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Simple Summary: Glioblastoma (GBM) is the most aggressive brain tumour. Patients with GBM
have a dismal survival and there is a distinct lack of curative treatments. We are increasingly
understanding that the GBM tumour is composed not only of tumour cells but a complex tumour
microenvironment (TME) of neuronal, glial and immune cells. Research into this area is important
because the diversity of tumour cells and interactions with the TME contribute to the aggressiveness
and treatment resistance of GBM. In this work, we review the multiple types of cells forming GBM and
their interactions and provide examples of how our improved understanding can suggest potential
new treatment strategies for this devastating disease.

Abstract: Glioblastoma (GBM) is the most common primary malignant brain tumour, and it confers a
dismal prognosis despite intensive multimodal treatments. Whilst historically, research has focussed
on the evolution of GBM tumour cells themselves, there is growing recognition of the importance
of studying the tumour microenvironment (TME). Improved characterisation of the interaction
between GBM cells and the TME has led to a better understanding of therapeutic resistance and
the identification of potential targets to block these escape mechanisms. This review describes the
network of cells within the TME and proposes treatment strategies for simultaneously targeting GBM
cells, the surrounding immune cells, and the crosstalk between them.

Keywords: glioblastoma (GBM); heterogeneity; tumour microenvironment (TME); myeloid cells;
microglia; tumour associated macrophages (TAMs); therapeutic targeting

1. Introduction

Glioblastoma (GBM) is a disease of significant unmet need with a median overall
survival of only nine months [1]. The standard treatment for GBM comprises maximal
safe surgery, adjuvant radiotherapy (RT) with concurrent temozolomide (TMZ), and then
adjuvant TMZ [2]. Despite there being many clinical trials over the last two decades, the
management of the disease has not changed. Methylation of the O6-methylguanine-DNA
methyltransferase (MGMT) promoter is the most impactful prognostic biomarker, and it
confers a better prognosis and predicts response to treatment [3].

Although novel treatments have not demonstrated substantial improvement in overall
survival (OS) in phase III clinical trials, subsets of patients with GBM appear to benefit.
Bevacizumab, an anti-vascular endothelial growth factor (VEGF) monoclonal antibody
(Ab), was shown to improve progression-free survival (PFS) but not OS [4]. Tumour-
treating fields (TTFs), an approach that uses alternating electrical fields, were reported to
confer a modest OS benefit in newly diagnosed patients with GBM [5] but has not been
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widely adopted. Recently, the therapeutic vaccine DC-VaxL, which adds dendritic cell
(DC) therapy to standard therapy in newly diagnosed patients, demonstrated a median
OS of 19.3 months compared to 16.5 months in matched historical controls [6]. Immune
checkpoint inhibitors (ICIs) with anti-PD-1 and anti-CTLA4 have radically changed the
treatment of many other tumour types but have not demonstrated a survival advantage in
GBM thus far [7,8]; however, further evaluation is ongoing, with neoadjuvant ICI showing
promising initial results [9,10]. Finally, the remarkable success of chimeric antigen receptor
(CAR) T-cell therapy in haematological cancers drives the exploration of this therapy in
solid tumours, including GBM [11].

Clinical trials have demonstrated that GBM is largely resistant to immunotherapeutic
approaches as it is an immunologically “cold” tumour [12]. The low immunogenicity of
GBM is characterised by low T cell infiltration and absence of DC, a low tumour mutational
burden, limited MHC-I expression, a highly immunosuppressive tumour microenviron-
ment (TME), and a lack of conventional draining lymph nodes [13–15]. More detailed
analyses of how treatments impact GBM and its TME are needed to identify potential
therapeutic limitations and resistance pathways. Additionally, studies focusing on the
origin of GBM and the complex crosstalk between a tumour and the surrounding cells will
further improve our understanding of tumour development and the dynamic response to
treatment. Additionally, detailed molecular analyses have aided the understanding of the
cellular interactions and transcriptional pathways underlying GBM tumour composition.
Identifying shared features between injuries and tumorigenesis has helped us understand
the impact of inflammation on brain parenchyma and its potential link to the origins of
GBM [16].

In this review, we will first describe our current understanding of the origins and
genetic evolution of GBM. We will then focus on the interplay among tumour cells, astro-
cytes, and neurons as a cell network. The role of infiltrating immune cells in GBM will be
described, and we will conclude with the therapeutic opportunities offered by targeting
these cells and their interactions.

