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Robotic Constraints Informed 
Design Process

1	 ‘Twisted Arch’ ProjectABSTRACT
Promising results in efficiently producing highly complex non-standard designs have been 

accomplished by integrating robotic fabrication with parametric design. However, the 

project workflow is hampered due to the disconnect between designer and robotic fabri-

cator. The design is most often developed by the designer independently from fabrication 

process constraints. This results in fabrication difficulties or even non-manufacturable 

components. In this paper we explore the various constraints in robotic fabrication and 

assembly processes, analyze their influence on design, and propose a methodology which 

bridges the gap between parametric design and robotic production. Within our research 

we investigate the workspace constraints of robots, end effectors, and workpieces used 

for the fabrication of an experimental architectural project: “The Twisted Arch.” This 

research utilizes machine learning approaches to parameterize, quantify, and analyze each 

constraint while optimizing how those parameters impact the design output. The research 

aims to offer a better planning to production process by providing continuous feedback 

to the designer during early stages of the design process. This leads to a well-informed 

“manufacturable” design.

Keywords: Robotic Fabrication and Assembly, Mobile Robotics, Machine Learning, 

Parametric Design, Constraint Based Design.
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efficient. This methodology is demonstrated through design 

and construction of The Twisted Arch project, a 1:1 scale 

prototype made of complex space frame timber structures. 

The outcome of this research results in the creation of an 

intelligent computational program, which provides visual 

guidance for the user during the design process and opti-

mizes the fabrication through machine learning prediction 

of robotic parameters. Within The Twisted Arch project, the 

process flow consists of the following steps:

•	 Global Design defines the overall design of the structure 

•	 Local Design defines the joinery design of components  

•	 Fabrication Process is informed by local design where 

the component is manufactured using a band saw and 

robot

•	 Assembly Process is informed the global design where 

each component is assembled through human-robot 

collaboration

 

Parametric Design Constraints

The first step from design to production (fabrication 

and assembly) is to consider the various workspaces of 

the production resources which include the tools and 

machines involved to identify the work flow and layout of 

the robotic setup (Figure 2). For The Twisted Arch, the setup 

consists of a KUKA-iiwa with a 14kg payload and an elec-

trically activated gripper as an end-effector. The robot is 

mounted to a KUKA Mobile Robotic (KMR) platform.  

A standard workshop band saw is mounted to a worksta-

tion which is at a raised height of 500mm due to the limited 

reachability of the robot. For the same reason, the base  

of the arch are raised with a box of 500mm in height on 

either ends. 

Workspaces

In robotic fabrication, the robot’s workspace is defined 

by the maximum functional volume which the Tool Center 

Point (TCP) can successfully reach considering all neces-

sary given target positions and orientations. The robot 

INTRODUCTION
In recent projects, some of the constraints of parametric 

design based methods for robotic fabrication processes 

have been addressed, explored, and achieved at various 

experimental and architectural scales. In the project 

Robotically Assembled Spatial Structures by ETH (Gandia 2018), 

the design of a steel structure was optimized based on 

reachability constraints of the robot. This was done by 

digital simulating the robotic production and analyzing for 

collisions. The algorithm was then optimized to adjust the 

position of the steel bar component and ensure the robot 

could achieve a valid collision-free path. Similarly, the 

project developed by Aarhus School of Architecture, Israel 

Institute of Technology, and ETH Zurich (Søndergaard et 

al. 2016), has proven the value of integrating optimization 

for cutting the angles of assembly components  order to 

achieve successful robot reachability. Additional proj-

ects demonstrate the optimization of design based on tool 

constraints. Projects such as The Research Pavilion-2011 

of ICD Stuttgart (Schwinn 2012), Timber Folded Plate Shells 
(Robeller 2016), and the Adaptive Fabrication Aware Form 
Finding (Pigram 2016), each used bespoke robotic milling 

process for the full-scale fabrication of complex timber 

structures and found ways to inform their designs based 

on specific tool constraints. The Lightweight Timber Plate Shells 

project optimizes the panel sizes and angles based on the 

available workpiece/raw material dimensions (Krieg 2014). 

