
Codeflaws: A Programming Competition
Benchmark for Evaluating

Automated Program Repair Tools

Shin Hwei Tan∗, Jooyong Yi†, Yulis∗, Sergey Mechtaev∗, Abhik Roychoudhury∗

∗National University of Singapore

{shinhwei,yulis,mechtaev,abhik}@comp.nus.edu.sg

†Innopolis University

j.yi@innopolis.ru

Abstract—Several automated program repair techniques have
been proposed to reduce the time and effort spent in bug-
fixing. While these repair tools are designed to be generic such
that they could address many software faults, different repair
tools may fix certain types of faults more effectively than other
tools. Therefore, it is important to compare more objectively
the effectiveness of different repair tools on various fault types.
However, existing benchmarks on automated program repairs do
not allow thorough investigation of the relationship between fault
types and the effectiveness of repair tools. We present Codeflaws,
a set of 3902 defects from 7436 programs automatically classified
across 39 defect classes (we refer to different types of fault as
defect classes derived from the syntactic differences between a
buggy program and a patched program).

Keywords-automated program repair; defect classes; empirical
evaluation; benchmark;

I. INTRODUCTION

Bug-fixing is a time-consuming software maintenance activ-

ity. Various automated repair tools (e.g., GenProg [1], PAR [2],

relifix [3], SemFix [4], DirectFix [5], Angelix [6], SPR [7],

and Prophet [8] etc.) have been introduced to save the time

and effort spent in bug-fixing. Although these repair tools are

designed to fix many classes of software faults, different repair

tools may fix certain faults more effectively than other tools.

Prior work [9] alluded that the failure to identify the target

fault types is an important pitfall of automated program repair

research. Unfortunately, prior evaluations of repair tools only

perform monolithic comparison of repair tools (where two

tools are compared on a set of subject programs without con-

sidering defect classes) [6, 8]. As the existing benchmarks are

not designed specifically for the study of types of repairable

defects, it is difficult to evaluate repair tools using the existing

benchmark. We specify the following criteria for a benchmark

that allows extensive evaluation of repair tools:

C1: Diverse types of real defects.

C2: Large number of defects.

C3: Large number of programs.

C4: Programs that are algorithmically complex

C5: Large held-out test suite for patch correctness verification

TABLE I: The Basic Statistics of Subject Programs in Codeflaws

Measurement Total/Range Average
No. of Programming Contests 548 -
No. of Programming Problems 1284 -
No. of Programs 7436 -
No. of Defects 3902 -
Size of Repair Test Suite 2–8 3
Size of Held-out Test Suite 5–350 40
Source Lines of Codes 1–322 36

Prior evaluations on program repair tools [3, 6, 7, 10] have

been conducted on the GenProg benchmark [1], which is later

expanded into the ManyBugs and IntroClass benchmarks [11].

Although the ManyBugs and IntroClass benchmarks contain

185 and 998 defects, respectively (i.e., satisfy C2), they

only contain 9 and 6 subject programs, not satisfying C3.

Meanwhile, IntroClass has only simple programs (such as

computing the median of 3 given numbers) submitted by

students of an introductory programming class and small held-

out test suites (i.e., not satisfying C4 and C5). Since existing

benchmarks for automated program repairs do not fulfill the

listed criteria, we derive a new benchmark, called Codeflaws,

to facilitate future study of repairable defect classes.

The Codeflaws benchmark consists of 7436 programs in

the Codeforces1 online database. Table I lists the information

about the subject programs in Codeflaws. Each programming

contest consists of multiple programming problems (3–5 prob-

lems) with various difficulty levels. Each program represents

one user submission for a specific problem to Codeforces.

These programs are submittted by 1653 users with diverse

level of expertise. Each defect is represented by a rejected

submission and an accepted submission. To our best knowl-

edge, in automatic program repair evaluation, our benchmark

has the largest number of defects obtained from the largest

number of subject programs to date.

To ease the usage of Codeflaws for future experiments on

automated repair tools, we provide all the required scripts to

run four state-of-the-art repair tools (GenProg, SPR, Prophet

and Angelix) in our website: http://codeflaws.github.io/.

1http://codeforces.com/

D
C

C
A

D
C

C
R

D
M

A
A

D
R

A
C

D
R

V
A

D
R

W
V

H
B

R
N

H
C

O
M

H
D

IM

H
D

M
S

H
E

X
P

H
IM

S

H
O

T
H

O
A

A
N

O
A

ID

O
A

IS

O
E

D
E

O
F

F
N

O
F

P
F

O
F

P
O

O
IC

D

O
IL

N

O
IR

O

O
IT

C

O
L
L
N

O
M

O
P

O
R

R
N

S
D

F
N

S
D

IB

S
D

IF

S
D

L
A

S
II

F

S
IR

T

S
IS

A

S
IS

F

S
M

O
V

S
M

V
B

S
R

IF

S
T

Y
P

Defect Classes

F
re

q
u

e
n

c
y

Fig. 1: Distribution of defect classes.