2. Molecular Subtype and GBM Stem Cells

In 2010, as part of the TCGA project, a pivotal paper by Verhaak et al. described four
distinct molecular subtypes of GBM: proneural, neural, classical and mesenchymal [17].
Key genetic driver alterations are associated with each subtype: PDGFRA amplification
for proneural, EGFR overexpression or amplification for neural, EGFR mutation, amplifica-
tion, or overexpression for classical, and NF1 mutation or deletion for mesenchymal [18].
Subsequently, as molecular techniques evolved from bulk to single-cell tumour profiling,
similarities with the normal neural lineage were identified [19]. These lineages are referred
to as oligodendrocyte-progenitor-cell-like (OPC-like), neural-progenitor-cell-like (NPC-
like), and astrocyte-like (AC-like). Additionally, mesenchymal-like (MES-like) cells found
in GBM are not observed in normal neural development but are induced in response to
injury [19].

The cell of origin of GBM is still debatable. Evidence points towards either neural
progenitor cells (NPCs) or oligodendrocyte progenitor cells (OPCs), as experimentally
inducing somatic mutations in stem cells from either NPCs or OPCs can lead to tumour
development [20]. Additionally, the subventricular zone (SVZ) has been identified as a
potential stem-cell niche and the possible site of origin of GBM [21]. While the cell-state
composition of the tumour mass is likely to be impacted by the cell of origin, its evolution
is also influenced by various parameters, including mutations acquired during tumour
development and interactions with the TME [22–24]. Specifically, TP53 or NF1 mutations in
neural stem cells (NSCs) lead to the development of OPC progeny [21]. There is also high
intra-tumoural heterogeneity, with the coexistence of up to five spatially resolved gene
signatures, including NPC-like, OPC-like reactive astrocytes, MES-like, and MES-hypoxia,
in the majority of GBM tumour samples analysed in a recent study [25].
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As a tumour grows, it induces injury-associated inflammation, disrupting the physio-
logical organisation of the brain parenchyma via mechanical, chemical, and even surgical
or treatment-related impacts [26]. Injury-associated inflammation and wound response
gene expression signatures have been described, and they can account for a significant
proportion of the transcriptional heterogeneity of GBM [27]. Furthermore, the presence
of GBM stem cells (GSCs) in the tumour bulk is positively correlated with tumour inva-
sion, and OPCs can migrate to injury sites and proliferate to differentiate and promote
remyelination [28].

Specific GBM molecular subtypes can impact prognosis, with the MES-like signature
and the clustering pattern of AC-like tumour cells being associated with poor patient
outcomes [29]. However, the prognosis is improved if the AC-like tumour cells are dis-
persed and in contact with other subtypes [30]. The MES-like subtype displays features
of reactive astrocytes and is induced by the presence of tumour-associated macrophages
(TAMs), which are enriched in regions of the tumour with the MES-like signature [31]. RNA
velocity analysis suggests that MES-like cells are derived from an AC-like state in most
tumours [30], but direct evolution from NPCs to MESs has also been described, drawing
into question the necessity of the development of a transient astrocyte state [32].

Overall, the described molecular signatures illustrate the complexity of cellular in-
teractions and dynamics within GBM tumours, with GSC plasticity driving evolution to
escape treatment effects and leading to resistance to therapy and tumour recurrence [33,34].
Understanding the evolution and dynamics of these molecular subtypes will improve our
understanding of the impact of treatment.

3. Blood–Brain Barrier Disruption in GBM

The physiological blood–brain barrier (BBB) is composed of astrocyte endfeet and
tight junctions between endothelial cells and pericytes, which limit the accessibility of
pathogens and many molecules, including chemotherapy, to the central nervous system
(CNS) [35]. GBM growth induces physical distortion of the BBB, and the associated in-
flammation with neo-angiogenesis leads to the formation of leaky blood vessels, further
disrupting its integrity [36,37]. Consequently, tumours are more permeable and show
an increase in blood perfusion. VEGF is the major cytokine driving neo-angiogenesis; it
decreases the expression of intercellular adhesion molecule (ICAM-1) and vascular cell
adhesion molecule 1 (VCAM-1), thus limiting the adhesion and infiltration of immune cells
to and into the tumour [38]. The aberrant and disorganised vascular morphology within
the GBM tumour also limits the distribution of oxygen or nutrient supplies, leading to
hypoxia and treatment resistance [39–41]. Through the induction of the transcription factor
HIF1α, hypoxia regulates many genes implicated in diverse features, such as angiogenesis,
survival, treatment resistance, genomic instability, and invasion [42–44]. Expression of
HIF1α is associated with an increase in MDR1, which can drive chemoresistance. In vitro
experiments in GBM cells have demonstrated hypoxia-induced resistance to cisplatin, TMZ,
and etoposide, as well as the overexpression of CD133, a marker associated with stem-
ness [42,45,46]. As hypoxia limits the generation of reactive oxygen species (ROS), it can
dampen the effectiveness of RT [46,47], and the limited perfusion of the tumour core causes
necrotic areas and hypoxic regions that attract macrophages with immunosuppressive
functions to develop [48].

