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Abstract 

 

Cystic kidney disease (CyKD) is the commonest life-threatening monogenic disorder, 

causing great morbidity and mortality. Whilst there is believed to be a strongly 

monogenic architecture, an unbiased whole genome sequencing approach to 

understanding the underlying genetic architecture has never previously been attempted.  

 

In this thesis I used statistical genetics and bioinformatics methodology to investigate 

the genetic architecture of CyKD as well as two other rare disorders, urinary stone 

disease (USD) and extreme early onset hypertension (EEHTN), using whole genome 

sequencing data from the 100,000 Genomes Project. I used population-based tools to 

assess the rare and common variant associations in diverse ancestry matched cohorts 

seeking enrichment of single nucleotide/indel and structural variants on a genome-wide 

and per-gene basis.  

 

In all three disorders this improved our understanding of the underlying architecture. 

CyKD is shown to be strongly monogenic as expected but low-frequency and common 

variants are shown to play an important role in pathogenesis and causation of this 

disease, revealing a role for polygenic factors. The heritability of USD is shown to be 

heavily influenced by low-frequency variants in the sodium-phosphate transporter gene 

SLC34A3, which explains much of the missing heritability not detected by previous 

large-scale common variant association studies. This finding bridges the gap between 

the traditional thinking that USD is either monogenic or polygenic/environmental. 

Finally, EEHTN is shown to likely be an extreme manifestation of primary 

hypertension, with a strong polygenic basis.  

 

These results support the idea that with better sequencing and larger biobanks, an 

omnigenic model of disease will become more demonstrable for a broader range of 

phenotypes, consistent with genotype-phenotype heterogeneity, variable expressivity 

and incomplete penetrance observed in all three diseases. Finally, I demonstrate that 

population level approaches traditionally used to study common disease are applicable 

and useful in rare disease research.  
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Impact Statement 

 

The findings from this study will have implications across multiple disciplines within 

and external to nephrology. From a patient perspective many of the findings are in 

patients who are unsolved by the clinical arm of the 100,000 genomes project. These are 

in the process of being fed back to the relevant patient’s clinicians with a view to 

potentially offering them a molecular diagnosis.  

 

Secondly, these results will be of interest to researchers in nephrogenetics as well as 

clinicians involved in rare renal disease. I hope that these results will be hypothesis 

forming for both in silico and functional analyses. For the wider genomics community, I 

have used a mixed ancestry in nearly all of my analyses without major genomic 

confounding. This demonstrates the scientific advantages of including a wider cohort 

for genomic analysis and normalises the representation of individuals from diverse 

ancestral backgrounds. At the start of my thesis, I was only using Europeans for my 

analyses, which as a researcher not of European ancestry, was odd to me. I am pleased 

that our group has developed methods to improve representation in rare disease 

analyses.  

 

Finally, attempting to marry the common and rare variants domains via the analysis of 

low frequency variants in rare disease has great implications for the future of rare 

disease genomics. As rare disease cohorts become larger and sequencing improves, we 

really are at an exciting time to tease out the “missed heritability” of diseases. This will 

help guide understanding of biology and more importantly offer new avenues for 

therapeutics for a series of diseases that really lack personalised approaches.  

 

The impact of this work will be disseminated primarily through publication in peer 

reviewed journals with lay summaries to increase public and patient engagement. My 

work on USD has already been published and I have created a tutorial on Twitter to 

increase the visibility and approachability of the work for patients, academics, and 

clinicians. Promotion through social media such as Twitter has increased the visibility 

of our work and has led to fruitful engagements with relevant stakeholders. My work 
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has been selected for presentation at a number of international and national conferences 

(oral presentations at UK Kidney Week 2021-2023, Wellcome Genomics of Rare 

Disease 2023 and Association of Physicians of Great Britain and Ireland Annual 

Meeting 2023; poster presentations at the American Society of Nephrology Kidney 

Week 2022) highlighting its broad appeal across genetics, nephrology, and medicine.  
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Introduction 

Chapter 1. Introduction 

In this thesis I examined the genetic architecture of cystic kidney diseases (CyKD), 

urinary stone disease (USD) and extreme early onset hypertension (EEHTN) using 

whole genome sequencing (WGS) in an unbiased genome-wide manner. In the 

introduction I will define and elaborate on some of the key concepts to be analysed as 

well as a brief discussion of the current landscape of genomic analysis. 

1.1 The current landscape of genomic analysis 

1.1.1 From linkage to GWAS 

The elucidation of the intricate relationship between genetic variations and complex 

traits has been a foundational pursuit in the field of genetics. Over the course of the last 

century, this pursuit has undergone a remarkable transformation driven by technological 

advancements and methodological innovations. This evolution of genetic association 

analysis has propelled the field from rudimentary observations of familial inheritance to 

sophisticated investigations at the level of the entire genome. Central to this progression 

is the advent of whole-genome sequencing (WGS), a revolutionary technique that has 

modernized our ability to comprehensively examine the genetic landscape underlying 

various phenotypes. 

 

The history of genetic association analysis can be traced back to the pioneering work of 

early geneticists, who sought to decipher the patterns of inheritance of observable traits. 

Gregor Mendel's experiments with pea plants in the mid-19th century laid the 

groundwork for understanding the basic principles of inheritance, and the subsequent 

discovery of the DNA double helix by Watson and Crick in the 20th century unveiled 

the molecular basis of genetics. These foundational discoveries set the stage for the 

exploration of genetic variations' influence on phenotypes. 

 

In the mid-20th century, the concept of genetic linkage emerged as researchers began to 

observe that certain traits co-segregated more often than expected by chance due to their 

physical proximity on chromosomes. This led to the development of linkage analysis, a 
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method used to identify genetic loci associated with traits through the study of familial 

inheritance patterns. Despite its success in pinpointing genes responsible for Mendelian 

disorders, linkage analysis faced limitations when applied to complex traits influenced 

by multiple genetic and environmental factors.  

 

The late 20th century witnessed a shift in focus towards molecular markers and their 

application in genetic association studies. The introduction of restriction fragment 

length polymorphisms (RFLPs) and microsatellites enabled more accurate mapping of 

genetic loci. Family-based linkage studies paved the way for the identification of genes 

linked to inherited diseases, yet these methods remained inadequate for unravelling the 

genetic basis of complex traits affecting broader populations as well as in de novo 

disorders. Its efficacy also diminishes in cases of incomplete penetrance or when locus 

heterogeneity is at play. Population-based candidate gene studies, which have employed 

positional cloning methods and more recently targeted next-generation sequencing 

(NGS) approaches, adopt a hypothesis-driven selection of genes based on biological 

plausibility. These endeavours have contributed to gene discovery in rare diseases, but 

they remain constrained by elevated false-positive rates and often encounter challenges 

in terms of reproducibility. Today, both of these methodologies have largely ceded 

ground to whole-exome sequencing techniques in the domain of rare diseases. 

Meanwhile, genome-wide association studies (GWAS) conventionally serve as the 

method of choice for gene discovery in common, complex traits. 

1.1.2 The Genomic Era 

The shift away from linkage analysis (although it still has a vital role to play in 

elucidating mechanisms in rare disease) has been facilitated by the increasing number of 

patients and participants having their DNA sequenced. Now two decades after the 

groundbreaking publication of the draft human genome sequence (Lander et al. 2001) 

there has been a revolution in not just analytical techniques but the datasets that provide 

them. The International HapMap Project (International HapMap 3 Consortium et al. 

2010) and the 1000 Genome Project (Sudmant et al. 2015) were harbingers to 

increasingly large international consortia creating biobanks of large-scale sequencing 

data from hundreds of thousands of individuals from across the globe (H3Africa 
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Consortium et al. 2014; Kurki et al. 2022; Halldorsson et al. 2022; Nagai et al. 2017; 

Turro et al. 2020; GenomeAsia100K Consortium 2019; Bycroft et al. 2018; Taliun et al. 

2019; 100000 Genomes Project Pilot Investigators et al. 2021).  

 

However, initial excitement that the draft human genome would lead to a revolution in 

clinical care has been cooled by the discovery of the vast complexity of the human 

genome both in sequencing and interpretation. The whole genome from telomere to 

telomere was only sequenced in 2022 (Nurk et al. 2022) and the vast amount of data 

generated since 2001 has required rapid advancement in computational and statistical 

techniques to draw meaningful inferences that inform biology. Treatments informed by 

genomics are now beginning to reach clinical pipelines and patients such as ribonucleic 

acid interference (RNAi) molecules for primary hyperoxaluria (Garrelfs et al. 2021), 

PCSK9 inhibitors for primary hypercholesterolemia (Abifadel et al. 2003), the presence 

of a truncating variant in PKD1 for access to tolvaptan (Müller et al. 2022) and most 

recently Inaxaplin for APOL1 associated proteinuric renal disease (Egbuna et al. 2023). 

Equally impactfully, patients with cancer and rare diseases are now getting rapid and 

accurate molecular diagnoses which can personalise treatment, risk stratify by genotype 

and aid in screening programmes. The recent introduction of whole genome sequencing 

(WGS) into routine clinical care within the NHS means this is truly an exciting time for 

genomic medicine. 

1.1.3 Sitting between rare and common 

The common disease common variant (CDCV) debate has roots in the early 20th century 

conflict between the “Mendelians” led by William Bateson and Hugo de Vries and the 

“Biometricians” led by Karl Pearson. The latter camp rejected the Mendelian idea that 

discrete units of heredity could explain the continuous range of phenotypic variation. 

This was largely unified by RA Fisher and colleagues who showed that Mendel’s genes 

and laws could work additively to influence the expression of a phenotype both in a 

discrete and continuous capacity. This influenced discourse in more contemporary 

debates such as the CDCV vs common disease rare variant (CDRV) over the genetic 

architecture of hypertension where arguments centred on whether hypertension was 

rooted in low effect polygenic variants or high effect rare variants. The answer has been 
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shown to be both with GWAS and candidate gene studies highlighting how these two 

causes sit together in not just hypertension but many chronic diseases.  

 

In their seminal paper discussing the common variant/common disease paradigm Eric 

Lander and David Reich gave rationale to this theory positing that it holds true for most 

diseases and therefore GWAS was a reasonable approach to the study of complex 

diseases (Reich and Lander 2001). However Pritchard argued that population dynamics 

are more likely to favour the contribution of multiple rare variants  to disease (Pritchard 

2001) . He contends that common variants, due to their lengthy presence in the human 

population, are more likely to have undergone potential selective pressures over time, 

diminishing the impact of negative selection. In contrast, rare variations, often newly 

arisen within only a few generations, tend to escape the influence of negative selection 

or are rare because they are being actively selected against, owing to their inherently 

deleterious nature. However, whilst conceptually disease can be seen as caused by a 

spectrum of variants across the allelic frequency spectrum the available tools have 

continued to silo researchers into “common variant/common disease” or “rare 

variant/rare disease” methods.  

 

1.1.3.1 GWAS for common and complex diseases 

Thousands of GWA studies have now been conducted looking at the relationship 

between common variants (initially taken to be those with a minor allele 

frequency[MAF] greater than 5% but now greater than 1% is accepted) and various 

diseases with great success (Abdellaoui et al. 2023). The rationale from the Lander 

paper above that the power to detect association in case-control studies is a function of 

the effect size of an allele and its frequency in the study population means it have been 

limited mainly to complex traits and disorders such as diabetes or schizophrenia.  

 

Typically, GWAS deploy genome-wide single-nucleotide variant (SNV) microarrays, 

encompassing  hundreds of thousands or millions of variants, often characterized by a 

minor allele frequency (MAF) greater than 1%. These microarrays enable the 

genotyping of cohorts under investigation, allowing subsequent comparison with 



Introduction 

 

25 

 

appropriate control populations. These genotype results are then typically imputed 

which involves leveraging ancestry-specific reference panels comprised of haplotypes 

reconstructed from sequencing data, exemplified by initiatives like the Haplotype 

Reference Consortium. Imputation serves to bridge gaps in data, utilizing the 

knowledge of linkage disequilibrium (LD), which captures non-random co-inheritance 

of alleles, to infer missing variants. However, it's crucial to note that the imputation 

accuracy diminishes when dealing with variants not in LD with those genotyped, 

particularly rare variants (present in less than 1% of the general population) and those 

manifesting in non-European populations. These imputed variants are then used for the 

association test of the trait of interest, with the variants severing markers or indirect 

proxies rather than direct indicators of the causal variants in the underlying genetic 

regions. 

 

GWAS has now identified thousands of associations that have informed gene discovery, 

the generation of predictive risk score (Khera et al. 2018), estimations of heritability 

(Zhu and Zhou 2020) and prioritization of targets for drug development (Kiryluk et al. 

2023). However, as successful as GWAS has been the results to date only explain a 

small fraction of the burden of any disease in the population at large. This “missing 

heritability” (Manolio et al. 2009) has been attributed to a) GWAS not capturing 

common variants with low effect sizes, b) the contribution of variants not detected by 

imputation of panel data, namely rare variants and structural variants (SVs), c) epistasis, 

where gene-gene interactions occur and d) genomic imprinting or parent of origin 

effects. For those variants that have been detected, ~90% of risk alleles are found in 

non-coding regions of the genome, making functional annotation difficult; although 

efforts to generate cell and context specific multi-omics data via such projects as 

ENCODE (Dunham et al. 2012), the RoadMap Epigenomics Consortium (Roadmap 

Epigenomics Consortium et al. 2015) and GTEx (The GTEx Consortium et al. 2020) 

have aided hugely with prioritization of causal variants for functional follow-up. 

Finally, >95% GWAS to date have been done in individuals of European ancestry (as of 

August 2023 https://gwasdiversitymonitor.com). Increasing ancestral diversity in 

genetic studies improves the power to detect associations (Ishigaki et al. 2022; Z. Lu et 

https://gwasdiversitymonitor.com/
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al. 2022; Mahajan et al. 2022) and is ethically crucial (Peterson et al. 2019; Fatumo et 

al. 2022).  

 

With these recognised limitations in GWAS, high-coverage WGS data is now being 

explored for investigating diseases. Its ability to give whole genome coverage to 

excellent depth has demonstrated improved power and sensitivity over conventional 

techniques. This coupled with larger multi-ancestry biobanks have identified novel 

associations in variants that are either rare or ancestry-specific (Hu et al. 2021). The 

major limiting factor has been the cost of WGS, but with falling costs (a whole genome 

can now be sequenced for <£500) this is set to become the standard method of analysis.  

1.1.3.2 Sequencing in rare diseases   

With GWAS requiring large case numbers and being unable to accurately impute rare 

variants, sequencing both targeted gene sequencing and whole exome/genome 

sequencing became the focus in Mendelian disease analysis. When Ng et al used whole 

exome sequencing to discover rare variants in DHODH as causative for the Miller 

syndrome in 2010 (Ng et al. 2010) it was hoped that a new era of precision medicine in 

rare disease would be enabled. It was cost effective and had the potential to overcome 

the issues with linkage studies such as the requirement for large pedigrees, often poor 

resolution of linked regions, inability to call de novo variants and locus heterogeneity. 

In the two years post the initial WES proof of concept experiment (Ng et al. 2009), 180 

novel genes were described in Mendelian disorders alone (Boycott et al. 2013) and it 

soon found its way into clinical genetics pipelines and diagnostic labs (Y. Yang et al. 

2013).  

 

However, WES has methodological and conceptual issues. From a methods perspective 

WES gives heterogenous coverage of the exons due to the issues with the 

hybridisation/capture and PCR-amplification steps during library preparation 

(Kebschull and Zador 2015), WES also has lower per base coverage than WGS leading 

to it missing may variants in exons (Belkadi et al. 2015) and it is not a reliable approach 

for detecting copy number and structural variants (CNV/SV) due to most CNV/SVs 

extending beyond the boundaries of captured exons. The choice of preparation library is 
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particularly important, ~50%  of pathogenic variants associated with hereditary 

nephrotic syndrome and Deny-Drash syndrome were poorly covered using leading 

WES capture kits (Park et al. 2015). Conceptually, variants causing Mendelian 

disorders are  within coding regions ~95% of the time (Botstein and Risch 2003), a 

finding that spurned the initial drive towards WES, however, non-coding variants have 

been implicated in multiple diseases (Spielmann and Mundlos 2016; French and 

Edwards 2020) including kidney diseases such as atypical haemolytic uraemic 

syndrome (Mele et al. 2015), Alport syndrome (King et al. 2002)  and Gitelman 

syndrome (Lo et al. 2011). WES ignores such variants, and it also ignores a large 

proportion of SV/CNVs as it is unable to reliably define their breakpoints (R. Tan et al. 

2014). It also limits our ability to integrate findings with other lines of multi-omics 

evidence such as epigenetics or chromatin conformation where the interactions lie 

outside of the coding genome.  

 

Whole genome sequencing (WGS) has remained in the shadows of WES for some time 

given its historically higher cost and the vast amounts of data created leading to issues 

with data storage, security, and downstream analysis. It undoubtedly has benefits over 

WES, allowing for full capture of non-coding variants, better and more uniform 

coverage of coding regions (Belkadi et al. 2015), more accurate capture of SV/CNVs 

(Hehir-Kwa, Pfundt, and Veltman 2015) and better phasing and thus assessment of 

compound heterozygosity (Hofmeister et al. 2023). The cost of WGS is now falling to 

that comparable to WES (Dewey et al. 2014), especially when WES may require 

multiple runs to increase read depth to a level to match the variant detection of WGS 

(Lelieveld et al. 2015). Alongside the falling cost, the establishment of large scale WGS 

biobanks such as deCODE (Gudbjartsson et al. 2015), TOPMed (Taliun et al. 2021) and 

gnomAD (Karczewski et al. 2020) has made the data generated by WGS integral to 

human genetics research. The metrics these  have directly affected variant interpretation 

at a clinical level and helped inform the establishment of UK biobanks that serve a dual 

function of research and clinical utility such as the 100,000 genome project (100KGP) 

(100000 Genomes Project Pilot Investigators et al. 2021) and the NIHR Rare Disease 

Bioresource (Turro et al. 2020).  
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1.1.3.3 Rare variants – intermediate effect sizes 

The large WGS biobanks have led to several insights that are pertinent to the 

CDCV/CDRV debate. As sequencing projects get larger in both number as well as read 

lengths (long read sequencing) the frequency and volume of genetic variation become 

apparent. There is an abundance of rare and private (seen in one individual) variation 

within the ~3 million SNVs and ~0.5 million indels in the average genome (Karczewski 

et al. 2020), loss-of-function variants that are predicted to truncate protein function are 

more (Lek et al. 2016) frequent than thought and SV/CNVs may in fact account for 25-

29% of all such protein truncating events per genome (R. L. Collins et al. 2020).  

 

Such insights give evidence to the theoretical models discussed in the past decade. 

Figure 1-1 references a now seminal paper by Manolio et al from 2009 whereby the 

“missing heritability” of diseases is theorized to originate from rare variants of small 

and intermediate effects size as well as structural variants (Manolio et al. 2009). Figure 

1-2 highlights variants on this spectrum in relation to renal diseases from a 2020 review 

by Groopman et al. In the intervening 11 years there has been little exploration of the 

rare variant low effect size space. Like GWAS studies, analysis of this would require 

large cohorts, well sequenced, using the latest methodology to overcome issues around 

lack of statistical power.  
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Figure 1-1 Feasibility of identifying genetic variant by risk allele frequency and strength 

of genetic effect.  

The dotted lines represent the areas the author’s thought variants were most likely to be found in 2009. 

The genetic research landscape has expanded greatly since then. Taken from Manolio et al 2009. 

 

 

 

Figure 1-2 The genetic contribution of variants to renal diseases  

Disease causing variants for renal diseases can be large effect, rare variants which tend to follow a 

Mendelian patten of inheritance and monogenic. More common alleles have smaller individual effect 

sizes although exceptions such as APOL1 exist. Other genes such as UMOD have both common and rare 



Introduction 

 

30 

 

variant roles in renal diseases, or multiple phenotypes such as in HNF1β. Crucially the area of rare, low 

effect size variants remains relatively unexplored in the renal disease.  

 

We now live in the era of large biobanks of WGS data. There are also techniques such 

as region-based testing that collapse information across genomic regions e.g., a gene, 

before testing for association with a phenotype. Such methods have seen success in 

describing a number of novel gene-disease relationships (Q. Wang et al. 2021; Deaton 

et al. 2021; Akbari et al. 2021) and more importantly begin to fill out the bottom left 

hand quadrant of both figure 1.1-1.2. One of the largest analysis of rare and low 

frequency variants to date, across 643,219 individuals and 744 phenotypes from the 

UKBB and Finngen, found 975 associations of which 145 were driven by unique 

variants in the allelic frequency between 0.1-2% with an average odds ratio of 2.8 

(Benjamin B. Sun et al. 2022). Clearly these variants are not acting in purely Mendelian 

ways, their penetrance is likely to be low and they should be seen as risk factors or 

modifiers that transact with other genetic and environmental factors for a particular 

disease. This is an exciting era for genomic medicine and in this thesis, I will use 

similar methods to explore this genome space for a number of disorders to further 

elucidate their genetic architecture.  

1.2 Genetic architecture  

The term “genetic architecture” needs defining prior to its use in this thesis. It refers to 

the types of genetic variation and their respective effects on the observed variation in a 

phenotype. This is driven by both our knowledge of the types of variation that exist and 

in turn the technologies and methods available to detect them. This encompasses the 

arrangements and distribution of genetic variants, such as single nucleotide variants 

(SNVs), insertions/deletions (indels) and structural variants (SNVs) across a cohort’s 

genomes, their allele frequencies, and their effect sizes. In human population-based 

analyses genetic architecture describes the genetic variation that is responsible for 

broad-sense phenotypic heritability (Mackay 2001). This is compared to narrow-sense 

heritability which applies to additive genetic effect only (Visscher, Hill, and Wray 

2008).  
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Genetic architecture also includes the interaction and combined effects of multiple 

genes (epistasis) and their interactions with environmental factors in determining the 

expression of traits. Defining this architecture for a trait or disease is a fundamental goal 

of human genetics both scientifically and clinically.  

 

Genetic architecture is defined as much by the technologies available to the researchers 

as the underlying genomic variants. Historically, limited by both pedigree size and 

genetic mapping technology, linkage analysis and fine mapping where the technologies 

of the day during the 1980s and 1990s (Lipner and Greenberg 2018). Localization of 

genetics signals was typically followed up using Sanger sequencing and then functional 

studies in cellular and animal models (Heather and Chain 2016). This was a difficult 

and laborious process but by 2000 ~1000 of the ~7000 single gene inherited disease had 

been described such as Huntington’s disease and cystic fibrosis (Kremer et al. 1994; F. 

S. Collins 1990).   

 

The first draft of the human genome sequence reduced many of the barriers to disease-

gene mapping (Schmutz et al. 2004).  Microarray-based technologies allowed for 

structural variation to be analysed and exome and genome-wide sequencing have been 

instrumental in further elucidation of genetic architecture aided by the parallel 

development of in silico  analysis of genetic variants (Heather and Chain 2016). 

Complex diseases and traits with polygenic architecture can now be described and 

biobanks of increasing size allow for the examination of low frequency, low effect rare 

variants in all forms of disease (Q. Wang et al. 2021). In fact for certain traits such as 

height, the “missing heritability” has been solved in European ancestry paving the way 

for further phenotypes to be elucidated in a similar fashion as biobanks increase in size 

(Yengo et al. 2022). 

 

This increasing ability to sequence more of an individual’s DNA more reliably and at 

scale had led to an evolution of the models of genetic architecture. Traditionally genetic 

architecture has been described as monogenic, oligogenic or polygenic implying 

differing levels of genetic variant contribution to the variability in a phenotype (Badano 

and Katsanis 2002). However, the “omnigenic” model describes a gene regulatory 
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network wired as such to allow all genes expressed to contribute to a trait, with 

peripheral gene networks having a no-zero effect and interaction with a core set of 

genes in a given tissue or cell type (Boyle, Li, and Pritchard 2017). Like Fisher’s 

“infinitesimal model’ whereby all variants have non-zero effects on trait variation, the 

omnigenic model effectively describes all traits as quantitative as variation throughout 

the genome affects the process as much as more closely related variants (Fisher 1919). 

Clearly it still holds true that some phenotypes are much more monogenic e.g. Cystic 

Fibrosis whilst others are more polygenic e.g. Type 2 diabetes but the increasing 

influence of “peripheral” genetic variants on “core” genes and subsequent phenotype is 

increasingly being appreciated. From a practical perspective, these influences have been 

best described at the intersection of monogenic disease and polygenic risk scores, such 

as in altering the penetrance of monogenic tier 1 genomic conditions (Fahed et al. 

2020), describing the modification of chronic kidney disease (CKD) risk in monogenic 

causes of  renal disease (Khan et al. 2023) and our work on the polygenic interaction 

with rare, low effect size variants in nephrolithiasis described later in this thesis 

(Sadeghi-Alavijeh et al. 2023).  

 

A comprehensive understanding of genetic architecture allows for better screening, 

diagnosis, prognosis, and therapeutics for a given disease. In this thesis I describe the 

use of short-read whole genome sequencing (WGS) in a national cohort of cystic kidney 

disease (CyKD), urinary stone disease (USD) and extreme early onset hypertension 

(EEHTN) in order to describe  the genetic architecture of these disorders.  

1.3 Summary 

In summary, our ability to plumb the full range of genetic variation and assign these 

findings a role in a trait or disease has exploded in the last decade. While previous 

studies of genetic causation in disease have been siloed by the technologies and 

methods available into “common – GWAS” or “rare- sequencing” our ability to 

overcome these challenges has improved to the point of being able to integrate a broad 

spectrum of variation into our models.  
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1.4 This study  

In this study I use WGS data from the 100,000 Genomes Project to understand the 

genetic architecture of CyKD, USD and EEHTN. Population based rare and common 

variant association testing was performed in diverse ancestry case control cohorts 

looking for enrichment of single nucleotide/indel and structural variants on a genome-

wide level. Polygenic risk scoring was utilised as a method to ascertain heritability and 

understand common variant contribution to these diseases. This study represents one of 

the largest WGS analyses of all three conditions using unbiased genome wide methods.  
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Chapter 2. Materials & Methods 

In this chapter I discuss the methods used for generating genomic and cohort data used 

throughout the thesis. I then discuss the overarching theories behind the statistical 

methodology used for controlling for sources of bias and the subsequent association 

testing. I will go into more detailed practical methodology within each results chapter. 

All code used in this thesis can be found on my GitHub: 

https://github.com/oalavijeh/phd_scripts/tree/main, all workflows generated by 

Genomics England’s bioinformatics team can be found here: https://re-

docs.genomicsengland.co.uk/workflows/. All summary statistics have been uploaded to 

a shared drive at:  

https://liveuclac-

my.sharepoint.com/:f:/r/personal/zchaf43_ucl_ac_uk/Documents/thesis_summary_stats

?csf=1&web=1&e=oTKY8q and will be referenced to as “summary statistics” in the 

text, this will be hyperlinked to this location.  

2.1 The 100,000 Genomes Project 

In 2012, the UK launched the 100,000 Genomes Project (100KGP), an initiative to 

sequence 100,000 genomes from patients with cancer, rare disease and 

their unaffected relatives (100000 Genomes Project Pilot Investigators et al. 2021) .  

13 National Health Service (NHS) Genomic Medicine Centres across the UK recruited 

participants which was completed in December 2018. In total 132,760 genomes had 

been sequenced by March 2023. The Genomics England dataset (version 15) consists of 

WGS data, clinical phenotypes encoded using a standardized vocabulary of phenotypic 

abnormalities called Human Phenotype Ontology (HPO) codes (Groza et al. 2015), and 

retrospective and prospectively ascertained NHS hospital records for 90,189 

individuals. Ethical approval for the 100KGP was granted by the Research Ethics 

Committee for East of England Cambridge South (REC Ref 14/EE/1112). Written 

informed consent was obtained from all participants or their guardians. 

 

The 100,000 Genomes Project (100KG) is one of the largest sequencing initiatives in 

the world offering a unique opportunity to combine high-quality, high-coverage 

https://github.com/oalavijeh/phd_scripts/tree/main
https://re-docs.genomicsengland.co.uk/workflows/
https://re-docs.genomicsengland.co.uk/workflows/
https://liveuclac-my.sharepoint.com/:f:/r/personal/zchaf43_ucl_ac_uk/Documents/thesis_summary_stats?csf=1&web=1&e=oTKY8q
https://liveuclac-my.sharepoint.com/:f:/r/personal/zchaf43_ucl_ac_uk/Documents/thesis_summary_stats?csf=1&web=1&e=oTKY8q
https://liveuclac-my.sharepoint.com/:f:/r/personal/zchaf43_ucl_ac_uk/Documents/thesis_summary_stats?csf=1&web=1&e=oTKY8q
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genomic data with rich clinical and phenotypic information from a national health 

system. Furthermore, a key strength of this dataset is the availability of sequence data 

from large numbers of people without the phenotype under study, drawn from the same 

population recruited and their samples processed and sequenced within a shared 

pipeline. This allows control for allele frequency and variant burden in the population. 

This is an advantage compared with previous sequencing studies in these disorders that 

have typically lacked such robust control.  

 

2.2 Data Generation and Processing 

DNA extraction, processing, whole genome sequencing, WGS alignment, variant 

calling, variant quality control and aggregation were all performed centrally by the 

Genomics England central bioinformatics team and will be detailed below. This resulted 

in an aggregated genomic variant calling file (gVCF) incorporating a majority of the 

100KGP participants split into chunks by genomic position.  

2.2.1 DNA extraction and preparation  

Nearly all the DNA (99%) was harvested from blood and prepared using EDTA with 

the remaining coming from saliva or tissue. Samples underwent quality control 

assessment based on volume, concentration, purity, and degradation. Libraries were 

prepared using the Illumina TruSeq DNA PCR-Free High Throughput Sample 

Preparation kit to minimize PCR-induced sequencing bias. Where limited DNA was 

available (<1% samples) the Illumina TruSeq Nano High Throughput Sample 

Preparation kit was used. 

2.2.2 Whole-genome sequencing and alignment 

Illumina HiSeq X instruments were used to perform WGS, generating 150bp paired end 

reads which were processed on the Illumina North Star Version 4 Whole Genome 

Sequencing Workflow (version 2.6.53.23). Read were mapped to the Homo Sapiens 

NCBI GRCh38 reference assembly and decoys (partially assembled DNA sequences 

missing from the reference genome) using the Illumina Isaac Aligner (version 
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03.16.02.19). A quality threshold of ≥ 95% genome alignment at ≥15X with mapping 

quality > 10 for samples to be retained was set. 

 

For the pilot arm of the 100KGP samples were aligned to NCBI GRCh37 reference, 

however, those patients in the pilot were mostly moved to build 38. For downstream 

analyses I only took those samples aligned to GRCh38, however, the clinical arm of 

100KGP where diagnostic yields for the project are generated are calculated using 

probands aligned to either GRCh37 or GRCh38. In terms of coverage (the number of 

times a single base is read during sequencing) the 100KGP samples achieved 97.4% 

mean coverage at 15X with median genome-wide coverage of 39X. Samples with 

heterozygosity rates >2% (implying cross-contamination of samples) were removed (as 

determined by the VerifyBamID tool). Males and females were subset and analysed 

separately for sex chromosome quality control.  

2.2.3 Variant calling  

Variant calling was performed using Illumina’s Starling software (version 2.4.7) for 

small SNVs and short insertions/deletions (INDELs). These were output to a genomic 

variant calling format file (gVCF). Starling uses a combination of read quality scores, 

allele counts to predict a genotype per locus before comparing it to a reference genome.  

2.2.4 gVCF aggregation and variant-level quality control  

Genomic variant call format files (gVCFs) were aggregated using gvcfgenotyper 

(Illumina, version: 2019.02.26) with variants normalized and multi-allelic variants 

decomposed using vt (version 0.57721). Variants were retained if they passed the 

following filters:  

• missingness ≤ 5% 

• median depth ≥ 10 

• median GQ ≥ 15 

• percentage of heterozygous calls not showing significant allele imbalance for 

reads supporting the reference and alternate alleles (ABratio) ≥ 25% 

• percentage of complete sites (completeGTRatio) ≥ 50% and  
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• P value for deviations from Hardy-Weinberg equilibrium (HWE) in unrelated 

samples of inferred European ancestry ≥ 1×10-5. 

 

HWE is the principal by which allele and genotype frequencies remain static between 

generations as long as mating is random and migration, mutation or selection do not 

occur. Variants that differ vastly by HWE normally represent genotyping or sequencing 

errors. However, HWE deviances can also represent population stratification or true 

associations. HWE is normally assessed separately in cases and controls to avoid 

removing true associations.  

2.2.5 gVCF annotation  

Annotation was performed using Variant Effect Predictor (VEP, version 98.2) 

(McLaren et al. 2016). Allele frequencies were annotated using gnomAD and TOPMed 

databases using both total population and ancestry specific values. Variants were further 

annotated with the Combined Annotation Dependent Depletion (CADD) scores (version 

1.5) (Rentzsch et al. 2019), the loss-of-function transcript effect estimator (LOFTEE) 

tool (Karczewski et al. 2020) and SpliceAI splice site predictor tool (Jaganathan et al. 

2019). 

 

CADD incorporates more than 60 different annotations (including evolutionary 

constraint, epigenetic modifications, and functional predictions) into a machine 

learning model, generating a deleteriousness score for all ~9 billion potential coding 

and non-coding SNVs in the human genome (Rentzsch et al. 2019). A CADD PHRED 

adjusted score >20 for a variant means it is predicted to be in the top 1% damaging 

variants in the human genome. CADD scoring is a very popular method for variant 

deleteriousness calling and remains one of the top-performing and flexible tools (D. 

Wang et al. 2022) despite many other callers now being incorporated into Ensembl. 

 

LOFTEE assesses variants that are stop-gained, splice site disrupting and frameshift 

variant only. It filters out variants based on sequence and transcript context (such as 

removing terminal truncation variants or well rescued splice variants) and flags exonic 

features such as conservation. It has been shown to effectively remove predicted loss of 
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function variants (pLoF) that are common in the population while retaining correctly 

ascertained pLoF variants (Karczewski et al. 2020).  For these variants LOFTEE gives a 

flag indicating whether there is a “high confidence” (HC) or a “low confidence” that 

they cause pLoF.  

