

Optimising methanol production from steel manufacture off-gases

Richard Porter, Ryan Wang, Qiming Wang, Haroun Mahgerefteh,

Department of Chemical Engineering, University College London

UKCCSRC Autumn Webinar Series

15th September 2020

Introduction

- The iron and steel industry represents the largest energy consuming manufacturing sector in the world
- Average specific emissions are 1.83 tonnes of CO₂ per tonne of steel and global crude steel production reaching 1.8 Gt for the year 2018, up by 4.6% compared to 2017
- CCUS technologies offer the opportunity to substantially reduce the CO₂ footprint of steel mills, which accounts for 5 7 % of anthropogenic CO₂ emission.
- Global methanol production in 2016 was around 85 million tonnes
- Methanol is currently primarily from fossil fuel sources mostly from natural gas but in China up to 67 % from coal
- The demand for methanol is expected to increase as the world shifts away from fossil fuel consumption.

Future methanol economy

UKCCS

RESEARCH CENTRE

Off-gases from iron and steel making

Steelworks off-gases properties

	mol%					
Component	COG	BFG	BOFG			
CO	6	20	58			
CO ₂	2	24	20			
H ₂	63	3	4			
N_2	4	53	18			
C_2H_6	3	0	0			
CH ₄	22	0	0			
LHV (MJ/Nm ³)	17.5	2.85	7.6			
Representative flowrate (kNm³/hr)	40	366	28			

Methanol from steelworks off-gases: current status

China

Commissioned 2006, Qujing City, Yunnan Province, 80 kt/yr pure methanol.

 As of 2019, ~17% of the Chinese methanol capacity is based on Coke Oven Gas

Germany

2018: Thyssenkrupp pilot-scale production of methanol from steelworks gases and electrolysis derived hydrogen in Carbon2Chem project

Main catalytic reactions of methanol synthesis

Hydrogenation of carbon monoxide

1.
$$CO + 2H_2 \rightleftharpoons CH_3OH$$

$$\Delta H_R = -90.55 \text{ kJ/mol}$$

Hydrogenation of carbon dioxide

2.
$$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$$
 $\Delta H_R = -49.43 \text{ kJ/mol}$

Reverse water-gas shift

3.
$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$

$$\Delta H_R = +41.12 \text{ kJ/mol}$$

Project objectives

- 1. To investigate the effect of feed gas CO/CO₂/H₂ ratio and stream impurities relevant to residual steel gases including N₂, Ar, CH₄ NH₃ & H₂O on the methanol production process using selected catalysts
- 2. To study catalyst degradation, including morphology and composition following exposure to the BFG reaction environment using a range of analytical techniques
- 3. To construct and validate a catalytic reaction mechanism describing methanol synthesis from BFG
- 4. To assess the impact of catalyst and chemical reactor selection on methanol synthesis from BFG
- To perform techno-economic simulations for assessing the cost of methanol production from BFG

Revealing Cu/ZnO catalysts deactivation *via* identical location imaging (Preliminary result)

Feng Ryan Wang
University College London

Stage 1

Stage 2

Stage 1

Stage 2

Stage 1 Stage 2

- 1. The concept of IL imaging is proven across different time and length scale at very hash chemical condition
- 2. Formation of a thin amorphous layer around Cu nanoparticles. According to literature they are ZnO and are responsible for the CO/CO2 activation. However, it is still not clear on their role in deactivation.
- 3. Cu nanoparticles are spherical with 5 nm diameter, whereas CuO nanoparticles are in irregular shapes with slight bigger size.
- 4. It is not clear the aggregation is due to Cu or ZnO.
- 5. Quantification of Cu, Zn and their oxidation states is possible with the X-ray nanoprobe.

Design and simulation of full-scale BFG-to-methanol process

Conventional methanol production process

BFG-to-methanol process based on direct CO₂ hydrogenation

Process advantages/disadvantages of direct CO₂ hydrogenation BFG-to-methanol synthesis route

Advantages

- Avoids difficult N₂ / CO separation
- Synthesis reaction impurities (typically higher alcohols, esters, ethers and ketones) are limited to water and dissolved CO₂ in crude methanol
- Allows for only a single methanol distillation unit
- Less intense exotherm compared to syngas reaction
- Allows the use of tube cooled reactor with lower cost, higher efficiency and relative simplicity of operation
- Avoids use of multiple reactors in series which may be required with adiabatic
- Improved the heat distribution with the reactor helps to prevent catalyst sintering