4. The Complex Glioblastoma Microenvironment

The CNS parenchyma comprises neurons, astrocytes, oligodendrocytes, and microglial
cells with complementary functions. Improved understanding of the complex crosstalk
between the highly heterogeneous GBM cells and diversity of cell types in the surrounding
TME will hopefully elucidate novel antitumour therapeutic strategies.
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4.1. Astrocytes

Astrocytes maintain the structure and balance of the brain’s parenchyma as they
buffer the metabolic environment and provide an energy substrate (glucose and lactate) for
neurons [49]. In the presence of GBM tumour cells, astrocytes detect damage-associated
molecular patterns through pattern recognition receptors and sense mechanical stress
and injury. These triggers activate a specific molecular signalling network through the
JAK/STAT pathway, leading to reactive astrocytes in a process known as astrogliosis [50].
Along with JAK/STAT activation, reactive astrocytes overexpress GFAP and can express
the immunosuppressive molecule PD-L1 [51,52]. Reactive astrocytes produce high levels
of immunosuppressive chemokines in the TME, including IL-10 and TGF-β [51]. As a
feedback loop, IL-10 and IFNγ induce the reactive state of astrocytes through JAK/STAT
activation [51,53]. Increased extracellular ATP from parenchymal damage leads to ATP
secretion from astrocytes and the recruitment of microglia. Moreover, pro-inflammatory
reactive astrocytes are less efficient at maintaining the integrity of the BBB and further
contribute to local inflammation [51,54,55]. Thus, given their role in inducing the immuno-
suppressive state of the GBM TME, limiting the formation of reactive astrocytes could
favour therapeutic interventions.

4.2. Neurons

GBM tumours comprise a complex neuronal and axonal architecture [56], and they
can directly form synapses with glioma cells to drive their proliferation via glutamatergic
signalling [57]. GBM cells also interact with neurons through paracrine signalling with
neuroligin-3, brain-derived neurotrophic factor, and AMPAR-mediated excitatory elec-
trochemical synapses from neurons, promoting tumour growth [58–61]. Similarly, GBM
cells can influence neurons through the secretion of non-synaptic glutamate [62,63] and
can reduce the activation of inhibitory interneurons [64]. Gliomas may also increase the
risk of epilepsy by influencing glutamatergic and GABAergic signalling in neurons [65],
with studies in awake patients observing more neuronal excitability in the GBM-infiltrated
cortex [59]. Short-range electrocorticography on the tumour-infiltrated cortex revealed
functional remodelling of language circuits as some tumour regions with TSP-1+ tumour
cells maintained functional connectivity with neurons. This molecularly distinct GBM sub-
population is responsive to neuronal signals and has a synaptogenic, proliferative, invasive,
and integrative profile, ultimately conveying a poor prognosis [16]. Moreover, it has been
proposed that gliomas originating from functionally connected cortical regions are more
connected to neurons and will promote the invasion of specific GBM subpopulations [16].

4.3. Glioblastoma Connectome

Large subpopulations of GBM cells are connected via tumour microtubes (TMs), which
are the mechanical base for a tumour cell network, through gap junctions [66,67]. TMs can
support the exchange of cell nuclei, microvesicles, mitochondria, Ca2+, and chemotherapy
molecules and are ultimately associated with treatment resistance [66,67]. Glutamatergic
synapses in these networks can activate tumour cells and are associated with increased
tumour cell proliferation and invasion [58–61]. These connections between tumour cells
have been linked to invasiveness in other malignancies, such as breast, colon, and prostate
cancer [68], and more recently to GBM [69]. Historically, it was believed that GBM invades
the surrounding brain parenchyma by following anatomic structures, such as blood vessels,
nerves, and astrocytic tracts [70]. However, a recent study identified GBM tumour cells with
a neuronal molecular state that lacked connections with other tumour cells or astrocytes
and that were the main drivers of diffuse brain invasion [16,71]. The molecular state of
unconnected tumour cells was more enriched for neuronal and NPC-like cells and less
enriched for MES-like cells [16]. GBM cell invasion resembles neuronal migration during
development, with glutamatergic stimulation of synapses increasing the invasiveness
of GBM cells, leading to TM formation. After invading surrounding tissue, invading
unconnected tumour cells connect with the tumour mass and surrounding astrocytes to
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form what has been described as the “GBM connectome” [16]. Connected tumour cells are
enriched for astrocytic, mesenchymal, and non-neuronal cell states that are consistent with
injury response states. Confirming these findings, the upregulation of neuronal signalling
programs is associated with invasiveness at recurrence of GBM [72].

