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Abstract  

Efficient production of hydrogen is of paramount importance to meet the global energy 

demands of the 21st century. Methane Steam Reforming (MSR) is a major contributor to 

hydrogen production at the industrial scale. In chemical industries, Ni is the preferred choice 

as a catalyst for the MSR reaction due to its high activity and low price. However, it is highly 

susceptible to coking at steam reforming conditions. Ni catalyst deactivation (due to “coking”) 

in MSR is a critical industrial challenge that requires imminent solutions. In this contribution, 

we have employed Density Functional Theory (DFT) calculations, microkinetic (MK) models, 

and Kinetic Monte Carlo (KMC) simulations to gain a fundamental understanding of the coking 

thermodynamics and intrinsic chemistry of MSR. At first, we performed a detailed screening 

study to identify a suitable DFT functional for the MSR-graphene system (“graphene” is a 

model for coke at the molecular level). The DFT predictions were systematically compared to 

experimental binding energies of MSR species and graphene (obtained from the literature). 

Subsequently, we developed a first-principles-based KMC model for the methane cracking 

reaction on Ni(111) to understand the coke morphology and identify conditions of coking. The 

thermodynamic stabilities of large-body carbon-based configurations were captured under the 

cluster expansion (CE) framework of KMC. Upon completion of the aforementioned study, we 

performed CE-based KMC simulations to elucidate the role of potassium in MSR. The MSR 

reaction was modelled on the clean Ni(111) and potassium-doped (with different loadings) 

Ni(111) surfaces. The effect of potassium on MSR kinetics was thoroughly investigated. 

Finally, we formulated an ab-initio MK model for the methane cracking and C-C coupling 

reactions to understand the coking mechanism on Ni(111). The MK model identifies favourable 

coking pathways and rate-limiting/inhibiting events. These investigations pave the way for 

identifying next-generation Ni-based catalysts that are resistant to poisoning.  
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Impact Statement  

There is tremendous interest in the scientific community to use hydrogen as an alternative 

clean energy source in fuel cells to effectively tackle impending threats to humanity such as 

climate change/global warming. MSR contributes substantially to the commercial output of 

hydrogen worldwide. In the United States, MSR is responsible for around 95% of the yearly 

hydrogen production. The Ni catalyst used in the MSR process is prone to deactivation 

predominantly due to coking. Chemical industries spend billions of dollars annually to 

replace/regenerate deactivated Ni catalysts. In this regard, the thesis attempts to shed light 

on the fundamental aspects of the coking problem at the molecular level. In this thesis, we 

have performed a systematic DFT functional screening study to quantify the computational 

error/uncertainty in the first-principles-based design of coke-resistant Ni catalysts. The results 

of the screening study act as a valuable guide for the academic/catalysis community to swiftly 

select the suitable DFT functional for investigating the coking mechanism in MSR reaction. 

Furthermore, the screening study also opens up avenues for DFT method development. In 

subsequent parts of the thesis, we studied the coking thermodynamics using CE-based KMC 

simulations. These KMC models shed light on the coke morphology and identify the conditions 

where Ni is susceptible to coking. These computations establish the superiority of the KMC 

simulation over traditional mean-field MK models that fail to capture adsorbate correlation 

effects accurately. The KMC model predictions can potentially aid/motivate future 

experimental studies and collaborations to identify design strategies that reduce the coking 

propensity of Ni at steam reforming conditions. Although potassium (alkali-based promoter) is 

used to alleviate coking at the industrial scale, its promotional effect is not well understood. In 

this contribution, we developed a CE-based KMC model to rationalise the role of potassium in 

the MSR reaction. We clearly identify the mechanisms/pathways that potassium promotes 

during the MSR reaction. These results are of high importance from an industrial standpoint, 

providing a deeper understanding on the existing solutions to coking at the commercial level. 

The KMC findings can be further validated by performing suitable experimental works. 

Furthermore, the KMC computations also provide a framework to identify novel Ni-based 

alloys and promoters that are highly resistant to coking. In the final parts of the thesis (chapter 

6), we also delved into the coking mechanism. We developed a simple MK model to predict 

the favourable pathways and rate-limiting/inhibiting steps of the coking process. These 

preliminary investigations are important as industrialists are keen on gaining a thorough insight 

into the growth mechanism of carbon whiskers (coke). Overall, the outcomes of this thesis 

have profound implications for both academia and industry.  
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1. Thesis background  

In this thesis, we have primarily focussed on understanding the coking thermodynamics and 

intrinsic kinetics of Methane Steam Reforming (MSR) on Ni(111) using first-principles-based 

Kinetic Monte Carlo (KMC) simulations. In this chapter, we provide a brief overview about 

MSR and the coking problem of Ni catalysts. Furthermore, we identify the research gaps and 

clearly state the objectives of our study.  

1.1 Methane steam reforming  

Since the inception of industrial revolution in the late 18th century, hydrogen has been an 

indispensable part of several chemical processes. In the petrochemical industry, hydrogen is 

widely used in a variety of operations such as removal of sulphur/nitrogen containing 

compounds from crude oil, hydrogenation of unsaturated hydrocarbons and methanol 

production. Hydrogen plays a critical role in the manufacture of ammonia (an important raw 

material for producing fertilizers). In recent years, several investigations have been conducted 

to use hydrogen as an alternative fuel in automobiles.1,2 With the burgeoning growth of 

technological prowess in the 21st century, there is tremendous interest to tap into the potential 

of hydrogen energy.3 The scale of hydrogen production in chemical industries is important for 

meeting the energy demands of the future. Generally, hydrogen is produced in the chemical 

industries using processes such as MSR, partial oxidation of methane and dry reforming of 

methane.4,5 Among the aforementioned processes, MSR is an important contributor to the 

production of hydrogen. In the United States, around 95% of hydrogen is produced from the 

MSR process.6 Currently, MSR is reported to be the most efficient and economically cheap 

industrial method available for hydrogen production.7 

MSR involves the formation of syngas (H2 and CO) from methane and steam. It is a highly 

endothermic process with a standard reaction enthalpy of 206 kJ/mol.8,9 The temperature and 

pressure of MSR range from 600-900 ⁰C and 10-30 bar, respectively.10 The steam-to-methane 

ratio is maintained in the range of 2-4.8 The main reforming reaction is stated below. The water-

gas shift reaction is an important side reaction at steam reforming conditions.6,11  

𝐶𝐻4(𝑔)  +   𝐻2𝑂(𝑔)     𝐶𝑂(𝑔)   +   3𝐻2(𝑔) eq. 1 

𝐶𝑂(𝑔) + 𝐻2𝑂(𝑔)    𝐶𝑂2(𝑔)   +  𝐻2(𝑔) eq. 2 

The MSR process consists of a primary reformer, which has long tubes (typically 10 m in 

length) loaded with catalyst pellets. Several studies have shown that metals such as Pt, Pd, 

Ir, Ni, Ru and Rh are suitable catalysts for the MSR reaction. Among these metals, Ni is 

commonly the preferred choice as a catalyst for MSR due to its cheap price and high activity. 

As with any reaction taking place on the surface of a heterogeneous catalyst, MSR comprises 

the following steps: Firstly, it involves the diffusion of species between the gas phase and the 

→

→
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catalyst surface. Secondly, there is an internal diffusion of species within the catalyst. Finally, 

a number of intermediate reactions occur in series/parallel to form products (H2, CO and CO2). 

The detailed reaction pathways of MSR are very well established in the literature.9,10,12 As 

shown in Figure 1, the MSR reaction network can be primarily classified into four parts: 1) 

Methane cracking – it involves the dissociation of CH4(g) on Ni(111) to form CHx (x ranging 

from 1-3) and C species, 2) Water adsorption/dissociation – this includes adsorption and 

dissociation of H2O(g) to form OH/O species, 3) Reforming pathways – the CH/C species react 

with OH/O to form carbon monoxide (via several pathways) and 4) syngas formation – the 

hydrogen species associatively desorbs to form H2(g) and CO desorbs from the catalyst 

surface to CO(g) (which are end products of MSR).6 In Figure 1, the important reforming 

pathways have only been depicted. There are several other possible pathways to form CO 

(via CH2O, CH3O intermediates). However, Density Functional Theory (DFT) calculations and 

microkinetic (MK) studies have shown that these auxiliary pathways have little to no 

contribution to the CO(g) production rate.6,10 Therefore, in this work, we have solely focussed 

on the MSR pathways shown in Figure 1.   

 

Figure 1: The important elementary events of MSR reaction network.    

In the past few decades, several experimental studies have been conducted to gain a detailed 

understanding of the MSR kinetics. Some of the earliest experimental studies developed 

macroscopic/non-elementary rate equations to predict MSR rates. These studies provide little 

to no detail about the intermediate steps involved in the MSR reaction. Thus motivated, Xu 

and Froment13 conducted extensive laboratory-scale studies to delineate the kinetics of MSR. 
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The authors derived the reaction mechanism for MSR on Ni/MgAl2O4 catalyst using 

thermodynamic analysis and model discrimination/parameter estimation techniques. Initially, 

extensive sets of reaction pathways were considered. Most of these reaction sets were 

systematically eliminated by comparing to the experimental MSR reaction energy. The 

retained kinetic models were fitted to experimental rates using parameter estimation. The final 

kinetic model was thermodynamically consistent, and its kinetic parameters were statistically 

significant. Another important experimental work (with regards to the MSR reaction) was 

carried out by Wei and Iglesia.14 The authors found the reaction rates of MSR had a linear 

dependence on the partial pressure of methane. Furthermore, a rigorous kinetic/isotopic 

analysis was also performed which confirmed that the methane activation step is kinetically 

relevant and has a significant impact on the MSR rates. On the other hand, MSR rates were 

reported to be independent of the partial pressure of water. Aparicio15 developed a MK model 

to understand the MSR kinetics. The kinetic parameters of the MK model were obtained by 

combining experimental adsorption/desorption energies and isotopic analysis data with 

estimates of pre-exponential factors/activation energies. Similarly, Chen et al.16 also 

developed a MK model for dry reforming of methane on the Ni catalyst. An important 

shortcoming of this approach is that the experimental determination of kinetic 

parameters/constants of MSR elementary events/steps is an extremely challenging task 

(mainly due to the short lifetimes of several intermediates and extreme operating conditions 

of MSR).6 

With significant advancements made in computational power, DFT has been widely employed 

to estimate the activation barriers of MSR elementary events. Bengaard et al.17 constructed 

the potential energy surface (PES) diagram for the MSR reaction on Ni(111) and Ni(211) facets 

using DFT. The authors found the steps to be more active than the terrace sites. Furthermore, 

they reported that atomic carbon was more stable on the Ni(211) facet compared to Ni(111). 

Although useful information is obtained about the reaction chemistry of MSR from the 

aforementioned DFT study, the authors have not accounted for thermal/entropic effects (which 

are important as MSR reaction occurs at high temperature and pressure). Jones et al.18 

performed DFT calculations to develop the free energy profiles of MSR reaction on several 

transition metals. The free energies were computed on Ni(111) by using the concepts/formulae 

of statistical thermodynamics. The authors report that the methane activation and CO 

formation steps can be rate-limiting at MSR conditions. At lower temperatures (around 600 - 

800 K), it was found that the free energy barrier of CO formation is greater than CH4 activation, 

whereas at higher temperatures (900 - 1100 K), the free energy barrier of methane activation 

was greater than CO formation. The authors conclude that the rate-controlling step of MSR 

might have a dependency on the operating conditions. In recent years, several studies have 
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developed first-principles-based MK models to study the detailed kinetics of MSR on the Ni 

catalyst. Blaylock et al.6 developed a mean-field MK model of MSR on Ni(111) at industrial 

conditions. The study provides useful mechanistic information about the MSR reaction. The 

reforming pathway involving the CHO intermediate was found to be the most dominant at 

steam reforming conditions. The CHOH pathway was reported to be the second most 

dominant pathway on the Ni(111) facet. Sensitivity analysis revealed that CH4 adsorption, CHO 

pathway and CHOH pathway have a significant influence on the net rate of MSR (refer to 

Figure 1 for the reaction steps of the aforementioned reforming pathways). In a subsequent 

study, Blaylock et al.10 formulated a MK model for the MSR reaction on a multi-faceted Ni 

catalyst. The study shows that the MSR reaction is more active on the steps compared to 

open/terrace facets. The authors report that the COH and CHO pathways are dominant at low 

temperatures, whereas at high temperatures CO pathway (via direct oxidation of C and O) 

had a significant contribution to the overall rate compared to other pathways. The MSR overall 

rate was found to be sensitive to CH4 dissociation step and CH/C oxidation pathways. These 

studies are important contributions on the MSR kinetics (available in the open literature). 

Furthermore, many MK studies have also been carried out to investigate the dry reforming of 

methane on Ni surfaces.16,19,20 Nevertheless, MK models use mean-field approximations to 

account for surface coverage effects between MSR species. It is very well established that MF 

approximations fail to capture lateral interactions/correlation effects in a systematic way.21-24 

These effects can significantly influence the chemistry/kinetics of MSR reaction.  

1.2 Ni catalyst deactivation  

The deactivation of Ni catalyst is a major impediment to the productivity of the MSR process. 

The presence of hydrocarbons and extreme operating conditions (high temperatures and 

pressures) of MSR make Ni susceptible to deactivation. During the steam reforming reaction, 

the Ni catalyst undergoes deactivation via the following processes: carbon poisoning, sulphur 

poisoning and Ni particle sintering.25 Carbon poisoning mainly occurs due to the deposition of 

carbon-based intermediates on the Ni surface. These carbonaceous species can potentially 

block the active sites of the catalyst and increase the pressure drop of the reformer. The 

presence of sulphur containing compounds in the MSR input feed (in ppb level) could lead to 

sulphur deposition on the Ni surface. Sulphur is a common poison (similar to carbon-based 

intermediates). Sintering is a phenomenon in which the particle size of Ni increases due to 

agglomeration. This reduces the active surface area of the Ni catalyst and thereby reducing 

its activity. Concerted efforts are necessary to address the aforementioned challenges of the 

MSR reaction.  

Among the catalyst deactivation processes, carbon poisoning has been reported to severely 

affect the performance of MSR. The carbon poisoning process is commonly referred to as 
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“coking”.26-28 The coking process mainly involves deposition of carbonaceous species, which 

have been found to exist in the form of pyrolytic carbon, encapsulating carbon (gums) and 

carbon whiskers. The pyrolytic carbon is formed on the tubular walls of the reformer upon 

exposure of heavier hydrocarbons to high temperatures. Encapsulating carbon involves the 

deposition of CHx-type film on the Ni catalyst surface – this mainly occurs when the feed 

contains high amounts of aromatic carbon. Whisker carbon (also known as “Filamentous 

carbon”) is the most destructive form of coke.  The carbon formed in MSR binds to the step 

sites of the Ni catalyst initially and then migrates to the support side and agglomerates in the 

form of graphitic layers (carbon whiskers). Whisker carbon formation leads to significant 

reduction of Ni catalyst activity, increase in pressure drop and reactor blockage.29-31  

 

Figure 2: Pictorial representation of whisker carbon growth process on the Ni particle. Adapted 

from the work of Sehested (permissions obtained from the publisher).25 

In the last few decades, several experimental studies have been carried out to gain a 

comprehensive understanding of the whisker carbon formation process.32-35 It is generally 

accepted that the methane cracking (CH4(g) → C + 2H2(g)) and Boudouard (2CO → C + 

CO2(g)) reactions are primarily responsible for the growth of whisker carbon on the Ni catalyst 

surface at MSR conditions.30,36,37  Snoeck et al.30 performed extensive experiments to derive 
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a kinetic model that accounts for the growth of carbon whiskers in the methane cracking 

reaction. Apart from the surface reactions of methane cracking, the authors included three 

additional elementary steps to describe the whisker carbon growth of methane cracking: 1) 

the dissolution/segregation of carbon from the Ni surface (steps) into Ni bulk, 2) the diffusion 

of carbon through Ni bulk to the support side, 3) the precipitation of carbon in the form of 

whiskers on the support side (refer to Figure 2). It was hypothesised that at the coking 

threshold, the rate of whisker carbon formation is determined by the concentration difference 

between carbon gas and carbon bulk, while the diffusion of carbon from the bulk phase to the 

support side is fast. The authors also assumed that there is a uniform concentration of carbon 

at the Ni bulk and support side. Under these assumptions, a kinetic model was derived for the 

methane cracking reaction. The rate parameters of the model were determined by fitting to 

experimental data using parameter estimation techniques. Other studies have also used a 

similar approach to determine the coking propensity of Ni in the methane cracking reaction at 

steam reforming conditions.38-40 Although these studies provide useful insight into the whisker 

carbon formation on Ni, the coking process is far more complex. Despite these efforts, the 

morphology of coke (make up of “Whisker Carbon”) and its detailed kinetics on Ni remain 

elusive. First-principles based kinetic models of methane cracking can shed light on 

thermodynamic stabilities of carbon whiskers (CxHy species) at steam reforming conditions. 

These models can provide clues about the conditions at which Ni is most susceptible to coking 

and what type/shape of carbon-based clusters encapsulate the Ni surface at poisoning 

conditions. Furthermore, the basic build-up mechanism of carbon (via C-C coupling events), 

which leads to carbon whiskers on the Ni catalyst, can be potentially derived. These 

investigations are important for the design of poison resistant Ni based catalysts.  

1.3 Relevance of KMC simulations 

Traditionally, mean-field-based MK models are employed to study the kinetics of industrial 

reactions such as MSR, Water gas shift (WGS) and Fischer-Tropsch synthesis.6,41,42 Although 

mean-field MK models provide important information about the dominant pathways and 

sensitive elementary steps of a reaction network, the lateral interactions between adsorbates 

are not taken into account in a systematic way. As discussed previously, these effects can 

substantially alter the kinetics of reactions. In recent years, KMC simulations have gained 

significant prominence, as a viable alternative to mean-field MK models, for studying catalytic 

reactions under high species coverage regimes.43, In the KMC model, the lateral interactions 

are captured by using cluster expansion (CE) Hamiltonians44-46 (detailed information about CE 

methodology is provided in the subsequent section of the thesis). The KMC simulations have 

been employed to compute turnover rates and rate orders of ethylene hydrogenation on 

Pd(100) by including detailed adlayer energetics.47 Piccinin and Stamatakis48 conducted CE-



18 

 

based KMC simulations for the CO oxidation reaction on Pd(111). The authors were able to 

explain the apparent change in reaction order of CO oxidation at different reaction conditions 

(observed experimentally) by systematically accounting for lateral interactions between O and 

CO adspecies. Liu et al.49 used first-principles-based KMC simulations to model NO-CO 

reactions on Rh(100) and Rh(111) by including the lateral interactions. They computed 

turnover rates and identified sensitive elementary events of the reaction network. Chen et al.50 

performed KMC simulations for the formic decomposition reaction on Au18 nanoclusters. By 

including the adsorbate-adsorbate interactions in the KMC model, the study rationalises the 

experimentally observed highly selective nature of Au in producing HD from singly deuterated 

FA isotopomers. Wu et al.44 carried out Grand Canonical Monte Carlo (GCMC) simulations of 

NO oxidation on Pt(111). The adlayer energetics (comprising of oxygen species) were 

accurately captured by CE Hamiltonians. The parameters of the CE model were trained on an 

extensive set of DFT configurations of oxygen at varying coverages. The GCMC simulations 

predicted apparent activation barriers/rate orders, which were in excellent agreement with 

experimental results. Furthermore, KMC models have been used to understand the kinetics 

of CO oxidation on RuO2(111) and WGS reaction on Pt metal surfaces.51,52 These studies 

highlight the significance of using KMC as an important computational tool to capture 

adsorbate lateral interactions (in great detail) and intrinsic kinetics of catalytic reactions.  

1.4 Research gaps and thesis objectives 

The commercial catalyst employed for the MSR reaction is Ni/α-Al2O3.53 Although it is 

important to capture metal support interactions to gain a thorough understanding of the MSR 

kinetics and coke formation, in this study, we have solely focussed on developing kinetic 

models for the Ni(111) facet.54 Wei and Iglesia14 conducted experiments for the MSR reaction 

using Ni catalyst particles of approximately 7 nm in size. For an average Ni particle size of 7 

nm, Ni(111) is considered to be active and most abundant/stable facet (based on the truncated 

octahedron model).10 A recent study has shown that the methane dissociation (rate-controlling 

event of MSR) predominantly occurs on the Ni(111) surface at high carbon coverages (as the 

step sites are poisoned).6,55 As discussed in section 1.2, it is believed that the Ni nanoparticle 

is completely deactivated (detaches from the support) by the encapsulation of the Ni terrace 

sites by coke.25 Therefore, as a first approximation, we have modelled the MSR/coking 

chemistries on Ni(111) to gain fundamental insights.  

Even though extensive DFT studies have been carried out for the MSR reaction (in recent 

years), there is no systematic assessment of the error in the DFT predictions. It is well 

established in the literature that the choice of exchange-correlation functional is a major 

challenge in Kohn-Sham DFT. The exact form of exchange-correlation functional is 

unknown,56,57 and several approximations have been developed for the exchange-correlation 
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energy. Based on the choice of the exchange-correlation functional, the DFT prediction of 

adsorbate binding energies and activation barriers can vary substantially.56 There is a need 

for systematic benchmarking of DFT functionals with available experimental data - this mainly 

includes binding energies of MSR species and graphene (model for coke) on Ni(111). In this 

thesis (chapter 3), we have rigorously benchmarked several important DFT functionals for the 

MSR-graphene system. These computations are important to ensure that an appropriate 

choice is made for the DFT functional, and thereby, reduce the error in DFT-based design of 

poison-resistant Ni catalysts.  

As discussed earlier (in section 1.2), the formation of carbon whiskers (coking) on Ni is a major 

industrial challenge for the MSR reaction. In the past few years, there has been tremendous 

interest in the catalysis community to address the coking problem of Ni.31,37,58 Nevertheless, 

there are little to no literature studies that provide a detailed understanding of the coke 

morphology at MSR conditions. Furthermore, there is limited theoretical understanding on the 

conditions at which Ni is susceptible to coking. In Chapter 4 of the thesis, we developed a CE-

based KMC model for the methane cracking reaction on Ni(111). The KMC model accounts 

for the kinetics of C-H activation steps, while coke formation is treated at the level of 

thermodynamics. The CE parameters have been extensively trained on 173 DFT 

configurations of CxHy species (which exist in the form of rings, branches and chains) on 

Ni(111). The KMC model sheds light on the following at MSR conditions: 1) The influence of 

C-CH cluster interactions on the coke morphology, 2) Type/shape of CxHy cluster that is 

thermodynamically stable on the Ni(111) surface and 3) Conditions at which Ni is susceptible 

to coking. These simulations can potentially aid experimentalists in designing the next-

generation Ni-based catalysts that are more resistant to coking.  

In recent years, several solutions have been proposed to tackle the coking issue of the MSR 

reaction. A few MK/experimental studies have reported that alloying the Ni catalyst with noble 

metals such as Pt, Au and Ag can improve its stability.4,59,60. However, these Ni-based alloys 

are not very effective in reducing coke formation at the commercial scale. In chemical 

industries, doping Ni with potassium (alkali-based promoter) is a common practice to alleviate 

coke formation and improve MSR productivity.61 Despite numerous 

computational/experimental studies, a detailed understanding on the role of potassium in MSR 

reaction remains elusive. It is paramount to develop computational models that can clearly 

demonstrate the promotional effect of potassium on MSR kinetics. Thus motivated, we have 

performed KMC simulations for the MSR reaction on the pure and potassium-doped Ni(111) 

surfaces (refer to Chapter 5). The MSR coverages and turnover rates were estimated for 

different loadings of potassium on Ni(111). The KMC process statistics was thoroughly 

examined to identify the MSR elementary steps/events promoted by potassium. The flux 



20 

 

analysis was carried out to determine the dominant reforming pathways of MSR in the 

presence of potassium. These investigations provide a comprehensive insight into the 

potassium effect at steam reforming conditions.  

Although several attempts have been made in the past, our understanding on the kinetics of 

coking is limited.25,62 In order to design coke-resistant Ni catalysts, it is critical to gain a 

thorough insight into the coking mechanism at MSR conditions. Therefore, in chapter 6 of this 

thesis, we have developed a first-principles-based MK model of methane cracking and C-C 

coupling reactions to delineate the coking kinetics on Ni(111). We report the coverage profiles 

of dominant species as a function of temperature. The dominant pathway of coke formation is 

predicted. Furthermore, we also perform sensitivity analysis to identify the rate-

inhibiting/limiting events. These preliminary computations lay the foundation for more 

elaborate models on the whisker carbon growth at steam reforming conditions. 
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2. Methodology 

In this chapter, we have provided a broad outline on the underpinning concepts of DFT. The 

practical considerations made in DFT calculations of periodic systems have been explained. 

We discuss the basic idea/assumptions of transition state theory in the context of kinetic 

modelling. We also provide a thorough discussion on the working principles of KMC and MK 

models. Furthermore, the key advantages and limitations of MK and KMC models are 

highlighted.  

2.1 Principles of quantum mechanics  

Quantum theory has played a pivotal role in our understanding of the electronic structure of 

matter. The current theoretical methods use the fundamental equations of quantum mechanics 

to predict the properties of materials. Any material is primarily a collection of electrons and 

nuclei. The energy of an interacting system of electrons and nuclei can be described using the 

time-independent, non-relativistic Schrödinger equation: 

𝐻̂𝛹 = 𝐸𝛹 eq. 3 

In eq. 3,  𝐻̂ is the Hamiltonian operator, 𝛹 is the wave function and 𝐸 is the total energy of the 

system.63 The wave function 𝛹 does not have any physical meaning. However, the squared 

modulus of the wavefunction (|𝛹2|) gives the probability density of finding a particle at any 

point in space.64 The Hamiltonian operator 𝐻̂ for a system of n electrons and T nuclei is defined 

below (in terms of atomic units).  

𝐻̂ =  ∑
−∇𝑖

2

2

𝑛

𝑖=1

 +  ∑∑
𝑍𝑘

|𝑟𝑖 − 𝑅𝑘|

𝑛

𝑖=1

𝑇

𝑘=1

 +  ∑∑
1

|𝑟𝑖 − 𝑟𝑗|

𝑛

𝑗>𝑖

𝑛

𝑖=1

 −  ∑
∇𝑘
2

2𝑀𝑘

𝑇

𝑘=1
 +∑∑

𝑍𝑘 𝑍𝑙
|𝑅𝑘 − 𝑅𝑙|

𝑇

𝑙>𝑘

𝑇

𝑘=1

 eq. 4 

The symbols used in the above equation have the following meaning: 𝑍 is the atomic number, 

the position of the electron is represented by vector 𝑟, M is the ratio of mass of nucleus to 

mass of electron, 𝑇 indicates the number of nuclei and 𝑛 represent the number of electrons 

and 𝑅 is a vector that gives the position of the nucleus in the system.  

An important principle of quantum mechanics is the Born-Oppenheimer approximation, 

according to which, the value of nuclei kinetic energy is much lower in comparison to the 

kinetic energy of electrons. This assumption allows us to propose a Hamiltonian which 

accounts for the motion of electrons for a fixed position of nuclei.63 The simplified expression 

of the Hamiltonian is as follows:65  

𝐻̂ =  ∑
−∇𝑖

2

2

𝑛

𝑖=1

 +∑∑
𝑍𝑘

|𝑟𝑖 − 𝑅𝑘|

𝑛

𝑖=1

𝑇

𝑘=1

 +  ∑∑
1

|𝑟𝑖 − 𝑟𝑗|

𝑛

𝑗>𝑖

𝑛

𝑖=1

 +∑∑
𝑍𝑘  𝑍𝑙

|𝑅𝑘 − 𝑅𝑙|

𝑇

𝑙>𝑘

𝑇

𝑘=1

   eq. 5 
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The Hamiltonian for an n-electron system (where n>1) has several electron pair interactions, 

and it is mathematically intractable to find an analytical solution for the Schrödinger equation. 

In the last 50 years, several mathematical approaches and algorithms have been developed 

to provide a reasonable approximate solution for the Schrödinger equation.63  

2.1.1 Variational principle  

To date, most of the algorithms use the variational principle to solve the Schrödinger equation. 

The variational principle of quantum mechanics makes an important generalisation about the 

ground state energy of the wave function. It states that the expectation value of the 

Hamiltonian obtained by using any normalised wave function is always greater than or equal 

to the actual ground state energy of the system.66 For a system of 𝑛 electrons, the solution of 

the Schrödinger equation yields a set of eigenfunctions |𝛹𝑖⟩ with corresponding eigenvalues 𝐸𝑖 

(refer to eq. 6): 

𝐻̂|𝛹𝑖⟩  =  𝐸𝑖|𝛹𝑖⟩, where 𝑖 = 0,1,2……𝑛  eq. 6 

𝐸0 is the ground state energy of the system. According to the variational principle, if we choose 

any random wave function |𝜑⟩ which is normalized (eq. 7), then the value of the total energy 

obtained using the wave function |𝜑⟩ will always be greater than or equal to the ground state 

energy 𝐸0 (as shown in eq. 8).  

⟨𝜑|𝜑⟩ =  ∫ 𝜑∗𝜑 

∞

−∞

𝑑𝑣 =  1    eq. 7 

⟨𝜑|𝐻̂|𝜑⟩  = ∫ 𝜑∗𝐻̂𝜑 

∞

−∞

𝑑𝑣 ≥  𝐸𝑜 eq. 8 

The variational principle allows us to define an initial trial wave function (the function has a 

dependency on a set number of parameters) for estimating the ground state energy. The 

parameters of the trial wave function can be altered until a minimum is found for the total 

energy value. This minimum is referred to as the variational prediction of the ground state 

energy of the system.67  

2.2 DFT method  

The DFT methodology is widely accepted to be reasonably accurate and computationally 

efficient theoretical method available for modelling the electronic structure of materials. There 

are two fundamental theorems of DFT, which were developed by Hohenberg and Kohn.65 The 

first theorem of DFT states that the total energy of an n-electron interacting system can be 

expressed as a distinct functional of the ground-state electron density. The ground-state 

electron density contains all the information necessary to estimate the properties of the 
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system.68 If the Schrödinger equation can be expressed in terms of electron density, then the 

N-electron problem is reduced from 3N dimensions to three dimensions. However, the first 

DFT theorem does not provide any information about the properties of the functional. The 

second theorem of DFT states the following: the electron density that minimises the value of 

the energy functional is the actual ground-state electron density of the system. This principle 

tells us that the ground-state electron density can be obtained by using the variational 

approach.66,68 

According to the aforementioned theorems of DFT, the total energy of an n-electron interacting 

system can be formulated as a functional of the electron density 𝜂(𝑟) (eq. 9). 

𝐸[𝜂] =  𝑅[𝜂]  + 𝐸𝑛𝑒[𝜂]  + 𝐸𝑒𝑒[𝜂] eq. 9 

In the above equation, 𝑅[𝜂] is the total kinetic energy, 𝐸𝑛𝑒[𝜂] indicates the nucleus-electron 

interaction energy and 𝐸𝑒𝑒[𝜂] is the electron-electron interaction energy.66,68 

An important caveat in this approach is that the functional form of the energy is not known. To 

address this problem, Kohn-Sham replaced the n-electron system with a hypothetical model 

of non-interacting electrons, which has the same density 𝜂(𝑟). The non-interacting system 

comprises of single electron spin orbitals 𝜑𝑖
𝜎(𝑟) (where 𝑟 is the space coordinate and 𝜎 

represents the spin). The density of the non-interacting system is evaluated as a sum of 

squares of the probability amplitude of 𝜑𝑖
𝜎(𝑟) (eq. 10). Similarly, the kinetic energy of the non-

interacting system is defined using the single electron spin orbitals (eq. 11). The Hartree 

energy (𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝜂]) accounts for the electron-electron repulsions in terms of electron density. 

It also includes electron self-interaction terms (eq. 12): 

𝜂(𝑟) =  ∑∑|𝜑𝑖
𝜎(𝑟) |2

𝑛𝜎

𝑖𝜎

 eq. 10 

𝑅𝐾𝑆[𝜂] =  ∑∑∫𝜑𝑖
𝜎(𝑟)∗

−𝛻𝑖
2

2

𝑛𝜎

𝑖

 𝜑𝑖
𝜎(𝑟) 𝑑3𝑟

𝜎

  eq. 11 

𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝜂] =    
1

2
 ∫𝑑3𝑟 𝑑3𝑟′  

𝜂(𝑟) 𝜂(𝑟′)

|𝑟 − 𝑟′|
 eq. 12 

In the Kohn-Sham model, the total energy of the system is given by the following equation:  

𝐸[𝜂] =  𝑅𝐾𝑆[𝜂]  + 𝐸𝑛𝑒[𝜂]  + 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝜂]  + 𝐸𝑥𝑐[𝜂]  eq. 13 

𝐸𝑥𝑐[𝜂] =   𝑅[𝜂] +  𝐸𝑒𝑒[𝜂] − (𝑅𝐾𝑆[𝜂]  + 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝜂])   eq. 14 

The last term of eq. 13 (𝐸𝑥𝑐[𝜂]) is referred to as the exchange-correlation energy. It accounts 

for the difference in kinetic energy and electron-electron repulsion energy, between the original 

system and the Kohn-Sham model, as shown in eq. 14.68 Solving the Kohn Sham equations 
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will give us the same energy as the original system. The variational method is used to minimise 

the total energy of the Kohn-Sham system; the single electron wave functions are varied 

subject to the constraint that they remain orthonormal (eq. 15).66 

〈𝜑𝑖
𝜎| 𝜑𝑗

𝜎′〉 =  𝛿𝑖,𝑗 𝛿𝜎,𝜎′   eq. 15 

The minimisation of the Kohn-Sham total energy yields a set of equations (as represented in 

eq. 16), which are solved using the self-consistent field (SCF) approach. 

(𝐻𝐾𝑆
𝜎 −  𝜀𝑖

𝜎) 𝜑𝑖
𝜎(𝑟)  = 0    eq. 16 

 𝐻𝐾𝑆
𝜎 = −

∇2

2
 +  𝑉𝐾𝑆

𝜎 (𝑟) eq. 17 

 𝑉𝐾𝑆
𝜎 (𝑟) = 𝑉𝑒𝑥𝑡(𝑟) +  𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝑟) + 𝑉𝑥𝑐

𝜎  (𝑟) eq. 18 

In eq. 17, the term 𝑉𝐾𝑆
𝜎 (𝑟) is the Kohn-Sham potential. It comprises the nuclei-electron 

interaction 𝑉𝑒𝑥𝑡(𝑟), the Hartree interactions 𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝑟) and the exchange-correlation term 

𝑉𝑥𝑐
𝜎  (𝑟)68 (as shown in eq. 18). Figure 3 depicts the fundamental working principle of solving 

the Kohn-Sham equations in the form of a flow sheet. 

2.2.1 Exchange-correlation approximations 

As discussed previously, the Kohn-Sham model introduces an exchange-correlation term, 

which includes the corrections for the kinetic energy and the self-interaction error generated 

due to the Hartree energy. The exact functional relationship between electron density and 

exchange-correlation energy is unknown. In the past few decades, several approximations 

have been suggested for the exchange-correlation term. One of the earliest proposals includes 

the Local Spin Density Approximation (LSDA). The exchange and correlation interactions are 

considered as short-range effects in LSDA calculations. At any given point 𝑟, the energy 

density of exchange-correlation is calculated by assuming a homogeneous electron gas 

system with the same density, as shown in eq. 19: 

𝐸𝑥𝑐
𝐿𝑆𝐷𝐴[𝜂↑, 𝜂↓] =    ∫ 𝜂(𝑟)  𝜀𝑥𝑐

ℎ𝑜𝑚 (𝜂↑(𝑟), 𝜂↓(𝑟)) 𝑑3𝑟 eq. 19 

The LSDA calculations were found to over predict the binding energy of most molecules. To 

improve the performance of LSDA, a few studies have incorporated the gradient of the density 

as a functional of exchange-correlation energy; this approach is known as the Generalized 

Gradient Approximation (GGA). The generic mathematical representation of GGA is given 

below:68 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝜂↑, 𝜂↓] =    ∫ 𝜂(𝑟)  𝜀𝑥

ℎ𝑜𝑚(𝜂) 𝐹𝑥𝑐(𝜂
↑, 𝜂↓, |∇𝜂↑|, |∇𝜂↓|) 𝑑3𝑟 eq. 20 
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Figure 3: A schematic representation of the solution of Kohn-Sham equation using the SCF 

procedure.68  
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In eq. 20, 𝜀𝑥
ℎ𝑜𝑚(𝜂) is the exchange energy of the homogenous electron gas and  𝐹𝑥𝑐 is a 

dimensionless enhancement factor. The value of  𝐹𝑥𝑐 depends upon the gradient of the density. 

GGA functionals are widely used by computational chemists to perform DFT calculations. 

Some important examples of GGA functionals include Becke (B88), Perdew and Wang 

(PW91), and Perdew, Burke, and Enzerhof (PBE).68 

2.2.2 Dispersion inclusive DFT functionals  

Dispersion effects (colloquially called as van der Waals forces) are long-range attractive 

interactions, which typically originate due to dipole-dipole forces present between electrons 

separated at a finite distance. The van der Waals forces play an important role in determining 

the binding strength of several materials such as biomolecules, adsorbates and graphene-

metal interfaces. The exchange-correlation approximations described in the previous sections 

- LDA and GGA functionals - do not capture the van der Waals forces.69 Other higher-order 

approximations such as meta-GGA and hybrid functionals also fail to incorporate van der 

Waals forces.70 The description of van der Waals interactions is a major challenge of modern 

DFT. In recent years, several types of functionals have been developed to explicitly account 

for the van der Waals forces between atoms/molecules. DFT-D and van der Waals density 

functionals (vdW-DF) are two classes of functionals that have been reported to be successful 

in describing van der Waals forces for many cases.69 

2.3 Practical aspects of DFT calculations 

At the atomistic level, most metallic systems are known to exist in the form of periodic crystals. 

The crystal lattice structure consists of a unit cell, which is translated across space. The 

translation vector in three dimensions (𝑄(𝑛)) is represented using a set of primitive lattice 

vectors 𝑎1, 𝑎2 and 𝑎3.  

The symmetry and periodic properties of crystals, such as Ni, are exploited to reduce the 

computational time of DFT calculations.71 Some of the important working principles of periodic 

DFT calculations are discussed in the following subsections. 

2.3.1 Bloch’s theorem 

Any periodic function f(r) can be represented using a Fourier series in k space (r and k are 

vectors in real and reciprocal space, respectively). In a crystal, the relationship between the 

vectors k and r can be deduced by using Born-Von Karmen periodic boundary conditions.71 

For a given real space lattice vectors 𝑎1, 𝑎2 and 𝑎3, the k vectors are defined by reciprocal 

components 𝑏1, 𝑏2 and 𝑏3, which satisfy the condition stated below:   

𝑎𝑖 . 𝑏𝑖 = 2𝜋  (where 𝑖 can take values 1,2 and 3) eq. 22 

𝑄(𝑛) = 𝑛1𝑎1 + 𝑛2𝑎2 + 𝑛3𝑎3 (𝑛1, 𝑛2 and 𝑛3 are integers)       eq. 21 
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𝛹𝑘(𝑟) =   𝑒
𝑖𝑘.𝑟𝑢𝑘(𝑟) eq. 23 

According to Bloch’s theorem, if the Hamiltonian of the Schrödinger equation is a periodic 

operator, then each of the eigenfunctions can be defined as a product of a phase factor (𝑒𝑖𝑘.𝑟) 

and a periodic function 𝑢𝑘(𝑟), which has the same periodicity as the crystal. This wave function 

of a periodic potential (eq. 23) allows us to compute properties such as total energies and 

electron density by integrating over k in the reciprocal space.71 

2.3.2 Brillouin zone integration 

The Brillouin zone is a specific region in the reciprocal lattice. The first Brillouin zone is defined 

by the intersection of planes, which are perpendicular bisectors of the vectors joining the origin 

to its nearest lattice points. Any wave vector in the reciprocal space can be translated to the 

first Brillouin zone. Thus, all the essential properties of a periodic crystal can be estimated by 

integrating over the volume of the first Brillouin zone. In the equation below, 𝑔𝑖(𝑘) is any 

function in k space, 𝑉𝐵𝑍 is the volume of the first Brillouin zone and 𝑔̅𝑖 is the mean value of the 

function.  

𝑔̅𝑖 = 
1

𝑉𝐵𝑍
 ∮ 𝑔𝑖(𝑘)𝑑𝑘 eq. 24 

In DFT calculations, the above integral is expressed as a weighted sum of a set of discrete 

points (which are called as k-points, refer to eq. 25).  

𝑔̅𝑖 = 
1

𝑉𝐵𝑍
 ∑𝑤𝑘  𝑔𝑖(𝑘)

𝑘

 eq. 25 

In the equation above, 𝑤𝑘 indicates the weight. The number of k-points is usually selected by 

performing a systematic convergence test. The Brillouin zone summation significantly reduces 

the computational cost of periodic DFT calculations.63,71  

2.3.3 Plane-wave energy cut-off 

As discussed previously, in a periodic system, the eigenfunction of the Schrödinger equation 

is written as a product of a phase factor and a periodic function (eq. 23). The function 𝑢𝑘(𝑟) 

can be represented using a basis set of plane waves (eq. 26).  

