0.0595

Combined (20 K) 0.9629 27.2021 0.0019

Combined (80 K) 0.9710 27.7324 0.0017

FBP 0.9250 23.8939 0.0041
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Table S2.4: POX test dataset images. Metrics calculated with respect to the ground truth

images.

Training library SSIM PSNR MSE

Ni Phantom 0.1510 9.3692 0.1156

Battery 0.5225 13.3934 0.0458

POX Experimental 0.9689 31.4884 0.0007

3D printed catalyst 0.3886 8.6631 0.1360

Combined (20 K) 0.9668 30.2381 0.0009

Combined (80 K) 0.9664 30.8215 0.0008

FBP 0.9663 30.6442 0.0009

Table S2.5: 3D printed catalyst test dataset images. Metrics calculated with respect to the

ground truth images.

Training library SSIM PSNR MSE

Ni Phantom 0.3337 11.0777 0.0780

Battery 0.3324 8.5462 0.1398

POX Experimental 0.3450 8.7414 0.1336

3D printed catalyst 0.9752 30.1523 0.0009

Combined (20 K) 0.9632 29.7243 0.0011

Combined (80 K) 0.9727 30.1083 0.0010

FBP 0.9280 27.9155 0.0016
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Table S2.6. The influence of the choice of different ground truth values on the metrics. All the

images are reconstructed from the same 256x400 sinogram.

MAE MSE SSIM PSNR

Clean Image
as reference

SD2Iu 0.00247 0.000087 0.9968 41.3097

SD2I 0.00188 0.000018 0.9958 48.2559

FBP 0.00785 0.000786 0.9614 31.7733

SIRT 0.01020 0.001441 0.9670 29.1397

SART 0.01799 0.001886 0.7677 27.9702

CGLS 0.00444 0.000074 0.9480 42.0577

FBP with 400
proj

as reference

SD2Iu 0.00775 0.000685 0.9643 32.3659

SD2If 0.00794 0.000737 0.9624 32.0493

SIRT 0.00476 0.000186 0.9868 38.0200

SART 0.01327 0.000696 0.8171 32.3003

CGLS 0.00807 0.000613 0.9731 32.8483

Clean image 0.00785 0.000786 0.9614 31.7733

CGLS with
400 proj

as reference

SD2Iu 0.00503 0.000107 0.9478 40.4165

SD2If 0.00454 0.000070 0.9484 42.2571

FBP 0.00807 0.000613 0.9731 32.8483

SIRT 0.01134 0.001249 0.9519 29.7601

SART 0.01595 0.001380 0.8271 29.3253

Clean image 0.00444 0.000074 0.9480 42.0577
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Appendix 3

Figure S3.1: Result (a) clusters (b) XRD patterns of the Self2Comp on the simulated
unbalanced dataset. All signal strengths are shown above the clusters. It indicates that the
Self2Comp correctly located the five components, and eliminates the other five which are not
necessary. This result shows that the Self2Comp can automatically select the number of
components needed for representing the original dataset.
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Figure S3.2: Clusters obtained by (a) the Self2Comp algorithm, (b) NMF on experimental AAA
Li-ion battery XRD-CT image. Both methods require ten components to represent the original
dataset.

276



Figure S3.3: Corresponding XRD patterns relate to the clusters shown in Figure S2.1. The
patterns are obtained by (a) the Self2Comp algorithm, (b) NMF on an experimental AAA Li-ion
battery XRD-CT image. The strength of each pattern is shown above the plots, which
represents the signal strength of the maximum value predicted.
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Appendix 4

Code / Data Availability For PQ-Net:

The training and test datasets used in Chapter 3 are publicly available through

https://doi.org/10.5281/zenodo.4664597. The codes for generating the PQ-Net

architecture is co-developed with Finden Ltd. There will be a 12 month

moratorium on the publication of the code due to commericial sensitivities. The

situation will be reviewed at the 12 month mark.

Code / Data Availability For SD2I:

All codes and data for reproducing the SD2I results shown in Chapter 4 can be

found at: https://github.com/robindong3/SD2I

Code / Data Availability For ParallaxNet:

The integrated XRD-CT data presented in Chapter 5, both simulated and

experimental, have been made publicly available through an open access

repository and can be found here: https://zenodo.org/record/8344637

The ParallaxNet shares the same training loop as the SD2I, but the parallax

forward operator and the code for generating the grid of example are

co-developed with Finden Ltd. There will be a 12 month moratorium on the

publication of the code due to commericial sensitivities. The situation will be

reviewed at the 12 month mark.

Code / Data Availability For Self2Comp:

All codes and data for reproducing the Self2Comp results shown in Chapter 6

can be found at: https://github.com/robindong3/self2comp
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