It is this research’s goal to build upon the lessons learned 

though such state-of-the-art projects in order to develop  

an explicit process which comprehensively addresses:

•	 Robot, tool, and workpiece constraints 

•	 Influences of the fabrication process parameters

•	 Reciprocal relationships between fabrication and design

 

To overcome the gap between design and production, 

we introduce a process which is driven by a continuous 

feedback and the integration of production constraints in 

three unique steps. First, all constraints—including the 

robot, tool, and workpiece constraints of the fabrication 

and assembly process—are identified and parame-

trized. This is done by developing a parametric model of 

the entire design to fabrication process in Rhinoceros 

and Grasshopper 3D, a visual programming environment. 

Second, the critical parameters of the design are selected 

and simulated for training a machine learning dataset. This 

dataset enables learning methods to understand manu-

facturability of the components in the design. Finally, this 

learned network of the parameter’s influence is stored and 

mapped for machine learning prediction so that optimi-

zation of future design parameters is made greatly more 2	 Workspace
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workspace differs from working envelope of robot because 

the workspace takes the robots TCP into account; this not 

only includes the Cartesian coordinates (XYZ), but also the 

orientation (ABC) at the target position (Aggarwal 2014). 

Methods for pre-determining the workspace of a robot 

has been demonstrated through 3d visualization of the 

manipulability distribution of six degree of freedom (6DoF) 

kinematic chains as addressed in previous research inqui-

ries (Vahrenkamp 2014; Zacharias 2007).

The workspace does not depend only on the robot’s kine-

matic chain and the tool/end-effector used. The tool 

extends the kinematic chain, and parameters—such as 

the workpiece’s shape, size, form, position, and its environ-

ment—act to directly influence the viability of the tool-path. 

To comprehend and implement the parameter space within 

which fabrication and assembly can be successfully carried 

out, the effective workspace of each production resource 

(robot, end-effector, workstations/external tools, and mate-

rial) is analyzed. 

These analytical results are combined to create a process 

model that considers the interrelationship between all 

parts of the production process. There are two types 

of workspaces based on the process: 1) Fabrication 

Workspace which is a combination of robot workspace 

(KMR + iiwa) and tool workspace (band saw); 2) Assembly 

workspace which is combination of robot workspace and 

prototype components, i.e. Twisted Arch.

The fabrication workspace can be described as a collection 

of robot’s TCP positions for cutting the timber workpiece, 

which is depended on the robot and tool constraints. The 

robot arm has a maximum reach of 840mm. This constraint 

defines the maximum volume or the working envelope 

within which the robots can reach. The band saw has with a 

maximum cutting depth of 110mm within which the timber 

component needs to be placed for fabrication. This volume 

defines the tool, and in this project, the band saw work-

space. The intersection of the robot working envelope with 

end-effector and band saw workspace defines the fabrica-

tion workspace. By establishing this fabrication workspace, 

it is possible to test the manufacturability of a component.

The intersection of robot and end-effector with various TCP 

positions for assembly of all components in the prototype 

define the assembly workspace. The sequential assembly 

order of the timber components must be considered and 

understood so that the robot does not collide with the 

already assembled components. 

With this workspace defined, we can inform the design 

within the volumetric constraints of the position of the band 

saw, robot, and assembly station. While this workspace 

provide a basic guideline for the design, the manufactur-

ability of a component is questionable at this stage of the 

process. On the other hand, each process is clearly defined 

by the boundaries of fabrication and assembly workspaces, 

which are placed orthogonally to each other so that the 

mobile platform can freely operate to resolve reachability 

issues without any collisions.

Global Design

The design of the prototype is based on a catenary arch 

comprised of a complex triangular space frame system 

of timber elements. The triangular space frame system is 

generated along the cantenary arch, and its geometry can 

be controlled by the designer using the various control 

points of the curve, allowing the designer to explore 

different design variations. Alternatively, the curve of the 

cantenary arch can also be controlled parametrically in the 

Grasshopper 3D interface where span, height, and offset 

of the catenary arch are defined as the parameters. The 

modification of the control points or the parameters, in turn, 

radically changes the space frame design and subsequently 

changes the length and joinery angle of each timber compo-

nent while still maintaining the configuration of the system. 

The controls points or the parameters are modified so 

that the design is bounded within the limit of the derived 

workspace. This is ensured through an algorithm that 

informs the user through visual graphics if the design is 

outside or inside the robot’s workspace. However, some-

times even if the design is within the workspace of the given 

setup, there are instances when the robot is not able to 

manufacture a part due to other fabrication constraints or 

is not able to assemble the component due to reachability 

constraints. Although this design process is tested only 

with a simple curve (cantenary arch) and a triangular space 

frame system, the same methodology can be scaled up for 

more complex processes given that the complex processes 

are modeled parametrically so the optimization can be 

automated. 