𝑢𝑘(𝑟) =  ∑𝐶𝐺
𝐺

 exp(𝑖𝐺. 𝑟) eq. 26 

𝐺 = 𝑚1𝑏1 + 𝑚2𝑏2 + 𝑚3𝑏3  (𝑚1,𝑚2 𝑎𝑛𝑑 𝑚3 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠) eq. 27 

𝐺 is a vector expressed using the reciprocal lattice components 𝑏1, 𝑏2 and  𝑏3. Using eq. 23 

and eq. 26, the following relation can be derived for the wavefunction (refer to eq. 28):  
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𝛹𝑘(𝑟) =  ∑𝐶𝑘 + 𝐺
𝐺

 exp(𝑖(𝑘 + 𝐺). 𝑟) eq. 28 

 𝐸𝑐𝑢𝑡 =
ℏ2

2𝑚
|𝑘 + 𝐺|2 = 

ℏ2

2𝑚
 𝐺𝑐𝑢𝑡
2  eq. 29 

The vector 𝐺 can take infinite number of values. It is impractical to include all the values of 𝐺 

in a DFT calculation, and thus, a cut-off energy 𝐸𝑐𝑢𝑡 is defined to truncate the infinite series of 

plane waves. Any vector G, which has an energy value greater than 𝐸𝑐𝑢𝑡 (eq. 29), is not 

included in the plane-wave basis set. Usually, the value of 𝐸𝑐𝑢𝑡 is selected for an electronic 

system by performing a convergence study.63 

2.3.4 Pseudopotentials 

The core electrons of an atom do not directly participate in bond formation and cleavage. The 

computational cost of DFT calculations can be significantly decreased by approximating the 

influence of core electrons. Pseudopotentials substitute the electron density of core electrons 

with a fictitious potential that has similar mathematical and physical features; this approach is 

called the frozen core approximation. The use of pseudopotentials substantially reduces the 

size of the plane-wave basis set. Some of the important types of frozen core approximations 

include hard pseudopotentials, ultrasoft pseudopotentials (USPPs) and projector augmented 

waves (PAW). The PAW method is widely accepted as a suitable approach for DFT 

calculations.63 

2.3.5 Transition state search algorithms 

A Transition state (TS) is a first-order saddle point in the potential energy surface (PES) region. 

If a good initial guess of the TS configuration is available, the Quasi-Newton optimisation 

algorithm can be used to locate first-order saddles. However, in most cases, it is difficult to 

predict the TS geometry with the Quasi-Newton method. To overcome this problem, several 

TS search methods such as dimer72 and Nudged Elastic Band (NEB)73,74 have been 

developed. In the dimer method, two images of the system are used. These two images are 

created by slightly perturbing the system by a finite distance (∆𝑅) in the opposite directions 

using a displacement unit vector 𝑁̂ (a random vector, which provides the orientation to the 

dimer) (refer to eq. 30 and eq. 31). 

𝑅1 = 𝑅 + ∆𝑅𝑁̂ eq. 30 

𝑅2 = 𝑅 − ∆𝑅𝑁̂ eq. 31 

The dimer algorithm evaluates the forces and energies of the two images (at every step) to 

translate the system towards the transition state (first-order saddle). Furthermore, at each 

step, the two-image system is also rotated in an attempt to align it to the Minimum energy path 
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(MEP). The dimer algorithm does not require any information regarding the product 

configuration (final state) of the system. However, it is necessary to provide a good initial guess 

of the vector 𝑁̂. If the initial displacement is not a good guess, then the dimer algorithm might 

converge to an undesired transition state.72  

In the NEB approach, a trial MEP is defined, which connects the reactant and product states 

by using a set of images. Each image has a unique configuration. These images are located 

at positions r1, r2, r3 ….. rn-1 of the PES region. The forces between the images are defined by 

harmonic equations (spring forces). The typical NEB calculation is a constrained optimisation. 

The force update for any ith image is calculated by summing up the parallel component of the 

spring force and perpendicular component of the DFT force (along the local tangent) (as 

shown in the equations below):74 

𝐹𝑖,𝑠𝑝𝑟𝑖𝑛𝑔
𝑝𝑎𝑟

= 𝑘(|𝑟𝑖+1 − 𝑟𝑖| − |𝑟𝑖 − 𝑟𝑖−1|). â eq. 32 

𝐹𝑖,𝐷𝐹𝑇
𝑝𝑒𝑟

 =    𝐹𝑖,𝐷𝐹𝑇  − (𝐹𝑖,𝐷𝐹𝑇. â)  eq. 33 

𝐹𝑖,𝑢𝑝𝑑𝑎𝑡𝑒 = 𝐹𝑖,𝑠𝑝𝑟𝑖𝑛𝑔
𝑝𝑎𝑟

+  𝐹𝑖,𝐷𝐹𝑇
𝑝𝑒𝑟

 eq. 34 

In eq. 32, eq. 33 and eq. 34, 𝐹𝑖,𝑠𝑝𝑟𝑖𝑛𝑔
𝑝𝑎𝑟

 is the parallel component (along the local tangent) of the 

spring force of image i, 𝑘 indicates the spring constant, 𝑟𝑖 is the position of the image i, â is a 

unit vector in the direction of the local tangent, 𝐹𝑖,𝐷𝐹𝑇
𝑝𝑒𝑟

 represents the perpendicular component 

(along the local tangent) of the DFT computed force on the ith image and 𝐹𝑖,𝑢𝑝𝑑𝑎𝑡𝑒 indicates 

the force update of image i. The NEB algorithm attempts to push the images to the MEP. In 

most NEB calculations, the images converge on the MEP. However, the highest energy image 

is not exactly at the saddle point. Usually, force and energy based cubic polynomial 

interpolation of adjacent images (closer to the saddle point) is carried out to estimate the 

activation barrier. Alternately, a climbing image (CI) algorithm has been implemented in NEB 

to accelerate the TS search. In the CI method, the energy of the highest image is maximised 

along the bands and minimised in other directions by inverting the perpendicular component 

of the DFT force (along the tangent). The highest image does not experience the spring forces 

in the CI algorithm.74 Usually, the typical NEB calculation is carried out first to ensure the 

system is along the MEP and the highest image is closer to the saddle point. Then the CI 

method is invoked to drive the highest image to the first-order saddle. In recent years, Machine 

learning (ML) based NEB method has been developed to accelerate the convergence 

rate/speed of the TS state search calculation.75 In chapters 4,5 and 6, we have employed 

dimer and different NEB calculations (conventional type, CI method and ML based) to identify 

the transition states of coking/MSR reaction events.  
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2.4 Transition state theory  

Typically, the reaction rate of an event can be computed by employing classical molecular 

dynamics, in which numerical integration of Newtonian equations is carried out to evaluate the 

trajectory of the system. However, this approach is computationally expensive as the system 

spends significant periods of time in the reactant state (mainly undergoing random vibrations) 

before transitioning to the product state. Thus, it becomes increasingly tedious to compute 

rates of rare events such as catalytic reactions using the aforementioned approach. Among 

the many theories developed to calculate reaction rates, the transition state theory (TST), also 

known as the theory of absolute reaction rates, has been found to provide a simple solution 

to circumvent this problem. Transition state theory divides the PES into three regions: 1) Initial 

state – the most stable configuration of the reactant region. 2) Final state – the most stable 

configuration of the product region. 3) Transition state – it is a dividing hypersurface between 

the reactant and product region. As mentioned previously (in section 2.3.5), the lowest energy 

configuration of the Transition state is a first-order saddle point. 

There are several important assumptions made to derive the expression of the rate constant 

under TST. The energy of the initial state is assumed to follow the Maxwell-Boltzmann 

distribution. In the development of TST, the Born-Oppenheimer approximation is invoked - 

which assumes the nuclei movement to be negligible in comparison to the motion of electrons. 

The quantum tunnelling effects (particles cross/bypass barriers without reaching the transition 

state) are assumed to be insignificant. Furthermore, if the system reaches the transition state 

with a certain velocity, it is assumed to react and form the final state configuration. The 

recrossing of the system back to the reactant region is not allowed.76,77 According to TST, the 

propensity of a reaction (rate constant) is essentially a product of the probability of the system 

reaching the transition state and rate of crossing the transition state in direction of the product 

region. The probability of finding the system in the transition state configuration is estimated 

as a ratio of the partition functions (dimensionless quantities which have information on the 

statistical properties of the system) of transition and initial states, respectively (refer to eq. 35 

and eq. 36). 

𝑃
𝑇𝑆±

𝛿𝑥
2
 
 =   

Q𝑇𝑆±
𝛿𝑥
2
 

𝑄𝑅
   eq. 35 

𝑘𝑇𝑆𝑇 =    𝑟𝐶  𝑃
𝑇𝑆±

𝛿𝑥
2
 
 eq. 36 

In the above equations, Q𝑇𝑆±
𝛿𝑥

2
 
represents the partition function within the thickness 𝛿𝑥 of the 

transition state configuration space, 𝑄𝑅 indicates the partition function of reactant (initial) state, 

𝑟𝐶  is the rate at which the system is traversing to reach the product region and 𝑃
𝑇𝑆±

𝛿𝑥

2
 
 is the 
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probability of the system to reach the transition state. Under the limit of 𝛿𝑥 moving to zero, the 

mathematical form of the wave function is assumed to be a plane wave. The energy of the 

system is quantized based on the solutions of “particle in a box”. Using the aforementioned 

approach, the rate constant is evaluated to have the following form (as shown in eq. 37, refer 

to chapter 4 of the book “Fundamental concepts in Heterogeneous catalysis”77 for a detailed 

derivation of the result below): 

𝑘𝑇𝑆𝑇 = 
𝑘𝐵 𝑇

ℎ
 
Q𝑇𝑆 

𝑄𝑅
  exp (−

𝐸𝑎𝑐𝑡

𝑘𝐵 𝑇
) eq. 37 

In eq. 37, Q𝑇𝑆 represents the partition function of the system at the transition state, 𝑘𝐵 is the 

Boltzmann constant, ℎ is the Planck’s constant, 𝑇 is the temperature of the system and 𝐸𝑎𝑐𝑡 

is the activation energy at 0 K. The pre-factor term (
𝑘𝐵 𝑇

ℎ
 
Q𝑇𝑆 

𝑄𝑅
)  contains the thermal and entropic 

contributions of the system. In heterogenous catalytic systems, the elementary events mainly 

include adsorption, desorption, diffusion and surface reactions. The partition functions of the 

transition/initial states are estimated by splitting the energy of the system into translational, 

rotational and vibrational contributions. The translational partition function for gas-phase 

molecules in a container is estimated using the equation below (where 𝑉 is the volume of the 

container and 𝑚 is mass of the molecule):78 

𝑄𝑇𝑟𝑎𝑛𝑠,3𝐷  =  
𝑉 (2𝑚𝜋𝑘𝐵 𝑇)

3
2

ℎ3
 

eq. 38 

On the catalytic surface, the gaseous species are assumed to be a 2D gas. The z component 

of the 𝑄𝑇𝑟𝑎𝑛𝑠,3𝐷partition function is decoupled as follows (𝐿𝑧 is the length of the gas-phase in 

the z-direction): 

𝑄𝑔𝑎𝑠
𝑇𝑟𝑎𝑛𝑠,3𝐷 =  𝑄𝑔𝑎𝑠

𝑇𝑟𝑎𝑛𝑠,2𝐷 𝐿𝑧  
√2𝑚𝜋𝑘𝐵 𝑇

ℎ
 eq. 39 

The translation of the gas-phase species is restricted to the area around the active site of the 

catalyst. Thus, the 2D translation partition function (𝑄𝑇𝑟𝑎𝑛𝑠,2𝐷) is estimated using eq. 40 (𝐴𝑠𝑡 

is the effective area of the active site/sites where the reaction occurs).78 The rotational partition 

function is evaluated based on the geometry of the molecule. For linear molecules, the 

rotational component of the partition function is calculated using eq. 41. In eq. 41, the symbols 

𝐼 and 𝜎 indicate the moment of inertia and symmetry factor of the gas molecule, respectively. 

In the case of non-linear molecules, the rotational partition function is estimated using eq. 

42.78,79 
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𝑄𝑔𝑎𝑠
𝑇𝑟𝑎𝑛𝑠,2𝐷 =   𝐴𝑠𝑡

2 𝜋 𝑚 𝑘𝐵 𝑇 

ℎ2
 eq. 40 

𝑄𝑔𝑎𝑠
𝑟𝑜𝑡,𝑙𝑖𝑛𝑒𝑎𝑟 =    

8 𝜋2 𝐼 𝑘𝐵 𝑇 

𝜎ℎ2
 eq. 41 

𝑄𝑔𝑎𝑠
𝑟𝑜𝑡,𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 = 

(𝜋 𝐼𝑎 𝐼𝑏 𝐼𝑐 )
1/2

𝜎
 (
8 𝜋2 𝑘𝐵 𝑇 

ℎ2
)

3
2

   eq. 42 

The partition function for the vibrational modes of the molecule is estimated by assuming the 

energies are distributed based on the harmonic oscillator model. As shown in eq. 43, the 

overall vibrational partition function of the molecule is calculated as a product of the 

contributions from each vibrational mode. The symbol 𝑣𝑘 is the vibrational frequency of the kth 

vibrational mode.78,79  

𝑄𝑣𝑖𝑏 = ∏
exp (−

ℎ 𝑣𝑘
2 𝑘𝐵 𝑇

)

1 −  exp (−
ℎ 𝑣𝑘
𝑘𝐵 𝑇

)𝑘

 eq. 43 

For a species adsorbed on the catalyst surface, it can undergo several types of motion – these 

include bond stretching between atoms, frustrated translations and frustrated rotations. In the 

current study, the partition functions (entropic contributions) of frustrated translations/rotations 

of the adsorbed species have been calculated using the harmonic oscillator model (eq. 43). 

The harmonic approximation gives a reasonable/acceptable estimate of the entropy for the 

frustrated translations/rotations of chemisorbed (tightly bound) species on the catalytic 

surface.80 However, in the case of physisorbed (weakly bound) species, the harmonic 

approximation underestimates the entropic contributions of frustrated translations/rotations. 

Alternatively, employing free translator/rigid rotor models (such as eq. 39, eq. 41 and eq. 42) 

for weakly bound species (such as CH4) is not the correct approach. These models 

significantly overestimate the entropic contributions of weakly bound species. In recent years, 

more sophisticated methods such as the hindered translator/rotor models have been 

developed to accurately account for the entropic contributions of frustrated 

translations/rotations of weakly bound species.81 Nonetheless, employing these methods 

requires the estimation of translation/rotational activation barriers. It is beyond the scope of 

this work to perform such calculations. Furthermore, most of the adsorbates studied in this 

work bind tightly to the Ni(111) surface. Thus, we have considered the harmonic approximation 

for estimating the entropy of frustrated translation/rotational motions of adsorbates. 

According to TST, the propensity of a reaction (rate constant) can also be expressed in the 

following manner (as the energies of the reactant state and transition state are in 

equilibrium):77 
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𝑘𝑇𝑆𝑇 =  
𝑘𝐵 𝑇

ℎ
 𝑒
−∆𝐺𝑇𝑆
𝑘𝐵 𝑇  eq. 44 

In eq. 44, ∆𝐺𝑇𝑆 represents the Gibbs free energy change (between transition state and initial 

state), 𝑇 is the temperature, 𝑘𝐵 indicates the Boltzmann constant and ℎ is the Planck’s 

constant. The free energy (𝛥𝐺𝑇𝑆) term encompasses the thermal and entropic contributions. 

The above equation can be further written in the following way (refer to eq. 45):77 

𝑘𝑇𝑆𝑇 =  
𝑘𝐵 𝑇

ℎ
 𝑒
𝛥𝑆𝑇𝑆
𝑘𝐵  𝑒

−𝛥𝐻𝑇𝑆
𝑘𝐵 𝑇  eq. 45 

The terms 𝛥𝐻𝑇𝑆 and 𝛥𝑆𝑇𝑆 are changes in enthalpy and entropy (between transition state and 

initial state), respectively. For surface reactions in catalytic systems, the pre-factor term 

( 
𝑘𝐵 𝑇

ℎ
 𝑒
𝛥𝑆𝑇𝑆
𝑘𝐵 ) of eq. 45 is often approximated to 

𝑘𝐵 𝑇

ℎ
. This assumption is valid in cases where 

there is a minimal change in entropy when the system moves from the initial state to the 

transition state on the catalytic surface. Entropic effects become more pronounced when there 

is a transition of the system from surface to gas-phase or vice versa (as molecules have large 

translational/rotational degrees of freedom in the gas-phase).  

2.5 Master equation     

As discussed previously, the TST gives us a simplified solution to calculate the rate constant 

(propensity) of an elementary event by coarse-graining the trajectory of the system into 

systematic state-to-state hops. The “state” refers to the stable geometry of an adsorbate on 

the lattice. The time evolution of the system undergoing such discrete hops/jumps is governed 

by the Markovian master equation (generally called as the master equation).82 The master 

equation is a set of coupled differential equations which provides the probabilistic rate (with 

respect to time) for the system to jump from state α to state β (refer to eq. 46).46,79     

𝑑𝑃α(𝑡)

𝑑𝑡
 =  −∑ 𝑘αβ 𝑃α(𝑡) + ∑ 𝑘βα 𝑃β(𝑡)

α≠β

 

α≠β

 eq. 46 

In eq. 46, 𝑘αβ refers to the transition probability for the system to move from state α to state β, 

𝑃α(𝑡) is the probability of finding the system in state α, 𝑘βα indicates the transition probability 

for the system to move from state β to α, 𝑃β(𝑡) is the probability of finding the system in state 

β. The eq. 46 is essentially a loss-gain equation; the first term on the right-hand side is the 

total rate at which the system leaves the state α (the loss) and the second term is the total rate 

at which the system enters the state α (the gain). At steady-state conditions, an important 

constraint of the master equation is that the sum of the rates of all transitions from states α to 

β must be equal to the sum of the rates of all transitions from states β to α (as shown in eq. 

47). Furthermore, at thermodynamic equilibrium, a stricter constraint is imposed on the master 
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equation, which is referred to as the principle of detailed balance. For any reaction network, 

the principle of detailed balance states that the difference in forward and reverse rates of each 

elementary event/step must be zero at thermodynamic equilibrium (refer to eq. 48) 46,83  

𝑑𝑃α(𝑡)

𝑑𝑡
 =  −∑ 𝑘αβ 𝑃α(𝑡) + ∑ 𝑘βα 𝑃β(𝑡)

α≠β

 

α≠β

= 0  eq. 47 

𝑘αβ 𝑃α(𝑡)  − 𝑘βα 𝑃β(𝑡)  = 0 eq. 48 

The master equation is seminal to the development of kinetic models that help us understand 

the kinetics of chemical reactions on the catalytic surface.79 The analytical solution of the 

master equation is mathematically intractable even for a very small system. For instance, 

consider a system with 100 sites in which we are simulating only adsorption and desorption 

events for a single adsorbate species. The total number of possible states for such a system 

is 2100, which is quite an extensive/large set for the master equation to be solved analytically. 

Thus, numerical solutions have been developed to solve the master equations for catalytic 

systems.46 

2.6 KMC simulations  

In the Monte Carlo methodology, the master equation is not solved explicitly, instead a 

stochastic simulation algorithm (first developed by Gillespie84) is used to propagate the system 

from state-to-state whose statistics satisfy the master equation. Time-averaging of the 

stochastic trajectories (upon reaching the steady state) allows us to estimate the observables 

of interest.83,85 The KMC approach uses the aforementioned procedure to determine the 

kinetics of a catalytic reaction. At each step of the KMC simulation, the event to be executed 

and its time of occurrence must be determined. Consider a system that is in state i in the KMC 

simulation, and it can propagate to j states. The escape probability for the system is the same 

at every short time interval (or instance) it spends in state i since there is a loss of memory in 

the system. This leads to exponentially decaying survival statistics.46 Thus, the cumulative 

probability for a system to escape from state i to any of the j states (for any time 𝜏) is given by 

the following relationship: 

𝑃(𝜏)   = 1 − exp (−𝑘𝑡𝑜𝑡𝜏) eq. 49 

𝑘𝑡𝑜𝑡 = ∑𝑘𝑖𝑘

𝑗

𝑘

 eq. 50 

The derivative of 𝑃(𝜏) gives us the escape probability of the system from state i to any of the 

j states (probability density function, which has an exponential distribution, refer to eq. 51). 
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The time of occurrence of an event or the escape time (for a system with such a distribution) 

is given by eq. 52 (where 𝑟1 is a random number between 0 and 1). 

𝑝(𝜏)   = 𝑘𝑡𝑜𝑡 exp (−𝑘𝑡𝑜𝑡𝜏) eq. 51 

𝑡𝑒𝑠𝑐𝑎𝑝𝑒  = −
ln (𝑟1)

𝑘𝑡𝑜𝑡
 eq. 52 

The direct method (also called as the variable step size method86) and the first reaction 

method87 are widely employed to propagate the system from state-to-state in the KMC 

simulations (refer to refs. 79, 83 and 84 for more information about the mathematical 

formulation of these methods).  

Having discussed the fundamental concept behind state propagation in KMC, we proceed to 

give a thorough understanding on the working principle of the KMC algorithm: 1) The required 

simulation parameters such as rate constants of events, adlayer energetics, reaction 

conditions and type/number of lattice sites must be specified to initialise the KMC simulation. 

2) The KMC lattice configuration must be specified – this can be an empty lattice or a pre-

defined lattice in which adsorbates/species are placed on specific sites. 3) The KMC algorithm 

scans the entire lattice to construct a list of all plausible events and creates a process queue. 

4) The KMC algorithm determines the time of occurrence and the event to be executed using 

Direct/First reaction method. 5) Upon executing the selected event, the KMC algorithm 

updates the lattice configuration and the process queue. For instance, consider a CO 

adsorption event executed on site numbered as 2 of the KMC lattice. The KMC algorithm 

updates lattice state of site 2 as occupied by CO adsorbate and the concomitant processes 

that need to be included/removed (due to this change) are updated in the process queue. At 

every time step of the KMC simulation, this procedure is repeated until the simulation reaches 

the steady state.43 The working principle of the KMC algorithm is also shown in the form of a 

flow sheet in Figure 4. 

Unlike other kinetic approaches (such as Langmuir-Hinshelwood models and mean-field MK 

models), the KMC methodology allows us to capture adsorbate-adsorbate interactions with 

high fidelity.43 In catalytic systems, especially at high coverage regimes, the adsorbate stability 

is significantly influenced by its interaction with neighbouring adsorbates. These interactions 

mainly include: 1) Overlap of adsorbate electronic states (which is attractive by nature, also 

called as direct interactions), 2) indirect interactions – the presence of an adsorbate alters the 

electronic structure of the catalytic surface, which in turn affects the binding affinity of another 

adsorbate, 3) elastic interactions – in some cases, the surface of the catalyst is distorted (at a 

local level) due to adsorption, this distortion is experienced as a repulsion by other adsorbates. 
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4) Dipole-dipole interactions – a prime example of this type of interaction is hydrogen 

bonding.88  

In KMC simulations, the CE Hamiltonian provides the framework to capture local interactions 

with high accuracy.89-91 In the last few decades, the CE methodology has been employed 

widely to predict the thermodynamic stabilities of adlayer structures.92-94  According to CE 

formalism, the energetics of any n-body configuration can be written as a sum of individual 

interaction energies of 1-body, 2-body, 3-body … n-body figures/parameters.95 In the lattice-

gas model with 𝑁𝐿 sites, the CE Hamiltonian of any state (𝐻(𝜎), where 𝜎 =  {𝜎1, 𝜎2, 𝜎3…𝜎𝑁𝐿}) 

is expressed using a site occupation variable 𝜎𝑖. If site 𝑖 is empty, then 𝜎𝑖 takes the value 0. 

Whereas if site 𝑖 is occupied by an adsorbate, then 𝜎𝑖 is given a value of 1. The CE formulation 

is shown in the equation below:96  

𝐻(𝜎) =  ℎ0 + ℎ1  ∑ 𝜎𝑖
𝑁𝐿

𝑖=1
+ 
1

2!
 ∑ ∑ 𝐽𝑖𝑗

𝑁𝐿

𝑗,𝑗≠𝑖

𝑁𝐿

𝑖
𝜎𝑖 𝜎𝑗 +⋯    eq. 53 

In eq. 53, ℎ0 is the formation energy of the surface, ℎ1 represents the formation energy of a 

single adsorbate, 𝐽𝑖𝑗 is the pairwise interaction term between adsorbates. Nielsen et al.89 

implemented the CE method in graph-theoretical KMC (Zacros78). The figures of the CE model 

are represented as graph patterns in Zacros. These graph patterns are detected on the KMC 

lattice by solving the sub-graph isomorphism problems.89 The occupation variable 𝜎𝑖 (where 

𝑖 ∈ {1,2,3…𝑁𝐿}) is a three dimensional vector in graph-theoretical KMC (as represented in the 

eq. 54): 

𝜎𝑖 ∈ {1, 2, 3, … ,𝑁𝐿}   ×  {0, 1, 2, … ,𝑁𝑠}  ×  {1,2,… ,𝑚𝑎𝑥𝑑𝑒𝑛𝑡} eq. 54 

In eq. 54, 𝑁𝐿 represents the number of lattice sites, 𝑁𝑠 is the number of species and 𝑚𝑎𝑥𝑑𝑒𝑛𝑡 

indicates the maximum value of the set - {𝑆1,  𝑆2, … 𝑆𝑗, … ,  𝑆𝑁𝑠}, where 𝑆𝑗 represents the number 

of sites occupied by species 𝑗 on the KMC lattice. The CE in graph-theoretical KMC is 

formulated as follows:48 

𝐻(𝜎)  =   ∑
𝐸𝐶𝐼𝑘
𝐺𝑀𝑘

𝑁𝑐

𝑘=1
 𝑁𝐶𝐸𝑘(𝜎) eq. 55 

In eq. 55, 𝑁𝐶𝐸𝑘(𝜎) indicates the number of times cluster k is detected by the pattern detection 

algorithm of graph-theoretical KMC, 𝐸𝐶𝐼𝑘 is the effective cluster interaction energy of cluster 

k, 𝐺𝑀𝑘 represents the graph multiplicity factor of cluster k (correction factor to avoid double 

counting of symmetrical patterns) and 𝑁𝑐 denotes the total number of clusters/graph patterns.  
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Figure 4: A flow sheet representing the working principle of the KMC algorithm.43 
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In theory, one can include all the plausible clusters in the CE Hamiltonian. However, it is 

computationally expensive to include larger body CE clusters in the KMC simulation. This 

problem can be circumvented by truncating the terms of the CE model through a least-squares 

-fitting exercise. The CE fitting is a trial-and-error method in which a finite set of clusters are 

identified/trained to capture the energetics of a large dataset of DFT configurations. It is a 

practical challenge to identify the optimal set of clusters in the CE fitting exercise. Including 

fewer clusters could give us poor predictive accuracy, however, a CE model with too many 

clusters can lead to overfitting issues as we start capturing the DFT error. Usually, a 

hierarchical approach is followed in identifying the clusters.90,97 The quality of the CE fit is 

assessed by using metrics such as root-mean-square error, mean absolute deviation, leave-

one-out cross-validation score and Cook’s distances. The readers can go through refs. 98 and 

99 to understand the methodology of LOOCV and Cook’s distances, respectively. As 

discussed previously (in subsection 1.3 of the “Thesis Background” chapter), recent studies 

have established the importance of using CE-based KMC simulations to rationally explain 

experimental observations (that hitherto remained elusive), and also, capture complex 

chemistries/reactions on the catalyst surface. 

2.7 MK models      

MK models play an important role in the identification and development of catalytic materials 

with improved performance and selectivity. For any catalytic reaction, the MK models provide 

a theoretical framework to predict the species coverages, turnover rates, rate-controlling steps 

and dominant reaction pathways.100,101 The formulation of MK models is essentially derived by 

reducing the Markovian master equation into a system of ODEs at the thermodynamic limit of 

very large lattices and infinitely fast diffusions.22 The spatial information about the species 

location and site connectivity is lost within the MK framework.102,103 The species count on the 

lattice is averaged out over the total number of sites. The MK model equations for any reaction 

network are given as follows:  

𝑟𝑓𝑤𝑑,𝑗  =  𝐺𝑀𝑓𝑎𝑐  𝑘𝑓𝑤𝑑,𝑗 ∏ (𝜃𝑖)
𝑣𝑖𝑗

𝑖 ∈ 𝑅𝑗
𝑠𝑢𝑟𝑓

 

 
eq. 56 

𝑟𝑟𝑒𝑣,𝑗 = 𝐺𝑀𝑓𝑎𝑐  𝑘𝑟𝑒𝑣,𝑗 ∏ (𝜃𝑖)
𝑣𝑖𝑗

𝑖 ∈ 𝑃𝑗
𝑠𝑢𝑟𝑓

 

 
eq. 57 

 𝑟𝑗 =  𝑟𝑓𝑤𝑑,𝑗 − 𝑟𝑟𝑒𝑣,𝑗 eq. 58 
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 𝑑𝜃𝑖
𝑑𝑡

=  ∑𝑣𝑖𝑗  𝑟𝑗

𝑁𝑟

𝑗=1

 eq. 59 

 ∑ 𝑁𝑖
𝑜𝑐𝑐𝑢𝑝−𝑠𝑖𝑡𝑒𝑠

𝜃𝑖
𝑁𝑠
𝑖=1  +  𝜃𝑣𝑎𝑐𝑎𝑛𝑡 =  1  eq. 60 

In eq. 56, eq. 57 and eq. 58, 𝑘 refers to the rate constant, 𝑅𝑗
𝑠𝑢𝑟𝑓

 is the set of reactant species 

of the reaction, 𝑃𝑗
𝑠𝑢𝑟𝑓

 is the set of product species of the reaction, 𝜃 represents the surface 

coverage (normalised with respect to the total number of sites), 𝐺𝑀𝑓𝑎𝑐 is the geometry factor 

(accounting for site connectivity), 𝑣𝑖𝑗 is the stoichiometric coefficient of species 𝑖 in 

reactant/product set 𝑗 and 𝑟𝑗 represents the overall rate of reaction 𝑗. The system of ODEs is 

represented using eq. 59 (where 𝑁𝑟 is the number of reactions). The equality constraint that 

must be satisfied between species coverages is shown in eq. 60, where 𝑁𝑠 represents the 

total number of species, 𝑁𝑖
𝑜𝑐𝑐𝑢𝑝−𝑠𝑖𝑡𝑒𝑠

 is the number of sites occupied by species i on the 

catalytic surface and 𝜃𝑣𝑎𝑐𝑎𝑛𝑡 is the fractional coverage of vacant sites. 

Unlike KMC models, the correlation effects between adsorbates are neglected in the MK 

formulation. Generally, mean-field approximations are applied in MK models to capture 

coverage effects.87,104 In the mean-field approximation (also called as the Bragg-Williams 

approximation), the adsorbate interaction is estimated by taking into account site connectivity, 

interaction parameter and adsorbate fractional coverage (as shown in eq. 61).105  

𝐸𝑖
𝐹𝐸−𝑐𝑜𝑣 =  𝐸𝑖

𝐹𝐸  + 𝐺𝑀𝑓𝑎𝑐1 ∑ 𝐸𝑖𝑗
1𝑁𝑁𝜃𝑗  + 𝐺𝑀𝑓𝑎𝑐2 ∑ 𝐸𝑖𝑗

2𝑁𝑁𝜃𝑗 +⋯  
𝑚

𝑗=1

𝑚

𝑗=1
 eq. 61 

In eq. 61, 𝐸𝑖
𝐹𝐸 indicates the formation energy, 𝐸𝑖

𝐹𝐸−𝑐𝑜𝑣 is the coverage-dependent formation 

energy, 𝑚 represents the number of species, 𝐸𝑖𝑗
1𝑁𝑁 and 𝐸𝑖𝑗

2𝑁𝑁 are the first nearest neighbour 

and second nearest neighbour interaction parameters, respectively. In recent years, several 

higher-order approximations have been developed in the MK framework to capture lateral 

interactions.21,22,106 Nevertheless, these approximations have been formulated/tested only for 

simple systems. Further work is necessary to extend these higher-order approximations to 

complex reaction networks. So far, we have discussed about the formulations used in 

MK/KMC models to account for the change in formation energy of the species due to 

adsorbate-adsorbate interactions. These local interactions also influence the activation energy 

barriers of elementary events. The forward/reverse coverage-dependent activation barriers for 

any reaction are estimated using the Brønsted-Evans-Polanyi (BEP) relations (as shown in 

eq. 62 and eq. 63 below) in MK/KMC models.107,108  

𝐸𝐴𝑐𝑡𝑓𝑤𝑑
𝑓𝑖𝑛𝑖𝑡𝑒−𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

= 𝑚𝑎𝑥 (0, 𝛥𝐸𝑟𝑥𝑛,  𝐸𝐴𝑐𝑡𝑓𝑤𝑑
𝑧𝑒𝑟𝑜−𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 

+𝑤𝑓𝑤𝑑  (𝛥𝐸𝑟𝑥𝑛 − Δ𝐸𝑟𝑥𝑛
0 )) eq. 62 
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𝐸𝐴𝑐𝑡𝑟𝑒𝑣
𝑓𝑖𝑛𝑖𝑡𝑒−𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 

= 𝑚𝑎𝑥 (0, −𝛥𝐸𝑟𝑥𝑛,  𝐸𝐴𝑐𝑡𝑟𝑒𝑣
𝑧𝑒𝑟𝑜−𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 

− (1 − 𝑤𝑓𝑤𝑑  )(𝛥𝐸𝑟𝑥𝑛 − Δ𝐸𝑟𝑥𝑛
0 )) eq. 63 

In eq. 62 and eq. 63, 𝛥𝐸𝑟𝑥𝑛 is the coverage-dependent reaction energy,  Δ𝐸𝑟𝑥𝑛
0  is the zero-

coverage reaction energy, 𝑤 is the proximity factor and  𝐸𝐴𝑐𝑡
𝑧𝑒𝑟𝑜−𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 

 is the zero-coverage 

activation barrier.  

In some cases, the mean-field MK models capture the coverage dependence of binding 

energies of species reasonably well. However, they fail to account for several important local 

effects on the catalytic surface such as adsorbate lateral interactions, adsorbate 

ordering/island formation and lattice inhomogeneities. As discussed previously, the CE-based 

KMC models capture the aforementioned effects with high fidelity. Furthermore, the diffusions 

are assumed to be fast (quasi-equilibrated) events in the MK methodology. It is well known 

that diffusion events are fast on transition metals – the diffusion activation barrier for any 

adsorbate is usually around 12% of its adsorption energy.109 Nevertheless, this might not be 

true on metal oxide/stepped surfaces.103 Slow diffusion of species can significantly alter the 

catalytic rate. In KMC simulations, the diffusion events can be modelled explicitly, and the 

effect of slow diffusions can be captured reliably. In terms of computational cost, the KMC 

simulations are more expensive than MK models. In recent times, significant efforts have been 

undertaken to reduce the computational cost of KMC simulations.78,110,111 Overall, kinetic 

models such as mean-field MK models and KMC simulations will play a crucial role in 

accelerating the identification of next-generation catalysts.112 
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3. DFT benchmark studies on representative species and poisons of methane steam 

reforming on Ni(111)  

The whisker carbon poisoning of MSR primarily involves the formation of graphene islands on 

the support side of the Ni catalyst (at the molecular scale). First-principles-based approaches, 

such as DFT calculations, can provide valuable insight into the stability of graphene (carbon 

poison in the MSR reaction) and binding propensity of MSR species on Ni(111). It is critical 

that a DFT functional can adequately describe the long-range interactions (weak van der 

Waals forces) of graphene-Ni(111), as well as the short-range interactions between MSR 

species (which are chemisorbed) and Ni(111). In this chapter, a systematic benchmark study 

has been carried out to identify a suitable DFT functional for the MSR-graphene system. The 

binding energies of graphene and important MSR species, as well as the reaction energies of 

methane dissociation and carbon oxidation, were computed on Ni(111) using GGA functionals, 

DFT-D and vdW-DF. The contents of this chapter have been published in Physical Chemistry 

Chemical Physics, 23(29), pp. 15601-15612. 

3.1 Introduction 

The graphene-Ni(111) system requires a thorough description of local interactions as well as 

van der Waals forces (non-local correlations).113 The incorporation of van der Waals forces in 

the exchange-correlation is a major challenge of Kohn-Sham DFT. Some of the standard 

exchange-correlation functionals, such as those based on the local density approximation 

(LDA), the generalised gradient approximation (GGA) and hybrid functionals do not account 

for the description of van der Waals forces.69 Several studies attempted to address this issue 

by developing dispersion-inclusive DFT functionals such as DFT-D and vdW-DF. The DFT-D 

approach involves the inclusion of a correction term to the Kohn-Sham DFT energy, which 

captures the asymptotic behaviour of long-range interactions.69 Some notable DFT-D 

correction schemes have been developed by Grimme,114 Tkatchenko-Scheffler,115 

Steinmann,116,117 and Ortmann118. In the vdW-DF formalism, on the other hand, the non-local 

correlations are expressed as a functional of electron density; there is no dependence on 

additional input parameters.69 The first general such functional (vdW-DF) was developed by 

Dion et al.119. Modified versions of vdW-DF have subsequently been developed, such as the 

optB86b-vdW, optB88-vdW and optPBE-vdW functionals120,121 as well as the Bayesian error 

estimation functional (BEEF-vdW122).  

Recent studies have extensively tested the applicability of DFT-D3 functionals and vdW-DF 

for accurately describing the graphene-Ni(111) interactions. Li et al.123 studied the graphene-

Ni(111) system using DFT functionals - PBE, PBE-D3 and optB86b-vdW; the authors report 

that the optB86b-vdW functional gives a reasonable estimate of the graphene-Ni distance and 

the graphene binding energy. Mittendorfer et al.113 compared the graphene-Ni(111) binding 
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energy predictions of several vdW-DF. In that study, the optB88-vdW functional was found to 

accurately predict the binding energy of graphene on Ni(111). Furthermore, Janthon et al.124 

and Muñoz-Galán et al.125 have carried out comprehensive benchmark studies of graphene-

Ni(111) using vdW-DF and DFT-D functionals; these works mainly conclude that the PBE-D3 

(Grimme correction) functional has excellent predictive accuracy and the vdW-DF such as 

optB86b-vdW and optB88-vdW are also promising. In summary, the benchmark studies have 

successfully identified a few suitable DFT functionals - PBE-D3, optB86b-vdW and optB88-

vdW – for capturing the chemical interactions between graphene and Ni(111).  

The aforementioned DFT benchmark studies have solely focussed on the graphene-Ni(111) 

system. However, the MSR reaction network involves several intermediates that bind on 

Ni(111) mainly via short-range interactions (unlike graphene). In order to develop a reliable 

DFT model for graphene formation in MSR, it is equally important to capture the chemistry of 

such intermediates. DFT benchmarks of chemisorbed species/intermediates (bonding mainly 

via short-range interactions in most cases) are not uncommon in the literature. In this context, 

Zhu et al.126 used several GGA functionals and DFT-D3 functionals to compute the binding 

energies of H and H2O on the Ni(111) surface. PBE was able to estimate the binding energy 

of hydrogen with acceptable accuracy; however, it significantly under-predicts the water 

binding energy. On the other hand, DFT-D3 functionals (such as PBE-D3 and RPBE-D3) 

predict the binding energy of water with excellent accuracy but overestimate the hydrogen 

binding energy. Göltl et al.127 benchmarked the performance of important GGA functionals, 

DFT-D functionals and vdW-DF for predicting the heat of molecular/dissociative adsorptions 

of CH4, CH3I, CH3, I and H on Ni(111). The authors conclude that no individual DFT functional 

has high accuracy for all the species. For instance, the PBE-D3 functional was found to exhibit 

high predictive accuracy for species such as CH4, CH3 and CH3I, whereas the BEEF-vdW 

functional gave the best estimate for the binding energies of H and I. Gautier et al.70 computed 

the binding energies of carbon monoxide, oxygen, hydrogen and several hydrocarbons on 

Pt(111) using DFT functionals such as PBE, PBE-dDsC and few other vdW-DF. The authors 

compared the predictions of these functionals with micro-calorimetry data obtained from the 

literature. In addition, Wellendorff et al.128 carried out a benchmark study for the DFT 

functionals using experimental data of ten different transition metals. There are other DFT 

benchmark studies that have tested the applicability of DFT-D functionals and vdW-DF for 

various systems.97,129 Nevertheless, to the best of our knowledge, a thorough investigation on 

the performance of GGA functionals, DFT-D functionals and vdW-DF in predicting the binding 

energies of key intermediates of MSR and graphene on Ni(111) is not available in the literature. 

The main objective of this work is to do a systematic comparative study on the predictive 

accuracy of relevant GGA functionals, DFT-D functionals and vdW-DF for graphene and a few 
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representative MSR elementary reactions. To achieve this goal, the binding energies of 

graphene and MSR species (CO, C, CH3, H2O, H, O and OH), and the reaction energies of 

methane dissociation (considered to be the rate-determining step of MSR) and carbon 

oxidation were computed on the Ni(111) surface. The DFT functionals include PBE130, 

RPBE131, and revPBE132 (GGA functionals), PBE-D3, RPBE-D3, revPBE-D3114, PBE-dDsC 

and PBE-TS116,117, optB86b-vdW, optB88-vdW, optPBE-vdW120, and BEEF-vdW122 (vdW-DF). 

The predictions of the aforementioned DFT functionals have been benchmarked against 

experimental and computational data (from higher-level theory) available in the literature. 

The rest of this chapter is organised as follows: The “Computational details” section includes 

information about the computational setup of the DFT calculations and the relevant formulae 

used to estimate the DFT binding energy, the zero-point energy (ZPE) correction, the thermal 

energy contributions and the root-mean-square deviation (RMSD). Subsequently, the “Results 

and Discussion” section presents the comparison of DFT predictions of graphene and MSR 

species to relevant literature data and puts the key findings in the context of practical catalysis. 

Finally, in the “Conclusions” section, a broad perspective on the performance of GGA 

functionals, DFT-D functionals and vdW-DF is provided along with some needs and potential 

opportunities for DFT method development are also discussed.  

3.2 Computational details 

Spin-polarised DFT calculations have been performed using the Vienna ab-initio Simulation 

Package (VASP). The projector augmented wave (PAW) method was used to model the 

interactions between core and valence electrons. A plane-wave basis set was employed, and 

the kinetic energy cut-off was set to 400 eV (refer to Figure A1(b) and Figure A2(b) of Appendix 

I for the plane-wave cut-off convergence plots). The Ni bulk calculations were carried out using 

a 191919 k-point grid. In the Ni bulk system, the electron smearing is performed using the 

tetrahedron method with Blöchl corrections and the smearing width was set to 0.05 eV. The 

Ni(111) surface was modelled with a six-layer p(44) slab, where the Ni atoms of the three 

bottom-most layers were fixed at the optimised lattice constant and others were allowed to 

fully relax. The periodic images along the z-direction were separated by a vacuum of 12 Å. 