II. METHODOLOGY

We modify Codeforces-crawler [12] for our customized

crawler to extract data from Codeforces. Starting from a seed

page with a list of programming problems sorted by the

number of submissions in Codeforces [13], our crawler sys-

tematically extracted the information about all submissions for

each problem, including the submitter’s expertise information,

the submission time, the programming problem statement and

the test cases used for each submission. We only crawl C

programs because most existing program repair tools [1, 5–

7] specialize in repairing C programs. Overall, we crawled

over 10000 webpages. For each rejected submission r, we

find another accepted submission a by the same user for the

same programming problem in our crawled data. Each fault is

represented by the submission pair (r, a). In total, we obtain

5544 defects. We further exclude 924 defects due to inadequate

held-out tests, 677 defects due to non-reproducible bugs, and

41 defects due to a known CIL bugs2 in handling variable

sized multidimensional array.

Software defects can be classified by various criteria (e.g.,

the symptoms of defects, the causes of defects, and fix

operations) [9]. Compared to the ManyBugs and IntroClass

Benchmarks [11] that classify software defects based on the

defect symptoms, we use a more fine-grained defect class

classification based on the syntactic differences between the

buggy program and the patched program. We choose this

classifications because (1) it allows automatic classification

of defect classes, which is essential for handling our large

dataset, (2) it is commonly deployed in the literature [14–20],

and (3) it enables extensive evaluation of different repair tools.

We modify GumTree [21] to extract syntactic differences

at the AST level. AST-level syntactic differences express the

AST nodes that are changed (i.e, added/deleted/replaced). Fig-

ure 1 shows the distribution of each defect class in Codeflaws.

According to Figure 1, some of the most common defect

classes are DCCR (replacing constant) and HIMS (insert non-

branches), OILN (replace logical operators).

2https://sourceforge.net/p/cil/mailman/message/26922529/

TABLE II: Our defect classes and example of each defect class

AST Type Defect Type Defect Class Example
Statement

Control flow

(SDIF) Delete if, else, else if, for or while if (lines[i].y1 == last->y1)
(SIIF) Insert if, else, else if, for or while if(l)

(SRIF) Replace if, else, else if, for or while
if(a==b)
if(mask(a)==b)

(SIRT) Insert return return 0;
(SDIB) Delete/Insert break or continue break;

Data flow (SDLA) Delete assignment answer+=((i-1)*dif);
(SISA) Insert assignment t=0;

Function call (SDFN) Delete function call printf(“%s %s\n”,s1,s2);
(SISF) Insert function call scanf(“%d”, &n);

Type (STYP) Replace variable declaration type
int a;
long a;

Move (SMOV) Move statement
scanf(“%d”,&i);
scanf(“%s”, &a);
scanf(“%d”,&i);

(SMVB) Move brace up/down
}
printf(“%d”,c);
}

Operator Control flow (ORRN) Replace relational operator
if(sum>n)
if(sum>=n)

(OLLN) Replace logical operator
if((s[i] == ’4’) && (s[i] == ’7’))
if((s[i] == ’4’) || (s[i] == ’7’))

(OILN) Tighten condition or loosen condition
if(t%2==0)
if(t%2==0 && t!=2)

(OEDE) Replace = with == or vice versa
else if(n=1 && k==1)
else if(n==1 && k==1)

(OICD) Insert a conditional operator
printf (“%d\n”, i);
printf (“%d\n”, 3 == x ? 5 : i);

Arithmetic (OAAN) Replace arithmetic operator
v2-=d;
v2+=d;

(OAIS) Insert/Delete arithmetic operator
max += days%2;
max += (days%7)%2;

(OAID) Insert/Delete/Replace ++ or −− i++;

(OMOP) Modify operator precedence
ans=max(ans,l-arr[n]*2);
ans=max(ans,(l-arr[n])*2);

Function call (OFFN) Alternative function call
fflush(stdin);
getchar();

(OFPF) Replace print format
printf(“%d\n”,l);
printf(“%lld\n”,l);

(OFPO) Modify function parameter order
if(strcmp(c[i],b)>0)
if(strcmp(b,c[i])>0)

Pointer (OIRO) Insert/Delete Reference Operator
printf(“%d”,&t);
printf(“%d”,t);

Type (OITC) Insert type cast operator
((p2m/p1m)*t+1
((float)p2m/p1m)*t+1;

OperanD Constant (DCCR) Replace constant with variable/constant
for(i=n+1;i<=9000;i++)
for(i=n+1;i<=10000;i++)

Variable (DRVA) Replace a read variable with a variable/constant
for (i=0;i<l;i++)
for (i=0;i<m;i++)

(DRWV) Replace a write variable with a variable
b=0;
a=0;

Array (DMAA) Insert/Replace array access
out[l] = ’\0’;
out[l−−] = ’\0’;

(DRAC) Replace constant of array initialization
int ex[2]={0,2};
int ex[2]={0,3};

(DCCA) Modify array size
int x[100]
int x[100000];

Higher
order

Non-branch (HDMS) Delete multiple non-branch statements
freopen(“input.txt”, “r”, stdin);
freopen(“output.txt”, “w”, stdout);