Local Design

After several iterations of the optimization process the 

design is finalized, and the algorithm creates butt joinery 

between connecting components from the centerlines of 

the space frame system. Butt joinery is generally used to 

connect two or more timber pieces and consist of flat cuts 

at specific angles for alignment. The flat faces of the butt 

joints are fastened using timber screws. The butt joinery 

results in compound angles of specific connections due to 

complexity of the design. The sectional dimensions of the 

Robotic Constraints Informed Design Process 
Devadass, Heimig, Stumm, Kerber, Brell-Cokcan
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timber stock are 35x35mm. To avoid loss of the strength, 

considering the limited sectional size of the timber, each 

timber component is restricted to only one connection 

at each end. The output from the algorithm is the final 

geometry, which needs to be fabricated from the given 

stock material. The length of each component is limited 

to a certain size depending on the maximum reach of the 

robotic arm or the robots working envelope. This constraint 

is ensured to avoid collision between the timber material 

and the robotic arm or the environment (later explain under 

fabrication constraints). As the timber is gripped by the 

robot only at the center, the lengths of the timber pieces are 

also limited to avoid extensive vibrations are the end of the 

stock material.

PARAMETRIC PRODUCTION CONSTRAINTS
Robot Trajectory Optimization for Fabrication

While manually cutting timber using a band saw, tremen-

dous amount of forces are exerted by the band saw blade 

on the workpiece. Therefore, the workpiece must rest 

on the band saw table so that the vibration forces are 

mostly absorbed by the table. This allows the fabricator 

to easily guide the workpiece at the required direction 

and angle without being affected by the forces. Similarly, 

while using the robot, in order to ensure a minimal amount 

of forces are transferred to the robotic arm, the work-

piece is required to rest on the band saw table during the 

cut (Figure 4). This prerequisite becomes a major robot 

trajectory challenge, as the robot not only has to place the 

workpiece at the required orientation and position, but also 

to ensure the workpiece rests on the band saw table. 

Therefore, to achieve robot reachability for the above 

complex trajectory devoid of any collisions, we move the 

KUKA mobile platform, which in turn changes the base posi-

tion of the KUKA iiwa robotic arm, and therefore, enables 

different axis configuration in the robotic arm movement 

(Figure 5). This optimization of the base position of the robot 

is conducted until a suitable trajectory is obtained that is 

free from collisions and well within the reach of the robot. 

The optimization movement of the KUKA Mobile Robot for 

fabrication is only along the Y-coordinate of the Robot Base 

Plane. The distance between the starting position and the 

optimized position of KMR mobile robot is referred to as 

the 'safe distance.' The algorithm uses inverse kinematic 

solver, namely KUKA|prc (Braumann 2012), which checks 

for reachability, collisions, and singularities of the robot 

simulation.

Robot Trajectory Optimization for Assembly

Current work flows only consider design-informed fabrica-

tion, while complex assembly requires more consideration 

of sequence planning. Similar to fabrication, to resolve 

reachability issues during assembly the base position of 

the mobile platform is optimized (Figure 6). The optimiza-

tion movement of the KUKA Mobile Robot for assembly is 

only along the X-coordinate of the Robot Base Plane. There 

are instances where the robot is still unable to reach the 

target position. Since the geometry plane is placed along 

the centerline of the geometry, we can rotate it into four 

different configurations, which leads to the robot gripping 

3	 Optimization of the design guided by the fabrication and assembly workspace

4	 Resting the work piece on the band saw 
table using the robot during fabrication

3
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the part from 4 different directions. This also changes the 

robot’s configuration while keeping the geometry in the 

same place. In order to compensate for these deviations, 

the robot connects the assembly component to the existing 

butt joint of its predecessor.

Optimization through Machine Learning

An evolutionary algorithm—that assesses and improves 

the manufacturability of a design of the The Twisted Arch 
project by iterating through all possible robot trajectories 

and determining the best possible path—could still result 

in a sub-optimal design process that is not efficient. This is 

because every change in design results in a unique set of 

components, requiring a re-evaluation of the evolutionary 

algorithm. This requires a significant amount of time and 

leads to a complex analysis due to a very high number of 

parameters. 