4.4. Myeloid Cells

Myeloid cells in GBM comprise bone-marrow-derived macrophages and microglia,
which are brain-resident cells originating embryologically from the yolk sac. These two pop-
ulations represent more than 95% of the immune infiltrate in GBM [73]. In the healthy brain,
microglia secrete neurotrophic factors and promote synaptic pruning to maintain CNS
homeostasis [74,75]. Gliomas with an increased number of tumour-associated macrophages
(TAMs) are associated with a higher grade and poor survival at diagnosis and at recur-
rence [76–78].

In GBM, TAMs are predominantly pro-inflammatory and secrete various cytokines,
including TNFα, IL-1a, IL-6, and IL-12, but they also have immuno-suppressive properties,
which are mainly through IL-10 and TGF-β secretion [79,80]. TAMs recruit polymorphonu-
clear neutrophils (PMNs) that generate ROS and nitric oxide (NO), further contributing
to the inflamed and immunosuppressive TME. Single-cell RNA sequencing (scRNA-Seq)
studies have described an enriched TAM population in the core of the tumour, which
harbours a pro-inflammatory phenotype, whereas, at the tumour periphery, microglia
with anti-inflammatory properties are more prominent [81–84]. Differences in the myeloid
component of GBM were also noted between the tumour at diagnosis and at recurrence, as
proportionally more microglia cells were present in GBM at diagnosis and proportionally
more TAMs were present in recurrent GBM [85]. TAMs promote the differentiation of
GBM towards the MES-like signature mainly through TNFα, C1q, IL-1a, and IFNγ [32],
and the loss of NF1 and PTEN in MES-like GBM cells is associated with greater TAM
infiltration [86].

TAMs are highly plastic and dynamic, with their different states being defined by
multiple gene signatures [85]. M1 and M2 phenotypes were proposed to distinguish classi-
cally and alternatively activated macrophages, respectively [87]. In vitro, M1 macrophages
are induced after exposure to pro-inflammatory cytokines (such as TNFα or IFNγ) and
produce pro-inflammatory factors [88]. M2 differentiation is triggered by anti-inflammatory
cytokines (such as IL-4, IL-10, and IL-13), and these macrophages are less cytotoxic and
produce immunosuppressive cytokines, such as IL-10 and TGF-β [89]. In GBM, most TAMs
are described as being polarised to M2 and will limit T cell activity, secrete extracellular
matrix components, and stimulate angiogenesis [43]. Arguably, this dichotomy is mainly
observed in vitro, as in GBM patients, scRNA-Seq could not confirm the presence of these
two polarised M1/M2 stages [90,91]. Although CD163 and CD206 have been proposed
to help discriminate between the two extremes [91], many macrophages co-express M1
and M2 markers, and instead, a continuum with many states between the M1 and M2
spectrum exists [92,93]. Moreover, dynamic changes in the tumour and the TME that are
driven by tumour growth and therapeutic interaction impact the TAM phenotype [88].
With single-cell resolution enabling the detection of smaller populations that can be diluted
in bulk analysis, new TAM subtypes in the GBM TME have recently been described. The
MARCOhi macrophages and CD163+-HMOX1+ microglia are present only in mesenchymal
GBM [94,95], with MARCOhi macrophages inducing the mesenchymal transition and with
HMOX1+ microglia driving T cell exhaustion. High-grade glioma-associated microglia
are proliferative and proinflammatory, and they promote GBM progression through the
induction of the inflammasome [96]. CD73hi macrophages are immunosuppressive, and
their signature persists after anti-PD-1 treatment [97]. This population does not directly
impact prognosis, but knocking out CD73 in mice led to increased iNOS+ myeloid cells and
enhanced antitumor efficacy of an ICI treatment [97], indicating that CD73hi macrophages
drive some immunosuppressive TME features.
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Myeloid-derived suppressor cells (MDSCs) represent another myeloid population in
the TME and are divided into monocytic and granulocytic MDSCs [98]. MDSCs harbour
immunosuppressive features as they increase the catabolism of L-arginine by using arginase-
1, depleting an essential amino acid for T cell proliferation. MDSCs can also generate ROS,
impacting T cell efficacy [99], and they contribute to IL-10 and TGF-β secretion in the TME.