 

SpliceAI is deep neural network that predicts cryptic splice mutations from genomic 

sequence data using an unsupervised deep learning model (Jaganathan et al. 2019). The 

output for each variant is a delta score ranging from 0-1 for each type of splice variant 

(donor loss, donor gain, acceptor loss, acceptor gain) with higher scores indicating a 

higher probability of the variant affecting splicing; a score >0.8 is used by the authors as 

a high precision cut-off.  

 

2.2.6 Bioinformatics tools 

The gVCF files  were filtered using bcftools (version 1.11) (Danecek et al. 2021) and 

BEDtools (Quinlan and Hall 2010) in the command. Phenotype data including hospital 

episode statistics (HES) and human phenotype ontology data (HPO) was extracted from 

LabKey tables using the LabKey R package (Nelson et al. 2011). The outputs of the 

association analyses were manipulated, analysed and plotted in R (Version 4.0.3) using 

the data.table, tidyverse, qqman (D. Turner 2018) and ggplot2 packages (Wickham. 

2016). Survival analysis was performed and plotted with the survival package in R 

(Therneau 2023).  

 

2.3 Relatedness Estimation  

Case-control analyses in genomics looks for shared areas of the genome, pre-defined at 

the point of testing e.g. SNV, gene, structural variant etc that are more common in 

either cases or control outputs a statistical probability as to the confidence of the 

association as well as an effect size as to the magnitude of the association. Related 

individuals share more common tracts of genomic information and if grouped together 

in such analyses lead to spurious associations and biased estimated of effect sizes if 
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unaccounted for. Common practice entails using “unrelated” individuals, usually 

defined as more distant than second-degree relatives.  

 

Genetic relatedness can be ascertained using identify-by-descent (IBD), a concept that 

refers to the sharing of genetic material between two individuals inherited from a 

common ancestor. IBD assumes that individuals who are closely related are more likely 

to share longer segments of their DNA. The proportion of loci where a pair of 

individuals share 0,1 or 2 alleles from a common ancestor is calculated, with these 

estimated used to create a pair-wise kinship coefficient (Φ). The Φ is defined as the 

probability that a randomly selected allele from two individuals is IBD. A coefficient of 

0.5 is equivalent to monozygotic twins, 0.25 to first-degree relatives and 0.125 to 

second-degree relatives.  

 

Genomics England had generated a set of 127,747 high quality autosomal biallelic 

SNVs with a minor allele frequency (MAF) > 1% using PLINK (version 1.9) (Purcell et 

al. 2007). SNVs were included if they met the following criteria:  

 

• missingness < 1% 

• median GQ ≥ 30 

• median depth ≥ 30 

• AB Ratio ≥ 0.9 

• completeness ≥ 0.9 

 

SNVS that were ambiguous due to strand uncertainty were excluded. To prevent further 

confounding linkage disequilibrium (LD) pruning was performed using a squared 

correlation coefficient (r2) threshold of 0.1 and window of 500kb to remove correlated 

variants. Variants in regions of long-range high LD 

(https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD) 

were also removed. SNVs out of HWE in any of the African (AFR), East Asian (EAS), 

European (EUR) or South Asian (SAS) 1000 Genomes populations were also removed 

(pHWE <1×10-5). 

 

https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)
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With this pruned set of variants, I employed the KING-Robust algorithm (Manichaikul 

et al. 2010) to infer relationships in the presence of population substructure. KING 

generates pairwise kinship matrices, which I generated for cases and controls separately 

first. I then subset my sampled into unrelated individuals with a kinship coefficient 

threshold of 0.0884 (second degree relative). I then combined the case/control subsets 

and re-ran KING with the same threshold, removing controls that were related to the 

causes using a custom Python script (Mr. Catalin Voinescu, UCL). 

 

2.4 Population Stratification 

Removing close relatives from genetic analyses removes one source of bias however, 

population structure presents another similar challenge. Population stratification refers 

to the presence of systematic genetic differences between subpopulations within a larger 

population i.e., the distribution of genetic variants differs between subpopulations. 

These differences can arise due to various factors such as geographical isolation (with 

non-random mating), migration patterns, genetic drift (random fluctuations in the 

frequency of genetic variants or alleles within a population over successive 

generations), genetic admixture, gene flow (the transfer of genetic material from one 

population to another) and evolutionary processes. The result is false positive 

associations and inflated test statistics. Various statistical approaches have been 

developed to minimise confounding by population structure.  

 

2.4.1 Genomic Control 

A genome-wide inflation factor, often denoted as λ (lambda), is a statistical measure 

used in genome-wide association studies (GWAS) to assess and correct for potential 

inflation of test statistics due to population stratification or other sources of systematic 

bias. The inflation factor is a measure of the inflation of test statistics compared to what 

is expected under the null hypothesis of no association. If the test statistics are inflated 

due to population stratification or other sources of bias, the inflation factor will be 

greater than 1. A value of λ = 1 indicates no inflation, meaning that the test statistics 

follow the expected null distribution. The inflation factor can then be used to correct the 



Materials & Methods 

41 

 

test statistics in the GWAS (Devlin and Roeder 1999). Genomic inflation under a 

collapsing rare variant model is less straightforward and further discussed in the 

collapsing rare variant section (3.3.2.4).  

 

2.4.2 Principal component analysis (PCA) 

Principal component analysis (PCA) helps to identify patterns, structure, and 

relationships within high-dimensional genetic data by reducing the dimensionality and 

visualizing the data in a more manageable form. In the context of genomics, PCA is 

often applied to genotype or gene expression data, where each individual or sample is 

represented by many variables (e.g., genetic variants or gene expression levels). By 

employing PCA, these high-dimensional datasets can be transformed into a lower-

dimensional space while retaining the most important patterns of variation. The steps of 

PCA analysis are: 

 

• Covariance Matrix: PCA calculates the covariance matrix from the data, in this 

case PLINK files containing sample and genomic variant data which quantifies 

the relationships and dependencies between the genetic. The covariance matrix 

captures the variance and co-variance of the variables in the dataset. 

 

• Eigendecomposition: The covariance matrix is then eigendecomposed to obtain 

the eigenvectors (principal components) and eigenvalues. Each eigenvector 

represents a principal component, and the corresponding eigenvalue indicates 

the amount of variance explained by that component (Patterson, Price, and 

Reich 2006). 

 

• Dimension Reduction: The eigenvectors are ranked based on their associated 

eigenvalues, and the top-ranked eigenvectors capture the most significant 

patterns of variation in the data. By selecting a subset of the top principal 

components, the dimensionality of the data is reduced. 
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To aid in interpretation this data is visualised in a scatter plot, where each individual is 

represented by its scores on the selected principal components. This visualization allows 

for the identification of clusters, outliers, and patterns of genetic similarity or 

dissimilarity among individuals. This is particularly useful for detecting population 

stratification or genetic ancestry differences in genomic datasets. It can reveal 

underlying genetic substructure or relationships between populations, which is crucial 

for controlling population stratification in genetic association studies. 

 

Usually, the top ten PCs are included as fixed (non-random) effects in the regression 

model of an association analysis to control for population stratification. However, it 

should be noted that PCA is less reliable in small sample sizes or when estimating 

population substructure (Stoltzfus 2011; Johnstone and Lu 2009).  

 

2.4.3 Linear mixed models (LMM) 

LMMs (also known as a mixed effect model) now play an integral role in accounting 

for population stratification in genetic association studies and can be used on both 

continuous and binary traits (if using binary input it is known as logistic mixed model) 

(Z. Zhang et al. 2009; Dandine-Roulland and Perdry 2015; G. Li and Zhu 2013). 

 

LMM is a statistical modelling approach that incorporates both fixed effects and 

random effects into the analysis. The response variable is modelled as a linear 

combination of fixed effects and random effects, along with an error term. Fixed effects 

(covariates) represent the systematic or non-random factors that influence the response 

variable. Fixed effects can be categorical (e.g., treatment groups, sex) or continuous 

(e.g., principal components). The coefficients associated with the fixed effects estimate 

the relationship between the covariates and the response variable. Random effects 

capture the variability due to factors that are not of primary interest but are still 

important to account for. Random effects account for correlation or clustering within 

the data and are typically used to model the hierarchical or nested structure of the data. 

In genetic studies, random effects can account for the genetic relatedness between 

individuals or clustering within families and are calculated via a genomic relationship 
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matrix (GRM). The random effects are assumed to follow a specific probability 

distribution, often a multivariate normal distribution. Finally, the error term in an LMM 

accounts for the residual variation that cannot be explained by the fixed and random 

effects. It represents the within-group or within-subject variability that is not accounted 

for by the model. The error term is assumed to follow a normal distribution with mean 

zero and constant variance. 

 

LMMs are flexible and can handle unbalanced or missing data, accommodate different 

data structures (e.g., repeated measures, nested designs), and provide estimates of both 

fixed and random effects, along with associated uncertainty measures (e.g., standard 

errors, confidence intervals). LMMs are commonly estimated using maximum 

likelihood estimation (MLE) or restricted maximum likelihood estimation (REML). It 

should be noted that LMMs are computationally intensive but allow for the accounting 

of inter-and intra-population structure and cryptic relatedness. 

 

2.4.4 Control of population structure 

Published methodology from our group has shown that incorporating two of the above 

approaches controls confounding from population structure in a mixed ancestry 

case/control population (Chan et al. 2022). The first method is using a matching 

algorithm that matches cases to controls within a distance threshold as calculated using 

the first ten principal components (generated with PLINK using the 127,747 high 

quality autosomal biallelic SNVs with MAF > 1%) weighted by the percentage of 

genetic variation explained by each component (Figure 2-1 for an example from 

CyKD). Only controls within a specified distance of a case were included, with each 

case having to match a minimum of two controls to be included in the final cohort. 
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Figure 2-1 Principal component matching 

Principal component analysis showing the first eight principal components for CyKD cases (red) and 

controls (white) prior to ancestry matching (1294 cases and. 27660 controls). 
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Figure 2-2 Ancestry Matching  

Principal component analysis showing the first eight principal components for matched cases (red) and 

controls (green) and unmatched controls (grey) in a CyKD cohort. This highlights that cases are taken 

from multiple different ancestries with the appropriate matched controls. After ancestry matching there 

were 1209 cases to 29096 controls.  
 

Secondly, a logistic mixed model was implemented using SAIGE (W. Zhou et al. 2018)  

and SAIGE-GENE (W. Zhou et al. 2022). This in addition to ancestry matching allowed 

for further control of population structure and cryptic relatedness.  

2.5 SAIGE 

The Scalable and Accurate Implementation of Generalized mixed model or SAIGE and 

its extension SAIGE-GENE have been developed to deal with the increasing challenges 

in running association testing in large biobank scale genomic datasets. It is 

computationally intensive running mixed models on such datasets and controlling type 

1 error is challenging in unbalanced case control ratios (roughly greater than 100 

controls per case). These tools have now become the standard for genome-wide single 

variant and exome-wide region-based association testing in large cohorts (W. Zhou et 

al. 2018, 2022). Given the importance of SAIGE in this thesis I have broken down its 

key features below: 
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2.5.1 Generalised logistic mixed model 

SAIGE uses a logistic mixed model written as: 

 

logit(µi) = Xiα + Giβ + bi 

where µi is the probability of individual i being affected by the disease or trait in 

question based on their covariates, genotype, and random effects. Xi is a vector of 

covariates (e.g., sex and top ten principal components), α is a vector of fixed covariate 

effects including the intercept, Gi is the matrix of allele counts (0,1,2) for each 

qualifying variant and β is the fixed genotype effect. bi is a vector of random effects that 

incorporates relatedness (and consequently population structure) between individuals 

estimated using an N x N GRM. SAIGE wraps this methodology around optimised 

computational strategies to reduce the cost of fitting null logistic mixed models, making 

it ideal for large scale biobanks.  

2.5.2  Saddlepoint approximation  

In unbalance case-control cohorts (roughly greater than 100 controls to 1 case) there is 

not a normal distribution of test statistics for single variants leading to inflated type 1 

error rates. In order to control for this SAIGE utilises saddlepoint approximation (SPA)  

(Dey et al. 2017). SPA is a mathematical technique used to approximate the distribution 

of a random variable when its exact distribution is difficult to determine analytically. It 

is particularly useful when dealing with complex distributions, such as those 

encountered in genomic association tests. In some scenarios, the null distribution of the 

test statistic is not readily available in closed form. This can be the case when the 

sample size is small or when the distribution of the test statistic is complicated. SPA 

provides an efficient and accurate method to estimate the null distribution and compute 

p-values in such situations. 

 

SPA involves finding the saddlepoint of a Laplace-type integral equation, which is a 

point in the domain of the characteristic function of the random variable where the 

integral equation is satisfied. The saddlepoint approximation constructs an asymptotic 

expansion around this saddlepoint, allowing for the estimation of the tail probabilities of 
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the distribution. This approach is particularly effective for approximating the tails of 

distributions, which is essential for calculating p-values. 

 

In genomic association tests, saddlepoint approximation can be applied to compute 

accurate p-values for test statistics under various null distributions, such as the chi-

square distribution or the logistic distribution. By accurately estimating the null 

distribution, one can determine the statistical significance of genetic associations and 

make more reliable inferences about the relationship between genetic variants and traits 

or diseases. 

 

However, when variants have a minor allele count (MAC) < 10, considered to be “rare”, 

then SPA loses accuracy. SAIGE-GENE tunes this signal by employing efficient 

resampling methods to further control for type 1 error rates (Seunggeun Lee et al. 

2016). Efficient resampling refers to methods such as bootstrapping or permutation tests 

that involve generating multiple resamples or permutations from the observed data to 

assess the sampling variability and make statistical inferences. In the case of SAIGE-

GENE, permutation testing is performed only in those individuals carrying the minor 

allele to estimate the sampling distribution and generate an empirical P value.  

 

2.5.3 Workflow 

There are two main steps behind SAIGE and SAIGE-GENE: 

 

1. Variance component estimation using a generalized linear mixed model 

(GLMM): The first step involves fitting a null GLMM using sex and the first ten 

principal components without the genetic variants (fixed effects). Next a GRM 

is constructed using variants with a MAF>1% with the variance components 

used as random effects. This account for both genetic relatedness and population 

structure.  

2. Score test for association analysis: After estimating the variance components, 

the second step involves performing association tests to assess the significance 

of genetic variants. SAIGE and SAIGE-GENE use a score test, which is a 
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variant of the standard likelihood ratio test (LRT). The score test compares the 

likelihood of the model under the null hypothesis (no association) to the 

likelihood under the alternative hypothesis (presence of association). The test 

statistic is derived from the score vector, which represents the derivative of the 

log-likelihood function with respect to the variant effect size. The saddlepoint 

approximation is used to account for case-control imbalance. 

 

Whilst SAIGE has been widely adopted, there exist several relevant limitations. With 

any use of logistic regression, if the event rate is low then estimations of effect size (β) 

can be inaccurate; this holds true for rare variants and the authors of SAIGE now 

recommend Firth logistic regression be used instead in such scenarios. Secondly, 

SAIGE has been shown to be slightly conservative when case-control ratios are very 

unbalanced.  

 

2.6 Power 

For single-variant association analysis statistical power was calculated using the R 

package genpwr (Moore, Jacobson, and Fingerlin 2019) assuming an additive model 

and a P<5x10-08, the standard genome-wide significance threshold. Figure 2-3 illustrates 

the power for the GWAS at different allele frequencies and odds ratios (OR) for the 

CyKD cohort. At an allele frequency of 1% single variant association testing is well 

powered (>80%) to detect alleles with an OR >3. USD and EEHTN are discussed in 

more detail in their respective chapters.  
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Figure 2-3 Statistical power of CyKD GWAS 

Power to detect single variant association under an additive model for 1209 CyKD cases and 26096 

controls at a genome-wide significance threshold of 5x10-8. MAF, minor allele frequency. 

 

For region-based association testing, establishing power is more challenging due to the 

myriad parameters that need to be accounted for such as allele frequency and effect 

sizes of individual variants. PAGEANT (Derkach, Zhang, and Chatterjee 2018) was 

developed to aid in calculating power for gene-based collapsing tests by using 

distributions derived from the precursor to the gnomAD database, ExAC (Lek et al. 

2016). PAGEANT was used to calculate the minimum proportion of cases explained by 

a single gene detected with 80% power in the rare variant analyses (discussed further in 

chapter 3), assuming 80% of the qualifying variants used for the collapsing test were 

causal. The genome-wide threshold used was P<2.5x10-06; the less stringent p-value 

reflecting a Bonferroni correction per gene rather than per SNV.  
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2.7 Statistical Significance 

The more tests one carries out, the more likely one is to see a statistically significant 

result by chance. This means that the chances of rejecting the null hypothesis when it is 

true also increases. This is Type 1 error and require careful consideration in the context 

of genome-wide association testing where millions of independent tests are carried out. 

I will discuss some of the current thinking behind controlling for multiple testing below: 

2.7.1 Bonferroni correction 

If α is the desired significance level, usually 0.05, and n is the number of independent 

tests, then a Bonferroni correction can be represented as α/n. This is widely used in the 

genomics community and represents the most stringent of type 1 error control methods. 

The underlying assumption that every variant tested is independent does not always 

hold true and this method is weighted in favour of minimising false positives (type 2 

error) at the expense of potentially missing real signals (Devlin and Roeder 1999).  

2.7.2 False discovery rate 

False discovery rate (FDR) is recently gained more favour in the genomics community 

as an alternative to Bonferroni correction. FDR determines a proportion of false positive 

that are acceptable within the significant results, typically 1% or 5% (Benjamini and 

Hochberg 1995). FDR has an increased type 1 error rate but greater power for signal 

detection. They are often used for hypothesis-generating where the results will not 

directly impact patient care.  

 

2.7.3 Permutation testing 

Rather than assuming an underlying distribution, permutation testing calculates a 

distribution for the test statistic under the null hypothesis in order to give an empirical P 

value. By randomly rearranging the data and recalculating the test statistic of interest, a 

null distribution of the test statistic is calculated (Salmaso et al. 2011). This is then 

compared to the observed test statistic to determine the p-value. Permutation testing is 



Materials & Methods 

51 

 

computationally intensive but particularly useful when the underlying assumptions 

required by traditional parametric tests are not met or when the sample size is small. 

 

2.7.4 Bayesian approaches 

Bayesian methods provide an alternative approach to determining statistical 

significance compared to classical frequentist methods. In Bayesian statistics, statistical 

significance is typically expressed in terms of posterior probabilities or credible 

intervals rather than p-values. Bayesian methods use prior probabilities to fine tune and 

generate a conditional probability using the observed data. The Bayes factor quantifies 

the relative strength of evidence for one hypothesis compared to another. It represents 

the ratio of the likelihood of the data under one hypothesis to the likelihood under an 

alternative hypothesis, after considering prior beliefs. A Bayes factor greater than 1 

indicates evidence in favour of the hypothesis in the numerator, while a value less than 

1 favours the hypothesis in the denominator. The strength of evidence can be interpreted 

using widely accepted guidelines but as of yet has not been widely adopted by the 

genomics community (Fernando and Garrick 2013).  

 

Bayesian methods have found more favour in generating “credible sets” of variants that 

make up a significant GWAS signal, rather than the traditional p-value thresholding as 

it allows for a more nuanced interpretation of the results by providing a range of 

plausible effect sizes or variants rather than a binary significant/not significant 

determination. It also enables researchers to quantify and compare the evidence for 

different variants or effect sizes, aiding in prioritizing follow-up investigations. 

2.7.5 Significance thresholds 

Bonferroni correction was selected as the p-value adjustment methods throughout this 

thesis as my aim was to replicate any significant findings in an independent cohort such 

as the UK Biobank. In order to do so I wanted to make sure any significant findings 

were as robust as possible and thus I wanted to minimise noise.  
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Single variant association analysis uses a genome-wide significance threshold of    

5x10-08, a figure derived from the International HapMap Consortium based on estimates 

of the number of common independent variants (r2 < 0.8) with MAF > 5% in a 

European ancestry population (~1 million). Given I used a lower MAF of 1% and have 

access to WGS data and therefore test more variants than the HapMap consortium there 

is an argument to be made that a lower p-value threshold is applicable. However, this 

has yet to be implemented in the genomics community.  

 

For gene-level rare variant association analyses P<2.5x10-06 is the exome wide 

significance: 0.05 Bonferroni corrected for the number of protein coding genes in the 

human genome (α = 0.05/~19,000).  

 

2.8 Summary 

In this chapter I have discussed how the central data used for this thesis was constructed 

as well as the underlying theories behind the statistical genetic approaches. In the 

subsequent chapters I will go into more detail specific to the results presented per 

phenotype.  
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Chapter 3. Cystic kidney disease  

Cystic kidney disease (CyKD) is a catch all term encompassing a wide group of 

diseases with differing causes that all involve the formation of fluid filled cysts in one 

or both kidneys. CyKD can present at any point in life and the many causes are usually 

distinguished by their respective clinical feature, imaging characteristics, cyst 

distribution and whether extra-renal features are present. However, in the age of 

genomic testing becoming more widely available, a molecular approach as the first step 

in diagnosis is increasingly popular and has led to a better understanding of CyKD 

pathogenesis and improved diagnostic accuracy. To this end the causes of CyKD can be 

divided into hereditary and non-hereditary causes and are detailed in the Table 3-1 

below. I will give more in-depth analysis of the causes of CyKD that are directly 

relevant to this thesis, namely dominant and recessive causes of CyKD as well as 

HNF1β -related CyKD; other relevant and important genes and pathways involved in 

CyKD will be referred to in the “pathophysiology of cyst formation” section. 
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Table 3-1 Causes of cystic kidney disease. 

Gene Disease Renal Phenotype 
Extra-renal 

phenotype 
Mode OMIM# Reference 

ADPKD 

PKD1 

(truncating) 

ADPKD-PKD1 

Bilateral kidney cysts, renal 

enlargement, median age ESRF ~55 

years 
PLD, ICH, heart 

valve abnormalities, 

aortic root 

dilatation, hernias, 

diverticular disease, 

cysts in other 

organs 

AD 

173900 Harris et al. 1994 

PKD1 (non-

truncating) 

Bilateral kidney cysts, renal 

enlargement, median age ESRF ~67 

years 

173900 Harris et al. 1994 

PKD2 ADPKD-PKD2 

Bilateral kidney cysts, renal 

enlargement, median age ESRF ~79 

years 

613095 Mochizuki et al. 1996 

GANAB ADPKD-GANAB 
Bilateral cysts, preserved renal 

function 
PLD 600666 Porath et al. 2016 

DNAJB11 ADPKD-DNAJB11 
Multiple small cysts with normal/small 

kidneys, possible ESRF after 60 years 
PLD 618061 Cornec-Le Gall et al. 2018 

ALG5 ADPKD-ALG5 

Interstitial fibrosis with non-enlarging 

cystic kidneys, possible ESRF after 60 

years 

Rarely mild PLD 620056 Lemoine et al. 2022 

ALG8 ADPKD-ALG8 Bilateral kidney cysts, nephrolithiasis None to date Pending Apple et al. 2023 

ALG9 ADPKD-ALG9 
Moderate bilateral kidney cysts, rarely 

progressing to ESRF 
Rarely mild PLD Pending Besse et al. 2019 

IFT140 ADPKD-IFT140 
Bilateral enlarging kidney cysts with 

ESRF comparable to PKD2 
Rarely mild PLD Pending Senum et al. 2022 

ADTKD 

HNF1B ADTKD-HNF1B 

Bilateral kidney cysts in ~45% of 

affected individuals, ESRF highly 

variable 

Diabetes, gout, 

hyperuricaemia, 

hypomagnesaemia, 

elevated liver 

enzymes, bicornate 

AD 137920 Bingham et al. 2001 
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uterus, solitary 

kidney 

MUC1 ADTKD-MUC1 

Normal to small-sized kidneys, ~50% 

small renal cysts; variable progression 

to ESRF in adulthood 

Gout 174000 Kirby et al. 2013 

SEC61A1 ADTKD-SEC61A1 
Normal or small-sized kidneys, ~50% 

small bilateral renal cysts 

Intrauterine growth 

retardation, 

neutropenia, 

anaemia 

(congenital) 

617056 Bolar et al. 2016 

UMOD ADTKD-UMOD 

Normal to small-sized kidneys, 1/3 

small kidney cysts (uni/bilateral), 

variable ESRF in adulthood 

Gout 162000 Dahan et al. 2003 

ADPLD 

PRKCSH 

ADPLD 

Occasional kidney cysts PLD 

AD 

174050 Li et al. 2003 

SEC63 Occasional kidney cysts PLD 617004 Davila et al. 2004 

ALG8 Occasional kidney cysts PLD 617874 Besse et al. 2017 

LRP5 Occasional kidney cysts PLD 617875 Cnossen et al. 2014 

ARPKD 

PKHD1 ARPKD 

Antenatally enlarged hyperechogenic 

kidneys; multiple bilateral small cysts; 

50% ESRF within first 10 years, milder 

presentation associated with increased 

age of diagnosis 

Congenital hepatic 

fibrosis with 

associated portal 

HTN, Caroli 

syndrome, small 

liver cysts in 

heterozygous 

patients AR 

263200 Onuchic et al. 2002 

DZIP1L ARPKD 

Antenatally enlarged hyperechogenic 

kidneys; multiple bilateral small cysts; 

variable ESRF in second and third 

decade of life 

None to date 617610 Lu et al. 2017 

PMM2 

Hyperinsulinaemic 

hypoglycaemia 

with PKD 

Antenatally enlarged hyperechogenic 

kidneys; multiple bilateral small cysts; 

variable ESRF  

Hyperinsulinaemic 

hypoglycaemia; 

occasional PLD 

Pending Cabezas et al. 2017 
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Collagenopathies 

COL4A3 

Alport Syndrome 

Occasional kidney cysts. Thinning of 

basement membrane with microscopic 

haematuria and progressive ESRF.  

Sensorineural 

deafness, anterior 

lenticonus, 

perimacular flecks 

AR 
203780/10

4200 
Mochizuki et al. 1994 

COL4A4 

Occasional kidney cysts. Thinning of 

basement membrane with microscopic 

haematuria and progressive ESRF.  

Sensorineural 

deafness, anterior 

lenticonus, 

perimacular flecks 

AR 
203780/14

1200 
Mochizuki et al. 1994 

COL4A5 
X-linked Alport 

Syndrome 

Occasional kidney cysts. Thinning of 

basement membrane with microscopic 

haematuria and progressive ESRF.  

Sensorineural 

deafness, anterior 

lenticonus, 

perimacular flecks 

XLD 301050 M'Rad et al. 1992 

Syndromic forms of CyKD 

TSC1 or TS

C2 
Tuberous sclerosis 

Multiple and bilateral 

angiomyolipomas and kidney cysts; 

kidney function usually preserved; 

possible evolution to ESRF, contiguous 

gene deletion of TSC2 and PKD1 leads 

to severe CyKD with ESRF <30 years 

CNS (cortical 

tubers, 

astrocytomas, 

epilepsy, and 

intellectual 

disabilities); skin 

lesions (facial 

angiofibromas and 

hypopigmented 

spots); pulmonary 

lymphangioleiomyo

matosis; cardiac 

rhabdomyoma and 

retinal hamartoma; 

PLD in contiguous 

deletion 

AD 
191100/61

3254 
Kandt et al. 1992 

VHL 
Von Hippel-Lindau 

disease 

Bilateral kidney cysts, renal cell 

carcinoma 

Hemangioblastomas 

of the retina, spine, 

or brain; 

pheochromocytoma

; neuroendocrine 

AD 193300 Carsillo et al. 2000 
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tumour of the 

pancreas 

COL4A1 

HANAC syndrome 

or COL4A1-related 

disease 

Bilateral kidney cysts, ESRF in later 

adulthood 

Microscopic 

haematuria, 

aneurysms, muscle 

cramps, elevated 

creatine 

phosphokinase, 

tortuosity of the 

retinal arteries 

AD 611773 Plaisier et al. 2007  

OFD1 
Oro-facial-digital 

syndrome type 1 

X-linked, embryonically lethal in boys, 

CyKD in women 

Cleft palate, facial 

dysmorphia; 

syndactyly, 

clinodactyly, or 

polydactyly; PLD 

XLD 311200 Ferrante et al. 2001 

FLCN 
Birt-Hogg-Dubé 

syndrome 
Kidney cysts and kidney tumours 

Hair follicle 

hamartomas, lung 

cysts with 

spontaneous 

pneumothorax 

AD 135150 Nickerson et al. 2002 

NPHP1-6 

Nephronophthisis/J

oubert/Senior-

Løken syndrome 

Bilateral kidney cysts 

Retinal 

degeneration, 

polydactyly, liver 

disease, severe CNS 

disease 

AR PS256100 Review: Wolf et al. 2011 

BBS1-12 
Bardet-Biedl 

syndrome 

Broad range of structural kidney issues 

including unilateral or bilateral cysts 

Cone-rod 

dystrophy, obesity, 

polydactyly, 

cognitive 

impairment, 

hypogonadism, 

neurological issues, 

olfactory 

dysfunction, 

diabetes 

AR PS209900 Review: Florea et al. 2021 
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MGS1-6 
Meckel-Gruber 

syndrome 
Bilateral cysts 

Encephalocele with 

CNS involvement, 

hepatic fibrosis, 

polydactyly, 

genitourinary 

malformation 

AR PS249000 Review: Hartill et al. 2017 

Acquired cystic renal disease 

N/A 
Multiple benign 

simple cysts 

Multiple benign simple cysts - more 

common with increasing age 
N/A N/A N/A N/A 

N/A 
Acquired kidney 

cystic disease 

CKD associated especially with patient 

on renal replacement therapy. Usually 

small and bilateral. 

N/A N/A N/A N/A 

N/A 
Lithium induced 

kidney cysts 

Normal/small kidneys with small 

bilateral cysts - history of lithium 

exposure, interstitial fibrosis 

N/A N/A N/A N/A 

AD – autosomal dominant, AR – Autosomal Recessive, XLD – X-linked Dominant, PLD – Polycystic Liver Disease, ESRF – End Stage Liver Failure, CNS – Central 

Nervous System, CKD – Chronic Kidney Disease, ICH – Intracerebral haemorrhage  
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3.1 Introduction to CyKD 

3.1.1 Autosomal dominant polycystic kidney disease 

Autosomal dominant polycystic kidney disease (ADPKD) is the most common 

monogenic cause of renal failure worldwide and one of the commonest single-gene 

disorders generally (Bergmann et al. 2018). Present in roughly 1:400-1:1000 live births, 

it is present in equal distribution worldwide and is a huge health burden, representing 

roughly 10% of all patients receiving renal replacement therapy (RRT) (K. Evans et al., 

2018). It is typically late onset and is multi-system, characterised by bilateral real cysts, 

liver cysts, and an increased risk of intracranial aneurysm and haemorrhage. Extra-renal 

manifestations include cysts in other organs such as the pancreas and seminal vesicles, 

aortic root dilatation, mitral valve prolapse and abdominal wall hernias. Clinically this 

can present as early onset hypertension, flank pain and eventually renal failure. 50% of 

ADPKD patients reach end stage renal failure by 60 years old (Cornec-Le Gall, Alam, 

and Perrone 2019). There is, however, substantial phenotype variability between 

patients even within families suggesting either secondary genetic effects and/or 

environmental factors play an important role in disease modulation (Harris and Rossetti 

2010). 

  

Diagnosis is made based on imaging criteria or genetic testing confirming the presence 

of a heterozygous variant in one of the known pathogenic genes, predominately PKD1 

or PKD2 or the less common and more recently discovered genes GANAB, ALG5,ALG8 

ALG9, DNAJB11 and IFT140  (Hughes et al. 1995; The European Polycystic Kidney 

Disease Consortium. 1994; T. Mochizuki et al. 1996.; Apple et al. 2023; Lemoine et al. 

2022; Porath et al. 2016; Cornec-Le Gall et al. 2018; Senum et al. 2022) with roughly 

5% of cases remaining unsolved (Bergmann et al. 2018). Genotype-phenotype 

correlations are described in more detail in Table 3-2  

 



Cystic kidney disease 

60 

 

Table 3-2 Genotype-phenotype correlation of the causes of ADPKD 

Gene ADPKD 

attributable 

to gene 

Protein Renal phenotype Liver 

phenotype 

PKD1 78% Polycystin-1 Truncating: 

Innumerable bilateral 

kidney cysts leading to 

progressive kidney 

enlargement, median 

age of ESRF about 55 

years 

Polycystic 

liver disease, 

mild to 

severe 

 

 

Non-truncating: 

Innumerable bilateral 

kidney cysts leading to 

progressive kidney 

enlargement, median 

age of ESRF about 67 

years 

PKD2 15% Polycystin-2 Innumerable bilateral 

kidney cysts leading to 

progressive kidney 

enlargement, median 

age of ESRF about 79 

years 

Polycystic 

liver disease, 

mild to 

severe 

ALG5 <0.5% Dolichyl-phosphate 

beta-

glucosyltranseferase 

Non-enlarging cystic 

kidneys with some 

interstitial fibrosis. 