To create a more efficient design to production process, this 

research uses machine learning (ML) techniques to achieve 

a real-time prediction of the best parameters for robotic 

fabrication of the design part. By creating a statistic model 

to analyze the production parameters and constraints this 

process is able to predict the ideal robotic path for fabri-

cation. This is more efficient than evolutionary algorithms 

because the training simulation for machine learning is 

stored in the computer’s memory. Rather than having to 

recalculate the ideal solution after every design change, 

as in the case of the evolutionary approach, the machine 

learning approach significantly improves the time required 

to optimize robotic fabrication processes. 

In the case of this project, the challenge was to optimize 

and visualize the numerous parameters involved in the 

process. The solution for this can be found in dimension-

ality reduction allowing to plot an n-dimensional parameter 

5	 Optimizing the mobile robot position for fabrication

6	 Optimizing the mobile robot position for assembly 

Robotic Constraints Informed Design Process 
Devadass, Heimig, Stumm, Kerber, Brell-Cokcan
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space in a lower m-dimensional parameter space. John 

Harding describes the advantages of dimensional reduction 

for the exploration of design parameters spaces in archi-

tecture in “Dimensionality Reduction for Parametric Design 

Exploration” (Harding 2016), and suggests "Self-Organizing-

Maps,” a non-supervised machine learning approach for 

clustering and dimensionality reduction developed by Teuvo 

Kohonen (Kohonen 1982; 2001). 

The result of the self-organizing-map (SOM) methodology 

has an equal or lower dimensionality than the input data 

describing the complete parameter space. This results 

in an abstraction of the dependencies of the parameters 

(Kohonen 2001). In addition, the basic concept described 

by John Harding in the second step of the SOM process 

incorporates a “secondary feature.” These features are 

post-processed values associated with the neurons of 

the SOM. As such, the SOM approach differs from other 

neuronal network based ML techniques. 

Neurons can be described as models trying to fit the 

parameter space the SOM is analyzing (Kohonen 1982). 

After the initial analysis, the self-organizing-map results 

in several neurons, each describing a generalized model 

where the parameters space represents the most suit-

able input data. In the case of the catenary Twisted Arch, 

the angles of the two planes which define the compound 

angle of the timber are considered as the primary feature. 

The secondary features are the planes X1, X2 and Y1, Y2 

on each side of the timber component. These represent 

“Neurons” in the SOM process (Figure 7). Safe Distance, the 

parameter which alters the position of the KMR to optimize 

the robot trajectory was also considered as the secondary 

feature.

Machine Learning Process

In this project, ML was used in two different stages. In the 

first stage, the Self-Organizing-Maps (SOM) was used to 

analyze and map relationships between input parameters 

of the design such as the cutting angle of the work piece, 

the resulting production information and its constraints. 

In the second stage, additional ML methods were used in 

addition to the SOM approach. Supervised learning algo-

rithms - k-nearest neighbors (KNN) (Altman, 1992) and 

backpropagation (Goodfellow 2016, 196) – were also used 

to develop a reliable model for real-time prediction.

In Machine Learning, a larger training data-set leads to 

a more reliable output. While the parametric modelling 

methods of Grasshopper can generate significant amount 

of training data, the process for generating appropriately 

large data-sets for machine learning is still challenging. To 

realize this approach the standard parametric model for 

production was extended by implementing the following 

processes:

•	 Crow (Grasshopper 3D Plugin) created by Fabian 

Felbrich was used to allow access of artificial neuronal 

networks in Grasshopper 

•	 Three bespoke C# components, Evolutionary Solver, 

TSampler-Component, MSampler Component developed 

by the authors for solving the generation and comple-

tion of datasets. 

 
Evolutionary Solver: This was created to optimize the “Safe-

distance” of the KMR platform for the given design. The 

algorithm also allowed for testing of multiple design models 

which was made possible due to custom start, stop trig-

gers buttons for optimizations. This was not possible with 

the currently available evolutionary solver plug-ins like 

Galapagos or Octopus.

TSampler-Component: This was implemented to resolve the 

problem of generating a high quantity of data sets for 

machine learning training. The component works by gener-

ating random normally distributed datasets, processing 

them in the parametric model, and saving the results. The 

generated results were later used as target vector for 

supervised learning and displaying meshes for visualization.

