
2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Learning Meta Soft Prompt for
Few-Shot Language Models

Jen-Tzung Chien∗ Ming-Yen Chen∗ Jing-Hao Xue†
∗ Institute of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

† Department of Statistical Science, University College London, London, United Kingdom

Abstract—Prompt-based learning is powerful to utilize the
large-scaled pre-trained language model (PLM) for language
understanding where the input sentences are augmented by either
adding the hard prompt using word tokens or the soft prompt
in a form of trainable tokens. However, the learned soft prompt
in training domain may not really help a frozen PLM to handle
domain shift in test domain. This paper presents an approach to
incorporate meta learning into domain adaptation to train new
soft prompt which sufficiently generalizes the frozen PLM to a
number of domains. The meta soft prompt is then developed
for few-shot unsupervised domain adaptation where a frozen
PLM can be quickly adapted to a target domain. This soft
prompt is optimized according to meta learning where the domain
adaptation loss and the prompt-based classification loss are jointly
minimized. The experiments on multi-domain natural language
understanding show the benefits of the proposed meta soft prompt
in pre-trained language model by using BERT under the few-shot
setting.

Index Terms—Meta learning, few-shot learning, prompt tuning,
domain adaptation, language model

I. INTRODUCTION

Traditionally, deep neural networks were trained by super-
vised learning and have achieved desirable performance in
a variety of speech and language tasks [1]. Recently, self-
supervised or unsupervised schemes have been successfully
developed to improve the end performance even without ad-
ditional training data. A famous example is the bidirectional
encoder representations from transformers (BERT) [2] which
is a pre-trained language model [3], [4] based on transformer
[5] learned from a large corpus based on the unsupervised
tricks consisting of the masked language modeling and the next
sentence prediction. PLMs have been further extended to boost
the performance of challenging tasks by enhancing the model
capacity with very limited controlled parameters through uti-
lizing the adapter learning [6] or model reprogramming [7].
With the emerging of the powerful generative pre-trained
transformer like GPT-3 [8] or ChatGPT, it becomes crucial
to conduct the cutting-edge research on how to utilize the
pre-trained model for various downstream tasks via prompt-
based learning or tuning. In general, the previous PLMs did
not handle the issue that specific domain of input sentences
is unseen and far from those in training sentences. The
performance of PLMs will drop drastically. This phenomenon
known as the domain shift is common in practice [9], [10].
The larger the domain shift, the higher the influence on the end
performance. In addition, collecting a large amount of labeled

data over a variety of domains is difficult and time-consuming.
The unknown domain is hard to predict.

To activate fast learning in multi-domain language modeling,
this study focuses on zero-shot or few-shot domain adaptation
for prompt-based learning where there is few data or even
no training data provided in target domain. This paper further
copes with the issue of sub-optimal performance in domain
adaptation which is caused by inconsistent objectives in both
pre-training and fine-tuning stages [11], [12]. In order to
address the aforementioned issues, this work proposes the so-
called meta soft prompt to enhance the adaptability of PLM to
an incoming target domain. In addition to domain adaptation
[13], this method is designed by considering two learning
paradigms. The first one is the soft prompt learning which
converts the actual word tokens in hard prompt into some real-
valued vectors as the continuous tokens in augmented input
sentence. Prompt optimization is based on gradient updates
by using the labeled data [14], [15]. Compared to the hard
prompt, soft prompt looks more attractive since both specific
domain expertise and trial-and-error process can be avoided
[16], [17], [18]. The second one is the model-agnostic meta
learning (MAML) [19], [20] which is performed to address
the adaptability of soft prompt across multiple domains. A
gradient-based meta learning algorithm [21], [22] is imple-
mented to estimate the parameters of meta learner through a
set of task-specific learners for individual learning over various
meta-training tasks. In this paper, each individual meta-training
task is treated as an unsupervised domain adaptation problem
which is tackled by learning the soft prompt from source-
domain labeled data as well as target-domain unlabeled data.
After completing the meta training across diverse meta-training
tasks, the trained meta soft prompt is feasible to smoothly
adapt to any incoming target domain with a few unlabeled
data. In the experiments, the competitive result is obtained by
using the proposed prompt-based language model for multi-
domain sentiment classification.