The first Brillouin zone of Ni(111) was sampled with a 551 Monkhorst-Pack k-point grid. The 

k-point mesh was chosen by performing convergence tests on carbon-Ni(111) and graphene-

Ni(111), respectively (refer to Figure A1(a) and Figure A2(a) of Appendix I). The electronic self-

consistency tolerance was set to 10-7 eV, and the geometry optimisation terminated when the 

Hellmann-Feynman forces acting on the atoms that are allowed to relax reached a value less 

than 0.01 eV/Å. The smearing of electrons was carried out using the Methfessel-Paxton 

method and the smearing width was set to 0.1 eV. In the vibrational calculations, the Hessian 
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matrix was computed using the central finite-difference method. The step size of the 

displacement was set to 0.02 Å.  

The binding energy of the adsorbate has been computed using eq. 64, where 𝐸𝑡𝑜𝑡
𝑠𝑙𝑎𝑏  is the 

DFT-computed total energy of the clean Ni(111) slab, 𝐸𝑡𝑜𝑡
𝐴(𝑔) 

 indicates the gas-phase DFT total 

energy of the adsorbate, 𝐸𝑡𝑜𝑡
𝐴+𝑠𝑙𝑎𝑏 represents the DFT total energy of the adsorbate-Ni(111) 

system, and 𝐸𝑏𝑖𝑛𝑑
𝐷𝐹𝑇  is the DFT-predicted binding energy of the adsorbate on Ni(111). If the 

adsorbate undergoes dissociative adsorption, eq. 65 is used to estimate the binding energy of 

the adsorbate, where 𝐸𝑡𝑜𝑡
𝐴2(𝑔)  is the gas-phase DFT total energy of the adsorbate molecule. In 

an effort to make a reliable comparison to experimental data, the ZPE and thermal energy 

corrections have been calculated, making it possible to report the internal energy of binding. 

The ZPE contributions (within the harmonic approximation) for the species in the gas phase 

and the bound state are estimated using eq. 66 and eq. 67, respectively.133,134 In these 

equations, 𝑁 denotes the total number of atoms of the molecule, 𝑁𝑡𝑟𝑎𝑛𝑠 indicates the number 

of translational modes, 𝑁𝑟𝑜𝑡 is the number of rotational modes, 𝑣𝑖 represents the frequency of 

the ith vibrational mode and ℎ is the Planck’s constant. 

𝐸𝑏𝑖𝑛𝑑
𝐷𝐹𝑇 = 𝐸𝑡𝑜𝑡

𝑠𝑙𝑎𝑏 + 𝐸𝑡𝑜𝑡
𝐴(𝑔) 

−  𝐸𝑡𝑜𝑡
𝐴+𝑠𝑙𝑎𝑏  eq. 64 

𝐸𝑏𝑖𝑛𝑑
𝐷𝐹𝑇 = 𝐸𝑡𝑜𝑡

𝑠𝑙𝑎𝑏 + 
𝐸𝑡𝑜𝑡
𝐴2(𝑔) 

2
−  𝐸𝑡𝑜𝑡

𝐴+𝑠𝑙𝑎𝑏  eq. 65 

𝐸𝑔𝑎𝑠 𝑝ℎ𝑎𝑠𝑒
𝑍𝑃𝐸 = ∑

ℎ𝑣𝑖
2

3𝑁−𝑁𝑡𝑟𝑎𝑛𝑠− 𝑁𝑟𝑜𝑡

𝑖=1

 eq. 66 

𝐸𝑏𝑜𝑢𝑛𝑑 𝑠𝑡𝑎𝑡𝑒
𝑍𝑃𝐸 = ∑

ℎ𝑣𝑖
2

3𝑁

𝑖=1

 eq. 67 

When an adsorbate binds to the Ni(111) surface, the translational and rotational motions are 

reduced to vibrational modes. The thermal energy contribution of the bound state has been 

computed by using the harmonic approximation.133,134 According to Réocreux et al.135, the 

thermal corrections of chemisorbed species obtained under the harmonic approximation have 

acceptable accuracy (even for low-frequency modes). The bound state vibrational calculation 

is performed by fixing the positions of the Ni surface atoms (vibrational modes of the Ni surface 

atoms, commonly referred to as phonons, are assumed to have an insignificant contribution 

to energies of adsorption or reaction). The thermal energy contribution for species in gas 

phase and bound state are calculated using eq. 68 and eq. 69. In eq. 70, the ZPE and thermal 

corrections are added to the DFT predicted binding energy. 
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𝑈𝑔𝑎𝑠 𝑝ℎ𝑎𝑠𝑒
𝑇𝐶 = 

𝑁𝑡𝑟𝑎𝑛𝑠
2

𝑘𝐵 𝑇 + 
𝑁𝑟𝑜𝑡
2
𝑘𝐵 𝑇 + ∑

ℎ𝑣𝑖 𝑒
−ℎ𝑣𝑖
𝑘𝐵 𝑇

1 − 𝑒
−ℎ𝑣𝑖
𝑘𝐵 𝑇

3𝑁−𝑁𝑡𝑟𝑎𝑛𝑠− 𝑁𝑟𝑜𝑡

𝑖

 eq. 68 

𝑈𝑏𝑜𝑢𝑛𝑑 𝑠𝑡𝑎𝑡𝑒
𝑇𝐶 = ∑

ℎ𝑣𝑖 𝑒
−ℎ𝑣𝑖
𝑘𝐵 𝑇

1 − 𝑒
−ℎ𝑣𝑖
𝑘𝐵 𝑇

3𝑁

𝑖

 eq. 69 

𝑈𝑏𝑖𝑛𝑑
𝑡ℎ𝑒𝑜𝑟𝑦

=   𝐸𝑏𝑖𝑛𝑑
𝐷𝐹𝑇  + 𝐸𝑔𝑎𝑠 𝑝ℎ𝑎𝑠𝑒

𝑍𝑃𝐸  + 𝑈𝑔𝑎𝑠 𝑝ℎ𝑎𝑠𝑒
𝑇𝐶  − 𝐸𝑏𝑜𝑢𝑛𝑑 𝑠𝑡𝑎𝑡𝑒

𝑍𝑃𝐸  − 𝑈𝑏𝑜𝑢𝑛𝑑 𝑠𝑡𝑎𝑡𝑒
𝑇𝐶  eq. 70 

RMSD = √
∑ (𝑈𝑏𝑖𝑛𝑑,𝑖

𝑡ℎ𝑒𝑜𝑟𝑦
 −  𝑈𝑏𝑖𝑛𝑑,𝑖

𝑒𝑥𝑝
)2 𝑖

𝑁
 eq. 71 

The term 𝑈𝑏𝑖𝑛𝑑
𝑡ℎ𝑒𝑜𝑟𝑦

 from eq. 70 is used to make comparisons with experimental data and the 

RMSD defined by eq. 71 is adopted to obtain a quantitative measure on the overall 

performance of the DFT functional (in subsection 3.3.2). In eq. 71, 𝑈𝑏𝑖𝑛𝑑,𝑖
𝑡ℎ𝑒𝑜𝑟𝑦

 indicates the DFT 

predicted binding energy of the ith species, 𝑁 is the number of observables and 𝑈𝑏𝑖𝑛𝑑,𝑖
𝑒𝑥𝑝

 

represents the experimental binding energy of the ith species. 

3.3 Results and discussion  

Our systematic benchmark study aims at identifying an appropriate DFT functional for the 

MSR reaction species including graphene. To this end, we employ the computational setup 

discussed in the “Computational Details” section to calculate the binding energies of these 

species on Ni(111) using a range of functionals (GGA, DFT-D, vdW-DF) and assess the 

performance thereof by comparing the predictions with theoretical and experimental data 

available in the literature. In the following, we discuss our results in detail, starting with the 

DFT benchmarks of graphene-Ni(111), subsequently, the graphene-Ni(111) potential energy 

profiles are presented (subsection 3.3.1), and finally, the DFT benchmarks of MSR species 

are provided (subsection 3.3.2). Additionally, we tested the predictive accuracy of DFT 

functionals in reproducing the energies of gas-phase reactions relevant to MSR, as well as 

graphite formation (refer to Table A2 of Appendix I). 

3.3.1 DFT benchmarks of graphene-Ni(111) 

For all of our calculations of pure graphene and Ni(111), we have used the DFT-predicted 

lattice constants which are provided in Appendix I for each functional (refer to Table A1). For 

the calculations of graphene bound to Ni(111), the Ni lattice constant was adopted. It is known 

that the LDA, GGA and hybrid functionals fail to capture the van der Waals interactions 

between graphene and Ni(111)69, and thus, in this benchmark study, the performance of DFT-

D and vdW-DF has been tested.  
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The DFT predictions must be compared to reliable experimental or theoretical values; 

however, there is limited experimental data on the binding energy of graphene on Ni(111). 

Shelton et al.136 have studied the segregation behaviour of carbon on Ni(111) and concluded 

that the binding energy of graphene on Ni(111) is around 50 meV greater than the graphite 

exfoliation energy. Recent experimental works have reported the exfoliation energy of graphite 

to be in the range of 24.87–66.33 meV/C atom.124,137,138 Based on the findings of Shelton et 

al.136, the graphene binding energy on Ni(111) can be deduced to be in the range of 74.62–

116.08 meV/C atom.124 

As the graphene binding energy estimate is derived using the findings of only a single 

experimental study (Shelton et al.136), a certain level of caution must be exercised while 

comparing this value to the DFT predictions. Thus, we also compare our calculated values to 

theoretical ones, obtained with higher level ab-initio methods. A few studies have reported that 

the random-phase approximation (RPA) method accurately captures the van der Waals 

interactions.113,139 The RPA prediction of graphene binding energy will therefore be used in 

assessing the performance of DFT functionals. The RPA predicts two minima for graphene on 

Ni(111), located at graphene-Ni distances of 2.17 Å and 3.25 Å, respectively.113,140,141 The RPA 

prediction at the former minimum (referred to as “the first minimum” henceforth) is of 

importance as it is in close agreement with the experimental graphene-Ni distance of 2.11 ± 

0.07 Å.142 Figure 5 compares the DFT-predicted binding energies, RPA prediction113 and 

experimental value124,136 at the first minimum of graphene-Ni(111). The DFT calculations of 

graphene-Ni(111) are performed using the top-fcc configuration, which is the most stable 

configuration (refer to Figure A3 of Appendix I for the different types of graphene-Ni(111) 

configurations).143,144 In Table 1, the DFT binding energy predictions of this work are compared 

to the values reported by other theoretical studies available in the literature. The graphene-Ni 

distance predictions of the DFT functionals are also recorded in Table 1.  
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Figure 5: Comparison of the binding energy predictions of the DFT functionals used in this 

study with the RPA113/experimental value124,136 at the first minimum of graphene-Ni(111). 

Among the DFT functionals which use the vdW-DF formalism, the binding energy prediction 

of the optB88-vdW functional is in excellent agreement with the RPA value. The optB88-vdW 

prediction also agrees closely with the lower bound of the experimental result (refer to Figure 

5). Furthermore, Mittendorfer et al.113 have shown that the optB88-vdW functional predicts the 

binding energy of graphene with high accuracy. As illustrated in Figure 5, the optB86b-vdW 

functional slightly overpredicts the binding energy of graphene with respect to the RPA value, 

though the predicted value is within the experimental range. Shepard and Smeu140 and Li et 

al.123 have reported similar binding energy values for graphene using the optB86b-vdW 

functional. On the contrary, the calculations performed by Janthon et al.124 show that there is 

close agreement between the optB86b-vdW prediction and the RPA value (refer to Table 1 for 

the optB86b-vdW predictions obtained from the literature). 

 

 

 



50 

 

Table 1. Comparative study of DFT predictions of the first minimum of graphene-Ni(111) 

 

 

Ref. 113 uses a five-layer Ni(111) supercell, a 19191 k-point mesh and a kinetic energy cut-off value of 400 eV. 

Ref. 122 uses a five-layer p(11) Ni(111) slab (two bottom layers fixed) and a 20201 k-point mesh. In ref. 123 a 

four-layer p(11) Ni(111) supercell (two bottom layers are fixed), a 20201 k-point mesh and a plane-wave cut-off 

energy value of 500 eV was used. Ref. 124 and ref. 125 use a six-layer p(11) Ni(111) supercell (three bottom 

layers fixed), a 771 k-point grid and a kinetic energy cut-off value of 415 eV. Ref. 140 uses a six-layer p(11) 

Ni(111) supercell (three bottom layers are fixed), a k-point mesh of size 25251 and a plane-wave cut-off energy 

value of 500 eV. a) For the graphene-Ni(111) calculation with the PBE-TS functional, we have used the PBE-D3 

optimised Ni lattice constant. On the other hand, if the PBE-TS optimised Ni lattice constant is used for this 

calculation, the latter does not converge to the first minimum. Further details are provided in Appendix I (refer to 

Table A16 and Figure A7). 

As shown in Table 1, the optPBE-vdW functional estimates a binding energy value of 41.79 

meV/C atom for graphene-Ni(111), which is in reasonable agreement with the RPA value. 

Janthon et al.124 report that the optPBE-vdW functional predicts a much weaker adsorption 

energy for graphene-Ni(111) (9.33 meV/C atom). The authors use a different computational 

setup compared to our study; this could be the reason for such a substantial difference in the 

reported optPBE-vdW predictions (key information on the computational setup of the literature 

studies is provided in the footnote of Table 1). The BEEF-vdW functional was found to predict 

a weak repulsive interaction between graphene and Ni(111), as also pointed out by Wellendorff 

et al.122 The computational error estimate of BEEF-vdW (it is the standard deviation of an 

ensemble of predictions obtained by randomly sampling from the probability distribution of 

BEEF-vdW model parameter fluctuations122) is large. Certain caution needs to be exercised 

while using the BEEF-vdW error estimate which results in a graphene binding energy range 

Functional 
Binding energy 

(meV/C atom) 

Graphene-Ni 

distance (Å) 

Binding energy predictions  

from literature (meV/C atom) 

PBE-D3 54.72 2.23 79.80 (ref. 125), 86.02 (ref. 124), 53 (ref. 140) 

PBE-dDsC 42.39 2.12 No values reported 

PBE-TS 178.61 2.15 51.82 (ref. 124), 128.52 (ref. 125) 

RPBE-D3 [No binding] - No values reported 

revPBE-D3 [No binding] - No values reported 

optB86b-vdW 105.12 2.15 68.40 (ref. 124), 102 (ref. 140), 112 (ref. 123) 

optB88-vdW  66.82 2.22 40.42 (ref. 124), 67 (ref. 113) 

optPBE-vdW  41.79 2.22 9.33 (ref. 124) 

BEEF-vdW -1.09 (± 75.45) 2.18 around -8 (ref. 122), 10 (ref. 140) 
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from -76.54 meV/C (negative values are qualitatively incorrect with respect to the RPA 

prediction) to 74.36 meV/C (substantially strong binding affinity between graphene and 

Ni(111); which closely matches the RPA value). This wide variation also underscores the 

importance of using the appropriate exchange-correlation approximation to obtain accurate 

results. 

 

a)                b) 

 

      c) 

Figure 6: Potential energy profiles of graphene-Ni(111): (a) PBE-D3 functional, (b) RPBE-D3 

functional and (c) revPBE-D3 functional. The adsorption energy is equivalent to −Ebind
DFT  

(obtained using eq. 64). The complete graphene-Ni(111) potential energy scans (up to the 

second minimum) of DFT-D3 functionals are provided in the SI (refer to Figure A6). 

As shown in Figure 5, the PBE-TS functional significantly overestimates the graphene binding 

propensity on the Ni(111) crystal. The PBE-D3 and PBE-dDsC functionals predict the binding 

energy of graphene in reasonable agreement with RPA. However, the predictions of both 

functionals are substantially lower than the experimental value, though there is quite some 

uncertainty in the latter, as discussed earlier. The benchmark studies of Muñoz-Galán et al.125 
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and Janthon et al.124 also conclude that the PBE-D3 functional is an appropriate choice to 

describe the graphene-Ni(111) interactions. On the other hand, the DFT calculations of RPBE-

D3 and revPBE-D3 functionals do not converge to the first minimum of graphene-Ni(111). 

These functionals show a qualitative disagreement with the RPA prediction at the first 

minimum of graphene-Ni(111). In an effort to further substantiate these results, the potential 

energy profiles of graphene-Ni(111) were generated for the DFT-D3 functionals. It is evident 

from Figure 6(a) that a shallow minimum at a graphene-Ni distance of 2.23 Å is obtained using 

the PBE-D3 functional. In contrast, the potential energy profiles of RPBE-D3 and revPBE-D3 

functionals predict no such minimum at a graphene-Ni distance range of 2.10–2.50 Å, and 

thus, both functionals do not give an accurate description of graphene-Ni(111) interactions at 

the first minimum (refer to Figure 6(b) and Figure 6(c)).  

 

Figure 7: Comparison of the binding energy predictions of the DFT functionals used in this 

study with the RPA value140,141 at the second minimum of graphene-Ni(111).  

At the second minimum of graphene-Ni(111) i.e. the one predicted by RPA (at a graphene-Ni 

distance of 3.25 Å), the hcp-fcc geometry is reported to be the most stable binding 

configuration.124 Even though this binding configuration of graphene may be of limited interest, 

as there is no experimental evidence for it yet, it is instructive to compare the pertinent DFT 

predictions with the RPA value.140,141 Thus, Figure 7 shows that the PBE-D3, PBE-dDsC, 

RPBE-D3, optB86b-dW, optB88-vdW and optPBE-vdW functionals predict the binding energy 

of the second minimum of graphene in fair agreement with the RPA value. Taken together, the 
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results of our benchmark studies show that the graphene-Ni(111) interactions are best 

represented by the optB88-vdW functional. The optB86b-vdW, PBE-D3, PBE-dDsC, and 

optPBE-vdW functionals also perform reasonably well. 

3.3.2 DFT benchmarks of MSR species 

In a second set of benchmark calculations, the DFT functionals were used to estimate the 

reaction energies of methane dissociative adsorption, carbon oxidation, and the binding 

energies of representative species of the MSR reaction, in particular: CO, C, CH3, H2O, H, O 

and OH on Ni(111). The predictions of these functionals have been systematically compared 

against experimental data, the sources of which are compiled in Table 2. The binding sites of 

the MSR species are provided in Appendix I (refer to Figure A4). For each MSR species under 

study, Table 2 reports the pertinent adsorption reaction, the details of the experiment that we 

compare against, the simulation setup of the corresponding DFT calculation (this information 

is provided as a footnote in Table 2), and finally, the value of the experimental binding energy. 

In Table 2, ML is defined to be the ratio of number of adsorbate atoms/molecules to the number 

of Ni atoms on the Ni(111) surface. An important caveat to be noted is that the experimental 

surface coverage of carbon is not clearly known (refer to the last row of Table 2 for more 

details), therefore, certain caution is exercised while comparing DFT predictions to the 

experimental binding energy of carbon. 

In Table 3, the experimental values and the DFT predictions of MSR species are systematically 

recorded. The colour code in Table 3 gives an indication on the extent of deviation of the DFT 

prediction from the corresponding experimental value (the convention of the colour code is 

stated as a footnote in Table 3). As shown in Figure 8, the deviations of the DFT predictions 

from the experimental values have been presented using radar plots. Furthermore, the RMSD 

values have been computed to make a quantitative assessment on the overall performance 

of the DFT functionals (refer to Figure 9).   
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Table 2. The experimental binding/reaction energies of MSR species obtained from the literature 

 

a) The DFT simulation setup as stated in the “Methods" section is used for estimating the binding energy of the adsorbate. The coverage of the adsorbate on the Ni(111) supercell is 0.0625 ML.  

b) The experimental internal energy of adsorption is reported (the heat of adsorption obtained from the experiment is reduced by kBT).153 This value is compared to the DFT prediction 𝑈𝑏𝑖𝑛𝑑
𝑡ℎ𝑒𝑜𝑟𝑦

. 

c) The Arrhenius activation barrier obtained from flash desorption studies of hydrogen was compared to the ZPE-corrected DFT energy prediction (no thermal corrections were included, only eq. 65,      

eq. 66 and eq. 67 of section 3.2 were used in this case). 

d) Since the experimental surface coverage is 0.5 ML, a p(22) Ni(111) supercell (constituting two OH atoms adsorbed on the three-fold hollow sites) has been used and the Brillouin zone integration 

was done with a 10101 k-point grid. 

e) The kinetic isotope effects are assumed to be negligible. 

f) By convention, a positive value indicates exothermic reaction, in which case the dissociative adsorption is favourable. A negative value indicates endothermic dissociative adsorption (not favoured). 

System Experimental method 𝑼𝒃𝒊𝒏𝒅
𝒆𝒙𝒑

 (eV) 

CO(g) + *        CO* 
The differential heat of adsorption of CO on Ni(111) is recorded at the limit of zero-coverage using calorimetry. The 
temperature is maintained at 300 K. 

1.32a,b (±0.03) 
(ref. 145) 

D2O(g) + *       D2O* 
The single-crystal adsorption calorimetry (SCAC) method is employed to study the molecular adsorption of D2O on 
Ni(111). The differential heat of D2O adsorption has been reported at 100 K and zero-coverage limit. 

0.55a,b,e (ref. 146) 

H2(g) + 2*      2H* 
The associative desorption of hydrogen is studied using flash desorption spectroscopy. The desorption of H/Ni(111) 
has been observed to follow second-order kinetics at low coverages. The Arrhenius activation barrier of associative 
desorption of hydrogen has been estimated. 

0.98a,c (±0.04)   
(ref. 147) 

O2(g) + 2*   2O* 
The dissociative adsorption of O2 on Ni(111) is studied using SCAC at 300 K. The heat of adsorption of oxygen is 
reported at the zero-coverage limit. 

4.53a,b (±0.2) 
(ref. 148) 

OD(g) + *   OD* 
The SCAC method is used to study oxygen assisted D2O dissociation on Ni(111). The heat of adsorption of OD-Ni(111) 
is derived using thermodynamic cycles (at 0.5 ML coverage). 

3.26b,d,e (ref. 146) 

CH3(g) + *   CH3* 
The dissociative adsorption of methyl iodide is studied using SCAC at 160 K. The heat of methyl adsorption is obtained 
via thermodynamic cycles.  

2.25a,b (±0.14) 
(ref. 149) 

CH4(g) + 2*  CH3* + H* 
Carey et al.149 estimated the enthalpy of methane dissociation at 160 K by using the experimental heats of adsorption 
of CH3 and H on Ni(111) (obtained from calorimetric studies), and the heat of formation of CH4 (g).  

0.43a,b,f (ref. 149)  

C(g) + *    C* 

The isosteric heat of formation of carbon (at 600 K) is derived from the Boudouard equilibrium. The study is conducted 
using alumina-supported polycrystalline Ni. The carbon coverage is defined to be half of the saturation coverage of CO 
at 195 K. According to Netzer and Madey150, the CO adsorbate has a saturation coverage of around 0.57 ML on Ni(111) 
(at temperatures 220-240 K). Using this information, the carbon coverage might be around 0.29 ML. 

6.84a,b (ref. 151) 

C* + (½)O2(g)  CO(g) 

The reaction energy of “carbon oxidation” (to form carbon on Ni(111) and O2(g)) is derived using the experimental 
carbon adsorption energy (with respect to C(g)) and the CO gas-phase formation energy (obtained from the atomisation 
energies dataset of CCSD(T)152). The value is reported at 0 K (the ZPE/thermal contributions of “carbon adsorption” 
reaction is removed using the PBE functional prediction). 

1.71a,f 

(refs. 151,152) 

→

→

→

→

→

→

→

→

→
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The oxygen binding energy predictions (reported in Table 3) have been computed with 

reference to O2 gas-phase DFT energy. It is known that the triplet (ground) state of O2 is poorly 

captured by DFT calculations; hence, the O2 gas-phase energy obtained may exhibit low 

accuracy. Alternatively, the O2 gas-phase energy can be estimated from H2O gas-phase 

formation energy (obtained from the literature),128 H2 gas-phase energy and H2O gas-phase 

energy (both these energies are calculated using DFT). However, this alternative approach 

was found to further deteriorate the performance of most of the DFT functionals. The results 

of oxygen binding energies obtained using aforementioned approaches are provided in 

Appendix I (refer to Table A3). Similarly, the O2(g) DFT energy has been used to calculate the 

reaction energy of carbon oxidation (C* + (½)O2(g)  CO(g)). 

The PBE functional predicts the reaction energy of methane dissociation with reasonable 

accuracy (the deviation is -0.23 eV). It performs appreciably well for MSR species such as 

hydrogen, oxygen and hydroxyl. The PBE functional overpredicts the binding energy of carbon 

monoxide by more than 0.5 eV (as depicted in Figure 8(a)). In the literature, it is well 

established that the PBE exchange-correlation approximation fails to accurately predict the 

binding energy of carbon monoxide.128 The PBE functional underpredicts the binding energy 

of H2O, as it does not include the dispersive interactions between H2O and Ni(111). Zhu et 

al.126 also report the same behaviour for the PBE functional. As shown in Table 3 and Figure 

8(a), the PBE functional accurately estimates the carbon binding energy and the reaction 

energy of carbon oxidation (however, we note again that the experimental value of carbon 

might be subject to finite coverage effects).  

The RPBE and revPBE functionals give a better estimate of CO binding energy than the other 

DFT functionals tested in this study (as shown in Figure 8(a) and Table 3). However, the 

predictions of these functionals deviate significantly from the experimental binding energies of 

CH3, O, OH, H2O and C. Furthermore, both functionals predict that the methane dissociation 

reaction on Ni(111) is an endothermic elementary event (this is qualitatively incorrect as 

methane dissociates exothermically on Ni(111); refer to Table 3). As shown in Figure 9, the 

PBE functional has better overall performance than other GGA functionals. Nonetheless, the 

GGA functionals do not account for the dispersive interactions of graphene-Ni(111) (as stated 

in section 3.3.1), and therefore, they are not suitable to investigate the carbon poisoning 

mechanism of Ni in the MSR reaction. 

 

 

 

 

→
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Table 3. Comparisons of DFT predictions with experimental values of MSR species 

 

Deviation = |DFT predicted value – Experimental value|. The colour code has the following convention: green: 

Deviation < 0.1 eV, yellow: 0.1 eV ≤ Deviation ≤ 0.3 eV, red: Deviation > 0.3 eV. The following modifications were 

introduced to alleviate the convergence issues of a few calculations: a) The vibrational calculations of OH in the 

gas phase was performed for the DFT functionals revPBE, PBE-D3, revPBE-D3, optB86b-vdW and BEEF-vdW 

using electronic minimisation tolerance values of 5x10-5 eV, 1x10-5 eV, 1x10-6 eV, 3x10-5 eV and 1x10-5 eV, 

respectively. b) The geometric optimisation and vibrational analysis of CO in the gas phase were performed by 

setting the electronic minimisation tolerance value to 510-6 eV. c) The vibrational calculation of H2O in the gas 

phase was carried out with an electronic minimisation tolerance value of 10-6 eV. d) The geometric optimisation 

and vibrational analysis of O2 in the gas phase were performed by setting the electronic minimisation tolerance 

value to 10-6 eV. e) The geometric optimisation and vibrational calculations of OH in the gas phase were carried 

out using electronic minimisation tolerance values of 10-6 eV and 10-5 eV, respectively. f) The geometric optimisation 

and vibrational analysis of CH3(g) were performed with an electronic minimisation tolerance value of 10-6 eV. g) 

The OH-Ni(111) DFT calculation was executed with a geometric optimisation tolerance value of 0.02 eV/Å.  h) The 

vibrational analysis of OH gas-phase was performed with an electronic minimisation tolerance value of 10-6 eV.  

It can be inferred from Table 3 and Figure 8(b) that the performance of functionals within the 

vdW-DF class is unsatisfactory. Although optB86b-vdW and optB88-vdW functionals predict 

the reaction energies of methane dissociation and carbon oxidation, and the binding energies 

of CH3, H2O, H and C with acceptable accuracy, both functionals perform poorly for species 

such as CO and O (as depicted in Figure 8(b)). In agreement with the findings of our study, 

Method 

Binding/reaction energy (eV)   

CO H2O 2H 2O OH C CH3 
CH4-
diss 

C-oxid 

Expt. 
1.32 

(±0.03) 
0.55 

0.98 
(±0.04) 

4.53 
(±0.2) 

3.26 6.84 
2.25 

(±0.14) 
0.43 1.71 

PBE 1.88 0.25 1.04 4.68 3.15 6.83 1.88 0.20 1.69 

RPBE 1.48 0.05 0.71 4.13 2.78 6.37 1.43 -0.29 1.94 

revPBE 1.54 0.05 0.76 4.20  2.82a 6.43 1.49 -0.22 1.90 

PBE-D3 2.06 0.48 1.24 4.75  3.29a 6.91 2.25 0.68 1.61 

RPBE-D3 1.79 0.40 1.00 4.27 3.02 6.52 1.99 0.40 1.78 

revPBE-D3 1.86 0.46 1.09 4.34  3.06a 6.59 2.15 0.60 1.73 

PBE-dDsC 2.03 0.41 1.13 4.79    3.52g,h 6.95 2.12 0.49 1.58 

PBE-TS 2.20 0.59 1.21 4.63 3.46 6.93 2.38 0.78 1.59 

optB86b-vdW 2.11 0.48 1.07 5.25  3.41a 6.98 2.31 0.60 1.57 

optB88-vdW  1.95b  0.44c 0.94  5.28d  3.37e 6.85  2.11f 0.39 1.74 

optPBE-vdW 1.82 0.39 0.84 5.06 3.24 6.69 1.97 0.24 1.82 

BEEF-vdW 
1.55 

(±0.18) 
0.23 

(±0.17) 
0.61 

(±0.20) 
4.44 

(±0.46) 
 2.98a 

(±0.21) 
6.34 

(±0.26) 
1.62 

(±0.26) 
-0.13 

(±0.30) 
2.05 

(±0.27) 
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Hensley et al.154 also report that the optB86b-vdW and optB88-vdW functionals do not predict 

the binding energies of CO with acceptable accuracy. The RMSD values of optB86b-vdW and 

optB88-vdW functionals are 0.37 eV and 0.33 eV, respectively, which is much higher than 

most of the other dispersion-inclusive DFT functionals (refer to Figure 9). Thus, neither of 

these functionals appear promising for studying graphene formation in the MSR reaction.   

The BEEF-vdW functional provides a better prediction of the CO binding energy than other 

vdW-DF (the deviation from experimental value is 0.23 eV; Wellendrof et al.128 report a similar 

result for this functional). Nonetheless, the BEEF-vdW functional exhibits large deviations in 

estimating the reaction energy of carbon oxidation and the binding energies of MSR species 

such as H2O, H, C and CH3 (as illustrated in Figure 8(b)). It predicts the dissociative adsorption 

of methane on Ni(111) to be an endothermic step (this result is not in qualitative agreement 

with the experimental value; refer to Table 3). The computational error predictions of the BEEF-

vdW functional range from 0.17 to 0.3 eV in most cases, except for O2 dissociative adsorption 

(at infinite separation), for which the BEEF-vdW gives a computational error of 0.46 eV (as 

shown in Table 3). The BEEF-vdW functional has the highest RMSD score among all the 

dispersion-inclusive DFT functionals benchmarked in this study (refer to Figure 9); which 

makes it unsuitable for the graphene-MSR system. The optPBE-vdW functional predicts the 

binding energy of OH with high accuracy. For species such as H2O, H and C, the optPBE-vdW 

functional produces deviations within an acceptable range (0.14–0.16 eV). It estimates the 

reaction energy of methane dissociation with reasonable accuracy (the deviation is 0.19 eV). 

The optPBE-vdW deviations for carbon oxidation reaction energy and CH3 binding energy are 

0.11 eV and -0.27 eV, respectively. In the case of species such as CO and O, the predictions 

of optPBE-vdW are in poor agreement with experimental data (refer to Table 3 and Figure 

8(b)). Nevertheless, the optPBE-vdW functional has a much better overall performance. The 

RMSD score of optPBE-vdW functional is 0.28 eV, which is substantially lower than the other 

vdW-DF (as shown in Figure 9). Furthermore, as discussed in section 3.1, the optPBE-vdW 

functional predicts the first minimum of graphene with reasonable accuracy. Therefore, among 

the vdW-DF, the optPBE-vdW functional can be considered to study the chemistry of carbon 

poisoning on Ni(111) (with appropriate corrections to CO and O binding energy values).  

In contrast to vdW-DF, the DFT-D functionals perform reasonably well for this system. The 

deviations of DFT-D functionals are less than or equal to 0.35 eV for all MSR species except 

CO (refer to Figure 8(c)). As depicted in Figure 9, the RMSD values of RPBE-D3 and revPBE-

D3 functionals are lower than the other dispersion-inclusive functionals tested in this study. 

These two functionals predict with acceptable accuracy the reaction energies of methane 

dissociation and carbon oxidation, and the binding energies of MSR species (H, H2O, CH3, 

OH), though, in the case of CO, they exhibit significant deviations from the experimental data 
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(refer to Table 3 and Figure 8(c)). However, these two functionals do not capture the first 

minimum of graphene on Ni(111) (as discussed in subsection 3.3.1).  

 

 

Figure 8: Performance of the DFT functionals in capturing MSR species binding energies, 

depicted using radar plots of Deviation = |DFT predicted value – Experimental value| (in units 

of eV). (a) GGA functionals, (b) vdW-DF functionals and (c) DFT-D functionals.  

The dispersion-corrected flavours of PBE; namely, PBE-TS, PBE-D3 and PBE-dDsC 

functionals produce interesting results. It is important to note that the aforementioned 

functionals significantly overestimate the CO binding energy. This behaviour is expected as 

the PBE approximation yields a poor description of CO adsorption (the deviation is 0.56 eV), 

and upon inclusion of dispersion corrections, the deviation from the CO experimental binding 
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energy value is further exacerbated. The PBE-TS functional has high predictive accuracy for 

species such as H2O, O and C (as illustrated in Figure 8(c), with deviations that are less than 

0.1 eV). It predicts the binding energies of CH3, H and OH with deviations 0.13 eV, 0.23 eV 

and 0.20 eV, respectively (these deviations are within the acceptable range). Göltl et al.127 

have also obtained similar results for CH3 and H using the PBE-TS functional. In the case of 

CH4 dissociative adsorption, the PBE-TS functional overestimates the reaction energy by 0.35 

eV. The inaccurate prediction of CO adsorption and CH4 dissociative adsorption mainly 

contribute to the high RMSD value of PBE-TS functional. Furthermore, the PBE-TS functional 

significantly overpredicts the graphene binding energy on Ni(111) (as discussed in subsection 

3.3.1). Thus, the PBE-TS functional is not an appropriate choice.  

 

Figure 9: RMSD values (obtained using eq. 71) of the DFT functionals considered in this study.  

The PBE-D3 functional predicts the binding energies of OH and C with appreciable accuracy. 

It provides a good description of the H2O-Ni(111) interactions, whereas, the hydrogen binding 

energy is substantially overestimated; Zhu et al.126 have also made similar observations. 

According to Table 3, PBE-D3 predicts the CH3 binding energy to be 2.25 eV, which agrees 

closely with the experimental result. Furthermore, it has been found to predict with reasonable 

accuracy the reaction energies of methane dissociation and carbon oxidation, as well as the 

oxygen binding energy (the deviations are less than 0.25 eV; refer to Figure 8(c)). In a recent 

study, Göltl et al.127 have reported that the PBE-D3 functional provides accurate estimates of 

the CH3 binding energy and the reaction energy of CH4 dissociation. The PBE-dDsC functional 



60 

 

exhibits excellent predictive accuracy in estimating the reaction energy of methane 

dissociation. It predicts the reaction energy of carbon oxidation and the binding energies of H, 

H2O, C and CH3 within a deviation range of 0.10-0.15 eV. In the case of O and OH, the PBE-

dDsC predictions deviate from the experimental data by around 0.25 eV (as shown in Figure 

8(c) and Table 3).  

The predictions of PBE-D3 and PBE-dDsC functionals agree well with most MSR species (all 

the deviations lie well within 0.3 eV excluding CO). Both functionals have similar overall 

predictive capability for MSR intermediates – the RMSD values of these functionals are around 

0.30 eV (as shown in Figure 9). They also account for the graphene-Ni(111) interactions with 

acceptable accuracy (refer to Table 1 of subsection 3.3.1). In summary, the PBE-D3 and PBE-

dDsC functionals perform better than the other DFT functionals tested in this work, and thus, 

make suitable choices for understanding the chemistry of graphene formation in the MSR 

reaction. 

Overall, the benchmark studies of graphene and MSR species give us some useful insights 

into the predictive accuracy of DFT-D and vdW-DF functionals. Comparisons with RPA 

calculations (which accurately capture the van der Waals interactions) reveal that the optB88-

vdW functional predicts the binding energy of graphene with excellent accuracy. The PBE-D3, 

PBE-dDsC and optPBE-vdW functionals also show reasonable agreement with the RPA 

prediction of graphene-Ni(111). On the other hand, the BEEF-vdW functional was found to 

produce a weak repulsive interaction between graphene and Ni(111). Moreover, the RPBE-D3 

and revPBE-D3 functionals do not generate the first minimum of the graphene-Ni(111) system. 

The DFT benchmarks of the MSR species reveal that the vdW-DF exhibit large deviations for 

species such as CO and O. Among the vdW-DF, the optPBE-vdW functional has the best 

overall performance; it can be considered for studying graphene-MSR chemistry on Ni(111) 

(appropriate corrections need to be made for CO and O intermediates). In the case of DFT-D 

functionals, the PBE-D3 and PBE-dDsC functionals predict with acceptable accuracy the 

binding energies of most MSR species (except CO), as well as the reaction energies of 

dissociative adsorption of methane (an important elementary step of MSR) and carbon 

oxidation. These functionals also provide a good description of the van der Waals interactions 

of graphene-Ni(111). Overall, the PBE-D3 and PBE-dDsC functionals are promising for more 

detailed studies to understand the carbon poisoning chemistry of Ni(111) in the MSR reaction 

(suitable corrections are required for the CO binding energy predictions of these functionals). 
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3.4 Conclusions  

Detailed DFT studies of the MSR reaction on Ni can provide valuable mechanistic insight on 

catalyst poisoning and deactivation phenomena, which have a severe impact on industrial 

operations. At the molecular scale, the poisoning mechanism primarily involves the formation 

of graphene islands; thus, the accurate description of graphene-Ni(111) interactions is 

paramount to develop a reliable carbon poisoning model for MSR. Graphene binds in a 

commensurate manner to the Ni(111) surface and its accurate description necessitates taking 

into account local as well as non-local interactions (van der Waals forces) using appropriate 

DFT functionals. In addition, to ensure an accurate description of the MSR chemistry, including 

the pathways that lead to poisoning precursors, these functionals should be able to faithfully 

reproduce the binding of key intermediates within these pathways. GGA functionals fail to 

capture the dispersion interactions of graphene-Ni(111), however, dispersion-inclusive 

functionals, such as DFT-D and vdW-DF could be effectively used to this end. Indeed, several 

studies have shown that some of the DFT-D functionals and vdW-DF are promising for the 

graphene-Ni(111) system. However, there is little evidence on the accuracy of these 

functionals in predicting binding energies of important MSR intermediates. 

In this chapter, a systematic benchmark analysis has been carried out to assess the 

performance of DFT-D functionals and vdW-DF in predicting the binding energies of graphene 

and MSR species, and the reaction energies of methane dissociation and carbon oxidation on 

Ni(111). The optB88-vdW, optB86b-vdW, optPBE-vdW, PBE-D3 and PBE-dDsC functionals 

have been found to yield promising results for graphene-Ni(111). The DFT predictions for the 

binding energies of key MSR species have been compared to experimental data from 

calorimetric and flash desorption studies available in the literature. The vdW-DF exhibit large 

RMSD values with respect to experimental data of MSR species. Nonetheless, among the 

vdW-DF, the optPBE-vdW functional is an appropriate choice for the graphene-MSR system. 

The DFT-D functionals exhibit a much better performance than the vdW-DF in predicting the 

binding energies of MSR species. In the case of DFT-D functionals, PBE-D3 and PBE-dDSC 

functionals appear to be suitable choices for investigations of carbon poisoning of Ni(111) in 

the MSR reaction.  

Our analysis shows that none of the DFT functionals considered were found to predict the 

binding energies of all the key MSR species with equally high accuracy. The RMSD values of 

DFT functionals fall in the range of 0.2-0.5 eV, which indicates that there is scope for further 

improving the predictive accuracy of DFT. Although optB88-vdW accurately accounts for the 

van der Waals interactions of graphene-Ni(111), it significantly overestimates the binding 

energies of important MSR intermediates such as O and CO. Moreover, the RPBE-D3 and 

revPBE-D3 functionals do not reproduce the experimentally observed binding configuration of 
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graphene on Ni(111), the “first minimum” at a distance of 2.11 ± 0.07 Å, despite having 

dispersion correction terms in their formulations. Furthermore, our analysis can guide the 

catalysis community in the selection of appropriate DFT functionals for future MSR studies.  

Overall, we recognise that the performance of the DFT functionals is far from perfect. 

Nevertheless, our work and literature studies show that the PBE-D3 functional captures the 

graphene-Ni(111) interactions with acceptable accuracy.124,125 The graphene binding energy 

prediction of PBE-D3 is reasonably close to RPA value (which is the “gold standard” method 

for systems with vdW interactions).124 Among the DFT functionals that are applicable for the 

graphene-Ni(111) (tested in this study), the PBE-D3, PBE-dDsC and optPBE-vdW have the 

best overall predictive accuracy in capturing the binding energies of important MSR 

adsorbates (refer to Figure 9). In comparison to PBE-dDsC and optPBE-vdW, the PBE-D3 

functional is computationally less expensive and has little to no convergence issues. 

