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Abstract 

Vigorous development of solar photovoltaic energy (PV) is one of the key components 

to achieve China’s “30•60 Dual-Carbon Target”. In this study, by utilizing the outputs 

generated by CMIP6 models under different shared socioeconomic pathways (SSPs) 

and a physical PV model (GSEE), future changes in PV power generation across 

China are provided for the outlined carbon neutralization period (2051 to 2070). The 

results reveal distinct spatiotemporal characteristics in the changes in PV output 

across China. Overall, compared to the historical period, annual PV power generation 

is projected to decrease in northern regions and Tibet Plateau with a maximum 

decrease of ~ 4% under the high emission scenario (SSP585), while southern and 

central regions exhibit significant increases. Remarkably, under the green 

development pathway (SSP126), PV power generation is expected to rise by over 10% 

in these regions. The magnitude of decrease in the north and increase in the south is 

projected to become more pronounced with the continuous increase of future carbon 

emissions. It is anticipated that the three northern regions of China will experience 

greater decreases in PV power generation in winter compared to other seasons, 

especially under SSP585. Additionally, the southeast region shows the smallest 

increase in summer PV generation out of all seasons. Moreover, under SSP126 

trajectory, most regions in China exhibit reduced inter-annual and intra-annual 

variability in PV generation compared to the historical levels. This suggests that 

pursuing a sustainable path could substantially mitigate potential risks associated with 

PV generation fluctuations in China. 
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Research highlights: 

⚫ A weighted CMIP6 ensemble was used to estimate the PV generation changes 

over China 

⚫ The northern and Tibet regions are projected to decrease in annual PV generation 

⚫ Annual PV output will increase in southern and central regions 

⚫ China’s PV generation shows smaller inter- and intra-annual variability under 

SSP126 
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Abbreviations:  

CMIP5/6: Coupled Model Intercomparison Project, Phase 5/6 

CN05: China grid daily dataset 

CRMSE: centralized root mean squared error 

ECMWF: European Center for Medium-Range Weather Forecasts 

ERA5: the fifth generation ECMWF atmospheric reanalysis 

GCM: Global climate model 

GSEE: Global Solar Energy Estimator 

IVS: Inter-annual variability skill score 

MME: multi-model ensemble mean  

NEA: China’s National Energy Administration  

PCC: Pearson correlation coefficient 

PV: photovoltaic 

RSDS: surface downwelling shortwave radiation 

RSTD: ratio of standard deviations 

SSPs: Shared Socioeconomic Pathways 

TAS: near-surface air ambient temperature 

TS: Taylor skill score  



1. Introduction 

 

The Paris Agreement in 2015 set a global warming target of limiting global warming to 

well below 2°C, preferably to 1.5°C, relative to pre-industrial levels [1]. Theoretically, 

to limit global warming to 1.5 °C at a 50% likelihood, global cumulative anthropogenic 

CO2 emissions should remain within a global carbon budget of around 580 Gt relative 

to 2010 level [2]. Achieving this ambitious target requires all participating countries to 

substantially enhance their emissions reduction willingness and efforts, peak their 

emissions as soon as feasible, and realize net-zero CO2 emissions by the mid-21st 

century [2, 3]. As the largest developing country and one of the top carbon emitters, 

China’s pledge in 2020 to peak emissions before 2030 and achieve carbon neutrality 

before 2060 (the “30•60 Dual-Carbon Target” ), demonstrates its willingness to take 

greater action on climate change and contribute to the Paris Agreement goals [4].  

 

Renewable energy is a cornerstone in the reduction of CO2 emissions and consequent 

mitigation of changes in the global climatic system [5, 6]. Among various renewable 

energy sources, solar power generation plays a vital role in climate change mitigation 

options. Recent advances in solar technologies have made it the most cost-effective 

option for new electricity generation worldwide, which is expected to propel investment 

in the coming decades [7]. As the third largest renewable electricity technology after 

hydropower and wind, photovoltaic (PV) power saw remarkable growth in 2021, with a 

record increase of 179 TWh, making a 22% growth compared to the previous year [7].  

 

China has emerged as a leading player in the global solar PV market. According to 

China’s National Energy Administration (NEA), the country added 54.88 GW of solar 

PV capacity in 2021 comprising approximately 29.28 GW of distributed generation and 

25.60 GW of centralized solar PV. Overall, China’s market increased 21.5% in 2021 to 

reach  305.99 GW of cumulative capacity, with 35% from distributed generation and 

65% from centralized plants [8]. In line with China’s 14th Five-Year Plan for renewable 

energy released in 2022, the country shares its vision that an ambitious target of 33% 



of electricity generation will come from renewables by 2025, including an 18% target 

for wind and solar technologies [7]. Therefore, a good knowledge of solar energy 

resources not only at present but also in the future is essential, in other words, a 

comprehensive and accurate estimation of where and how much PV power generation 

potential in China is crucial, and it can provide the scientific basis for the country’s 

planning, energy policy formulation, and PV industry development in the future [9]. 

Meanwhile, policymakers need to consider the potential impact of climate change and 

possible development pathway options on PV output. Particularly in the current age, 

China is facing greater internal and external challenges than before, energy structure 

transformation, external geopolitical conflicts - understanding these factors is crucial 

for China's informed decision-making and sustainable development. 

 

Apart from governmental policies, solar energy output is highly sensitive to climate 

change, due to hypothetical changes in the future atmospheric flow patterns, and even 

minor alterations in atmospheric conditions can have a significant impact on the power 

output [5, 10]. The relevant climate conditions for the productivity of solar power plants, 

such as solar radiation, ambient temperature, wind, snow and even the deposition of 

dust on the PV panels, are also subject to fluctuations resulting from changes in the 

frequency of weather and climate extremes under the context of climate change [11]. 

Of these factors, solar radiation availability, influenced by the scattering and absorption 

via clouds and aerosol concentration, is the most direct determinant of PV output [12]. 