II. SOFT PROMPT & DOMAIN ADAPTATION

A. Prompt-based language model

Pre-trained language models (PLMs) have shown convincing
results in recent years. To leverage the benefit of PLM, the
task-specific layer or head was added on top of PLM to adjust
the PLM parameters to a specific downstream task. More
recently, prompt-based learning is recognized as a powerful
method to improve the fine-tuning of PLM after GPT-3 [8]



has been publicly released. This method allows training a
model with a cloze-style input sentence which adds a textual
string prompt to original sentence that has some unfilled slots.
The resulting language model needs to predict the word for
unfilled slots instead of predicting the class label. Due to
the success of GPT-3, such a learning scheme was further
introduced to employ smaller PLMs [16], [17], [18] by fine-
tuning the pre-trained model. Using this approach, hard prompt
is formed by a string of “discrete” word tokens from the
vocabulary. But, determining a suitable prompt for a specific
domain or task requires the domain expertise and needs many
trial-and-errors. Although hard prompt template is fixed, the
PLM and the masked language model (MLM) head should
be fine-tuned for a downstream task. Alternatively, the soft
prompt was constructed in the continuous space with good
adaptability. Since the soft prompt (v1v2 . . .) can be easily
updated by gradient descent, the optimal prompt is obtained
in a handcraft-free way. Using soft prompt, the parameters
of PLM and MLM head are frozen. Only the soft prompt
tokens are estimated. Relative to fine-tuning and hard prompt,
the number of controlled parameters in soft prompt is greatly
reduced. Figure 1 compares the hard (left) and soft (right)
prompt-based language models.

Fig. 1. Hard and soft prompts using pre-trained models.

B. Domain adaptation

In general, fine-tuning, hard prompt or soft prompt using
PLM only works well for a specific test domain, and could
not easily handle the diverse input sentences which may
come from a variety of domains in practical scenarios. As
a result, the researches on unsupervised domain adaptation
(UDA) [23], [24] have become crucial for handling multi-
domain tasks. UDA aims to mitigate the issue of domain shift
caused by different distributions from source and target data
where the class labels of adaptation data in target domain are
missing. Previously, UDA was employed in BioBERT [25]
where the pre-training phase was continued by adaptation
using domain-specific data. In [26], UDA was performed
by simultaneously running the domain-specific pre-training
as well as task-specific pre-training by using task-specific
unlabeled data [27]. The learned representation was closer
to task distribution. In [28], UDA through language model
was recently proposed and implemented by combining MLM
task and downstream task where the model robustness and
the sample efficiency were improved during the adaptation

to target domain. Nevertheless, there is existing a difference
between the pre-training objective for PLM task and the fine-
tuning objective for downstream task, which may constrain
the utilization of knowledge based on PLM [11]. This study
introduces UDA to adapt the soft prompt across different
domains via meta learning in accordance with a consistent
hybrid objective for domain adaptation and prompt learning.

Fig. 2. Soft prompt language models with zero-shot and few-shot domain
adaptation where the frozen PLM is used.

C. Joint soft prompt and few-shot domain adaptation

In this paper, soft prompt learning is collaborated with
unsupervised domain adaptation where zero-shot and few-shot
settings are considered as illustrated in Figure 2 where the
frozen PLM is utilized and the labeled data in target domain
DT are missing. The left-hand-side subfigure shows the zero-
shot adaptation where there is no additional adaptation data.
Only the test sentence in target domain is provided. Soft
prompt is updated by using test data. On the other hand, the
right-hand-side subfigure displays the scenario of joint soft
prompt estimation and few-shot domain adaptation. In this
scenario, there are two stages where the frozen PLM is both
applied. The first stage is to learn soft prompt where the labeled
data in source domain DS and the few-shot unlabeled data
in target domain DT are provided for prompt-based learning.
Then, the second stage is to further adapt the soft prompt
by using the test sentence in target domain. To cope with
multi-domain tasks, such an adaptive soft prompt is hereafter
estimated through meta learning.

III. FEW-SHOT LEARNING & META SOFT PROMPT

In practical situation, the input query is usually originated
from various domains. It becomes crucial to develop a general
solution to soft prompt across different domains and present a
fast adaptation scheme to a new domain where multi-domain
tasks are handled. The underlying idea of this paper is to
enhance the adaptability of soft prompt language model to a
new target domain where meta learning or learning to learn is
performed to acquire multi-domain knowledge from a number
of tasks which are designed to solve the problem on hands.
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Fig. 3. Multi-domain learning for meta soft prompt language model via few-
shot unsupervised domain adaptation (UDA).

A. System overview and meta learning

This study presents the model agnostic soft prompt for few-
shot domain adaptation. An overview of the proposed method
is shown in Figure 3. There are three parts in the learning
process including input data, soft prompt and PLM using
BERT. Input data contain support set and query set. In meta
training, support set is used to update the prompt parameters
of learner (v1, v2, v3). Query set is then used to calculate the
gradients for updating the parameters of learner (v1, v2, v3) fol-
lowed by updating the parameters of meta learner (v′1, v

′
2, v

′
3).