Disadvantages

- Some heat may be lost in the water gas shift process
- CO₂-syngas is less reactive than CO-syngas which may lead to a larger reactor
- More water produced due to the reaction stoichiometry

System boundary of the CCUS BFG-to-methanol plant

----- Boundary of modelled system

Process flow diagram BFG-to-methanol process

Aspen Plus flowsheet - BFG-to-methanol process

Methanol reactor kinetic model

- Isothermal plug flow reactor using a Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model[†] is used
- Two reactions are modelled: CO₂ hydrogenation and RWGS

Methanol reactor operating conditions				
Catalyst				
material: Cu/ZnO/Al ₂ O ₃				
density: 1.3 kg/m³				
bed voidage: 0.41				
catalyst loading: 20,865 kg				
Reactor				
bed volume: 16.05 m ³				
gas hourly space velocity: 22,898 hr ⁻¹				
Operating conditions				
temperature: 210 °C				
pressure: 76 bar				
mass flow: 124.2 tonne/hr				

Chemical species profiles over reactor length

 CO_2 conversion per pass = 36%

[†] Vanden Bussche and Froment, Journal of Catalysis 161, 1–10, 1996

Overall process mass balance

							,			,
Component	BFG-in	Steam-in	Sulfur-out (tonne/hr)	Condensout	Dryer-out	N ₂ -out	CO ₂ _T&S-out	Offgas-out (tonne/hr)	Bottoms-out	Methanol-out
CO ₂	118	-	-	6.61×10 ⁻³	-	48	146	0.972	-	2.51×10 ⁻²
CO	72.4	-	-	-	-	0.7	1.14×10 ⁻²	1.03×10 ⁻²	-	7.39×10 ⁻⁶
N_2	145	-	-	4.10×10 ⁻⁶	-	141	2.30	2.07	-	1.36×10 ⁻³
H ₂	0.947	-	-	-	-	1.09	0.118	1.60×10 ⁻²	-	5.71×10 ⁻⁶
H_2O	-	107	-	57.7	3.19	-	i - i	-	14.6	1.32×10 ⁻³
CH₃OH	-	-	-	3.52×10 ⁻²	-	-	0.118	2.79	2.55×10 ⁻³	22.7
H_2S	3.72×10 ⁻³	-	3.72×10^{-3}	-	-	-	1 -	-	-	i -
CH ₄	4.21×10 ⁻³	-	-	-	-	4.08×10 ⁻²	6.66×10 ⁻⁴	5.99×10 ⁻⁴	-	1.75×10 ⁻⁶
O_2	0.629	-	-	-	-	0.61	9.96×10 ⁻³	8.96×10 ⁻³	-	1.82×10 ⁻⁵
HE	4.37×10 ⁻⁴	-	-	-	-	4.24×10 ⁻⁴	6.92×10 ⁻⁶	6.24×10 ⁻⁶	-	-
AR	2.71	-	-	1.79×10 ⁻⁶	-	2.62	4.28×10 ⁻²	3.85×10 ⁻²	-	7.67×10 ⁻⁵
							1			\

Total ~340 tonnes/hr

96% purity 85% overall capture ~75% of post-shift CO₂ to storage 99.9% purity ~200,000 tonnes/yr

Overall process energy balance

Process units	Energy consumption (MW)			
Compressors	77.9			
Energy recovery turbine	-0.89			
Heaters	23.8			
Coolers	-188.0			
Methanol reactor	-13.6			
Distillation column:				
Condenser	-12.0			
Reboiler	12.8			

Summary

- CCUS processes will play an important role in CO₂ mitigation by capturing the emitted CO₂ and using
 it to make chemical products that otherwise would be made from fossil fuels.
- Hydrogen produced from BFG where a large part of CO₂ is captured and geologically stored may be considered 'carbon free'
- The analysis presented here considers a promising CCUS technology for the iron & steel industry: BFG-to-CH₃OH based on direct hydrogenation of CO₂
- A full-scale conceptual design has been simulated in Aspen Plus in order to obtain the needed mass and energy balances to evaluate the technological, economic and environmental criteria

Acknowledgements

This work was supported by the UK CCS Research Centre through the 2018 Flexible Funding Call.

In-kind contributions from Tata Steel UK, Swerim AB and Johnson Matthey are gratefully acknowledged.