Thus, reliable simulation data for solar radiation is the foundation for further PV power 

generation. However, obtaining observed irradiation data is often challenging due to 

high costs, maintenance and calibration requirements, and limited monitoring stations, 

especially in developing countries. These are not as readily available for observed 

irradiation stations as other common meteorological stations, i.e., temperature and 

precipitation [13-15]. Instead, empirical [14, 16, 17], physical [18, 19] and artificial 

intelligence models [13] are commonly employed to simulate and forecast the solar 

radiation amount and characteristics. Enormous studies indicated that artificial 

intelligence models, i.e., artificial neural networks, are promising for solar radiation 



prediction [20-22]. 

 

To assess future changes in solar irradiance and relevant meteorological quantities for 

PV power production, comprehensive numerical models of the climate system are 

utilized [11]. Global climate models (GCM) have become the primary tools to 

investigate climate change, especially after the Coupled Model Intercomparison 

Project (CMIP) came into operation [23]. They can provide valuable insights into 

historical PV resource availability and projected future changes under various 

scenarios [10]. For instance, Wild, Folini [11] used a CMIP5 dataset to analyze the 

potential changes in surface temperature and solar radiation worldwide. They 

examined how these climate factors may affect solar power output from PV systems. 

However, they only utilized a fairly simplistic transformation method of solar power 

production, which considered on characteristics of the cell material, insolation and 

ambient air temperature. Zou, Wang [24] investigated the spatial distribution and long-

term variation in historical surface solar radiation and future PV power output based 

on the CMIP5 models. They found that global dimming and brightening were observed 

before and after the 1990s and anthropogenic aerosols and cloudiness could be the 

main causes. The global potential photovoltaic power outputs were estimated in future 

scenarios using an empirical model that considered the photovoltaic cell’s electrical 

efficiency and global solar radiation. Dutta, Chanda [12] explored the impact of climate 

change on global solar energy potential based on the monthly surface downwelling 

shortwave, temperature and wind speed from 5 CMIP6 GCM models. The results 

revealed substantial spatial variations in the projected PV changes across the world. 

For the computation of PV potential or concentrated solar power, the physical 

transformation process from climate factors to power output is simplified with empirical 

formulas. In China, Ji, Wu [25] used a GIS-based multiple-criteria decision-making 

approach, associated with the temperature and solar radiation from a regional climate 

model, to evaluate the potential PV capacity and generation in the future. Zhao, Huang 

[26] investigated the future PV-energy potential over China by downscaling output from 

3 CMIP5 GCMs using the stepwise clustering analysis method. They concluded that 



the PV changes in China were primarily contributed to the total radiation and sunshine 

duration. 

 

To sum up, previous studies have utilized GCMs to analyze PV-related climatic 

simulations and projections globally, with a focus on radiation. However, few 

comprehensive studies on the PV power output in China have been conducted. In 

addition, a limited number of studies have incorporated the state-of-the-art CMIP6 

models with updated Shared Socioeconomic Pathways (SSPs) scenarios for PV 

projections. Methodologically, empirical formulas and statistical methods (i.e., AI 

algorithm) are commonly employed to simulate PV output. Nonetheless, these 

methods irrespective of physical mechanism merely can be used to make a rough 

estimation for the impact of the projected changes in meteorological factors on solar 

power production. Moreover, they assume that the irradiance data in models is used 

for the horizontal plane, disregarding potential changes in irradiance when PV modules 

are mounted on tilted panels. Here, a model (GSEE) that incorporates physical 

mechanisms is employed to investigate the forthcoming variations in PV power 

generation in China. The GSEE is tailored to deliver a highly accurate simulation of 

real-world PV power generation, incorporating an array of physical mechanisms, 

encompassing meteorological conditions, PV panel specifications, and the intricate 

processes of physical transformation. The objective of this study is to assess and 

quantify the implications of the latest CMIP6 future climate projections on PV power 

generation in China, and address how PV power generation will evolve in China’s 

carbon neutralization period under different socioeconomic pathways. The ultimate 

goal is to provide valuable insights to support the planning of China's renewable energy 

development and the formulation of carbon-neutral policies. 

 

The research framework consists of three primary components, as depicted in Figure 

1. First, key meteorological factors, namely downwelling shortwave radiation (RSDS) 

and near-surface air temperature (TAS) at a height of 2 meters, are validated 

historically using various spatiotemporal evaluation methods. In this step, the 



performance of 14 CMIP6 Global Climate Models (GCMs) is assessed by comparing 

their outputs with observation data. The weight of each individual model is calculated 

based on model performance. The second step involves configuring and conducting 

experiments using a PV power generation model, known as GSEE. This model is used 

to simulate and analyze the characteristics of PV power generation under different 

climate emission scenarios. Finally, based on the driving data obtained from the 

previous steps and utilizing the GSEE PV model, future projections of changes in PV 

power generation across China are generated. These projections are examined and 

analyzed at multiple spatiotemporal scales. Ultimately, study findings are synthesized 

to offer a comprehensive discussion and decision support for national carbon neutrality 

policymaking. 

======================= 

Place Figure 1 here 

======================= 

2. Data and methods 

2.1 CMIP6 outputs and observations 

 

The RSDS and TAS from 14 different CMIP6 GCM outputs are used in this study (see 

Table S1 in the supplementary materials). The CMIP6 climate models are driven by a 

new set of emissions scenarios based on different socioeconomic assumptions, called 

Shared Socio-economic Pathways (SSPs). Three development scenarios are 

considered for China, corresponding to the SSPs: SSP1-2.6 (SSP126) is a 

sustainability scenario with a low forcing level of 2.6 W/m2 by 2100, in other words, 

under this scenario, China will take a green development road and has the lowest 

challenges to mitigation and adaptation on climate change. SSP2-4.5 (SSP245) 

represents a central pathway in which the trends of development in China continue its 

historical patterns with a moderate anthropogenic radiative forcing level of 4.5 W/m2 

by 2100. The third pathway is the SSP5-8.5 (SSP585), which represents a fossil-fueled 

development scenario and the highest radiative forcing level in the future, suggesting 

that China will take a pathway with energy-intensive and fossil-based economies with 



higher challenges to mitigation for climate change [12, 27]. In short, SSP126, SSP245 

and SSP585 are used in this work to represent the “best”, “moderate” and “worst” 

scenarios of development in China.  