ESRF in those greater 

than 65 potentially 

Polycystic 

liver disease, 

absent or 

mild 

ALG8 <0.5% Alpha-1,3-

glucosyltransferase 

Bilateral cysts with 

normal kidney size, 

nephrolithiasis 

Some liver 

cysts but not 

unique 
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ALG9 <0.5% Alpha-1,2-

mannosyltransferase  

Moderate number of 

bilateral cysts. Rarely 

progresses to ESRF 

Polycystic 

liver disease, 

absent to 

mild 

DNAJB11 <0.5% DnaJ homolog 

subfamily B 

member 11 

Normal to small 

kidneys, small cysts, 

potential evolution to 

ESRF after 60 years 

Polycystic 

liver disease, 

absent to 

moderate 

GANAB <0.5% Neutral alpha-

glucosidase AB 

Bilateral cysts, normal 

renal function  

Polycystic 

liver disease, 

mild to 

severe 

IFT140 1-2% Intraflagellar 

transport protein 

140 homolog 

Bilateral renal cysts, 

mild effect on renal 

function akin to non-

truncating PKD2 

variants 

Occasional 

polycystic 

liver disease 

ADPKD – Autosomal dominant polycystic kidney disease 

 

Until recently, treatment of ADPKD centred on the management of symptoms 

secondary to renal cyst formation and chronic kidney disease. However, with the 

approval for the use of Tolvaptan (Torres et al. 2012), there is now a treatment designed 

to retard disease progression, with many novel compounds currently going through 

clinical trials (J. X. Zhou and Torres 2023). Treatment initiation is now focused on 

those patients with rapidly progressive disease as evidenced by several factors including 

rate of kidney decline, rapidity of cyst growth, family history of ESRF and crucially 

genotype, with truncating PKD1 variants requiring treatment initiation early (Cornec-Le 

Gall et al. 2016). This has given added impetus to the need to molecularly screen 

individuals.  
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3.1.2 Autosomal recessive polycystic kidney disease 

Autosomal recessive polycystic kidney (ARPKD) is a severe disorder occurring in 1 in 

20,000 births. It causes severe dilatation of the kidney collecting ducts and 

malformation of the portobiliary system. Often diagnosed in utero or at birth, the 

patients suffer from large echogenic kidneys leading to poorly functioning kidneys and 

consequent oligohydramnios. Perinatal mortality is roughly 30%, with children that 

survive mostly reaching ESRF by adulthood (42% renal survival by 20 years old) 

(Bergmann et al. 2018). Nearly all patients suffer a gamut of issues related to renal 

failure, portal hypertension and biliary failure. Patients who are diagnosed later tend to 

have a better renal prognosis. Later presentations of the disease have phenotypic overlap 

with ADPKD and can lead to diagnostic misclassification (Sekine et al. 2022).  

 

ARPKD is predominately caused by variants in the polycystic and hepatic disease gene 

1 (PKHD1) and codes for the fibrocystin-polyductin complex (FPC) (L. F. Onuchic et 

al. 2002). Most affected patients are compound heterozygotes. Management is largely 

supportive with no dedicated treatments at present.  

 

Other recessive cystic diseases include PMM2 associated hyperinsulinaemic 

hypoglycaemia with PKD and DZIP1L associated ARPKD (Cabezas et al. 2017; H. Lu 

et al. 2017). Antenatal enlarge hyperechogenic kidneys and bilateral small cysts are 

present in both. In PMM2 associated disease there are small liver cysts and 

hyperinsulinaemic hypoglycaemia whilst DZ1P1L disease has no associated extra-renal 

manifestations.  

 

Treatment is supportive, with genetic testing allowing for a molecular diagnosis and 

genetic counselling.  

 

3.1.3 HNF1β associated cystic renal disease. 

Broad renal involvement is now seen as one of the earliest manifestations of HNF1β 

associated disease. Various phenotypes have been attributed to HNF1β, classically 
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starting with maturity onset diabetes of the young (MODY) coupled with renal cysts 

leading to the term “renal cysts and diabetes syndrome” (Horikawa et al. 1997). 

However, there are now over 10 different renal pathologies associated with HNF1β-

nephropathy (Izzi et al. 2020). This is mirrored in the ever-expanding list of extra-renal 

side phenotypes such as exocrine pancreatic failure, liver function abnormalities, gout, 

and genital tract malformations.  

 

HNF1β-codes hepatocyte nuclear factor homeobox B found on chromosome 17q12 and 

plays an integral role in early embryonic development. Its protein product, transcription 

factor-2 (TCF2) is a necessary component in tissue specific gene expression in many 

epithelial tissues including kidney, pancreas, liver and genitourinary tract (Kolatsi-

Joannou et al. 2001; Ferrè and Igarashi 2019).   

 

Structural variants involving HNF1β  are of note. In ~45% of cases with HNF1β 

variants, a whole gene deletion of HNF1β occurs as part of the 17q12 deletion 

syndrome, causing a multi-system disorder with renal involvement (OIM #614527) 

(Mitchel et al. 2016). The other cases are mainly heterozygous SNVs (Fokkema et al. 

2011). There is little correlation between phenotype and genotype but large cohorts 

studying this condition are lacking (Nagano et al. 2019; Dubois-Laforgue et al. 2017) 

with none assessing the burden of HNF1β at a genome wide level using WGS.  

 

There are no specific treatments for this condition bar supportive care and surveillance 

for multi-organ involvement in patients with 17q12 deletions.  

3.1.4 Pathophysiology of cyst formation from genetic insights 

3.1.4.1 ADPKD 

PKD1 is a large gene with 46 exons, of which the first 34 are homologous (and 

therefore very similar in sequence) to several nearby pseudogenes as well as being GC 

rich making sequencing challenging. PKD2 is much smaller (15 exons) and is therefore 

easier to sequence. Their respective discoveries in 1995 and 1996 have led to the 

development of a polycystin model of cyst formation.  
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The polycystins 1 and 2 coded (PC1 and PC2) by PKD1/2 respectively are found 

predominantly in the primary cilium although are expressed in epithelial cells, vascular 

smooth muscle, cardiac myocytes as well as other locations (A. C. Ong 2000). Within 

the cells PC1 is found throughout lateral membrane junctions, focal adhesions, apical 

vesicles and primary cilia whereas PC2 is mainly found at the endoplasmic reticulum 

although the two proteins do also co-express (A. C. M. Ong and Harris 2005) . PC1 is a 

4303 amino acid membrane bound protein with 11 transmembrane domains, a large 

extracellular domain and a ~200 amino acid intracellular carboxy-terminal tail thought 

to be integral in the regulation in multiple signalling cascades (Harris and Torres 2014). 

The cleavage of PC1 at its G protein couple receptor regulates biogenesis and 

trafficking of PC1 (Kurbegovic et al. 2014) as well as modulating signalling pathways 

via the release of the intracellular C-terminal tail, freeing PC1 fragments into the 

cytoplasm and nucleus (Y. Xu et al. 2016). PC2 is less than 968 amino acids and has six 

transmembrane spanning domains acting as a calcium permeable channel, it sits within 

the transient receptor potential (TRP) family and in isolation forms a tetrameric channel 

structure with a pore loop and voltage sensing domain (Shen et al. 2016).  

 

PC2 co-localises with PC1 within the primary cilia shaft and basal body in renal 

epithelia (Geng et al. 1997), and their correct localisations and function are dependent 

on both elements functioning correctly (H. Kim et al. 2014; Cai et al. 2014). The C-

terminal tail of PC1 facilitates the interaction between PC1 and PC2 (Tsiokas et al. 

1997), which together act as an ion transporter involved in calcium signalling but many 

functions of both PC1 and PC2 remain unclear. The structure of a modified PC1-PC2 

complex was solved by cryo-electron microscopy in 2018, revealing a structure  (1:3 

PC1:PC2) resembling a TRP with a novel pore like structure in which the C-terminal 

domain of PC1 contributes one side of the tetrameric channel (Su et al. 2018). This 

asymmetric pore loop structure makes it very different to TRP channels as it potentially 

ameliorates the cation selectivity of the polycystin channel, explaining why 

electrophysiology to date have found it difficult to reach a consensus on the cation 

selectivity of the channel (Delling et al. 2016). A ligand for this polycystin complex is 

yet to be elucidated with a recent study suggesting the cleaved N-terminus of PC1(a 

mutational hotspot) as a candidate (Ha et al. 2020). This last point is of note as Su et al 
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were unable to include the entire extracellular N terminus of PC1 in their structure due 

to the protein being too large and unstable to analyse.  

 

Given the similarities in phenotype between ADPKD phenotypes caused by PKD 

variants and the physical proximity of PC1 and PC2 in cells, common signalling 

pathways have been sought. Cyclic AMP (cAMP), mammalian target of rapamycin 

complex 1 (mTORC1), extracellular signal-regulated kinases (ERK), 5' AMP-activated 

protein kinase (AMPK) and JAK-STAT  have all been shown to be affected by aberrant 

polycystin functioning (Harris and Torres 2014). cAMP in particular has been targeted 

for downregulation via vasopressin receptor 2 antagonism using Tolvaptan, successfully 

retarding cyst growth and disease progression. These disrupted signalling pathways 

have then been postulated to cause cyst formation and growth vial clonal expansion of 

epithelial cells, alterations in apical-basal polarity, planar cell polarity, increased 

extracellular matrix production and cellular metabolism creating a snowball effect in 

which the secondary events take on an increasing role in cyst formation and growth 

(Figure 3-1).  

 

 

Figure 3-1 Proposed model of ADPKD pathology 
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Proposed mechanisms of the pathobiology of ADPKD. Taken from (Lanktree, Haghighi, et al. 2021). 

Even though the germline variants in ADPKD are present in all cells, cysts form in less than 10% of 

tubules focally (Grantham 1996). This led to a “second hit” hypothesis of cystogenesis. Under this model 

a somatic second hit is required to alter the remaining normal copy of PKD1 or PKD2. This has been 

shown to be the case in studies of kidney cysts in patients with PKD1, showing loss of heterozygosity due 

to a somatic variant, supporting a cellularly recessive mechanism for cyst formation in ADPKD (A. Y. 

Tan et al. 2018; Brasier and Henske 1997; Watnick et al. 1998).  

 

However, there are numerous examples of patient with hypomorphic variants, which 

reduced the level of the gene product in the polycystin genes suffering CyKD 

suggesting a “threshold” mechanism of cystogenesis (Gallagher, Germino, and Somlo 

2010; Rossetti et al. 2009; Harris 2010). It has been suggested that a dose of functional 

polycystin below ~10-30% of normal within tubular epithelial cells is enough to start 

cyst formation (Hopp et al. 2012; Lantinga-van Leeuwen et al. 2004) leading to various 

downstream aberrant cellular processes via multiple signalling pathways (S.-T. Jiang et 

al. 2006; Boca et al. 2006; Song et al. 2009; Lanktree, Haghighi, et al. 2021). Timing of 

gene inactivation is also vital. PKD1 inactivation up to 13 days prior to birth in a mouse 

model led to severe CyKD compared to PKD1 inactivation after day 14 of age in the 

same model which results in a far milder form of CyKD (Piontek et al. 2007).  

 

More recently, genes linked to ADPKD have been discovered that affect protein 

creation, modification, and trafficking within the endoplasmic reticulum (ER). These 

genes effect the entry of unfolded protein into the ER (SEC63 and SEC61B (Besse et al. 

2017), the control of protein through the ER (Cornec-Le Gall et al. 2018), N-

glycosylation of nascent proteins (a vital step in the trafficking of glycoproteins) (Apple 

et al. 2023; Besse et al. 2019; Lemoine et al. 2022; Cabezas et al. 2017) and the removal 

of glucose molecules to allow export from the ER to the Golgi complex (Porath et al. 

2016).  These variants have all been shown to lower the “dose” of polycystins, 

particularly PC1, within the cell, helping to a) confirm their role in pathogenesis and b) 

further elucidate the pathway the polycystin complex takes from transcription to final 

destination.  

 

The latest discovery of monoallelic variants in IFT140 causing a mild form of CyKD is 

of particular interest as it the first description of a protein involved in ciliary structure 

and function being described as causing ADPKD (Senum et al. 2022). ADPKD has 
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been seen by many as a “ciliopathy” with many of the experimental assays for the 

various causative genes showing clear ciliary disruption but never in monoallelic human 

disease. As part of the IFT-A complex that is responsible for retrograde transport in 

cilia, IFT140 has a clearly defined ciliary role. However, IFT140 is not required for the 

assembly of the IFT-A complex but does account for roughly half of the TULP3 binding 

surface of the complex (M. Jiang et al. 2023). Combined with work by Legue et al 

showing TULP3’s involvement in ciliary trafficking in CyKD (Legué and Liem 2019), 

it as has been proposed that truncating IFT140 variants disrupt TULP3-mediated cargo 

transport. IFT140 disruption may lead to disruption in the trafficking of the polycystins 

to the cilia but this requires further experimental work.  

 

Figure 3-2 details a schematic of the journey the polycystins take to their target with 

listed genes (modified from Lanktree et al. 2021). We can see that genes along the 

entire route of PC-1/2 journey to the cilium have been discovered to affect gene 

formation. As shown in the results chapter, these more recent genes have lower effect 

sizes than PKD1/PKD2 and their recent discoveries is down to larger cohorts being 

sequenced with the latest technologies. This has enabled a higher diagnostic yield and 

an excellent elucidation of ciliary biology.  
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3.1.4.2 ARPKD 

Most ARPKD cases are caused by variants in PKHD1, found on chromosome 6p21 

which encodes fibrocystin. PKHD1 has multiple transcripts, with a 4074 amino acid 

made up of a single transmembrane domain, an extensive extracellular N-terminal 

domain, and a short C-terminal cytoplasmic tail, comprising the largest one. The 

function of fibrocystin is still debated, but it is found throughout the kidney and 

epithelial cells of hepatic bile ducts and localises to the primary cilia membrane (Ward 

et al. 2003, 2002; L. F. Onuchic et al. 2002). The proteolytic cleavage of fibrocystin 

releases its C terminus, and this cleaved product has been the focus of much of the 

IFT140 

ALG5 

Schematic representing the genes indicating in ADPKD and their effects on the maturation of PC1/PC2 

(Modified from Lanktree et al 2021) 

Figure 3-2 Genes in implicated in ADPKD and their effect on PC1/2 maturation. 
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speculated pathophysiology of ARPKD as its motifs are associated with ciliary 

targeting and interactions with the polycystin complex (Follit et al. 2010).  

 

Many of the signalling pathways affected in ADPKD are also disrupted in ARPKD 

including cAMP (X. Wang et al. 2005) and mTOR (Fischer et al. 2009) but the general 

pathophysiology remains poorly understood. This has been compounded by mouse 

models of PKHD1 including knockouts having minimal renal disease before adulthood 

(Moser et al. 2005; S. S. Williams et al. 2008) making functional characterisations of 

fibrocystin challenging. Recent work has highlighted the role the cleaved C-terminus of  

fibrocystin may have in preventing cytogenesis via its interaction with mitochondrial 

pathways (R. Walker et al. 2022), work which carriers homology with that of Caplan et 

al which showed the C-terminal of PC-1 suppresses cystic disease via a mitochondrial 

pathway (L. Onuchic et al. 2023). The potential for a mechanism other than direct 

interaction was confirmed by work on a digenic system combining PKHD1 knock out 

mice with a hypomorphic PKD1 mutant showing no interaction between the fibrocystin 

protein and polycystins (Olson et al. 2019) directly. It is likely that a shared ciliary 

mechanism or mitochondrial process is the missing link.  

 

Variants in the gene DZIPI1L, coding for the ciliary transition zone protein DAZ-

interacting protein 1-like protein has been described as a moderate cause of ARPKD. 

Working at the barrier between the cell and cilium, variants in this gene have been 

shown to disrupt the transport of PC21 and PC2 into the cilium (H. Lu et al. 2017). 

Phosphomannomutase2 (PMM2) variants have also been described as causing ARPKD, 

whilst the pathophysiology has not been fully delineated PMM2 is an enzyme critical to 

N-linked glycosylation, potentially causing a trafficking issue with the polycystins 

similar to the other ER linked monogenic causes of CyKD (Cabezas et al. 2017).  

3.1.4.3 HNF1β and ADPKD 

HNF1β is thought to be an autosomal dominant condition with haploinsufficiency as the 

molecular mechanism, as patients with whole-gene deletions have a similar phenotype 

to those with coding or splice variants. Up to 50% of HNF1β cases are thought to be de 

novo (Ulinski et al. 2006; Edghill et al. 2007).  
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Mice with renal specific depletion of HNF1β develop CyKD and renal dysfunction 

(Gresh et al. 2004; Hiesberger et al. 3 2004). Further molecular analysis reveals 

HNF1β’s role in regulating the transcription of PKHD1, PKD2, UMOD and gene 

implicated in nephronophthisis (Attanasio et al. 2007; Song et al. 2009; Gong et al. 

2009) which explains the variable nature of the phenotype as well as the mechanism of 

disease. Bar the effects on known monogenic causes of cystogenesis, HNF1β also 

directly increases cAMP levels via the regulation of the expression of 

phosphodiesterase 4C which catabolises cAMP in the primary cilium (Y.-H. Choi et al. 

2011), inhibition of cAMP being a primary mechanism of Tolvaptan’s function. Further 

functional work is required to map the full molecular pathway of HNF1β associated 

renal disease. 

  



Cystic kidney disease 

71 

 

3.2 Cystic kidney disease as a monogenic disorder 

3.2.1 Introduction 

Rare variants that cause classical Mendelian disease are kept rare through the process of 

natural selection whereby rare deleterious variants are prevented from becoming 

common in the general population by negatively affecting reproductive fitness. Rare 

diseases are typically caused by rare variants and CyKD is no exception. Rare, highly 

penetrant alleles that are very damaging make up the bulk of causative variants in 

CyKD and offer the most clues as to the underlying biology of the disease. This is 

reflected in the vast swathes of published genetics research on CyKD being focused on 

monogenic causes in patients and families (Bergmann et al. 2018). This chapter focuses 

on rare variants, defined as those with a MAF<0.1%, as the primary driver of CyKD.  

 

3.2.2 Aims 

1. To determine the prevalence of known monogenic disease in a large cohort of 

patients with cystic kidney disease. 

2. To discover novel candidate genes using an unbiased exome-wide rare variant 

association testing approach. 

 

3.2.3 Methods 

3.2.3.1 Case selection 

Cases were recruited under the “Cystic kidney disease” 100KGP cohort by clinicians 

across the country using the following inclusion criteria: 

• >5 cysts affecting one or both kidneys with one of the following features: 

o cysts not clinically characteristic of ADPKD 

o onset before the age of 10 

o syndromic features  

o where a genetic diagnosis would influence management 
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o Unaffected individuals had to have undergone appropriate screening for 

cryptic disease. 

 

A second tranche of recruitment widened the inclusion criteria to include participants 

with features suggestive of classical ADPKD who had not undergone prior genetic 

testing of PKD1 and PKD2. Participants were excluded if they suffered from end-stage 

kidney failure due to identified (non-cystic) disease, if they had multicystic dysplastic 

kidney(s) or if they had a prior genetic diagnosis for their condition. This recruitment 

strategy led the total cohort being a mixture of unsolved cystic cases and those more 

obviously ADPKD-PKD1 and ADPKD-PKD2. 

 

3.2.3.2 Control selection 

Controls were made up of unaffected relatives of non-renal rare disease participants in 

the 100KGP. We refined this further by excluding those with HPO and/or hospital 

episode statistics (HES) terms related to kidney disease or failure. Within the >20,000 

controls there was the possibility that some harboured undetected cystic kidney disease 

as we did not have access to imaging data, however, it was felt their contribution to 

statistical signal would not significantly affect the outcome.  

3.2.3.3 Identification of pathogenic variants 

All cases recruited for had been assessed in the clinical interpretation arm of the 

100KGP (100000 Genomes Project Pilot Investigators et al. 2021). For this, patients’ 

WGS data is extracted variants that are rare (MAF < 1% for autosomal recessive and 

MAF < .1% or autosomal dominant inheritance), protein-truncating or missense. These 

are then cross referenced with an expertly curated (Antonio Rueda Martin et al. 2019) 

panel of 28 CyKD associated genes (https://nhsgms-

panelapp.genomicsengland.co.uk/panels/283/v4.0)  CNVs losses with a 60% overlap 

with the 2q13 loci associated with NPHP1 loss and the 17q12 loci associated with 

HNF1β loss were also  ascertained for.  

 

https://nhsgms-panelapp.genomicsengland.co.uk/panels/283/v4.0
https://nhsgms-panelapp.genomicsengland.co.uk/panels/283/v4.0
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These results then underwent multi-disciplinary (MDT) review with the recruiting 

clinical team, local genomic medicine centre with support from Genomics England. 

Candidate variants were assessed against the Association for Clinical Genomic Science 

(ACGS) Best Practice Guidelines for Variant Classification in Rare Disease 

(https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant- 

classification-v4-01-2020.pdf). These criteria are based on recommendations from the  

 American College of Molecular Genetics (ACMG) criteria to determine pathogenicity 

(Richards et al. 2015) using a host of metrics including population frequency of alleles, 

in silico predictions of deleteriousness, functional localization, putative mechanism of 

disease and known associations with phenotypes in validated disease databases to 

assign one of the following classifications: pathogenic, likely pathogenic, variant of 

uncertain significance (VUS), likely benign or benign.  

 

3.2.3.4 Aggregate rare coding variant analysis  

3.2.3.4.1 Overview of rare variant association tests 

Rare variant analysis is considered more challenging than common variant analysis due 

to several factors. Firstly, rare variants, by definition, occur at a low frequency in the 

population. As a result, large sample sizes are often required to have sufficient 

statistical power to detect associations. Secondly, when rare variants are called single 

variant association testing is underpowered due to the scarcity of variants in a given 

population (Seunggeung Lee et al. 2014).  

 

In order to overcome some of these issues, collapsing analyses have been employed to 

boost power. In this statistical method, variants are “collapsed” by some kind of region, 

most commonly per gene, and their effect sizes cumulated to test for an association with 

the disease or trait of interest. This is particularly helpful for allelic heterogeneity where 

multiple different alleles account for a disease, with no single allele explaining a large 

fraction of risk; a situation found in ADPKD (Paul et al. 2014). I will discuss below the 

broad categories of rare variant collapsing tests as well as the rationale for selecting my 

chosen method.  
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3.2.3.4.1.1   Burden tests 

Collapsing burden tests combined multiple genetic variants into a single genetic score 

per region, testing for an association between this region and the disease of interest. A 

simple example would involve counting the number of minor alleles in all variants in 

each region. The score statistic would be:  

 

𝑄𝑏𝑢𝑟𝑑𝑒𝑛 = (∑ 𝑤𝑗

𝑚

𝑗=1

𝑆𝑗)

2

 

 

where m = the number of variants in the region, 𝑤𝑗  = the weight for variant j (e.g., 

using MAF or beta effect size), and 𝑆𝑗 = the score statistic for variant j generated from 

the sum of allele counts (0,1, or 2) for each individual at variant j, accounting for 

phenotype. 𝑆𝑗 is positive when variant j increases disease risk, and negative when 

associated with decreased disease risk. A P value is then obtained by comparing the 

burden test statistic to chi-squared distribution with 1 degree of freedom (Seunggeung 

Lee et al. 2014) 

 

Multiple different implementations of the burden test exist which make different 

assumptions about disease mechanism and architecture. In the main, a dominant mode 

of inheritance is assumed to maximise power, with the various methods differing on 

how they define the weight (𝑤𝑗) of variants to be collapsed. The MZ test for example 

counts individuals with at least one minor allele in the region (Morris and Zeggini 2010) 

whilst the cohort allelic sums test (CAST)  assumes any rare variant in a region can 

cause loss of function (Morgenthaler and Thilly 2007) both of which give a binary 

weight to 𝑤𝑗. The Madsen and Browning method weights by the MAF as a proportion 

to give a beta of densities (Madsen and Browning 2009) . Finally, the Combined 

Multivariate and Collapsing (CMC) test uses the CAST approach but by collapsing 

groups based on their MAF per region and then using a non-regression technique 

(Hoteling’s t test) to combine the effects (B. Li and Leal 2008). Burden tests assume 
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most the variants collapsed are causative and have the same direction of effect with 

violations of these assumptions resulting in a significant loss of power.  

 

Burden testing has been further adapted with “adaptive burden” tests to help account for 

the null variants and variants affecting disease risk in either direction. Whilst such 

methods such as the kernel-based adaptive cluster (KBAC) method (D. J. Liu and Leal 

2010) have overcome these issues most adaptive methods require P value permutation 

and are therefore computationally intensive, making them unsuitable for large scale 

biobank studies.  

 

3.2.3.4.1.2  Variance Component tests 

Variance component tests use a random effects model to overcome some of the issues 

of unknown underlying genetic architecture and variant effects. Instead of aggregating 

variants and then generating a combined test statistic on the whole region, variance-

component tests look at the distribution of individual test statistics per variant and then 

aggregate these to compute an overall P value. The most used variance-component test 

is the sequence kernel association test (SKAT) (Wu et al. 2011) which can be 

represented as: 

 

𝑄𝑆𝐾𝐴𝑇 =  ∑ 𝑤𝑗
2 

𝑚

𝑗=1

𝑆𝑗
2 

 

The SKAT test uses the weighted sum of squares of single variant score statistics Sj. By 

collapsing 𝑆𝑗
2 instead of Sj as per the burden test, SKAT is robust to both non-causal and 

variants acting in direction of effect. The addition of covariates to this analysis allows 

for adjustment for population stratification. SKAT testing has two major issues: firstly, 

contrary to the burden test, if a large proportion of variants are causal, variance-

component tests lose power; secondly, for binary traits calculating many P values on a 

per variant basis and then combining them per region can lead to high type 1 error rates 

especially when the minor allele count is low or the sample size small.  
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3.2.3.4.1.3  Combined tests 

An understanding of the genetic architecture of a disease is often lacking at the time of 

analysis effecting the power of both approaches to collapsing analysis discussed. Even 

for conditions such as CyKD, the architecture of disease may differ on a gene-by-gene 

basis as evidenced by both recessive and dominant Mendelian conditions causing 

kidney cysts. This has led to the development of a combined method which uses a linear 

combination of burden and SKAT testing based on the underlying data to maximise 

power, SKAT-O (Seunggeun Lee et al. 2012). SKAT-O can be represented as: 

 

Qρ = (1 − ρ)QSKAT + ρQburden , 0 ≤ ρ ≤ 1  

The key term here is the parameter ρ which represents the pairwise correlation between 

genetic-effect coefficients (β). ρ = 1 when all variants act in the same direction, 

meaning the test statistic resolves as the Qburden, whereas if the variants are uncorrelated 

in their direction and magnitude of effects then the ρ = 0 and the test statistic 

approximates to the QSKAT. In reality the ρ is unknown so SKAT-O uses an adaptive 

procedure to approximate the value and calculate P values analytically, allowing for a 

combined method that uses that uses the best of both methods and allows for 

uncertainty in the underlying genetic architecture. SKAT-O has been shown to perform 

well across a wide range of disease models and is widely used in association tests 

(Seunggeun Lee et al. 2012).  

 

3.2.3.4.2 Selection of qualifying variants 

As powerful as the collapsing methods discussed above are, if the majority of variants 

selected to be collapsed per region have little or no effect then the power gained by 

collapsing variants is limited. Including qualifying variants that are more likely to be 

damaging and therefore disease causing will increase the power to detect association. In 

general, “damaging” or “deleterious” variants include those that are rare, loss-of-

function e.g. protein truncating, or predicted in silico to be damaging. For my analyses I 

collapsed variants across genes using a number of parameters applied as a “mask” 

detailed below. Thanks to having access to WGS data I was also able to include masks 

that included intronic variants also. I applied the “missense+” and “LoF” mask to the 
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total CyKD cohort and then removed cases that had qualifying variants in statistically 

significant genes until we had a cohort of patients with “no variants detected” (NVD). 

To this cohort we applied all the masks listed: 

 

1. Likely damaging (“missense+”):  

• MAF < 0.1% or absent from gnomAD (version 3.1.1)  

• Annotated as missense, in-frame insertion, in-frame deletion, start loss, stop 

gain, frameshift, splice donor or splice acceptor.  

• CADD (version 1.5) score ≥ 20 corresponding to the top 1% of all predicted 

deleterious variants in the genome. Indels without CADD scores were also 

kept as most frameshift variants do not have assigned CADD scores.  

 

2. Loss-of-function (“LoF”):  

• MAF < 0.01% or absent from gnomAD (version 3.1.1)  

• ‘High confidence’ loss-of-function variants (stop gain, splice site, or 

frameshift) as determined by LOFTEE (Karczewski et al. 2020).   

 

3. Intronic: 

• MAF < 0.01% or absent from gnomAD (version 3.1.1)  

• Variants labelled as intronic 

• CADD score ≥ 20 

 

4. 5’ untranslated region (“5’ UTR”): 

• MAF < 0.01% or absent from gnomAD (version 3.1.1)  

• Variants labelled as 5’UTR 

• CADD score ≥ 10 

 

5. 3’ untranslated region (“3’ UTR”): 

• MAF < 0.01% or absent from gnomAD (version 3.1.1)  

• Variants labelled as 3’UTR 

• CADD score ≥ 10 
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6. Splicing (“donor loss,” “donor gain,” “acceptor loss,” “acceptor gain”): 

• SpliceAI score ≥ 0.8 (discussed in Methods 2.2.5) 

 

Variants meeting the following quality control filters were retained: MAC ≤ 20, median 

site-wide sequencing depth in non-missing samples > 20 and median GQ ≥ 30. Sample-

level QC metrics for each site were set to minimum depth per sample of 10, minimum 

GQ per sample of 20 and ABratio P value > 0.001. Variants with significantly different 

missingness between cases and controls (P<10-5) or >5% missingness overall were 

excluded. 

 

3.2.3.4.3 SAIGE-GENE 

I employed SAIGE-GENE (W. Zhou et al. 2020) to ascertain whether rare coding 

variation was enriched in cases on a per-gene basis exome-wide. SAIGE-GENE uses a 

generalized mixed-model to correct for population stratification and cryptic relatedness 

as well as a saddle point approximation and efficient resampling adjustment to account 

for the inflated type 1 error rates seen with unbalanced case-control ratios (see chapter 

2.5 for further details). It combines single-variant score statistics and their covariance 

estimate to perform SKAT-O gene-based association testing, upweighting rarer variants 

using the beta (1,25) weights option. Sex and the top ten principal components were 

included as fixed effects when fitting the null model. A Bonferroni adjusted P value of 

2.58×10-6 (0.05/19,364 genes) was used to determine the exome-wide significance 

threshold. Binary odds ratios and 95% confidence intervals were calculated for exome-

wide significance genes by extracting the number of cases and controls carrying 

qualifying variants per gene in the collapsing analysis and applying a Fisher’s test in R.  

 

3.2.3.4.4 Genomic inflation in rare variant collapsing tests 

Genomic inflation estimates using rare variants is unreliable as the variant distribution 

under the null model is unknown when allele counts are low, making inferences about 

population stratification difficult. Equally, different set or gene based association tests 

have different numbers of variants per set meaning inflation statistics are incomparable 
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to each other (Q. Liu, Nicolae, and Chen 2013). For reference most of my genomic 

inflation values for rare variant analyses fell below 1 with figures between 0.5-0.9 

however, these are unreliable. I have provided quantile-quantile plots (QQ-plots) as 

they continue to provide a good visual method of assessing inflation and have taken the 

well-controlled inflation values from the common variant seqGWAS analysis as 

evidence of a lack of population stratification in my rare variant analyses (please see 

chapter 5 for further details). Furthermore, there is good evidence that the addition of 

controls allows for appropriate stratification correction in rare variant analyses, even in 

situations of large case: control imbalances when a GLMM and PC approach is used for 

correction (Bouaziz et al. 2021); an approach I have adhered to in my rare variant 

analyses.  

3.2.3.5 Stratification by primary variant and depleting analysis 

The type of variant driving ADPKD is known to affect the renal prognosis with 

truncating PKD1 variants carrying the worst prognosis (Cornec-Le Gall et al. 2016). 

Within families it is also known that those with the same variant can have vastly 

different phenotypes (Harris and Rossetti 2010) with the heritability of time to ESRF 

ranging from 45-50% (Paterson et al. 2005; Fain et al. 2005). Whilst there are known 

environmental factors affecting disease progression such as caffeine and smoking 

(Tanner and Tanner 2001; Orth et al. 1998) it is clear that there are genetic modifiers of 

ADPKD. This will likely hold true for other causes of CyKD but has yet to be studied in 

detail.  

 

Until now, candidate gene studies have been unsuccessful in identifying modifier genes 

due to small study sizes, lack of clinical characterisation and problematic endpoints 

(Baboolal et al. 1997; A. Persu et al. 2002; D. Walker et al. 2003). In the biobank era 

with access to WGS we are now able to stratify cohorts based on the primary driving 

disease causing variant and conduct genetic association studies to look for secondary 

genetic markers causing disease. As will be discussed in the time to event analysis 

chapter, biobanks also contain renal function endpoints, allowing for association studies 

to look for markers of disease progression within each molecular cohort.  
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CyKD patients who have their phenotype “solved” by the clinical multi-disciplinary 

team (MDT) had a report issued with the details of the molecular diagnosis. These were 

available to researchers in the 100KGP and could be manipulated in R using the 

LabKey tool (Nelson et al. 2011). Depending on the molecular diagnosis CyKD patients 

were placed into different cohorts: PKD1-truncating (PKD1-T), PKD2-truncating 

(PKD2-T), PKD1-non truncating (PKD1-NT), PKD2 non-truncating (PKD2-NT), 

“other gene” (encompassing other green genes in the PanelApp list of approved genes 

thought to cause CyKD) and no variant detected (NVD). In the patients with NVD I 

bioinformatically reanalysed them looking for variants that met the “missense+” or 

“loss-of-function mask” (detailed below), in the approved cystic kidney disease panel of 

genes in PanelApp (Antonio Rueda Martin et al. 2019) and placing them in the relevant 

cohort. The filtering was performed using BCFtools and filter-VEP (McLaren et al. 

2016). For each subsequent round of analysis if a gene or structural variant was found to 

be significantly enriched in cases, I identified the cases that contained qualifying 

variants and removed them from the NVD cohort and re-analysed the cohort, eventually 

leaving 266 cases with no clear genetic cause of disease.  

 

I performed all single-variant, gene-burden, and structural variant analysis in each 

molecular subgroup (bar the “other genes” group as this was a heterogenous group of 

disorder). I used the same controls for each subgroup without repeating ancestry 

matching as there was no evidence of genomic inflation within each subgroup and the 

controls (lambda between 0.99-1.02 in all common variant analyses). 

3.2.3.6 Pathway analysis using collapsing rare variant summary statistics 

Gene set analysis (GSA), similar to collapsing tests via genes, aims to increase the 

power to detect signal by collapsing variant signals across sets of genes associated with 

a molecular pathway. GSA aggregates signals from genes into sets sharing biological or 

functional characteristics. This reduces the number of tests performed and can provide 

insight into the pathways of cellular mechanisms involved in a trait or phenotype (Pers 

2016).  
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For the cohort of patients that had no molecular diagnosis the summary statistics from 

their rare variant SKAT-O analysis with SAIGE-GENE was analysed using the Gene 

set analysis Association using Sparse Signals method (GAUSS) with default settings 

(Dutta et al. 2021). The summary statistics were analysed using the canonical curated 

gene set pathways from the Gene Set Enrichment Analysis (GSEA) group 

(Subramanian et al. 2005).  GAUSS was selected as it has been shown to be more 

powerful than existing methods, whilst controlling for type I error and scaling to 

biobank level datasets.  