Neutrophil infiltration is associated with poor prognosis and treatment resistance
in GBM [100]. A recent study identified a substantial neutrophil infiltration in the GBM
TME [101], with CXCL8 and IL-8 being the main chemokines attracting neutrophils to the
centre of the tumour [102]. Neutrophils secrete elastase, promoting tumour proliferation
and angiogenesis [103], and they contribute to the immunosuppressive TME through the
secretion of arginase-1, GM-CSF, and S100A4 [100,104].

4.5. Dendritic Cells

DCs are key to bridging innate and adaptive immunity by presenting antigens (Ag) to
T and B cells [105]. They are not seen in the physiological brain parenchyma but, rather,
during chronic inflammation. CCL5 and XCL1 can recruit DCs to the GBM TME, as
observed in mouse models [106]. Based on the scRNA-Seq profiling of GBM tumours, it
was estimated that about 4.5% of cells in the GBM TME have a molecular DC signature [73].
If present, DCs can secrete IL-12, which recruits CD8+ T cells and reinvigorates anergic
T cells [105]. Regulatory DCs have also been described and can promote regulatory T cells
(Tregs) [107] while limiting CD8+ T cell recruitment [108].

4.6. Lymphoid Cells

Natural killer (NK) cells exert contact-dependent cytotoxic activity through the secre-
tion of granzyme B and perforins [109]. NK cells are found in the GBM TME [110], but
radio-chemotherapy can decrease their presence [111]. NK cells are inhibited by the expres-
sion of MHC-I, which is often downregulated in GBM [112], and NK cell functionality is
enhanced when NKp30 binds to B7-H6 on tumour cells [113].

T cells are the hallmark effectors of anti-tumour immunity. Their cytotoxic activity can
lead to tumour eradication in other cancers and in mouse models of GBM, especially with
ICI treatment [114]. However, generally, only a small number of T cells are present in the
GBM TME, and when present, they exhibit an exhausted phenotype due to chronic exposure
to Ag, which is associated with a lack of stimulation that leads to ineffective anti-tumour
activity [115]. Many studies have explored the potential of ICI to enhance T cell activity
in patients with GBM, but these have mostly failed to demonstrate significant clinical
improvement [7]. Two companion studies have, however, observed that the neoadjuvant
administration of anti-PD-1 Ab showed a signal towards improved OS, which will need to
be validated in larger cohorts [9,10].

Tregs are immunosuppressive T cells, and their presence in GBM is associated with
poor prognosis [116,117]. In contrast to CD4+/CD8+ T cells, Tregs highly express the
transcription factor FOXP3, which downregulates the expression of pro-inflammatory
cytokines such as IL-2 through the induction of two other transcription factors, NFAT
and NFkB [118]. Innate immune cells secrete CXCL9, -10, -11, CXCR3, and CCL5-CCR5,
which attract Tregs in the GBM TME [119]. As an autocrine loop, Tregs also secrete IL-10
and TGF-β, which further promotes the transition of T cells into Tregs and supports local
immunosuppression [120,121]. Tregs also express high levels of the immunosuppressive
molecules CTLA-4, PD-1, and GITR, thus providing inhibitory signals for all infiltrating
immune cells.

5. Therapeutic Perspectives

Understanding the complex interactions between the multiple cell types underlying
the GBM TME and their respective states or molecular profiles can help in the design of
treatment strategies. Figure 1 illustrates these different cell types, and Table 1 highlights
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potential therapeutic approaches targeting the different components of GBM, as well as
potential anticipated limitations.

No new systemic anti-cancer therapies have been approved for GBM for nearly twenty
years, and whilst many cancers have benefited from ICI, GBM has been left trailing behind.
Clinical trials evaluating ICIs have had little or no impact on the overall clinical outcomes
of patients with GBM. However, case reports have demonstrated the potential for clinical
benefit in an as-yet unidentified subpopulation of GBM, and early trials of neo-adjuvant
PD-1 therapy appear promising, as do other forms of immunotherapy, such as CAR-T
cell therapies and the recent results from DC Vax-L [6,122–125]. Improved outcomes
from these immunotherapies were mainly observed in patients with methylated MGMT
promoter tumours. This raises the question of these tumours having a potentially more
immunotherapy-permissive TME and warrants further investigation.