 

To assess the reliability of the CMIP6 datasets, the gridded daily temperature with 0.25° 

spatial resolution over China is extracted from the CN05.1 dataset (hereinafter referred 

to as CN05). It was developed by the China Meteorological Administration (CMA) and 

is constructed based on the “anomaly approach” interpolation, with observations from 

2,416 meteorological stations through quality control procedures and homogenization 

[23, 28]. In addition, developed by the European Center for Medium-Range Weather 

Forecasts (ECMWF), the ERA5 dataset provides a gridded surface downwelling solar 

radiation of 0.25° spatial resolution as the reference data to validate the simulated 

radiation abilities of the CMIP6 GCMs in China. As the different model outputs are 

available at different spatial resolutions, all GCM models are regridded to a common 

resolution of 0.25° using a bilinear interpolation method. 

 

China is divided into 6 subregions on the basis of different climatic characteristics 

(Figure S1 and Table S2). The time span of 1995-2014 serves as the historical or 

baseline period for CMIP6 model validation against observations. The changes in PV 

generation output will be projected from 2051 to 2070. This 20-year period is defined 

as the carbon neutralization period and is determined with an extension from 9 years 

prior to and 10 years after the timing of China’s carbon neutralization target (2060). 

 

2.2 PV power generation model 

 

To simulate the PV electricity output in China, a numerical simulation model based on 

a physical mechanism is used, called the Global Solar Energy Estimator (GSEE) [29]. 

Required inputs are total horizontal solar irradiance (RSDS in CMIP6), the fraction of 

diffuse irradiance and ambient temperature (TAS in CMIP6). The fraction of diffuse 

irradiance can be calculated with the Boland–Ridley–Lauret model (BRL) module in 



GSEE [30]. The temporal resolution of input data is flexible for GSEE. Various climate 

data with annual, seasonal, monthly, daily and hourly temporal resolution are 

supported in the model package. Besides, several panel-specific parameters, such as 

tilt and azimuth angles, installed panel capacity, panel tracking mode, system losses, 

etc., are input variables to calculate the PV power output [31]. The calculation 

procedure of this model is as follows: 

 

First, irradiance on the plane of the PV panel is calculated. When a fixed azimuth angle 

and tilt angle are specified, the plane incidence angle is defined:  

1cos (sin( ) cos( ) cos( ) sin( ) cos( ))p sh t h t a a −=  +  + −               (1) 

where h is the sun altitude, t is the panel tilt, pa and sa are the panel azimuth and sun 

azimuth angle, respectively. Here, the panel tilt is given as a latitude-dependent 

function instead of a static value: 

 0.35396 lat 16.84775t =  +                                         (2) 

where lat is the latitude of the grid point. 

The total irradiance ( ,tot pI ) of the panel, including the direct and diffuse plane irradiance 

( ,dir pI and ,dif pI ) can then be computed from the total horizontal irradiance ( ,tot hI ) by 
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where A is the surface albedo (default value 0.3).  

In addition to solar irradiance, temperature on the panel ( pT ) also affects the PV power 

output, and pT can be roughly estimated from the ambient temperature ( aT ) and total 

irradiance on the panel in the following way: 

,p a T tot pT T c I= +                                                    (6) 



Where
Tc  represents how much the PV module is heated by solar radiation. This 

coefficient depends on the chosen panel material. Here, the empirical value 

(0.035 °CW-1 m−2) is set for the crystalline silicon (c-Si) of panel, since it is the most 

prevailing semiconducting material used for PV systems [19]. 

 

Then, the PV power output (
outP  ) is calculated from total irradiance and panel 

temperature: 

,
( ', ')

tot p

out s

s

I
P P I T

I
=                                              (7) 

Where sP is the PV output at standard test conditions of sI = 1000 W/m2 and sT = 25 °C. 

The instantaneous relative efficiency ( ) is calculated by a non-linear fitting function, 

depending on the chosen panel technology, and the empirical values for crystalline 

silicon (c-Si) are suggested by Huld, Gottschalg [32]. 'I  and 'T   are normalized 

parameters of panel total irradiance and temperature, which are defined as follows:

,' /tot p sI I I= and ' /p sT T T= . 

 

2.3 Model Evaluation Metrics 

 

(1) Taylor diagram 

In this study, a Taylor diagram [33] is used to assess how well the patterns between 

simulations and references. The diagram provides a graphical representation of three 

evaluation metrics. The azimuth angle reflects the Pearson correlation coefficient (PCC) 

of the spatial patterns. The radial distance from the origin represents the ratio of 

standard deviations (RSTD) and the distance from the simulation results to the 

reference is the centralized root mean squared error (CRMSE). Generally, in a Taylor 

diagram, if the PCC and RSTD are close to 1 and the CRMSE is close to the reference, 

the corresponding GCMs are considered with good simulation abilities [27]. Moreover, 

to analyze comprehensively these evaluation metrics from Taylor diagram, the Taylor 



skill score is employed: 
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whereTS is the Taylor skill score, PCC is the pattern correlation between the models 

and the observation, RSTD  is the ratio of spatial standard deviation in the models 

against that of the observation. 'PCC is the maximum correlation coefficient attainable 

(here is 0.999). The score equals 1 for a perfect match between the model and 

observation, and 0 for an inverse model performance [34]. 

 

(2) inter-annual variability skill score (IVS) 

It is important to evaluate the performance of models in simulating temporal variation 

of observation. Here, the IVS score described by Jiang, Li [35] is used to quantify the 

similarity of inter-annual variability between modeled and observed variables, defined 

as follows: 
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where gSTD and
oSTD denote the inter-annual standard deviation of GCM simulations 

and observations, respectively. Smaller IVS values represent a better agreement on 

inter-annual variability between the simulations and observations. 