3.2.4 Results 

All variants contributing to significant associations in the collapsing tests can be found 

in the summary statistics available in the supplementary data.  

3.2.4.1 Diagnostic yield of WGS in CyKD 

3.2.4.1.1 Cohort description  

1558 participants were recruited to the 100KGP under cystic kidney disease. 1294 were 

probands. 921 were recruited as singletons (59.11%), 187 (12%) as a duo with their 

mother or father, 147(9.44%) as a trio with their mother and father, 124 (7.96%) as a 

duo, 81 (5.2%) as a family with more than three participants, 66 (4.24%) as a trio with 

one of their mothers or fathers and another biological relation, 32 (2.05%) as a trio with 

other biological relatives. The median age of the cohort was 50 with a family history in 

58% of the cohort. 25% of the cohort had reached ESRF with a median age of 52. The 

demographic information of probands and the ancestry matched controls is set out in 

table 3-3. The top five most frequent human phenotype ontology codes are set out in 

table 3-4.  
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Table 3-3 Demographic breakdown of the recruited cystic kidney disease probands and 

controls 

Demographics Case Control 

Female 669(51.75%) 14557(55.78%) 

Median age 50 (IQR 37-61) 47.89(IQR 39-54) 

Affected 1st degree relative 752(58.03%) NA 

Consanguinity in parents 41(3.17%) NA 

End-stage kidney disease 398(25.55%) NA 

Median age ESRF 52(IQR 44-60) NA 

Self-reported ethnicity 

European 924(71.41%) 18445 (70.68%) 

African 58(4.42%) 564 (2.16%) 

Other Asian 12(0.93%) 461 (17.67%) 

South Asian 54(4.17%) 2308 (8.84%) 

East Asian 6(0.46%) 73 (0.28%) 

Mixed 25(1.93%) 357 (1.37%) 

Not stated/unknown 215(16.62%) 3888 (14.90%) 

IQR – Interquartile Range, ESRF – End Stage Renal Failure 

 

 

Table 3-4 Top 5 most frequent HPO terms in the CyKD cohort 

HPO code Count(percentage) 

Multiple renal cysts 1085(83.85%) 

Hypertension 697(53.86%) 

Enlarged Kidney 513(39.64%) 

Hepatic cysts 383(29.60%) 

Haematuria 162(12.52%) 

HPO – Human phenotype ontology 

3.2.4.1.2 Prevalence of monogenic disease in the clinical arm of 100KGP 

Of these probands 1290 had outcome data from the 100KGP clinical pipeline: 640 

(52.93%) were solved, 34 (2.81%) partially solved, 79 (6.54%) unaccounted for and 

537 (44.42%) unsolved. The full breakdown of solved cases and their types of variants 

can be found in table 3-5 (3 patients were solved for primary conditions unrelated to 

their cystic kidney disease e.g. intellectual disability and were not included in this table 

and 12 cases did not have listed genes despite being listed as solved). Of the 1290 cases 

578 had data regarding kidney function in the form of HPO or HES codes with 398 

having reached ESRF.  
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Table 3-5 Molecular diagnosis in cystic kidney disease cases that were solved by the 

100,000-genome project clinical pipeline. 

Gene (Condition) Consequence Count 

PKD1 (ADPKD) Protein truncating 340 

Non protein truncating 118 

PKD2 (ADPKD) Protein truncating 122 

Non protein truncating 13 

PKHD1 (ARPKD) Compound heterozygous 7 

Homozygous 5 

DNAJB11 (ADPKD) Protein truncating 5 

Non protein truncating 1 

BBS1 (Bardet-Biedl syndrome 1; biallelic) Non protein truncating 2 

HNF1B (Renal cysts and diabetes syndrome) Protein truncating 2 

SALL1 (Townes-Brocks syndrome) Protein truncating 1 

Non protein truncating 1 

COL4A4 (Alport syndrome) Truncating 1 

FAN1 (Interstitial nephritis) Protein truncating 1 

GANAB (ADPKD) Protein truncating 1 

OFD1 (Joubert syndrome 10) Protein truncating 1 

SDCCAG8 (Bardet-Biedl syndrome 16; biallelic) Protein truncating 1 

TMEM67 (Joubert syndrome 6) Protein truncating 1 

UMOD (Tubulointerstitial kidney disease) Non protein truncating 1 

WT1 (Denys-Drash syndrome) Non protein truncating 1 

ADPKD – Autosomal dominant polycystic kidney disease, ARPKD – Autosomal recessive polycystic 

kidney disease 

3.2.4.1.3 Survival analysis 

Grouping the solved cases into their respective primary driving variants and performing 

survival analysis led to the graph in figure 3-3. Age of reaching ESRF was the endpoint 

and in keeping with the known literature, patients with truncating PKD1 variants carried 

the worse prognosis with a median age of ESRF of 58 years. There were not enough 

events in the PKD2 non-truncating group to be included in the Kaplan-Meier plot (two 
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events with median age of ESF 71 years). The no-variant detected group had a survival 

profile (median age of ESRF 76 years) between that of PKD1 non-truncating variants 

(median age 63 years) and PKD2 truncating variants (median age 89 years) highlighting 

their unmet clinical need.  

 

 

Figure 3-3 Kaplan-Meier plot of renal survival plotted by primary driving variant 

PKD1-T PKD1-truncating variant, PKD1-NT PKD1-nontruncating variant, PKD2-T PKD2-truncating 

variant, Other-another variant in the PanelApp cystic kidney disease gene panel, NVD – no variant 

detected. Note PKD2-NT is not plotted due to the low number of events.  

 

3.2.4.2 Rare variant association testing 

3.2.4.2.1 Depleting analysis of cases 

I performed SKAT-O testing as implemented via SAGIE-GENE in 1209 CyKD cases 

ancestry matched to 26096 unrelated controls in all coding genes collapsed by the 

“missense+” (likely damaging [CADD >20, MAF <0.01, at least a missense 
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annotation]) and “LoF” tags (MAF<0.01, high confidence of causing loss-of-function). 

I then consequently depleted the cases for those solved by the 100KGP project or those 

who carried variants that made up the significantly associated gene signals under the 

“missense+” or “LoF” masks. At each step of analysis, I removed those cases making 

up significant associations until any positive signal was ameliorated. Unless otherwise 

stated, all individuals with qualifying variants for the results presented here were 

heterozygous for their variants. 

3.2.4.2.2 Likely damaging variants (“missense+”) 

Rare variant analysis of the total ancestry matched cohort of 1209 cases and 26096 

controls under the “missense+” mask showed a significant enrichment of cases for 

PKD1 (P=1.17x10-309, OR=10.60, 95% CI = 9.35-12.01), PKD2 (P=1.96x10-150, 

OR=19.07, 95% CI 15.13-23.99), DNAJB11(P=3.52x10-07, OR 1.07, 95% CI 0.95-

1.21), and COL4A3(P=1.26x10-06, OR=3.02, 95% CI 2.10-4.22). Notable genes just 

below genome wide significance included IFT140 (P=1.02x10-05, OR=2.04, 95% CI 

1.53-2.75)) and PKHD1 (P=8.17x10-06, OR=1.60, 95%CI=1.27-2.00) (Figure 3-4). 

There was no evidence of genomic inflation (lambda<1 and Figure 3-5). 
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Figure 3-4 Gene based Manhattan for the association of likely damaging variants between 

all CyKD cases and control. 

Manhattan plot of exome-wide gene-based rare, likely damaging variant association testing for 1209 

CyKD cases and 26096 ancestry matched controls. SAIGE-GENE was performed for 19,168 genes with 

loss-of-function and likely damaging missense variants with MAF < 0.1%. Each dot represents a gene. 

The red line indicates the exome-wide significance threshold of P=2.58×10-6. PKD1 and PKD2 are listed 

at the top of the graph to highlight they fall far out of bounds of the scale due to the strength of their 

association. 
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Figure 3-5 Q-Q plot for the association of likely damaging variants between all CyKD 

cases and control 

Q-Q plot of exome-wide gene-based association testing for 1209 CyKD cases and 26096 ancestry 

matched controls. Each dot represents a gene. The red line signifies the observed versus the expected –

log10(P) for each gene tested. 

 

Removing cases solved by 100KGP and patients that had a bioinformatically 

ascertained pathogenic variant in a known cystic gene left 308 cases. Performing rare 

variant analysis under the “missense+” tag showed a significant enrichment of cases 

with variants in IFT140 (P=1.26x10-16, OR=5.57, 95%CI 3.63-8.21) and COL4A3 

(P=6.83x10-07, OR=4.93 95%CI 2.77-8.11) compared with 26096 controls (Figure 3-6, 

QQ-plot 3-7). 

 

 

Figure 3-6 Gene based Manhattan for the association of likely damaging variants between 

unsolved CyKD case and controls.  

Manhattan plot of exome-wide gene-based rare, likely damaging variant association testing for 308 

unsolved CyKD cases and 26096 ancestry matched controls. SAIGE-GENE was performed for 19,168 

genes with loss-of-function and likely damaging missense variants with MAF < 0.1%. Each dot 

represents a gene. The red line indicates the exome-wide significance threshold of P=2.58×10-6. 
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Figure 3-7 Q-Q plot for the association of likely damaging variants between unsolved 

CyKD cases and controls 

Q-Q plot of exome-wide gene-based association testing for 308 unsolved CyKD cases and 26096 

ancestry matched controls. Each dot represents a gene. The red line signifies the observed versus the 

expected –log10(P) for each gene tested. 

 

3.2.4.2.3 Loss of function variants 

Collapsing rare variants that had a high confidence call for loss-of-function under the 

“LoF” mask revealed significant enrichment for PKD2 (P=3.05x10-147, OR=130.85, 

95% CI = 83.66-215.37), PKD1(P=1.29x10-117,OR=36.01, 95% CI 30.52-42.23), 

IFT140 (P=3.00x10-25, OR=14.03, 95%CI 7.91-24.45), DNAJB11(P=1.84x10-12, OR 

1.07, 95% CI 0.95-1.21) and PKHD1 (P=2.98x10-08, OR=4.07 95%CI 2.24-6.88) 

(Figure 3-8 and QQ Figure 3-9).  
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Figure 3-8 Gene based Manhattan for the association of loss-of-function variants between 

all CyKD cases and controls 

Manhattan plot of exome-wide gene-based loss-of-function variant association testing for 1209 CyKD 

cases and 26096 ancestry matched controls. Each dot represents a gene. The red line indicates the exome-

wide significance threshold of P=2.58×10-6. 

 

 

Figure 3-9 Q-Q plot for the association of loss-of-function variants between unsolved 

CyKD cases and controls 

Q-Q plot of exome-wide gene-based association testing for 1209 CyKD cases and 26096 ancestry 

matched controls under the loss-of-function mask. Each dot represents a gene. The red line signifies the 

observed versus the expected –log10(P) for each gene tested. 
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Analysing the 308 unsolved cases against controls revealed enrichment for IFT140 

(P=1.35x10-17, OR=5.11, 95% CI 0.77-16.82) (Figure 3-10 and QQ Figure 3-11). 

Further depletion of cases by those with qualifying variants that made up the IFT140 

and COL4A3 signals led to 266 cases remaining which did not reveal any further 

significant associations on rare variant testing for either mask (Figure 3-12). 

 

 

Figure 3-10 Gene based Manhattan for the association of loss-of-function variants between 

the unsolved CyKD cases and controls 

Manhattan plot of exome-wide gene-based loss-of-function variant association testing for 308 unsolved 

CyKD cases and 26096 ancestry matched controls. Each dot represents a gene. The red line indicates the 

exome-wide significance threshold of P=2.58×10-6. 
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Figure 3-11 Q-Q plot for the association of loss-of-function variants between unsolved 

CyKD cases and controls 

Q-Q plot of exome-wide gene-based association testing for 308 unsolved CyKD cases and 26096 

ancestry matched controls. Each dot represents a gene. The red line signifies the observed versus the 

expected –log10(P) for each gene tested. 

 

Figure 3-12 Gene based Manhattan for the association of likely damaging variants 

between the depleted unsolved CyKD cases and controls 
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Manhattan plot of exome-wide gene-based likely damaging variant association testing for 266 unsolved 

CyKD cases and 26096 ancestry matched controls. Each dot represents a gene. The red line indicating the 

exome-wide significance threshold of P=2.58×10-6 is not visible due to the lack of association and 

adjusted y-axis.  

 

In all presented analysis the patients were heterozygous for their qualifying variants bar 

in DNAJB11 where 59 of the 369 cases that had qualifying variants within the 

“missense+” tag were homozygous. 

 

3.2.4.2.4 Non-coding collapsing analysis 

Removing the cases with qualifying IFT140 and COL4A3 variants led to no further 

enrichment in the no variant detected cohort under the “missense+” or “LoF” gene 

collapsing tests. However, in the remaining 266 cases versus 26096 controls there was 

significant enrichment in acceptor gain (AG), acceptor loss (AL) and donor loss (DL) 

splice variants for PKD1 (AG P= 6.70x10-11 OR=150.57 95% CI 35.39-730-24, AL P= 

4.22x10-08 OR=398.51 95% CI 39.10-16384, DL P=6.32x10-06 OR=no variants in 

controls ) and for DL in PKD2 (P=5.97x10-10 OR=no variants in controls) (Figure 3-

13).  
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Figure 3-13 Gene based Manhattan for the association of splice variants between the 

depleted unsolved CyKD cases and controls 

Gene based Manhattan plot of the SAIGE-GENE analysis with the splice mask. Each point is a gene 

representing the significance of the association with cystic kidney disease in 266 cases versus 26096 

controls, made up of variants that are highly likely (SpliceAI score >0.8) to impact on splicing. The 

horizontal line indicates the threshold for genome wide significance.  

 

There was no further enrichment in the 3’ or 5’-UTR regions, intronic regions with a 

CADD score>20 or donor gain splice sites on a genome wide basis (all results available 

in the supplementary information). 

 

3.2.4.2.5 PKHD1 analysis 

PKHD1 variants are responsible for ARPKD. The majority of ARPKD patients are 

compound heterozygous, carrying two variants at two different alleles, with 20% of all 

cases carrying a missense variant on exon 3 (c.107>T). 61 predicted LoF variants in 

PKHD1 made up the association signal in the LoF mask analysis of the whole cystic 

disease cohort.  
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These were seen in 50 cases of which 22 were solved, 2 were partially solved, 2 were 

unable to ascertain their solved status and 24 were unsolved. All 50 cases were 

heterozygous for the variant that made up the signal.  

 

Of the 22 solved cases 3 patients were solved with a diagnosis of ARPKD secondary to 

PKHD1 variants, and 19 had variants secondary to PKD1 or PKD2. In the 2 partially 

solved cases both patients had a second PKHD1 variant deemed to be a variant of 

unknown significance (VUS).  

 

 Of the 24 unsolved cases with a single LoF PKHD1 variant, four had a computationally 

predicted high impact non-truncating variant in PKD1, and 1 had a predicted high 

impact non truncating PKD2 variant.  

 

In the remaining 18 cases there were no single nucleotide variants, structural variants or 

copy number variants that would account for compound heterozygous diagnosis of 

ARPKD. Two patients had high CADD scoring variants in PKHD1, but both had been 

deemed “likely benign” by Clinvar (Clinvar ID: 1187104 and 102305).  

 

In total 634 controls of the 26096 carried qualifying PKHD1 LoF variants. When 

compared to the 18 out of 266 unsolved cases with no clear molecular cause of disease 

there is a significant enrichment of PKHD1 variants in the unexplained cystic disease 

cohort (P=5.85x10-06, OR=2.92, 95% CI 1.69-4.76).  

 

3 of the 18 (16.67%) monoallelic PKHD1 cases had reached ESRF with a median age 

of ESRF of 42 years. There was no statistical difference between the rates of liver cysts 

between the monoallelic PKHD1 cohort and the general CyKD cohort (P=0.31). The 

full demographics table can be found below in table 3-6. 
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Table 3-6 Demographics of the PKHD1 cohort 

# Age ESRF CON HGVSc HGVSp rsID HPO FH Consanguinity 

1 15-20 No Frameshift c.525del p.Asp175fs rs1810924520 Hepatic fibrosis, cryptorchidism, 

hypertension, hypogonadism, CKD, 

polycystic kidney dysplasia, renal 

cysts 

No No 

2 60-65 No Frameshift c.5411del p.Arg1804fs rs1554194574 Hepatic cysts, enlarged kidneys, renal 

cysts, gout, nephrolithiasis 

No Yes 

3 60-65 No Frameshift c.5895dup p.Leu1966fs rs746838237 Multiple renal cysts Yes No 

4 50-55 Yes Frameshift c.5895dup p.Leu1966fs rs746838237 Multiple renal cysts, hepatic cysts, 

CKD 

No No 

5 70-75 No Frameshift c.5895dup p.Leu1966fs rs746838237 Enlarged kidneys, multiple renal cysts, 

hypertension 

No No 

6 15-20 No Frameshift c.5895dup p.Leu1966fs rs746838237 Multiple renal cysts, hyperechogenic 

kidneys, hypertension, medullary cysts 

No No 

7 75-80 No Stop gain c.1830T>A p.Tyr610Ter rs749293235 Enlarged kidneys, multiple renal cysts, 

cortical cysts 

Yes No 

8 55-60 No Stop gain c.474G>A p.Trp158Ter rs1350620976 Hepatic cysts, multiple renal cysts,  No No 

9 65-70 No Frameshift c.5895dup p.Leu1966fs rs746838237 Hepatic cysts, multiple renal cysts, 

hypertension 

No No 

10 60-65 Yes Frameshift c.3106dup p.Trp1036fs . Multiple renal cysts, hypertension Yes No 

11 30-35 No Frameshift c.5895dup p.Leu1966fs rs746838237 Multiple renal cysts, hypertension Yes No 
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12 5-10 No Frameshift c.5895dup p.Leu1966fs rs746838237 Multiple renal cysts, multiple cortical 

cysts 

No No 

13 40-45 No Frameshift c.9689del p.Asp3230fs rs398124502 Hepatic cysts, multiple renal cysts, 

nephrolithiasis 

No No 

14 60-65 No Stop gain c.1690C>T p.Arg564Ter rs765251347 Multiple renal cysts, cortical cysts, 

medullary cysts 

Yes No 

15 60-65 No Frameshift c.3761_3762delinsG p.Ala1254fs rs398124484 Multiple renal cysts, hypertension, 

microscopic haematuria 

No No 

16 35-40 No Frameshift c.5895dup p.Leu1966fs rs746838237 Clear cell renal cell carcinoma No No 

17 20-25 No Stop gain c.10565C>A p.Ser3522Ter . Hepatic fibrosis, multiple renal cysts, 

medullary cysts 

No No 

18 60-65 Yes Frameshift c.5895dup p.Leu1966fs rs746838237 Multiple renal cysts, proteinuria, 

anemia, CKD, hypertension 

No No 

CKD – Chronic Kidney Disease, ESRF – End stage renal failure, CON – Consequence, HPO – Human phenotype ontology, FH – Family history
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3.2.4.2.6 IFT140 analysis 

27 cases within the 308 unsolved cases had a qualifying variant in IFT140 under the 

“missense+” tag. Of the 27 cases, all were heterozygous for the qualifying variants. 

None of the variants individually reached genome wide significance. There were no 

plausible second variants within IFT140 that were candidates  for a compound 

heterozygous mechanism of disease.  

 

3.2.4.2.7 COL4A3 analysis 

Amongst the 15 unsolved cystic kidney disease patents with qualifying variants in 

COL4A3 under the “missense+” tag all were heterozygous for their respective variants 

and did not overlap with the unsolved IFT140 cohort listed above. None of the variants 

individually reached genome wide significance. 5 of the 15 (33%) patients had reached 

ESRF (median age 58). 7/15 (46.76%) had hypertension and 4/15 (26.76%) had liver 

cysts.  

 

3.2.4.2.8 Analysis of cohorts divided by primary driving variant. 

Using the primary variant, the cystic cohort was divided into those cases with PKD1 

and PKD2 truncating and non-truncating variants, respectively. Bar the primary gene in 

each cohort there was no further enrichment of any other gene genome wide (full results 

at supplementary data). 

3.2.4.2.9  Pathway analysis 

Using the NVD rare variant disease summary statistics from the SAIGE-GENE analysis 

as the input for the pathway analysis with GAUSS, did not reveal any significant 

associations in either the canonical or hallmark gene set pathways from the molecular 

signatures database (supplementary data).   



Cystic kidney disease 

98 

 

3.2.5 Summary 

• 936 of the 1209 probands had a likely monogenic SNV causing for their CyKD 

(77.42%)  

• PKD1 and PKD2 were the major drivers of this with other known and recently 

described genes making up the remaining signal. 

• IFT140 despite being only newly described is the third most prevalent 

monogenic cause for CyKD in this cohort.  

• The first population level evidence that COL4A3 variants are associated with 

CyKD. 

• Monoallelic PKHD1 variants represent a risk factor for developing CyKD.  

• Splice variants in PKD1 and PKD2 are a key cause of CyKD in an unsolved 

population.  

3.2.6 Discussion 

3.2.6.1 Prevalence of known monogenic disease and the use of WGS 

WGS allows the capture of nearly all genomic variation in an unbiased way, allowing 

for analysis of SNV and SVs as well as systematic reanalysis of variants and genes 

(Costain et al. 2018). There is now compelling evidence that WGS gives superior 

diagnostic yield in rare diseases when compared to microarray, gene panels and WES; 

in particular the detection of deep intronic variants, splice variants, mitochondrial DNA 

and small SV/CNVs which have poor coverage on WES (Gilissen et al. 2014; Taylor et 

al. 2015; Stavropoulos et al. 2016; Lionel et al. 2018; Turro et al. 2020; 100000 

Genomes Project Pilot Investigators et al. 2021). WES is also inappropriate for CyKD 

due to the pseudogene homology to PKD1 (Ali et al. 2019).  

 

995 of the 1209 (77.42%) tested cystic kidney disease cases had a monogenic cause for 

their disease identified in an unbiased way using statistically validated methods of 

analysing biobank-scale WGS data. Our diagnostic yield is comparable to the only other 

WGS study of CyKD where a clinically reportable results was found in 70% of an 

unselected diagnostic cohort (Mallawaarachchi et al. 2021). In work by 

Mallawaarachchi et al they used stricter criteria for inclusion of a variant as causative 
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and only looked at established genes due to the study being designed to match the 

standards of a clinical genetics pipeline. IFT140 was also not yet described as a cause of 

CyKD and represents the third most common cause of CyKD at a population level 

(Senum et al. 2022). This confirms the high diagnostic yield of WGS in practice, and 

this technology is now available to all suspected CyKD patients in the UK via the 

National Health Service’s Genomics Medicine Service.  

 

3.2.6.2  CyKD as a monogenic disorder 

Whilst a proportion of these variants would not necessarily meet the specificity 

requirements for issuing a clinically actionable molecular diagnosis, they give a firm 

basis for understanding the underlying genetic architecture of cystic kidney disease, 

namely that it is extensively driven by monogenic mechanisms.  

 

The arguments for this position are compelling. Firstly, this unbiased method has 

confirmed the importance of established and newly described genes in the pathogenesis 

of cystic kidney disease (PKD1, PKD2, IFT140, DNAJB11), acting as a positive 

control. Contrast this to a recently published WGS analysis of posterior urethral valves 

(PUV), a disease thought to follow a non-Mendelian complex pattern of genetic 

aetiology, using the same methodology and sequencing platform published by our group 

(Chan et al. 2022) that showed no enrichment of rare monogenic causes of disease and 

confirmed a complex genetic architecture.   

 

Secondly, we give robust statistical evidence that COL4A3 is associated with cystic 

kidney disease. Smaller studies have hinted at this association(Gulati et al. 2020) and in 

sequencing of unexplained renal failure patients in an American cohort, a significant 

proportion of unexplained cystic cases were attributed to the COL4A family of genes 

(Groopman et al. 2019).   

 

Finally, our findings are replicated in the UK Biobank with the top gene associations 

with cystic kidney disease using SAIGE-GENE being PKD1 (P=9.83x10-63), 

PKD2(P=1.64x10-60) and IFT140 (P=4.52x10-15) in a cohort of 531 patients versus 
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239,516 controls (Q. Wang et al. 2021). The inclusion of COL4A3 in our cohort reflects 

the recruitment strategy of 100KGP which initially was biased towards those with 

atypical or molecularly unaccounted for CyKD.  

 

3.2.6.3 Splice-sites and non-coding analysis 

Using WGS we have also undertaken the first systematic assessment of  non-coding 

variant contribution to CyKD. These contribute to unsolved cases highlighting the 

power WGS has in identifying sites previously untested by traditional sequencing 

techniques. Whilst splice site variants have been implicated in individual families with 

unexplained CyKD (Claverie-Martin, Gonzalez-Paredes, and Ramos-Trujillo 2015; K. 

Wang et al. 2009) and more recently in modestly sized cohorts (Hort et al. 2023) this 

analyses give robust statistical evidence at a population level that these sites should be 

scrutinized in PKD1 and PKD2. These findings should help inform decisions about the 

sensitivity of other potential sequencing approaches in the clinical setting such as RNA-

sequencing or long read DNA (Borràs et al. 2017) sequencing. Given the lack of RNA 

sequencing we are unable to functionally characterize the discovered splice variants 

however, so our conclusions rest on the enrichment of such variants in cases compared 

with controls and clinical actionability for participants in 100KG would be subject to 

cDNA confirmation on a case-by-case basis.  

 

Whilst the analysis of the intronic and UTR space did not yield any results, by using 

robust case-controlled methodology I can be confident that the lack of signal is due to 

either lack of probands to detect what will likely be mild effect sizes or a true lack of 

signal.  

 

3.2.6.4 Speculated mechanisms for COL4A3 and monoallelic PKHD1 variants 

3.2.6.4.1 COL4A3 

Diagnostic variants in the collagen genes are found not just in Alport syndrome but in a 

host of nephropathies including cystic kidney disease when unexplained CKD patients 
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are ascertained for genetic causes of their disease.  (Groopman et al. 2019; Lata et al. 

2018; Gulati et al. 2020). These genes encode collagen IV α3, α4 and α5 proteins, 

which combine to form the collagen IV α3α4α5 trimer — a key constituent of basement 

membranes in the glomerulus, eye and inner ear (Kamiyoshi et al. 2016).  

 

Traditionally it was thought that cysts were more common in carriers of heterozygous 

pathogenic variants in COL4A4 compared to COL4A5 (Sevillano et al. 2014). However, 

there are many case reports of COL4A3 variants being associated with renal cysts. Prior 

to this study renal cysts were more likely to be found in patients with proteinuria and 

decreased renal function, appearing before the age of 50 and not being associated with 

hypertension or liver cysts. There is no correlation between variant type and the 

likelihood of cysts developing (Savige and Harraka 2021).  

 

However, in our analysis we find only COL4A3 is associated with renal cysts and that a 

significant minority of the patients have both hypertension and liver cysts. Pathogenic 

collagen variants affect the collagen IV α3α4α5 network leading to basement membrane 

weakening which could in theory distend causing cysts. Given this collagen network is 

only expressed in the glomeruli and distal tubules one would expect the cysts to 

originate from there. Mouse models for COL4A4 and COL4A5 have dilated tubules but 

not COL4A3 (Blake et al. 2003) and pathogenic variants in COL4A1 which cause 

HANAC (hereditary angiopathy, nephropathy, aneurysms, and muscle cramps) have 

kidney cysts (Plaisier et al. 2007). Given a third of the COL4A3 patients have ESRF in 

the 100KGP cohort, it seems plausible that cyst formation in this cohort could represent 

an accelerated form of acquired cystic kidney disease found in patients with ESRF, 

particularly those on dialysis. Without further imaging or more granular longitudinal 

data about renal function, further inferences are hard to make.  

 

It is known that the penetrance of COL4A variants is highly variable. Whilst 

heterozygotes generally have a milder disease course than X-linked or autosomal 

recessive carriers, some heterozygous carriers exhibit phenotypes as severe (Fallerini et 

al. 2014; Rosado et al. 2015).  Further studies using multi-omics data as well as 

saturation editing to assess function consequences of a given variant will aid in 
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facilitating a further understanding of the role of collagen variants in the pathogenesis 

of cyst formation (Findlay et al. 2018).  

 

3.2.6.4.2 PKHD1 

Historically, monoallelic variants in PKHD1 were thought to be of no consequence, 

with the parents of ARPKD children being healthy, moreover, there is no kidney 

phenotype in heterozygous rodent models (Moser et al. 2005). However, an increasing 

number of case reports have associated monoallelic PKHD1 variants with mild CyKD 

and PLD (J. Wang et al. 2021; Van Buren, Neuman, and Sidlow 2023). Work by Besse 

et al found an enrichment of monoallelic PKHD1 variants (P = 1.55 × 10–9) in patients 

with PLD using a case-control analysis of gene burden in a European cohort of 

unexplained PLD patients who did not meet the criteria for diagnosis with ADPKD. 4 

out of the 10 (40%) patients with qualifying variants also had atypical CyKD (Besse et 

al. 2017); this made up 10% of asymptomatic carrier adults studied.  

 

In terms of mechanism of pathogenesis, the two most likely causes are either 

haploinsufficiency or somatic inactivation of the second PKHD1 allele. Mice 

heterozygous for PKHD1 will develop a cystic phenotype in keeping with medullary 

sponge kidney when aged ~1.5 years  but this is in keeping with proximal tubule ectasia 

rather than a collecting duct pathology seen in ADPKD (Shan et al. 2019). An human 

ultrasound study of monoallelic carriers of pathogenic PKHD1 variants found increased 

medullary echogenicity 6/110 (5.5%) of the cohort (Gunay-Aygun et al. 2011).  These 

findings seem to suggest a somatic second hit due to the later presentation of the 

phenotype. Crucially, in both the mouse model and human studies mentioned above, 

liver fibrosis, a hallmark of ARPKD, seems to be missing, hinting that the timing of 

PKHD1 expression is vitally important. This may be similar to IFT140 where protein 

truncating variants are associated with a mild CyKD phenotype, whilst recessive 

variants cause a devastating multi-system ciliopathy with early paediatric presentation 

and high morbidity (Senum et al. 2022). 
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There is mixed data that the product of PKHD1, Fibrocystin/Polyductin (FPC) interacts 

with the polycystin complex. FPC may bind to PC2 and regulate calcium permeability 

and it interacts with PC1 in a dose dependant manner to affect cystogenesis in PLD (I. 

Kim et al. 2008; Fedeles et al. 2011). FPC itself has been implicated in ciliary targeting 

(Follit et al. 2010), nuclear translocation (Hiesberger et al. 2006) as well as a host of 

downstream molecular signalling cascades making unpicking it’s precise role in the 

pathogenesis of cyst formation difficult. PKHD1 also has many different expressed 

isoforms, making translation of bioinformatic variant analysis challenging without 

tissue specific expression data (Kaimori et al. 2007) (Menezes et al. 2004). This 

combined with the animal models for PKHD1 and ARPKD not mimicking the human 

phenotype well (Wilson 2008) make further deduction of mechanism challenging. 

However, as discussed in chapter 3.1.2 there is increasing evidence of a shared 

mitochondrial pathway between PKHD1 and PKD1. 

 

3.2.6.5 Strengths and Limitations 

This represents the largest sample of WGS CyKD disease patients analysed with this 

methodology. Having the cases and controls sequenced on the same platform removes 

confounding signals from sequencing artefacts and allows for quality control and 

variant processing to be done on the same pipeline. The use of a generalised logistic 

mixed model and case-control ancestry matching minimised confounding by population 

structure.  

 

The main limitations lie in the power to detect signal in the remaining unsolved cases. 

Given the “positive control” findings in the total CyKD cohort (i.e. that PKD1 and 

PKD2 are by far the strongest monogenic signals) it is unlikely there was a 

methodological flaw when analysing the unsolved CyKD cohort. It is much more likely 

that I lacked the power to detect additional monogenic signals in this group – either 

because they have reduced effect size or are individually extremely rare. Alternatively, 

it may be that a proportion of this group exhibited cystic kidney disease because of non-

monogenic developmental disorders or undocumented environmental exposures, such 

as to Lithium (Grünfeld and Rossier 2009). Irrespective this work gives an estimate of 
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the cohort size needed to power future studies to discover additional monogenic causes 

of CyKD using unbiased genome-wide approaches. Future work will involve rare-

variant meta-analysis with other unsolved cohorts to improve power. Equally as more 

patients with CyKD are sequenced as part of their routine healthcare in the UK further 

monogenic causes will be discovered using this methodology. 

 

I also have not combined variant types for this analysis. This chapter has focused on 

rare, damaging variants collapsed per gene. As the SV work will show in the next 

chapter, HNF1β SVs play in important role in CyKD, and I have not incorporated that 

with rare variant collapsing gene analysis from this chapter; such an approach 

leveraging multiple variant types may reveal novel genetic associations.  

 

Equally, whilst I have attempted to incorporate some non-coding variants, I have only 

collapsed per gene. It is well documented that the non-coding genome is enriched for 

regulator elements that affect gene expression. Extending rare variant association 

analysis into this space is challenging (Bocher and Génin 2020) for two main reasons. 

Firstly, predicting pathogenicity in non-coding variants is challenging making it 

difficult to select variants to form part of a set. Secondly, deciding how to collapse 

variants isn’t clear. Recent advances in the field have led to the development of a 

noncoding RV association detection framework, the STARRpipeline, that uses dynamic 

windows to annotate across the genome (Z. Li et al. 2022). This approach has led to 

non-coding variants being associated with lipid levels, eGFR and a number of other 

phenotypes (Selvaraj et al. 2022). Other approaches include using cell-specific 

experimentally predicted regulator regions to guide variant selection, an approach that 

led to the discovery of TET2 as a casual gene in neurodegenerative disease (Cochran et 

al. 2020) however, this requires a wealth of experimentally generated data to work 

from. However, until bioinformatics tools are better validated for functional prediction, 

rare non-coding association studies remain challenging.  