(HIMS) Insert multiple non-branch statements
freopen(“input.txt”, “r”, stdin);
freopen(“output.txt”, “w”, stdout);

(HDIM) Delete and insert multiple non-branch statements
break;
count=0;

Branch stmt (HBRN) Delete/Insert branch and non-branch statements
if(len%slov!=0){printf(“NO”);
return 0;}

Expressions (HEXP) Delete/Insert/Replace operators & operands
if(m*9>=s && s)
if((m*9>=s && !s) || (m==1))

Combination (HCOM) Insert/Replace statements and expressions
rep(i,n)
for(i=n-1;i>=0;i−−)

Others (HOTH) Other higher order defect classes
scanf(“%s”,h);
for(i=0;i<71;i++)
scanf(“%c”,&h[i]);

III. CONCLUSION

This paper presents the Codeflaws benchmark that aim to

facilitate future empirical study in automated program repair.

Given the diverse defects classes and the large number of

programs in Codeflaws, developers of new program repair

tools could have more objective measurement of the relative

effectiveness of their tools compared to other existing tools.

We believe that Codeflaws is a step towards the evaluation of

program repair tools against multiple dimensions with defect

classes being one such dimension.

The Codeflaws benchmark and the 39 defect classes pro-

posed in this paper can be used for systematic study of

coding defects in future testing and debugging research. Con-

crete possibilities include targeted testing/repair techniques

for intelligent tutoring systems that teach programming in an

interactive fashion, or for a targeted evaluation across defect

classes for the efficacy of different test generation strategies.

REFERENCES

[1] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer,
“A systematic study of automated program repair: Fixing 55
out of 105 bugs for $8 each,” in Proceedings of the 34th
International Conference on Software Engineering, ser. ICSE
’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 3–13.

[2] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch
generation learned from human-written patches,” in ICSE, 2013,
pp. 802–811.

[3] S. H. Tan and A. Roychoudhury, “relifix: Automated repair of
software regressions,” in 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, vol. 1, May 2015,
pp. 471–482.

[4] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“Semfix: Program repair via semantic analysis,” in ICSE. IEEE
Press, 2013, pp. 772–781.

[5] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking
for simple program repairs,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1, May
2015, pp. 448–458.

[6] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable
multiline program patch synthesis via symbolic analysis,” in
Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: ACM, 2016,
pp. 691–701.

[7] F. Long and M. Rinard, “Staged program repair with condition
synthesis,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2015.
New York, NY, USA: ACM, 2015, pp. 166–178.

[8] F. Long and M. Rinard, “Automatic patch generation by learn-
ing correct code,” in Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’16. New York, NY, USA: ACM, 2016,
pp. 298–312.

[9] M. Monperrus, “A critical review of ”automatic patch generation
learned from human-written patches”: Essay on the problem
statement and the evaluation of automatic software repair,” in
Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM,
2014, pp. 234–242.

[10] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury,
“Anti-patterns in search-based program repair,” in Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2016, pp. 727–
738.

[11] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass
benchmarks for automated repair of c programs,” IEEE Transac-
tions on Software Engineering, vol. 41, no. 12, pp. 1236–1256,
2015.

[12] Z. Zi. (2016) codeforces-crawler. [Online]. Available: https:
//github.com/Nymphet/codeforces-crawler

[13] (2016) Problemset - Codeforces. (Retrieved 7 June, 2016).
[Online]. Available: http://codeforces.com/problemset/?order=
BY SOLVED DESC

[14] K. Pan, S. Kim, and E. J. Whitehead Jr, “Toward an under-
standing of bug fix patterns,” Empirical Software Engineering,
vol. 14, no. 3, pp. 286–315, 2009.

[15] H. Osman, M. Lungu, and O. Nierstrasz, “Mining frequent bug-
fix code changes,” in IEEE Conference on Software Mainte-
nance, Reengineering, and Reverse Engineering, 2014, pp. 343–
347.

[16] C. Liu, Y. Zhao, Y. Yang, H. Lu, Y. Zhou, and B. Xu, “An ast-
based approach to classifying defects,” in IEEE International
Conference on Software Quality, Reliability and Security, QRS
2015, 2015, pp. 14–21.

[17] B. Kidwell, J. H. Hayes, and A. P. Nikora, “Toward extended
change types for analyzing software faults,” in International
Conference on Quality Software, 2014, pp. 202–211.

[18] C. Liu, J. Yang, L. Tan, and M. Hafiz, “R2fix: Automatically
generating bug fixes from bug reports,” in ICST, 2013, pp. 282–
291.

[19] M. Martinez, L. Duchien, and M. Monperrus, “Automatically
extracting instances of code change patterns with AST analysis.”

[20] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall, “Change
distilling: Tree differencing for fine-grained source code change
extraction,” IEEE Trans. Software Eng., vol. 33, no. 11, pp. 725–
743, 2007.

[21] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Mon-
perrus, “Fine-grained and accurate source code differencing,”
in ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19,
2014, 2014, pp. 313–324.