 

(3) Weight calculation 

Due to the uncertainty of a single GCM, a multi-model ensemble mean is often used 

to reduce the uncertainties in climate projections. However, using the simple equal-

weighted averaging method could cause one problem, that is, the highly skillful models 

can be underestimated while relatively poor models are overestimated to some extent. 

Thus, a weighted method [36] instead of the traditional arithmetical average  is defined  

as follows: 
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Where
iS  denotes the ranking position (including Taylor and IVS scores) among all 

models for an individual model i;
iR  can be considered the combined performance 

indicator of each model;
iW is the weight of each model; N is the number of models. 

 

3. Results 

3.1 Validation of CMIP6 models 

 

The surface downwelling shortwave radiation (RSDS) and near-surface air 

temperature (TAS) are the most key meteorological factors for projecting PV output, 

as direct input parameters to the GSEE numerical simulation model. There are 

discrepancies between CMIP6 models in simulating the RSDS and TAS over China. 

Thus, their simulation abilities are evaluated in reproducing the spatiotemporal 

characteristics observed in the EAR5 and CN05 datasets. Then the rank and weight 

of individual models are calculated based on the comprehensive analysis of the impact 

degree for all models. This approach allows us to evaluate and compare the simulation 

abilities of CMIP6 models in simulating RSDS and TAS over China, providing valuable 

insights into their reliability and suitability for PV power output projections. 

 

The differences in annual mean RSDS and TAS spatial fields between CMIP6 multi-

model ensemble mean and observations (ERA5 and CN05) in the historical period are 

shown in Figure 2. In general, there is good agreement in spatial distribution between 

the simulation and observational data sets. For RSDS, the highest radiation occurs 

over western China, especially in the west of the Tibetan Plateau, while the lowest 



radiation is observed over eastern China. In terms of TAS, the warm center is situated 

in the southeast of China, while the northeast and Tibet have lower temperature 

relative to other areas in China. However, there are some biases in local regions. The 

biases of RSDS in most regions of China are kept at 20 W/m2 except for the 

overestimation in some southern provinces, such as Guizhou and Guangxi. 

Additionally, although the CMIP6 ensemble mean can reproduce the spatial distribution 

of annual mean temperature reasonably, particularly in eastern China with the bias of 

~1°C, these models tend to underestimate the temperature magnitude in the west. 

Notably, there are very large negative biases in the western edge of the Tibetan 

Plateau and Xinjiang. 

======================= 

Place Figure 2 here 

======================= 

Figure 3 shows the quantified assessment results in the Taylor diagram. Overall, the 

performance in simulating the TAS from GCM models is better than the RSDS. The 

correlation coefficient in the spatial pattern of TAS exceeds 0.9 for all models and is 

above 0.95 (i.e., CanESM5, CESM2-WACCM, MRI-ESM2-0 and NorESM2-MM). Most 

models have a higher RSTD value, ranging from 0.5 to 0.75. In contrast to temperature, 

CMIP6 models derived from the RSDS show more scattered in the Taylor diagram, 

indicating there are more uncertainties in simulating the historical surface downwelling 

shortwave radiation. When compared with ERA5, the BCC-CSM2-MR and IPSL-

CM6A-LR are found to be the least correlation among the 14 models. The remaining 

models in the CMIP6 family have a correlation ranging between 0.8 and 0.95. 

======================= 

Place Figures 3-4 here 

======================= 

To provide a concise summary of the simulation skill in each CMIP6 model with respect 

to the spatial pattern, these assessment indices (i.e., PCC, RSTD and CRSME) from 

the Taylor diagram are calculated as the Taylor skill score (Figure 4). As described, 

relative to the RSDS, the CMIP6 models tend to show superior spatial simulation skills 



in simulating the TAS, as the score values are consistently more than 0.8 and even up 

to 0.9. Actually, most CMIP6 models also perform well in simulating the spatial 

distribution of the RSDS over China, except for BCC-CSM2-MR and IPSL-CM6A-LR. 

The best model is CMCC-ESM2 with the highest score of exceeding 0.9 in simulating 

the RSDS against the ERA5 dataset. 

======================= 

Place Figure 5 here 

======================= 

Besides the mean climate state in the spatial distribution, the differences in interannual 

variability between CMIP6 simulations and the reference data are further estimated 

using the IVS method and the results are shown in Figure 5. The IVS values indicate 

the similarity of inter-annual variability between the CMIP6 models and the observation, 

with smaller values indicating better performance for the model. For RSDS, except for 

CanESM5, CESM2-WACCM and ACCESS-ESM1-5, most models have lower IVS 

values. In comparison, the overall IVS values in simulating the TAS are smaller than 

those for RSDS. CanESM5 has the highest IVS in simulating for TAS with 1.326 and 

0.566 for RSDS, implying it can not well capture the inter-annual variability as well as 

the observation. The results also show the ability of each model to simulate the inter-

annual variability is not totally equal between RSDS and TAS. For example, CNRM-

CM6-1 and IPSL-CM6A-LR demonstrate relatively large IVS values in simulating the 

TAS while the values are smaller in the RSDS. It is noteworthy that the model’s 

performance seems to be independent between the Taylor skill scores and IVS, as 

some models with relatively poor mean-state simulation in spatial patterns (i.e., BCC-

CSM2-MR) can exhibit better skill in simulating the inter-annual variability. 

 

Figure S2 shows the weights of CMIP6 models based on the evaluation of the spatial 

distribution and inter-annual variability. The results show that the CMCC-ESM2, 

CESM2-WACCM, INM-CM5-0 and MRI-ESM2-0 have larger weights than other 

models, while the weights of IPSL-CM6A-LR and MIROC6 are smaller due to their 

poor performance. 



 

3.2 Projections of changes in PV power generation 

3.2.1 Annual changes 

 

Future annual PV power generation changes and the trend in spatial distributions 

under different socioeconomic pathways over China are analyzed in this section. 