 

Finally, it can be argued that the very high “solve” rate from the research arm of my 

analysis is simply because I have lowered the threshold for a variant to be thought of as 

causative. It is true that missense variants in PKD1 and PKD2 have an incomplete and 
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variable penetrance (Rossetti et al. 2009). A recent WES analysis of an American 

ADPKD population only found 31.2% of patient with PKD1 missense variants reported 

as “likely pathogenic” by the Mayo PKD database had ADPKD, although using 

different thresholds for classifying these variants as pathogenic (A. R. Chang et al. 

2022). However, as an exercise in defining genetic architecture the missense variants 

included in this analysis are at the least “hot” variants of uncertain significance by 

ACMG criteria and serve their purpose in highlighting statistically robust signals. These 

signals have also been replicated in the UK Biobank under many different models that 

include missense variation. I am confident that these findings are reflective of the 

underlying genetic architecture of CyKD 

 

3.2.7 Conclusion 

In this chapter, I have presented evidence that CyKD is predominantly a monogenic 

disease. There was a significant and likely causative gene found in the majority of 

probands, representing one of the largest cohorts every studied. However, other forms 

of genetic variation play an important role and I will spend the next chapter discussing 

structural variation.  
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3.3 Structural variants in cystic kidney disease 

3.3.1 Introduction 

Structural variation (SV) represents a broad range of variants ≥ 50bps that can either be 

unbalanced or balanced (Figure 3-14). Unbalanced SVs include gains or losses of DNA, 

including copy-number variants (CNVs), whilst balanced rearrangements do not alter 

the dosage of the variant such as in inversions or translocations. Balanced variants are 

notable for not being detectable using conventional microarray-based methods. SV are 

increasingly recognised as having an important influence on genome structure and 

function (R. L. Collins et al. 2020).  

 

 

Figure 3-14 Types of structural variation  

Median number of SVs per genome based on short-read WGS detection. CNV, copy number variant; SV, 

structural variant. Adapted from Collins et al. 2020. 

 

SVs account for roughly 0.1% of all variants but due to their large size, they make a 

large contribution to the diversity between two human genomes compared to any other 

form of variation (Sudmant et al. 2015). As sequencing technology has improved the 

number of SVs predicted to exist per genome as also risen from 4500 SVs per genome 

using short-read WGS (Abel et al. 2020; R. L. Collins et al. 2020) to >25,000 SVs per 

genome with long-read WGS (Audano et al. 2019; Chaisson et al. 2019).  

 

SVs are more damaging than SVs by either directly affecting gene function, altering the 

gene dosage or disrupting regulatory elements (Lappalainen et al. 2019). This is 

reflected in the negative selection seen against all SV types that overlap with genes or 

cis-regulatory elements (Abel et al. 2020; R. L. Collins et al. 2020). Copy-gain 
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duplications, however, have no selection pressure against them, in keeping with the role 

this type of event has in deriving new functions (Dennis and Eichler 2016). 

 

Comparing detection rate of SVs in CyKD is made difficult by the shifting technologies 

by which SVs are called. SVs often occur in repeat-rich segmentally duplicated regions, 

making it problematic to detect and resolve breakpoints. Historically, microarray-based 

approached such as array CGH (aCGH) have been used to detect CNVs to a resolution 

of roughly 25kb. Array CGH cannot resolve small SVs, balanced SVs such as 

inversions or SVs not found in a reference genome. aCGH in the clinical lab has largely 

been superseded by multiplex ligation dependent probe amplification (MLPA), which 

has better resolution but is limited by the need to develop specific probes per gene. Next 

generation sequencing techniques and developments in the in silico tools used to SVs 

has enabled breakpoint resolution down to a single base pair (Ho, Urban, and Mills 

2020). WGS for SV detection is still seen as a research tool but will likely replace 

arrays for clinical grade analysis in the future, allowing for hypothesis free genome 

wide testing.  

 

Microarray and MLPA based SV/CNV analysis for CyKD has focused on targeted 

testing of known causative genes namely PKD1/2. Diagnostic yields range between 

1.6%-7.1% in various ADPKD cohorts (D.-Y. Hwang et al. 2014; Schönauer et al. 

2020; Kinoshita et al. 2016; D. Xu et al. 2018; Fujimaru et al. 2018; M. Zhang et al. 

2019; Toshio Mochizuki et al. 2019), with most findings being in PKD1/2 or 

occasionally HNF1β.  

 

A single WGS paper published by Mallawaarachchi et al. in 2021 did detect SVs in 

5.8% of the 40 cases tested using ClinSV a bioinformatic tool to call SVs genome wide 

(Mallawaarachchi et al. 2021; Minoche et al. 2021), with 3 exon crossing SVs in 

HNF1β and 1 in PKD2. However, this study was limited by small numbers.  

 

At present, very little is known about the contribution of SVs to the CyKD phenotype at 

a population level. In this chapter I use the superior detection capabilities of WGS to 
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investigate the contribution rare, gene disrupting SVs make to the pathogenesis of 

CyKD.  

 

3.3.2 Aims 

1. To ascertain whether rare gene-disrupting structural variation is associated with 

CyKD when compared with an ancestry matched control population using an 

unbiased collapsing exome-wide approach.  

3.3.3 Methods 

3.3.3.1 Variant calling 

Structural variants were called from WGS using the Genomics England pipeline that 

incorporates CANVAS (Roller et al., 2016) to detect copy number (>10kb) and 

MANTA (Xiaoyu Chen et al. 2016) to identify SVs greater than 50bp, but less than 

10kb. CANVAS uses read depth to assign CNV losses and gain. MANTA uses both 

discordant read-pair and split-read data to identify SV regions. While MANTA can 

detect deletions and tandem duplications < 10kb, inversions, and interchromosomal 

translocations it cannot reliably identify dispersed duplications, small inversions (< 

200bp), fully assembled large insertions (> 2x150bp) or breakends where repeat lengths 

approach the read size (150 bp). Very few insertions were identified in this cohort using 

MANTA and in view of this they were excluded from downstream analysis. In addition, 

variants classified as translocations, single breakends or complex SVs which are more 

difficult to accurately resolve were filtered out. Both tools are widely used in the 

bioinformatics community and perform consistently well when compared with other SV 

callers (Cameron, Di Stefano, and Papenfuss 2019).  

 

3.3.3.2 Quality control 

The following quality control filters were applied to the variants:  

• CNV length > 10kb and Q-score ≥ Q10 indicating 90% confidence there is a 

variant present.  
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• A quality score ≥ 20 indicating 99% confidence that there is a variant at the site, 

GQ ≥ 15 indicating 95% confidence that the genotype assigned to a sample is 

correct, and MaxMQ0Frac < 0.4 which indicates the proportion of uniquely 

mapped reads around either breakend.  

 

Variants without paired read support, inconsistent ploidy, or depth > 3x the mean 

chromosome depth near one or both breakends were excluded. 

 

3.3.3.3 Extraction of exon crossing SVs and filtering by allele frequency 

For each sample BEDTools (Quinlan and Hall 2010) was used to extract SVs that 

intersected at least one exon by a minimum of 1 base pair.  

 

Variants were then separated by type into CNV, deletion (DEL), duplication (DUP), 

and inversion (INV) sets before being filtered using BEDTools to remove common SVs 

of the same type. SVs were removed if they had a minimum 70% reciprocal overlap 

with: 

a) the gnomAD SVs (R. L. Collins et al. 2020) with allele frequency >1%  

 

and/or  

 

b) dataset of common (AF>0.1%) SVs generated from 12,243 cancer patients 

recruited to 100KGP. SVs were then merged using SURVIVOR (Jeffares et al. 

2017) allowing a maximum distance of 300bp between pairwise breakpoints 

and allele frequencies calculated using BCFtools.  

 

Overlapping common variants were removed and then a custom Perl script (Dr Helen 

Griffin, Newcastle University) was used to calculate allele frequencies for each type of 

SV across the combined case-control cohort using bins of 10kb across the entire 

genome. SVs with an AF < 0.1% were retained for further analysis. 
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3.3.3.4 Burden analysis 

Exome-wide gene-based burden testing was carried out using custom R scripts stratified 

by SV type. SVs were aggregated across 19,005 autosomal protein-coding genes. A 

two-sided Fisher’s exact test was used to compare the burden of rare (MAF<0.1%) SVs 

in cases and controls under a dominant inheritance model globally and per type of SV. 

The length of SVs was compared in cases versus controls using a Wilcox-Mann-

Whitney test. The Bonferroni correction for the number of genes 

(P=0.05/19,005=2.6x10-6) tested was applied, although with the knowledge that this is 

likely to be too stringent given the tests are not truly independent (one SV can affect 

multiple genes). 

 

3.3.4 Results 

Summary statistics used to generate all the Manhattan plots below is available in the 

supplementary information.  

3.3.4.1 Burden of gene-disrupting structural variation  

Across each type of SV in rare (AD<0.1%), exon crossing variants of at least 50bps 

there was no enrichment in cases versus controls globally. The median size of 

inversions in cases was nearly double that of controls (table 3-7).  

 

Table 3-7 Burden of rare, autosomal, exonic structural variants in CyKD probands versus 

controls 

 

SV type Cases (n=1209) Controls (n=26096) 

CNV n(%) 976(81%) 20607(79%) 

 OR (CI) 1.0(0.92-1.08) - 

 Fisher’s P 1.0 - 

 Median size (kb) 

(IQR) 

90 (170) 89 (170) 

 P (Wilcoxon) 0.86 - 
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DEL n(%) 1059(88%) 22449(86%) 

 OR (CI) 1.0(0.92-1.07) - 

 Fisher’s P 0.84 - 

 Median size (kb) 

(IQR) 

1.6(4.3) 1.7(4.4) 

 P (Wilcoxon) 0.06 - 

DUP n(%) 453 (38%) 9746 (37%) 

 OR (CI) 1.0(0.88-1.08) - 

 Fisher’s P 0.66 - 

 Median size (kb) 

(IQR) 

3.1 (5.4) 3.1 (5.4) 

 P (Wilcoxon) 0.78 - 

INV n(%) 169 (14%) 3215(12%) 

 OR (CI) 1.12 (0.95-1.31) - 

 Fisher’s P 0.19 - 

 Median size (kb) 

(IQR) 

202 (2141) 440(3395) 

 P (Wilcoxon) 0.02 - 

CNV – copy number variation, DEL – deletion, DUP – duplication, INV – inversion, OR – odds ratio, 

IQR – interquartile range, CI – Confidence interval (95%) 

 

Analysing CNVs by size did not show any significant difference between cases and 

controls (Figure 3-15) 
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Figure 3-15 CNV sizes in cases vs controls (kb) 

Individuals with at least one CNV were included and the proportion of their CNV burden by size is 

illustrated here with CNV sizes in kilobases (kb).  

3.3.4.2 Exome-wide gene-based burden testing  

Exome wide gene-based SV/CNV analysis was performed in CyKD cases and ancestry 

matched controls. Across all combined types of SV and CNV there was significant 

enrichment in PKD1(P=2.02x10-14, OR=2.52 95%CI 1.69-3.63) and PKD2(P=7.48x10-

12, OR=3.51, 95% CI 1.74-6.37). The next set of genes reached genome wide 

significance on a per gene basis but combined represented the genes found within the 

17q12 locus including HNF1B (P=8.81x10-09, OR=7.11, 95% CI 3.41-13.66). Of note 

two genes within proximity of PKD2 also reached genome wide significance SPARCL1 

(P=5.76x10-07) and HSD17B11 (P=8.69x10-06) but these were made up of large 

deletions that encompassed PKD2 also (Figure 3-16). 
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Figure 3-16 Gene based Manhattan of the association of structural variants between all 

CyKD cases and controls. 

Exome wide gene-based SV/CNV analysis was performed in 1209 CyKD cases and 26096 ancestry 

matched controls. SVs had to be exon crossing and rare to be included in the analysis (MAF<0.1%) with 

no overlap with a selection of common SVs taken from the GEL cancer cohort and the gnomAD SV 

cohort. The red line represent genome-wide significance.  

 

The PKD1 signal was predominately driven by small deletions, with no other genes 

reaching genome wide significance for deletions <10 kb (P=2.17x10-22, OR=8.11 95% 

CI 4.58-13.83). For PKD2 (P=7.48x10-12, OR=13.03 95% CI 5.02-31.87) and the 17q12 

locus (P=4.12x10-08, OR=8.70, 95% CI 3.72-18.80) this signal was driven by large 

deletions with no other loci reaching genome wide significance. No genes reached 

genome wide significance for duplications or insertions (Table 3-8). 

 

Table 3-8 Comparison of SV sizes in gene enriched in the CyKD cohort 

Gene Driving SV type Median Case 

Size(kb) (IQR) 

Median Control 

Size (IQR) 

Wilcoxon 

(P-value) 

PKD1 <10Mb deletions 1.14(0.46-3.06) N/A N/A 

PKD2 >10Mb deletions 405.52 (97.89-1371) 1107 (1107-1107) 0.8 

HNF1β >10Mb deletions 1550 (1545-1639) 1549 (1546-1550) 0.8 

 IGQ – interquartile range, kb – kilobase, Mb - Megabase 
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3.3.4.3 Genotype/phenotype correlation  

Of the 46 patients with rare exon crossing SV/CNVs in PKD1 or PKD2, 13 also 

harboured predicted LoF variants in PKD1 or PKD2, thus leaving 33 patients with 

cystic kidney disease attributable to SV/CNVs in PKD1 or PKD2.  

 

Of the 10 patients with 17q12 loci CNVs in the cystic disease cohort, 1 patient had a 

PKD1 non truncating single nucleotide variant and 2 had PKD1 truncating single 

nucleotide variants that met the criteria for being likely causative and 1 patient was 

solved for a known HNF1β CNV detected by a separate diagnostic lab prior to the 

return of 100KGP results.  

 

Analysing the subgroup of patients without an identified molecular diagnosis (n=266), 

there was significant enrichment for CNVs at the 17q12 loci (lowest significant 

P=9.21x10-09, OR=24.04 94% CI 8.00-60.71).  

 

Of the 7 17q12 patients none had reached ESRD, and the median age of the cohort was 

13.5 years, significantly lower than the total cystic disease cohort median age (P<0.05). 

None of the patients had HPO or HES codes pertaining to diabetes; a full breakdown of 

phenotypic profile can be found in table 3-9).



Cystic kidney disease 

115 

 

 

 

Table 3-9 Phenotype breakdown of patients with HNF1β CNVs as their likely causative variant for CyKD 

ID Renal HPO terms Extra-Renal HPO terms HES codes 

1 Renal Cyst  Decreased liver function, 

unilateral cryptorchidism  

Cardiomegaly, elevated 

transaminases  

2 Cystic renal dysplasia, multicystic kidney Patent ductus arteriosus, 

coarctation of aorta, splenic 

cyst 

Cardiomegaly, essential 

hypertension 

3 Enlarged kidney, multiple renal cysts, renal cortical 

cysts, multiple glomerular cysts, multiple small 

medullary renal cysts 

None  Unobstructed inguinal hernia  

4 Renal cortical cysts, calculus of kidney None  Congenital hypotonia, 

dermatitis 

5 Renal cortical cysts None  None 

6 Renal cortical cysts None  None 

7 Multiple renal cysts, unilateral renal atrophy Endometriosis Adenocarcinoma in situ, costal 

chondritis; urinary tract disease, 

angina, cervical dysplasia, 

essential hypertension, family 

history of diabetes, gout 
HES – hospital episode statistics, HPO – human phenotype ontology
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3.3.5 Summary 

- As a whole there was no significant enrichment of rare, exon spanning structural 

variants in CyKD versus controls. 

- Structural variants play a large role in the variance landscape of CyKD in known 

monogenic drivers of CyKD namely PKD1, PKD2 and the 17q12 loci. 

- 3.35% (40/1209) of the CyKD burden is attributable to SV/CNV disease. 

- Causative PKD1 SVs tend to be small <10kb. 

- Causative PKD2 and 17q12 SVs tend to be large and >10kb. 

3.3.6 Discussion 

3.3.6.1 WGS and SV calling in CyKD 

To date, small studies in ADPKD cohort have yielded a diagnostic CNV burden 

between 1.6-7.1% for SV/CNVs in ADPKD cohorts using a range of methods from 

Sanger sequencing to long range PCR (Claus et al. 2022). Only one study used WGS as 

mentioned in the introduction, and none used control datasets to understand the 

population significance of the data.  

 

This study represents the first case-control genome wide analysis of SV/CNVs in 

CyKD. Our diagnostic yield of 3.4% is comparable to other studies but is far larger in 

power and scope. By analysing our data with a control cohort, we are able to quantify 

the risk of SVs in CyKD revealing a significant risk (odds ratios are between 8-24 

which are broadly comparable to SNVs in PKD1/2) . These findings are consistent with 

known pathogenic mechanisms of CyKD, namely that PKD1 and PKD2 are disease 

genes and that 17q12 CNVs can manifest with renal cysts. However, whilst 17q12 has 

always been known to cause renal cysts, this study highlights its importance as a cause 

of renal cysts alone with none of the 7 patients diagnosed with diabetes. This confirms 

the need to screen the 17q12 loci for CNVs as part of a CyKD genomic workup.  
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3.3.6.2 Understanding the biology of the findings 

Why are the structural variants in PKD2 nearly 400 times longer on average than those 

found in PKD1? The answer may lie in the underlying genetic architecture of these two 

genes.  

 

PKD1 is a 47.2kb gene made up of 46 exons with the first 33 exons sharing 97.7% 

sequence homology to six pseudogenes that lie proximally to PKD1. These 

pseudogenes have arisen due to successive segmental duplication events since primate 

evolution (Kirsch et al. 2008).  Pseudogenes are under less selection pressure and thus 

tend to have a high mutation rate (Claes and De Leeneer 2014) and the region as a 

whole has a very high GC content. Segmental duplications (SD) are defined as areas of 

DNA that contain >90% sequence identity and >1kb in length in the reference haploid 

genome. Genome-wide analysis of SD and low copy repeats (LCR – an umbrella term 

encompassing SDs as well as other repeat sequences) highlight how they overlap with 

regions with high rates of genomic rearrangements that are often associated with disease 

(Bailey et al. 2002). LCRs affect genomic stability making the flanked regions more 

likely to undergo nonallelic homologous recombination (NAHR) or replication based 

mechanisms (RBMs) (Stankiewicz and Lupski 2002). Moreover, the formation of 

structural variants can both accompanied or caused by SNVs, highlighting a complex 

interplay between the two types of variants (Carvalho et al. 2013). These facts coupled 

with the fact that PKD1 has a high GC rich content making it more prone to 

spontaneous deamination and gene conversion (Coulondre et al. 1978; Alexandrov et al. 

2020) mean PKD1 has multiple sites for potential SV breakpoint formation within itself 

and its surrounding regions (Figure 3-17). 
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Figure 3-17 PKD1 deletions mapped to different genomic features 

An image from the UCSC genome browser with the PKD1 deletions at the top in yellow, the orange is 

the PKD1 gene. The annotated features are the GC percentage (high), the presence of CpG islands, the 

layered chromatin bindings sites, the TAD and then areas of repeats sequence (SINE/LINE/LTR etc). 

Compared to Figure 3-18, there is far more GC content and far fewer repeating elements 

  

PKD2 is a 68kb gene on chromosome 4 with 15 exons and no associated pseudogenes. 

Whilst not an LCR hotspot, it does have a significantly higher coverage by Alu 

elements, a transposable elements accounting for up to 10% of the human genome, 

when compared to PKD1  (Deininger 2011). These elements form hotspots for 

nonrecurrent rearrangements via mechanisms other than NAHR such as 

microhomology-mediated break-induced replication (MMBIR) (Mayle et al. 2015). 

There is speculation that Alu elements may provide the microhomology islands that can 

act as potential breakpoints for larger structural rearrangements (Carvalho and Lupski 

2016). However, the 17q12 loci pathology is mediated by microdeletions of this region 

caused by flanking segmental duplications via NAHR and PKD2 is equally flanked by 

areas of low complexity. Added to this complexity is that fact that the rate of meiotic 



Cystic kidney disease 

119 

 

NAHR correlates in monozygotic twins and is independent of age insinuating unknown 

genetic and/or environmental factors that affect the control of NAHR (J. A. L. 

MacArthur et al. 2014) . Figure 3-18 maps these features to the gene and deletions.  

 

 

Figure 3-18 PKD2 deletions mapped to different genomic features 

An image from the UCSC genome browser with the PKD2 deletions at the top in yellow, the orange is 

the PKD2 gene. The annotated features are the GC percentage (low), the presence of CpG islands, the 

layered chromatin bindings sites, the TAD and then areas of repeats sequence (SINE/LINE/LTR etc). 

Compared to Figure 3-17, there is far less GC content and far more repeating elements.  

 

SV interpretation is a complex and nascent field both at the mechanistic and 

bioinformatic level. At this stage it is simply speculation as to the differences between 

the rare, exonic SV calls in the two top candidate genes.  
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3.3.7 Strengths and Limitations 

This is the first comprehensive assessment of structural variation in CyKD using WGS 

data. By using a case control cohort, I was able to quantify the risk from the associated 

genes in the CyKD cohort, allowing for population inferences about the role SVs play.  

 

Limitations wise, unlike my analyses using logistic mixed models, I was unable to 

control for population structure using principal components. The burden analysis as 

based on a dominant inheritance model and any additive or recessive effects may have 

been unascertained. I was also unable to confirm any of my findings using orthogonal 

approaches such as long read sequencing or PCR-based methods or independently 

verify my findings in another independent cohort. Finally, by calling SVs in 10kb bins 

and calling the MAF from these I may have incorrectly grouped some rare SVs, 

excluding them from the analysis.  

 

From a technological standpoint, whilst WGS performs well at resolving SVs there are 

some limitations. WGS suffers from read mapping ambiguity when large variants are 

found in complex, repetitive or GC-rich regions and is easily outperformed by long read 

platforms such as PacBio (Chaisson et al. 2019). Finally, it has now become gold 

standard to use multiple SV callers on WGS data and then merge the outputs to create a 

consensus SV set to reduce the known problem of false positive calls. CANVAS and 

MANTA were used by Genomics England prior to such a consensus being reached in 

the SV calling community, in the future using a tool that calls SVs with multiple callers 

such as Parliament (Zarate et al. 2020) will allow for reduction in false positive calls.  

3.3.8 Conclusion 

Whilst the ability to sequence and call SVs has improved exponentially, the 

interpretation and analysis of them remains nascent. In this chapter I identified an 

enrichment of rare, exonic SVs in the CyKD population. Future work will be necessary 

to validate and replicate these findings as well as to tease apart the biological 

mechanisms involved.  
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3.4 Common variants in cystic kidney disease 

3.4.1 Introduction 

Thus far I have focused on rare variation in CyKD. In this chapter I focus on the role 

common variants have in CyKD. Whilst CyKD is seen as a monogenic disorder, there 

has been great interest in the role common variants have to play in CyKD. This is 

driven by observations around the intrafamilial variability of the phenotype in the 

presence of a known monogenic driver, hinting at modulating factors such as common 

variants or environmental factors.  

  

GWAS traditionally was constrained by the cost of sequencing, meaning populations 

were sequenced using array-based platforms and imputation panels then applied. This 

limited the analysis in terms of genome coverage and populations studies, with most 

GWAS analyses occurring in European populations. With the advent of WGS and large 

scale biobanks, mixed ancestry WGS GWAS that are not reliant on imputation (using 

predominantly European panels) have been performed with success (Taliun et al. 2021; 

DiCorpo et al. 2022).  

 

3.4.2 Aims 

1. To assess the contribution of common and low-frequency SNVs and indels 

(MAF >0.1%) to the genetic architecture of CyKD as a whole and when 

stratified by primary driving variant and time to ESRF using a sequencing-based 

GWAS. 

2. To perform a meta-analysis of CyKD GWAS studies across population biobanks 

to boost power to detect SNV associations.  

3. To use this data to generate an estimate of the contribution to heritability of 

common and low-frequency variants.  
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3.4.3 Methods 

3.4.3.1 Sequencing-based GWAS 

Whole-genome single-variant association analysis was carried out using the R package 

SAIGE (version 0.42.1) (W. Zhou et al. 2018) which uses a GLMM to account for 

population stratification. High-quality, autosomal, bi-allelic, LD-pruned SNVs with 

MAF >5% were used to generate a genetic relationship matrix and fit the null GLMM. 

Sex and the top 10 principal components were used as covariates (fixed effects). SNVs 

and indels with MAF ≥0.1% that passed the following quality control filters were 

retained: 

-  MAC ≥20 

-  missingness <1% 

-  HWE p>10–6 

- differential missingness p>10–5.  

 

One limitation of SAIGE is that the betas estimated from score tests can be biased at 

low MACs and therefore odds ratios for variants with MAF <1% were calculated 

separately using allele counts in R. 

 

 The R packages qqman (D. Turner 2018) was used to create Manhattan and Q-Q 

(quantile-quantile) plots. A Bonferroni corrected P-value threshold of 5x10-08 for 

genome wide statistical significance was used to account for the number of independent 

haplotypes tested. The genomic inflation factor (lambda), calculated based on the 50th 

percentile, was between 0.99-1.02 in all analyses indicating no significant population 

stratification. 

 

3.4.3.2 Conditional analysis and epistasis 

For any genome-wide significant loci, SAIGE was used to perform conditional analysis 

on the lead variant to look for secondary associations as well as fine mapping of the 

locus by analysing variants with a MAC ≥ 3 to ascertain if rare variants were driving the 

observed signal.  
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PLINK (version 1.9) was used to assess epistasis between lead variants. 

3.4.3.3 Heritability analysis  

The proportion of phenotypic variance due to genetic factors is known as the heritability 

of a condition. Broad sense heritability (H2) is the variance explained by all genetic 

factors under all models (dominant, additive and epistatic) but is hard to estimate 

without a number of assumptions (Visscher, Hill, and Wray 2008). Narrow sense 

heritability (h2) is the contribution to phenotypic variance from additive genetic factors 

only and is hence easier to estimate, normally coming from GWAS outputs which 

assume an additive model.  

 

To estimate the phenotypic variance from common and low-frequency variants in 

CyKD, heritability analysis was performed with GCTA (version 1.93.1beta) (J. Yang et 

al. 2011) on a European subset of total ancestry-matched CyKD cohort. Variants with 

MAF ≥ 0.1% were included. Using the GREML-LDMS approach (J. Yang et al. 2016) 

variants were stratified into seven different bins based on MAF (0.001-0.01, 0.01-0.05, 

0.05-0.1, 0.1-0.2, 0.2-0.3, 0.3- 0.4, 0.4-0.5) and for each bin of variants, SNP-based LD 

scores were calculated over a 200kb region (with 100kb overlap between two adjacent 

segments). For a given bin of variants defined by MAF, variants were further stratified 

into quartiles using LD scores. For each of the 28 bins subset by MAF and LD, GCTA 

was used to produce a GRM from the raw genotype files. The REML (restricted 

maximum likelihood) function was then used to conduct a GREML-LDMS analysis 

using the 28 GRMs, including the top four principal components as covariates. GREML 

has not been validated for mixed ancestry cohorts, so an estimation was made using a 

European subset of the CyKD cohort as defined by principle component analysis (903 

cases and 20255 controls). The observed heritability was then liability adjusted to 

account for the population prevalence of CyKD relative to its representation in the 

100KGP (S. H. Lee et al. 2011). In this analysis a CyKD prevalence of 0.001 was used 

to transform the observed heritability to a liability threshold model. 
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3.4.3.4 Polygenic association between monogenic and unsolved CyKD 

GWAS studies have uncovered thousands of SNVs associated with traits throughout the 

human genome. The same studies also highlight how the majority of genetic variants 

have a small effect on the phenotype and are not predictive of disease risk (Manolio et 

al. 2009; Visscher et al. 2017). This has led to the development of polygenic risk 

scoring (PRS), a method to aggregate the germline genetic risk for a trait. It is a number 

that summarises the effect of many different genetic variants on an individual’s 

phenotype. This is typically calculated as a weighted sum of trait-associated alleles as 

illustrated by the equation where 𝑆̂ is the sum across the m numbers of SNVs with risk 

increasing alleles weighted by their 𝛽̂𝑗  weights:  

 

𝑆̂ = ∑ 𝑥𝑗𝛽̂𝑗

𝑚

𝑗=1

 

 

However, whilst the primary focus of PRS has been on risk prediction for diseases it 

can also be used as a method to assess heritability (S. W. Choi, Mak, and O’Reilly 

2020). It has been shown that using a linear mixed model one can judge heritability of 

trait by evaluating the effects of all SNVs simultaneously (J. Yang et al. 2010). This led 

to other statistical methods being explored that simultaneously assess SNV contribution 

to a phenotype including LD score regression (Bulik-Sullivan et al. 2015) and PRS 

(Palla and Dudbridge 2015; Dudbridge 2013). PRS has been shown to compare 

favourably to these other methods in assessing heritability (L. M. Evans et al. 2018). 

 

PRS can be derived through multiple methods with the focus being on how the number 

of SNVs to be included is derived, methods include: pruning and thresholding were a 

subset of genetic markers are selected through LD and P-value filtering of GWAS 

summary statistics (International Schizophrenia Consortium et al. 2009) , Bayesian 

polygenic prediction methods such as LDpred (Vilhjálmsson et al. 2015) that 

incorporate genome-wide markers and penalized regression (Mak et al. 2017). 

Generally, as the methods have developed more variants have been included with the 

methods to handle the effect sizes becoming more sophisticated.  
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Once the PRS has been generated it is fitted as a logistic model against the binary 

phenotype and any co-variates with the metrics of goodness of fit being used to give an 

estimate of heritability. This includes the variance explained or R2, which is a well-

defined concept in continuous traits. For binary outcomes several proxies for this have 

been developed (pseudo-R2) such as Nagelkerke R2 (Heinzl, Waldhör, and Mittlböck 

2005). However, when estimating the heritability of a binary trait using PRS in a case 

control study the proportion of cases included is overall higher than the prevalence in 

the general population. This makes any estimation of heritability liable to ascertainment 

bias (S. H. Lee et al. 2011). This observed heritability can be transformed to an 

underlying continuous liability threshold model that uses the ratio of cases to controls 

and the population prevalence of the disease to give a less biased heritability. Of note 

PRS have limited portability across different ancestral groups (Alicia R. Martin et al. 

2020), irrespective of the method used to generate the score (Alicia R. Martin et al. 

2019; Duncan et al. 2019). Given I conducted the heritability analysis on a European 

cohort, and the only published estimate of heritability of ADPKD used a European 

population (Blair, Hoffmann, and Shieh 2022) I  opted to conduct PRS fitting in a 

European cohort of CyKD also to allow for easier comparisons.  

 

To this end the summary statistics from the GWAS of unsolved CyKD was used to 

generate a PRS that best explained the variance in the phenotype of a European subset 

of the molecularly solved cases to ascertain if there is shared polygenic architecture 

between the two cohorts. Given the GWAS studies used the same controls, I generated a 

new “monogenic” CyKD cohort taking those patients who had a clear monogenic cause 

for their disease and then ancestry matched them to patients recruited to the 100KGP 

with cancer who were of European ancestry, excluding those with urogenital cancers or 

any HPO code pertaining to renal disease (685 cases and 9856 controls). This was done 

using the PRSice2 tool (version 2.3.3) to generate multiple sets of polygenic risk scores 

at different P-value thresholds relative to the GWAS summary statistics (S. W. Choi 

and O’Reilly 2019). The best PRS is then selected (in this case at a P-value threshold of 

0.027 made up of 55557 variants) and fitted as a logistic model (with sex and 4 PCs as 

covariates) to the data with a liability adjusted heritability calculated using the pseudo-
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R2 (calculated as the difference between the full model R2 and the null model R2 using a 

population prevalence of CyKD of 0.001) in R with the pscl tool (Zeileis, Kleiber, and 

Jackman 2008). A permutated P-Value is then generated to ascertain the model fit 

(10,000 permutations). The model AUC was calculated using DescTools (Signorell 

2023) with the 95% confidence interval calculated using bootstrapping with 10,000 

permutations using the boot tool (“Bootstrap Functions (Originally by Angelo Canty for 

S) [R Package Boot Version 1.3-28.1]” 2022).  

3.4.3.5 Meta-analysis 

Meta-analysis aims to combine the evidence for association from individual studies 

using appropriate weights. There are multiple statistical methods to meta-analyse 

GWAS summary statistics ranging from P value meta-analyses to Bayesian approaches 

(Evangelou and Ioannidis 2013). METAL was selected due to its ubiquity, ease of use 

and reliability.  

 

A metanalysis of cystic kidney disease was performed using GWAS summary statistics 

from my analysis (10,377,276 markers), a combined UK/Japanese Biobank (UK/JBB) 

analysis of 220 phenotypes including polycystic kidney disease  (19,093,042 markers)  

(Sakaue et al. 2021) and the Finnish Biobank (version 8) analysis of cystic kidney 

disease (19,441,692 markers)  (Kurki et al. 2022). This was performed using METAL 

(Willer, Li, and Abecasis 2010). The summary statistics from the UK/JBB and Finngen 

were lifted over from build 37 to 38 using the UCSC liftover tool (Hinrichs et al. 2006).  

Between the three data sets 8,217,458 markers were shared with matching alleles. Meta-

analysis was performed weighting the effect size estimates using the inverse of the 

standard errors. Variants showing heterogeneity of effect between the two datasets 

(P < 1 × 10−5) and those in which the minimum/maximum allele frequencies differed by 

>0.05 were excluded leaving 6,641,352 variants across 2923 cases and 900,824 

controls. The genomic inflation factor (lambda), calculated based on the 50th percentile, 

was 1.01 indicating no significant population stratification. 
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3.4.3.6 Time to event analysis 

There is large variability of the phenotype in CyKD, particularly ADPKD where this 

has been extensively studied (Harris and Rossetti 2010). Genetic differences within 

families with ADPKD have been estimated to account for 18%-59% of the phenotypic 

variance before ESRF, 45 to50% for time to ESRF (Paterson et al. 2005; Fain et al. 