Therefore, based on the benchmark analysis of current state-of-the-art DFT functionals and 

computational resource availability, we decided to proceed with the PBE-D3 functional to carry 

out the kinetic studies of coking and MSR reaction.  
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4. Assessing the impact of adlayer description fidelity on theoretical predictions of 

coking on Ni(111) at steam reforming conditions 

Coking is the accumulation of a stable poison over time, occurring at high temperatures; thus, 

to a first approximation, it can be treated as a thermodynamic problem. In this chapter, we 

developed an ab-initio KMC model for methane cracking on Ni(111) at steam reforming 

conditions. The model captures C-H activation kinetics in detail, while graphene sheet 

formation is described at the level of thermodynamics, to obtain insight into the “terminal 

(poisoned) state” of graphene/coke within reasonable computational times. We used CEs of 

progressively higher fidelity (in the KMC model) to systematically assess the influence of 

effective cluster interactions between adsorbed or covalently bonded C and CH species on 

“terminal state” morphology. We compared the predictions of KMC models incorporating these 

CEs to mean-field MK models in a consistent manner. Furthermore, we identify the conditions 

where Ni is susceptible to poisoning. The contents of this chapter have been published in The 

Journal of Physical Chemistry C, 127(18), pp. 8591-8606. 

4.1 Introduction  

In recent times, a few DFT studies have attempted to elucidate the thermodynamic stability of 

long-range carbon configurations such as chains, branches and rings on Ni(111).155-157 Wang 

et al.155 calculated the binding energies of atomic carbon, carbon clusters (C2-C4) and 

graphene on Ni(111), and reported that graphene is thermodynamically the most stable 

configuration on Ni(111). Li et al.157 used DFT to find the optimised structures/energetics of 

carbon clusters such as chains, rings and branches (containing up to six carbon atoms) on 

Ni(111), and concluded that carbon chains have better stability than rings/branches. The 

aforementioned DFT studies do not account for thermal, entropic and coverage effects, which 

are important to thoroughly understand the coke formation due to the methane cracking 

reaction at MSR conditions.9,54 Recently, Li et al.158 developed a first-principles-based KMC 

model for methane cracking on Ni(111), in the context of exploring the growth of carbon 

nanotubes (CNTs) on Ni. While the model shed light on the key role of surface species diffusion 

on CNT growth, effective cluster interactions between carbon-based intermediates were 

neglected. 

Typically, DFT-parameterised MK models are employed to study the reaction kinetics of 

catalytic systems.45,105 MK models predict important macroscopic observables of interest, such 

as turnover rates and species coverages at any given reaction condition. In the MK model 

formulation, mean-field approximations are typically used to account for adsorbate-adsorbate 

interactions.159 Several studies in the past have used mean-field MK models to capture the 

intrinsic kinetics and carbon poisoning chemistry under reforming conditions.6,10,16,19  
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Although mean-field approximations, within the MK framework, adequately take into account 

adsorbate interactions in some catalytic systems, they usually fail to capture short/long-range 

correlations, clustering of adsorbates, lattice inhomogeneities and island formation.50,159,160 In 

the methane cracking reaction, these effects might play a vital role in the accumulation of coke 

on Ni. Indeed, the need to systematically capture adsorbate correlation effects of carbon-

based species has previously been highlighted in the context of gaining a detailed 

understanding of the catalyst poisoning at reforming conditions.10,54 

As discussed previously (in the “Thesis Background” section), KMC simulations have gained 

significant prominence, as a viable alternative to mean-field MK models, for studying catalytic 

reactions that involve high species coverages or occur under poisoning conditions. The CE 

methodology implemented in KMC provides a highly accurate description of adsorbate 

correlation effects, thereby allowing us to capture in detail the chemistry of complex catalytic 

reactions.45,50 Coking is by definition the accumulation of a very stable poison over time, and 

for the MSR reaction, it happens in the context of a high-temperature process. Thus, to an 

acceptable first approximation, we are dealing with a thermodynamic problem, not a kinetic 

one. At long time scales, the most thermodynamically stable species will cover the Ni(111) 

surface, and thus, under the CE framework, we can capture the detailed energetics of such 

species to understand the formation of carbon-rich adlayers and identify the conditions where 

the emergence of coke is favourable. In this work, we developed an ab-initio KMC model for 

the methane cracking reaction on Ni(111), the primary reaction responsible for coke formation 

(as discussed previously). The model captures in detail the kinetics of the C-H activation steps, 

while graphene sheet formation is described at the level of thermodynamics, so as to obtain 

insight into the “terminal state” resulting in catalytic surface poisoning within reasonable 

computational times. We systematically explored the implications of including effective cluster 

interaction effects in the methane cracking reaction to understand the terminal state of coke 

on Ni(111). In the KMC model, we have not considered the diffusion of carbon into the bulk 

and subsequent precipitation to form Ni carbide. Previous experimental works have argued 

that the growth of graphene/coke mainly occurs by carbon surface diffusion/agglomeration on 

the Ni support side58,161,162 and DFT calculations have also shown that the diffusion barriers to 

Ni subsurface (around 1.34 eV) and Ni bulk (1.6–1.8 eV) are high.158 The rest of the chapter 

is organised as follows. In section 4.2 – Computational details, we provide a thorough 

discussion about the methods employed in this study, and in section 4.3 – Results and 

Discussion, the results of the DFT calculations and kinetic simulations (using the MK and KMC 

approaches) are presented in a systematic way. Finally, in section 4.4 – Conclusions, we 

provide a detailed discussion on the conclusions/implications of this study and the potential 

opportunities for future work.  
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4.2 Computational details  

4.2.1 DFT calculations  

We performed spin-polarised plane-wave DFT calculations using VASP 5.4.1. The tolerance 

value for the electronic (self-consistency) convergence was set to 10-7 eV. Our detailed DFT 

functional screening work (Chapter 3) has shown that PBE-D3 is suitable for the MSR-

graphene system. Thus, the PBE-D3 functional has been employed to capture the exchange-

correlation effects in this study. The plane wave energy cut-off value was set to 400 eV and 

the interactions between core and valence electrons were modelled using the projector 

augmented wave (PAW) potentials. 

For the Ni lattice constant optimisation calculations, the tetrahedron method with Blöchl 

corrections was employed to perform the electron smearing (the smearing width was set to 

0.05 eV) and the Brillouin zone was sampled with a 19×19×1 k-point mesh. The optimised Ni 

lattice constant was thus found to be 3.481 Å (which is in reasonable agreement with the 

experimental Ni lattice constant – 3.524 Å).127 The Ni(111) surface has been modelled using a 

six-layer p(4×4) slab (which has a vacuum height of 12 Å). The Ni atoms of the three bottom-

most layers were fixed to their respective bulk positions and the rest were fully relaxed until 

the Hellmann-Feynman forces reached a value of less than 10-2 eV/Å. In the Ni slab 

calculations, the electrons were smeared by employing the Methfessel-Paxton method (with 

a smearing width value of 0.1 eV) and the Brillouin zone sampling was performed using a 

5×5×1 Monkhorst-Pack k-point grid. The geometric optimisation of the adsorbates was 

conducted by employing the conjugate gradient search algorithm. The transition states (TS) 

were located by using the dimer72 and quasi-newton methods. The coordinates of the 

converged TS structures reported by Blaylock et al.6 were used as an initial guess (the 

coordinates of atoms were rescaled to account for the slightly different lattice constants 

between the two calculation setups). The vibrational frequencies of the converged structures 

were obtained by evaluating the Hessian matrix with the central finite difference method and 

a step size for the displacement of 0.02 Å. As shown in Table A18 of Appendix II, all the TS 

structures have a single imaginary mode, which indicates that these are first-order saddle 

points on the potential energy surface.  

The formation energies of the adsorbates are computed using Ni(111) clean slab, CH4 (g) and 

H2 (g) as reference (refer to eq. 72 below).  

𝐸𝐹𝐸
𝐴 = 𝐸𝑡𝑜𝑡

𝐴+𝑠𝑙𝑎𝑏 −   𝐸𝑡𝑜𝑡
𝑁𝑖(111) −  (𝑚𝐸𝑡𝑜𝑡

𝐶𝐻4(𝑔)
+  𝑛𝐸𝑡𝑜𝑡

𝐻2(𝑔)
) eq. 72 

𝐸𝐼𝐸
𝐴𝐵 = 𝐸𝐹𝐸

𝐴𝐵  − 𝐸𝐹𝐸
𝐴 − 𝐸𝐹𝐸

𝐵  eq. 73 
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In eq. 72, 𝐸𝑡𝑜𝑡
𝑁𝑖(111) 

 refers to the DFT total energy of the Ni(111) slab, 𝐸𝑡𝑜𝑡
𝐴+𝑠𝑙𝑎𝑏  is the DFT total 

energy of the adsorbate-Ni(111) system, 𝐸𝑡𝑜𝑡
𝐶𝐻4(𝑔)

 represents the gas-phase DFT total energy 

of methane, 𝐸𝑡𝑜𝑡
𝐻2(𝑔)

 indicates the gas-phase DFT total energy of hydrogen, 𝐸𝐹𝐸
𝐴  is the formation 

energy of the adsorbate. The stoichiometry between the adsorbate and the gas-phase 

reference species (that is the number of C/H atoms) is balanced out using the real numbers 

𝑚 and 𝑛. For instance, the formation energy calculation of CH adsorbate would have 𝑚 and 𝑛 

values as 1 and -1.5, respectively. As shown in eq. 73, the interaction energy for any co-

adsorbed pair of species A and B (𝐸𝐼𝐸
𝐴𝐵) is obtained by subtracting the formation energies at 

infinite separation (the terms 𝐸𝐹𝐸
𝐴  and 𝐸𝐹𝐸

𝐵 ) from the co-adsorbed state formation energy (𝐸𝐹𝐸
𝐴𝐵).  

4.2.2 Mean-field MK model   

As discussed previously (in chapter 2), the MK methodology is derived by reducing the master 

equation into a system of ordinary differential equations (ODEs) under the assumption of 

infinitely fast adsorbate diffusions and large lattice size, whereby the correlation effects 

between adsorbates are neglected. Thus, the information about the spatial distribution of 

adsorbates on the lattice is lost within the MK framework.22,102,103 The methane cracking 

reaction involves 5 elementary reaction events (as shown in Table 5). All reactions are 

assumed to be reversible. The rate equations for each of these elementary reactions have 

been written in accordance with the formulation provided in the “Methodology” chapter (refer 

to all the equations between eq. 56 and eq. 60). The lateral interactions between adsorbates 

are captured using the Bragg-Williams approximation (refer to eq. 61 of chapter 2). The MK 

model equations have been solved numerically using the ODE15s solver in MATLAB 2019b. 

4.2.3 KMC simulations    

The KMC approach does not deliver an explicit solution of the Markovian master equation; 

rather, it employs a stochastic simulation algorithm to generate trajectories whose statistics 

follow this equation (as discussed in Chapter 2). The observables of interest can be obtained 

by time-averaging these stochastic realisations (trajectories) upon reaching steady-state 

conditions.22,163 In this work, the KMC simulations have been carried out by using the graph-

theoretical KMC software Zacros 3.01.164  

The preferred binding sites of methane cracking adsorbates are recorded in Table A17 of 

Appendix II. We have chosen a KMC lattice which comprises top and three-fold hollow sites 

(where fcc and hcp sites are considered identical). In Figure A9 of Appendix II, the KMC lattice 

is depicted. The circles and triangles (which are coloured in blue for vacant sites) represent 

the top and hollow sites, respectively. A lattice of size 10×10 has been used to run the KMC 

simulations (lattice convergence results are shown in Table A24). In order to reduce the 

computational cost of KMC simulations, the pre-exponentials of quasi-equilibrated (fast) 
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events are downscaled systematically by carefully analysing the event occurrence statistics 

plot throughout the run time of the KMC simulation (the frequency of events is checked for a 

sliding interval of 5×10-1 KMC time units). 

The interactions between adsorbates or covalently bonded species have been captured by 

employing the CE methodology implemented in the graph-theoretical KMC framework by 

Nielsen et al.89. The CE formalism has been discussed in great detail in chapter 2 (refer to 

section 2.6 of the “Methodology” chapter). The formation energy of any type of C-CH 

configuration can be accurately represented by using CEs in the KMC simulation. The 

mathematical formula of the CE framework has been provided in the “Methodology” chapter 

(refer to eq. 53 and eq. 55).  

Table 4. The CE optimisation metrics for the CH/C DFT configurations 

Metrics Value 

Number of DFT configurations 173 

Number of parameters/figures 23 

RMSE (meV/site) 52.65 

LOOCV score (meV/site) 8.87 
 

In principle, we can include all the possible 1-body, 2-body …. n-body clusters/figures in the 

CE model to have an exact representation of energy in the KMC simulation. However, this 

procedure becomes increasingly tedious and computationally expensive for a large dataset of 

DFT configurations.96 This problem can be addressed by truncating the CE model using a 

finite set of optimal clusters/figures, which are obtained by performing CE-based least-squares 

fitting. The identification and parameterisation of clusters in the CE fitting exercise is a non-

trivial task.97 It involves trial and error, and the decision on when the CE is accurate enough 

involves the use of metrics such as root-mean-square error (RMSE) and leave-one-out cross-

validation (LOOCV) score (this provides a statistical measure of the CE model predictive 

accuracy).97,165  

𝑅𝑀𝑆𝐸2 = 
1

𝑁𝑐𝑜𝑛𝑓
 ∑ (𝐹𝐸𝑖

𝐶𝐸 − 𝐹𝐸𝑖
𝐷𝐹𝑇)

2𝑁𝑐𝑜𝑛𝑓

𝑖=1
 eq. 74 

𝐶𝑉2 = 
1

𝑁𝑐𝑜𝑛𝑓
 ∑ (𝐹𝐸𝑖(𝑖)

𝐶𝐸 − 𝐹𝐸𝑖
𝐷𝐹𝑇)

2𝑁𝑐𝑜𝑛𝑓

𝑖=1
 eq. 75 

In eq. 74, the formula for obtaining RMSE is shown. 𝐹𝐸𝑖
𝐶𝐸  denotes the formation energy of the 

i th configuration, as predicted by the CE (using the entire dataset of 𝑁𝑐𝑜𝑛𝑓 configurations) and 

𝐹𝐸𝑖
𝐷𝐹𝑇 is the formation energy calculated from DFT. The LOOCV score (𝐶𝑉) is computed using 
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eq. 75, with 𝐹𝐸𝑖(𝑖)
𝐶𝐸  denoting the formation energy of configuration i, when configuration i is 

omitted from the dataset used for the CE fitting. For more details, we refer the reader to the 

work by Miller and Kitchin98, which includes a discussion and an application of the LOOCV 

methodology in the context of CE fitting. Briefly, a low LOOCV score ensures high-quality fit 

of CE parameters.165 In some cases, the CE model’s predictive capability is also benchmarked 

against experimental data (if available). Furthermore, it is crucial to identify the appropriate 

number of clusters, as the use of too many clusters in the CE model can lead to overfitting 

issues.98 The pairwise effective cluster interaction parameters, as estimated using eq. 73, are 

recorded in Table A22 of Appendix II. In Figure A9, a schematic for each type of pairwise 

interaction pattern is provided. We also performed a CE optimisation for a dataset of 173 

unique DFT configurations on 4×4 supercells. The dataset mainly comprises rings, branches, 

and chain type configurations of CH/C species (more details are provided in the “Results and 

Discussion” section). The statistical metrics of the CE fit are provided in Table 4 – these values 

are similar to other literature studies where CEs have been employed to capture adlayer 

energetics.96,98,165 In Figure A10, Figure A11 and Figure A12 of Appendix II, the schematics of 

the parameters/figures used for fitting the CE model are illustrated. Furthermore, Cook’s 

distances99 were estimated for each configuration of the CE dataset (refer to Figure A13 of 

Appendix II), in order to detect configurations that potentially exert a strong influence on the 

ECI values obtained from the regression. The Cook’s distance for the ith configuration has 

been calculated using the following equation: 

𝐷𝑖 = 
1

𝑝 𝑀𝑆𝐸
∑ (𝐹𝐸𝑗

𝐶𝐸 − 𝐹𝐸𝑗(𝑖)
𝐶𝐸 )

2

𝑁𝑐𝑜𝑛𝑓

𝑗=1

 eq. 76 

Where 𝑝 is the number of parameters/figures of the CE model, MSE represents the mean 

squared error and 𝐹𝐸𝑗(𝑖)
𝐶𝐸  is the formation energy of configuration j obtained after omitting 

configuration i in the dataset of CE fitting. The 173 configurations used to fit the CE were 

constructed in a systematic manner. We started off with one-body, two-body and three-body 

configurations of C and CH species and fitted the CE with simple parameters/figures. Then, 

we gradually expanded the dataset to higher-body configurations and used a trial-and-error 

approach to identify the suitable parameters/figures for our CE model. We consistently used 

the metrics such as RMSE, LOOCV score and Cook’s distances to check the quality of the fit. 

If any of the metrics were unsatisfactory, we refitted the CE model by removing/including 

figures. Furthermore, whenever a highly influential configuration was found (as quantified by 

its Cook’s distance), we enriched the dataset with configurations that contained similar motifs, 

thereby better sampling that region of the configuration space. The DFT dataset includes 

configurations which have coverage ranging from 0-1 ML.  
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       a)        b) 

 

       c)        d) 

Figure 10: Parity plots of the CEs of KMC models: a) KMC-1NN, b) KMC-1NN-2NN, c) KMC-1NN-2NN-3NN and d) KMC-long-range. 
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The parity plots of the CEs of all the KMC models (developed in this study) are illustrated in 

Figure 10. The RMSE values of KMC-1NN, KMC-1NN-2NN, KMC-1NN-2NN-3NN and KMC-

long-range CE models are 234.2 meV/site, 252.5 meV/site, 354.4 meV/site and 52.65 

meV/site, respectively. It is important to note that the CE parameters/figures of KMC-1NN, 

KMC-1NN-2NN, KMC-1NN-2NN-3NN models have not been fitted against the DFT dataset 

(which constitutes the 173 configurations). We remind the readers that the ECI values of CEs 

of these models are obtained using eq. 73. The parity plots/RMSE values of the four KMC 

models have been shown/calculated for the purpose of comparing their corresponding 

predictive accuracies. We can clearly infer from the parity plots (Figure 10) and RMSE values 

that the KMC-long-range model captures the adlayer energetics with higher accuracy than 

other KMC models. 

4.2.4 Establishment of equivalence between MK and KMC models  

In order to make a systematic comparison between MK and KMC models, it is imperative to 

first obtain equivalent results. The equivalence condition for MK and KMC models is as follows: 

at the limit of fast diffusions and large system size, without interactions, both MK and KMC 

models give identical results.112 There are some “technicalities” involved in establishing 

equivalence between MK and KMC models; in particular, appropriate geometry factors (𝐺𝑀𝑓𝑎𝑐) 

must be included in the MK model equations (as shown in eq. 56 and eq. 57 of the 

“Methodology” chapter) to account for site connectivity of the lattice. For events in which the 

reactant patterns are symmetric, the pattern detection algorithm of Zacros double counts the 

number of instances thereof on the lattice. Thus, the kinetic constants of such events must be 

corrected by dividing them with the “event-multiplicity” factor. The geometry and event-

multiplicity factors for each reaction step of the methane cracking reaction network are 

provided in Table A21. As stated above, it is critical to ensure that the diffusion events are 

quasi-equilibrated (fast) to achieve equivalence between MK and KMC models. However, in 

certain scenarios (especially under high species coverage regimes), it might be necessary to 

include adsorbate swap diffusions in the KMC simulation to establish equivalence with MK 

predictions. These are concerted diffusion events which may not necessarily be physically 

realistic; their role is to ensure better homogenisation of the KMC lattice under “crowded” (high 

species coverage) conditions.112 In our study, we have been able to obtain quantitatively 

similar results for the methane cracking reaction using MK and KMC models at the 

equivalence condition (more details are provided in section 4.3).  

4.2.5 Estimation of pre-exponentials and activation energy parametrization  

The first reaction step in the methane cracking reaction involves dissociative adsorption of 

methane to form methyl and hydrogen on the Ni(111) surface (as shown in Table 5). For an 

activated dissociative adsorption event, we calculate the forward/reverse rate constants using 
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eq. 77 and eq. 78 (as defined below). In these equations,  𝑚𝐶𝐻4  is the mass of the methane 

molecule, 𝑃𝐶𝐻4 represents the pressure of methane gas, 𝐴𝑠𝑡 is the contact surface area of the 

Ni atom, 𝑇 is the temperature, 𝑘𝐵 is the Boltzmann constant, 𝐸𝐴𝑐𝑡𝑓𝑤𝑑
𝑓𝑖𝑛𝑖𝑡𝑒−𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

 represents the 

coverage-dependent forward activation energy, 𝐸𝐴𝑐𝑡𝑟𝑒𝑣
𝑓𝑖𝑛𝑖𝑡𝑒−𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

 is coverage-dependent 

reverse activation energy, 𝑄𝑡𝑟𝑎𝑛𝑠−2𝐷 is the translational partition function of a 2D gas, 𝑄𝑟𝑜𝑡 and 

𝑄𝑣𝑖𝑏 are the rotational and vibrational partition functions, respectively. The formulas of the 

partition functions are provided in chapter 2 (refer to section 2.4).  

𝑘𝑑𝑖𝑠𝑠−𝑎𝑑𝑠 
𝑓𝑤𝑑

= 
𝑄𝑣𝑖𝑏
𝑇𝑆

𝑄𝑡𝑟𝑎𝑛𝑠−2𝐷
𝐼𝑆  𝑄𝑟𝑜𝑡

𝐼𝑆   𝑄𝑣𝑖𝑏
𝐼𝑆   

𝑃𝐶𝐻4 𝐴𝑠𝑡

√2 𝜋 𝑚𝐶𝐻4 𝑘𝐵 𝑇
 exp (−

𝐸𝐴𝑐𝑡𝑓𝑤𝑑
𝑓𝑖𝑛𝑖𝑡𝑒−𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑘𝐵 𝑇
)  eq. 77 

𝑘𝑑𝑖𝑠𝑠−𝑎𝑑𝑠 
𝑟𝑒𝑣 = 

𝑘𝐵 𝑇

ℎ

𝑄𝑣𝑖𝑏
𝑇𝑆

𝑄𝑣𝑖𝑏
𝐹𝑆   exp(−

𝐸𝐴𝑐𝑡𝑟𝑒𝑣
𝑓𝑖𝑛𝑖𝑡𝑒−𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑘𝐵 𝑇
)  eq. 78 

𝑘𝑑𝑖𝑠𝑠−𝑠𝑢𝑟𝑓 
𝑓𝑤𝑑

=  
𝑘𝐵 𝑇

ℎ

𝑄𝑣𝑖𝑏
𝑇𝑆

∏ 𝑄𝑣𝑖𝑏
𝑖

𝑖 ∈ 𝑅𝑠𝑢𝑟𝑓 

  exp (−
𝐸𝐴𝑐𝑡𝑓𝑤𝑑
𝑓𝑖𝑛𝑖𝑡𝑒−𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑘𝐵 𝑇
) eq. 79 

𝑘𝑑𝑖𝑠𝑠−𝑠𝑢𝑟𝑓 
𝑟𝑒𝑣 =  

𝑘𝐵 𝑇

ℎ

𝑄𝑣𝑖𝑏
𝑇𝑆

∏ 𝑄𝑣𝑖𝑏
𝑖

𝑖 ∈ 𝑃𝑠𝑢𝑟𝑓 

  exp(−
𝐸𝐴𝑐𝑡𝑟𝑒𝑣
𝑓𝑖𝑛𝑖𝑡𝑒−𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑘𝐵 𝑇
) eq. 80 

In the case of surface reactions, the frustrated translations and rotations of chemisorbed 

species are considered as vibrations. The vibrational partition function is estimated by using 

the harmonic approximation (refer to eq. 43 in Chapter 2). The forward/reverse rate constants 

of surface reactions are estimated using eq. 79 and eq. 80 (as shown above). The 

forward/reverse coverage-dependent activation barriers for any reaction are calculated using 

the BEP relations (as shown in eq. 62 and eq. 63 of Chapter 2) in MK and KMC models.  

4.3 Results and discussion  

In this study, we attempted to elucidate the formation of carbon-based poisoning species on 

the Ni support surface by systematically accounting for effective cluster interactions in the 

methane cracking reaction (as discussed previously in section 4.1). The methane cracking 

reaction is a highly correlated system. Thus, the inclusion of interactions between adsorbates 

or covalently bonded species in the methane cracking reaction can potentially provide us with 

useful information about the morphology of coke/graphene on the Ni support surface. 

Moreover, it could lay the groundwork for more complicated models that capture in detail the 

growth kinetics of the various CxHy coke precursors. With these points in mind, the “Results 

and discussion” section is structured as follows: we first discuss in detail the nature/magnitude 

of interactions between carbonaceous species (at 1NN, 2NN and 3NN distances) and present 
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the DFT dataset of C/CH long-range configurations in section 4.3.1. Next, we compare 

systematically the MK and KMC predictions of methane cracking and draw conclusions about 

the influence of interactions on the thermodynamic stability and macroscopic coverages of 

methane cracking species in section 4.3.2. We subsequently demonstrate lattice 

configurations obtained from KMC simulations with varying levels of detail in the description 

of adlayer energetics and develop an understanding of the dependence of the terminal state 

(the structure of the adlayer at the poisoned state) on effective cluster interactions in section 

4.3.3. Finally, we illustrate, in section 4.3.4, the effect of temperature on the KMC adlayer. 

4.3.1 DFT results   

The adsorbate binding energies and activation barriers of methane cracking reaction are 

reported in Appendix II. We have systematically compared the binding energy/activation 

barrier predictions of our study with literature values (refer to Table A17 and Table A19 of 

Appendix II). As mentioned previously (in section 4.2), Table A22 provides the interaction 

energy values at 1NN, 2NN and 3NN distances for all the possible pairs of methane cracking 

adsorbates. It can be inferred from Table A22 that there is substantial variation in the type of 

interaction, attractive or repulsive, between 1NN and 2NN pairs of adsorbate or covalently 

bonded species encountered in methane cracking. At the 1NN distance, most co-adsorbed 

configurations of methane cracking species are unstable (due to the presence of strong 

repulsive interactions) – for such adsorbate-pairs a penalty is introduced in the MK/KMC model 

by fixing the value of ECI to 5 eV (as shown in Table A22), to prevent such configurations from 

appearing during the course of the simulation. In the case of C and CH species, we observe 

that the interaction is strongly attractive at the 1NN level. 

Thus, as shown in Figure 11, the ECI values of the C-C, CH-C and CH-CH 1NN pairs are  

-0.471 eV, -0.494 eV and -0.355 eV, respectively, which indicates that these pairs are highly 

stable on the Ni(111) surface. A few studies have also made similar observations about the C-

C interactions.156,157 Li et al.157 have performed projected density of states (PDOS) analysis of 

C-C species on Ni(111) and reported that there is an overlap of 2s and 2p orbitals of both 

carbon atoms, which is indicative of a strong C-C bond. The C/CH adsorbate-1NN pairs could 

be potential precursors to coke formation at steam reforming conditions.  
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   C-C 1NN (-0.471 eV)                      C-C 2NN (0.375 eV)                                   C-C 3NN (0.242 eV)    

   

    CH-CH 1NN (-0.355 eV)                           CH-CH 2NN (0.261 eV)                           CH-CH 3NN (0.113 eV)     

                       

     CH-C 1NN (-0.494 eV)                                    CH-C 2NN (0.275 eV)                                  CH-C 3NN (0.104 eV)    

                     

  

Figure 11: The top-view of the DFT configurations for the C/CH pairwise co-adsorbed states 

at 1NN, 2NN and 3NN distances. The numbers in the parentheses are the ECI values of the 

corresponding patterns.  

In contrast to the attractive 1NN interactions of C/CH species, all the methane cracking 

species experience substantial repulsive interactions at the 2NN level (refer to Table A22). The 

C-C, CH-CH and CH-C 2NN-adsorbate pairs have positive ECI values (refer to Figure 11). As 

shown in Table A22, most methane cracking 3NN-adsorbate pairs have a weaker repulsive 

interaction (the ECI values are converging to zero in some cases). At the 3NN distance, the 

interactions become less pronounced as the adsorbates are placed further apart from each 

other. It can be inferred from Figure 11 that the formation of long-range carbonaceous species 

on Ni(111) primarily involves an interplay of attractive (C-C, CH-CH and CH-C bond formation 

at the 1NN level) and repulsive interactions (C-C, CH-CH and CH-C repulsions at the 

2NN/3NN level).  
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Figure 12: The formation energies (eV/C) of carbon configurations (reported in increasing 

order of stability - from left to right), which are part of the DFT dataset used for CE training.  

We further explored the stability of long-range chains, branches and rings (composed of C/CH 

species) on the Ni(111) surface. We performed DFT calculations to compute the formation 

energies of 173 different carbon, CH and CH-C configurations on Ni(111) as mentioned earlier 

in section 4.2. The dataset has been developed in a systematic way; it includes a range of 

configurations at varying C/CH coverages (0–1 ML). The formation energies of carbon, CH, 

C-CH configurations are depicted in Figure 12, Figure 13 and Figure 14, respectively.  

It can be observed from Figure 12 that the formation energies of carbon configurations are in 

the range of 1.86–2.62 eV/C. As shown in Figure 12, among the six body configurations, the 

carbon chain has a formation energy of 1.95 eV/C (configuration 28), whereas the carbon 

branch and carbon ring configuration have a formation energy of 2.12 eV/C (configuration 26) 

and 2.14 eV/C (configuration 27), respectively. Li et al.157 and Cheng et al.156 have also 

reported that the six-body chain type carbon configurations have better stability than six-body 

rings/branches. Nevertheless, as depicted in Figure 12, the C16 ring-based (configuration 63) 

has the highest stability among the carbon configurations computed in this study, which 

indicates that the terminal state of coke could be composed of higher-body ring-based carbon 

structures.  

Conf 63 Conf 28 Conf 27 Conf 26 
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Figure 13: The formation energies (eV/CH) of CH configurations (reported in increasing order 

of stability - from left to right), which are part of the DFT dataset used for CE training.  

The formation energies of CH configurations lie in the range of 0.95–1.42 eV/CH (refer to 

Figure 13). The six-body CH ring, which is benzene (configuration 94), has far greater stability 

than most of the other CH configurations – this is mainly due to the π-π conjugation between 

carbon atoms in the benzene ring (the formation energy of benzene on Ni(111) is 1.03 eV/CH). 

As shown in Figure 13, the five-body chain (configuration 87) has higher stability than the six-

body branch type CH configuration (configuration 96).  

The C-CH configurations (Figure 14) have formation energies in the range of 1.10–2.11 

eV/adsorbate (this is within the formation energy ranges of carbon and CH configurations). As 

illustrated in Figure 14, naphthalene (configuration 173) is very stable on the Ni(111) surface. 

The formation energies of configurations 127 (partially hydrogenated carbon-based ring) and 

143 (partially hydrogenated carbon-based chain) are 1.52 eV/adsorbate and 1.42 

eV/adsorbate, respectively (these lie in the moderate range in terms of stability in the DFT 

dataset). On the other hand, the C-CH branch-based structure (configuration 133) is less 

stable in comparison to other configurations (the formation energy value is 1.80 eV/adsorbate). 

Some of the CE training schematics of C-CH configurations are shown in Figure A14 and 

Figure A15 of Appendix II. The complete dataset of DFT configurations has been made 

available in the NOMAD repository.166  

Conf 96  Conf 87  Conf 66  Conf 94  
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These calculations clearly indicate that C/CH correlation effects play a critical role in the 

formation of long-range carbonaceous species (which ultimately poison the Ni surface). Thus, 

it is important to systematically account for interactions between adsorbates or covalently 

bonded species to understand the coke morphology/terminal state of carbon-based species 

at steam reforming conditions. 

 

Figure 14: The formation energies (eV/adsorbate) of CH-C configurations, which are part of 

the DFT dataset used for CE training. 

4.3.2 Methane cracking reaction – MK/KMC predictions    

In an attempt to clearly understand the implications of interactions, we followed a systematic 

approach in developing MK and KMC models for the methane cracking reaction. In Table 5, 

the list of elementary reactions of methane cracking along with their corresponding activation 

barriers, reaction energies and pre-exponentials are provided. In the first instance, we 

attempted to obtain equivalence between MK and KMC models in the absence of interactions, 

and thus appropriate geometry and event-multiplicity factors were included as discussed 

previously in section 4.2.4. Upon achieving this equivalence, we systematically started 

incorporating effective cluster interaction parameters in both models.  

 

Conf 133  Conf 127  Conf 143  Conf 173  
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Table 5. The list of elementary events, activation barriers/reaction energies and pre-

exponents of the Methane cracking KMC model at 1000 K and 10.01 bar. 

 

Note: The activation barriers and reaction energies reported in this table do not include ZPE corrections. 

The reverse activation barriers/pre-exponentials of the corresponding reactions are shown in 

parentheses. The TS configurations of steps R1, R2, R4 and R5 involve top sites of Ni(111), and thus, 

the KMC event definitions for these reactions include top sites. Please refer to Figure A8 (in Appendix 

II) for the TS geometries of these reactions. 

The BW approximation (eq. 61) was used to account for pairwise interactions up to 3NN level 

in the MK model. Three MK models were thus developed, namely, MK-1NN, which includes 

1NN interactions, MK-1NN-2NN, which incorporates 1NN and 2NN interactions, and MK-1NN-

2NN-3NN, which includes 1NN, 2NN and 3NN interactions. Whereas in the KMC model, the 

CE methodology (eq. 55) was used to account for interactions between adsorbates or 

covalently bonded species. We developed four different KMC models with increasing levels of 

complexity: the first three, KMC-1NN, KMC-1NN-2NN, and KMC-1NN-2NN-3NN, include the 

interactions noted, as per the naming convention of the MK models just discussed (refer to       

Table A22 of Appendix II for ECI values). The fourth model, KMC-long-range, includes the 

pairwise interactions up to 3NN level, as well as the higher-level interactions, which are 

parameterised by fitting against the DFT dataset that includes long-range carbon-based 

species (refer to Table A23 of Appendix II for ECI values). 

The MK/KMC predictions were obtained at temperature ranges of 800–1200 K. The methane 

partial pressure and H2 partial pressure were maintained at 10.00 bar and 0.01 bar, 

respectively (in the gas phase). These are the typical industrial operating conditions of steam 

reforming6,18,167 and Snoeck et al.30 have also conducted experiments on the methane cracking 

Event ID: Reaction 
𝐸𝐴𝑐𝑡𝑓𝑤𝑑(𝑟𝑒𝑣)
𝑧𝑒𝑟𝑜−𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

 

(eV) 

Δ𝐸𝑟𝑥𝑛
0  

(eV) 
Pre-exp fwd (rev) 

(s-1) 

R1: CH4 (g) +   *(fcc) + *(top) + *(fcc)  ↔ CH3*(fcc) + *(top) + H*(fcc) 0.41 (0.94) -0.53 
7.47×108  

(3.70×1014) 

R2: CH3*(fcc) + *(top) + *(fcc)  ↔  CH2*(fcc) + *(top) + H*(fcc)   0.66 (0.64) 0.02 
1.09×1014 

(4.63×1013) 

R3: CH2*(fcc) + *(fcc)  ↔   CH*(fcc)  +   H*(fcc)  0.26 (0.63)  -0.36 
3.21×1013 

(4.16×1013) 

R4: CH*(fcc) + *(top) + *(fcc)  ↔  C*(fcc) + *(top)  +  H*(fcc) 1.31 (0.84) 0.46  
1.92×1014 

(1.14×1014) 

R5:  H*(fcc)  +  *(top)  +  H*(fcc) ↔  H2(g) +  *(fcc) + *(top) + *(fcc)     1.33 (0.00) 1.33 

9.80×106 
(6.25×1015) 
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reaction at similar conditions to investigate the carbon whisker growth. Figure 15(a) and Figure 

15(b) show the CH coverage predictions of the MK and KMC models, respectively (at varying 

temperatures), while the carbon coverage predictions are depicted in Figure 15(c) and Figure 

15(d), respectively. The error bars in Figure 15 indicate the sample standard deviation of the 

KMC simulation. We also computed the population standard deviation (also called as the 

“standard error”) of the KMC predictions – these results are presented in Table A30 and Table 

A31 of Appendix II.  

In the absence of interactions, the MK and KMC models predict quantitatively identical 

coverage trends (refer to the “MK-without-interaction” and “KMC-without-interaction” model 

predictions in Figure 15). Without the inclusion of interactions in the MK/KMC models, the CH 

species is found to have high coverages on Ni(111) at steam reforming conditions (refer to 

Figure 15(a) and Figure 15(b)). The surface dissociation steps following methane activation, 

i.e., the cleavage of CH3 and CH2 species, have high propensities, and thus, the CH3 and CH2 

intermediates are short-lived on the Ni(111) surface. On the other hand, the CH dissociation 

step has a high free-energy barrier and CH is thermodynamically the most stable species on 

the Ni(111) surface (refer to Table A25, Table A26, Table A27, Table A28 and Table A29 of 

Appendix II for the free-energy/kinetic data), which justifies the high coverage prediction of CH 

species at steam reforming conditions.  

As shown in Figure 15(c) and Figure 15(d), the MK-without-interaction and KMC-without-

interaction models show an increasing trend of carbon coverage with respect to temperature. 

Although the CH dissociation event is endothermic, at higher temperatures, the formation of 

carbon is favoured as kinetic effects become more pronounced (refer to Table A25, Table A26, 

Table A27, Table A28 and Table A29 for the free energy/kinetic data). The inclusion of 

interactions between adsorbates or covalently bonded species in the MK and KMC model can 

substantially alter the thermodynamic stabilities of carbon intermediates of methane cracking 

reaction (under the BEP relation) – this will be discussed in further detail below.  
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      a) b)  

     

      c)                                                                                   d)  

Figure 15: The coverage (ML) profiles with respect to temperature: a) MK results of CH coverages, b) KMC results of CH coverages, c) MK results of carbon 

coverages and d) KMC results of carbon coverages. The methane and hydrogen pressure were maintained at 10.00 bar and 0.01 bar, respectively. The coverage 

is normalised with respect to number of surface Ni atoms, and thus the maximum coverage is 2, when all hollow sites are covered.  
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It is evident from Figure 15(a) and Figure 15(c) that the MK models fail to capture the effect of 

interactions in a systematic fashion. The MK-1NN, MK-1NN-2NN and MK-1NN-2NN-3NN 

models predict very low coverages of CH and C despite the inclusion of attractive interactions 

(CH-CH-1NN, CH-C-1NN and C-C-1NN). The MK models tend to show small variation in CH 

and C coverages with respect to temperature. There is a significant difference between the 

predictions of MK and KMC models at all operating conditions (as shown in Figure 15 the 

difference lies in the range of 0.4–1 ML). Under the BW approximation, the likelihood of the 

occurrence of an adsorbate pair is determined by the geometry factor (accounting for site 

connectivity), the corresponding ECI value and the averaged coverage. Since the spatial 

information of adsorbates is represented using averaged coverage in the BW methodology, 

the MK models provide an inaccurate estimate of the “average” number of CH/C interactions 

at any time step of the simulation. Thus, the mean-field MK models may not be reliable in 

capturing the thermodynamic stabilities of carbonaceous species at steam reforming 

conditions.  

The KMC-1NN model predicts high CH and carbon coverages at all reaction conditions (800–

1200 K). As discussed previously, the CH-CH, CH-C and C-C interactions are attractive at the 

1NN-level due to bond formation between C/CH species (refer to Table A22 of Appendix II for 

the ECI values). At steam reforming conditions, these attractive interactions increase the 

stability of CH/C species on Ni(111). We observe that the KMC-1NN model predicts far higher 

carbon coverages on Ni(111) in comparison to the “KMC-without-interaction” model (refer to 

Figure 15(d)). The coverage-dependent reaction energy term (𝛥𝐸𝑟𝑥𝑛) of the CH dissociation 

event is lowered due to the inclusion of these attractive C-C and CH-C 1NN interactions, which 

in turn reduces the coverage-dependent forward activation barrier of the CH dissociation event 

as per the BEP relation (refer to eq. 62). The improved thermodynamic stability of carbon 

species and reduction in coverage-dependent forward CH dissociation barrier favours the 

formation of carbon on the Ni(111) surface.  

Upon inclusion of both 1NN, 2NN interactions, the KMC simulation predicts substantial CH 

(0.60-0.77 ML) and carbon coverages (0.07–0.47 ML) on Ni(111) at steam reforming 

conditions. However, the KMC-1NN-2NN CH/C coverage predictions are significantly lower 

than those of the KMC-1NN model (as shown in Figure 15(b) and Figure 15(d)). As discussed 

previously, at the 2NN level, the carbon-based species experience substantial repulsive 

interactions (refer to Table A22 for ECI values at the 2NN level). These repulsive interactions 

decrease the overall thermodynamic stability of the CH/C adsorbates, which results in lower 

CH/C coverages on Ni(111).  
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Furthermore, as depicted in Figure 15(b) and Figure 15(d), the KMC-1NN-2NN-3NN model 

predicts C/CH coverages similar to those of the KMC-1NN-2NN model. At the 3NN level, the 

repulsions between adsorbates are weaker than at 2NN distance as the adsorbates are further 

apart (refer to Table A22 for 3NN ECI values). Thus, the coverages of C/CH species are not 

significantly different than those of the KMC-1NN-2NN model.  

Interestingly, upon capturing the detailed energetics of large-body configurations (chains, 

branches and rings) in the KMC simulation, we observe that carbon species tend to dominate 

over CH at higher temperatures (900 K and above). For instance, at 1200 K, the KMC-long-

range model predicts the CH and carbon coverages to be 0.40 ML and 1.43 ML, respectively 

(refer to Figure 15(b) and Figure 15(d)). This is at variance to the free energy/kinetic data in 

the absence of interactions (refer to Table A25, Table A26, Table A27, Table A28 and Table 

A29 of Appendix II), according to which the CH species are more thermodynamically stable 

than carbon at steam reforming conditions. However, in the presence of long-range CH-CH, 

CH-C and C-C interactions, the stability of carbon species improves dramatically as 

demonstrated by the predictions of the KMC-long-range model.  