Figure 6 illustrates the projected weighted MME PV differences in the carbon 

neutralization period (2051-2070) relative to the baseline period (1995-2014). Overall, 

the geographical distributions between the absolute and relative PV changes in China 

are similar. Changes in PV power generation show distinct characteristics in different 

regions. While the magnitudes may differ, there is a distinct division for the change 

sign from the northwest to the southeast of China, which interestingly aligns closely 

with the famous “Hu Huanyong line”. Specifically, the general tendency is a cutback in 

the north and west, which are more pronounced if no greenhouse gas mitigation 

strategies are employed (i.e., a decrease of ~4% under SSP585). Conversely, an 

increase in PV power generation is evident in the southeastern parts of China with 

some regions, such as Hunan and Chongqing, experiencing an approximate 10% 

increase under the SSP126 scenario. In view of emission scenarios, a transition from 

SSP126 to SSP585 leads to a  smaller increase in PV generation in the southeast, 

while a larger decrease is found in the north and west of China. 

======================= 

Place Figures 6-7 here 

======================= 

A decreasing trend is detected in most regions of the north (Figure 7), and the annual 

mean PV power will decrease by above 1000 Wh/year. The utmost decrease (about 

3000 Wh) is expected in the west of Mongolia with a decreasing trend extending 

southwestward in the spatial pattern. It is noteworthy that the decreasing trend is 

statistically significant, especially for SSP585. Conversely, southern China will witness 

an increasing trend in PV power during this period, except for a slight decrease in the 

SSP126 scenario. Meanwhile, it is clear that these changes and tendencies are more 



pronounced under scenarios of stronger radiative forcing, although SSP245 shows a 

more significant increase in the PV output. 

 

The inter-annual variability in spatial distribution, which is quantified as the ratio of 

standard deviation to the mean annual PV power between years, is presented in Figure 

7(d-f). Under SSP126 and SSP245 emission scenarios, the inter-annual variability is 

smaller in the neutralization period than that in the baseline, especially for the central 

regions, such as Hebei. In addition, as radiative forcing intensifies in the future, most 

regions over China show an increasing tendency in inter-annual variability. The highest 

interannual variability (more than 20%) is projected by the models in the west of China. 

 

3.2.2 Changes in annual cycle 

 

Figure 8 presents the percentage changes in seasonal photovoltaic generation under 

the different SSP scenarios and the regional mean changes in season over entire 

China are calculated in Table 1. The results show that the spatial distribution of 

changes in PV electricity generation in season is analogous with that in annual. Overall, 

the magnitude of decrease (increase) in the north (south) is projected to amplify (shrink) 

with the continuous increase of future emissions. Nonetheless, there are distinct 

differences in the spatial distributions and change magnitude among different seasons.  

 

In general, the SSP126 scenario shows a larger increase in PV electricity generation 

compared to other scenarios, though a slight decrease (~2%) is found in the west and 

northwest of China. Particularly in winter and autumn, the regional mean PV electricity 

generation in China is projected to rise by 3.55% and 3.18% respectively, relative to 

the historical period. In detail, the maximum increase of up to 16% will be seen in the 

east of Sichuan and Chongqing in winter and autumn. Under SSP245, except for 

spring, the entire PV is likely to have a marginal increase (below 1%) during the other 

seasons. However, certain regions, such as the north of Xinjiang, Tibet, are expected 

to decrease prominently in PV generation, with the spatial patterns and magnitude of 



decrease extending with emissions increase. During the carbon neutralization period, 

the overall regional mean PV power generation in summer and autumn over China 

seems to have no major changes compared with the historical period under the 

intensive GHG emissions (SSP585), whereas the PV production will decrease slightly 

(0.81%) in winter and spring. It is expedient to note that when calculating the change 

in PV power production across China as a whole, the change sign or magnitude in 

different regions may more or less cancel each other out. Therefore, it is necessary to 

evaluate the changes in PV power production across each subregion of China 

individually.  

======================= 

Place Figure 8 here 

======================= 

Figure 9 exhibits the seasonal percentage changes in PV electricity generation for six 

subregions in China. The results show that three northern regions (i.e., NE, N and NW) 

are expected to have smaller PV power generation in most seasons relative to the 

historical period. The magnitude of the decrease is larger in winter than in other 

seasons and is particularly significant under SSP585. For the Tibet Plateau, the 

seasonal mean PV power generation tends to decrease in the future and the 

differences between seasons and SSP scenarios are marginal. Meanwhile, the PV 

power in Tibet is projected to have the most decrease among subregions, particularly 

under SSP245 and SSP585 scenarios. The reverse is the case for two southern 

regions. There is a slight increase in the range of 3% to 6% over the southwest region 

under the SSP126 emission scenario, with minimal differences between SSP245 and 

SSP585. Worthy of note is that the southeast region (SE) will experience the largest 

increasing magnitude relative to other subregions, especially in winter with an increase 

of above 12%. However, the corresponding magnitude in summer is smaller relative to 

other seasons. 

======================= 

Place Figure 9 and Table 1 here 

======================= 



To further investigate the intra-annual variability of PV production, monthly changes in 

the carbon neutralization period relative to the baseline for six subregions in China are 

shown in Figure 10. Additionally, the standard deviation to measure the intra-annual 

variability is calculated based on the historical and future monthly PV power results 

and then compares the difference between these periods (Table 2). 

======================= 

Place Figure 10 here 

======================= 

The differences in monthly PV power generation help to explain the seasonal changes 

to some extent. In the northeast and north regions, the pattern appears consistent, with 

nearly all months showing an increasing PV production in the carbon neutralization 

period under the SSP126 scenario, while there are notable differences among months 

under other scenarios. For example, during some warm months (i.e., from May to 

October), the projected PV power generation tends to increase by 3%~5% over the 

northwest. Compared with the baseline, the PV will decrease by 5% or even more in 

some cold months in winter and spring. For the northwest and west regions, it is 

evident that most months are projected to have a decreasing PV electricity generation 

relative to the baseline, especially for the west under the SSP585 scenario. However, 

the opposite trend is observed in the southwest and southeast regions. Compared with 

the historical period, the southeast shows a consistent increase in PV production for 

all the months, with the largest increase (above 10% in SSP126) in cold months and 

the smallest increase in June and July. In addition, the range of variation  (indicated by 

the lengths of the boxes and whiskers) seems to be larger in cold months for all 

subregions, suggesting more uncertainties among CMIP6 models in the future 

projection of PV power generation in these months. 