2005). Attempts to find potential modifier genes have been disappointing, all being 

candidate gene led and suffering from small sample sizes and a number of 

methodological issues (Baboolal et al. 1997; Pereira et al. 2006; A. Persu et al. 2002).  

 

Whilst seqGWAS has opened an avenue to look for common variants that may modify 

the course of disease, the case-control label does not leverage any further information 

about the cohort that may add power to detect associations. Survival models, 

particularly the Cox proportional hazard model has been used in other fields of 

biomedical research to analyse time to event (TTE) outcomes (Cox 1972). Previous 

work has shown that using hazard models increases the power to detect SNV associated 

with age-of-onset TTE phenotypes compared to logistic regression models traditionally 

used in GWAS, although at a much greater computational cost (Staley et al. 2017). In 

the era of large genetic biobanks married to granular longitudinal phenotypic data there 

has been renewed interest in using genome wide TTE studies to identify genetic 

variants associated with disease. This represents a particularly appealing approach for 

CyKD given the variable presentations both between and within families.  

 

Large scale genomic studies require controlling for population structure and relatedness, 

discussed in the methods section. Similar to GLMM models that include mixed effects 

to account for the above, frailty models, which are mixed effect survival models have 

been suggested (Hougaard 1995). The “frailties” are unobserved random effects.  

 

To date developments in utilising frailty models with large scale biobank data have 

centred around optimising the model to account for complicated dependency structures 

(Therneau, Grambsch, and Pankratz 2003) but these do not scale to GWAS at biobank 

level. The Genetic Analysis of Time to Event (GATE) analysis has been developed to 

overcome these issues which accounts for population stratification, relatedness, type I 
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error in the face of heavy censoring (as often seen in rare disease phenotypes) and is 

scalable to biobank scale data (Dey et al. 2022). It effectively converts multivariate 

Gaussian frailty models into modified Poisson generalised linear mixed models similar 

to SAIGE (GATE is devised by the same group as SAIGE).  

 

The 100KGP project participants consented to give access to their Hospital Episode 

Statistics (HES) which is a database containing details of all admission, emergency 

attendances and outpatient appointments at NHS hospitals in England. The database 

was searched for codes that would highlight whether a patient had reached end stage 

renal failure (ESRF). The age of ESRF was used as the end point in the TTE analysis 

and those who were yet to reach ESRF were censored. The same genomic and 

phenotype data as per the single variant seqGWAS was used to conduct the TTE 

GWAS. 

3.4.4 Results 

All GWAS summary statistics are available in the supplementary information.  

3.4.4.1 seqGWAS and meta-analysis 

A seqGWAS of 1209 CyKD cases compared with 26096 controls using 10377275 

markers with a MAF>1% revealed only a single variant reaching genome wide 

statistical significance on chromosome 8, chr8:92259567:A:C (P=1.38x10-08, OR 0.72) 

(Figure 3-19). There was no evidence of genomic inflation (λ=0.99, Figure 3-20).  
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Figure 3-19 Variant Manhattan plot all CyKD GWAS 

A sequencing based GWAS was carried out in 1209 unrelated CyKD cases and 26,096 controls for 

10377275 variants with MAF ≤ 0.1%. Chromosomal position (GRCh38) is denoted along the x axis and 

strength of association using a –log10(P) scale on the y axis. Each dot represents a variant. The red line 

indicates the conventional threshold for genome-wide significance (P < 5x10-8). 

 

 

Figure 3-20 Q-Q plot for CyKD mixed-ancestry GWAS  

Q-Q plot displaying the observed versus the expected –log10(P) for each variant tested. The grey shaded 

area represents the 95% confidence interval of the null distribution. The λ=0.99 
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Fine mapping of this locus and conditional analysis confirmed it to be the lead variant. 

This variant sits downstream from RUNX1T1, a transcriptional corepressor, and 

upstream from a long noncoding RNA (LOC102724710) (Figure 3-21). However, this 

variant sits in within its own topologically associating domain (TAD) separate to both 

gene, with no overlapping features of note that would at hint at the mechanism by which 

it would confer protection against CyKD (Figure 3-22).  

 

 

Figure 3-21 Regional association plot for lead SNV from CyKD GWAS 

Each variant is represented by a dot. The lead variant is labelled (rs75364438). The remaining variants are 

colored in relation to the strength of their linkage with the lead SNP. Gene names in the region are listed 

against their chromosomal position (GRCh38). 
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Figure 3-22 Functional annotation for lead SNV from CyKD GWAS 

A plot taken from the UCSC genome browser showing the lead variant  (black bar at top) and top variants 

in linkage disequilibrium with the lead variant (red r0.8 and r0.6 variants). Below are the nearest genes, 

the topologically associating domains and the enhancer/promoted assorted histone marks. The lead 

variant was within its own linkage domain (the long black bars below the lead_snp mark) with no 

overlying annotations of note that would hint at further mechanistic function.  

 

Given the lack of further functional information, to confirm/refute this finding, I meta-

analysed this dataset with those from the UK, Japanese and Finnish biobanks. In the 

Finnish cohort there was evidence of association in several loci, most notably a stop 

gain in PKHD1 but the chr8:92259567 signal was not replicated and overall (Figure 3-

23 and 3-24), the combined analysis of 2923 cases and 900824 controls across 6641351 

markers did not reveal any genome wide significant markers (Figure 3-25).  
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Figure 3-23 Manhattan plot of Finngen CyKD GWAS 

3a GWAS Manhattan from Finngen plot of 780 cystic kidney disease cases against 375708 controls. 3b – 

Quantile-Quantile plot of the association test in 3a. The genomic inflation is 1.04.  

 

 

Figure 3-24 Manhattan plot of UKBB/JBB CyKD GWAS 

4a GWAS Manhattan from UKBB/JBB analysis - plot of 932 cystic kidney disease cases against 534581 

controls. 4b – Quantile-Quantile plot of the association test in 4a. The genomic inflation is 1.02. 
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Figure 3-25 Manhattan plot of CyKD meta-analysis GWAS 

A meta-analysis of my GWAS study and those from the UK, Japanese and Finnish biobanks was carried 

out across 2923 cases and 900824 controls across 6641351 markers. Chromosomal position (GRCh38) is 

denoted along the x axis and strength of association using a –log10(P) scale on the y axis. Each dot 

represents a variant. The dotted line indicates the conventional threshold for genome-wide significance (P 

< 5x10-8). λ = 1.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Cystic kidney disease 

134 

 

Subgroup analysis by primary variant type did not reveal any genome wide significant 

loci (Figure 3-26, QQ plots Figure 3-27). 

 

 

Figure 3-26 Manhattans of GWAS by primary variant type  

Sequencing based GWAS was performed in case cohorts stratified by primary driving variant. No 

significant association were detected in each cohort with no evidence of genomic inflation. A – PKD1-

truncating (10370320 markers), B- PKD1 non-truncating (10409799 markers), C- PKD2-truncating 

(10408817 markers), D – PKD2 non-truncating (10407729 markers). The red line represents the genome 

wide significance line.  
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Figure 3-27 QQ-plots of the per driving variant GWAS  

A – PKD1-truncating, B- PKD1 non-truncating, C- PKD2-truncating, D – PKD2 non-truncating. There 

was no evidence of genomic inflation. The grey area represents the 95% confidence interval.  

 

3.4.4.2 Time To Event (TTE) analysis 

Within the cohort 398 of the 1209 probands had reached ESRF with a median age of 52 

years (IQR 44-60). Time to event analysis using GATE did not reveal any genome wide 

significant associations – either in the total cohort or stratified by primary gene or 

variant type. There was no evidence of genomic inflation. Of note analysis of PKD2  

was not possible due to the low number of events in the group causing a failure of 

model fitting (Figure 3-28, QQ plots Figure 3-29).  
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Figure 3-28 Manhattan of TTE GWAS  

Manhattan plot of the time-to-event GWAS across the total CyKD cohort and divided by primary variant 

and no variant detected cohorts. A – Total CyKD cohort (11485299 markers), B – No variant detected 

cohort (7718522 markers), C – PKD1-truncating cohort (8543817 markers), D – PKD1-nontruncating 

cohort (7465234 markers). The red line represent genome wide significance.  
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Figure 3-29 QQ-plots of the TTE GWAS results  

A – Total CyKD cohort B – No variant detected cohort, C – PKD1-truncating cohort, D – PKD1-

nontruncating cohort. There was no evidence of genomic inflation. The grey area represents the 95% 

confidence interval. 

3.4.4.3 Heritability 

Using the tools described to approximate narrow-sense heritability (h2) I estimated that 

the proportion of phenotypic variance explained by additive common and low-

frequency variation in a European CyKD cohort was 9.0% (SE 7.6%). Low frequency 

variants with MAF between 1% and 5% accounted for nearly all of the estimated 

heritability (Figure 3-30). This suggests that there are likely to be a significant number 

of contributory low-frequency variants with effect sizes too small to be detected in this 

cohort.  
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Figure 3-30 Partitioning of heritability by MAF in a European cohort of 903 CyKD cases 

and 20255 controls 

Narrow-sense heritability (h2) is represented using the liability threshold model based on a population 

disease prevalence of 1 in 1000. Bins indicate MAF of variants tested. Error bars indicate standard error 

(SE). h2 follows a normal distribution and therefore unbiased estimates may be negative, as seen here, 

particularly if the sample size is small (and the variance large). 

3.4.4.4 Polygenic association  

There was a significant difference between a cohort of European monogenic CyKD 

cases and cancer controls when scored with a PRS generated from the summary 

statistics from the unsolved CyKD GWAS (P=2.8x10-05) (Figure 3-31). Fitting a logistic 

model in the monogenic/cancer cohort of phenotype against the PRS, sex and 4 PCs 

revealed significant protective association between phenotype and PRS with an adjusted 

increase in one standard deviation of the PRS leading to the odds ratio of developing 

CyKD decreasing by 0.70 (95%CI 0.60-0.80, P=1.14x10-06). Sex and PC1-PC6 were 

also significantly associated with the phenotype (P<0.001). The model AUC was 0.81 

(95%CI 0.79-0.83).  
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Figure 3-31 Violin and boxplot comparing polygenic risk score distribution in monogenic 

cases and cancer controls 

Violin and boxplot showing the polygenic risk score (PRS) distributions between controls (ancestry 

matched cancer patients without renal disease or urogenital malignancy) and cases with monogenic 

CyKD. The means of the two PRS were significantly different *** = statistical significance 

 

The liability adjusted pseudo-R2, used as a surrogate for the heritability of the PRS, 

accounted for 8.68% (SE 7.63%), permutated P-value for model fit = 1.14x10-06). This 

represents the heritability of monogenic cystic kidney disease that is accounted for by 

common polygenic variants behind unsolved CyKD and in this instance represents a 

protective effect.  

 

There was no statistical difference between each molecular subgroup of CyKD PRS, 

nor within each subgroup when stratified by end-stage renal failure (Figure 3-32).  
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Figure 3-32 PRS distribution in CyKD cases  

PRS distribution in European monogenic CyKD cases divided by primary driving variant and the 

presence of absence of ESRF. There was no significant association between the PRS scores in those with 

or without ESRF (bar PKD2-NT) nor between each molecular cohort.  

 

These results suggest a protective effect of common variants in those with unsolved 

CyKD in the monogenic CyKD cohort.  

3.4.5 Summary 

• GWAS of the cystic disease cohort revealed a single SNV reaching genome 

wide significance in the 100KGP cohort. 

• This was lost on metanalysis with multiple biobanks and no further signals were 

found.  

• GWAS by primary driving variant and with time to event analysis did not reveal 

any genome wide significant associations.  

• Heritability assessment estimates a 9% contribution to heritability from common 

variants, almost entirely coming from variants between a MAF of 1-5%.  

• Common variants associated with non-monogenic CyKD make a ~9% 

contribution to the heritability of monogenic CyKD in a protective direction. 
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3.4.6 Discussion 

3.4.6.1 CyKD GWAS and subgroup analysis 

In this chapter I have used mixed-ancestry sequencing-based GWAS to examine the 

common variant contribution to CyKD and time to ESRF in CyKD in the total cohort 

and stratified by primary driving variant. This is the largest GWAS conducted in CyKD 

to date. The lack of genomic inflation highlights how well controlled the mixed ancestry 

WGS study is and allows for an increase in power by including individuals from more 

ancestries. Further to this, I then conduct a metanalysis of my results with other large 

biobanks to conduct by far the largest GWAS of CyKD to date.  

 

This represents the largest systematic analysis of whether oligogenic or polygenic 

mechanisms are important in the aetiology of CyKD, highlighting how strong the 

monogenic drive for CyKD is. Despite a large number of cases and controls, with 

enough power to detect signals, we do not find any common variant signals. In fact, in 

the Finnish population that has undergone significant genetic bottlenecks causing 

increased frequency of certain recessive variants there is an enrichment in a known 

pathogenic PKHD1 variant (rs137852949, OR=4.69) at an allelic frequency that borders 

the “rare” variant tag (ClinVar ID: 4114, MAF in Finnish population = 7.48x10-03, MAF 

in non-Finnish European population =3.24x10-04) but meets inclusion for seqGWAS in 

Finngen. This variant has been implicated as a heterozygous cause of polycystic liver 

disease (Besse et al. 2017) and the enrichment of rare monoallelic PKHD1 variants in 

our cohort give further strong evidence for its role as a monoallelic cause of cystic 

kidney disease, potentially in a similar model to IFT140.  

 

There are no other published GWAS studies of CyKD to compare to bar the summary 

statistics from large scale biobank projects where multiple phenotypes are analysed and 

results are made publicly available. The UK Biobank and Japanese Biobank CyKD 

GWAS summary statistics were taken from a joint Japanese/Biobank analysis of 

imputed data which did not reveal any genome wide significant associations (Sakaue et 

al. 2021), whilst the Finnish analysis did contain a number of significant associations.  
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Looking at the credible set of variants in the Finnish analysis in detail 

(https://r9.finngen.fi/pheno/Q17_CYSTIC_KIDNEY_DISEA there is the common (in 

the Finnish population) variant at PKHD1, a series of variants mapped to NKX6-1 

(rs937539605, OR=119.88) and TIGD7 (rs1447267563, OR=7.02). The NKX6-1 variant 

is found in a regulatory region of the gene and is only seen in the Finnish population, at 

an allele frequency of 1.30x10-04. NKX6-1 is a transcription factor with a crucial role in 

the regulation of pancreatic β cell development (Aigha and Abdelalim 2020) and has 

been investigated as potential novel biomarker in chromophobe renal cell carcinoma 

(Xie et al. 2022). There are no known links to CyKD in the literature. The TIGD7 

variant falls within the 5 prime UTR region of the gene and has an allele frequency of 

1.22x10-03 in the Finnish population compared to an AF of 2.94x10-05. It is a DNA 

transposon with an unknown function and high expression in most tissues as per the 

human protein atlas. Given the lack of annotation for the non-PKHD1 variants it is 

difficult to speculate further and given the lack of replication in other cohorts, these 

represent either Finnish specific variants, or noise. However, of note, in the “traditional” 

analysis looking at top SNVs in the association analysis based off the lowest P-value, 

the most significantly associated SNV in the GWAS map to ZG16B and is protective 

(OR 0.03) in this population. The gene itself is predominately expressed in salivary 

gland tissue with little clear relationship with CyKD, however, the enrichment of a 

protective allele mirrors that found in my 100KGP analysis.  

 

In terms of subgroup analysis by driving variant type I did not detect any associations 

and this was almost certainly limited by sample size and consequent lack of power. It is 

likely that modifier variants will have small effect sizes and thus the power to detect 

them will be limited. Power calculations show that we would need roughly 1000 cases 

per cohort to have 80% statistical power and none of our subgroups meet that criterion. 

 

3.4.6.2 Time to event analysis 

The identification of specific factors that modify CyKD severity led me to conduct a 

time to ESRF analysis within CyKD both as a whole cohort and within molecular 

subgroups. Neither produced a result but again this was likely limited by low numbers 
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to detect modest effect sizes, for example a genome-wide association meta-analysis 

identified five modifier loci of lung disease severity in cystic fibrosis but required over 

6000 cases with detailed phenotypic and functional information (Corvol et al. 2015).  

 

One alternative method of analysis that has been used in CyKD recently is cryptic 

phenotype analysis which uses the principle that some Mendelian disorders represent 

the extreme end of a spectrum of pathologic variation such as is found in familial 

hypercholesterolaemia (Sturm et al. 2018) or long QT syndrome (Ingles and Semsarian 

2020). These examples rely on the conditional mapping to a quantitative phenotype 

however, cryptic phenotype analysis replies on mapping Mendelian disorders to a map 

of high-dimensional arrays of disparate symptoms with the assumption that Mendelian 

disease patients represent the extreme end of the phenotypic spectrum (Blair, 

Hoffmann, and Shieh 2022). In this analysis performed in the UK Biobank and the 

University of California biobank the team discovered 30 associations between ADPKD 

and disease severity however, the have been no replication studies or further functional 

work. Of note, most of these loci have already been associated with kidney disease and 

blood pressure regulation. I am currently exploring applying this methodology to the 

100KGP with the authors of the paper. 

3.4.6.3 Heritability 

A sequencing based approach to heritability estimation has never been performed in 

CyKD prior to this study and represents the most thorough analysis of the contribution 

of low frequency and common variants in this disease. I demonstrate that these variants, 

particularly those with a MAF between 1-5%, make up 8% contribution to phenotypic 

variance.  

 

This seems like a surprisingly high number given the strong monogenic architecture of 

CyKD. Twin studies are seen as the gold standard of heritability estimation but very 

few studies have been performed in CyKD, and then only in ADPKD (Alexandre Persu 

et al. 2004) with a focus on influencers of severity. Other studies using large ADPKD 

populations looking at the intrafamilial variability in disease severity using variance 

componence analysis estimate that difference in genetic background account for 18-
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59% of the phenotypic variance prior to ESRF (Paterson et al. 2005; Fain et al. 2005), a 

more recent example of such an analysis set a minimum variance of 11% (Lanktree et 

al. 2019), of note these would be a broad sense heritability analysis (H2) as opposed to 

narrow sense that I have looked at using GCTA. Work by Blair et al. using a cryptic 

phenotype approach to ADPKD in the UKBB suggested a common variant (MAF>0.1) 

contribution to the heritability of disease severity as 9.7% (0.19% SD) using similar 

methodology (Blair, Hoffmann, and Shieh 2022). 

 

In the paper mentioned above, Blair et al. used a cryptic phenotype approach meaning 

they included may more “cases,” as they included a case to one with a set of signs and 

symptoms and would likely represent a diagnosis of ADPKD, many of whom did not 

have molecularly confirmed disease (n=308,095) allowing for a more confident 

assessment of heritability with a much smaller standard deviation. The two populations 

may differ, with the 100KGP enriched for clearly monogenic and atypical causes of 

CyKD which may have a smaller common variant contribution. Ideally, I would repeat 

this exact methodology in the UK Biobank, or with the >1000 new cases that have 

recently been sequenced via the NHS Genomics England platform who most likely have 

more typical disease. Nonetheless, my assessment of narrow sense heritability in CyKD 

is similar to that found in the UKBB. 

 

In terms of identifying variants contributing to this signal, the absence of significant 

association in the metanalysis GWAS means that low-frequency variants are likely to 

have effect sizes below the threshold that be detected in a cohort of this size (OR <3). 

Larger, better powered studies are required to find these missing variants.  

3.4.6.4 Polygenic association between monogenic and unsolved CyKD 

By generating a PRS from the unsolved CyKD GWAS and applying it a European 

subset of the solved monogenic CyKD cohort I attempted to understand the role 

common variants play in the heritability of the monogenic CyKD phenotype. In both the 

100KGP total CyKD cohort and Finngen CyKD GWAS the lead SNVs was protective, 

and it could be that common variants in fact have a protective effect on the cystic 

phenotype. It is known that up to 18% of patients with truncating PKD1 variants display 
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mild disease, despite having the “worst” genotype (Lanktree, Guiard, et al. 2021). For 

such a relatively high rate of genotype-phenotype variability to occur the protective 

modifiers must be relatively common, be they genetic or environmental. It is feasible 

that the common variants that contribute to non-monogenic CyKD confer a protective 

modifier to monogenic CyKD, although unpicking the biology from this is difficult.  

 

Whilst there are many examples of polygenic risk scores interacting additively with 

known disease risk (Fahed et al. 2020; Visscher et al. 2021), there are very few 

examples of common variants acting in a protective manner against monogenic disease. 

In Huntington’s disease, GWAS of age of onset has revealed at least 21 common 

variant loci that confer protection against the onset of the disease by potentially 

modifying the genes involved in DNA maintenance (Genetic Modifiers of Huntington’s 

Disease (GeM-HD) Consortium., 2019). Whilst the GWAS studies I performed did not 

reveal any significant associations at an individual SNV level bar one, the possibility 

that common variants play a protective role in CyKD remains. Irrespective it hints at the 

shared genetic architecture in cyst formation.  

 

Given the recruitment criteria for CyKD in the 100KGP, some of the unsolved cohort 

will have monogenic disease that has either gone undetected in a known gene or is a 

novel monogenic disorder yet to be discovered, however, it is likely that there is shared 

biology between “simple” cyst formation and those associated with multiple cysts.  

 

There is a paucity of common variant genetic association analysis in patients without 

clear monogenic causes of CyKD making it difficult to assess my findings in a broader 

context. Finding modifiers of CyKD has been challenged by the need for large cohorts 

to find loci of low effect size. By combining the total common variant contribution into 

a PRS I have performed a similar function to a collapsing rare variant association test 

and improved power at the cost of loss of granularity. These findings show common 

variant contribution but do not give us any further insights into molecular causation, a 

general issue with PRS. However, Peters et al in their review of the biological context 

affecting cyst development in ADPKD (Leonhard, Happe, and Peters 2016) provide a 

helpful diagram by which to contextualise these findings (Figure 3-33).  
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Figure 3-33 The cystic probability landscape 

Taken from Leonhard et al 2016, this graph represents the cystic probability landscape of renal epithelial 

cells with the probability of cyst formation on the y-axis, the PKD-protein levels on the x-axis and the 

influence of biological processes on the z-axis. It could be that having a high polygenic risk score for 

CyKD in the no variant detected cohort could decrease the probability of cyst formation and either 

through a polycystin or non-polycystin mechanism by increasing the “Influence Biological process” level.  

 

Whilst I did not find a difference between the PRS between each molecular subtype or 

stratified by the presence of ESRF within each subtype, I was limited by low numbers. 

It is conceivable that common variants play a role in the “biological context” of whether 

polycystin 1 is expressed. As larger patient numbers are obtained unpicking this will 

become a feasible target, however, in the first instance these results will need to be 

replicated in another biobank.  

3.4.7 Strengths and Limitations 

The main strength of this analysis lies in the use of WGS data which enables ancestry-

independent variant detection and the association testing of variants. Furthermore, the 

uses of rigorous statistical approaches ensure adequate control for population structure 

in this mixed-ancestry cohort enabling an inclusive and better powered analysis. The 

lack of genomic inflation indicate that the detected associations are robust. 

 



Cystic kidney disease 

147 

 

The main limitations of this study are the small sample size on a per variant basis 

limiting power to detect variants with small effects. Meta-analysis was attempted to 

overcome this issue in the CyKD cohort but was not possible in the subdivided cohorts 

as this information was not available from summary statistics. Finally, whilst I have 

shown that multi-ancestry GWAS does not lead to genomic inflation and population 

stratification, I have resorted to European only cohorts for heritability and PRS 

modelling. Methods are now being developed to apply PRS scores to mixed ancestry 

groups (Ruan et al. 2022) and I hope to use such tools in the future to expand our 

understanding of the common variant contribution to CyKD in all ancestries.  

 

3.4.8 Conclusion 

In this chapter I described the first mixed ancestry sequencing based GWAS for CyKD 

as well as the first meta-analysis of CyKD. The lack of association underlines that 

argument that the primary model for CyKD is monogenic although my findings 

regarding heritability and shared polygenicity between unsolved and solved cases 

highlights the importance more common variants potentially have in CyKD, expanding 

the spectrum of allelic contribution to the disease.  
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Chapter 4. Urinary stone disease 

In this chapter I detail the work on urinary stone disease (USD) that I published in 

Kidney International (Sadeghi-Alavijeh et al. 2023). This work highlights the important 

contribution of low effect rare variants to disease heritability, a discovery made possible 

by access to large scale biobanks, WGS data and the latest in statistical genomics.  

4.1 Introduction to USD 

Urinary stone disease (USD) is a significant clinical and societal health burden affecting 

roughly 10% of the population at some point in their life (Scales et al. 2012). The 

prevalence is increasing and there are now over 80,000 hospital episodes per year in the 

UK(Geraghty et al. 2020). Consequently, the health economic burden is substantial, 

estimated around £250,000,000 in England per year for the initial stone treatment alone 

(Geraghty et al. 2020). In the USA, the annual cost for USD in 2000 was calculated as 

almost $3 billion and estimated to reach $4 billion by 2030(Antonelli et al. 2014). 

Moreover, there is a strong association between kidney stones and the development of 

chronic kidney disease (CKD), further adding to the burden from USD (AD Rule 2011; 

Rule 2009). 

 

The aetiology of USD is multifactorial, with genetic and environmental factors 

implicated. There is a strong association between affluence of a society and the 

prevalence of USD, likely reflecting Western lifestyle habits that include a high salt and 

animal protein intake (Edvardsson et al. 2013). Yet, there is also a strong genetic 

contribution: a family history is seen in up to 65% of patients with USD with the 

heritability of stone disease estimated to be as high as 45% (DS Goldfarb 2005; DS 

Goldfarb 2019; Castro 1993; Monga et al. 2006). Indeed, a strong family history of 

kidney stone disease can confer a >50 times increased risk in an individual (Resnick, 

Pridgen, and Goodman 1968; Hemminki et al. 2017). At a polygenic level, multiple 

genome wide association studies (GWAS) have been conducted in multi-ancestry 

populations with greater than fifteen independent loci reported, accounting for roughly 

5% of heritability (Howles et al. 2019). Moreover, there is increasing realization that the 

burden of monogenic causes of USD is considerable: in two recent studies up to 20% of 
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subjects with USD were considered to have a monogenic cause for their disease, 

although the rates are highly variable depending on whether a paediatric or adult 

population is used for analysis, and these studies may be subject to recruitment bias 

(Halbritter et al. 2015; Daga et al. 2018; Gale et al. 2020). 

 

Identification of underlying genetic factors is important, as it facilitates targeted 

treatment and specific prognostic and genetic counselling1 (Bockenhauer et al. 2012). 

The gap between the contribution of the known polygenic risk factors and the observed 

heritability suggests that important genetic contributors to USD remain to be identified. 

 

The 100,000 Genome Project (100KGP) is a pilot project to assess the utility of whole 

genome sequencing (WGS) in rare disease diagnosis in routine healthcare (100000 

Genomes Project Pilot Investigators et al. 2021). This project's research arm provides an 

opportunity to correlate genomic information from participants with their clinical 

phenotype. I therefore aimed to investigate the contribution to USD of rare genetic 

variants (which are not ascertained by previous GWAS) by performing whole genome 

gene-based rare variant studies in participants with HPO codes for nephrocalcinosis 

and/or USD to identify and quantify genetic contributors to the missing heritability of 

stone disease. 

4.2 Aims 

1. To determine the prevalence of known monogenic disease in a cohort of 

patients with USD. 

2. To discover novel candidate genes using an unbiased exome-wide rare variant 

association testing approach. 

3. To combine this information with an assessment of the common variant 

polygenic risk to understand the missing heritability of USD 
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4.3 Methods 

In this section I will detail the creation of the USD cohort and the novel methods used. I 

will not cover the rare variant collapsing gene-based analysis which uses the same 

methodology as the CyKD chapter.  

4.3.1 Cohort creation  

I searched for participants recruited with a primary diagnosis of USD or whose clinical 

information included HPO and/or Hospital Episode Statistics (HES) codes related to 

USD (a full list of searched codes is provided in the supplementary table). I only took 

cases and controls if their genomes had been aligned to build 38 of the human genome.  

 

All cases recruited for USD had been assessed in the clinical interpretation arm of the 

100KGP. This involved ascertainment of variants in an expert curated panel of 29 USD 

genes with multi-disciplinary review and application of American College of Molecular 

Genetics (ACMG) criteria to determine pathogenicity (Richards et al. 2015). The 

control cohort consisted of 27,660 unaffected relatives of non-renal rare disease 

participants, excluding those with HPO terms and/or hospital episode statistics (HES) 

data consistent with USD or secondary causes of USD, kidney disease or kidney failure. 

By utilizing a case-control cohort sequenced on the same platform, I aimed to minimize 

confounding by technical artefacts.  

 

Whole genome sequencing was performed by Genomics England, with variant calling 

annotation and variant-level quality control described in more detail the methods 

chapter.  

 

Given the small number of recruited cases, I chose to jointly analyse individuals from 

diverse ancestral backgrounds, thereby preserving sample size and boosting power. 

Ancestry matching, relatedness estimation, principal component analysis and the use of 

SAIGE’s GRM were as detailed in the methods chapter. Figure 4-1 details the cohort 

creation workflow and figure 4-2 the process of ancestry matching cases to control.  
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Figure 4-1 USD Study Workflow 

The flowchart shows the number of samples included at each stage of filtering and the analytical 

strategies employed. USD – urinary stone disease 

 

 

Figure 4-2 Ancestry Matching in USD 
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Principal component analysis showing the first eight principal components for matched cases (red) and 

controls (green) and unmatched controls (grey). This highlights that cases are taken from multiple 

different ancestries with the appropriate matched controls.  

 

4.3.2 Validation of rare variant results in the UK Biobank 

The AstraZeneca PheWAS portal (https://azphewas.com/) is a repository of gene-based 

phenotype associations derived from the UK Biobank, a prospective study over 500,000 

individuals aged between 40-69 linking the health records with whole exome 

sequencing (Sudlow et al. 2015). Collapsing gene-based analyses similar to the SAIGE 

methodology was applied across thousands of phenotypes for each gene. Twelve 

different sets of qualifying variant filters (models: ten dominant models, one recessive 

model, and one synonymous “control” variant model) were applied to test the 

association between 18,762 genes and 18,780 phenotypes after extensive quality control 

filters (Q. Wang et al. 2021). I queried the PheWas portal for gene associations in USD 

across all models (tag: “Source of report of N20 (calculus of kidney and ureter)”). 

Results were given by Fisher’s exact two-sided test P-values across each collapsed 

variant gene by model. The authors used a study-wide significance threshold of P ≤ 

2x10−09.  

4.3.3 Meta-analysis of rare variant collapsing tests 

In order to boost power to detect signal I meta-analysed my collapsing rare variant 

study with the AstraZeneca PheWAS portal results. Ideally one would conduct a joint 

analysis with pooled individual level data, but this was not available to me as I did not 

have UK Biobank access nor did the AstraZeneca team respond to my requests for 

individual level data.  

 

Meta-analysis requires only the sharing of summary statistics and has bene shown to be 

asymptotically equivalent to that of pooled analysis under reasonable conditions in 

common variant GWAS (Lin and Zeng 2010; D. J. Liu et al. 2014).  

 

There are several methods to meta-analyse rare variant association studies (X. Li et al. 

2023) however, they all require the storing of the covariances of individual variant test 
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statistics and/or the genetic relationship matrix, something I did not have access to from 

the UK Biobank summary statistics. It has been shown for fixed-effect models, that 

joint analyses of several variants in a gene or set can be performed with GWAS 

summary and a SNV-SNV correlation matrix obtained from a reference sample without 

the use of individual phenotype or genotype data (J. Yang et al. 2012). This principle 

has been implemented into the  Fast Region-Based Association Tests on Summary 

Statistics (sumFREGAT) tool, an R package designed to take summary statistics and 

then use SNV-SNV correlation matrices calculated from the 1000 genomes project 

(Svishcheva et al. 2019).  

 

Thus, I used the sumFREGAT package in R to combine summary statistics from the 

AstraZeneca/UK Biobank (UKBB) and 100KGP analyses on a per gene basis using the 

packages default settings.  

 

4.3.4 Modelling the PRS and monogenic effect on heritability 

The theory behind this approach has been discussed in section 3.4.3.4. In those cases, 

without a clear genetic diagnosis from the 100KGP clinical pipeline or a statistically 

significant gene association from the rare variant burden analysis, a polygenic risk score 

(PRS) was applied from a validated, multi-ancestry PRS of USD (Paranjpe et al. 2020) .  

 

The PRS included 7,670,833 markers derived from the UK Biobank using LDpred 

(Privé, Arbel, and Vilhjálmsson 2021). This was lifted over using the UCSC Liftover 

tool (Hinrichs et al. 2006) and imported into the 100KGP where the scoring was 

performed using the “score” command in PLINK2 (C. C. Chang et al. 2015). PRS 

scores were standardized to controls using Z-score scaling.  

 

To test the significance between the PRS of cases, controls, and those with SLC34A3 

qualifying variants I applied a Kruskal-Wallis test followed by a paired Wilcox test to 

differentiate the source of statistical significance using base R functions. All plotting 

was performed with ggplot2 in R (Wickham, 2016.).  
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Independence of PRS from the monoallelic SLC34A3 signal was ascertained with a 

logistic model testing phenotype against PRS, the presence or absence of a qualifying 

SLC34A3 variant, a multiplicative interaction between PRS and SLC34A3, sex and the 

first ten principal components as covariates (to control for differences in ancestry). A 

null model containing just our covariates against the phenotype (sex and the first ten 

principal components) was used to calculate the model contribution to the phenotype 

variance. A liability adjusted pseudoR2 was calculated for the model with and without 

the presence or absence of SLC34A3 monoallelic variants using an estimated prevalence 

of USD of 5% (S. H. Lee et al. 2011). Analysis of the generalized linear model outputs 

and associated performance statistics, including bootstrapping of confidence intervals 

for the AUC-ROC was performed with the pscl (Zeileis, Kleiber, and Jackman 2008), 

DescTools (Signorell 2023) and boot (Canty et al. 2022) and packages in R. Per 

ancestry PRS was also performed. 

 

The PRS was applied to 336 cases and 24541 controls.  