Overall, the KMC models (with varying degrees of accuracy in capturing adlayer energetics) 

have shown that effective cluster interactions play a critical role in determining the overall 

thermodynamic stability and macroscopic coverages of the methane cracking species. These 

results give rise to several important questions: 1) Does the surface morphology of Ni(111) 

change due to interactions? 2) What is the type/shape of carbon-based cluster that is 

thermodynamically stable on the Ni(111) surface? 3) At what operating conditions is Ni more 

susceptible to coking/poisoning? In the subsequent sections, we will address these questions 

in detail.  

4.3.3 Changes to the KMC adlayer with varying levels of interactions  

In the previous discussion, we have observed that the reaction thermodynamics and 

macroscopic coverages of carbon-based species are significantly altered upon gradually 

refining the effective cluster interactions model in the KMC simulations of methane cracking. 

Interactions between adsorbates or covalently bonded species, as captured via the CE 

methodology, give a better representation of the local environment at poisoning conditions, 

thereby allowing us to examine in detail the predictions of different CE-based models 

regarding the terminal state of coke on Ni(111). Thus motivated, Figure 16 provides the final 

lattice snapshots, for which the net rate of CH4 consumption/coking is close to zero (poisoned 

state), for the four KMC models. We assume the system has reached the poisoned/terminal 

state when the species coverage fluctuations are within 0.02 ML. 
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            a)           b) 

  

            c)           d) 

Figure 16: KMC lattice snapshots upon reaching the steady state (poisoned condition) at 800 K. The CH4 and H2 pressures were maintained at 10.00 bar and 0.01 bar, 

respectively. a) KMC-1NN, b) KMC-1NN-2NN, c) KMC-1NN-2NN-3NN and d) KMC-long-range.
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Table 6: The ECI values of important 1NN and 2NN figures/patterns 

 

Note: The schematics of the Table 6 have the following colour code: 1) Blue triangles indicate 

the Ni fcc sites, 2) Blue circles are the Ni top sites, 3) Red triangles represent the CH species 

and 4) Black triangles are the carbon species. 

 

Figure/pattern name  Figure/pattern schematic ECI value (eV) 

CH-CH-1NN 

 

-0.36 

CH-C-1NN 

 

-0.49 

C-C-1NN 

 

-0.47 

CH-CH-2NN 

 

0.26 

CH-C-2NN 

 

0.28 

C-C-2NN 

 

0.38 
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Table 7. The ECI values of important many-body figures/patterns of the CE fit model 

 

Note: The schematics of the Table 7 have the following colour code: 1) Blue triangles indicate 

the Ni fcc sites, 2) Blue circles are the Ni top sites, 3) Red triangles represent the CH species 

and 4) Black triangles are the carbon species. 

 

Figure/pattern  name  Figure/pattern schematic ECI value (eV) 

Carbon-three-body-ring 

 

-0.31 

Carbon-four-body-square 

 

-0.45 

Four-CH-semi-ring 

 

-0.46 

Four-C-branch 

 

-0.61 

TwoCH-oneC-ring1 

 

-0.41 

TwoC-oneCH-ring2 

 

-0.20 
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The final lattice state of the KMC-1NN model is completely covered with CH/C species. 

Although there is no visible ordering of CH/C species into specific configurations, we do 

observe small clusters of carbon surrounded by three CH species throughout the KMC-1NN 

lattice (for instance at x = 20, y = 20 in Figure 16(a)). The observed “clustering” can be 

explained by the nature of interactions of CH/C species at the 1NN level. As shown in Table 

6, the two-body figures such as CH-CH-1NN, CH-C-1NN and C-C-1NN have ECIs -0.36 eV, -

0.49 eV and -0.47 eV, respectively. This is indicative that these figures are highly stable on the 

Ni(111) surface. The CH-C clusters (shown in Figure 16(a)) are composed of the figures CH-

CH-1NN and CH-C-1NN.  

The ECIs of CH-CH-2NN, CH-C-2NN and C-C-2NN figures are 0.26 eV, 0.28 eV and 0.38 eV, 

respectively (refer to Table 6). The carbon-based 2NN figures are repulsive, whereas the 1NN 

figures are attractive. In the carbon-based chain configurations, the 1NN-figures have a higher 

frequency of occurrence than the 2NN figures (in comparison to rings/branches). Thus, we 

observe that the CH/C species align as carbon chains in the KMC-1NN-2NN model (as 

depicted in Figure 16(b)). Similarly, the final lattice state of KMC-1NN-2NN-3NN model also 

has CH and C species arranged in the form of straight chains (refer to Figure 16(c)). 

Nevertheless, the aforementioned KMC models cannot accurately capture the formation 

energies of long-range chains, rings and branches, since the corresponding CEs do not 

include long-range (longer than 3NN) or many-body contributions.  

Such contributions are included in the CE of the KMC-long-range model, whose final lattice 

state is significantly different from those of the other KMC models. As illustrated in Figure 

16(d), we find that the CH and carbon species form ring-based configurations. This is 

consistent with the DFT predictions (as discussed in section 4.3.1), which show that large-

body C/CH ring-based structures (such as C16 ring and naphthalene) are thermodynamically 

more stable on Ni(111) than six-body chains/branches. As shown in Table 7, in the KMC long-

range model, the optimised CE figures such as Carbon-three-body-ring, Carbon-four-body-

square, Four-CH-semi-ring, Four-C-branch, TwoCH-oneC-ring1 and TwoC-oneCH-ring2 have 

ECIs -0.31 eV, -0.45 eV, -0.46 eV, -0.61 eV, -0.41 eV and -0.20 eV, respectively (indicative of 

substantially strong attractive interactions). These circular/branched type figures/patterns 

have a higher frequency of occurrence on many-body ring-based C-CH configurations. They 

allow us to capture the thermodynamic stability of large-body C/CH ring-based structures with 

better accuracy. The observed dramatic change in coke morphology (as illustrated in Figure 

16(d)) could be due to the inclusion of these circular/branched type figures in the CE model of 

KMC-long-range.  
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      a)          b) 

                  

      c)          d) 

Figure 17: Lattice snapshots of the KMC-long range model upon reaching the steady state (poisoned condition) at varying temperatures. The CH4 and H2 pressures 

were maintained at 10.00 bar and 0.01 bar, respectively. a) 800 K, b) 900 K, c) 1000 K and d) 1100 K. 
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Based on the KMC-long-range prediction, we can conclude that the surface coke could be 

composed of partially hydrogenated C-CH rings, which agglomerate to form long graphene 

sheets upon complete poisoning of the Ni support surface. Furthermore, a few experimental 

studies have shown that coke has a heterogeneous composition, plausibly containing large 

hydrocarbons, and the morphology and thermodynamic properties of coke differ considerably 

from a graphitic/nickel carbide phase.168 It is clear from the above discussion that the predicted 

morphology of the coke “terminal state” changes substantially based on the level of effective 

cluster interactions included in the KMC model.  

4.3.4 Effect of Temperature on the KMC adlayer 

The final lattice snapshots (poisoned state) of the KMC-long-range model are depicted at 

varying temperatures (800–1100 K) in Figure 17, which shows that at lower temperatures the 

formation of CH/carbon rings is localised. Hence, we find mainly six-body ring configurations 

at specific regions, for instance, at 800 K, the rings are located at around the coordinates 

(2.5,15), (12.5,12.5) and (22.5,15) Å, etc. These rings are C6Hy type configurations (where y 

varies from 1-4 in most cases) that are largely disconnected from each other. At moderate 

temperatures such as 900 K and 1000 K, we observe the formation of C13 and C16 ring-based 

super-clusters at various regions of the KMC lattice. On the other hand, at higher temperatures 

(1100 K and beyond), large islands of carbon-based rings completely cover the Ni(111) 

surface. The terminal points of these carbon islands are mostly populated with CH species. 

Based on these KMC simulations, we can conclude that Ni is susceptible to coking at extreme 

operating conditions, which is in good agreement with industrial observations.25 The removal 

of these graphene/coke flakes from the Ni surface is difficult at the higher temperature regions 

of the steam reformer. 

4.4 Conclusions    

The formation of coke (in the form of carbon whiskers) on the Ni catalyst surface severely 

hampers the productivity of MSR. These carbon whiskers can grow and accumulate on the Ni 

support side in the form of carbon-based rings/chains/branches. In recent years, first-

principles methods such as DFT have been used to understand the stability of simple carbon- 

based configurations (ranging from C2-C6).157,169 The DFT models developed thus far do not 

account for thermal, entropic and coverage effects, which are critical to understand coke 

formation at MSR conditions. Furthermore, these studies have focussed on a limited dataset 

of carbon-based configurations. A detailed understanding of the thermodynamic stability of 

CxHy species at steam reforming conditions is lacking in the literature. 

Conventionally, mean-field MK models are employed to predict the kinetics/macroscopic 

coverages in catalytic reactions. However, the mean-field approximations of MK models 
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cannot capture adsorbate correlations and lattice inhomogeneities accurately; yet it is 

important to systematically account for these effects in reactions such as methane cracking to 

properly understand the terminal state of carbon whiskers. The CE-based KMC simulations 

capture interactions between adsorbates or covalently bonded species with high fidelity.  

In this work, DFT calculations have revealed that there is significant variation in the nature and 

magnitude of interaction between 1NN and 2NN C/CH pairs. At the 1NN level, the C-C, CH-C 

and CH-CH interactions are attractive due to overlap of p-orbitals leading to bond formation, 

whereas the 2NN adsorbate pairs of C/CH experience repulsive interactions. This indicates 

that the formation of long-range carbonaceous species on Ni(111) involves an interplay of 

C/CH attractions and repulsions. The many-body configurations of carbon-based species can 

take the form of chains, rings and branches on Ni(111). Among the long-range CH 

configurations, the chains and rings have better stability than branched structures. This is 

consistent with other works available in the literature. The correlations of C/CH species can 

play a crucial role in the accumulation of coke on Ni(111). 

To thoroughly assess the consequences of interactions on the coke morphology, we 

developed MK and KMC models of the methane cracking reaction. In these simulations, the 

kinetics of subsequent dehydrogenations from CH4 to C+4H are modelled in detail, while the 

formation of coke is captured at the level of thermodynamics only. Thus, C-C coupling events 

are not explicitly considered, but the stability of large carbon-rich islands is captured via the 

CE approach to a progressively higher level of accuracy. To this end, our KMC simulations 

incorporate the effective cluster interactions in an incremental fashion. The “zero interaction” 

MK and KMC models give quantitatively similar results. In the absence of interactions, the 

Ni(111) surface is predominantly covered with CH species. Upon inclusion of 1NN, 2NN and 

3NN interactions in the KMC model, we see a substantial change in the C/CH coverages and 

methane cracking reaction thermodynamics. MK models predict very low coverages of CH/C 

species upon the inclusion of interaction terms. Since the spatial distribution of adsorbates is 

lost within the MK framework, the latter inaccurately predicts the average number of 

attractive/repulsive interactions at any time step of the simulation.  

We further parameterised high-fidelity CEs using our DFT dataset, thereby enabling the 

calculation of the formation energies of long-range carbon-based configurations (chains, rings 

and branches) on Ni(111) during KMC simulations. The resulting KMC-long-range model 

includes the 1NN, 2NN and 3NN interactions as well as the many-body effective cluster 

interactions. In contrast to the lower fidelity KMC models (KMC-1NN, KMC-1NN-2NN and 

KMC-1NN-2NN-3NN), the KMC-long-range model predicts carbon to be the dominant species 

on Ni(111) at MSR conditions. The final lattice snapshot of KMC-long-range model of methane 
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cracking reaction clearly shows that CH/C species accumulate on Ni(111) in the form of rings. 

These observations are consistent with the calculated DFT energetics of large-body 

configurations. The accumulation of carbonaceous species seems to involve formation of C-

CH ring-based structures, which might branch together at higher coverages to form graphene 

sheets/coke.  

The DFT dataset used for CE training only comprised C, CH, CH-C configurations that 

occupied the three-fold hollow sites. In future efforts, the dataset can be further enriched by 

including carbon-based configurations that occupy top sites as well, and the KMC model can 

be enhanced by taking into account C-C coupling steps explicitly. These would be important 

to gain a thorough understanding of graphene growth (as the most stable configuration of 

graphene is top-fcc).144,62 A multi-faceted KMC model (that includes step sites) can also be 

developed to capture the migration mechanism of carbon from Ni step edge to Ni terrace – 

this could provide a more complete picture of the Ni catalyst deactivation. The multifaceted 

KMC model can be compared to relevant experimental works of methane cracking available 

in the literature.170 Furthermore, the burn-off/oxidation mechanism of the carbon-based poison 

from the Ni catalyst surface could be of great industrial interest (in the context of Ni catalyst 

regeneration). Overall, the CE parameterised KMC simulations have delivered a better 

understanding on the coke/graphene “terminal state” at steam reforming conditions, as they 

capture correlation effects with high fidelity. Our study paves the road towards future 

simulations which could potentially help us identify the next-generation Ni-based catalysts that 

are more resistant to coking.   
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5. Elucidating the role of potassium in methane steam reforming using first-principles-

based Kinetic Monte Carlo Simulations  

In the chemical industries, potassium is commonly employed as a promoter to reduce coke 

formation on the Ni catalyst surface, which has been proven to improve the productivity of the 

MSR reaction. Despite numerous theoretical/experimental studies, there is a lack of detailed 

understanding on the potassium effect at steam reforming conditions. In this chapter, we 

developed a first-principles-based KMC model of MSR on Ni(111) and potassium-doped 

Ni(111) surfaces. The KMC predictions of MSR on Ni(111) were compared to experimental 

rates in a systematic way. We performed KMC simulations with varying concentrations of 

potassium on Ni(111) to understand its effect on macroscopic coverages and MSR reaction 

rates. A thorough examination of the KMC process statistics was carried out to rationalise the 

role of potassium on MSR kinetics. Moreover, a flux analysis was conducted to identify the 

dominant reforming pathways on the Ni(111) and K-Ni(111) (potassium-modified) systems. 

These computations illustrate the beneficial effects of potassium in the MSR reaction. 

5.1 Introduction  

Developing strategies to reduce the coking propensity of Ni at steam reforming conditions is 

of vital importance. In the past few decades, extensive experimental and theoretical works 

have been conducted to address this challenge.25,155,62,171 Some proposed solutions to 

alleviate coking and improve MSR productivity include increasing steam to methane ratio, use 

of promoters and doping with noble metals such as Pt, Pd and Rh.59,172-174 Currently, in the 

industry, alkali-based promoters, such as potassium, are widely employed to improve the 

activity/stability of the MSR reaction. It has been reported that potassium has a beneficial 

effect on the overall carbon removal rate.61 

Recent studies have attempted to shed light on the mechanism by which potassium promotes 

the carbon removal rate, thereby suppressing coke formation on the Ni surface. Borowiecki et 

al.53 conducted an experimental study with varying loadings of potassium on the Ni/Al2O3 

catalyst. The study concluded that the location of potassium on Ni plays an important role in 

suppressing coke formation. Snoeck et al.36 found that the net rate of carbon formation is 

reduced by adding potassium to the Ni catalyst. The authors’ explanation of this beneficial 

effect was that the potassium increases the oxygen surface concentration, which improves the 

carbon removal rate. A DFT study conducted by Li et al.175 found that the potassium increases 

the C-H cleavage barrier on Ni4/Al2O3 with pre-adsorbed K compared to the pure Ni4/Al2O3 

system. The authors conclude that the increase in the C-H dissociation barrier helps to reduce 

the coke formation on Ni. Moreover, DFT studies have also been conducted to understand the 

effect of potassium in chemical reactions such as methanol steam reforming, WGS and 

methanation.176,177 Despite several experimental/theoretical studies, a comprehensive 
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mechanistic level understanding of the role of potassium in MSR is still lacking. So far, a 

detailed kinetic study has not been conducted (by taking into account the surface coverage 

effects) to elucidate the mechanism by which potassium improves the productivity of the MSR 

reaction.  

In this work, we employed CE-based KMC simulations to capture in detail the effect of 

potassium on the MSR kinetics. The MSR reaction was modelled on the pure Ni(111) and K-

Ni(111) systems. The KMC simulations were performed on lattices with different loadings of 

potassium, which include, K-Ni(111)-0.7%, K-Ni(111)-1.4%, K-Ni(111)-2.1% and K-Ni(111)-

2.8%. The pairwise lateral interactions of the MSR species were accounted using CEs on the 

Ni and potassium sites. The KMC simulations were used to predict the net turnover rates and 

macroscopic coverages of MSR species on pure Ni(111) and potassium-doped Ni(111) 

surfaces. The MSR turnover rates obtained from KMC on Ni(111) were compared to available 

experimental data (refer to Table A40 of Appendix III). The process statistics of key MSR 

events were systematically examined to understand the potassium promotion effect at steam 

reforming conditions. Furthermore, flux analysis was carried out to identify the dominant 

reforming pathways on the Ni(111) and K-Ni(111) systems.  

5.2 Computational details  

5.2.1 DFT calculations  

The VASP 5.4.1 software was used to carry out spin-polarised DFT calculations. A plane-wave 

basis set was employed, and the kinetic energy cut-off value was set to 400 eV. The projector 

augmented wave (PAW) method was used to model the interactions between core and 

valence electrons. The electronic self-consistency convergence parameter was set to 10-7 eV. 

The PBE-D3114 functional was employed to approximate the exchange-correlation effects. The 

Ni lattice constant optimisation calculations were carried out by sampling the Brillouin zone 

with a 19×19×1 k-point mesh and smearing the electrons using the tetrahedron method with 

Blöchl corrections (value of smearing width was set to 0.05 eV). A six-layer Ni(111) slab (with 

the Ni atoms of the three bottom-most layers fixed to the bulk positions) was used to carry out 

the surface calculations. The conjugate gradient method was employed to minimise the 

Hellmann-Feynman forces between the mobile atoms of the Ni(111) slab. In these slab 

calculations, the convergence tolerance parameter for the forces was set to 2×10-2 eV/Å. The 

Brillouin zone was sampled with a 5×5×1 Monkhorst-Pack k-point grid and the Methfessel-

Paxton method was used to carry out electron smearing (smearing width value was set to 0.1 

eV).  

The transition state search was performed using the dimer method.72 For the vibrational 

calculations, the Hessian matrix was evaluated by central finite difference method (positions 
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of the atoms were displaced by 0.02 Å). The binding energies of adsorbates were estimated 

using eq. 81. In eq. 81, 𝐸𝑡𝑜𝑡
𝐴+𝑁𝑖(111)  

represents the DFT total energy of the adsorbate-Ni(111) 

system, 𝐸𝑡𝑜𝑡
𝑁𝑖(111)

 is the DFT total energy of the Ni(111) slab, 𝐸𝑡𝑜𝑡
𝐴(𝑔)

 indicates the DFT total 

energy of the adsorbate in the gas phase and 𝐴𝐸𝐴 is the adsorption energy of the adsorbate. 

The formation energies of adsorbates (represented as 𝐹𝐸𝐴 in eq. 82) are calculated by taking 

the Ni(111) slab, CH4(g), H2(g) and H2O(g) as reference species. In eq. 82, the stoichiometry 

between the adsorbates and gas-phase reference species is accounted for by using the real 

numbers 𝑝, 𝑞 and  𝑟. For example, in the case of estimation of formation energy of CHO 

adsorbate, the real numbers 𝑝, 𝑞 and  𝑟 will take values 1.0, -2.5 and 1.0, respectively.  

𝐴𝐸𝐴 = 𝐸𝑡𝑜𝑡
𝐴+𝑁𝑖(111)

 −  𝐸𝑡𝑜𝑡
𝑁𝑖(111)  −  𝐸𝑡𝑜𝑡

𝐴(𝑔)
 eq. 81 

𝐹𝐸𝐴  = 𝐸𝑡𝑜𝑡
𝐴+𝑁𝑖(111)

 − 𝐸𝑡𝑜𝑡
𝑁𝑖(111)  −  (𝑝𝐸𝑡𝑜𝑡

𝐶𝐻4(𝑔)  +  𝑞𝐸𝑡𝑜𝑡
𝐻2(𝑔)  + 𝑟𝐸𝑡𝑜𝑡

𝐻2𝑂(𝑔)) eq. 82 

𝐸𝐶𝐼𝐴𝐵 = 𝐹𝐸𝐴𝐵  − (𝐹𝐸𝐴  +  𝐹𝐸𝐵) eq. 83 

𝐺𝐴  = 𝐸𝐷𝐹𝑇  + 𝐸𝑍𝑃𝐸  +  𝐻(𝑇)  −  𝑇𝑆(𝑇) eq. 84 

𝐺𝐹𝐸  = 𝐺𝑡𝑜𝑡
𝐴+𝑁𝑖(111)

 −  𝐺𝑡𝑜𝑡
𝑁𝑖(111)  −  (𝑝𝐺𝑡𝑜𝑡

𝐶𝐻4(𝑔)  + 𝑞𝐺𝑡𝑜𝑡
𝐻2(𝑔)  + 𝑟𝐺𝑡𝑜𝑡

𝐻2𝑂(𝑔)) eq. 85 

The pairwise adsorbate interaction values are calculated by using eq. 83. The 𝐸𝐶𝐼𝐴𝐵 is a 

quantitative measure of the nature/magnitude of interaction between adsorbates A and B on 

the Ni(111) surface. If the 𝐸𝐶𝐼𝐴𝐵 value is positive, then it is indicative of a repulsive interaction, 

whereas a negative 𝐸𝐶𝐼𝐴𝐵 value shows that the interaction between adsorbates A and B on 

the Ni(111) surface is attractive. For weakly interacting adsorbates, the 𝐸𝐶𝐼𝐴𝐵 value will be 

close to zero. The Gibbs free energy (will be referred to as “free energy” henceforth) of any 

species is obtained by using eq. 84 - 𝐸𝑍𝑃𝐸   represents the ZPE term, 𝐻(𝑇) indicates the 

thermal energy and 𝑇𝑆(𝑇) constitutes the entropic contribution. The formulas of ZPE for gas- 

phase species and adsorbates have been provided in chapter 3 (refer to eq. 66 and eq. 67). 

The thermal and entropic contributions of gas-phase species/adsorbates have been obtained 

using the thermochemistry module of atomic simulation environment (ASE). We direct the 

readers to refer to section A 3.3 of Appendix III for more details on the formulas ASE employs 

to estimate the thermal/entropic contributions. We use eq. 85 to calculate the free energy of 

formation (it is estimated with reference to free energies of Ni(111) slab, CH4(g), H2(g) and 

H2O(g)). 𝐺𝑡𝑜𝑡
𝐴+𝑁𝑖(111)

 represents the total free energy of the adsorbate plus Ni(111) system and 

𝐺𝑡𝑜𝑡
𝑁𝑖(111)

 is the total free energy of Ni(111). The symbols 𝐺𝑡𝑜𝑡
𝐶𝐻4(𝑔), 𝐺𝑡𝑜𝑡

𝐻2(𝑔) and  𝐺𝑡𝑜𝑡
𝐻2𝑂(𝑔) indicate 

the gas-phase free energies of methane, hydrogen and water, respectively.  
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5.2.2 KMC simulations  

The KMC simulations were performed using Zacros78 (a graph-theoretical KMC software). A 

25×25 lattice was chosen to carry out the KMC simulations. The KMC lattice convergence 

results are shown in Table A39 (refer to Appendix III). As shown in Table A39, the KMC 

predictions of the 25×25 lattice are very similar to the results of larger lattices such as 35×35 

and 40×40. Thus, the 25×25 lattice is a suitable choice in terms of accuracy and computational 

cost. The CE methodology (which was implemented in KMC by Nielsen et al.89) was employed 

to capture the pairwise adsorbate interactions between the MSR species. In section 2.6 

(“Methodology” chapter of this thesis), the detailed formulation of CE has been provided. In 

Zacros, the energetic cluster patterns are identified by solving subgraph isomorphism 

problems.89 

Given the large number of adsorbates in the MSR reaction network, we used the following 

criteria to account for the most relevant adsorbate interactions: 1) the pairwise adsorbate 

interaction between species that are involved in a bimolecular reaction is included in the KMC 

simulation; 2) the lateral interactions of high-coverage species on the Ni and K sites have been 

captured; 3) if any adsorbate pair (usually involving a high coverage and low coverage 

species) appears frequently in the KMC trial simulations, then its corresponding interaction 

term is included in the final KMC model. The “production KMC model” of the potassium-

modified Ni(111) system consists of 144 events and 78 adsorbate interaction parameters. The 

adsorbate diffusion events have been assumed to be quasi-equilibrated at steam reforming 

conditions, and the activation barrier for the diffusion of an adsorbate is considered to be 

around 12% of its corresponding adsorption energy on Ni(111)/K-Ni(111).109 The KMC process 

statistics plots are examined (at regular sliding intervals) to ensure adsorbate diffusions are 

quasi-equilibrated throughout the KMC simulation.  

5.2.3 Estimation of turnover rates and reaction flux in KMC 

At steady-state conditions, we compute the net turnover rates of MSR by finding the slope of 

methane gas consumption over KMC time. Further, we divide the net turnover rate (will be 

referred to as “turnover rate” henceforth) by the total number of sites (refer to eq. 86). The 

estimated error of the predicted slope and the standard deviation of the coverage are also 

calculated (these are portrayed in Figure 19 of subsection 5.3.2). As shown in Figure 20, there 

are several pathways to form CO (end product) in the MSR reaction: 1) CHOH pathway via 

CHO intermediate, 2) CHOH pathway via COH intermediate, 3) CHO pathway, 4) COH 

pathway and 5) CO pathway. Each pathway has a unique contribution to the turnover rate of 

MSR. At steady-state conditions, we extract the overall (net) event frequency of each 

reversible elementary step, 𝑟𝑖
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 (estimated using eq. 87) from the KMC process statistics 

data.  
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𝑇𝑂𝐹𝑛𝑒𝑡  =   
𝑁𝐶𝐻4
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑁𝑠𝑖𝑡𝑒𝑠  ×   𝜏
 eq. 86 

𝑟𝑖
𝑜𝑣𝑒𝑟𝑎𝑙𝑙  =   

 𝑁𝑖
𝑓𝑤𝑑−𝑒𝑣𝑒𝑛𝑡𝑠

 − 𝑁𝑖
𝑟𝑒𝑣−𝑒𝑣𝑒𝑛𝑡𝑠

𝑁𝑠𝑖𝑡𝑒𝑠  ×   𝜏
 eq. 87 

In eq. 86, 𝑁𝐶𝐻4
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 is the number of CH4 molecules consumed (at steady-state conditions), 

𝑁𝑠𝑖𝑡𝑒𝑠 is the total number of sites of the KMC lattice and 𝜏 represents the “KMC simulation 

time” (in seconds). In eq. 87, for any elementary step, the symbols 𝑁𝑖
𝑓𝑤𝑑−𝑒𝑣𝑒𝑛𝑡𝑠

 and 𝑁𝑖
𝑟𝑒𝑣−𝑒𝑣𝑒𝑛𝑡𝑠 

indicate the number of occurrences of forward and reverse events, respectively (upon 

reaching the steady state). The value of 𝜏 is obtained as follows: 

𝜏 =   𝑡𝑡𝑜𝑡𝑎𝑙  − 𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 eq. 88 

In eq. 88, 𝑡𝑡𝑜𝑡𝑎𝑙 indicates the overall time of the simulation (in seconds) and 𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 

represents the time spent by the simulation in transient state (in seconds). The overall event 

frequencies obtained from the KMC have been used to compute the contributions (%) of 

different MSR pathways (refer to eq. 89).  

Pathway contribution (%) =  
𝑟𝑖
𝑜𝑣𝑒𝑟𝑎𝑙𝑙

∑ (𝑟𝑗
𝑜𝑣𝑒𝑟𝑎𝑙𝑙)𝑗 ∈ 𝑃 

× 100 eq. 89 

In eq. 89, i represents the unique elementary event/step of a pathway and set P contains all 

the “necessary events” that lead to the formation of the end product. Prats et al.178 have also 

used a similar approach to obtain pathway contributions from the KMC simulation.  

5.3 Results and discussions 

5.3.1 DFT results 

The reactions of the MSR reaction network can be primarily classified into 4 categories: 1) 

Methane dissociation, 2) Water dissociation, 3) CH/C oxidation pathways (these include four 

different types) and 4) CO(g) and H2(g) formation. DFT calculations were performed and free 

energies were calculated for the aforementioned MSR reaction steps (at 1073 K and 10 bar) 

on Ni(111) and K-Ni(111). We have systematically compared the DFT predictions of this study 

with values available in the literature (refer to Table A32 and Table A33 of Appendix III). The 

transition state geometries of MSR events on K-Ni(111) are provided in Appendix III (refer to  

Figure A17 and Figure A18). In Figure 18(a), the free energy profiles of methane dissociation 

reaction steps are illustrated. It is evident from Figure 18(a) that the dissociation of methane 

gas to form CH3 and H adsorbates (event R1) has the highest free energy barrier on Ni(111) 

compared to other dissociation steps. The free energy barrier of this event on K-Ni(111) is 1.70 

eV, which is around 0.23 eV greater than on the Ni(111) system. The presence of potassium 

makes the event R1 more unfavourable (this is a critical step of MSR, as shown in Figure 
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18(a)). This is in excellent agreement with the findings reported previously in the literature.17,19 

The free energy barriers of other CHX dissociation events are similar between the Ni(111) and 

K-Ni(111) surfaces. The CH dissociation step (event R4) is endothermic, having a high free 

energy barrier, which is in good agreement with literature studies.6,173 

Table 8. List of elementary events, activation barriers/reaction energies of the MSR 

reaction on Ni(111) and K-Ni(111)  

 

Event ID: Reaction 
𝐸𝑎𝑐𝑡 (eV) 

Ni(111) 

Δ𝐸𝑟𝑥𝑛
0 (eV) 

Ni(111) 

𝐸𝑎𝑐𝑡 (eV) 

K-Ni(111) 

Δ𝐸𝑟𝑥𝑛
0 (eV) 

K-Ni(111) 

R1:  CH4(g)  +  2*  ↔  CH3*  +  H* 0.41 (0.94) -0.53 0.56 (0.96) -0.40 

R2:  CH3*  +  *  ↔  CH2*  +  H* 0.66 (0.64)  0.02 0.69 (0.72) -0.03 

R3:  CH2*  +  *  ↔  CH*  +  H* 0.26 (0.63) -0.37 0.25 (0.67) -0.42 

R4:  CH*  +  *  ↔  C*  +  H* 1.31 (0.84)  0.47 1.21 (0.90)  0.30 

R5:  2H*  →  H2(g)  +  2* 1.33 (0.00) 1.33 1.33 (0.00)  1.33 

R6:  H2O(g)  +  *  ↔  H2O* 0.00 (0.54) -0.54 0.00 (0.87) -0.87 

R7:  H2O*  +  *  ↔  OH*  +  H* 0.89 (1.32) -0.43  0.79 (0.91) -0.12  

R8:  OH*  +  *  ↔  O*  +  H* 0.98 (1.21) -0.23  0.76 (1.24) -0.48 

R9:  CH*  +  OH*  ↔  CHOH*  +  * 1.45 (0.80)  0.65 1.15 (0.58)  0.57 

R10:  CHOH*  +  *  ↔  CHO*  +  H* 0.75 (1.17) -0.42 0.57 (1.15) -0.58 

R11:  CHOH*  +  *   ↔  COH*  +  H* 0.12 (0.81) -0.69 0.16 (0.86) -0.70 

R12:  CH*  +  O* ↔  CHO*  +  * 1.51 (1.05)   0.46 1.53 (1.08)  0.45 

R13:  C*  +  OH* ↔  COH*  +  * 1.41 (1.91) -0.50 1.01 (1.46) -0.45 

R14:  CHO*  +  *  ↔  CO*  +  H* 0.19 (1.51) -1.32 0.14 (1.57) -1.43 

R15:  COH*  +  * ↔  CO*  +  H* 0.91 (1.97) -1.06 0.78 (2.10) -1.32 

R16:  C*  +  O* ↔  CO*  +  * 2.28 (3.61) -1.33 1.61 (2.90) -1.29 

R17:  CO*  →  CO(g)  +  * 2.12 (0.00)  2.12 2.46 (0.00)  2.46 

R18:  CO*  +  O*  →  CO2(g)  +  2* 1.62 (0.36) 1.26 1.87 (0.00)  1.87 
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As illustrated in Figure 18(b), the presence of potassium significantly increases the stability of 

water on Ni(111). Zhou et al.176 also make a similar observation. This is critical to reduce the 

build-up of CH/C species on the Ni(111) facet. We find that potassium has a negligible effect 

on the free energy activation barrier for the subsequent dissociation step of water (which leads 

to the formation of OH and H on Ni(111) – event R7). The forward free energy activation barrier 

of OH dissociation step (event R8) is reduced by 0.21 eV on the K-Ni(111) system. 

Furthermore, the thermodynamic stability of the O* + 2H* state is substantially higher (close 

to 0.3 eV) on the K-N(111) in comparison to Ni(111) (refer to Figure 18(b)). Thus, it is clear 

from the free energy analysis that the potassium promotes water dissociation on Ni(111).  

The removal of CH/C species on Ni(111) mainly happens by oxidation using OH/O species. 

There are several pathways for the oxidation of CH/C species on the Ni(111) facet.6,10 In Figure 

18, we have provided detailed free energy diagrams for each of the pathways. As shown in 

Figure 18(c), the “CHOH pathway via CHO” initially involves oxidation of CH species with 

hydroxyl, which leads to the formation of the CHOH* intermediate (event R9). The forward free 

energy activation barrier of this event is substantially reduced (close to 0.27 eV) by potassium. 

However, the thermodynamic stability of CHOH* intermediate remains unchanged on the K-

Ni(111) system. The CHOH* intermediate subsequently dissociates to form CHO* (refer to 

event R10 in Table 8). This CHO* species further dissociates to form carbon monoxide (event 

R14). As illustrated in Figure 18(c), these events have slightly lower forward free energy 

activation barrier on the K-Ni(111) system. Alternatively, the CHOH* intermediate can 

dissociate to form COH*, which further dissociates to form CO* (these steps are events R11 

and R15 in Table 8, respectively). In the K-Ni(111) system, event R11 has slightly higher free 

energy activation barrier compared to Ni(111). Whereas event R15 is moderately favourable 

on the K-Ni(111) system than Ni(111) (as shown in Figure 18(d)). There are three other 

important CH/C oxidation pathways: 1) The CH* intermediate can react with O* to form the 

CHO* intermediate (event R12), which subsequently dissociates to CO*. For this pathway, the 

forward free energy activation barriers are similar between Ni(111) and K-Ni(111) (refer to 

Figure 18(e)). 2) The C* species can react with hydroxyl to produce COH* intermediate (event 

R13), which then undergoes subsequent dissociation to form CO*. As shown in Figure 18(f), 

the forward free energy activation barrier of event R13 is substantially reduced on K-Ni(111) 

(close to 0.30 eV). The subsequent dissociation of COH* to CO* also occurs more favourably 

on K-Ni(111). 3) The final pathway is the direct oxidation mechanism, where C* directly reacts 

with O* to form CO* (event R16). This pathway is kinetically more favourable on the K-Ni(111) 

system than Ni(111) (refer to Figure 18(g)).  
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    a)         b)    

   

    c)         d)        

     

    e)         f)  

       

      g) 

Figure 18: Free energy diagrams of MSR on Ni(111) and K-Ni(111) surfaces at 1073 K. The partial 

pressures of CH4(g), H2O(g) and H2(g) are 6.67 bar, 3.33 bar and 1 mbar, respectively.
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As discussed, potassium has a strong promotional effect on the Ni(111) surface. The binding 

strengths of H2O/O species are increased. Furthermore, most of the CH/C oxidation pathways 

are more favourable on the K-Ni(111) system. Nevertheless, it is important to note that the free 

energy analysis does not account for the lateral interactions between adsorbates, which can 

substantially alter the chemistry/kinetics of the reaction. It is paramount to account for the 

lateral interactions between adsorbates to thoroughly understand the effect of potassium on 

the Ni(111) surface at steam reforming conditions. Therefore, in this study, we have developed 

an ab-initio KMC model to rationalise the role of potassium in MSR. 

5.3.2 KMC predictions at different operating conditions  

The KMC simulations of MSR on the Ni(111) and K-Ni(111) systems have been conducted by 

taking into account the detailed lateral interactions between adsorbates. The adsorbate 

interactions have been captured for the most relevant species (these include high-coverage 

species and species involved in bimolecular reactions). The ECI values of these adsorbate 

interactions are available in Appendix III (refer to Table A41). In Figure A20 of Appendix III, we 

depict a few schematics of the co-adsorbed geometries of MSR species on K-Ni(111). It is 

clear from Table A41 that the adsorbates experience significant repulsive interactions. For 

instance, the CH-CH, C-C and O-O interactions on Ni(111) are 0.26 eV, 0.38 eV and 0.36 eV, 

respectively. These interactions can substantially alter the kinetics of the MSR reaction. 

Furthermore, the main strategy to reduce coking is to effectively remove CH/C species from 

the Ni(111) surface. Thus, capturing these interactions can help us understand more clearly 

the removal mechanism of CH/C species. Interestingly, the ECI values of most of the MSR 

species in the potassium-modified Ni(111) system are very similar to Ni(111) (as shown in 

Table A41 Appendix III). This indicates that the potassium has a negligible impact on the lateral 

interactions between MSR adsorbates. Nevertheless, there are a few adsorbate interaction 

terms that are substantially different in the K-Ni(111) system. For example, the O-COH ECI 

value on Ni(111) is 0.12 eV, whereas the O-COH ECI value on K-Ni(111) is 0.31 eV. Overall, 

the pairwise ECI values of most MSR species on Ni(111) and K-Ni(111) are in the range of 0-

0.5 eV (at the 1NN level, as shown in Table A41 of Appendix III). Therefore, lateral interactions 

could play a critical role in determining the favourable MSR pathways and thermodynamic 

stabilities of important MSR species (such as CH, C, OH and O). 

As discussed previously, the KMC model has the capability to explicitly account for the lateral 

interactions on Ni(111) and K-Ni(111). It can give us valuable information about the detailed 

kinetics of MSR in the presence of potassium. In this study, we performed several KMC 

simulations on the Ni(111) and K-Ni(111) systems. We have treated the potassium as a site in 

the KMC lattice. We investigated the change in coverages/kinetics of MSR for different 

loadings of potassium on the Ni(111) facet. The KMC lattice configurations of Ni(111), K-
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Ni(111)-0.7%, K-Ni(111)-1.4%, K-Ni(111)-2.1% and K-Ni(111)-2.8% are shown in Figure A19 

of Appendix III. The Figure 19 illustrates the methane dissociation turnover rates and species 

coverages on the clean Ni(111) and K-Ni(111) (with different loadings) systems. As discussed 

earlier (in section 5.2.3), the estimated error of the slope and the standard deviation of the 

coverage sample are shown in Figure 19. Furthermore, we carried out simulations with five 

different random seeds to compute the standard error in the KMC prediction. These results 

are provided in Table A44 and Table A45 of Appendix III.  

It is evident from Figure 19(a) that at high temperatures (1173 K and beyond), the turnover 

rates on the K-Ni(111) systems are much larger than the pure Ni(111) facet. For instance, at 

1273 K, the turnover rate of MSR on the K-Ni(111)-2.8% is around 3 times higher than the 

MSR turnover rate on pure Ni(111) system. This illustrates the beneficial effects of including 

potassium on the Ni(111) facet. On the other hand, at 973 K (low operating temperatures), the 

MSR turnover rate on the K-Ni(111)-2.8% system is around 34 times lower in comparison to 

Ni(111) (refer to Figure 19(a)). A plausible explanation for this could be that the CH/C oxidation 

pathways are promoted by potassium more strongly at high temperatures compared to low 

temperatures. A detailed process statistics analysis can help us rationalise this observation 

(this is discussed in more detail in the subsequent section).  

The CH, C and O species are dominant on the Ni(111) and K-Ni(111) surfaces. Thus, we show 

the coverage profiles of these species as a function of temperature in Figure 19 (along with 

error bars). The oxygen coverage profile has an interesting behaviour. At low temperatures 

(973 K and 1073 K), there is significant increase in the oxygen coverage on K-Ni(111) systems 

compared to Ni(111). For example, at 973 K, the oxygen coverage is around 0.4 ML on the K-

Ni(111)-2.8% system, whereas the oxygen coverage is 0.18 ML on the pure Ni(111) system. 

As discussed previously, the water adsorption strength is substantially improved in the 

presence of potassium. Furthermore, the forward free energy activation barrier of OH 

dissociation (event R8) is lowered by about 0.2 eV on the K-Ni(111) surface (as shown in Figure 

18(b)). Thus, there is an increase in the oxygen uptake at 973 K. On the other hand, at 973 K, 

potassium has a detrimental effect on the activity of the Ni catalyst at low temperatures (high 

oxygen coverage regime). This indicates that the presence of more O species on the 

potassium-modified Ni sites can potentially impede the rate of occurrence of CH/C oxidation 

steps (this is discussed in more detail in the subsequent section). At higher temperatures (1173 

K and beyond), the oxygen coverages on the K-Ni(111) systems are similar to Ni(111) (as 

shown in Figure 19(b)).  
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   a)                                   b)  

                      

         c)                              d)  

Figure 19: The turnover rate and coverages are presented with respect to temperature for the pure Ni(111) and K-Ni(111) (for different loadings) systems a) CH4(g) turnover 

rate, b) Oxygen coverages, c) CH coverages and d) Carbon coverages. 
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The CH and carbon coverage profiles are shown in Figure 19(c) and Figure 19(d), respectively. 

It is evident from Figure 19(c) that in the K-Ni(111) KMC models, the CH coverage is 

suppressed to some extent (at 973 K and 1073 K). As discussed, potassium promotes the 

water adsorption/OH dissociation reactions, and thus, can inhibit the formation of CH species. 