Table 1. Examples of therapeutic strategies for targeting GBM and TME interactions. ICI, immune
checkpoint inhibitor; TMB, tumour mutational burden; Ab, antibody; TAMs, tumour-associated
macrophages; DCs, dendritic cells; NK, natural killer; BBB, blood–brain barrier; TME, tumour
microenvironment; GBM, glioblastoma; GSCs, glioblastoma stem cells; DCs, dendritic cells.

Cell Targeted Mechanism Targeted Potential Strategy Potential Limitations

GBM

Tumour cells Enhancing immunogenicity

Increasing MHC-I expression
Increasing TMB and, therefore,
neoantigen presentation with
RT/TMZ treatment

Dampened NK cell response
Sub-clonal TMB is associated with
poor response to ICIs
Effect may be restricted to
MGMT-methylated GBM

Tumour cells, immune cells Blocking negative regulators of
antitumour immune response ICIs Lack of T cell infiltration, highly

immunosuppressive TME

GSCs Targeting specific markers
Promoting GSC differentiation

Inhibition of CD133/ GPD1/ L1CAM
Graphene oxide, Sulindac

Lack of truly specific targets,
intrinsic treatment resistance

Tumour cells Limiting the impact of hypoxia HIF1α inhibition Limited efficacy thus far

TME—normal brain

Astrocytes Limiting astrogliosis to suppress
reactive astrocyte formation JAK/STAT inhibition Limited data available

Neurons Targeting AMPAR signal Perempanel treatment Limited data available

Connectome Targeting gap junctions Connexin 43 targeting Limited data available

TME—immune component

TAMs Limiting infiltration CCL2 inhibition Limited data available

Limiting M2 polarization CSF-1R inhibition Induced resistance

Enhancing phagocytosis CD47 inhibition Haematological side effects

Depleting specific populations CD73+ or MARCOhigh depletion Limited data available

DCs Enhancing immune activation Therapeutic vaccines Efficacy dependent on T cell homing
to the tumour

Neutrophils Limiting infiltration Blocking chemokines

Tregs Depleting cells IL-25 depleting Ab Limited data available

T cells Enhancing targeting and
activation CAR-T cell therapy Antigen loss, on-target off-tumour

effect

NK cells Enhancing activation Activating cytokines Limited data available

CNS—integrity

BBB Increasing permeability Focused ultrasound Transient effect



Cancers 2023, 15, 5790 8 of 18Cancers 2023, 15, x FOR PEER REVIEW 8 of 19 
 

 

 

−10

0

10

20

0 10 20
UMAP_1

U
M

AP
_2

AC−like
Astrocyte
B cell
CD4/CD8
DC
Endothelial
Mast
MES−like
Mono
Mural cell
Neuron
NK
NPC−like
Oligodendrocyte
OPC
OPC−like
RG
TAM−BDM
TAM−MG

A

B C D

E

B

MARCOhi TAM 

1. MES transition
2. Tumour progression

CD73hi TAM
1. Immunosuppression
2. GBM progression

HGG associated microglia
1. Promotes inflammasome
2. Tumour progression

HMOX1+ microglia
1. IL-10 secretion 
2. T-cell exhaustion

F

Figure 1. The complexity of the glioblastoma tumour microenvironment and the differences in
techniques used to analyse it. (A) Schematic representation of the multiple cells composing the
microenvironment of GBM. (B) Detailed representation of tumour microtubes and the different
elements exchanged through this system. (C) Illustration of recently identified subpopulations of
myeloid cells (MARCOhi tumour-associated macrophages (TAM), CD73hi TAM, HMOX1+ microglia,
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and high-grade glioma (HGG)-associated microglia) and their associated primary biological functions.
(D) Representation of reactive astrocytes expressing GFAP and PD-L1 and secreting the immuno-
suppressive cytokines IL-10 and TGF-β. (E) UMAP plot indicating the diversity of cell populations
in GBM. Single-nucleus RNA-Seq data were obtained from GBM-CPTAC [126], processed using
Seurat [127], and mapped to GBmap reference cell types [128] using Azimuth [129]. (F) Illustrative
representation of spatial transcriptomics with single-cell resolution offered by new technological
advances. This allows the identification of the complexity of the GBM TME by using gene expression
to identify the different cells while keeping the biological architecture. The figure was created with
BioRender.com, accessed on 16 October 2023.