 

4.3.5 Burden heritability regression for rare variants 

Estimating the contribution to heritability from rare variants is challenging (Seunggeun 

Lee et al. 2012). By their nature, rare variants are seen infrequently leading to low 

statistical power alongside issues with population stratification and cryptic relatedness 

that are discussed in the Methods section.  

 

The burden heritability regression (BHR) method assesses the heritability explained by 

the gene-wise burden of rare and ultrarare coding alleles. Burden heritability is defined 

as the fraction of phenotypic variance explained by the minor allele burden in each gene 

under a random-effects model. The inputs to BHR are variant-level summary statistics. 

Burden test statistics are then regressed on burden scores with the regression slope 

giving the estimated heritability (Weiner et al. 2023).   

 

BHR was applied to both the 100KGP and UK Biobank datasets using the 

recommended default settings altered to match the input settings for our SAIGE-GENE 
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analysis whereby within each gene, variants were stratified into two allele frequency 

bins (minor allele frequency (MAF) < 1×10−5 and 1×10−5 – 1×10−4). The model was 

conditioned on the genome-wide burden model and fixed for effects of SLC34A3 given 

the SLC34A3 association. Heritability estimates were liability transformed as per the 

PRS methodology. 
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4.4 Results 

4.4.1 Participants 

Participants 

After quality control, genome build and ancestry matching, I identified 374 unrelated 

probands with USD (244 recruited to 100KGP under “nephrocalcinosis/nephrolithiasis” 

as their primary diagnosis and an additional 130 participants with HES codes indicating 

USD) and 24930 controls recruited to the UK 100,000 Genomes Project (100KGP). 

Table 4-1 details their demographics and clinical characteristics in detail. 
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Table 4-1 Clinical and Demographic characteristics of the USD and SLC34A3 cohort 

  All USD (n [%]) SLC34A3 cases (n [%]) P-Value 

Median age (range)  44 (6-92) 38 (10-75) 0.38 

Males  211 (56.37%) 12 (57.14%) 0.82 

Self-reported ethnicity  White 248 (70.25%) 20 (95.24%) 0.01 

 South Asian 18 (5.10%) 0 0.61 

 Other Asian  9 (2.55%) 0 1 

 Mixed/Other 22(6.23%) 0 0.62 

 Black 3 (0.85%) 1 (4.76%) 0.21 

 Chinese 2 (0.57%) 0 1 

 Unknown 51 (14.44%) 0 0.09 

Family history   79(22.38%) 5(23.81%) 0.09 

Reported consanguinity   15 (4.25%) 0 1 

Stone type if stated Calcium oxalate nephrolithiasis 35 (9.92%) 2 (9.52%) 1 

 Calcium phosphate nephrolithiasis 33 (9.35%) 0 0.24 

 Calcium nephrolithiasis 2 (0.57%) 1 (4.76%) 0.16 

 Uric acid nephrolithiasis 2 (0.57%) 0 1 

 Unknown 281 (79.60%) 18 (85.71%) 0.78 

Relevant endocrine or electrolyte 

manifestations 

Hypercalciuria 186(52.69%) 15(71.44%) 0.12 
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 Hypercalcemia 176 (49.86%) 2 (9.52%) 2.06x10-04 

 Hyperoxaluria 174 (49.29%) 0 1.22x10-06 

 Hyperphosphaturia 172 (48.73%) 0 2.6410-06 

 Hypocitraturia 171 (48.44%) 0 2.67x 10-06 

 Hyperparathyroidism 172 (48.73%) 0 2.64x10-06 

 Hypomagnesuria 170 (48.16%) 0 2.74x10-06 

 Hypoparathyroidism  166 (47.03%) 4 (19.00%) 0.01 

 Hypocalcaemia 169 (47.88%) 0 2.84 x10-06 

Extra-renal manifestations Diabetes Mellitus 65 (18.41%) 1 (4.76%) 0.14 

 Hypertension 60 (17.00) 5 (23.81%) 0.38 

 Gout 35 (9.92%) 1 (4.76%) 0.71 

 Obesity 35 (9.92%) 1 (4.76%) 0.71 

ESRF  36 (10.20%) 1 (4.76%) 0.70 

Median age ESRF (range)  50 (7-78) 67  

ESRF – End Stage Renal Failure, USD – urinary stone disease
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Of the 244 primary recruited cases 26 were previously solved by 100KGP, with the 

relevant genetic diagnoses being reported back to the participants, representing a 

diagnostic yield of 10.7% (see Table 4-2 for full breakdown). 21/244 (8.6%) had a 

primary diagnosis in keeping with stone forming disease whilst 5/244(2%) had other 

secondary diagnoses that were delivered to them via the clinical reporting pipeline that 

did not account for their stone disease. All disease-causing genes followed their 

established modes of inheritance.  

Table 4-2 Solved USD cases 

Primary Diagnosis  Gene No. of probands and 

zygosity 

Cystinuria SLC7A9  

SLC3A1 

2 biallelic, 4 monoallelic 

2 biallelic, 3 monoallelic 

Primary Hyperoxaluria type 1 AGXT 3 biallelic 

Primary Hyperoxaluria type 2 GRHPR 2 biallelic 

Infantile hypercalcaemia CYP24A1 2 biallelic 

Rain syndrome  FAM20C 1 biallelic 

Hereditary Hypophosphataemic 

Rickets with Hypercalciuria 

SLC34A3 1 biallelic 

SLC34A1 associated USD SLC34A1 1 biallelic 

Secondary diagnoses  Gene  No. of patients and zygosity 

CHARGE syndrome  CHD2 1 monoallelic 

Alport syndrome  COL4A4 1 monoallelic 

Mucopolysaccharidosis  GALNS 1 biallelic 

Gitelman syndrome SLC12A3 1 biallelic 

Beta Thalassemia HBB 1 monoallelic 

USD – Urinary stone disease 
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4.4.2 Rare variant association testing 

Two genes showed statistically significant enrichment of rare and predicted damaging 

variation in USD cases compared with controls:  SLC34A3 (P =2.61x10-07, OR=3.75, 

95% CI 2.27-5.91) and OR9K2, encoding an olfactory receptor (P =2.03x10-06, OR = 

8.47, 95 % CI 3.23-18.81) (Figure 4-3) under the “missense+” tag.  

 

 

Figure 4-3 Gene based Manhattan for the association of likely damaging variants between 

USD cases and controls 

Gene based Manhattan plot of the SAIGE-GENE analysis with the missense+ tag. Each point is a gene 

made up of variants that are predicted to be at least as damaging as missense, with a CADD score >20 

and have a minor allele frequency (MAF) <0.01% in the gnomAD database. The horizontal line indicates 

the threshold for exome-wide significance. The only exome-wide significant associations were with 

SLC34A3 (P =2.61x10-07) and OR9K2 (P = 2.03x10-06) 

 

No other genes were significantly enriched in the other tested collapsing tags: intronic, 

5-UTR or 3-UTR, synonymous or splice site (see supplementary data for summary 

statistics).  

 

4.4.3 Replication in UK Biobank  

Association of USD with rare variation in SLC34A3, but not OR9K2, was replicated in 

publicly available analyses of whole exome sequencing data from 3,147 cases and 

255,496 controls within the UKBB, an independent dataset (https://azphewas.com/). In 
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this analysis, multiple rare variants collapsing models were applied on a per gene basis 

and analysed with SKAT-O across all listed UKBB phenotypes. Under the 

“flexnonsynmtr” model, which equates to non-synonymous variants with a 

MAF<0.01% in both gnomAD and the UKBB with missense variants also having to fall 

within a region constrained for missense variation, USD was most strongly associated 

with SLC34A3 (p=3.67x10-10, OR = 2.01, see Figure 4-4). None of the cases in UKBB 

were homozygous for their qualifying SLC34A3 variants (full list of variants in the 

supplementary data) 

 

 

Figure 4-4 Gene based Manhattan of USD in the UKBB 

Gene based Manhattan plot of the UK Biobank analysis obtained from the AstraZeneca PheWas portal. 

Each symbol represents variants in a gene that are predicted to be non-synonymous with a minor allele 

frequency (MAF) <0.1% in both gnomAD and the UK Biobank. The only exome wide significant 

association was SLC34A3 (p=3.67x10-10, OR = 2.01). The multiple symbols under SLC34A3 (the “build-

up”) represent different analyses with respect to the predicted severity of the included variants. The lower 

dashed vertical line indicates exome-wide significance and the upper dashed line exome-wide 

significance corrected for the ~1500 different phenotypes analysed. 
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4.4.4 Metanalysis 

Metanalysis of the two datasets confirmed a significant association in SLC34A3 

(p=1.94x10-18). There were no other genome wide significant associations detected (full 

results in supplementary data). 

 

4.4.5 Phenotype/Genotype analysis of SLC34A3 

Qualifying variants were found in 6% of the ascertained stone population in the study 

(21/374) compared to 1.6% (389/24930) in the controls. Of the 21 cases with qualifying 

variants, 14 were recruited with stone disease, 1 with Congenital Anomalies of the 

Kidney or Urinary Tract, 4 with cystic kidney disease and two with intellectual 

disability. 19 cases were heterozygous, and 2 were compound heterozygous for 

qualifying SLC34A3 variants with both cases’ variants being confirmed in trans (Table 

4-3). Qualifying variants in the control population were all heterozygous. Excluding the 

two compound heterozygous patients from the analysis and re-running the association 

led to a smaller but still significant association (p=1.47x10-06).
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Table 4-3 SLC34A3 demographics and variant details 

ID Age SEX Recruited disease  FH Solved? Ancestry CHR POS REF ALT Con HGVSc HGVSp Clinvar rsID 

1 35-40 M CyKD N N WE chr9 137233282 G A M ENST00000361134.2:c.634G>A ENSP00000355353.2:p.Ala212Thr . rs754447323 

2 55-60 M CyKD N Y WE chr9 137228902 C T M ENST00000445101.3:c.287C>T ENSP00000406665.2:p.Ala96Val . rs1290843983 

3 45-50 M USD N N WE chr9 137236048 G A M ENST00000361134.2:c.1432G>A ENSP00000355353.2:p.Gly478Arg . rs758689905 

4 45-50 M CyKD 1 Y WE chr9 137228893 C T M ENST00000445101.3:c.278C>T ENSP00000406665.2:p.Ala93Val . rs558338995 

5 70-75 M USD N N WE chr9 137234509 C T M ENST00000361134.2:c.1187C>T ENSP00000355353.2:p.Thr396Met . rs138798032 

6 15-20 M USD N N WE chr9 137233223 C T M ENST00000361134.2:c.575C>T ENSP00000355353.2:p.Ser192Leu 198610 rs199690076 

7 25-30 F USD N N WE chr9 137234509 C T M ENST00000361134.2:c.1187C>T ENSP00000355353.2:p.Thr396Met . rs138798032 

8 05-10 M ID N N WE chr9 137228657 A C Syn ENST00000445101.3:c.42A>C ENSP00000406665.2:p.Gly14%3D . . 

9 25-30 M USD N N WE chr9 137233051 G A M ENST00000361134.2:c.496G>A ENSP00000355353.2:p.Gly166Ser . rs200536604 

10 65-70 M CyKD 1 N WE chr9 137233223 C T M ENST00000361134.2:c.575C>T ENSP00000355353.2:p.Ser192Leu 198610 rs199690076 

11 70-75 F USD 1 N WE chr9 137232892 C T M ENST00000361134.2:c.413C>T ENSP00000355353.2:p.Ser138Phe . rs141734934 

12 20-25 F ID N      N WE chr9 137236173 T TC FS ENST00000361134.2:c.1561dup ENSP00000355353.2:p.Leu521ProfsTer72 444095 rs765816079 

13 15-20 M ID N Y WE chr9 137228893 C T M ENST00000445101.3:c.278C>T ENSP00000406665.2:p.Ala93Val . rs558338995 

14 40-45 F CyKD N N WE chr9 137234630 C T M ENST00000361134.2:c.1234C>T ENSP00000355353.2:p.Arg412Trp . rs373242362 

15 10-15 F USD N N AA chr9 137234509 C T M ENST00000361134.2:c.1187C>T ENSP00000355353.2:p.Thr396Met . rs138798032 

16 45-50 M USD N N WE chr9 137228893 C T M ENST00000445101.3:c.278C>T ENSP00000406665.2:p.Ala93Val . rs558338995 

17 40-45 M USD Y N WE chr9 137232928 G A SD ENST00000361134.2:c.448+1G>A . 445687 rs150841256 

18 40-45 F USD Y N WE chr9 137236239 G A SG ENST00000361134.2:c.1623G>A ENSP00000355353.2:p.Trp541Ter 423400 rs762610288 

19 25-30 F CAKUT N N WE chr9 137233223 C T M ENST00000361134.2:c.575C>T ENSP00000355353.2:p.Ser192Leu 198610 rs199690076 

Compound heterozygous patients 

20 20-25 F USD N Y WE chr9 137233223 C T M ENST00000361134.2:c.575C>T ENSP00000355353.2:p.Ser192Leu 198610 rs199690076 

20 20-25 F USD N Y WE chr9 137236239 G A SG ENST00000361134.2:c.1623G>A ENSP00000355353.2:p.Trp541Ter 423400 rs762610288 

21 10-15 F USD N N WE chr9 137231705 G A SL ENST00000361134.2:c.3G>A ENSP00000355353.2:p.Met1? . rs369400414 

21 10-15 F USD N N WE chr9 137234505 T C M ENST00000361134.2:c.1183T>C ENSP00000355353.2:p.Phe395Leu . rs560440785 

CyKD – cystic kidney disease, USD – urinary stone disease, ID – intellectual disability, CAKUT – congenital abnormalities of the kidney and urinary tract, WE – white European, AA – 

African-American, Con – consequence,  M – missense, Syn – synonymous, FS – frameshift, SD - splice donor, SG – stop gain, SL – start loss  
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All 21 patients had gone through the Genomics England clinical pipeline with 4 cases 

receiving genetic diagnoses including: PKD2-associated cystic kidney disease (two 

patients), Kabuki syndrome (KMT2D) and biallelic SLC34A3-associated USD. In the 

solved biallelic SLC34A3 case both variants were annotated as (likely) pathogenic by 

Clinvar (rs199690076 and rs762710288) whereas in the unsolved biallelic SLC34A3 

case the evidence for a clinical grade diagnosis was weaker (rs369400414 and 

rs560440785): whilst both variants met the inclusion criteria for the collapsing rare 

variant association, they did not meet the benchmark for clinically reportable results.  

 

For both biallelic SLC34A3 cases there was not enough phenotype data available to 

ascertain whether they met clinical diagnostic criteria for Hereditary 

Hypophosphataemic Rickets with Hypercalciuria, however, both had the hypercalciuria 

HPO code on record. The top ten HPO codes associated with the patients with SLC34A3 

associated USD are found in Figure 4-5. 
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Figure 4-5 Top ten HPO codes associated with USD 

The top ten HPO codes associated with cases with qualifying SLC34A3 variants. Nephrolithiasis makes 

up the most common associated clinical code followed by hypercalciuria and nephrocalcinosis. 

 

4.4.6 Polygenic risk scoring  

In a cohort of 336 unsolved cases and 24541 controls (both depleted for SLC34A3 

variants that would have qualified for inclusion in the SAIGE-GENE analysis), there 

was a significant elevation in USD PRS compared with controls (P =3.1 x10-04). Initial 

analysis including a cohort of the cases with qualifying SLC34A3 variants did identify 

statistically significant differences between the three cohorts (P =4.4 x10-04), but this 

signal was driven by the difference between unsolved cases and controls (Figure 4-6).  
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Figure 4-6 Violin and boxplot comparing polygenic risk score distribution across USD 

cohorts 

Violin and boxplot showing the polygenic risk score (PRS) distributions between controls (those with 

qualifying SLC34A3 variants removed), cases with qualifying SLC34A3 variants and unsolved patients 

who have neither a reportable nor a qualifying variant in SLC34A3. The means of the three PRS were 

compared with a Kruskal-Wallis test (p=4.04 x10-04) with the signal being driven by the difference 

between unsolved cases and controls (paired Willcox =3.6 x10-04). *** = statistical significance, ns = no 

significant difference 

 

The difference between the control group and the SLC34A3 cases did not reach 

statistical significance given the small number of SLC34A3 cases. Adjusted odds of a 

USD diagnosis increased by a factor of 1.22 (95% CI: 1.10–1.36; P = 0.003) per 

standard deviation of PRS in an adjusted model including sex and the first 10 principal 

components. The area under the curve (AUC) was 0.62 (95% CI: 0.60–0.66).  

 

4.4.7 PRS modelling with SLC34A3 risk 

In the model, there was a significant association between phenotype and both PRS 

(P=3.8x10-04) and the presence of a monoallelic SLC34A3 variant (P =2.72x10-08). 
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However, there was no log-additive (multiplicative) interaction between PRS and the 

SLC34A3 binary with the phenotype (P =0.77), although this is likely to be 

underpowered to detect such an interaction. Of the other covariates, sex (P =1.34x10-05) 

and the fourth principal component (P =4.72x10-08) were also strongly associated with 

the phenotype. The presence of an SLC34A3 variant increased the frequency of USD 

within 100KGP when plotted against polygenic risk score (Figure 4-7).  

 

 

Figure 4-7 Frequency of urinary stone disease by centile of PRS 

A line plot showing the frequency of USD against polygenic risk score stratified by the presence of 

absence of a qualifying SLC34A3 variant in the 100,000 genomes project cohort. 

 

The addition of the SLC34A3 variant binary to the linear model including PRS led to a 

significant rise in the estimated variance explained by the model (liability adjusted 

pseudo-R2 rising from 5.1% to 14.2%) and a modest increase in the model's predictive 
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capability (AUC 0.64 95% CI 0.61-0.66). Implying a 9.1% contribution of SLC34A3 to 

the heritability model.  

4.4.8 Burden heritability regression 

To confirm the heritability of the rare variants as well as the contribution of SLC34A3 

using orthogonal methodology I applied the burden heritability regression tool to both 

the 100KGP and UKBB datasets. The liability adjusted gene-wise burden heritability of 

rare and ultra-rare predicted loss-of-function (pLOF) and damaging missense variants 

explained 10.8% (95% CI = 7.7-13.9%) of phenotypic variance within the 100KGP 

dataset with variants in SLC34A3 making up 7.6% (95% CI =5.64-9.6%) of this signal 

in total (lambda =1.076). In the UKBB analysis the liability adjusted gene-wise burden 

heritability of rare and ultrarare pLOF and damaging missense variants explained 5.4% 

(95% CI = 3.3%-8.4%) of the phenotypic variance with variants in SLC34A3 making up 

3.7% (95% CI= 1.3-6.1%) of this signal (lambda =1.018).  

 

4.5 Summary 

• Rare variants in SLC34A3 are the most important genetic risk factor for USD 

• These variants make up a significant proportion of the hitherto unexplained 

heritability of USD  
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4.6 Discussion 

I identified rare variants in SLC34A3 and OR9K2 as significantly associated with USD 

among 100KGP participants.  

4.6.1 SLC34A3 

SLC34A3 encodes the sodium-dependent phosphate transport protein 2C expressed in 

the proximal tubule (NaPi-IIc). Our results highlight the importance of SLC34A3 as a 

contributor to USD, with more than 5% of patients in this cohort from the 100KGP 

harbouring predicted damaging variants and independent replication of this association 

in the UKBB dataset (Q. Wang et al. 2021). Importantly, the odds ratio for stone disease 

with rare, predicted damaging variants in SLC34A3 was comparable to that of the 

polygenic risk score derived from numerous common variants across the whole genome 

and a model combining PRS and SLC34A3 monoallelic variants accounted for 14% of 

the genetic heritability of stone disease. This suggests that rare monoallelic variants in 

SLC34A3 fall into an intermediate category of pathogenicity: they are insufficient to 

cause fully penetrant Mendelian disease but convey a higher disease risk than the 

aggregate effects of known common risk alleles. There is increasing recognition of such 

intermediate role for rare predicted damaging variants. For instance, approximately 1% 

of the general population carry such variants in COL4A3 or COL4A4 but they are not 

fully penetrant for the development of progressive chronic kidney disease (autosomal 

dominant Alport syndrome) and are therefore considered a risk factor (Gibson et al. 

2021). Equally a recently described UMOD variant (p.Thr62Pro) seen in ~1/1000 

individuals of European ancestry has been shown to confer an intermediate level of risk 
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of kidney failure, augmenting the known spectrum of UMOD-associated kidney disease 

(Olinger et al. 2022).  

 

In the AstraZeneca UKBB rare variant collapsing analysis that used twelve different 

sets of qualifying variant filters (models: ten dominant models, one recessive model, 

and one synonymous “control” variant model) SLC34A3 was the gene most 

significantly associated with USD and the association was strongest with models that 

include predicted damaging missense variation and weakened if the filter was 

constrained to only those variants predicted to cause protein truncation, suggesting that 

any predicted damaging variants in this gene can contribute to the risk of USD.  

 

Our findings therefore highlight the importance of monoallelic variants in SLC34A3 for 

USD. SLC34A3 was reported in 2006 as a recessive disease gene for the rare disorder 

hereditary hypophosphataemic rickets with hypercalciuria (HHRH) (Bergwitz et al. 

2006; Lorenz-Depiereux et al. 2006). While there was already recognition in the 

original publication that heterozygous carriers in the affected families were frequently 

affected by hypercalciuria, it remains listed as a recessive disease gene in OMIM 

(*609826). Yet, there is good evidence for the impact of monoallelic variants: an 

investigation in a cohort of affected families showed that the risk of USD was 46%, 

16% and 6% in subjects with biallelic, monoallelic or no causative variants, respectively 

(Dasgupta et al. 2014). This is consistent with a paradigm in which identification of a 

rare, damaging monoallelic SLC34A3 variants can be regarded as a risk factor for stone 

disease but is not a diagnostic finding.  
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The underlying mechanism is thought to be hypophosphataemia-mediated suppression 

of fibroblast growth factor-23 (FGF23) with consequent activation of the 1-a 

hydroxylase and increased 1,25 dihydroxy vitamin D levels, which in turn stimulates 

intestinal calcium absorption (Lorenz-Depiereux et al. 2006). The same mechanism is 

thought to apply in infantile hypercalcaemia due to biallelic loss-of-function variants in 

SLC34A1 (Schlingmann et al. 2016). While the role of monoallelic SLC34A1 variants in 

hypercalciuria has been controversial, large genome-wide studies have demonstrated a 

significant association between both coding and non-coding variants of SLC34A1 and 

USD, consistent with the concept that a reduction in proximal tubular phosphate 

transport does increase the risk for kidney stones (Benjamin B. Sun et al. 2022; 

Oddsson et al. 2015).  

 

Our study provides evidence of clinical relevance for coding variants in SLC34A3, with 

a significant enrichment of rare and predicted damaging variants in USD patients 

compared with controls, among participants of both the 100KGP and UKBB. While the 

100KGP did not specifically encourage enrolment of patients with a family history of 

the respective disorders, it is possible that there may have been a recruitment bias that 

would have inflated the percentage of SLC34A3-related disease. Nevertheless, the 

additional identification of rare SLC34A3 variation as the strongest rare variant 

association in UKBB participants provides independent replication and raises the 

question of whether identification of these risk variants in individual patients would 

provide utility in clinical practice.  
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While the modest risk effect precludes predictive use of such a test, the above 

pathophysiological mechanism suggests that phosphate supplementation may be a 

suitable treatment to stimulate FGF23 and thereby suppress 1-a hydroxylation of 

vitamin D in patients at risk of SLC34A3-related kidney stone disease. Indeed, 

successful use of this treatment has been reported (Schönauer et al. 2019; Dhir et al. 

2017). However, clinical trial data would be needed to support such an intervention 

because there is a risk that large doses of phosphate supplementation increase the 

urinary phosphate concentrations with consequent increased risk of calcium phosphate 

precipitation. Indeed, nephrocalcinosis has been associated with phosphate 

supplementation in patients with PHEX-associated hypophosphataemic rickets, 

although these patients typically received enormous doses (Haffner et al. 2019). Thus, 

more data are needed before embarking on routine phosphate supplementation in 

SLC34A3-associated USD. 

 

4.6.2 Olfactory associations 

While the association with SLC34A3 was independently replicated in the UKBB, a 

signal was not observed in this dataset at OR9K2, so the possibility exists that this 

finding is a type 1 error, which is well recognised with olfactory receptor genes owing 

to their enrichment for loss of function variation without clinical consequences 

(Karczewski et al. 2020; D. G. MacArthur et al. 2012). However, similar olfactory gene 

associations have not been observed in other studies using the 100KGP dataset analysed 

with similar methodology (Q. Wang et al. 2021), and there is increasing recognition that 

olfactory receptors regulate transport processes in many organ systems (Dalesio et al. 

2018): OR9K2 is expressed in the intestine (Uhlén et al. 2015), and it is conceivable that 
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it may be involved in the regulation of absorption of substrates with relevance to stone 

formation, such as oxalate or calcium. Therefore, further studies are needed to assess 

the relevance of OR9K2 in USD. 

 

4.7 Strengths and limitations 

There were several notable limitations when undergoing this study. Firstly, I was 

underpowered in our discovery cohort to discover novel gene variants with either a 

weaker effect on risk or of greater rarity due to our small case number. Those that were 

recruited clearly may have had more severe USD, with potential ascertainment bias 

towards genes more likely to be involved with more severe disease. Following on, the 

addition of SLC34A3 into the logistic model with PRS risks a “winner’s curse” bias 

whereby its effect is overstated. This is supported by the BHR scores being higher in the 

100KGP versus the UKBB cohort, although the confidence intervals do overlap for the 

analysis. However, the fact that the association between rare and predicted damaging 

variants in SLC34A3 and USD is replicated in an independent cohort (as the “top gene”) 

and that this signal is enriched on metanalysis is reassuring. The heritability and effect 

size of the PRS in the 100KGP is similar to the known common variant contribution to 

USD implying a similar underlying genetic architecture between cohorts. In terms of 

phenotyping, I was limited by the depth of information available for our cohort in 

100KGP, which does not include the biochemical stone properties for most cases. As 

with all diseases that can be silently present, there is also the chance that our control 

population has been misclassified with a proportion of them having USD. Whilst all 

efforts were taken to remove any cause of potential USD as well as hospital codes 

directly pertaining to USD, I cannot completely exclude this possibility. While the 
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statistical evidence of enrichment of rare genetic variants in SLC34A3 is strong and 

replicable, without functional analysis of each missense variant it is not possible to 

determine which of the observed variants play a causal role in disease.  

 

4.8 Conclusion 

This chapter highlights the substantial contribution of rare and predicted damaging 

variants in SLC34A3 to the burden of USD, helping to close the missing heritability gap 

and supporting the idea of routine genetic testing in affected patients. Rare variants with 

intermediate effect sizes play an important role (comparable if not greater to the 

common variant contribution) in USD and likely in other diseases.  
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Chapter 5. Extreme-early onset hypertension  

In this chapter I discuss work of Megha Manoj, an intercalating medical (iBSc) student, 

whom I supervised closely. This research project was awarded the best abstract at the 

British and Irish hypertension society (“Abstracts from the 2022 Annual Scientific 

Meeting of the British and Irish Hypertension Society (BIHS)” 2022), and Megha was 

invited to present the paper at the American Heart Association Hypertension meeting in 

Boston, MA in September 2023. I have included it in my thesis because although the 

work was performed jointly, it was under my close direction (I wrote almost all the code 

for her analysis), applying similar methodology to the previous results chapters on the 

topic of extreme early-onset hypertension (EEHTN). I have developed Megha’s work 

by conducting further analyses to round this project out further namely the rare variant 

association testing in a primary hypertension cohort and the polygenic risk score 

modelling. I have delineated this by using “we” for work I supervised and “I” for work I 

undertook myself.  

5.1 Introduction to extreme early onset hypertension 

The global impact of hypertension is significant, affecting approximately a quarter of 

the world's population and representing the primary modifiable risk factor for 

cardiovascular disease and mortality (Ezzati et al. 2002). Traditionally, treatment efforts 

have prioritized individuals with the highest 10-year risk of cardiovascular events, often 

considering age as a significant determinant (Sundström et al. 2011). However, research 

indicates that hypertension at a young age substantially elevates the risk of 

cardiovascular events later in life (Yano et al. 2018). The presence of hypertension 

during early adulthood contributes to the premature onset of coronary heart disease, 

heart failure, stroke, and transient ischemic attacks. Notably, blood pressure tends to 

track strongly with age, meaning that elevated blood pressure in youth is likely to 

persist into later life (Barker et al. 1989). Studies have linked baseline blood pressure in 

young adults to cardiovascular mortality in follow-up assessments (Xiaoli Chen and 

Wang 2008) . 
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The evidence highlights the significance of early-life risk factors in determining long-

term health outcomes and suggests that delaying the consideration of cardiovascular 

health until middle age may not be appropriate. With this there has been great interest in 

early diagnosis of hypertension particularly those secondary cases where a fixed and 

potentially treatable cause can be found (Rimoldi, Scherrer, and Messerli 2014).  

 

In terms of hypertension as a whole there has been great interest in understanding the 

genetic architecture (Padmanabhan, Caulfield, and Dominiczak 2015). The high 

prevalence of hypertension and its associated morbidity present a clear justification for 

genetic studies. Multiple GWAS studies had implicated over 50 SNVs associated with 

primary hypertension, with the estimated heritability from these being roughly 2%, 

despite family studies estimating between 30-50%, with most of the loci yet to have 

their functional connotations understood. Monogenic syndromes and low frequency 

variants whilst rarer, have contributed to a larger functional characterisation of 

hypertension (>25 implicated genes), helping to elucidate the pathways behind salt 

retention and underlying the role the kidneys and adrenal glands have in blood pressure 

regulation. Most of the rare variant work has been conducted using linkage analysis 

with the few exome sequencing projects yielding mixed results probably due to low 

sample sizes (Albrechtsen et al. 2013; Paranjpe et al. 2019). However, to date there has 

not been a case/control whole genome sequencing analysis of secondary hypertension.  

 

Investigating young adults for secondary causes of hypertension is strongly advocated 

by most guidelines with risk factors likely to yield a successful diagnosis including 

being less than 30 years of age or having a blood pressure >180/110mmHg 

(“Recommendations for Research | Hypertension in Adults: Diagnosis and Management 

| Guidance | NICE” 2018.d.; B. Williams et al. 2018; Whelton et al. 2018) . At present 

the process of diagnosis for these patients is both expensive and invasive necessitating a 

large battery of blood, imaging and functional tests at great cost (Chhabra et al. 2022). 

As a cohort they are enriched for monogenic causes and thus “extreme early-onset 

hypertension” (EEHTN) was included as a phenotypic cohort in the 100KGP. EEHTN 

is defined as a blood pressure in an adult >160/100mmHg in clinic and an average 

blood pressure of 150/95 on ambulatory blood pressure monitoring occurring below the 



Extreme-early onset hypertension 

177 

 

age of 30 (excluding patients with Primary hyperaldosteronism, phaeochromocytoma, 

Cushing's syndrome and hyper/hypothyroidism).  

 

In this chapter I will discuss our investigation of the EEHTN cohort using techniques 

established thus far.  

 

5.2 Aims 

• To identify common variants that may contribute to EEHTN  

• To determine the prevalence of known monogenic disease in a cohort of 

patients with EEHTN. 

• To discover novel candidate genes using an unbiased exome-wide rare variant 

association testing approach. 

• To understand the structural variant burden of known causative genes in an 

EEHTN cohort 

• To understand the common variant contribution to EEHTN compared to primary 

hypertension and a control population  
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5.3 Methods 

In this study we were limited by the time given to the iBSc project. The common and 

rare variant analyses used similar methodology to that described in previous chapters 

and will not be detailed again (Megha did this on the EEHTN cohorts and I on the 

primary hypertension cohort). The SV analysis was cut down to a candidate gene 

approach in the interests of time and will be detailed after the cohort creation. As part of 

my further analysis, I created a primary hypertension cohort and conducted rare variant 

analysis and polygenic risk scoring in this cohort also.  

5.3.1 Cohort creation 

For this analysis we created three separate ancestry matched, unrelated cohorts: The 

EEHTN cohort recruited as probands under the “EEHTN” tag (EETHN), a group 

including the EEHTN cohort and patients with a diagnosis of HTN prior to turning 30 

as ascertained by querying their HES records (HES-EEHTN) and the same group as 

minus those patients with renal disease (“renal removed” or RR-EETHN). Controls 

were initially selected as the unaffected relatives of patients not recruited with EEHTN 

or renal disease and then further depleted them for primary and secondary hypertension 

using HES/HPO codes.  

 

I created a primary hypertension cohort by searching the 100KGP for patients with 

“primary” or “essential” hypertension in the participant explorer (which searches HPO, 

HES and other affiliated terminology linked to the NHS data spine for all recruited 

participants). These were then further refined to be the unaffected relatives of non-renal, 

non-EEHTN probands recruited to the 100KGP. I then further removed those with any 

HPO or HES code pertaining to secondary causes of hypertension and to add a buffer to 

the criteria of EEHTN I only took those primary hypertension cases that were over the 

age of 40 at diagnosis of primary hypertension.  

 

Each cohort then underwent relatedness filtering, quality control and ancestry matching 

as per the chapters above. This resulted in a final total of 179 cases and 20411 controls 

in the original EEHTN cohort, 901 cases and 20852 controls in the HES-EEHTN 
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generated cohort, 449 cases and 20852 controls in the RR-EETHN cohort and 7923 

cases and 20695 controls in the primary hypertension cohort (P-HTN). 

 

All recruited cases went through the clinical interpretation arm of the 100KGP whereby 

a panel of 27 “green” genes with known causative links to hypertension were applied 

virtually to the WGS data. These results were fed into a multidisciplinary team who 

applied the ACMG criteria and issued a diagnosis where appropriate.  

 

5.3.2 SV analysis 

SV were counted on a per gene basis as per the CyKD SV chapter (rare, exonic 

SV/CNVs) in cases and controls. However, only the green listed genes on the PanelApp 

entry for EEHTN were used (CUL3, CYP11B1, CYP11B2, CYP17A1, HSD11B2, 

KCNJ5, KLHL3, MTX2, NR3C1, NR3C2, SCNN1B, SCNN1G, TTC21B, WNK1 and 

WNK4). I applied a two tailed Fisher’s exact test to the cases and controls per gene and 

SV type.  