The CH species can act as a potential precursor to coke formation on the Ni(111) system. In 

chapter 4 of this thesis, we have shown that the coke terminal state is mainly composed of 

ring-based CxHy species (on Ni(111) facet) at steam reforming conditions. Thus, potassium 

might play a critical role in suppressing coke and thereby improve the stability of Ni. The 

carbon coverages are similar between Ni(111) and K-Ni(111) systems (as illustrated in Figure 

19(d)). This could be mainly because the free energy barrier of the CH activation step (event 

R4) is similar between Ni(111) and K-Ni(111) systems (as shown in Figure 18(a)). Furthermore, 

the C-C and C-CH lateral interactions are similar on the Ni and potassium sites (refer to Table 

A41 of Appendix III). In the current system, we have not included the C-C coupling events that 

lead to coke precursors (such as C2, C3, C4 and other larger body configurations). 

Understanding the effect of potassium on the formation/removal of coke precursors in MSR 

reaction is a subject of future research efforts. Nevertheless, we have performed a preliminary 

DFT investigation on the C2 formation/removal steps on Ni(111) and K-Ni(111) (refer to Figure 

A24 of Appendix III for more details). 

5.3.3 KMC process statistics  

Careful examination of the reaction occurrence statistics (also called “process statistics”) can 

give us important information about the events/steps that are promoted/boosted by potassium 

– this can help us rationalise the observed increase in MSR turnover rate at higher 

temperatures. In the current scenario, we have examined the process statistics of the following 

steps: 1) CH4 dissociation to form CH3 and H radicals, 2) the reaction between CH and OH to 

form the CHOH intermediate, 3) the reaction of CH and O to generate CHO species, 4) the 

combination of C and OH to form the COH intermediate and 5) the formation of CO via the 

reaction of C and O species (the above steps are events R1, R9, R12, R13 and R16, respectively). 

We specifically chose these elementary events for several reasons: firstly, the partial 

equilibrium ratios of all these events are close to one (refer to Table A42 of Appendix III). Thus, 

these events are kinetically relevant as they are not quasi-equilibrated. Secondly, the free 

energy analysis (as shown in Figure 18) indicates that potassium decreases the activation 

barriers of most of these events (such as the formation steps of CHOH/COH intermediates 

and the direct oxidation of C and O to form CO). Thirdly, previous MK studies have shown that 

these events are critical steps in the MSR reaction and significantly impact the turnover rate 

at steam reforming conditions.6,10 The MSR reaction network, with important CH/C oxidation 

pathways highlighted, is illustrated in Figure 20. The overall event frequency (estimated using 
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eq. 87, reported in events sites-1 s-1) of each MSR elementary step of the KMC Ni(111) model 

(at 1273 K, 10.00 bar and 2:1 H2O-CH4 ratio) is also depicted. 

 

Figure 20: MSR reaction network showing several pathways to form CO: a) CHO pathway (red 

line), b) CHOH pathway via the CHO intermediate (green line), c) CHOH pathway via COH 

intermediate (blue line), d) COH pathway (purple line) and e) CO pathway (yellow line). It is 

important to note that these pathways have events where they merge back together – these 

steps are represented using black lines. Other steps/events of MSR reaction network are also 

indicated using black lines.  
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In Figure 21 and Figure 22, we have illustrated the process statistics of the events R1, R9, R12, 

R13 and R16 on two systems - Pure Ni(111) and K-Ni(111)-2.8%. In the K-Ni(111)-2.8% system, 

the MSR reaction is taking place on the Ni sites as well as the K sites. The process statistics 

have been shown for both of these sites in the potassium-modified Ni(111) system. The 

forward, reverse and overall event frequencies have been compared at two different 

temperatures (973 K and 1273 K). As discussed previously, at 973 K, the MSR turnover rate 

is close to 34 times lower on the K-Ni(111) surface than pure Ni(111). On the other hand, at 

1273 K, the turnover rate of the potassium-modified Ni(111) system is around 3 times higher 

in comparison to pure Ni(111). Thus, the comparison of process statistics at these two 

temperatures is critical to clearly understand the aforementioned disparities. We direct the 

readers to Table A48 of Appendix III for the overall event frequencies (will be referred to as 

“occurrence rates” henceforth) of all MSR elementary events on Ni(111) and K-Ni(111)-2.8% 

(at 1273 K, 10.00 bar and 2:1 H2O-CH4 ratio). It is important to note that the occurrence rates 

provided in Table A48 are divided by the number of sites of the corresponding site type. 

The process statistics plots of CH4 dissociation step (event R1, upon reaching the steady state) 

at temperatures 973 K and 1273 K are shown in Figure 21(a) and Figure 21(b), respectively. 

At 973 K, event R1 is not favourable on the potassium sites – this is expected as the activation 

barrier for this step is higher on the K-Ni(111) facet compared to Ni(111) (refer to Table 8). 

Furthermore, the occurrence rate of the event R1 is slightly low on the Ni sites of K-Ni(111)-

2.8% compared to Ni(111) facet. This could be mainly due to coverage effects (as there is 

higher oxygen coverage on the K-Ni(111)-2.8% system). Similarly, the occurrence rate of event 

R1 on the potassium sites is substantially lower in comparison to the Ni sites at 1273 K. The 

process statistics plots of CHO, CHOH and COH formation steps (these are events R12, R9 

and R13, respectively) provide us some interesting results. At 1273 K, these events have 

substantially higher occurrence rates on the potassium sites of the K-Ni(111)-2.8% system. 

Event R12 occurs around 3 times faster on the potassium sites compared to the Ni(111) facet 

(refer to Figure 21(f)). As illustrated in Figure 21(d), the occurrence rate of event R9 is close to 

28 times higher on the K sites of K-Ni(111)-2.8% than Ni(111). Moreover, the occurrence rate 

of event R13 is about 45 times faster on the potassium sites in comparison to the Ni(111) 

system (refer to Figure 22(b)). On the other hand, at 973 K, these events have much lower 

occurrence rates on the potassium sites of the K-Ni(111)-2.8% system (refer to Figure 21(c), 

Figure 21(e) and Figure 22(a)).  
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a)                                    b)      

       

c)                                          d)  

      

e)                                      f)  

Figure 21: The event frequencies of CH4 dissociation, CHOH formation and CHO formation steps are depicted. It is 

important to note that the event frequencies are divided with respect to the number of sites of the corresponding site 

type. 
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       a)          b) 

       

      c)          d) 

Figure 22: The event frequencies of COH formation and CO formation steps are depicted. It is important to note that the event frequencies are divided with respect to 

the number of sites of the corresponding site type. 
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It is evident from Figure 22(c) and Figure 22(d) that the potassium strongly promotes CO 

formation event (event R16) at both temperatures (973 K and 1273 K). Event R16 has a high 

forward activation barrier (refer to Table 8), and thus, it is not kinetically favourable at low 

temperatures on the Ni(111) surface (the occurrence rate on the Ni sites is zero at 973 K). On 

the potassium sites, event R16 occurs more readily as potassium reduces the forward 

activation barrier substantially (refer to Table 8 and the free energy diagram presented in 

Figure 18). As depicted in Figure 22(c), the event R16 takes place only on the potassium sites 

at 973 K. Moreover, at 1273 K, the occurrence rate of event R16 is around 637 times higher on 

the potassium sites of K-Ni(111)-2.8% compared to the pure Ni(111) system (refer to Figure 

22(d)). The process statistics analysis shows that potassium has a beneficial effect by 

improving the rate of occurrence of CH/C oxidation events. These events play an important 

role in the removal of coke, and thereby, potentially increase the long-term stability of the Ni 

catalyst.  

5.3.4 KMC flux analysis  

The CH/C oxidation events (as discussed above) are critical for the formation of CO in the 

MSR reaction. Each of these events is part of a specific reaction pathway that leads to CO 

formation on the Ni(111) and K-Ni(111) surfaces (as shown in Figure 20). The detailed flux 

analysis (estimated using eq. 89) of each of this pathway will provide us with valuable 

information about the dominant reforming pathway on the Ni(111) and K-Ni(111) systems at 

steam reforming conditions. We refer the readers to sections A 3.1 and A 3.2 of Appendix III 

for more information about the methodology of flux analysis. Furthermore, in Table A47 of 

Appendix III, we have provided the occurrence rates (divided by the total number of sites of 

the lattice) of all MSR elementary events on Ni(111) and K-Ni(111)-2.8%. These values are fed 

into the flux analysis formulation to estimate the contributions (%) of MSR pathways.  

The contributions (%) of the following pathways are depicted in Figure 23: 1) CHOH pathway, 

2) CHO pathway, 3) COH pathway and 4) CO pathway. It is evident from Figure 23(a) and 

Figure 23(c) that the CHO pathway is dominant on the pure Ni(111) surface at steam reforming 

conditions. This is in excellent agreement with the findings of several MK studies of MSR.6,10 

The flux analysis of K-Ni(111)-2.8% provides some interesting insights into the role of 

potassium at MSR conditions. At 973 K, we find the CHO pathway on the Ni sites (depicted 

as “CHO-Ni-pathway” in Figure 23(b)) to be dominant on the potassium-modified Ni(111) 

surface. The reforming pathways on the potassium sites have little to no contribution to the 

overall rate of MSR at 973 K.
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          a)                b)     

         

                    c)                                                                  d) 

Figure 23: The MSR pathway contributions (%) of Ni(111) and K-Ni(111)-2.8% are depicted at 973 K and 1273 K. 
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On the other hand, at 1273 K, the CO-K-pathway and CHO-K-pathway (these are occurring 

on the potassium sites) contribute substantially to the net MSR turnover rate. The combined 

contribution of both of these pathways is around 34% (refer to Figure 23(d)). As discussed 

previously, the CHO formation step (event R12, which is part of the CHO-K-pathway) and CO 

formation step (event R16, belonging to the CO-K-pathway) have much higher occurrence 

rates on the potassium sites of K-Ni(111)-2.8% compared to the Ni(111) system (refer to Figure 

21(f) and Figure 22(d)). Moreover, the COH-K-pathway has a contribution of close to 4% to 

the MSR turnover rate. The CHO-Ni-pathway remains to be dominant on the K-Ni(111)-2.8% 

system at 1273 K (the contribution is around 60%). It is important to note that the K-Ni(111)-

2.8% has far fewer potassium sites than Ni sites, and thus, it is expected that CHO-Ni-pathway 

has the highest contribution to the net MSR rate. Nevertheless, these results clearly indicate 

that the potassium alters the reaction flux (pathway contributions) of MSR at high 

temperatures. Overall, the flux analysis reinforces the argument that potassium has a 

substantial effect on the MSR kinetics.  

5.3.5 KMC lattice snapshots of K-Ni(111)  

In this work, we found the oxygen coverage to improve substantially on the K-Ni(111) KMC 

system (at 973 K, refer to Figure 19(b)). As discussed earlier, the water binding affinity on 

potassium sites is very high compared to Ni(111) (refer to Figure 18(b)), and thus, the 

formation of oxygen is more favourable in the potassium-modified Ni(111) system. Unlike 

mean-field MK models, the spatial information of species is preserved in the KMC simulation. 

In Figure 24, we provide the final KMC lattice configurations (at 973 K, upon reaching the 

steady state) of the K-Ni(111) systems – K-Ni(111)-0.7%, K-Ni(111)-1.4%, K-Ni(111)-2.1% and 

K-Ni(111)-2.8%. It is evident from Figure 24 that the coverage of oxygen (depicted with the 

pink markers) is higher on the KMC lattices with higher loadings of potassium. Furthermore, 

we observe that the oxygen species tend to accumulate on the potassium sites with higher 

affinity than Ni sites (the grey triangles represent the potassium sites in the KMC lattice 

snapshot). These KMC lattice snapshots reveal the electronic effect induced by potassium on 

the Ni(111) facet. The potassium promotes the water adsorption/dissociation reactions, and 

thus, improves the oxygen uptake on Ni(111) at steam reforming conditions. This is in line with 

the observations made by other theoretical/experimental studies on the role of potassium in 

MSR.36,175,179,180   

 

 



111 

 

         
     a)           b) 

         
     c)           d) 

Figure 24: The final KMC lattice snapshots (upon reaching the steady state) of the K-Ni(111) systems at 973 K: a) K-Ni(111)-0.7%, b) K-Ni(111)-1.4%, c) K-Ni(111)-2.1% and 

d) K-Ni(111)-2.8%. The standard hexagonal lattice has been used to perform the KMC simulations. The lattice sites (Ni and K) are colour coded as grey. The colour scheme 

of adsorbates is shown in the KMC snapshot (The units of x and y axes are in Angstroms (Å))   
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Overall, the presence of potassium significantly alters the MSR kinetics at high temperatures. 

The net turnover rate of MSR is around 3-4 times greater on the K-Ni(111)-2.8% system at 

temperatures 1173-1373 K. This indicates that the potassium has a promotional effect which 

improves the rates of important MSR events. We analysed the KMC process statistics to 

understand the rate of occurrences of key MSR events on the Ni(111) and K-Ni(111)-2.8% 

systems. We observe that the MSR events – CHO formation (event R12), CHOH formation 

(event R9), COH formation (event R13) and CO formation (event R16) – have significantly high 

occurrence rates on the potassium sites of K-Ni(111)-2.8% compared to Ni(111) at 1273 K. 

Moreover, the flux analysis demonstrates that the CHO pathway and CO pathway on 

potassium sites have significantly larger contributions to the net turnover rate of MSR at high 

temperatures. At low temperatures (such as 973 K), the KMC snapshots reveal that the oxygen 

species prefer to bind more strongly to the potassium sites. These results clearly illustrate the 

promotional effects of potassium on Ni(111) at MSR conditions.  

5.4 Conclusions  

In the chemical industries, potassium is widely used as a promoter to reduce coke formation 

and improve the productivity of MSR. A few DFT studies have shown that the presence of 

potassium alters the binding energy of water and the activation barriers of key MSR reaction 

steps/events on extended facets such as Ni(111). These theoretical works hypothesise that 

potassium acts as an electron donor, which can potentially improve the carbon removal rate 

on Ni. Nevertheless, these DFT studies do not account for thermal and entropic effects, and 

thus, a detailed mechanistic level understanding of the effect of potassium on MSR kinetics 

has remained elusive. 

In this work, we developed an ab-initio KMC model for the MSR reaction to gain a 

comprehensive understanding on the role of potassium at steam reforming conditions. We 

performed extensive DFT calculations to compute the binding energies, activation barriers and 

adlayer energetics of MSR intermediates/steps on Ni(111) and K-Ni(111). In the KMC model, 

we captured the adsorbate-adsorbate interactions on the Ni and potassium sites by using the 

CE framework. The KMC simulations were carried out on the pure Ni(111) and several K-

Ni(111) systems (these include K-Ni(111)-0.7%, K-Ni(111)-1.4%, K-Ni(111)-2.1% and K-

Ni(111)-2.8%). The KMC model reveals that the addition of potassium on Ni(111) significantly 

improves the MSR net turnover rate at high temperatures. For example, at 1273 K, the MSR 

turnover rate is around 3 times higher on the K-Ni(111)-2.8% system in comparison to pure 

Ni(111). At low temperatures, the concentration of oxygen is predicted to be substantially 

higher on the K-Ni(111) surfaces. Furthermore, the CH coverage is suppressed, to a certain 

extent, on K-Ni(111) at 973 K and 1073 K. The CH species act as precursors to coke formation 

on the Ni catalyst surface. Thus, the potassium could potentially play an important role in 
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reducing coke formation on the Ni catalyst surface. These results unequivocally demonstrate 

the beneficial effects of potassium in the MSR reaction.  

In an effort to rationalise the observed increase in MSR turnover rate in the KMC simulations, 

we carefully analysed the process statistics of key MSR events/steps. The process statistics 

plots provide us with some interesting insights into the effect of potassium at steam reforming 

conditions. At 1273 K, the CHO formation event (event R12) has an occurrence rate of around 

3 times higher on the potassium sites of the K-Ni(111)-2.8% system compared to Ni(111). The 

occurrence rates of CHOH and COH formation steps (events R9 and R13, respectively) are 

around 28 and 45 times higher on the potassium sites, respectively. Moreover, the occurrence 

rate of the CO formation step (event R16) is close to 637 times higher in the presence of 

potassium. The process statistics analysis shows that the key CH/C oxidation events are more 

favourable on the potassium sites at steam reforming conditions. We also performed a detailed 

flux analysis of the MSR reforming pathways on the Ni(111) and K-Ni(111) systems. On the 

Ni(111) facet, the CHO pathway is dominant at steam reforming conditions – this is in excellent 

agreement with the MK predictions available in the literature.6,10 In the case of K-Ni(111)-2.8%, 

the CHO-Ni-pathway is dominant at 973 K and 1273 K. However, we find that the CHO-K-

pathway and the CO-K-pathway also contribute substantially (around 34%) to the MSR 

turnover rate at 1273 K. Furthermore, performing degree of rate control (DORC, established 

by Campbell181) can provide us information about the rate-limiting/inhibiting steps of MSR. 

Given the stochastic variability of the KMC turnover predictions (with different random seed 

generators), obtaining reliable DORC values is an extremely challenging and computationally 

expensive task (more information is provided in Table A46 of Appendix III). It is beyond the 

scope of the current study to perform a thorough DORC analysis. Nevertheless, previous MK 

studies have shown that the rate-limiting step of MSR varies based on the operating 

conditions.6,10 These studies have reported that the events R1, R9, R12 and R16 can be rate-

limiting at MSR conditions. We have thoroughly investigated the process statistics of the 

aforementioned events in our KMC model. 

Overall, we can conclude that the increase in MSR turnover rate in the potassium-modified 

Ni(111) system might be occurring due to a combination of several effects. These include the 

following: 1) differences in binding propensities/activation barriers of key MSR species/events 

on Ni and K sites, 2) lateral interactions could also impact the reaction kinetics, 3) higher rates 

of occurrences of important MSR steps – events R9, R12, R13 and R16 and 4) alterations in 

reforming pathway contributions (reaction flux) in the presence of potassium. In the KMC 

simulations, the aforementioned effects have been captured in detail at MSR conditions, and 

our simulations can potentially aid experimentalists in designing Ni-based catalysts that are 

highly stable/active for this chemistry. As part of future research efforts, the role of potassium 
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in C-C coupling/removal reactions can be investigated at MSR conditions. Moreover, the effect 

of other promising promoters such as Mo and Mn can also be studied under the CE framework 

of KMC.   
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6. DFT and microkinetic studies of C-C coupling reactions on the Ni(111) surface  

Elucidating the growth mechanism of carbon whiskers on the Ni catalyst surface is of 

paramount importance to tackle the coking problem. Despite several efforts, a detailed 

understanding of coking kinetics on the Ni(111) surface has remained elusive. As discussed 

previously, the whisker carbon growth involves formation of large body carbon-based 

configurations (CxHy species) on the Ni catalyst surface. It is a formidable challenge to 

formulate a kinetic model that can capture the detailed steps of coke formation. In this chapter, 

we have developed an ab-initio MK model to understand the growth mechanism of carbon 

whiskers on Ni(111). To this end, we first performed DFT calculations to estimate the activation 

barriers of several C-C coupling events (C2-C6). Subsequently, the DFT computed data was 

fed into a MK model to predict the macroscopic coverages of coke precursors, favourable 

pathways of coking and sensitive reactions. These preliminary results/findings can motivate 

future works to delve further into the kinetics of large-body CxHY species on Ni(111).  

6.1 Introduction 

In the past few decades, there has been considerable interest in the scientific community to 

employ DFT calculations for delineating the coking mechanism on the Ni catalyst surface. One 

of the seminal DFT works in this regard, was conducted by Helveg and co-workers.58 The 

authors employed high-resolution in situ transmission electron microscopy (TEM) and DFT to 

elucidate the growth mechanism of whisker carbon due to methane decomposition on 

supported Ni nanocrystals. TEM imaging reveals that the carbon nucleation process involves 

the formation of graphene sheets on Ni(111) at the molecular level. Furthermore, the Ni surface 

undergoes dynamic restructuring to create steps/defects that enable the accumulation of 

carbon. Based on these observations, the authors hypothesised that graphene formation 

involves migration of carbon atoms from Ni steps/defects to the Ni(111) surface and 

subsequent carbon diffusion along the Ni(111) surface. A proposed DFT model of these 

processes was found to explain the TEM observations satisfactorily. Subsequently, Abild-

Pedersen et al.182 performed detailed DFT studies to explore the favourable pathways for 

carbon migrations from steps/defects to the support side. These studies provide useful 

atomistic level insight into the coking mechanism on Ni. However, the intermediate 

steps/stages and plausible carbon poison precursors responsible for graphene formation on 

Ni(111) are not thoroughly explored, and this is critical to understand the growth of 

carbonaceous species on Ni(111).155   

In recent years, several investigations have been conducted to expound the growth 

mechanism of graphene on Ni(111). Li et al.158 have reported that carbon clusters/precursors 

(responsible for graphene growth) are mobile on the Ni catalyst surface. A few studies have 

investigated the thermodynamic stability of simple carbon-based clusters on Ni(111) (such as 
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C2, C3 and C4).155,157,169 Gao et al.183 studied the graphene nucleation process on the Ni terrace 

using DFT, while Li et al.157 performed DFT calculations to compute the activation barriers of 

C-C coupling (C2-C6) events on Ni(111). In the latter study, the authors report that it is 

kinetically more favourable to form branched carbon clusters than chains. Nonetheless, the 

aforementioned DFT studies of C-C coupling events do not account for the thermal, entropic 

and coverage effects. Furthermore, a comprehensive study of coking kinetics on Ni(111) is 

currently lacking in the literature. Thus motivated, we have developed a first-principles-based 

MK model for the methane cracking and C-C coupling (C2-C6) reactions. The MK model 

provides insights into the thermodynamic stability of carbon-based clusters, favourable 

pathways to coke formation and sensitivity of coking rates to methane cracking/C-C coupling 

elementary events at MSR conditions. The rest of this chapter is organised as follows: 1) in 

section 6.2, we provide details about the computational setup; 2) the results of DFT and MK 

studies are discussed in section 6.3 and 3) a brief summary is provided about the outcomes 

of the current study in section 6.4.   

6.2 Computational details  

6.2.1 DFT calculations   

We employed the VASP software to carry out spin-polarised DFT calculations. The exchange-

correlation energy was approximated by using the PBE-D3 functional. The Ni(111) surface 

was modelled by employing a p(4×4) six-layer slab – bottom three layers have been fixed to 

Ni bulk positions. The plane-wave energy cut-off value was set to 400 eV. Brillouin zone 

sampling was carried out using a 5×5×1 Monkhorst-Pack k-point grid. We used the PAW 

method to model the interactions between core and valence electrons. The convergence 

parameter for the electronic self-consistency loop was set to 10-7 eV. In the DFT calculations, 

the conjugate gradient method was used to find the most stable geometry (initial states) of 

adsorbates on Ni(111). The adsorbate atoms and top three layers of the Ni(111) slab were 

relaxed until the Hellmann-Feynman forces were less than 10-2 eV/Å. We carried out electron 

smearing by using the Methfessel-Paxton method. The dimer method72 was employed to 

locate the transition states of methane cracking and C-C coupling events on Ni(111). We 

performed vibrational analysis on converged geometries using the central finite-difference 

method (the step size for the displacement was set to 0.02 Å). The formation energies of 

adsorbates were estimated using the equation below (the Ni(111) slab, CH4(g) and H2(g) are 

the reference states).  

𝐸𝐹𝐸
𝐴𝑑𝑠 = 𝐸𝑡𝑜𝑡

𝐴𝑑𝑠 +𝑁𝑖(111)
 −  𝐸𝑡𝑜𝑡

𝑁𝑖(111)  − (𝑝𝐸𝑡𝑜𝑡
𝐶𝐻4(𝑔)

 + 𝑞𝐸𝑡𝑜𝑡
𝐻2(𝑔)

) eq. 90 

In eq. 90, 𝐸𝑡𝑜𝑡
𝑁𝑖(111) 

 represents the DFT total energy of the Ni(111) slab, 𝐸𝑡𝑜𝑡
𝐴𝑑𝑠 + 𝑁𝑖(111) 

 is the 

DFT total energy of the adsorbate-Ni(111) system, 𝐸𝑡𝑜𝑡
𝐶𝐻4(𝑔)

 indicates the gas-phase DFT total 
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energy of methane, 𝐸𝑡𝑜𝑡
𝐻2(𝑔)

 refers to the gas-phase DFT total energy of hydrogen, 𝐸𝐹𝐸
𝐴𝑑𝑠 is the 

formation energy of the adsorbate. 𝑝 and 𝑞 (real numbers) are used to stoichiometrically 

balance out the atoms between adsorbates and gas-phase reference species. The formula for 

estimating the coverage-independent forward activation barrier for a bimolecular event is 

given by eq. 91.  

𝐸𝑓𝑤𝑑
𝑎𝑐𝑡 = 𝐸𝐹𝐸

𝑇𝑆  − 𝐸𝐹𝐸
𝐴  −  𝐸𝐹𝐸

𝐵  eq. 91 

In the equation above, 𝐸𝑓𝑤𝑑
𝑎𝑐𝑡  represents the forward activation barrier, 𝐸𝐹𝐸

𝑇𝑆  indicates the 

transition state formation energy, 𝐸𝐹𝐸
𝐴  and 𝐸𝐹𝐸

𝐵  are the formation energies of adsorbates A and 

B, respectively. Campbell’s DORC value (XRC,i) is estimated by using the following formula:  

XRC,i = 
ki
R
 (
δR

δki
)
kj ≠ i,   Ki 

 eq. 92 

In eq. 92, ki denotes the rate constant of an elementary event and R is the net coking rate. 

The rate constant of any elementary event is perturbed by 10% to determine the DORC value.  

6.2.2 MK model   

The MK model involves a system of ordinary differential equations which are solved 

numerically to predict turnover rates and “averaged” coverages of species (refer to section 2.7 

of chapter 2 for MK formulation). The current system consists of 16 elementary events – 

methane cracking and C-C coupling reactions (listed in Table 9). We treated the large-body 

carbon-based configurations as point species in the MK model. The following assumptions 

have been made while developing the MK model: 1) each adsorbate can occupy only a single 

site in the MK model; 2) an adsorbate has the same binding energy on all catalytic sites; 3) 

lateral interactions between adsorbates are neglected and 4) the kinetic constants have no 

dependency on coverage. The MK equations have been written in MATLAB 2019b and solved 

numerically by invoking the ODE15s solver, which is appropriate for stiff problems. The pre-

exponentials have been estimated by using the formulas provided in subsection 4.2.5 of 

chapter 4 (refer to eq. 77, eq. 78, eq. 79 and eq. 80).  

6.3 Results and discussions  

The coke formation process involves coupling of carbon-based clusters/species into large-

body configurations that eventually totally encapsulate/poison the Ni catalyst surface. Despite 

numerous efforts, the detailed kinetics of coke/graphene formation has remained elusive. A 

major challenge with the coking process is that the C-C coupling events can generate different 

types of large-body structures – these include CxHy species in the form of rings, branches and 

chains. It is a formidable task to identify all the transition states of these events (as there are 

several plausible combinations). Furthermore, the lateral interactions between the large-body 
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carbon-based configurations can significantly affect the kinetics of coke/graphene formation. 

As a first approximation, we have developed a simple MK model (with no adsorbate 

interactions) to understand the nucleation process of C2-C6 species on Ni(111). We have 

primarily focussed on the branch/ring configurations – these structures are more likely to grow 

into the highly stable graphene type rings at steam reforming conditions. To the best of our 

knowledge, such a study is not currently available in the open literature. The rest of this section 

is organised as follows: 1) the DFT calculations of the methane cracking and C-C coupling 

reactions have been presented in section 6.3.1; 2) in section 6.3.2, we provide a thorough 

discussion on the MK model results at MSR conditions – these include species coverage 

profiles of coke precursors, identification of dominant C-C coupling pathway and sensitivity 

analysis of all elementary events.  

6.3.1 DFT results 

As discussed earlier, the coke nucleation on Ni(111) predominantly involves the coupling of 

CH/C species to form CxHy configurations, which can exist in the form of chains, rings and 

branches. We have performed DFT calculations to compute the activation barriers of these 

coupling events. The vibrational wavenumbers (cm-1) of the initial and transition states are 

shown in Table A50 and Table A51, respectively (refer to Appendix 1V). In Table 9, the 

activation barriers/reaction energies of methane cracking and C-C coupling reactions are 

shown. In the methane cracking reaction network, the CH activation step (event R4) has a high 

activation barrier (1.31 eV), which is in good agreement with DFT studies in the literature.184,169 

The methane dissociation event (which forms CH3 and H radicals, event R1) has an activation 

barrier of 0.41 eV. As discussed previously (refer to Table A20 of Appendix III), the forward 

activation barrier for event R1 changes significantly based on the DFT functional employed. 

Moreover, the entropic contribution for this event will be quite high, as the partition function of 

methane in the gas phase includes the translational/rotational modes. As shown in Table 9, 

the coupling of CH to form C2H2 (event R6) is exothermic with a forward activation barrier of 

0.81 eV. Li et al.169 also find event R6 to be exothermic and report a similar forward activation 

barrier value. The C2H2 species can undergo dissociation (hydrogen abstraction) to form C2H 

(event R7) on the Ni(111) surface. Subsequently, the C2H intermediate can dissociate to C2 

(event R8). Both of these events are endothermic. The forward activation barriers of events R7 

and R8 are 1.14 eV and 1.26 eV, respectively (refer to Table 9). The DFT study of Li et al.169 

also reports event R7 to be endothermic with a forward activation barrier value of 1.27 eV (this 

is in excellent agreement with our result). On the other hand, in the case of event R8, the 

authors find the forward activation barrier is low (0.60 eV) and the reaction energy is 0.02 eV. 

This disparity can mainly arise due to the DFT functional. The authors have employed the 

RPBE functional, whereas we have used the PBE-D3 functional in our study (as discussed 
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previously). The C2 formation can also occur by the direct coupling of two carbon atoms (event 

R9) on the Ni(111) surface. We find this event to have an activation barrier of 1.05 eV and to 

be exothermic in nature. This is in reasonable agreement with the values reported in the 

literature (refer to Table 9). Furthermore, the C2 species is thermodynamically more stable than 

carbon on the Ni(111) surface. The C2H2 and C2 species can potentially act as precursors to 

carbon whiskers on the Ni(111) facet. The C2 species can react with carbon to form several 

larger body configurations such as (C3, C4, C5 and C6 etc). The C2 coupling with carbon to form 

a C3 trimer (event R10) is an exothermic event. As shown in Table 9, the forward activation 

barriers of events R9 and R10 are similar. The C4 ring formation step (event R11) is kinetically 

more favourable than C4 branch formation (event R12) on Ni(111). Both events R11 and R12 are 

endothermic. Furthermore, the C4 ring has higher thermodynamic stability than C4 branch on 

Ni(111).  

The C4 ring-based structure can further nucleate by forming C5 and C6 rings on the Ni(111) 

surface. The C5 ring formation event (event R13) is endothermic with a forward activation 

barrier of 1.10 eV. On the other hand, the C6 ring formation event (event R15) is exothermic 

with an activation barrier of 0.91 eV. The C4 branch-based configuration can also form other 

larger body branched structures (such as C5 branch and C6 branch on Ni(111)). The C5 branch 

formation event (event R14) has a forward activation barrier of 1.05 eV, which is similar to that 

of event R13. However, event R14 is an exothermic reaction. The C5 branch to C6 branch step 

(event R16) has the same forward and reverse activation barrier. This event is kinetically less 

favourable than C6 ring formation event (refer to Table 9). Nevertheless, the C6 branch and C6 

ring structures have similar thermodynamic stability on Ni(111). We have performed additional 

DFT calculations of C-C coupling reactions, which include higher body ring and chain-based 

carbon configurations (refer to Figure A25 and Figure A26 of Appendix 1V).  

The C-C coupling dataset also includes “coke generation” events (refer to events R17 and R18 

of Table 9). The events R17 and R18 are assumed to be fast and irreversible pseudo-desorption 

steps to generate “coke” that begins to poison the catalyst pores and detach the Ni 

nanoparticle from the support. The main idea behind including these events is to gain an 

understanding of the kinetics at the “initial stages” of complete deactivation. Li et al.158 used a 

similar approach in the context of understanding carbon nanotube (CNT) growth. The authors 

introduced pseudo-events into the kinetic model where carbon and C3 species were 

incorporated into a CNT wall at the edge of the Ni nanoparticle. It is important to note that the 

coking process is complex, and these “fictitious events” do not capture the complete dynamics 

of the system. Further research is needed to unravel the end-to-end steps of the coking 

phenomenon.  
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Table 9. Comparison of C-C coupling activation barriers/reaction energies with the 

literature (the numbers in parentheses are the reverse activation barriers) 

Event ID: Methane cracking events 𝐸𝑎𝑐𝑡 (eV) Δ𝐸𝑟𝑥𝑛
0  (eV) 

𝐸𝑎𝑐𝑡 (eV) 
Literature values 

R1: CH4(g) + 2*  =  CH3*  +  H* 0.41 (0.94) -0.53 
1.29 (0.59)6, 
1.05 (0.52)17 

R2: CH3*  +  *  =  CH2* +  H* 0.66 (0.64) 0.03 0.76 (0.13)6 

R3: CH2* +  *  =  CH*  + H* 0.26 (0.63) -0.37 0.34 (0.67)6 

R4: CH* +  *  =  C*  + H* 1.31 (0.84) 0.46 1.48 (0.84)6 

R5: H2(g) +  2* =  2H* 0.00 (1.33) -1.33    0.01 (1.08)176 

R6: CH* +  CH*  =  C2H2* 0.81 (1.16) -0.35 
No value 
available  

R7: C2H2*  +  *  =  C2H* +  H* 1.14 (0.82) 0.32 1.00 (1.17)169 

R8: C2H*  +  *   =   C2* + H* 1.26 (0.78) 0.48 0.60 (0.58)169 

R9: C* +  C*  = C2* 1.05 (1.52) -0.47 0.84 (1.48)157 

R10: C2* +  C*  = C3* 1.16 (1.45) -0.29 0.97 (1.29)157 

R11: C3* +  C*  = C4ring 1.06 (0.94) 0.12 
No value 
available 

R12: C3* +  C*  = C4branch 1.57 (0.99) 0.58 1.16 (0.43)157 

R13: C4ring + C*  = C5ring 1.10 (0.90) 0.20 
No value 
available 

R14: C4branch + C*  = C5branch 1.05 (1.65) -0.60 0.23 (1.18)157 

R15: C5ring + C*  = C6ring 0.91 (1.14) -0.24 0.17 (1.09)157 

R16: C5branch + C*  = C6branch 1.51 (1.51) 0.00 0.25 (0.75)157 

R17: C6ring  = Coke 0.20 Irreversible step  

R18: C6branch  = Coke 0.20 Irreversible step  

 

Overall, the aforementioned DFT computations provide us some insight into the binding affinity 

and favourable pathways for the build-up of important coke precursors on the Ni(111) surface. 

However, these DFT calculations do not include the thermal and entropic contributions, and it 

is paramount to take into account these effects to gain a better understanding of coke 

formation mechanism at steam reforming conditions. Therefore, we have developed a MK 

model to predict the macroscopic coverages of coke precursors, identify the dominant carbon 
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nucleation pathways and rate-limiting/inhibiting steps of the coking process (more details are 

provided in section 6.3.2).  

6.3.2 MK studies   

As discussed earlier, it is critical to understand the kinetics of C-C coupling reactions at MSR 

conditions. The MK model was employed to predict species coverages (upon reaching the 

steady state) at temperatures ranging from 923 K to 1223 K. The pressure of CH4(g) and H2(g) 

were maintained at 10 bar and 0.08 bar, respectively. In Figure 25, the macroscopic coverages 

of dominant species are depicted. At low temperatures (923 - 1023 K), the C2H2 species is 

highly stable on the Ni(111) facet. The coverage of C2H2 species (an important precursor of 

coke formation) is around 0.70 ML at 923 K. The coverage profile of C2H2 exhibits a decreasing 

trend with respect to temperature (as shown in Figure 25(a)). There is a significant drop in 

C2H2 coverage at temperatures 1073 K and above. As discussed earlier, the dissociation 

events involving the C2Hx intermediates (where x ranges between 0–2) are kinetically more 

favourable at high temperatures (refer to Table 9) – this explains the observed decrease in 

C2H2 coverage. The coverage of C2H species increases steadily up to 1098 K. However, it 

begins to decline at temperatures 1123–1223 K (refer to Figure 25(b)). The coverages of 

carbon and C2 species are very low (less than 0.05 ML) at MSR conditions. These 

intermediates are short-lived as they readily undergo coupling to form larger body carbon-

based configurations. As depicted in Figure 25(c), the coverage of C3 species increases 

sharply with respect to temperature. The C3 coverage is close to 0 ML at 923 K, whereas the 

coverage of C3 species is around 0.49 ML at 1223 K. The C3 species is an important precursor 

to form large-body carbon-based configurations on Ni(111). Suppressing the growth of C3 

species might be critical to reduce coke formation, and thereby, improve the long-term stability 

of the Ni catalyst.  
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            a)                    b) 

         

            c)                      d) 

Figure 25: The coverages of dominant carbon-based species at MSR conditions: a) C2H2 coverage profile with respect to temperature, b) C2H coverage profile with 

respect to temperature, c) C3 coverage profile with respect to temperature and d) Coking rate with respect to temperature.  
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Table 10. The DORC values of the methane cracking and C-C coupling events obtained by using 10% degree of perturbation. 

Event ID 923 K 973 K 1023 K 1073 K 1123 K 1173 K 1223 K 

R1: CH4(g) + 2*  =  CH3*  +  H* 0.00 0.02 0.26 0.30 0.30 0.30 0.31 

R2: CH3*  +  *  =  CH2* +  H* 0.00 0.00 0.01 0.01 0.01 0.01 0.01 

R3: CH2* +  *  =  CH*  + H* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R4: CH* +  *  =  C*  + H* 0.01 0.04 0.08 0.10 0.11 0.13 0.15 

R5: H2(g) +  2* =  2H* 0.00 0.01 0.10 0.12 0.11 0.10 0.07 

R6: CH* +  CH*  =  C2H2* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R7: C2H2*  +  *  =  C2H* +  H* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R8: C2H*  +  *   =   C2* + H* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R9: C* +  C*  = C2* -0.01 -0.04 -0.07 -0.09 -0.10 -0.12 -0.14 

R10: C2* +  C*  = C3* 0.00 0.01 0.03 0.01 0.00 0.00 -0.01 

R11: C3* +  C*  = C4ring 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R12: C3* +  C*  = C4branch 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R13: C4ring + C*  = C5ring 0.02 0.07 0.08 0.07 0.07 0.07 0.07 

R14: C4branch + C*  = C5branch 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R15: C5ring + C*  = C6ring 0.97 0.87 0.47 0.42 0.44 0.46 0.48 

R16: C5branch + C*  = C6branch 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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In the MK model, the coverages of large-body configurations (C4-C6) are low. As discussed 

earlier, the terminal configurations (C6 branch/ring) are part of the “coke generation” events. 

The C6 ring and C6 branch structures spontaneously desorb to generate coke in the system 

(refer to events R17 and R18). In Figure 25(d), the coking rates (computed by summing up the 

rates of events R17 and R18) are depicted with respect to temperature. It is evident from Figure 

25(d) that the coke generation rate is very low at temperatures 923–1073 K. We observe a 

substantial increase in the coking rates at higher temperatures (1123–1223 K). It is well known 

that Ni is susceptible to coking under extreme operating conditions. Furthermore, we 

compared the MK predicted coking rates with experimental data (refer to Figure A28 of 

Appendix 1V for more details). 

We performed a detailed flux analysis to identify the favourable C-C coupling pathway on the 

Ni(111) surface. The Methane cracking/C-C coupling reaction network and the formulation of 

flux analysis are presented in section A 4.1 of Appendix 1V. We found the ring formation 

pathway (involving events R11, R13 and R15) to be dominant at MSR conditions, having an 

average contribution of around 99.99% to the net coking rate. This indicates that the carbon 

has a preference to nucleate in the form of rings than branched-type structures at MSR 

conditions. There are also other types of nucleation events that are plausible, such as the 

formation of long chains, higher body rings/branches, miscellaneous structures (that are a 

combination of chains/branches/rings). A thorough investigation of such complicated pathways 

is a subject of future research studies. 

We also performed the Campbell’s DORC analysis (also called as the “sensitivity analysis”) to 

identify the rate-limiting/inhibiting steps of the coking process (refer to Table 10). It can be 

inferred from Table 10 that the C6 ring formation step (event R15) is strongly rate-limiting at low 

temperatures (923 K and 973 K). Moreover, at temperatures 1023–1223 K, the DORC value 

of event R15 lies in the range of 0.42–0.48. This implies that event R15 has a substantial impact 

on the coking rates at MSR conditions. On the other hand, the CH4 activation step (event R1) 

has little to no influence on the coking rates at low temperatures; yet, at temperatures 1023 – 

1223 K, the coking rates are moderately sensitive to this event (R1). In the context of 

reducing/inhibiting coke formation, it might be critical to control the kinetics of events R1 and 

R15.  

Interestingly, we find the C2 formation step (event R9) to be slightly rate-inhibiting at 

temperatures 1123–1223 K (DORC values lie between -0.1 and -0.14). This result could be 

attributed to the fact that the reaction between C2 and H to form C2H (event R8) is kinetically 

more favourable than the coupling of C2 and C to C3 (event R10) (as shown in Table 9). Thus, 

excess presence of C2 species could be promoting methanation. Nevertheless, in the current 
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MK model, we have not investigated several other coupling steps of C2 species. For instance, 

the C2 dimer could also undergo reactions with other carbon-based dimers/trimers to form 

large-body rings/branches/chains. Overall, these preliminary kinetic investigations provide 

important insights into the favourable pathways and rate-limiting/inhibiting steps of the coking 

process. 