Soft prompt is treated as the trainable parameters, and is
appended to an input sequence and a mask token denoted by
[MASK]. PLM is responsible to encode the input sentence
and extract the features of mask token. These features are
used to calculate MLM head outputs which are employed to
measure the probability distribution over vocabulary words to
implement the meta soft prompt language model. Unlike tra-
ditional meta learning approaches [19], which train the whole
model from a large number of few-shot classification problems
to allow the model to quickly adapt to the unseen few-shot
classification tasks, the proposed meta learning framework
aims to tackle domain shift issue by introducing soft prompt
learning conditioned on a frozen PLM. All of the meta-training
tasks are designed to simulate the scenarios which will be
encountered during test stage. Therefore, the frozen PLM is
feasible to generalize multiple source domains to a target
domain by only tuning the parameters of soft prompt.

B. Soft prompt language model

Soft prompt language model adopts a soft prompt template
consisting of a set of trainable vectors that are added to the
input sentence as the description of target task. The label words
are defined as the highest probability words that PLM will
predict. In a binary sentiment classification task, the input
sentence is formed by L words as x = {x1, · · · , xL} and
the corresponding label is y ∈ Y = {positive, negative}.

Given the template function T (·), the input sentence x can
be converted to a MLM input to BERT-based PLM, xprompt =
T (x = {e(x), v1, · · · , vk, e([MASK])}), where the e(·) is
the embedding function of PLM F . For the label words, a
verbalizer M : Y 7→ V∗ is given to map the label space to
a set of label words V∗ ⊂ V , where V is the vocabulary of
F . Then, we can treat F as a function of mapping xprompt to
a vocabulary distribution of mask token as p(Vy(xprompt)) =
F(xprompt) ≜ vmask. The conditional likelihood of the predicted
label word y∗ ∈ V∗

y with respect to mask token given xprompt,
p(V∗

y ← [MASK]|xprompt, θ), is yielded by

p(y∗|xprompt, θ) =
exp(vmask(V∗

y ))∑
y′∈Y exp(vmask(V∗

y′))
(1)

where vmask(V∗
y ) denotes the probability of label word V∗

y in
the vocabulary distribution vmask. The overall training objective
for soft prompt learning is expressed by a cross-entropy loss
as

Lprompt(x, y, θ) = −
∑
y′∈Y

y′ log p(y∗|xprompt, θ) (2)

where θ denotes the trainable parameters for soft prompt.

C. Unsupervised domain adaptation

Unsupervised domain adaptation as shown in Figure 3
implements the inner optimization that adapts the soft prompt
language model to a target domain. This study presents an
approach to UDA by combining soft prompt learning and
masked language modeling using labeled data from source
domain DS and unlabeled data from target domain DT . The
soft prompt (v1, v2, v3) in UDA is updated by using the
objectives for masked language model Lmlm (via cross-entropy
loss for predicting mask tokens) and soft prompt Lprompt where
the unlabeled data DT and labeled data DS are adopted,
respectively. The adapted soft prompt is able to simultaneously
capture the target domain information from MLM objective
and the task language knowledge from prompt objective.
UDA objective is built as Luda = Lprompt + λLmlm with a
hyperparameter λ. α is implemented via the popular optimizer
using AdamW.

D. Nested optimization procedure

The overall learning and adaptation for meta soft prompt are
performed via a nested loop. In the inner loop, the learners start
with the parameters of meta learner and update the parameters
based on Luda by using support set in each meta-training task.
In the outer loop, the meta learner is optimized according
to the performance of those learners evaluated on query set
in each meta-training task. The whole process is repeated
until reaching convergence. Parameter updating for learners
is expressed as

θ′i = θ − α∇θLuda(Dsup
i , θ), 1 ≤ i ≤ m. (3)

Dsup
i represents the support set of meta-training task Ti. Meta

learner θ̂ is estimated by minimizing the prompt loss over
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Algorithm 1: Meta soft prompt learning & adaptation

Require: D: multiple source and target domains
Dtrain = {Ti}mi=1: a set of training tasks from p(T )
α: step size of updating soft prompt

Initialize: soft prompt parameters θ
repeat

for each meta-training task Ti ∈ Dtrain do
sample DS ∼ D as source domain
sample DT ∼ {D −DS} as target domain
sample support set
Dsup

i = {xj
S , y

j
S}

ks
j=1 ∪ {x

j
T }

kt
j=1

sample query set Dqry
i = {xj

T , y
j
T }

kq

j=1

adapt θ to each domain θ′i using support set
θ′i ← θ − α∇θLuda(Dsup

i , θ)
calculate gradient of Lprompt using query set

gi ← ∇θ′
i
Lprompt(Dqry

i , θ′i)
end
update soft prompt θ̂ ← θ − α

∑m
i=1 gi

until training converged

individual learners θ′i. Meta learning is performed across
various meta-training tasks Ti sampled from p(T )