 

According to Table 2, except for the southwest and southeast regions, there are no 

major changes expected in the intra-annual variability of PV power generation during 

the neutralization period, since the differences in monthly standard deviation between 

the historical and future periods are relatively small. However, when considering 



SSP126, the north region tends to decrease by 2.59% in PV power generation intra-

annual variability. Conversely, for the northwest, the intra-annual variability is likely to 

increase by 2.39% and 2.69% under the SSP245 and SSP585 scenarios, respectively. 

For two southern regions, there is a clear tendency towards a significant decrease in 

the intra-annual variability. For example, compared with the baseline period, the intra-

annual variability in the southeast will reduce by 12.35%. Overall, the intra-annual 

variability in the three northern regions and Tibet is projected to have an increasing 

tendency with the rise in emissions. Under the SSP126 scenario, all subregions show 

a lower intra-annual variability than that in the historical period. 

======================= 

Place Table 2 here 

======================= 

4. Discussions 

 

Vigorous PV development is one of the key components to achieving China’s “30-60” 

dual carbon targets. Evaluating the influence of various climate or socioeconomic 

scenarios on PV power generation is crucial. This study depicts a picture of future 

changes in PV power generation for the carbon neutralization period in China, utilizing 

the CMIP6 models under different shared socioeconomic pathways. 

 

Overall, the irradiance is larger in the west than that in the east and north of China. 

Theoretically, the corresponding PV power generation should be more abundant in the 

western regions, such as Tibet and Xinjiang. However, in reality, the majority of giant 

PV farms are concentrated in the east. According to the statistics from China’s National 

Energy Administration, the installed capacities in Shandong, Hebei, Jiangsu and 

Zhejiang are larger than other provinces in China and only Ningxia is in the top 10 list 

for installed capacity [37]. This discrepancy may seem unusual in that the regions with 

richer irradiance have no faster development. The reason is in various aspects. The 

technical, policy and economic factors may constrain the development of PV in these 

regions. It is recognized that the PV power output has stochastic, unstable and non-



durable characteristics and is affected predominantly by meteorological factors, such 

as solar radiation, ambient temperature, wind, snow, and so on [11]. Additionally, due 

to the high cost of power grid construction and relatively immature storage technology, 

the produced PV power relies heavily on local consumption. For the same regions with 

sparse populations and underdeveloped economies like Tibet, currently, it might not 

be enough suitable to build a giant centered PV plant and complex power grid when 

considering the cost and environmental protection. Instead, hybrid multiple renewable 

energies (i.e., wind, solar and geothermal) may be preferable for the locals [38, 39]. 

Nevertheless, in the foreseeable future, or more optimistically before China’s carbon 

neutralization target deadline, with the construction of robustly large interconnected 

power networks and improvement of energy storage technologies, China will continue 

to promote the strategy of “West-East Power Transmission” to achieve the carbon 

neutralization goals[40]. 

 

Looking ahead, as far as spatial characteristics are concerned, the results show that 

annual and seasonal PV power generation will decrease in the north and Tibet regions 

relative to the historical period. In addition, with the increasing carbon emissions, the 

decreasing tendency of PV electricity generation is projected to extend southwestward 

from the west of Mongolia, implying that albeit modestly PV power generation will be 

inevitably influenced if carbon emission policies are not implemented. However, as 

mentioned by Abolude, Zhou [41], the decrease in future renewable energy potential 

does not imply a halt or reduction of renewable energy investment, nor does it pose a 

significant threat to commercialization and marketability. Instead, it should be seen as 

an early warning that a continuous increase in emissions is likely to impact PV power 

production in China, albeit these risks could be avoided and mitigated through 

technological improvements. On the contrary, the south and central regions are 

expected to have an apparent increase in PV power generation in the neutralization 

period. It is expedient to note that in recent two years some provinces with a larger 

installed capacity in China, such as Shandong, Hebei, Jiangsu and Zhejiang, have 

seen a greater proportion of distributed PV power generation. The result will 



undoubtedly serve as a great encouragement to the PV industry in these regions of 

China.  

 

Despite overall satisfactory performance in most regions of China, there are still 

notable biases observed in certain areas when compared to actual observations, 

particularly in some southern provinces and western edges of China. It is worth 

mentioning that these biases have the potential to influence future climate projections 

[42]. Consequently, it is prudent to exercise caution when interpreting future projections 

in these particular regions, even though the focus of the projections is on changes 

rather than absolute values. 

 

In terms of temporal variability, under SSP126 and SSP245 emission scenarios, the 

inter-annual variability is smaller in the neutralization period versus the baseline. 

Nonetheless, with the enhancement of the radiative forcing in the future (SSP585), 

most regions over China demonstrate an increasing trend in inter-annual variability, 

particularly in the west of China, even more than 20% relative to the reference period. 

Generally, understanding the potential economic returns on an initial investment in PV 

systems is crucial for utilities and residential customers alike [43]. The inter-annual 

variability of power output between different years is a key factor for the economic 

feasibility of a renewable power station because whether the farm's expected energy 

yield will remain stable (with smaller inter-annual variability) during its lifetime can 

determine the success or failure of the power farm project [5]. In the neutralization 

period, the intra-annual variability of PV power generation in the southwest and 

southeast regions is smaller (exceeding -10%) than that in the historical period. This 

could benefit for PV plant owners in these regions because the higher intra-annual 

variability will directly lead to more variables in the injection of the produced energy 

into the electrical grid, potentially resulting in supply-demand balancing issues and 

decreased PV farm’s profitability in the electricity market [5]. Under SSP245 and 

SSP585 scenarios, the intra-annual variability in the northwest is likely to increase 

slightly, but for SSP126, all subregions in China show a smaller intra-annual variability 



than that in the historical period. In summary, the results suggest that China’s 

commitment to green development can reduce risks associated with inter-annual and 

intra-annual variabilities in PV power generation in the long run. 