 

5.3.3 Polygenic risk scoring 

We applied a validated polygenic risk score for primary hypertension consisting of 

186,726 variants derived from a European cohort within the UK Biobank (Sinnott-

Armstrong et al. 2021). These were lifted over to build 38 using the UCSC liftover tool 

(Hinrichs et al. 2006) and then I scored these on our cohort using the PLINK2 score 

command (C. C. Chang et al. 2015). I then performed statistical tests for significance, 

modelling, goodness of fit testing and plotting using R.  
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5.4 Results 

All summary statistics are available in the supplementary information.  

5.4.1 Participants 

200 proband were recruited to the 100KGP under the EEHTN tag, with 179 being used 

for analysis after ancestry matching and relatedness filtering. Table 5-1 details the 

demographics of the cohort: 

 

Table 5-1 Demographics of the recruited EEHTN cohort 

 

Demographics Number Percentage 

Male 114 57% 

Median Age 40(IQR 30-91) NA 

Recruitment 

Singleton 141 70.5% 

Trio with Mother and Father 26 13% 

Duo with Mother and Father 22 11% 

Duo with other Biological Relative 5 2.5% 

Families > 3 participants 4 2% 

Trio with Mother or Father and other 

Biological Relationship 

2 1% 

Affected 1st degree relative 78 39% 

Consanguinity in parents 8 4% 

Self-reported ethnicity 

European 84 42% 

African 17 8.5% 

Other Asian 12 6% 

South Asian 11 5.5% 

East Asian 1 0.5% 

Mixed 8 4% 

Not stated/unknown 67 33.5% 

IQR – Interquartile range 

 

Of the 200 recruited cases two (1%) were solved by the 100KGP clinical interpretation 

arm. One case has a PKD2 truncating variant (Clinvar 562248) whilst the other case had 

a heterozygous missense COL4A5 variant (X_108686076) and was given a diagnosis of 

X-linked Alport syndrome (in a female).  
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5.4.2 Rare variant association testing 

In the EEHTN cohort there were no significant genome-wide association in any gene 

compared to controls (179 vs 20411 cases) in either the LoF or missense categories of 

collapsing analysis (Figure 5-1).  

 

 

Figure 5-1 Gene based Manhattan plots for rare variant association testing in EEHTN 

A – Likely damaging (missense+) B – Loss-of-function. There was no significant genome-wide 

association in any gene compared to controls (179 vs 20411 cases) in either the LoF or missense 

categories of collapsing analysis, The QQ plots did not reveal any genomic inflation.  

 

In the HES-EEHTN cohort under the LoF tag there was significant enrichment of LoF 

variants in the PKD1 gene (P = 2.70 x 10-13, OR=6.10 95%CI 3.82-9.44) compared to 

controls (901 cases versus 20852 controls) (Figure 5-2). There was no enrichment under 

the missense annotation (Figure 5-3).  
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Figure 5-2 Gene based Manhattan for the association of loss-of-function variants between 

the HES-EEHTN cases and controls 

Manhattan plot showing the results of the loss-of-function rare variant analysis, variants had a high 

confidence of being loss-of-function and were either rare (MAF < 0.001) or not seen in gnomAD in the 

HES generated EEHTN cohort, with the red line representing the -log10 of the P value (~2.6 x 10-6). 

There is enrichment (P=2.70 x 10-13) of LoF rare variants in PKD1 affecting the EEHTN phenotype in 

this cohort of 901 cases v 20852 controls. The QQ-plot does not show any inflation. 

 

 

Figure 5-3 Gene based Manhattan for the association of likely damaging variants between 

the HES-EEHTN cases and controls 

Manhattan plot showing the results of the likely damaging rare variant analysis (missense+). Variants 

were rare (MAF<0.001), at least a missense in consequence and had a CADD score of ≥ 20 in the HES 

generated EEHTN cohort, with the red line representing the -log10 of the P value (~2.6 x 10-6). There is 
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no enrichment of any genes in this cohort of 901 cases v 20852 controls. The QQ-plot does not show any 

inflation. 

 

Removing the cases with a renal diagnosis and running the analysis again results in 

abolishment of the PKD1 signal under the LoF tag (Figure 5-4).  

 

 

Figure 5-4 Gene based Manhattan for the association of loss-of-function variants between 

the RR-EEHTN cases and controls 

Manhattan plot showing the results of the loss-of-function rare variant analysis, variants had a high 

confidence of being loss-of-function and were either rare (MAF < 0.001) or not seen in gnomAD in the 

HES generated EEHTN cohort with renal diagnoses removed, with the red line representing the -log10 of 

the P value (~2.6 x 10-6). The previously seen enrichment in PKD1 is lost in this cohort of 449 cases v 

20852 controls. The QQ-plot does not show any inflation. 

 

Rare variant association testing in the primary hypertension cohort did not show any 

enrichment in any tested mask (Figure 5-5) 
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Figure 5-5 Gene based Manhattan plots for rare variant association testing in Primary 

hypertension 

A – Likely damaging (missense+) B – Loss-of-function. There was no significant genome-wide 

association in any gene compared to controls (7923 vs 20695 cases) in either the LoF or missense 

categories of collapsing analysis. The QQ plots did not reveal any genomic inflation.  

 

5.4.3 PKD1 genotype/phenotype analysis 

The PKD1 signal was made up of 27 cases, all heterozygous for their respective 

variants. Of the 27 cases, 22 were recruited under the CyKD tag, 2 with epilepsy. 1 with 

congenital heart disease, 1 with CAKUT and another with unexplained kidney failure in 

young people. 13 out of the 27 patients had been solved by the 100KGP (12 of the 

CyKD and 1 of the CAKUT patients). A full breakdown of the 27 cases can be found in 

table 5-2.  

 

Table 5-2 Demographic and variant details of individuals making up the PKD1 signal 

Patient 

# 

Age  Variant Consequence Solved Consanguinity FH 

1 5-10 16:2092140:G:A Missense No No No 
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2 30-

35 

16:2091153:CGGCGAACAGCA:G Downstream  No No No 

3 30-

35 

16:2114528:C:CG Frameshift Yes 

 

No No 

4 10-

15 

16:2109342:C:CG Frameshift No No No 

5 30-

35 

16:2117794:G:A Stop gain Yes No Yes 

6 10-

15 

16:2108612:G:T Stop gain Yes No Yes 

7 30-

35 

16:2105320:A:G Splice donor Yes No No 

8 30-

35 

16:2135615:GC:G Frameshift No No No 

9 20-

25 

16:2108680:G:A Stop gain No No Yes 

10 5-10 16:2107947:ACGCCAGC:A Frameshift Yes No No 

11 35-

40 

16:2111543:G:GACGC Frameshift Yes No No 

12 50-

55 

16:2111514:TC:T Frameshift Yes No No 

13 45-

50 

16:2108438:CTG:C Frameshift No No Yes 

14 40-

45 

16:2110151:CCT:C Frameshift No No No 

15 35-

40 

16:2114199:C:A Stop gain Yes No Yes 

16 35-

40 

16:2091793:C:T Downstream Yes No No 

17 35-

40 

16:2108680:G:A Stop gain No No Yes 

18 30-

34 

16:2091861:G:T Downstream Yes No Yes 

19 30-

35 

16:2090283:A:G Downstream No No Yes 

20 40-

45 

16:2093886:CG:C Downstream No Yes 

 

Yes 
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21 40-

45 

16:2093824:C:T Downstream Yes No Yes 

22 30-

35 

16:2097765:G:A Stop gain Yes No Yes 

23 30-

35 

16:2090952:G:A Downstream Yes No No 

24 50-

55 

16:2092078:TC:T Downstream No No Yes 

25 35-

40 

16:2092140:G:A Downstream No No No 

26 10-

15 

16:2135611:CG:C Frameshift No No Yes 

27 5-10 16:2090983:G:GCGCA Downstream Partially No Yes 

FH – Family history  

5.4.4 Common variant association testing 

Across all three cohorts (EEHTN, HES-EEHTN, RR-EEHTN) there were no significant 

genome-wide associations in variants with a MAF>0.01. There was no evidence of 

genomic inflation (Figure 5-6).  
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Figure 5-6 Manhattan plot of EEHTN GWAS 

There is no significant association at a variant level in the seqGWAS of all three EEHTN cohorts. A – 

EEHTN (11019220 markers), B - HES-EEHTN (11010124 markers), C – RR-EEHTN (10999561 

markers). There was no evidence of genomic inflation across the ancestry matched cohorts as evidence by 

the associated QQ plots.  

 

5.4.5 Polygenic risk scoring and heritability  

Polygenic risk scoring was performed in the RR-EEHTN, P-HTN and a control cohort. 

There was a significant difference in PRS between the control cohort and the two 

disease cohorts (P<2.2x10-16) but no difference between the two hypertension cohorts 

(Figure 5-7). Liability adjusted R2 (narrow sense heritability, h2) explained 26.48% (SE 

7.02%) and 22.10% (SE 1.35%) of the RR-EEHTN and P-HTN cohorts’ phenotypic 

variance. The AUC of the RR-EETHN model was 0.91 (95% CI 0.90-0.93) and the P-

HTN model was 0.61 (95% CI 0.59-0.63) respectively.  
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Figure 5-7 Violin and boxplot comparing polygenic risk score distribution across HTN 

cohorts 

Violin and boxplot showing the polygenic risk score (PRS) distributions between controls (without 

primary or secondary hypertension), cases EEHTN and cases with primary HTN. The means of the three 

PRS were compared with a Kruskal-Wallis test (p=2.2 x10164) with the signal being driven by the 

difference between unsolved cases and controls. *** = statistical significance, ns = no significant 

difference 

 

5.4.6 Structural analysis 

On a case-control basis looking at rare, exon crossing SVs there was no enrichment in 

any of the EEHTN associated genes. Of note there was a single WNK1 exon spanning 

CNV loss in a case (Chr12:765990-880472), with none seen in controls. This variant 

was not seen in the ClinVar database, however, there was a comparable CNV loss seen 

that was linked to Pseudohypoaldosteronism type II (ClinVar: #5161, Figure 5-8).  
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Figure 5-8  Plot of novel and Clinvar WNK1 deletions  

A plot from the IGV browser demonstrating the similarities between the WNK1 deletion detected in a single EEHTN case (top bar) and a Clinvar deletion (bottom black bar) that has been 

determined as pathogenic with WNK1 along the top. It is likely the 100KGP variant is pathogenic also. 
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5.5 Summary 

• Rare predicted damaging variants in PKD1 are associated genome-wide with 

extreme early onset hypertension. 

• I am underpowered to detect common variant contributions to the phenotype and 

our subsequent analysis confirmed this.  

• Polygenic risk scoring and modelling imply EEHTN may represent a phenotypic 

extreme of primary hypertension.  

• There is no evidence of structural variants playing a genome wide role in any of 

the candidate genes for EEHTN. 
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5.6 Discussion 

5.6.1 EEHTN as a complex polygenic disorder 

These findings replicate those found in the UKBB whereby PKD1 is the top genome 

wide significant gene for causes of secondary hypertension under a rare variant 

collapsing gene model (P=8.16x10-13, OR=116.65 95%CI = 53.38-254.90) (Q. Wang 

et al. 2021). This serves to confirm the workings of this methodology as well as 

underline the complexities of studying a poorly defined phenotype with an uncertain 

underlying genetic architecture.  

 

Whilst CyKD has a strong monogenic architecture, hypertension does not. 95% of 

hypertensive patients have primary hypertension which is a highly heterogenous 

condition with a large amount of environmental influence. Many of the EEHTN cohort 

likely have primary hypertension, given the fact that to be eligible for the 100KGP 

recruitment patients had to have been tested for many of the known secondary causes of 

hypertension (Primary hyperaldosteronism, phaeochromocytoma, Cushing's syndrome 

and hyper/hypothyroidism) implying a relatively thorough work-up. Our findings that 

there is no difference in the hypertension polygenic risk score between the EEHTN and 

primary hypertension cohorts serves to underline this point. It took a huge number of 

cases before any genetic signal became apparent from common variant genome wide 

association studies in hypertension and this is likely due to the heterogenous nature of 

the disease and it’s underlying polygenic architecture as well as environmental factors. 

Many different phenotypes can result in hypertension and thus thousands of cases are 

needed to power studies at a population level, or the cohorts need to be very well 

characterised to allow for cleaner case definitions. In fact, in the same AstraZeneca led 

UK Biobank analysis, PKD1 is the lead gene in the primary hypertension cohort also 

(P=5.23x10-13) followed by the genes PKD2, COL4A4, UMOD, CACNA1D and NR3C2, 

the latter two being known monogenic causes of hypertension (primary aldosteronism 

and Geller syndrome respectively). This highlights that a) renal disease is a key cause of 

hypertension, the first four genes being linked to CyKD, Alport and ADTKD 

respectively, b) many patients with primary hypertension are misclassified and that c) 

age may not be the best metric to identify causes of secondary hypertension as despite 
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the  median age of UKBB participants being 58 there are still secondary causes being 

discovered, finally the UKBB had 149,306 primary hypertension cases against 194,956 

controls highlighting the number of cases required to get tractable genetic signals at a 

population level in a hypertension cohort. Interestingly, the AUC for the EEHTN cohort 

was much higher than the primary hypertension cohort despite a smaller sample size, 

whilst this doesn’t give any information on the effect size it does hint that genetic 

factors have a larger role in younger versus older patients with hypertension.  

 

Heritability estimates for hypertension also serve to highlight that complex phenotyping 

is present. Heritability from the UK Biobank generated and made publicly available by 

the Neale Lab (https://nealelab.github.io/UKBB_ldsc/h2_browser.html) estimate a 

liability adjusted heritability for primary hypertension at around 24%, a finding 

comparable to mine. Even with a small amount of refinement this can be drastically 

altered, “hypertensive renal disease” i.e. one where the hypertension is secondary to a 

renal disease in the UK Biobank has an adjusted heritability estimate of 68%  (Ojavee, 

Kutalik, and Robinson 2022) highlighting the complexities with estimating the 

heritability of what is effectively multiple different diseases.   

 

5.6.2 PKD1 as an early marker of severity in CyKD 

Hypertension is commonly associated with CyKD,  present in 60% of ADPKD patients 

before renal impairment occurs (Ecder and Schrier 2001). In young adults hypertension 

is present in roughly 17%, being associated with increased severity of ADKPD 

including the presence of a PKD1 variant, a family history of early renal replacement 

therapy, lower renal function, larger kidney size and a history of haematuria (Schrier et 

al. 2014; Cornec-Le Gall et al. 2016) . While hypertension in ADPKD is often due to 

kidney enlargement and cyst compression leading to an induction of a high renin state 

in ADPKD (Loghman-Adham et al. 2004), PKD1 is expressed in the major vessels, 

cilia of endothelial cells and vascular smooth muscle cells, meaning that absence or an 

insufficiency of PKD1 expression is linked to vascular structural and functional 

abnormalities via polycystin mediated modulation of vasodilatory pathways including 

nitric oxide (Sharif-Naeini et al. 2009). Knockout mice for both PKD1 and PKD2 reveal 

https://nealelab.github.io/UKBB_ldsc/h2_browser.html
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disturbance in flow mediated vasodilation and an increased blood pressure confirming 

PKDs mechanistic role in hypertension separate to upregulation of the renin-

angiotensin-aldosterone system(RAAS) (MacKay et al. 2022, 2020; Hamzaoui et al. 

2022).  

 

In our cohort, three of the patients with qualifying variants in PKD1 had developed 

hypertension prior to their diagnosis underlying the fact that hypertension can develop 

prior to clinically appreciable disease. A deleterious, likely truncating PKD1 variant 

will lead to larger kidneys and cysts with associated hypertension from the ensuing 

compression and RAAS induction, however, it is also likely that these patients have a 

higher degree of associated endothelial dysfunction.  

5.6.3 Role of WGS in EEHTN 

There has been hope that WGS can replace some elements of the diagnostic odyssey 

that many patients with rare or complex disorders face (Vrijenhoek et al. 2015). In 

secondary hypertension the workup requires multiple blood, urine and imaging tests and 

can occasionally involve invasive adrenal vein sampling (Omura et al. 2004). The 

clinical arm of the 100KGP has yielded a diagnosis in only 1% of cases (2 participants), 

a very low return especially when compared with published panel and WES cohorts of 

between 6.79%-11.2% (Paranjpe et al. 2019; Bao et al. 2020). This is despite the good 

evidence that WGS is superior to WES, even when detecting protein coding variants 

(Belkadi et al. 2015). In the above studies the cohorts were either enriched for likely 

monogenic hypertension or unselected as opposed to the 100KGP cohort which was 

depleted for likely secondary causes of hypertension. Whilst it would be difficult to 

recommend WGS as a key diagnostic step given the current evidence a better study to 

assess this would be to perform WGS and analysis on patients being referred to a 

secondary hypertension clinic and then comparing the diagnostic WGS rates with that 

of a traditional work-up. The results discussed from the UKBB analysis above in 5.6.1 

hint that an unselected population would likely yield better diagnostic rates using WGS. 

This would help more robustly answer the question of the role WGS has in diagnosing 

secondary hypertension.  
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5.7 Strengths and limitations 

This study is the first WGS analysis of an EEHTN cohort and helps define further 

experiments in this area. This analysis helps underline the severity of PKD1 variants in 

causing early onset hypertension, highlights the numbers required to get tractable 

genetic signals in a EEHTN cohort and gives an assessment of WGS for diagnosis. The 

primary limitation as alluded to above is the lack of power in our cohort to detect 

meaningful signal. Whilst it is easy to call for bigger numbers, the proposal to conduct a 

trial of WGS against traditional diagnosis for secondary hypertension would represent a 

way of boosting power by increasing the likely diagnostic yield. Bar the PKD1 signal 

that is found in a predominantly renal cohort we did not find any enrichment at a 

variant, gene, or SV level. Of note the SV analysis focussed on only known genes and 

the next step would be to conduct a genome-wide SV analysis similar to the work in the 

CyKD chapter to assess the genome-wide SV burden in CyKD.  

5.8 Conclusion 

Rare variants in PKD1 were significantly associated with the EEHTN phenotype, 

predominately made up of patients with CyKD. The lack of signal in other analytical 

methods was hampered by small sample size as evidenced by the presence of signal in 

larger biobanks using similar methodology. WGS when used in a subset of EEHTN 

patients who have been assessed in a specialised clinic does not seem to yield adequate 

diagnostic rates, the patients who remain are likely to have primary hypertension as 

ascertained by polygenic risk scoring.  
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Chapter 6. Discussion 

The primary objective of this thesis was to better characterize several renal disorders 

using the largest WGS biobank of rare renal diseases to date with the aim of providing 

insights into their pathogenesis and underlying genetic architecture. It is the first time 

the non-coding and coding variations across the entire allele frequency spectrum has 

been studied in an unbiased manner across all three diseases. The results of this work 

have been discussed in detail in previous chapters and the  

key findings are summarised below: 

 

• In CyKD monogenic architecture prevails at a coding, non-coding, and 

structural variant level with rare monogenic causes from all three cohorts 

explaining disease in the bulk of the cohort. 

• The largest meta-analysis of common variants to date does not reveal any 

significant associations in CyKD, however, enrichment of rare alleles in the 

Finnish population help confirm our findings in the 100KGP that monoallelic 

PKHD1 variants make an important contribution to CyKD.  

• Variants with a MAF >0.1% make a roughly 9% contribution to the heritability 

of CyKD and common variants from those patients with unsolved CyKD make a 

roughly 9% contribution to the heritability of those patients with solved CyKD. 

There is some evidence that these variants are protective. This highlights the 

role more common variants have even in very monogenic disease. 

• Rare SLC34A3 variants of moderate effect size account for a large proportion of 

the missing heritability of USD.  

• In EEHTN, larger cohorts are required to obtain tractable genetic signals within 

the rare variant space, however, rare, damaging PKD1 variants are an important 

cause of secondary hypertension. 

• The primary hypertension and EEHTN cohorts have similar genetic architecture 

as evidenced by overlap in their PRS.  

 

Going into this thesis, I saw it as a series of siloed experiments on the “rare” and 

“common” variant space. However, as my work evolved over time and my 
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understanding of the resources and techniques improved, I realised that such a 

viewpoint has mainly been fostered by our inability to interrogate the full allelic 

spectrum at once. I have been able to probe the area of low frequency variants with 

small to intermediate effect size as well as assess the polygenic contribution within 

three diseases, using modelling to understand their interplay to genetic architecture.  

 

As discussed in Section 1.2, genetic architecture has historically been thought of as 

either monogenic, oligogenic or polygenic with the more recent addition of the 

omnigenic model. CyKD and secondary hypertension are seen as monogenic whilst 

USD is seen as polygenic. However, what is common between all of them in this thesis 

is that as cohort sizes have increased and sequencing coverage has improved genetic 

contributions across the allele spectrum and variant types, have been shown to 

contribute to their respective phenotypes. I will discuss insights into genetic architecture 

for all three diseases below: 

6.1 The genetic architecture of Cystic kidney disease 

CyKD is a very monogenic disease. 994 of the 1209 (82%) tested cystic kidney disease 

cases had a likely explaining monogenic or single structural variants cause for their 

disease identified in an unbiased way. The known causative genes all have tractable 

pathophysiology in or along the polycystin pathway and there is a clear precedent to 

view the disease as such. However, intrafamilial variability and general phenotypic 

variability amongst patients with the same class of variants hint at other factors 

involved such as epistasis or gene/environment interactions.  

 

Historically, this has focused on an oligogenic model with studies looking for a small 

number of rare of modest frequency variants of moderate to large effect in modifier 

genes (Fain et al. 2005; A. Persu et al. 2002; D. Walker et al. 2003; Y.-H. Hwang et al. 

2016). Such studies have largely failed to find convincing oligogenic markers, although 

patients with a second hypomorphic PKD1 variant alongside their driving variant do 

have a phenotype more akin to ARPKD (Durkie et al. 2021) and the TSC2 gene 

disruptions encompassing PKD1 (and IFT140, which lies between the two) lead to a 

more severe phenotype (Sampson et al. 1997).  
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A polygenic model of CyKD has not been seriously examined prior to the publication of 

two papers referenced in section 3.4.6 (Blair, Hoffmann, and Shieh 2022; Khan et al. 

2023). My work has shown a ~9% contribution of common and low-frequency variants 

to the phenotypic variance of CyKD as well as variants in patients without monogenic 

CyKD contributing roughly 9% heritability to those with a monogenic cause of CyKD. 

Clearly this work needs to be validated in another cohort but taken together, gives 

strong evidence that polygenic architecture has an important role in a predominantly 

monogenic disease. A model where common and low-frequency variants alter the 

penetrance or rarer pathogenic alleles could explain the variability seen in the CyKD 

phenotypes. This is increasingly being recognised as a model in disorders such as 

hypercholesterolaemia, neurodevelopmental disorders and inherited cancer syndromes 

(Paquette et al. 2017; Niemi et al. 2018; Oetjens et al. 2019; Fahed et al. 2020; Mars et 

al. 2020; Weiner et al. 2023). The gold standard experiment would be to take families 

with a known monogenic cause of CyKD but with phenotypic variability to analyse 

further.  

 

The omnigenic model stipulates that a small number of core genes with biologically 

interpretable effects interact with a larger set of peripheral genes with the effects 

between the two systems being mediated by connected intracellular networks (Boyle, 

Li, and Pritchard 2017). Here the boundary between polygenic and omnigenic becomes 

blurred. The finding that common and low frequency variations contributes to the 

phenotypic variance of CyKD supports this theory. Work by Gazal et al found coding 

variants explain a much larger fraction of heritability for low-frequency variants (~26%) 

compared to common variants (~8%), due to the effects of negative selection preventing 

deleterious variants from becoming common (Gazal et al. 2018). In CyKD this is 

supported by the idea that well-described “core gene” such as PKD1, PKD2 etc  explain 

a large proportion of the disease risk but many other more common variants with non-

zero effects modify these networks. The word modify is key here, as my PRS work 

shows a protective effect of common variants. However, whether identifying the large 

number of variants with small effects sizes will lead to translatable insights into 

underlying biology remains to be seen.  
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Finally, the role that more newly discovered genes have in elucidating genetic 

architecture needs to be understood. Their odds ratios for causing CyKD are nowhere 

near those of PKD1/PKD2, yet their presentation is of a monogenic cause of CyKD 

potentially due to somatic second hits. Table 6-1 represents the odds ratio of developing 

CyKD in different genes across both the 100KGP and the UK Biobank (odds ratios 

taken from the AstraZeneca analysis using the model closest to my analysis with the 

100KGP, the odds ratios are adjusted for those cases that were between 40-70 years old 

at recruitment to match the UKBB criteria), highlighting that some of the newer genes  

reported in CyKD are likely to have such a low penetrance that they may seldom exhibit 

Mendelian patterns of inheritance in families and may be more usefully be regarded 

clinically as intermediate risk factors for developing CyKD. Communicating this 

information clearly to patients and their relatives is likely to be important when 

counselling them about the pros and cons of predictive testing for these disorders. 

 

Table 6-1 Age adjusted odds ratio of developing CyKD in the 100KGP (n=741) and UKBB 

(n=825) 

Gene 100KGP OR (95%CI) UKBB OR (95%CI) 

PKD1 truncating 264 (218-329) 658 (451-959) 

PKD1 non-truncating 7.90 (6.84 -9.10) 8.97(7.44-10.82) 

PKD2 truncating 931 (525-1600) 1310 (697-2460) 

PKD2 non-truncating 13.36 (9.91-17.91) 12.92 (9.61-17.36) 

GANAB non-truncating 1.63 (0.79-3.02)** Not seen 

GANAB truncating 5.40 (0.11-54.56)** Not seen 

DNAJB11 truncating 1.07 (0.94-1.24) 30.05 (7.12-126.57)** 

IFT140 truncating 12.21 (5.85-24.50) 14.99(9.92-22.66) 

ALG5 truncating 1.00 (0.12-3.77)** Not seen 

ALG9 truncating 7.20 (0.71-40.35)** 22.03 (9.66-50.23)** 

COL4A3 non-truncating 2.72 (1.71-4.15) Not seen 

Monoallelic PKHD1 truncating 3.23 (1.36-6.56) 2.13 (1.01-4.50)** 

** - Gene not significantly associated with the CyKD phenotype in the association analysis. The 100KGP 

results are presented for those individuals who were between 40-70 years old at the time of recruitment to 

match the UKBB recruitment analysis. 
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Whilst this may hold true, the potential for them to be a modifier alongside other 

unascertained genetic or environmental factors remains to be investigated.  

6.2 The genetic architecture of urinary stone disease 

USD has equally been divided into those with monogenic disorders (Halbritter et al. 

2015) and then at a population level, the common variants risk loci derived from 

GWAS (Howles et al. 2019). Our study, alongside a few more published around the 

same time (Benjamin B. Sun et al. 2022) have interrogated the space between these two 

groups and convincingly shown that low-frequency variants of intermediate effect size  

such as in SLC34A3 and SLC34A1 increase the risk of USD combined with a 

combination of polygenic risk and known environmental factors such as obesity and 

smoking. With a much smaller proportion of case USD cases explained by monogenic 

causes, as opposed to CyKD, the likelihood of an omnigenic model seems much more 

plausible. 

6.3 The genetic architecture of Early onset hypertension  

Hypertension for clinical reasons has been divided into primary and secondary causes. 

My work has shown an interplay between those labelled as likely to have secondary 

hypertension and those with primary hypertension, with the caveat being that our cohort 

was depleted for solved secondary causes prior to recruitment. GWAS of primary 

hypertension have uncovered >1000 loci throughout the genome associated with the 

phenotype (Padmanabhan and Dominiczak 2021). This fits the omnigenic model of 

disease, whereby whilst the variants with the largest effect are fairly enriched in related 

genes and pathways that are related to the pathogenesis of the disease, variants 

contributing the most to the heritability of a trait are found across the genome (Boyle, 

Li, and Pritchard 2017). Interestingly, in the AstraZeneca rare variant gene based 

PheWAS for essential hypertension, rare variation was linked to primary hypertension 

in seven previously linked genes from GWAS (CACNA1D, NR3C2, NOS3, DNMT3A, 

ENPEP, GUCY1A1, and UMOD) (Zöller et al. 2023) highlighting the link between 

common and rare variants. My findings that those patients with early onset 

hypertension, without a renal cause, have a shared polygenic risk with a primary 
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hypertension cohort highlights that multiple factors must be at play. Whilst lifestyle and 

environmental factors pay a huge part in the pathogenesis of hypertension, it is clear 

that multiple genetic associations also play a role, cementing the likely “omnigenic” 

architecture of EEHTN.  

6.4 Impact and implications 

From an immediate clinical perspective, many of the variants in CyKD, USD and one in 

EEHTN are in patients who are unsolved by the clinical arm of the 100KGP. These are 

in the process of being fed back to the relevant patient’s clinicians with a view to 

potentially offering them a molecular diagnosis. More generally these results will be of 

interest to researchers in nephrogenetics as well as clinicians involved in rare renal 

disease. I hope that these results will be hypothesis forming for both in silico and 

functional analyses. For the wider genomics community, I have used a mixed ancestry 

in nearly all of my analyses without major genomic confounding. This demonstrates the 

scientific advantages to including a wider cohort for genomic analysis and normalises 

the representation of individuals from diverse ancestral background. At the start of my 

thesis, I was only using Europeans for my analyses, which as a researcher not of 

European ancestry, was odd to me. I am pleased that our group has developed methods 

to improve representation in rare disease analyses.  

 

Finally, attempting to marry the common and rare variants domains via the analysis of 

low frequency variants in rare disease has great implications for the future of rare 

disease genomics. As rare disease cohorts become larger and sequencing improves, we 

really are at an exciting time to tease out the “missing heritability” of diseases. This will 

help guide understanding of biology and more importantly offer new avenues for 

therapeutics for a series of diseases that really lack personalised approaches.  

6.5 Future directions 

This thesis has generated reams of data that I have attempted to unpack, however, future 

work and collaboration is required to unpick many of the hypotheses generated. Some 

of the key questions and their potential approaches are discussed below: 
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• How does the polygenic risk of CyKD influence the final phenotype? What is 

the mechanism by which this occurs? 

• What are the mechanisms by which monoallelic COL4A3, PKHD1 and IFT140 

variants cause CyKD?  

• Why is there such a disparity in the size of likely disease-causing structural 

variants between PKD1 and PKD2?  

• Are there other undiscovered genes that cause CyKD?  

• In USD, what is the mechanism for SLC34A3’s contribution to the disease.  

• What are the other genes that increase the risk of USD? 

• In hypertension, could WGS be used as an adjunct to traditional screening in 

secondary hypertension? 

 

To answer these questions a combination of in silico, in vitro and in vivo approaches 

will be needed. It is beyond the scope of this thesis to give a detailed description of all 

of the functional assays across the three diseases that could be of use, and I will focus 

primarily on bioinformatic approaches to further this work.  

 

With the inclusion of CyKD to the NHS Genomics Medicine directory, I will soon have 

access to an even larger dataset of CyKD patient with WGS data (at least another 1300 

cases have been added since I completed my analysis). This will tease out the question 

of whether rare and structural variants in as yet undetected genes are involved in CyKD 

and allow for more powerful common variant analysis. I am also confident that with 

larger numbers, the time-to-event GWAS analysis, especially when stratified by the 

driving variant, will yield useful findings to understand inter-patient variability in 

phenotype. Whilst USD and EEHTN are not part of the WGS NHS programme, recent 

advances in methodology that allow for meta-analysis of rare variant studies look very 

promising to increase power in these cohorts to further uncover genetic loci within the 

rare to low frequency allelic frequency (X. Li et al. 2023).  

 

The availability of large-scale proteomic datasets, particularly via the UK Biobanks will 

also enable me to look for biomarkers or protein signatures that could account for 



Discussion 

202 

 

phenotype severity across all three diseases using protein quantitative trait loci analysis 

(B. B. Sun et al. 2022; Gadd et al. 2023).  

 

6.6 Lessons Learnt 

Working with the 100KGP dataset has at times been challenging. Having worked with 

the project since its inception the resource has been constantly evolving. At the 

beginning the WGS data was unfiltered and analysis at scale was challenging, 

particularly as I my bioinformatic skills were still nascent. SAIGE and SAIGE-GENE 

were published and established as tools during my PhD and my initial attempts to 

perform analyses was based on PLINK for GWAS and RVTESTS for rare variant 

analyses, both of which suffered greatly from high type I error rate with large case-

control imbalances (as found in biobanks). Over time, with my growing abilities, help 

from online bioinformatics communities (I am now a moderator on stackoverflow!) and 

the 100KGP bioinformaticians the data became cleaner and easier to use and the latest 

cutting-edge tools were made available.  

 

If I were to begin this project again I would: 

1. Use the latest set based rare variant association testing tools such as SAIGE-

GENE+ (W. Zhou et al. 2022) which greatly improves type I error rates.  

2. Perform joint SNV-SV analysis to examine the burden of these variants across 

the exome, particularly in CyKD. 

3. Use a tool such as parliment2 (Zarate et al. 2020) to call SVs with multiple 

callers to ensure better call accuracy for variants. 

4. Version control my code using tools such as GitHub or Jupiter notebooks.  

5. Perform combined rare and common variants meta-analysis with other 

largescale biobanks to improve power.  
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6.7 Conclusion 

In this thesis, I have used WGS to investigate the genetic architecture of three renal 

disorders at an unprecedented level using well matched controls. I have demonstrated 

that variants across the allelic spectrum play a role in all three disorders including novel 

associations in CyKD and USD. I have shown that WGS is a useful tool beyond 

monogenic gene discovery and that inclusion of individuals from diverse ancestral 

backgrounds is possible and adds power to disease loci.  

 

Taken together these should prompt us to rethink what  “Mendelian” disorders are. 

Whilst some diseases tend towards the monogenic and other the polygenic, the more our 

ability to analyse the genetics of a condition improve, the more we find the definition of 

“monogenic” blurs. As technology and biobanks improve, I am confident these 

paradigms will be challenged even further.  
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