θ̂ = argmin
θ

∑
Ti

Lprompt(Dqry
i , θ − α∇θLuda(Dsup

i , θ)). (4)

Dqry
i represents the query set of Ti. The overall learning and

adaptation of meta soft prompt is shown in Algorithm 1. This
procedure is a kind multi-task learning over various domains.

IV. EXPERIMENTS

The proposed meta soft prompt language model was eval-
uated for multi-domain text classification by using the FDU-
MTL dataset [29] which is known as a challenging dataset
consisting of 16 domains, as shown in Table III, which were
broadly categorized into Amazon product reviews and movie
reviews. In the evaluation, one domain was chosen as target
domain, and the remaining domains were seen as source
domains. A binary sentiment classification with the classes of
positive and negative for reviews was performed. Classification
accuracy was reported in different sets of evaluation.

A. Evaluation for latent visualization

First, the goodness of meta soft prompt language model
for unseen domain data is evaluated. Figure 4 compares 2-D
visualization using t-SNE [30] for latent representation of the
mask tokens by using the prompted data in ‘books’ reviews.
Basically, the mask tokens using the proposed language model
are separate in the classes of positive and negative reviews,
and are domain-matching in source and target domains. In the
experimental setting, the soft prompt length 5 was used and
λ=0.8 was fixed.
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Fig. 4. Visualization on reviews of ‘books’ target domain using the proposed
meta soft prompt. (left) Positive and negative reviews are in blue and red, and
(right) source and target domain reviews are in orange and green, respectively.

TABLE I
ACCURACY (%) ON 4 DOMAINS OF FDU-MTL DATASET. NUMBER IN

BRACKETS SHOWS THE SOFT PROMPT LENGTH (S).

Domain FT SP (2) MSP (2) SP (5) MSP (5)
books 80.8 85.2 83.6 86.8 88.0
DVD 79.3 83.2 83.4 84.4 85.6
electronics 79.4 82.1 82.6 84.8 85.1
kitchen 79.5 84.5 86.2 86.1 87.6

B. Evaluation for document classification

The proposed meta soft prompt (MSP) is further compared
with traditional fine-tuning (FT) method and the previous soft
prompt (SP) [14]. The experiments on review or document
classification were conducted on four domains: books, DVD,
electronics and kitchen. For a fair comparison, the number of
learned parameters were set identically in all methods. For the
conventional fine-tuning, the number of trainable parameters in
the task-specific layer 768× 2 was chosen. As a consequence,
the length of soft prompt (S) was set to 2 as each prompt
was encoded as a 768-dimensional word embedding. The case
S=5 is also evaluated. The accuracy is shown in Table I which
indicates that the proposed MSP outperforms FT and SP in
various domains especially when the soft prompt length S is
increased to 5.

TABLE II
ACCURACY (%) AND NUMBER OF TRAINABLE PARAMETERS (N ) FOR THE

METHODS WITH/WITHOUT UDA USING S=10 WITH 4 OR 8 SHOTS.
MOE-TR [10] REQUIRES A LARGE-SCALED TRAINABLE MODEL.

Domain MoE-Tr SP MSP SP-4 MSP-4 MSP-8
books 90.0 87.5 88.6 87.9 88.7 89.0
DVD 89.3 86.2 86.9 87.0 88.5 88.1
electronics 90.6 87.4 88.4 87.9 89.2 90.3
kitchen 90.8 88.5 89.8 89.2 90.5 90.7
UDA yes no no yes yes yes
N 264M 7.68K 7.68K 7.68K 7.68K 7.68K

In Table II, the comparison is extended to a recent work
called the transformer-based multi-source domain adaptation
(MoE-Tr) [10], which introduced a mixture of experts by
using multiple trainable PLMs in adaptation where the number
of trainable parameters is N=264M. MoE-Tr performed the
domain adversarial learning [31] where many shots were used.
Instead, MSP has N=7.68K and only adopts one single frozen
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PLM. Unsupervised domain adaptation works for SP and MSP.
The improvements by increasing shot number and soft prompt
length are obtained.

TABLE III
ACCURACY (%) ON 16 DOMAINS OF FDU-MTL DATASET.