6.4 Conclusions  

It is imperative to gain a thorough understanding of the whisker carbon growth process to 

develop next-generation Ni-based catalysts that would be highly resistant to coking. The 

carbon whisker growth primarily involves several steps: 1) adsorption of carbon atom on the 

step edge of the Ni catalyst, 2) diffusion of the carbon atom from step edge to support/terrace, 

3) coupling of carbon clusters on Ni(111) which leads to coke/graphene formation. Despite 

several theoretical/experimental studies, the coking kinetics on the Ni(111) facet is not well 

understood. In this chapter, we developed a first-principles-based MK model of methane 

cracking and C-C coupling reactions to elucidate the growth of carbon clusters on Ni(111).  

The coking process on Ni(111) includes formation of large-body carbon-based clusters that 

exist in the form of rings, chains and branches. At first, we carried out DFT calculations to 

estimate the activation barriers of various coupling events on the Ni(111) facet. We found the 

C2H2 formation step (event R6) to be exothermic. On the other hand, the dissociation steps of 

C2H2 to C2 (events R7 and R8) are endothermic. The coupling of two carbon atoms that leads 

to C2 species on Ni(111) (event R9) is kinetically favourable at MSR conditions. Moreover, the 

C2 intermediate has higher thermodynamic stability than carbon. The forward activation 

energy and reaction energy of C3 formation step (event R10) are 1.16 eV and -0.29 eV, 

respectively. The event R10 is also favourable at high operating conditions of MSR. The C3 

species can react with other carbon-based clusters to form higher body rings, branches and 

chains on Ni(111). In this study, we have mainly focussed on branch/ring-based configurations. 

We found the C4 ring formation step (event R11) to be kinetically favourable than C4 branch 

formation step (event R12). Both of these events (R11 and R12) are endothermic. The C5 branch 

formation step (event R14) is an exothermic reaction, whereas the C5 ring formation step (event 

R13) is endothermic. The forward activation barriers of events R13 and R14 are similar. We 

observe that the coupling of C5 ring with carbon to form C6 ring (event R15) is kinetically 

favourable compared to other events. The reaction energy value of event R15 is -0.24 eV (it is 

an exothermic reaction). On the other hand, the C6 branch formation step (event R16) has a 

substantially high forward activation barrier (1.51 eV). Thus, at extreme operating conditions 

of MSR, the C6 ring species could be a stable intermediate. 
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In this study, we developed a MK model for the methane cracking and C-C coupling reactions. 

We have reported the coverage profiles of important coke precursors with respect to 

temperature. At low temperatures, we found the C2H2 species to have high stability on the 

Ni(111) surface. The coverage profile of C2H2 species has a decreasing trend with respect to 

temperature. On the other hand, the coverage of C2H species increases up to 1073 K, and 

then, begins to dip. We find the coverage of C3 species (an important precursor to coke 

formation) increases sharply with respect to temperature. In the MK model, the large-body 

configurations have low coverages as the terminal C6 rings/branches spontaneously desorb 

to generate coke in the system. It is important to note that we do not capture the complete 

dynamics of coking in our system. Using this simplified model, we performed flux analysis and 

identified that the ring formation pathway (that includes events R11, R13 and R15) is dominant 

at MSR conditions. Furthermore, the DORC results indicate that the events R1 and R15 

substantially influence the coking rates at MSR conditions. As part of future research efforts, 

a vast set of DFT calculations can be performed to compute the activation barriers of C-C 

coupling events that involve larger body rings/branches/chains (such C10, C13, C16 and C30 

species). The CE framework of KMC can be employed to account for the adsorbate-adsorbate 

interactions between the carbon-based species. A detailed kinetic study of the C-C coupling 

events can provide important clues about the coking mechanism at MSR conditions. These 

computations can potentially aid experimentalists in designing Ni-based catalysts that are 

highly resistant to coking.   



128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 

 

7. Concluding remarks and future work  

The idea of using of hydrogen as a clean energy source has gained immense popularity 

among the scientific community in the past few decades. The MSR reaction on Ni-based 

catalysts is an important contributor to the production of hydrogen at the industrial scale. 

However, the formation of coke (in the form of carbon whiskers) on the Ni catalyst surface 

severely hampers the productivity of MSR. The whisker carbon growth process mainly 

involves accumulation of carbonaceous species in the form of graphitic layers on the Ni terrace 

sites. Although numerous theoretical/experimental studies have been carried out, there is a 

lack of comprehensive understanding on the coking process at steam reforming conditions. It 

is of paramount importance to address the coking problem of Ni to meet the global energy 

demands of the 21st century. In this regard, the thesis has provided critical insights on the 

fundamental aspects of the coking issue in the MSR reaction.  

7.1 Contributions of this Thesis  

Developing a robust first-principles-based coking model for the MSR reaction necessitates an 

accurate choice of the DFT functional. In Chapter 2, the thesis explored the suitability of GGA 

and dispersion-inclusive functionals (such as DFT-D and vdW-DF) for the MSR graphene 

system. We systematically benchmarked DFT predictions with experimental data (obtained 

from literature) – these include binding/reaction energies of important MSR species/events 

and graphene (model for coke at the molecular scale). The DFT benchmark studies provide 

us with some important results. The GGA functionals fail to capture the van der Waals 

interactions between graphene and Ni(111). Moreover, the RPBE (widely employed for the 

MSR system) and revPBE functionals were found to have poor accuracy in predicting the 

binding/reaction energies of most MSR species/events. In the case of vdW-DF, the graphene 

binding energy prediction of optB88-vdW functional is in excellent agreement with the RPA 

result. The optB86b-vdW functional slightly overestimates the graphene binding energy with 

respect to the RPA value. The BEEF-vdW functional predicts a weak repulsive interaction 

between graphene and Ni(111). The vdW-DF exhibit large deviations in estimating the 

binding/reaction energies of important MSR species/events. The optB86b-vdW and BEEF-

vdW functionals have poor predictive accuracies with respect to the experimental MSR 

dataset. Furthermore, the optB88-vdW functional significantly overestimates the binding 

energies of CO and O on Ni(111). In comparison to other vdW-DF, the optPBE-vdW functional 

has a low RMSD value (root-mean-square deviation – this is a quantitative measure of the 

overall performance of DFT functionals). The graphene binding energy prediction of optPBE-

vdW functional is in reasonable agreement with RPA. Thus, the optPBE-vdW functional can 

be considered as an appropriate choice for studying the MSR-graphene system. Among the 

DFT-D functionals, the PBE-D3 and PBE-dDsC functionals provide a good estimate of the 
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graphene binding energy. On the other hand, we found the RPBE-D3 and revPBE-D3 

functionals have a qualitative disagreement with respect to the experimental result of 

graphene-Ni(111). The PBE-TS functional substantially overpredicts the binding energy of 

graphene. We have found the RMSD value of DFT-D functionals to be significantly lower than 

most vdW-DF. This indicates that DFT-D functionals exhibit better overall performance in 

predicting the binding/reaction energies of key MSR species/events. The RPBE-D3 and 

revPBE-D3 functionals have lower RMSD scores (with respect to the experimental MSR 

dataset) compared to other DFT-D functionals. Nonetheless, these functionals do not capture 

the graphene-Ni(111) interaction adequately (as stated earlier). The PBE-TS functional 

exhibits poor accuracy in predicting the experimental binding/reaction energies data of MSR. 

The PBE-D3 and PBE-DdSc predictions are in reasonable agreement with the experimental 

MSR dataset. As stated previously, these functionals also account for the van der Waals 

interactions between graphene and Ni(111) with appreciable accuracy. Therefore, the PBE-D3 

and PBE-DdSC functionals are suitable candidates for developing a DFT-based design of 

coking model for the MSR reaction. Overall, the performance of the DFT functionals is not 

satisfactory. The RMSD scores lie between 0.2-0.5 eV, which indicates that there is a 

significant scope for improvement in DFT functional accuracy. Based on the outcomes of the 

DFT benchmark study, we chose the PBE-D3 functional (as it is computationally cheaper than 

PBE-dDsC and optPBE-vdW) for our kinetic studies.  

Subsequently, we developed a first-principles-based KMC model for the methane cracking 

reaction to understand the coking thermodynamics on Ni(111). A large dataset of DFT 

configurations was generated on Ni(111) – these included large-body C-C, CH-CH and C-C 

structures that exist in the forms of rings, branches and chains. In the KMC model, the kinetics 

of C-H activation steps was captured in detail, whereas the coke (which is composed of 

carbon-based ring/branch/chains) formation was treated at the level of thermodynamics. The 

CE methodology was employed to capture the short/long-range interactions and adlayer 

energetics of large-body carbon-based structures. We trained the CE parameters (using linear 

regression) to capture the energetics of the DFT dataset with high accuracy. Several KMC 

models were developed where the adlayer energetics were captured in an incremental fashion 

– KMC-without-interaction, KMC-1NN, KMC-1NN-2NN, KMC-1NN-2NN-3NN and KMC-long-

range. These KMC models were systematically compared to mean-field MK models. The MK 

models fail to adequately capture the attractive C-C, CH-C and CH-CH correlations at steam 

reforming conditions. We illustrate that the coke morphology and CH/C coverages change 

significantly based on the level of interactions included in the KMC simulation. For instance, 

in the KMC-1NN model, we observe no visible ordering but there is formation of small clusters 

of carbon surrounded by three CH species. On the other hand, the KMC-1NN-2NN and KMC-



131 

 

1NN-2NN-3NN models depict that the CH/C species align in the form of straight chains (chain-

based ordering). The adlayer of KMC-long-range (which includes 1NN, 2NN, 3NN and CE fit 

parameters as well) is completely different from the rest of the KMC models. The KMC-long-

range model predicts that coke encapsulates the Ni(111) surface in the form of C-CH ring-

based structures at steam reforming conditions. At lower temperatures (such as 800 K), these 

C-CH rings occupy specific regions of the lattice and remain disconnected from other ring-

based structures. On the other hand, at high temperatures (1100–1200 K), we find that there 

is complete agglomeration of C-CH rings on the Ni(111) surface. This indicates that Ni is more 

susceptible to coking at high temperatures, which is in excellent agreement with industrial 

observations.25 The results of these KMC simulations can also be validated (to a certain 

extent) by comparisons with spectroscopic studies. Overall, the CE-based KMC simulations 

can potentially inspire future simulations that can help us identify next-generation Ni-based 

catalysts that are more resistant to coking.  

Upon completion of the aforementioned study, we shifted our focus to understand the role of 

potassium (alkali-based promoter) in the MSR reaction. We developed KMC models of MSR 

on the Ni(111) and K-Ni(111) systems. The KMC simulations were performed for different 

loadings of potassium - K-Ni(111)-0.7%, K-Ni(111)-1.4%, K-Ni(111)-2.1% and K-Ni(111)-2.8%. 

At high temperatures, the net MSR turnover rate was found to be substantially higher in the 

K-Ni(111) systems. For instance, the MSR turnover rate of K-Ni(111)-2.8% is around 3 to 4 

times higher than Ni(111) at temperatures 1173–1273 K. At low temperatures (973–1073 K), 

the oxygen uptake on the potassium-modified Ni(111) system is greater than Ni(111). 

Moreover, in the presence of potassium, the CH coverage (an important coke precursor) is 

reduced to a certain extent at low temperatures. These results illustrate the promotional effects 

of potassium at steam reforming conditions. In an attempt to rationalise the aforementioned 

findings, we examined the process statistics of important MSR events thoroughly. The event 

occurrence rate was compared systematically on the following systems: 1) Pure Ni(111) 

surface, 2) Ni sites of K-Ni(111)-2.8% and 3) K sites of K-Ni(111)-2.8%. At 1273 K, we observe 

that the CO formation step (event R16) occurrence rate was around 637 times faster on 

potassium sites of K-Ni(111)-2.8% compared to Ni(111). Similarly, the occurrence rates of COH 

formation step (event R13) and CHOH formation step (event R9) were found to be 45 times and 

28 times faster, respectively. In comparison to the Ni(111) system, we found the CHO formation 

step (event R12) was about 3 times faster on K sites than Ni(111). On the other hand, the 

reaction occurrence rate of CH4 dissociation event was substantially lower on potassium sites. 

The process statistics analysis unequivocally demonstrates that the key events of MSR 

(mainly CH/C oxidation steps) have much higher occurrence rates on potassium sites of the 

K-Ni(111)-2.8% system. We identified the dominant reforming pathways of MSR on Ni(111) 



132 

 

and K-Ni(111)-2.8% by performing a detailed flux analysis. The CHO pathway was found to 

be dominant on the Ni(111) surface at steam reforming conditions. This is in excellent 

agreement with the predictions of several MSR MK studies. On the K-Ni(111)-2.8% system, 

the pathway contributions (%) vary based on the operating conditions. For example, at 973 K, 

the CHO-Ni-pathway contributed largely to the net MSR turnover rate (around 93%). Whereas 

at 1273 K, the contributions of MSR pathways on the potassium sites were found to be 

substantial. The contributions (%) of major pathways to the net MSR turnover rate at 1273 K 

are as follows: 1) CHO-Ni-pathway – 60%, 2) CO-K-pathway – 17%, 3) CHO-K-pathway – 

16%, and 4) COH-K-pathway – 4%. The flux analysis provides conclusive evidence that the 

presence of potassium has a significant impact on pathway favourability at high temperatures.  

Finally, we developed a first-principles-based MK model for the methane cracking and C-C 

coupling reactions on Ni(111). The DFT calculations were performed to identify the transition 

states of carbon coupling events. We primarily focussed on the nucleation events involving 

branched/ring type structures as these are important precursors to graphene/coke formation. 

In the MK model, we included a pseudo desorption event to generate “coke” in the system. 

The coverage profiles of dominant species (with respect to temperature) were examined. 

Based on the flux analysis, we have identified the ring formation pathway to be favourable at 

MSR conditions. Furthermore, the sensitivity analysis reveals that the CH4(g) dissociation step 

(event R1) and C6 ring formation step (event R15) could be rate-limiting at high temperatures.  

7.2 Opportunities for future research  

As discussed previously, the thesis has examined several fundamental aspects of the coking 

problem in MSR. The DFT functional screening (chapter 3) reveals that the overall accuracy 

of GGA, DFT-D3 functionals and vdW-DF is not satisfactory. The outcomes of chapter 3 

certainly motivate further research into testing other existing functionals and DFT method 

development. It is critical to improve the accuracy of DFT predictions to reduce the 

computational error in the first-principles-based design of poison resistant Ni catalysts.  

The CE-based KMC model of methane cracking provides interesting insights into the coke 

morphology and the susceptibility of Ni to coking (refer to Chapter 5). The CE model can be 

further trained on larger-body configurations occupying top sites, as the top-fcc configuration 

is the most stable geometry of graphene on Ni(111). In the KMC simulation, the chemistry of 

C-C coupling events can be captured explicitly to delineate the coking mechanism. Moreover, 

a multifaceted KMC model can also be developed, which includes the step sites, to gain a 

thorough understanding of the whisker carbon growth.  

In chapter 6, we performed KMC simulations to thoroughly understand the effect of the 

potassium (alkali-based promoter) on the MSR kinetics. The coke formation/destruction 
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events can also be potentially included in the MSR system. This will allow us to understand 

the promotional effects of potassium on the coking kinetics. Furthermore, the CE-based KMC 

model can be employed to thoroughly investigate the role of Ni-based bimetallic alloys (such 

as Ni-Au, Ni-Ag) and other promising promoters (these include Mo and Mn) in inhibiting coke 

formation at MSR conditions.  

We developed a preliminary MK model to elucidate the coking kinetics on Ni(111) (refer to 

Chapter 7). Further investigations are needed to gain deeper insights into the whisker carbon 

growth mechanism. To this end, an extensive set of DFT calculations needs to be performed 

to identify the transition states of coupling events involving higher body carbon-based 

configurations (such as C8, C10, C13 rings/branches/chains). Moreover, the lateral interactions 

of these carbon-based species also need to be computed using DFT. Upon generating the 

DFT dataset, a kinetic model can be formulated to gain a detailed understanding of the growth 

mechanism of carbon whiskers at steam reforming conditions. 

Finally, investigations into transition metal oxide (TMO) supported/alloyed Ni catalysts are 

gaining prominence in the scientific community as these materials can be suitable alternative 

catalysts for methane reforming reactions. For instance, Ni-FeO and Ni-La2O3 were found to 

substantially reduce the activation barrier of CH hydrogenation and carbon oxidation reactions 

(these are critical steps to reduce coke formation in MSR).54 It is imperative to gain a detailed 

understanding of such strong metal-support interactions (SMSI) using DFT. A detailed DFT 

screening study can be performed for different material combinations to identify the suitable 

Ni-TMO systems for MSR. Furthermore, in a recent study, Prats and Stamatakis185 report that 

metal nanoclusters supported on transition metal carbides (TMCs) show promising 

activity/stability for reforming reactions. Detailed KMC studies of the MSR reaction on different 

types of Ni-supported TMCs could be the next step in the discovery of novel catalysts that are 

resistant to coking.  
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Appendix I 

    

  Table A1. The lattice constant predictions of DFT functionals 

Functional 
Ni Lattice constant 

prediction (Å) 
Graphene Lattice 

constant prediction (Å) 

PBE 3.522 - 

RPBE 3.557 - 

revPBE 3.547 - 

PBE-D3 3.481 2.467 

RPBE-D3 3.487 2.479 

revPBE-D3 3.467 2.476 

PBE-dDsC 3.502 2.467 

PBE-TS 3.419 2.465 

optB86b-vdW 3.493 2.466 

optB88-vdW 3.514 2.465 

optPBE-vdW 3.533 2.471 

BEEF-vdW 3.540 2.466 

 

Note: The experimental lattice constant value of Ni is 3.524 Å.127 The experimental graphene-

Ni lattice constant value is 2.464 Å.124 The pure graphene DFT calculations have been carried 

out using a 551 k-point grid. For the PBE, RPBE and revPBE functionals, we did not 

calculate the pure graphene configurations, since graphene does not bind on Ni using these 

functionals.  

 

 

 

Figure A1: The convergence plots of carbon binding energy on Ni(111) using the PBE-D3 

functional: (a) K-points convergence test and (b) Plane-wave cut-off energy convergence 

study.  

a) b) 
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Figure A2: The convergence plots of graphene binding energy on Ni(111) using the PBE-D3 

functional: (a) K-points convergence test and (b) Plane-wave cut-off energy convergence 

study. 

                                           

                      

                              

                      

 

 

 

 

 

 

 

Figure A3: Graphene configurations include a) top-hcp configuration, b) fcc-hcp configuration, 

c) top-fcc configuration and d) bridge-top configuration.144 The schematics have the following 

convention: The atoms in blue represent Ni and the atoms in grey are carbon. 

a) b) 

a) b) 

d) c) 
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Figure A4: The preferred binding sites of MSR intermediates: a) The carbon atom occupies 

the hcp site. b) The CO molecule binds on the hcp site. c) The hydrogen atom is stable on the 

fcc site. d) The oxygen atom occupies the fcc site. e) The H2O molecule physisorbs on the top 

site. f) The CH3 molecule binds on the fcc site. g) The two OH atoms are stable on the three-

fold hollow sites. The schematics have the following convention: The atoms in blue represent 

Ni, the atoms in grey are carbon, the atoms in red indicate oxygen and the atoms in white are 

hydrogen.  

 

 

 

a) c) b) 

d) e) 

f) g) 
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Table A2. Evaluating the performance of DFT functionals in predicting the energies of 
gas-phase reactions relevant to MSR, as well as graphite formation  

Method/Functional 
𝑬𝒓𝒙𝒏−𝒈𝒂𝒔𝒑𝒉
𝑴𝑺𝑹  

(eV) 

𝑬𝒓𝒙𝒏−𝒈𝒂𝒔𝒑𝒉
𝑯𝟐𝑶 𝒅𝒊𝒔𝒔  

(eV) 

𝑬𝒄𝒐𝒉
𝒈𝒓𝒂𝒑𝒉𝒊𝒕𝒆

 

(eV) 

𝑬𝒃𝒊𝒏𝒅
𝒈𝒓𝒂𝒑𝒉𝒊𝒕𝒆

 

(meV/C) 

CCSD(T) or experiment         2.82128,152         5.48128,152    7.37186 48186 

PBE 3.18 5.07 7.97 -14.04 

RPBE 2.80 4.78 7.53 -36.68 

revPBE 2.83 4.81 7.58 -35.75 

PBE-D3 3.18 5.07 8.07 46.69 

RPBE-D3 2.83 4.78 7.69 48.43 

revPBE-D3 2.85 4.81 7.75 62.09 

PBE-dDsC 3.18 5.07 8.22 63.03 

PBE-TS 3.18 5.07 8.11 82.34 

optB86b-vdW 2.81 4.92 8.07 69.91 

optB88-vdW 2.68 4.89 7.98 69.56 

optPBE-vdW 2.59 4.79 7.84 63.21 

BEEF-vdW 2.51 (±0.26) 4.70 (±0.17) 7.64 (±0.23) 36.68 (±19.24) 

 

Notes: 𝐸𝑟𝑥𝑛−𝑔𝑎𝑠𝑝ℎ
𝑀𝑆𝑅  indicates the MSR reaction energy – CH4(g) + H2O(g)  CO(g) + 3H2(g), 

𝐸𝑟𝑥𝑛−𝑔𝑎𝑠𝑝ℎ
𝐻2𝑂 𝑑𝑖𝑠𝑠  represents the reaction energy of H2O dissociation – 2H2O(g)  2H2(g) + O2(g),  

𝐸𝑐𝑜ℎ
𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒

 and 𝐸𝑏𝑖𝑛𝑑
𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒

 are the graphite cohesive energy and graphite interlayer binding 

energy, respectively. 𝐸𝑟𝑥𝑛−𝑔𝑎𝑠𝑝ℎ
𝑀𝑆𝑅  and 𝐸𝑟𝑥𝑛−𝑔𝑎𝑠𝑝ℎ

𝐻2𝑂 𝑑𝑖𝑠𝑠  are derived from a CCSD(T) atomisation 

energies dataset which does not include ZPE/thermal corrections. 𝐸𝑐𝑜ℎ
𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒

 and 𝐸𝑏𝑖𝑛𝑑
𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒

 are 

obtained from experimental works reported in the literature. The graphite bulk calculations 

(with a supercell that contains four carbon atoms) have been performed using a k-point mesh 

of size 21217 and a plane-wave cut-off energy value of 400 eV (refer to Figure A5(a) and   

Figure A5(b) for convergence plots). The lattice vectors of graphite bulk are obtained from 

experimental data available in the literature.186  

Interestingly, all the DFT functionals have varying performance for each of the gas-phase 

systems. According to Table A2, the RPBE, revPBE, RPBE-D3, revPBE-D3 and optB86b-vdW 

functionals predict the MSR reaction energy with high accuracy. The PBE functional and its 

corresponding dispersion-corrected flavours (PBE-D3, PBE-dDsC and PBE-TS) overestimate 

→

→
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the MSR reaction energy by 0.36 eV. Whereas the vdW-DF such as optB88-vdW, optPBE-

vdW and BEEF-vdW substantially underpredict the MSR reaction energy (refer to Table A2).  

Most of the DFT functionals exhibit large deviations in predicting the reaction energy of H2O 

dissociation (as shown in Table A2). Wellendorff et al.128 have also reported that the DFT 

functionals do not give a good description of H2O dissociation in the gas phase. The inability 

of DFT functionals to provide an accurate estimate of the triplet O2(g) energy is considered to 

be the primary reason for such a poor performance.128 The RPBE and revPBE functionals 

predict the graphite cohesive energy with reasonable accuracy. Other DFT functionals tend to 

significantly overpredict the cohesive energy of graphite (refer to Table A2). The benchmark 

study conducted by Rêgo et al.186 also concludes that the dispersion-inclusive DFT functionals 

overestimate graphite cohesive energy. The GGA functionals fail to capture the van der Waals 

interactions between consecutive layers of graphite. As shown in Table A2, these functionals 

predict a negative value (repulsive interaction) for the interlayer binding energy of graphite. 

Among the DFT-D functionals, the PBE-D3 and RPBE-D3 functionals accurately reproduce 

the graphite interlayer interactions. The predictions of PBE-dDsC and revPBE-D3 functionals 

are also in reasonable agreement with the experimental result. In contrast, the PBE-TS 

functional substantially overpredicts the interlayer binding energy of graphite. The vDW-DF 

predict the graphite interlayer interactions with acceptable accuracy (refer to Table A2). 

 

 

 

Figure A5: The convergence plots of graphite bulk system using the PBE-D3 functional: (a) K-

points convergence test and (b) Plane-wave cut-off energy convergence study. 

b) a) 
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Table A3. Comparison of DFT predictions of oxygen binding energy predictions 
obtained using two different approaches 

  

Note: Two methods are used to determine the O2(g) energy: 1) The O2(g) energy is estimated 

by using the following equation: 𝐸𝑂2𝑔𝑎𝑠𝑝ℎ
𝑚𝑒𝑡ℎ𝑜𝑑1 =  𝐸𝑟𝑥𝑛−𝑔𝑎𝑠𝑝ℎ

𝐻2𝑂 𝑑𝑖𝑠𝑠  +  2𝐸𝑔𝑎𝑠𝑝ℎ
𝐻2𝑂 −  2𝐸𝑔𝑎𝑠𝑝ℎ

𝐻2 . The terms 

𝐸𝑟𝑥𝑛−𝑔𝑎𝑠𝑝ℎ
𝐻2𝑂 𝑑𝑖𝑠𝑠 , 𝐸𝑔𝑎𝑠𝑝ℎ

𝐻2𝑂  and 𝐸𝑔𝑎𝑠𝑝ℎ
𝐻2  refer to the gas-phase reaction energy of H2O dissociation (the 

value is 5.48 eV; it is derived from a CCSD(T) atomisation energies dataset152), H2O gas-

phase energy and H2 gas-phase energy (both these energies are computed using DFT), 

respectively. The O2(g) energy obtained from method 1 (𝐸𝑂2𝑔𝑎𝑠𝑝ℎ
𝑚𝑒𝑡ℎ𝑜𝑑1) is used to estimate the term 

𝐸𝑂 𝑏𝑖𝑛𝑑
𝑚𝑒𝑡ℎ𝑜𝑑1 2) The O2 gas-phase energy is computed by performing a DFT calculation (the 

corresponding oxygen binding energy obtained under this approach is labelled as 𝐸𝑂 𝑏𝑖𝑛𝑑
𝑚𝑒𝑡ℎ𝑜𝑑2) 

As discussed previously, the DFT functionals give an inaccurate value of the energy of O2 gas-

phase triplet state. In an effort to correct this error, we estimated the O2 gas-phase energy from 

the reaction energy of H2O dissociation (please refer to the “Note” given below Table A3 for 

more details). As shown in Table A3, the oxygen binding energies (𝐸𝑂 𝑏𝑖𝑛𝑑
𝑚𝑒𝑡ℎ𝑜𝑑1) obtained using 

this approach deviate significantly from the experimental data (refer to the third column of 

Table A3). In a recent study, Wellendorff et al.128 have made similar observations for a few 

systems. A plausible explanation for this behaviour could be that the total energy of the bound 

state - O/Ni(111) - is also estimated poorly by the DFT functionals, and thus, the binding energy 

predictions of oxygen obtained using an accurate O2 gas-phase energy exhibit large 

deviations. On the other hand, the oxygen binding energies estimated by using the DFT 

Functional 
𝐸𝑂 𝑏𝑖𝑛𝑑
𝑚𝑒𝑡ℎ𝑜𝑑1 

(eV) 

𝐸𝑂 𝑏𝑖𝑛𝑑
𝑚𝑒𝑡ℎ𝑜𝑑2 

(eV) 

Deviation of 𝐸𝑚𝑒𝑡ℎ𝑜𝑑1
𝑂 𝑏𝑖𝑛𝑑  

from the experimental 
value (eV) 

Deviation of 𝐸𝑚𝑒𝑡ℎ𝑜𝑑2
𝑂 𝑏𝑖𝑛𝑑  

from the experimental 
value (eV) 

PBE 5.09 4.68 0.56 0.14 

RPBE 4.84 4.13 0.30 -0.41 

revPBE 4.87 4.20 0.34 -0.34 

PBE-D3 5.17 4.75 0.63 0.22 

RPBE-D3 4.97 4.27 0.44 -0.27 

revPBE-D3 5.02 4.34 0.48 -0.19 

PBE-dDsC 5.20 4.79 0.67 0.25 

PBE-TS 5.04 4.63 0.51 0.09 

optB86b-vdW 5.81 5.25 1.28 0.71 

optB88-vdW 5.88 5.28 1.34 0.75 

optPBE-vdW 5.76 5.06 1.23 0.53 

BEEF-vdW 5.23  4.44 0.69 -0.09 

Experimental 
value 

4.53 (±0.2) - 
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predicted O2(g) energy (𝐸𝑂 𝑏𝑖𝑛𝑑
𝑚𝑒𝑡ℎ𝑜𝑑2) have a better agreement with the experimental value (refer 

to the last column of Table A3). In this case, it is possible that there is a cancellation of error 

between the DFT energies of the bound state and the gas-phase. Hence, the DFT results of 

the second approach (𝐸𝑂 𝑏𝑖𝑛𝑑
𝑚𝑒𝑡ℎ𝑜𝑑2) are presented in Table 3 of section 3.3.  

Table A4. The predictions of DFT functionals for MSR species (without ZPE and 
thermal corrections) 

 

 

Note: The computational errors of BEEF-vdW functional are not reported in Table A4 

   Table A5. The ZPE corrections recorded for each of the DFT functionals 

 

Note: The ZPE corrections are not included for the carbon dissociation reaction (refer to Table 2 under the 

subsection 3.3.2 for more details).  

 

 

 

DFT predictions without ZPE and thermal corrections (eV) 

Functional CO H2O 2H 2O OH C CH3 
CH4-
diss 

C-
oxid 

PBE 1.93 0.30 1.12 4.72 3.27 6.93 1.95 0.05 1.69 

RPBE 1.54 0.10 0.79 4.17 2.90 6.46 1.51 -0.43 1.94 

revPBE 1.60 0.10 0.83 4.24 2.94 6.53 1.56 -0.37 1.90 

PBE-D3 2.12 0.53 1.33 4.80 3.41 7.01 2.32 0.53 1.61 

RPBE-D3 1.84 0.46 1.07 4.31 3.14 6.62 2.06 0.25 1.78 

revPBE-D3 1.92 0.52 1.17 4.39 3.18 6.69 2.22 0.45 1.73 

PBE-dDsC 2.09 0.46 1.22 4.83 3.64 7.05 2.19 0.34 1.58 

PBE-TS 2.26 0.64 1.30 4.67 3.57 7.03 2.45 0.64 1.59 

optB86b-vdW 2.17 0.53 1.15 5.29 3.53 7.08 2.37 0.45 1.57 

optB88-vdW 2.01 0.50 1.02 5.33 3.49 6.94 2.18 0.23 1.74 

optPBE-vdW 1.88 0.45 0.92 5.11 3.37 6.79 2.05 0.08 1.82 

BEEF-vdW 1.61 0.28 0.68 4.48 3.10 6.44 1.70 -0.28 2.05 

ZPE corrections (eV) 

Functional CO H2O 2H 2O OH C CH3 CH4-diss 

PBE -0.05 -0.06 -0.09 -0.06 -0.15 -0.10 -0.10 0.12 

RPBE -0.05 -0.06 -0.07 -0.06 -0.15 -0.10 -0.10 0.12 

revPBE -0.05 -0.06 -0.08 -0.06 -0.15 -0.10 -0.10 0.12 

PBE-D3 -0.05 -0.06 -0.09 -0.06 -0.14 -0.10 -0.10 0.12 

RPBE-D3 -0.05 -0.07 -0.07 -0.06 -0.15 -0.10 -0.09 0.13 

revPBE-D3 -0.05 -0.07 -0.08 -0.06 -0.14 -0.10 -0.10 0.12 

PBE-dDsC -0.05 -0.06 -0.09 -0.06 -0.15 -0.10 -0.10 0.12 

PBE-TS -0.05 -0.06 -0.09 -0.06 -0.14 -0.10 -0.10 0.11 

optB86b-vdW -0.05 -0.07 -0.08 -0.07 -0.15 -0.10 -0.09 0.13 

optB88-vdW -0.05 -0.07 -0.08 -0.07 -0.15 -0.10 -0.09 0.13 

optPBE-vdW -0.05 -0.07 -0.07 -0.06 -0.15 -0.10 -0.10 0.13 

BEEF-vdW -0.05 -0.06 -0.07 -0.06 -0.15 -0.10 -0.10 0.12 
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Table A6. The thermal corrections recorded for each of the DFT functionals 

 

Note: The thermal corrections are not included for the hydrogen adsorption and carbon oxidation reactions (refer 

to Table 2 under the subsection 3.3.2 for more details). 

 

Table A7. The estimated vibrational wavenumbers of hydroxyl 

Functional  Bound state wave numbers (cm-1)  

Gas-phase 
wave 

numbers 
(cm-1)  

PBE 3247 3171 1056 940 792 776 538 428 340 254 220 136 3603 

RPBE 3325 3261 1028 913 763 756 520 413 322 241 206 135 3596 

revPBE 3304 3237 1038 922 772 760 524 415 324 243 209 135 3595 

PBE-D3 3197 3105 1074 958 800 776 564 429 338 249 210 135 3603 

RPBE-D3 3268 3185 1088 973 792 764 563 421 324 237 190 138 3595 

revPBE-D3 3225 3129 1078 968 791 765 576 423 323 237 188 132 3598 

PBE-dDsC 3187 3075 1068 938 824 772 602 425 339 250 211 137 3532 

PBE-TS 3126 3013 1104 983 814 776 606 436 337 248 199 137 3603 

optB86b-vdW 3213 3133 1061 941 789 775 561 437 344 262 223 138 3579 

optB88-vdW 3273 3205 1053 929 785 778 553 437 349 260 222 139 3585 

optPBE-vdW  3309 3247 1033 911 767 765 542 422 334 253 214 135 3574 

BEEF-vdW 3440 3390 1023 898 762 756 540 420 332 251 207 132 3643 
 

Note: The bound state wave numbers (mentioned above) have been calculated for two OH species adsorbed on 

Ni(111).   

 

 

  

Thermal corrections (eV) 

Functional CO H2O 2O OH C CH3 CH4-diss 

PBE -0.006 0.010 0.017 0.026 0.003 0.028 0.027 

RPBE -0.007 0.009 0.014 0.025 0.001 0.026 0.026 

revPBE -0.007 0.008 0.015 0.025 0.002 0.027 0.026 

PBE-D3 -0.006 0.010 0.017 0.025 0.003 0.029 0.028 

RPBE-D3 -0.007 0.009 0.014 0.025 0.002 0.025 0.025 

revPBE-D3 -0.007 0.010 0.015 0.025 0.002 0.027 0.026 

PBE-dDsC -0.005 0.009 0.017 0.026 0.003 0.029 0.028 

PBE-TS -0.005 0.007 0.017 0.025 0.004 0.029 0.028 

optB86b-vdW -0.006 0.011 0.019 0.026 0.003 0.028 0.028 

optB88-vdW -0.006 0.011 0.019 0.026 0.003 0.027 0.027 

optPBE-vdW -0.007 0.010 0.017 0.025 0.002 0.026 0.026 

BEEF-vdW -0.008 0.009 0.015 0.025 0.001 0.026 0.025 
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Table A8.   The estimated vibrational wavenumbers of carbon monoxide 

Functional  Bound state wave numbers (cm-1)  
Gas-phase 

wave numbers 
(cm-1)  

PBE 1763 344 283 282 143 143 2126 

RPBE 1740 332 273 273 138 137 2103 

revPBE 1745 335 277 276 141 141 2108 

PBE-D3 1770 350 283 283 143 143 2126 

RPBE-D3 1749 342 277 277 138 137 2103 

revPBE-D3 1756 344 278 278 137 137 2108 

PBE-dDsC 1766 350 284 284 145 144 2126 

PBE-TS 1778 359 291 291 144 144 2126 

optB86b-vdW 1762 347 283 283 143 143 2125 

optB88-vdW 1757 337 279 279 142 142 2131 

optPBE-vdW  1744 336 272 271 138 137 2116 

BEEF-vdW 1757 333 271 271 138 138 2124 

 

Table A9. The estimated vibrational wavenumbers of oxygen 

Functional Bound state wave numbers (cm-1) 
Gas-phase wave 
numbers (cm-1) 

PBE 488 393 393 1566 

RPBE 470 374 373 1544 

revPBE 473 378 377 1549 

PBE-D3 498 389 389 1566 

RPBE-D3 485 372 372 1544 

revPBE-D3 495 376 376 1549 

PBE-dDsC 490 393 393 1566 

PBE-TS 516 381 381 1566 

optB86b-vdW 502 404 404 1554 

optB88-vdW 498 406 406 1535 

optPBE-vdW 483 394 394 1526 

BEEF-vdW 472 378 378 1551 
 

Table A10. The estimated vibrational wavenumbers of hydrogen 

Functional Bound state wave numbers (cm-1) 
Gas-phase wave 
numbers (cm-1) 

PBE 1133 861 860 4307 

RPBE 1103 831 830 4340 

revPBE 1112 838 838 4334 

PBE-D3 1150 857 857 4307 

RPBE-D3 1114 810 810 4340 

revPBE-D3 1136 847 846 4334 

PBE-dDsC 1146 864 864 4307 

PBE-TS  1198 841 840 4307 

optB86b-vdW 1137 849 849 4301 

optB88-vdW 1112 854 853 4349 

optPBE-vdW 1101 834 834 4349 

BEEF-vdW 1108 836 836 4447 



143 

 

Table A11. The estimated vibrational wavenumbers of carbon 

 

 

Table A12. The estimated vibrational wavenumbers of water 

 

Functional Bound state wave numbers (cm-1) 

PBE 561 549 549 

RPBE 545 534 533 

revPBE 549 537 537 

PBE-D3 579 540 540 

RPBE-D3 574 525 525 

PBE-dDsC 568 549 549 

PBE-TS 612 530 530 

revPBE-D3 583 525 525 

optB86b-vdW 572 547 547 

optB88-vdW 558 548 547 

optPBE-vdW 551 539 539 

BEEF-vdW 545 526 526 

Functional  Bound state wave numbers (cm-1)  
Gas-phase wave 
numbers (cm-1)  

PBE 3686 3578 1543 463 449 203 94 82 49 3831 3716 1584 

RPBE 3720 3610 1569 423 413 147 87 77 58 3820 3705 1596 

revPBE 3719 3608 1565 429 418 150 86 80 51 3823 3708 1594 

PBE-D3 3658 3552 1536 482 480 212 107 93 27 3831 3716 1584 

RPBE-D3 3645 3542 1551 519 498 187 121 90 15 3820 3703 1595 

revPBE-D3 3655 3549 1550 530 515 184 139 103 25 3823 3707 1593 

PBE-dDsC 3673 3566 1538 471 460 215 93 84 34 3831 3716 1584 

PBE-TS 3673 3565 1538 445 440 193 86 79 15 3831 3716 1584 

optB86b-vdW 3639 3530 1538 495 466 229 101 87 66 3807 3692 1584 

optB88-vdW 3654 3545 1550 493 461 235 94 86 57 3807 3694 1596 

optPBE-vdW 3662 3553 1559 478 446 201 91 80 58 3797 3684 1597 

BEEF-vdW 3772 3661 1597 452 420 156 86 78 63 3875 3761 1624 
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Table A13. The estimated vibrational wavenumbers of methane 

Functional  Gas-phase wave numbers (cm-1)  

PBE 3092 3091 3091 2975 1512 1511 1286 1286 1285 

RPBE 3085 3085 3083 2969 1517 1516 1294 1294 1294 

revPBE 3087 3087 3085 2971 1517 1516 1293 1293 1293 

PBE-D3 3092 3091 3090 2974 1511 1510 1286 1286 1285 

RPBE-D3 3071 3070 3069 2951 1512 1511 1293 1293 1292 

revPBE-D3 3079 3079 3077 2960 1513 1512 1292 1291 1291 

PBE-dDsC 3092 3092 3091 2976 1512 1511 1287 1287 1286 

PBE-TS 3092 3091 3091 2975 1511 1511 1286 1286 1285 

optB86b-vdW 3067 3066 3065 2959 1516 1515 1294 1294 1293 

optB88-vdW 3072 3068 3067 2971 1535 1529 1316 1313 1310 

optPBE-vdW 3063 3062 3061 2965 1529 1528 1311 1310 1310 

BEEF-vdW 3104 3103 3101 2999 1550 1549 1330 1330 1329 

 

       Table A14. The estimated vibrational wavenumbers of methyl (bound state) 

 

Table A15. The estimated vibrational wavenumbers of methyl (gas phase) 

Functional  Gas-phase wave numbers (cm-1) 

PBE 3234 3232 3054 1356 1356 524 

RPBE 3226 3226 3047 1363 1363 509 

revPBE 3227 3227 3048 1362 1362 513 

PBE-D3 3232 3231 3052 1356 1355 525 

RPBE-D3 3217 3216 3036 1363 1362 516 

revPBE-D3 3220 3220 3038 1360 1360 518 

PBE-dDsC 3234 3233 3055 1357 1357 525 

PBE-TS 3234 3233 3054 1356 1356 525 

optB86b-vdW 3212 3211 3036 1362 1361 519 

optB88-vdW 3223 3221 3049 1375 1373 529 

optPBE-vdW 3215 3215 3043 1376 1376 521 

BEEF-vdW 3258 3258 3082 1396 1396 531 

 

 

Functional  Bound state wave numbers (cm-1) 

PBE 2826 2824 2764 1292 1291 1170 479 478 402 350 219 218 

RPBE 2862 2861 2799 1318 1318 1170 490 488 378 323 193 191 

revPBE 2856 2855 2792 1313 1313 1169 485 484 383 329 198 197 

PBE-D3 2832 2831 2766 1286 1286 1166 479 479 399 360 224 224 

RPBE-D3 2862 2862 2792 1299 1299 1151 456 455 342 334 190 189 

revPBE-D3 2857 2857 2785 1291 1291 1149 463 463 371 354 209 209 

PBE-dDsC 2824 2822 2761 1289 1288 1172 476 475 408 357 226 225 

PBE-TS 2846 2845 2783 1298 1298 1174 495 494 399 362 223 222 

optB86b-vdW 2778 2777 2724 1290 1290 1176 471 471 398 354 222 222 

optB88-vdW 2810 2809 2760 1318 1318 1185 474 473 387 343 208 208 

optPBE-vdW 2824 2823 2773 1326 1326 1182 481 481 375 328 195 194 

BEEF-vdW 2895 2893 2836 1359 1359 1195 502 501 369 327 189 187 
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a)                                          b)          

 

      c) 

Figure A6: The potential energy profiles of graphene-Ni(111) (top-fcc geometry) using DFT-

D3 functionals – (a) PBE-D3, (b) RPBE-D3 and (c) revPBE-D3 (up to the global minimum). 