 

Some attributions can explain the temper-spatial changes in PV generation in China, 

as suggested by previous studies. One important factor is the presence of 

anthropogenic aerosols and other air pollutants, which have a significant impact on 

surface solar radiation and PV power [24]. The results show that in winter, PV power 

generation shows a decreasing trend in the north, especially under the SSP585 

emission scenario. Li, Wagner [44] evaluated the impact of aerosols on PV generation 

and came to a similar conclusion. They found aerosol-related annual average 

reductions of point-of-array irradiance in northern and eastern China to be about 20%-

25%. In winter, aerosols have comparable impacts on clouds. Improving air quality in 

China would increase the efficiency of solar PV generation. It may be a key explanation 

for the significant decrease in PV power generation in the north of China under the 

fossil-fueled development scenario (SSP585). Implementing strict air pollution control 

measures and reducing fossil fuel consumption will increase surface radiation, 

improving PV power generation [45]. Southeastern China is projected to have more 

PV power generation in the neutralization period, but the increasing magnitude is 

smaller in summer than that in other seasons. This is explained by the higher 

percentage of monsoon cloud cover in summer because cloud fraction influences solar 

radiation more than any other parameters [10]. The climate of the southeast in summer 

is characterized by wetter conditions from the East Asian monsoon, resulting in lower 

all-sky radiation caused by cloud scattering, reflection and absorption [11, 46]. 

 

Finally, it is crucial to acknowledge the presence of inherent uncertainties in projecting 

future climate change. These uncertainties arise from various factors, such as GCM 

driving data, model structure and parameters, and observational data, among others 

[47, 48]. In this study, the weighted ensemble mean method was employed to alleviate 

uncertainties stemming from the driving data. Additionally, it should be noted that 



biases observed in certain regions of China could also be attributed to limitations in 

observational data, such as the sparse coverage of observation stations in the complex 

terrain of the Tibetan Plateau. To address these uncertainties, future research 

endeavors can consider employing bias correction techniques, incorporating a broader 

range of GCMs, and utilizing downscaling methods, to further reduce these 

uncertainties in future climate projections, enabling more accurate and reliable 

assessments of climate change impacts at regional and local scales. 

 

5. Conclusion 

 

When planning the roadmap of renewable energy development to achieve the carbon 

neutralization target, investigation of the long-term variation and spatial distribution of 

PV power output is of great importance and essential for China. In this study, the output 

from 14 weighted CMIP6 GCMs was used to estimate the PV power generation 

changes in China under 3 different socioeconomic pathways during the carbon 

neutralization period (2051-2070). 

 

Overall, the CMIP6 models demonstrate a satisfactory capability in reproducing the 

spatial and temporal distribution of key meteorological factors affecting photovoltaic 

systems, such as downward shortwave radiation (RSDS) and near-surface air 

temperature (TAS). This conclusion is drawn from the evaluation using Taylor and IVS 

scores. However, biases persist in certain regions of China, potentially due to 

limitations in the available observational data, including sparse coverage of 

observation stations, particularly in complex terrain areas like the Tibetan Plateau. To 

reduce the uncertainties arising from inter-model variability, the rank and weight of 

individual models are calculated based on the comprehensive analysis of the impact 

degree for all models. By assigning appropriate ranks and weights to the models, this 

study aimed to enhance the reliability and robustness of the projections while reducing 

the influence of any single model’s biases. 

 



The changes in PV power generation in China show distinct spatiotemporal 

characteristics. Overall, compared with the historical period, the annual PV power 

generation will decrease in the north and Tibet regions, with a maximum ~4% decline 

under SSP585. This suggests that, even if the decline is relatively modest, PV power 

generation will inevitably be influenced if carbon emission reduction policies are not 

implemented. This finding should serve as an initial warning that continued emission 

increases are likely to impact PV power production in China. While the southern and 

central regions are expected to have an apparent increase, i.e., there is the largest 

increase of above 10% in the PV power generation under SSP126 in the neutralization 

period. This anticipated expansion should provide substantial encouragement to the 

PV industry in these regions. The spatial distribution of seasonal changes in PV 

electricity generation is analogous to that in annual. Magnitudes of northern decrease 

and southern increase are projected to amplify with the continuous increase of future 

carbon emissions. Three northern regions of China are expected to have smaller PV 

power generation in winter than that in other seasons, especially under SSP585. In 

summer, the increasing magnitude of PV power generation in the southeast is the 

smallest among seasons. The changes in monthly PV power generation further 

explained the different features in season. Moreover, under SSP126, most regions 

over China show a smaller inter-annual and intra-annual variability than that in the 

historical period, suggesting that pursuing a green development pathway could greatly 

mitigate PV generation variability risks, as higher intra-annual variability often leads to 

greater fluctuations in energy injection into the electrical grid.  

 

To sum up, these findings offer valuable insights into the potential changes in PV power 

generation across different regions of China during the country’s carbon neutralization 

period. They highlight the importance of implementing effective emission reduction 

policies and provide guidance for policymakers and stakeholders in the PV industry.  
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Table Captions 

Table 1. The regional annual and seasonal mean changes in PV power generation 

over entire China (Unit:%). The first column represents the abbreviations of annual, 

winter, spring and summer, respectively. 

Table 2. The changes of intra-annual variability in PV power generation under SSP 

scenarios relative to the baseline period over six subregions of China (Unit: %). 

  



Table 1. The regional annual and seasonal mean changes in PV power generation 

over entire China (Unit:%). The first column represents annual, winter, spring and 

summer, respectively. 

 SSP126 SSP245 SSP585 

Annual 2.76 0.35 -0.34  

Winter 3.53 0.30 -0.51 

Spring 2.30 -0.04 -0.81 

Summer 2.49 0.57 0.10 

Autumn 3.18 0.77 0.13 

  



Table 2. The changes of intra-annual variability in PV power generation under SSP 

scenarios relative to the baseline period over six subregions of China (Unit: %). 