Specific glioblastoma cell populations play prominent roles in tumour resistance or
invasion. However, targeting these populations may not be sufficient as many other players
support tumour growth in the TME. While the genomic profiling of GBM has identified
several key dysregulated signalling pathways [130], targeted therapies have been ineffective
in GBM, with intra-tumoural heterogeneity being a likely key factor driving this treatment
resistance. The interaction between GBM cells and the TME drives immunosuppression
and tumour progression. Consequently, an effective approach to therapy in glioblastoma is
likely to involve simultaneously targeting GBM cells, the surrounding immune cells, and
the crosstalk between them.

Multipotent GSCs drive tumour initiation and self-renewal, which supports tumour
progression and therapy resistance. Therapeutic strategies targeting GSCs could increase
treatment success [42,43,47,131,132]. In vitro studies showed that while TMZ initially
inhibits GSC proliferation, MES-like tumour cells are resistant to this treatment, driving tu-
mour recurrence [133,134]. The altered metabolic pathways of GSCs have been successfully
targeted with epigallocatechin gallate, a bioactive polyphenol inhibiting transglutaminase,
which has been shown to restore the sensitivity of GSCs to TMZ and inhibit their prolifera-
tion in vitro [135]. However, it remains unclear if this strategy will translate to clinical trials.
Additionally, targeting newer GSC-specific markers, such as the stem-like cell marker SOX2
that promotes tumour progression [136] or SOCS3, USP8, and DOT1L, which were recently
linked to GSC growth, may be more efficient [137].

The molecular subtype of GBM cells is dynamic during treatment, as GBM cells with
NPC- and OPC-like tumour signatures, which are more sensitive to RT, shift to an MES-like
signature after RT. Consequently, RT enriches tumours for the MES-like subtype, which is
more resistant to RT, which is possibly because of their proximity to RT-resistant reactive
astrocytes. Additionally, RT leads to an acute accumulation of TAMs in the peritumoral area,
driving resistance to RT, as TAM depletion restores sensitivity to RT [138,139]. Altogether,
these changes in the TME after RT lead to an overall MES-like transformation, which is also
the most stable subtype throughout various treatments [140].

Reactive astrocytes resist apoptosis through Fas or TRAIL pathways and have more
DNA damage repair pathways than normal astrocytes [141]. Reactive astrocytes induced by
activating injury pathways at the tumour margin can cause recurrence in that location [142].
This is not only due to tumour cells remaining after treatment but also because of their
pro-tumoral profile [142]. Limiting the reactive injury response would, therefore, be a
rational strategy for limiting tumour growth and resistance. The induction of reactive
astrocytes mainly depends on the activation of the JAK/STAT pathway, which could be
limited by specific inhibitors such as ruxolitinib [51]. Another strategy could be to target
the tumour–astrocyte connectome, as this can drive treatment resistance. The inhibition
of connexin 43 in TMs showed promising results in a pre-clinical model when combined
with TMZ [143]. Additionally, in vitro experiments targeting AMPAR signalling with the
anti-seizure medication perampanel limited the neuronal input to tumour cells and showed
a synergistic effect with TMZ [144].

TAMs are critical for promoting tumour progression and immunosuppression in GBM
and have likely contributed to the failure of immunotherapies in GBM thus far. Limiting
TAMs’ infiltration or modulating their pro-tumoural polarisation are promising therapeutic
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strategies. The CCL2/CCR2 chemokine axis is implicated in TAM infiltration, and the inhi-
bition of CCL2 led to lower TAM recruitment and improved ICI efficacy in a mouse model
of GBM [145,146]. However, the efficacy may have been blunted by the increased immuno-
suppressive microglia observed in CCR2 knockout mice [85]. TAMs express CSF-1R, which
regulates survival and key TAM functions. The modulation of CSF-1R signalling can be
used to reprogram TAMs and limit immunosuppressive polarisation. The small molecule
BLZ945 inhibits CSF-1R. Although it does not deplete TAMs, it induces polarisation to-
wards a more M1 phenotype, reducing tumour progression [138]. The concurrent inhibition
of the IGFR/PI3K pathway should be explored, as GBM cells can acquire resistance to
BLZ945 through this pathway [147]. BLZ945 also enhances the initial response to RT [139]
and the efficacy of anti-PD-1 therapy [148]. However, CSF-1R inhibition with PLX3397
monotherapy in humans was ineffective [149]. The CD47/signal-regulatory protein alpha
(SIRPα) pathway is a critical innate macrophage checkpoint, as CD47 expression on tumour
cells limits the phagocytic function of TAMs. [150]. In mice, depleting CD47 increases
the phagocytosis of macrophages and limits glioblastoma tumour progression [151]. Tar-
geting specific TAM subpopulations, such as CD73+ cells, extended the survival of mice
with glioblastoma and showed synergistic effects when combined with anti-PD-1 and
anti-CTLA-4 therapy [97]. In the same manner, Ab targeting of MARCOhi macrophages
limited the transition of tumour cells to the MES-like subtype and the stemness features of
GSCs [95].