MSampler Component: To expand the SOM with a 

“secondary feature” a second sampler component was 

implemented similar to the TSampler-Component but 

7	 Parameters
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with the focus not on training data but on the neurons 

of the processed SOM. Similar to the second step of the 

T-Sampler-Component, the sampling component for map 

data (MSampler-Component) iterates over a set of given 

input samples and processes the parametric model to 

save the corresponding results and display mesh. This 

differed from the TSampler-Component as the MSampler-

Component does not generate a set of random samples 

but instead uses the neurons of the processed SOM. This 

allows to the process to save a display mesh and a corre-

sponding “secondary feature” for each neuron.

Machine Learning Process 

Using the custom algorithm, 10,000 samples of training 

datasets were generated by the T-Sampler-Component. 

As a typology for the Self-Organizing-Map a 2-dimen-

sional map with 15x15 (225) Neurons on a square grid 

was chosen. After processing the learning of the map in 

10,000 cycles the second sampler component for mapping 

members was used to process each neuron and calculate 

the 'Safe Distance' as a secondary feature and crease an 

associated map of the data. 

The resulting map consists of 225 neurons representing 

meaningful examples of the parameter space - storing 

the elements X1, X2 and Y1, Y2 of the compound angle X 

and Y. These parameters are arranged so that the change 

between neighbored neurons is as smooth as possible. 

Each neuron is associated with the corresponding Safe 

Distance as a secondary feature. 

The visual representation of the data and abstraction of the 

angles is represented as a 4-sided polygon on a Coordinate 

System with 4 axes chosen to support the comparison. The 

Safe Distance as a secondary feature is visualized as a bar 

in the third dimension (Figure 9).

The goal of the second stage was improved accessibility for 

the designer of the ML models results and advantages. To 

create a reliable statistic model for the fabrication process 

was the main challenge of the second stage and will be 

continued in future research. Especially the neuronal net 

trained using Back propagation showed a high reliability 

even with a relatively small number of 10,000 training 

samples. It turned out that the quality of the optimization 

has a significant influence on the quality of the training data. 

A relatively small accuracy in optimization seems to result 

in a higher scattering in the fabrication information. This 

adds a further factor that causes fuzziness in the rela-

tionships and dependencies of input data. The primary and 

secondary feature did not corelate with each other contin-

uously, which increases the complexity of the clustering. A 

deep learning based clustering of parameters for a more 

fuzzy distinction using convolution neural networks would 

require a higher sample number. Even though the back 

propagation method showed promising results all three 

approaches were not able to create a reliable model for  

the prediction of fabrication information. 

Even though the introduced models did not achieve a suit-

able reliability, they showed a huge potential of ML to close 

the gap between design and production by speeding up the 

feedback from production simulations and even predicting 

fabrication parameters for deviating designs. To improve 

the accuracy of the design feedback in the future, larger 

sets of training data created with a higher optimization 

quality are required. 

8	 Machine learning process diagram

9	 Visual representation of the Neurons and Self Organizing Map
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DESIGN IMPACT AND CONCLUSION
This process establishes a new methodology in the field of 

architecture, where every design decision is continuously 

informed and controlled by the parameters of fabrication 

in real-time due to the use of ML approach. The process 

results in multiple options where every design is completely 

manufacturable but with slight modifications in its overall 

appearances from the one initially envisioned by the 

designer. Within the larger context, the work flow estab-

lishes a new methodology in architectural design where 

the designer understands and is aware of the potentials 

and limitation of the fabrication process. The designer is 

always informed during design and construction through 

continuous designing and redesigning before and during 

the construction process. Thus, this methodology also 

allows the designer to have complete control throughout 

the project. Another feature of this methodology is that 

any production setup or design can be integrated, through 

which we can evaluate the manufacturability of the design 

or limitations of the production setup.

10	 Methodology
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The biggest drawback of this method is that the algo-

rithm does not indicate which exact parameters are to be 

modified and how much change is required to achieve a 

manufacturable design. Although the constraints are iden-

tified and parameterized in this research, in future work an 

interface will be developed that would result in providing 

the above-mentioned feedback to the designer. Next steps 

will also include the development of an algorithm to find the 

best suitable robot setup for tool- and assembly-worksta-

tions. This would result in an alternative approach, which 

optimizes the process layout based on the created design.
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