 Northeast North Northwest Tibet 

Plateau 

Southwest Southeast 

SSP126 -0.34 -2.59 -0.74 -1.72 -6.73 -12.35 

SSP245 -0.03 -0.15 2.39 -0.46 -6.01 -8.22 

SSP585 1.48 0.90 2.69 1.30 -8.90 -10.53 

  



Figure Captions 

Figure 1. Research framework. 

Figure 2. The differences in annual RSDS and TAS spatial fields between CMIP6 

multi-model mean simulation and observation. The first column (OBS) represents 

ERA5 for RSDS and CN05 for TAS observations. The second column (SIM) is the 

multi-model ensemble mean simulation. The third row (BIAS) shows the bias between 

simulation and observation. 

Figure 3. Taylor diagram for simulations and reference values of the surface 

downwelling shortwave radiation (RSDS) and ambient temperature (TAS) in China for 

the historical period of 1995-2014. “1-12” denotes the simulation fields of the CMIP6 

models and “REF” represents the reference fields of ERA5 for RSDS and CN05 for 

TAS. 

Figure 4. Taylor skill score of each model of CMIP6 in simulating the spatial patterns 

of the mean state of the surface downwelling shortwave radiation (RSDS, left) and 

ambient temperature (TAS, right) over China during 1995-2014. 

Figure 5. IVS score of each model of CMIP6 in simulating the spatial patterns of the 

mean state of the surface downwelling shortwave radiation (RSDS, left) and ambient 

temperature (TAS, right) over China during 1995-2014. 

Figure 6. Future changes in annual PV generation relative to the historical period 

(2051-2070) under the SSP126 (first column), SSP245 (second column) and SSP585 

(third column) scenarios. The first row (a-c) shows the absolute changes (unit: kWh) 

and the second (d-f) shows the relative changes (unit: %). 

Figure 7. Spatial trends (a-c) and inter-annual variability d-f) of potential photovoltaic 

power for multi-model ensemble mean over China under the SSP126 (a, d), SSP245 

(d, e) and SSP585 (c, f) scenarios during the period of 2051-2070 (light gray dot 

covered area indicates the statistically significant trends with a student-t statistical 

significance level of 5%).  

Figure 8. Percentage changes in seasonal photovoltaic generation under the SSP126 

(first column), SSP245 (second column) and SSP585 (third column) scenarios. Maps 



show differences between 2051-2070 and 1995-2014 in the multi-model mean, 

calculated as future minus reference. The rows depict the changes in winter, spring, 

summer and autumn. 

Figure 9. The spider map of changes in seasonal PV generation over the subregions 

of China under SSP126, SSP245 and SSP585 scenarios (Unit: %). The five axes of 

spider map represent the changes in annual, winter, spring, summer and autumn. 

Figure 10. Box-whisker plots of PV power generation changes (%) for CMIP6 models 

in six subregions over China under SSP126, SSP245 and SSP585 scenarios. The 

whiskers indicate the minimum and maximum changes, and the boxes represent the 

25th to 75th percentile. The black dotted line represents the baseline of the historical 

period and the solid lines are the mean line of different scenarios. 

  



 

Figure 1. Research framework. 

  



 

 

Figure 2. The differences in annual RSDS and TAS spatial fields between CMIP6 

multi-model mean simulation and observation. The first column (OBS) represents 

ERA5 for RSDS and CN05 for TAS observations. The second column (SIM) is the 

multi-model ensemble mean simulation. The third row (BIAS) shows the bias between 

simulation and observation. 

  



 

Figure 3. Taylor diagram for simulations and reference values of the surface 

downwelling shortwave radiation (RSDS) and ambient temperature (TAS) in China for 

the historical period of 1995-2014. “1-12” denotes the simulation fields of the CMIP6 

models and “REF” represents the reference fields of ERA5 for RSDS and CN05 for 

TAS. 

  



 

Figure 4. Taylor skill score of each model of CMIP6 in simulating the spatial patterns 

of the mean state of the surface downwelling shortwave radiation (RSDS, left) and 

ambient temperature (TAS, right) over China during 1995-2014. 

  



 

Figure 5. IVS score of each model of CMIP6 in simulating the spatial patterns of the 

mean state of the surface downwelling shortwave radiation (RSDS, left) and ambient 

temperature (TAS, right) over China during 1995-2014. 

  



 

Figure 6. Future changes in annual PV generation relative to the historical period 

(2051-2070) under the SSP126 (first column), SSP245 (second column) and SSP585 

(third column) scenarios. The first row (a-c) shows the absolute changes (unit: kWh) 

and the second (d-f) shows the relative changes (unit: %). 

  



 

Figure 7. Spatial trends (a-c) and inter-annual variability d-f) of potential photovoltaic 

power for multi-model ensemble mean over China under the SSP126 (a, d), SSP245 

(d, e) and SSP585 (c, f) scenarios during the period of 2051-2070 (light gray dot 

covered area indicates the statistically significant trends with a student-t statistical 

significance level of 5%).  

  



 

 

Figure 8. Percentage changes in seasonal photovoltaic generation under the SSP126 

(first column), SSP245 (second column) and SSP585 (third column) scenarios. Maps 

show differences between 2051-2070 and 1995-2014 in the multi-model mean, 

calculated as future minus reference. The rows depict the changes in winter, spring, 

summer and autumn. 

  



 

 

Figure 9. The spider map of changes in seasonal PV generation over the subregions 

of China under SSP126, SSP245 and SSP585 scenarios (Unit: %). The five axes of 

spider map represent the changes in annual, winter, spring, summer and autumn. 

  



 

 

Figure 10. Box-whisker plots of PV power generation changes (%) for CMIP6 models 

in six subregions over China under SSP126, SSP245 and SSP585 scenarios. The 

whiskers indicate the minimum and maximum changes, and the boxes represent the 

25th to 75th percentile. The black dotted line represents the baseline of the historical 

period and the solid lines are the mean line of different scenarios. 
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