Considering the failure of ICIs in GBM, accumulating evidence points towards the
lack of efficient T cell priming by DCs [152]. A recent study compared the immune profiles
of brain metastases with those of primary GBM tumours. As the primary tumours were
not in the CNS, metastases exhibited more efficient T cell priming by peripheral DCs,
generating a more effective T cell response against brain metastases compared to that of
GBM [153]. FLT3L-mediated DC population expansion led to enhanced immune priming in
a mouse model of GBM [154], and the recent encouraging results of DC-Vax-L [6] support
the exploration of DC-targeted therapies.

CAR-T cell therapy for GBM could bypass the need for local T cell activation, as
lymphocytes are activated ex vivo. CAR constructs targeting single tumour antigens have
shown only occasional clinical improvements, but the field is now moving toward targeting
multiple antigens with multivalent CARs, which is supported by a pre-clinical study where
a trivalent CAR directed toward HER2, IL13Ra2, and EphA2 showed better cytotoxicity
than that of monovalent CAR T cells [155].

Depleting Tregs by targeting CD25 initially faced limitations, as the anti-CD25 antibody
also blocked bystander IL-2 receptor signalling, limiting T cell antitumour activity [156].
However, recent developments showed that improved antibody specificity could efficiently
deplete Tregs without impacting IL-2 signalling, supporting further evaluation of this
strategy [156].

Targeting other immune cells could help shape a more immuno-permissive TME.
The administration of NK cells activated with IFNγ, IL-2, and anti-CD3 to enhance their
cytotoxicity improved PFS in a phase III clinical trial, although the primary endpoint of
improved OS was not met [157].

Finally, as the BBB and irregular neovessels limit the optimal delivery [158] and
therapeutic concentrations of drugs [159], the recent development of transient BBB opening
with focused ultrasound [160] could pave the way for new chemotherapeutic protocols or
large molecules, such as antibody or antibody–drug conjugates, in patients with GBM.

6. Conclusions and Future Directions

Advances in genomic techniques have led to a better understanding of the intratu-
moural heterogeneity of GBM, although this has yet to make a therapeutic impact. With
the development of spatial transcriptomics, our understanding of the interactions within
the TME will be further improved and may be used to identify location-dependent cell
interactions that are lost in single-cell data (Figure 1), and this technology is already improv-
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ing with the development of sub-cellular resolution. For example, Figure 1E depicts the
diversity of cells composing human GBM based on a single-cell RNA sequencing analysis.
Cells are clustered based on the similarities in their gene expression profiles. Figure 1F
illustrates a spatial transcriptomics readout in which the histological cell architecture is
maintained, and single-cell identities are similarly determined according to their gene
expression profiles.

Identifying the different components of the TME, their physical connections, and
their interactions reveals new mechanisms of targeting glioblastoma. As illustrated by
previous clinical studies, targeting only one subpopulation of GBM tumour cells or only one
pathway, such as EGFRvIII+ or PD-1, is not effective due to target loss and tumour resistance.
Concurrent targeting of tumour cells and the TAM compartment or reactive astrocytes has
therapeutic potential, as they form a connectome that contributes to invasion and treatment
resistance. For example, reactive astrocytes that are induced by the JAK/STAT pathway
could be targeted by a JAK inhibitor such as ruxolitinib, a drug that was initially developed
for myelofibrosis.

The broader immune system can modify the therapeutic response in GBM. For ex-
ample, the gut–brain axis has recently been associated with neurological disorders [161].
Studies of GBM have identified different compositions of the gut microbiome in both
patients and GBM-bearing mice compared to healthy controls [162]. There is also an asso-
ciation between antibiotic treatment and GBM growth in mice [163], and a recent study
showed that GBM can present bacterial epitopes that drive a specific T cell response [164].
As observed in other tumour types, the gut microbiome composition can alter ICI effi-
cacy [165,166]. Therefore, further evaluation of the gut–brain axis is warranted to optimise
therapeutic strategies using GBM immunotherapy.

In conclusion, recent studies and technological developments have advanced our un-
derstanding of the complex and intricate interactions between glioblastoma and the tumour
microenvironment, providing insights into how glioblastoma evades current treatments
and paving the way towards more effective therapies in the future.
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