Domain MT-DNN ASP-MTL MAN-L2 MAN-NLL BERT MSP
books 82.2 84.0 87.6 86.8 87.0 89.0
DVD 84.2 85.5 88.1 88.6 85.6 88.1
electronics 81.7 86.8 87.4 88.8 88.3 90.3
kitchen 80.7 86.2 89.8 89.9 91.0 90.7
apparel 85.0 87.0 87.6 87.6 90.0 92.0
camera 86.2 89.2 91.4 90.7 90.0 90.8
health 85.7 88.2 89.8 89.4 88.3 91.3
music 84.7 82.5 85.9 85.5 86.8 87.8
toys 87.7 88.0 90.0 90.4 91.3 90.8
video 85.0 84.5 89.5 89.6 88.0 88.4
baby 88.0 88.2 90.0 90.2 91.5 91.3
magazine 89.5 92.2 92.5 92.9 92.8 90.2
software 85.7 87.2 90.4 90.9 89.3 90.9
sports 83.2 85.7 89.0 89.0 90.8 91.8
IMDb 83.2 85.5 86.6 87.0 85.8 88.3
MR 75.5 76.7 76.1 76.7 74.0 80.4
AVG 84.3 86.1 88.2 88.4 88.1 89.5

Next, the proposed MSP language model is compared with
the previous multi-task learning methods over various domains
of FDU-MTL dataset. The experiments were setup by choosing
one domain as the target for testing and the remaining domains
as the sources for training. After the meta training on different
source domains is done, the learned meta soft prompt is
adapted to a target domain by using 8 shots of unlabeled
reviews. The adapted meta soft prompt is collaborated with
the frozen PLM to conduct evaluation on the target domain.
The results are shown in Table III. These results are consis-
tently compared with strong baselines including the multi-task
deep neural network (MT-DNN) [32], the adversarial multi-
task learning (ASP-MTL) [29], the multinomial adversarial
network with the least square loss (MAN-L2), the negative
log-likelihood loss (MAN-NLL) [33], and the BERT model
[2] which is fine-tuned on each domain. ASP-MTL [29] used
abundant unlabeled samples from the target domain. Instead,
MSP only adopted 8 unlabeled samples for domain adaptation.
The results reveal that MSP obtains the highest averaged
accuracy in most of domains.

V. CONCLUSIONS

This paper has presented the meta soft prompt language
model with few-shot domain adaptation. The learned meta soft
prompt was appended to input data and adapted to different
domains by using the frozen pre-trained model with few-shot
unlabeled samples in target domain. The results have shown
that the meta soft prompt could successfully boost a frozen
pre-trained model to capture domain-specific information and
achieved desirable results by only training a few parameters.
For future work, the proposed method could be integrated with
other unsupervised domain adaptation in the inner optimiza-
tion for meta learning. Furthermore, the proposed method is
feasible to collaborate with not only masked language model
but also sequence-to-sequence model or autoregressive model.
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[26] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy,
D. Downey, and N. A. Smith, “Don’t stop pretraining: Adapt language
models to domains and tasks,” in Proc. of Annual Meeting of Association
for Computational Linguistics, 2020, pp. 8342–8360.

[27] X. Han and J. Eisenstein, “Unsupervised domain adaptation of contex-
tualized embeddings for sequence labeling,” in Proc. of Conference on
Empirical Methods in Natural Language Processing, 2019, pp. 4238–
4248.

[28] C. Karouzos, G. Paraskevopoulos, and A. Potamianos, “UDALM:
unsupervised domain adaptation through language modeling,” in Proc. of
Conference of North American Chapter of Association for Computational
Linguistics: Human Language Technologies, 2021, pp. 2579–2590.

[29] P. Liu, X. Qiu, and X. Huang, “Adversarial multi-task learning for
text classification,” in Proc. of Annual Meeting of Association for
Computational Linguistics, 2017, pp. 1–10.

[30] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605,
2008.

[31] J.-C. Tsai and J.-T. Chien, “Adversarial domain separation and adap-
tation,” in Proc. of International Workshop on Machine Learning for
Signal Processing, 2017, pp. 1–6.

[32] X. Liu, J. Gao, X. He, L. Deng, K. Duh, and Y. Wang, “Representation
learning using multi-task deep neural networks for semantic classification
and information retrieval,” in Proc. of Conference of North American
Chapter of Association for Computational Linguistics, 2015, pp. 912–
921.

[33] X. Chen and C. Cardie, “Multinomial adversarial networks for multi-
domain text classification,” in Proc. of Conference of North American
Chapter of Association for Computational Linguistics: Human Language
Technologies, 2018, pp. 1226–1240.

6