 

Table A16. The geometric details of two distinct graphene-Ni(111) simulation setups 
used for the PBE-TS functional.  

 

Note: The experimental lattice constants of Ni and graphene are 3.524 Å127 and 2.464 Å124, respectively.  

Graphene-

Ni(111) 

configuration 

Ni lattice 

constant 

(Å) 

Graphene lattice 

constant (bound 

on Ni(111)) (Å) 

Deviation (%) from 

experimental Ni 

lattice constant (Å) 

Deviation (%) from 

experimental graphene 

lattice constant (Å) 

System 1 3.419 2.418 -2.97 -1.87 

System 2 3.481 2.461 -1.22 -0.12 
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As shown in Table A16, we carried out DFT calculations for the PBE-TS functional using two 

disparate graphene-Ni(111) setups. In “System 1”, the PBE-TS optimised Ni lattice constant 

was used to construct the graphene-Ni(111) supercell. It can be inferred from Table A16 that 

the Ni lattice constant and the corresponding graphene lattice constant (bound on Ni(111)) of 

“System 1” are significantly lower than the experimental data. Using “System1”, we do not 

converge to the shallow first minimum of graphene-Ni(111) primarily because the carbon 

atoms experience substantial “strain” effects. The optimised graphene-Ni(111) distance of 

“System 1” is depicted in Figure A7(a). The PBE-D3 optimised Ni lattice constant (which is 

closer to the experimental value) was used in “System 2” – in this case, the carbon atoms of 

graphene-Ni(111) experience relatively weaker repulsive interactions. Thus, the PBE-TS 

calculation of “System 2” converges to the first minimum of graphene-Ni(111) (as shown in 

Figure A7(b)).  

 

 

 

 

 

 

 

 

Figure A7: The graphene-Ni(111) optimised configurations obtained using the PBE-TS 

functional: (a) “System 1” and (b) “System 2”. 
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Appendix II 

 

Table A17. The site preferences and the binding energies of methane cracking 
adsorbates 

Species Preferred binding sites Binding energy (eV) Literature values (eV) 

CH4* Top -0.26  -0.02187  

CH3* Fcc -2.32 -1.91187  

CH2* Fcc -4.33 -4.01187  

CH* Fcc -6.71 -6.43187  

C* Hcp -7.01 -6.78187  

H* Fcc -2.93 -2.81187  

H2* Top -0.49 -0.22187  
 

Note: Simulation details of Ref. 187: p(3x3) Ni(111) supercell, ENCUT: 400 eV, k-point mesh: 

5×5×1, PBE functional. 

 

Table A18.  The vibrational wavenumbers of converged geometries 

System Vibrational wavenumbers (cm-1)  

CH3* 2831, 2831, 2765, 1285, 1285, 1165, 480, 479, 400, 360, 225, 224 

CH2* 3010, 2351, 1431, 664, 591, 532, 360, 311, 282 

CH* 3031, 656, 656, 629, 418, 418 

C* 580, 540, 540 

H* 1150, 859, 858 

H2* 2433, 1698, 925, 293, 246, 81 

CH4 dissociation TS 
3105, 3067, 2962, 1567, 1391, 1372, 1139, 837, 725, 386, 363, 
135, 91, 34, 899i 

CH3 dissociation TS 3008, 2514, 1851, 1369, 863, 707, 537, 451, 324, 267, 131, 850i 

CH2 dissociation TS 3054, 1207, 881, 677, 610, 467, 415, 360, 585i 

CH dissociation TS 1858, 561, 522, 518, 128, 811i 

H2 dissociation TS  1905, 1691, 395, 213, 193, 532i 
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a)         b)          c)  

  

  d)           e)             f) 

       

                     g)     h)              i) 

 

  j)       k)       l) 

 

Figure A8: Top view of the initial states and transition states of the methane cracking system 

on Ni(111): a) CH4 physisorbed state on the top site. b) CH3 binds on the fcc site. c) CH2 

adsorbs on the fcc site. d) CH binds on the fcc site. e) Carbon has a preference to bind on the 

hcp site. f) Hydrogen prefers to bind on the fcc site. g) H2 physisorbs on the top site. h) 

Transition state (TS) of methane dissociation. i) TS of CH3 dissociation. j) TS of CH2 

dissociation. k) TS of CH dissociation. l) TS of H2 dissociation.  
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Figure A9: Schematic of the KMC lattice with all the pairwise interaction sub-patterns. The 

circles and triangles represent top and hollow sites, respectively. The unoccupied sites are 

coloured in blue, whereas the occupied sites are coloured in orange (the occupied site could 

be any adsorbate of the methane cracking system). Each type of interaction pattern has been 

given an appropriate label (as depicted above).  

 

Figure A10: Schematics of interaction patterns used in the CE model for capturing long-range 

carbon configurations. The circles and triangles represent top and hollow sites, respectively. 

The unoccupied sites are coloured in blue, whereas the occupied sites by carbon are coloured 

in black. Each type of interaction pattern has been given an appropriate label (as shown 

above).  
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Figure A11: Schematics of interaction patterns used in the CE model for capturing long-range 

CH configurations. The unoccupied sites are coloured in blue, whereas the occupied sites by 

CH are coloured in red. Each type of interaction pattern has been given an appropriate label 

(as shown above). 

 

 

Figure A12: Schematics of interaction patterns used in the CE model for capturing long-range 

CH configurations and CH-C configurations. The unoccupied sites are coloured in blue, 

whereas the occupied sites by CH and carbon are coloured in red and black, respectively. 

Each type of interaction pattern has been given an appropriate label (as shown above).  
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Table A19. Comparison of computed activation barriers of methane cracking reaction 

on Ni(111) with literature 

 

Note: The activation energies reported above do not include ZPE/thermal contributions. Ref. 

133 simulation details: a p(3x3) Ni(111) supercell, ENCUT: 400.00 eV, 5×5×1 Monkhorst-Pack 

k-point mesh and the BEEF-vdW functional have been employed. Ref. 188 simulation details: 

a p(3x3) Ni(111) supercell, ENCUT: 400.00 eV, 3×3×1 Monkhorst-Pack k-point mesh and the 

PBE functional have been employed. Ref. 24 simulation details: a p(3x3) Ni(111) supercell, 

ENCUT: 415.00 eV, 7x7×1 Monkhorst-Pack k-point mesh and the BEEF-vdW functional have 

been employed.  

The first step, methane adsorption, is not included explicitly in the KMC model because 

methane physisorbs weakly on the Ni(111) surface and the harmonic approximation is not 

appropriate for weakly bound molecules. Furthermore, experimental studies have used 

molecular beam techniques and high-resolution electron energy loss spectroscopy (HREELS) 

to show that methane binds to the Ni(111) surface by the direct dissociation mechanism. Thus, 

in the KMC model, we have lumped the adsorption and methane dissociation steps into a 

single event (refer to Table 5  of Chapter 4). Similarly, we also lumped the H2 adsorption and 

subsequent dissociation into a single step, since the H2* species is short-lived on the Ni(111) 

surface and dissociates spontaneously into H atoms.  

 

Reactions 
Activation 

energy 
forward (eV) 

Activation 
energy 

reverse (eV) 

Activation energy 
forward (eV) 

(literature values) 

Activation energy 
reverse (eV) 

(literature values) 

CH4 adsorption 0.00 0.26 0.00133 0.02133 

CH4 dissociation 0.67 0.94 1.21188, 0.91133 0.66133, 0.90133 

CH3 dissociation 0.66 0.64 0.87188, 0.70133 0.54133, 0.63133 

CH2 dissociation 0.26 0.63 0.43188, 0.35133 0.59133, 0.69133 

CH dissociation 1.31 0.84 1.45188, 1.33133 0.80133, 0.81133 

H2 adsorption 0.00 0.49 0.00133 0.22133 

H2 dissociation 0.04 0.89 0.06133 0.92133 

CH3 diffusion 0.21 0.21 0.1524 0.1524 

CH2 diffusion 0.26 0.26 0.1924 0.1924 

CH diffusion 0.34 0.34 0.3224 0.3224 

C diffusion 0.32 0.32 0.3124 0.3124 

H diffusion 0.14 0.14 0.1224 0.1224 
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As shown in Table A19, using the PBE-D3 functional, we calculate the forward activation 

barrier for methane dissociative adsorption to be 0.67 eV. However, many theoretical studies 

in the literature have reported substantially high forward activation barriers for methane 

dissociation (refer to Table A19). Most studies have used the GGA functionals (PBE, RPBE) 

for studying the methane cracking reaction network. In Table A20, we report the forward 

activation barriers of methane dissociative chemisorption for a range of functionals and 

compare their values to the experimental apparent activation energies (taken from the 

literature). There is a significant variation in the CH4 dissociation barrier prediction among the 

functionals considered. We find that the PBE-D3 functional is in reasonable agreement with 

the experimental apparent activation energy values of methane dissociation reported in the 

literature (as shown in Table A20).    

Table A20. Comparison of methane dissociation activation barriers using different 

DFT functionals to available experimental data 

Method Methane dissociation forward activation barrier (eV) 

PBE 0.84 

RPBE 1.19 

revPBE 1.15 

PBE-D3 0.67 

RPBE-D3 0.79 

revPBE-D3 0.72 

optB86b-vdW 0.69 

optPBE-vdW 0.91 

Experiment (apparent activation 

barrier values) 
0.54189, 0.77190(±0.1) 

 

Note: The dissociation barriers reported above have been computed by considering 
physisorbed methane as the initial state (in the case of DFT-D3 and vdW-DF). 
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Table A21. The geometry, event-multiplicity and proximity factors for each elementary 

event of methane cracking 

 

 

 

Figure A13: Cook’s distances for the DFT parameterised CE model 

 

 

 

Event 
Geometry 

factors  

Event 
multiplicity 

factors  
𝒘 

CH4 (g) +   *(fcc) + *(top) + *(fcc)  → CH3*(fcc) + *(top) + H*(fcc) 3 2 1.00 

CH3*(fcc) + *(top) + H*(fcc)  → CH4 (g) +   *(fcc) + *(top) + *(fcc)   6 1 0.00 

CH3*(fcc) + *(top) + *(fcc)  →  CH2*(fcc) + *(top) + H*(fcc)   12 1 0.50 

CH2*(fcc) + *(top) + H*(fcc)  →  CH3*(fcc) + *(top) + *(fcc)   12 1 0.50 

CH2*(fcc)  + *(fcc)  →   CH*(fcc)  +   H*(fcc)  3 1 0.50 

CH*(fcc)  +   H*(fcc)   →    CH2*(fcc)  + *(fcc)   3 1 0.50 

CH*(fcc)  + *(top) + *(fcc)  →  C*(fcc) + *(top)  +  H*(fcc) 6 1 0.50 

C*(fcc) + *(top)  +  H*(fcc)  → CH*(fcc)  + *(top) + *(fcc) 6 1 0.50 

*(fcc)  +  H2 (g)  +  *(fcc)  →  H*(fcc)  +  *(top)  +  H*(fcc) 3 2 0.50 

H*(fcc)  +  *(top)  +  H*(fcc)  →   *(fcc)  +   H2 (g)  +  *(fcc)   3 2 0.50 
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Table A22. Effective cluster interaction (ECI) values of pairwise sub-patterns 

Co-adsorbed system ECI-1NN (eV) ECI-2NN (eV) ECI-3NN (eV) 

C-CH3 5.000 0.337 0.171 

C-CH2 5.000 0.270 0.099 

CH-C -0.494 0.275 0.104 

C-C -0.471 0.375 0.242 

C-H 0.653 0.129 0.018 

CH-CH3 5.000 0.312 0.223 

CH-CH2 5.000 0.197 0.109 

CH-CH -0.355 0.261 0.113 

CH-H 0.543 0.063 0.002 

CH2-CH3 5.000 0.356 0.287 

CH2-CH2 -0.366 0.161 0.125 

CH2-H 5.000 0.065 0.014 

H-CH3 0.534 0.089 0.055 

H-H 0.268 0.004 -0.017 

CH3-CH3 5.000 5.000 5.000 

 

Note: The corresponding graph-pattern for every pairwise interaction parameter is depicted in 

Figure A9. 
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Table A23. Effective cluster interaction (ECI) values of the CE parameterised KMC 

model (referred to as “KMC-long-range”) 

Co-adsorbed system ECI-1NN (eV) ECI-2NN (eV) ECI-3NN (eV) 

C-CH3 5.000 0.270 0.104 

C-CH2 5.000 0.203 0.032 

CH-C -0.471 0.171 0.096 

C-C -0.458 0.343 0.219 

C-H 0.586 0.062 -0.050 

CH-CH3 5.000 0.276 0.187 

CH-CH2 5.000 0.162 0.007 

CH-CH -0.314 0.208 0.006 

CH-H 0.508 0.027 -0.034 

CH2-CH3 5.000 0.355 0.286 

CH2-CH2 -0.365 0.161 0.125 

CH2-H 5.000 0.065 0.014 

H-CH3 0.534 0.089 0.055 

H-H 0.268 0.004 -0.016 

CH3-CH3 5.000 5.000 5.000 

ECI parameters of C/CH species (eV) 

Carbon-one-body 2.320 

CH-one-body 1.162 

Carbon-three-body-chain -0.146 

Carbon-three-body-ring -0.313 

Carbon-four-body-square -0.447 

Four-C-branch -0.611 

Three-CH-chain 0.411 

Three-CH-ring -0.065 

Four-CH-semi-ring -0.463 

TwoCH-C-chain1 0.170 

TwoCH-C-chain2 0.227 

TwoCH-oneC-ring1 -0.414 

TwoC-oneCH-ring2 -0.196 

OneCH-twoC-ring3 -0.076 

 

Note: The corresponding graph pattern of CE-fit parameters are illustrated in Figure A10, 

Figure A11 and Figure A12. 
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Conf 15               Conf 25                  Conf 28   

  

              Conf 22          Conf 9        Conf 27            

        

             Conf 23         Conf 26        Conf 8  

        

 

              Conf 144                   Conf 145                          Conf 165  

          
  

Figure A14: Schematics of a few representative/important carbon configurations of the DFT 

dataset (which was used for CE training with a 4×4 KMC lattice). The top and hollow sites are 

represented by circles and triangles, respectively. The sites coloured in red are unoccupied, 

whereas the sites coloured in black are occupied by carbon.  
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Conf 66        Conf 67    Conf 59

  

 Conf 74     Conf 60   Conf 72    

   

Conf 76        Conf 103        Conf 102 

         

               

   Conf 106   Conf 107    Conf 172 

    

 

Figure A15: Schematics of a few representative/important CH and C-CH configurations of the 

DFT dataset (which was used for CE training with a 4×4 KMC lattice). The top and hollow sites 

are represented by circles and triangles, respectively. The sites coloured in red are 

unoccupied, whereas the sites coloured in green and black are occupied by CH and carbon, 

respectively.  
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Table A24. Results of the KMC lattice convergence test performed using KMC-1NN 
model at 800 K, 10.00 bar CH4 (g) and 0.01 bar H2 (g) 

KMC lattice size CH coverage (ML) Carbon coverage (ML) 

5x5  1.25  0.50  

10x10 1.35 0.59 

20x20 1.41 0.57 

30x30 1.41 0.59 

 

Table A25. Free energy and kinetic data of methane cracking reaction steps at 800 K, 

10.00 bar CH4 (g) and 0.01 H2 (g) 

Reaction Δ𝑮𝒇𝒘𝒅
𝒂𝒄𝒕  (eV) Δ𝑮𝒓𝒆𝒗

𝒂𝒄𝒕  (eV) Δ𝑮𝒓𝒙𝒏
𝒆𝒏𝒆𝒓𝒈𝒚

(eV) 𝒌𝒇𝒘𝒅 (s-1) 𝒌𝒓𝒆𝒗 (s
-1) 𝑲𝒆𝒒 (s

-1) 

CH4 direct 
dissociation 

1.11 0.73 0.38 1.69 × 106 4.19 × 108 4.04 × 10-3 

CH3 dissociation 0.51 0.56 -0.05 1.02 × 1010 4.94 × 109 2.07 

CH2 dissociation 0.20 0.57 -0.37 9.15 × 1011 4.27 × 109 2.14 × 102 

CH dissociation 1.12 0.71 0.41 1.46 × 106 5.60 × 108 2.61 × 10-3 

H2 associative 
desorption 

0.91 0.98 -0.07 3.08 × 107 1.12 × 107 2.76 

 

Table A26. Free energy and kinetic data of methane cracking reaction steps at 900 K, 

10.00 bar CH4 (g) and 0.01 H2 (g) 

Reaction Δ𝑮𝒇𝒘𝒅
𝒂𝒄𝒕  (eV) Δ𝑮𝒓𝒆𝒗

𝒂𝒄𝒕  (eV) Δ𝑮𝒓𝒙𝒏
𝒆𝒏𝒆𝒓𝒈𝒚

(eV) 𝒌𝒇𝒘𝒅 (s-1) 𝒌𝒓𝒆𝒗 (s
-1) 𝑲𝒆𝒒 (s

-1) 

CH4 direct 
dissociation 

1.20 0.71 0.49 3.57 × 106 1.98 × 109 1.80 × 10-3 

CH3 dissociation 0.52 0.57 -0.05 2.29 × 1010 1.20 × 1010 1.91 

CH2 dissociation 0.22 0.57 -0.35 1.10 × 1012 1.20 × 1010 9.12 × 101 

CH dissociation 1.12 0.70 0.42 1.00 × 107 2.25 × 109 4.45 × 10-3 

H2 associative 
desorption 

0.87 1.11 -0.24 2.52 × 108 1.14 × 107 2.21 × 101 
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Table A27. Free energy and kinetic data of methane cracking reaction steps at 1000 K, 

10.00 bar CH4 (g) and 0.01 H2 (g) 

Reaction Δ𝑮𝒇𝒘𝒅
𝒂𝒄𝒕  (eV) Δ𝑮𝒓𝒆𝒗

𝒂𝒄𝒕  (eV) Δ𝑮𝒓𝒙𝒏
𝒆𝒏𝒆𝒓𝒈𝒚

(eV) 𝒌𝒇𝒘𝒅 (s-1) 𝒌𝒓𝒆𝒗 (s
-1) 𝑲𝒆𝒒 (s

-1) 

CH4 direct 
dissociation 

1.29 0.69 0.60 6.56 × 106 6.93 × 109 9.46 × 10-4 

CH3 dissociation 0.52 0.57 -0.05 4.98 × 1010 2.79 × 1010 1.79 

CH2 dissociation 0.23 0.57 -0.34 1.44 × 1012 2.79 × 1010 5.17 × 101 

CH dissociation 1.11 0.70 0.41 5.30 × 107 6.17 × 109 8.58 × 10-3 

H2 associative 
desorption 

0.84 1.25 -0.41 1.22 × 109 1.04 × 107 1.17 × 102 

 

Table A28. Free energy and kinetic data of methane cracking reaction steps at 1100 K, 

10.00 bar CH4 (g) and 0.01 H2 (g) 

Reaction Δ𝑮𝒇𝒘𝒅
𝒂𝒄𝒕  (eV) Δ𝑮𝒓𝒆𝒗

𝒂𝒄𝒕  (eV) Δ𝑮𝒓𝒙𝒏
𝒆𝒏𝒆𝒓𝒈𝒚

(eV) 𝒌𝒇𝒘𝒅 (s-1) 𝒌𝒓𝒆𝒗 (s
-1) 𝑲𝒆𝒒 (s

-1) 

CH4 direct 
dissociation 

1.38 0.67 0.71 1.09 × 107 1.95 × 1010 5.58 × 10-4 

CH3 dissociation 0.52 0.57 -0.05 9.49 × 1010 5.60 × 1010 1.69 

CH2 dissociation 0.24 0.58 -0.34 1.82 × 1012 5.04 × 1010 3.61 × 101 

CH dissociation 1.11 0.69 0.42 1.88 × 108 1.58 × 1010 1.19 × 10-2 

H2 associative 
desorption 

0.81 1.39 -0.58 4.45 × 109 9.80 × 106 4.54 × 102 

 

Table A29. Free energy and kinetic data of methane cracking reaction steps at 1200 K, 

10.00 bar CH4 (g) and 0.01 H2 (g) 

Reaction Δ𝑮𝒇𝒘𝒅
𝒂𝒄𝒕  (eV) Δ𝑮𝒓𝒆𝒗

𝒂𝒄𝒕  (eV) Δ𝑮𝒓𝒙𝒏
𝒆𝒏𝒆𝒓𝒈𝒚

(eV) 𝒌𝒇𝒘𝒅 (s-1) 𝒌𝒓𝒆𝒗 (s
-1) 𝑲𝒆𝒒 (s

-1) 

CH4 direct 
dissociation 

1.47 0.65 0.82 1.67 × 107 4.65 × 1010 3.60 × 10-4 

CH3 dissociation 0.52 0.57 -0.05 1.64 × 1011 1.01 × 1011 1.62 

CH2 dissociation 0.25 0.58 -0.33 2.23 × 1012 9.15 × 1010 2.43 × 101 

CH dissociation 1.11 0.69 0.42 5.44 × 108 3.16 × 1010 1.72 × 10-2 

H2 associative 
desorption 

0.78 1.53 -0.75 1.32 × 1010 9.37 × 106 1.41 × 103 
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Table A30: The replica runs of KMC-1NN system at 1000 K, 10.00 bar CH4(g) and 0.01 
H2(g) 

KMC runs CH coverage (ML) Carbon coverage (ML) 

Random seed 1 1.0581 0.8819 

Random seed 2 1.0603 0.8797 

Random seed 3 1.0305 0.9095 

Random seed 4 0.9879 0.9521 

Random seed 5 1.0593 0.8807 

Average values 
1.0392 

(±0.0313) 
0.9008 

(±0.0313) 
 

  Note: The value provided in the parenthesis is the KMC population standard deviation (also           

 called as the “KMC standard error”)  

 

Table A31. The replica runs of KMC-long-range system at 1000 K, 10.00 bar CH4(g) and 
0.01 H2(g) 

KMC runs CH coverage (ML) Carbon coverage (ML) 

Random seed 1 0.5595 0.8217 

Random seed 2 0.5583 0.8802 

Random seed 3 0.5748 0.7632 

Random seed 4 0.5566 0.9056 

Random seed 5 0.5100 0.7961 

Average values 
0.5518  

(±0.0084) 
0.8333 

(±0.0589) 
 

  Note: The value provided in the parenthesis is the KMC standard error.  

As shown in Table A30 and Table A31, the standard errors of the KMC-1NN and KMC-long-

range models are very low.  
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Appendix III  

 

Table A32. The adsorption energies of MSR species on Ni(111) and K-Ni(111)   

Species 
Preferred 

binding site 
– Ni(111) 

Preferred 
binding site 
– K-Ni(111) 

Binding 
energies 

Ni(111) (eV) 

Binding 
energies 

K-Ni(111) (eV) 

Literature 
values – 
Ni(111) 

Literature 
values –  
K-Ni(111) 

CH3* fcc fcc -2.32 -2.19 -1.89 -1.59 

CH2* fcc fcc -4.33 -4.25 -4.03 -3.90 

CH* fcc fcc -6.58 -6.55 -6.41 -6.38 

C* hcp hcp -7.01 -7.13 -6.89 -7.06 

H* fcc hcp -2.93 -2.93 -2.80 -2.81 

H2O* top top -0.53 -0.87 -0.27 -0.68 

OH* fcc bridge -3.61 -3.64 -3.27 -3.24 

O* fcc fcc -5.81 -6.07 -5.39 -5.65 

CHOH* fcc fcc -3.42 -3.49 -3.88 -4.00 

CHO* hcp hcp -2.55 -2.79 -2.27 -2.49 

COH* hcp hcp -4.65 -4.73 -4.39 -4.44 

CO* hcp hcp -2.12 -2.46 -1.93 -2.35 
 

Note: The literature values (reported above) have been obtained from the work of Zhou and   

Liu.176 The authors used the following computational setup: 1) p(3×3) unit cell, 2) PBE 

functional, 3) 4×4×1 Monkhorst-Pack k-point grid and 4) Kinetic energy cut-off value –  385 

eV.  
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Table A33. Comparison of MSR activation barriers with literature values 

 

Note: The values shown in parenthesis are the reverse activation barriers. The computational setup of 

Blaylock et al.6 is as follows: 1) p(2×2) periodic cell, 2) RPBE functional, 3) 6×6×1 Monkhorst-Pack k-point 

grid and 4) Plane wave energy cut-off value – 340 eV. Bengaard et al.17 employed a p(2x2) unit cell, RPBE 

functional, Chadi-Cohen k-point set and kinetic energy cut-off value of 340 eV. The computational details 

of Zhou and Liu176 work have been provided as a “Note” under Table A32.

Event ID: Reaction 
𝐸𝑎𝑐𝑡 (eV) 

Ni(111) 

𝐸𝑎𝑐𝑡 (eV) 

K-Ni(111) 

Ni(111) literature 

values (eV) 

K- Ni(111) literature 

values (eV) 

R1:  CH4(g)  +  2*  ↔  CH3*  +  H* 0.41 (0.94) 0.56 (0.96) 
1.29 (0.59)6, 
1.05 (0.52)17 

1.2617 

R2:  CH3*  +  *  ↔  CH2*  +  H* 0.66 (0.64) 0.69 (0.72) 0.76 (0.64)6 Not available 

R3:  CH2*  +  *  ↔  CH*  +  H* 0.26 (0.63) 0.25 (0.67) 0.34 (0.67)6 Not available 

R4:  CH*  +  *  ↔  C*  +  H* 1.31 (0.84) 1.21 (0.90) 1.48 (0.84)6 Not available 

R5:  2H*  →  H2(g)  +  2* 1.33 (0.00) 1.33 (0.00) 1.08 (0.01)176 1.10 (0.00)176 

R6:  H2O(g)  +  *  ↔  H2O* 0.00 (0.54) 0.00 (0.87) 
0.00 (0.27)176,                              
0.00 (0.02)6 

0.00 (0.68)176 

R7:  H2O*  +  *  ↔  OH*  +  H* 0.89 (1.32) 0.79 (0.91) 
0.86 (1.27)176, 
0.97 (1.06)6 

0.81 (0.80)176 

R8:  OH*  +  *  ↔  O*  +  H* 0.98 (1.21) 0.76 (1.24) 
0.98 (1.17)176, 
0.99 (1.22)6 

0.70 (1.21)176 

R9:  CH*  +  OH*  ↔  CHOH*  +  * 1.45 (0.80) 1.15 (0.58) 
1.45 (0.72)176, 
1.27 (0.77)6 

1.17 (0.61)176 

R10:  CHOH*  +  *  ↔  CHO*  +  H* 0.75 (1.17) 0.57 (1.15) 
0.71 (1.14)176, 
0.82 (1.31)6 

0.58 (1.05)176 

R11:  CHOH*  +  *   ↔  COH*  +  H* 0.12 (0.81) 0.16 (0.86) 
0.10 (0.83)176, 
0.13 (0.87)6 

0.22 (0.89)176 

R12:  CH*  +  O* ↔  CHO*  +  * 1.51 (1.05) 1.53 (1.08) 
1.54 (1.04)176, 
1.56 (1.32)6 

1.52 (0.94)176 

R13:  C*  +  OH* ↔  COH*  +  * 1.41 (1.91) 1.01 (1.46) 
1.06 (1.49)176, 
1.30 (2.18)6 

1.06 (1.49)176 

R14:  CHO*  +  *  ↔  CO*  +  H* 0.19 (1.51) 0.14 (1.57) 
0.05 (1.61)176, 
0.24 (1.36)6 

0.05 (1.61)176 

R15:  COH*  +  * ↔  CO*  +  H* 0.91 (1.97) 0.78 (2.10) 
0.72 (2.09)176, 
1.02 (1.90)6 

0.72 (2.09)176 

R16:  C*  +  O* ↔  CO*  +  * 2.28 (3.61) 1.61 (2.90) 
1.60 (2.88)176, 
2.15 (3.67)6 

1.55 (2.85)176 

R17:  CO*  →  CO(g)  +  * 2.12 (0.00) 2.46 (0.00) 
1.90 (0.00)176, 
1.53 (0.00)6 

2.35 (0.00)176 

R18:  CO*  +  O*  →  CO2(g)  +  2* 1.62 (0.36) 1.87 (0.00) 
1.57 (0.60)176, 
1.54 (1.22)6 

1.61 (0.50)176 
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Figure A16: The DFT schematics of potassium-modified Ni(111) systems: a) System 1 - Potassium deposited 

on Ni(111) (top view), b) System 1 - Potassium deposited on Ni(111) (side view), c) System 2 - Potassium as a 

substitutional alloy (top view) and d) System 2 - Potassium as a substitutional alloy (side view).  

Table A34. The formation energies of the two different potassium-modified Ni(111) systems 

System name  
Total DFT energy 

(eV)  
Ni bulk DFT energy 

(eV)  
Potassium gas-phase 

DFT energy (eV) 
Formation 

energy (eV) 

System 1  -548.30  -573.07  -0.08 24.85 

System 2  -541.43  -567.10 -0.08 25.74 
 

Note: The Ni bulk DFT energy is -5.97 eV/atom. There are 96 Ni atoms in system 1, the total Ni bulk energy is estimated 

as Ni𝑏𝑢𝑙𝑘
𝑠𝑦𝑠𝑡𝑒𝑚 1

= 96 × −5.97 =  −573.07. Whereas system 2 consists of 95 Ni atoms, the total Ni bulk energy is calculated 

as Ni𝑏𝑢𝑙𝑘
𝑠𝑦𝑠𝑡𝑒𝑚 2

= 95 × −5.97 =  −567.10. 

The potassium can adsorb/bind at several locations on the Ni catalyst surface. We have compared the stabilities 

of potassium in two different systems: System 1 - Potassium deposited on the Ni(111) facet and System 2 - 

Potassium as a substitutional alloy. In Figure A16, the DFT configurations of these two systems (top and side 

views) are illustrated. The formation energies of these two systems have been estimated with reference to Ni 

bulk and potassium gas-phase energies (by accounting for the stoichiometry). It is evident from Table A34 that 

the formation energy of system 1 (Potassium deposited on Ni(111)) is lower than system 2 (Potassium as a 

substitutional alloy). This indicates that the potassium has higher stability in system 1. Therefore, in the current 

study, we have used system 1 as a model to understand the potassium effect on MSR kinetics.



164 

 

 

a)         b)               c) 

         

  d)        e)                 f) 

                 

   g)          h)        i) 

Figure A17: The transition states of MSR elementary events on the K-Ni(111) system: a) CH4 dissociation, 

b) CH3 dissociation, c) CH2 dissociation, d) CH dissociation, e) H2O dissociation, f) OH dissociation, g) 

CHOH formation, h) CHOH dissociation to form CHO and i) CHOH dissociation to form COH. The 

schematics have the following colour convention: 1) blue atoms – Ni, 2) Grey atoms – carbon, 3) White 

atoms – hydrogen, 4) Red atoms – oxygen. 
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a)                 b) 

         

c)       d) 

          

e)      f) 

Figure A18: Pictorial representation of MSR transition states on the K-Ni(111) surface: a) CHO 

formation, b) COH formation, c) CHO dissociation, d) COH dissociation, e) CO formation and 

f) CO oxidation to CO2 (g). The schematics have the following colour convention: 1) blue atoms 

– Ni, 2) Grey atoms – carbon, 3) White atoms – hydrogen, 4) Red atoms – oxygen. 
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Table A35. The vibrational wavenumbers of Initial states on Ni(111) 

System Vibrational wavenumbers (cm-1)  

CH3* 
2829.82, 2827.38, 2762.97, 1283.70, 1283.58, 1164.88, 479.00, 478.52, 
399.65, 360.89, 224.68, 224.37 

CH2* 
3011.95, 2345.88, 1432.71, 663.32, 591.08, 532.50, 360.08, 310.92, 
281.66 

CH* 3034.74, 653.72, 653.31, 629.43, 418.55, 418.40 

C* 578.52, 541.49, 541.48 

H* 1153.17, 865.69, 864.85 

H2O* 3650.49, 3545.34, 1537.00, 493.15, 481.94, 210.73, 116.24, 90.89, 41.28 

OH* 3705.76, 481.28, 480.56, 411.52, 263.77, 263.22 

O* 498.55, 389.71, 389.70 

CHOH* 
3526.63, 2142.43, 1562.24, 1216.68, 1108.95, 660.46, 453.32, 395.98, 
291.25, 286.65, 116.80, 104.46 

CHO* 
2907.28, 1277.83, 1163.23, 621.57, 487.55, 324.75, 252.05, 164.28, 
148.66 

COH* 
3589.47, 1272.10, 1087.30, 445.46, 416.20, 398.87, 153.83, 150.35, 
65.96 

CO* 1769.07, 350.80, 284.52, 284.30, 143.49, 143.20 
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Table A36. The vibrational wavenumbers of Transition states on Ni(111) 

System Vibrational wavenumbers (cm-1)  

Event R1 
3106.68, 3067.01, 2961.02, 1557.96, 1389.54, 1370.72, 1137.45, 
841.12, 724.05, 387.74, 377.13, 135.77, 92.29, 38.37, 894.84i 

Event R2 
3009.96, 2516.37, 1852.78, 1368.65, 862.75, 708.71, 537.77, 448.48, 
324.80, 267.90, 128.46, 858.09i 

Event R3 
3057.10, 1211.03, 889.96, 675.15, 609.68, 465.91, 414.12, 360.79, 
562.25i 

Event R4 1860.65, 561.77, 523.53, 517.73, 123.78, 812.22i 

Event R7 
3622.61, 810.48, 752.21, 671.10, 423.32, 394.36, 136.18, 100.36, 
820.40i 

Event R8 1077.62, 468.15, 455.31, 290.31, 276.94, 1194.70i 

Event R9 
3611.34, 3055.65, 943.39, 806.06, 593.95, 534.24, 524.69, 429.26, 
406.25, 243.63, 92.07, 274.67i 

Event R10 
2876.95, 1270.01, 1183.08, 1026.83, 684.26, 554.19, 438.43, 285.49, 
240.05, 153.39, 49.72, 1247.13i 

Event R11 
3582.18, 2012.75, 1236.01, 1141.19, 553.68, 439.59, 403.02, 322.86, 
227.73, 207.78, 123.58, 633.01i 

Event R12 
3066.32, 914.10, 675.62, 573.85, 477.81, 417.07, 356.11, 181.75, 
502.73i 

Event R13 
3635.34, 756.91, 574.97, 526.04, 450.30, 408.20, 376.07, 60.84, 
229.24i 

Event R14 
2442.53, 1395.54, 1049.96, 527.08, 327.88, 273.13, 166.85, 139.32, 
312.21i 

Event R15 
1466.36, 1171.89, 496.29, 437.51, 346.31, 314.56, 187.83, 104.21, 
1524.23i 

Event R16 558.67, 510.05, 417.28, 346.94, 83.72, 534.24i 

Event R18 1917.23, 574.92, 395.21, 392.37, 339.64, 252.86, 73.10, 45.11, 433.84i 
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Table A37. The vibrational wavenumbers of Initial states on K-Ni(111) 

System Vibrational wavenumbers (cm-1)  

CH3*  
2825.86, 2823.92, 2757.49, 1291.88, 1291.17, 1144.04, 493.45, 489.02, 
399.33, 346.13, 215.92, 214.91 

CH2* 
2977.52, 2365.15, 1420.11, 666.30, 568.93, 513.81, 377.97, 310.70, 
285.28 

CH* 2977.92, 668.00, 633.05, 624.37, 425.29, 414.45 

C* 572.07, 529.92, 514.27 

H* 1147.49, 852.41, 825.15 

H2O* 
3519.68, 3479.24, 1577.90, 484.15, 365.12, 243.25, 139.36, 127.12, 
18.84 

OH* 3593.07, 697.35, 549.92, 337.70, 202.50, 195.87 

O* 473.34, 373.72, 351.32 

CHOH* 
3421.81, 2396.93, 1432.90, 1189.80, 957.35, 676.13, 504.84, 443.63, 

327.73, 269.82, 145.53, 89.60 

CHO* 
2867.76, 1216.03, 1177.22, 590.33, 485.77, 289.29, 269.76, 197.47, 
159.32 

COH* 
3595.05, 1174.53, 1069.70, 474.06, 442.53, 395.13, 184.38, 168.82, 
89.77 

CO* 1628.71, 373.93, 345.54, 337.69, 185.64, 153.38 
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Table A38. The vibrational wavenumbers of Transition states of MSR reaction on K- 

Ni(111) 

System Vibrational wavenumbers (cm-1)  

Event R1 
3080.09, 3046.63, 2948.71, 1587.58, 1391.36, 1375.08, 1109.89, 
832.58, 715.94, 377.33, 336.20, 136.82, 108.66, 94.15, 940.91i 

Event R2 
2991.41, 2508.20, 1784.59, 1372.26, 852.78, 717.45, 532.42, 453.22, 
320.80, 247.95, 114.08, 918.96i 

Event R3 
3031.84, 1211.51, 891.76, 669.08, 605.30, 484.13, 409.81, 360.38, 
543.24i 

Event R4 1829.99, 544.63, 513.93, 484.07, 168.36, 807.37i 

Event R7 
3619.40, 866.37, 820.51, 593.52, 380.91, 269.38, 225.53, 154.22, 
998.75i 

Event R8 1072.28, 512.07, 424.29, 267.48, 248.09, 1197.89i 

Event R9 
3621.51, 3025.16, 994.68, 842.29, 561.19, 524.56, 504.42, 437.46, 
290.74, 198.26, 153.33, 278.12i 

Event R10 
2880.13, 1211.68, 1166.09, 994.56, 690.75, 587.57, 485.21, 300.90, 
271.27, 183.55, 93.70, 1325.01i 

Event R11 
3553.58, 1985.75, 1209.85, 1046.26, 551.88, 462.75, 420.85, 376.80, 
265.85, 203.19, 155.87, 663.03i 

Event R12 
3036.61, 910.25, 659.99, 571.38, 443.79, 402.58, 317.42, 228.97, 
442.94i 

Event R13 
3670.28, 747.49, 590.06, 528.74, 442.86, 408.28, 267.77, 199.16, 
168.96i 

Event R14 
2535.83, 1315.44, 1089.83, 498.53, 343.09, 257.66, 175.32, 142.37, 
339.16i 

Event R15 
1358.88, 1145.91, 545.87, 453.98, 374.29, 364.51, 196.94, 153.45, 
1554.67i 

Event R16 557.96, 473.74, 434.08, 328.45, 296.60, 422.93i 

Event R18 1815.58, 548.99, 406.33, 374.96, 346.85, 280.61, 93.62, 51.07, 401.66i 
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Figure A19: The KMC lattice snapshots of the K-Ni(111) systems with varying potassium loadings: a) K-Ni(111)-0.7%, b) K-Ni(111)-1.4%, c) K-Ni(111)-2.1% and d) K-

Ni(111)-2.8%. The KMC lattice has been colour coded as follows: 1) Circular Sites in blue represent Ni, 2) Purple square sites indicate potassium (inactive) and 3) 

Potassium-modified sites are the orange-coloured triangles. The MSR reaction is occurring on the Ni and potassium-modified sites.
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Table A39. KMC lattice convergence test of the Ni(111) system at 1073 K, 10.00 bar 

CH4 (g) and 0.01 bar H2 (g) (H2O-CH4 ratio is maintained at 2:1) 

 

Table A40. Comparison between KMC predictions and experimental results at 873 K 

CH4 (g) pressure (bar) H2O (g) pressure (bar) 
KMC predicted rates 

(mol g-1 s-1) 
Experimental rates  

(mol g-1 s-1) 

1.4 1.0 0.017 20.000 

1.6 1.0 0.019 23.000 

2 2.0 0.063 34.000 

2.5 2.0 0.047 39.000 

3 3.0 0.071 50.000 

3.5 3.0 0.117 63.000 
  

Note: The experimental rates have been obtained from the work of Wei and Iglesia.14 Appropriate unit 

conversions have been made to the KMC predicted rates in order to make a reliable comparison to the 

experimental data. 

As shown in Table A40, the KMC predicted rates on Ni(111) are around 500-1000 times slower 

than the experimental rates. This is an expected outcome as the experimental work of Wei 

and Iglesia14 has been carried out on Ni/MgO catalyst. The KMC model developed in this study 

does not take into account the undercoordinated surfaces of Ni (step edge and flat). 

Furthermore, the effect of metal support interaction is also neglected in the KMC simulation. 

Thus, we find a substantial disparity in the KMC and experimental rates. In the literature, the 

MSR rates predicted using MK models (on the Ni(111) facet) also report a similar disagreement 

with experimental results.6 As part of future studies, a multifaceted KMC model can be 

developed for MSR on Ni to obtain better agreement with experimental rates.  

KMC lattice size CH coverage (ML) Carbon coverage (ML) 
Turnover rate 

(molecules sites-1 s-1) 

25×25 0.20 0.10 2.65 × 104 

30×30 0.19 0.09 3.21 × 104 

35×35 0.19 0.10 2.87 × 104 

40×40 0.20 0.10 2.54 × 104 
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Table A41. Effective cluster interaction (ECI) values of pairwise sub-patterns on Ni(111) 

and K-Ni(111) 

Co-adsorbed system ECI value Ni(111) ECI value K-Ni(111) 

CH-CH3 0.31 0.31 

CH-CH2 0.20 0.19 

CH-CH 0.26 0.21  

CH-C 0.28 0.31 

CH-O 0.27 0.29 

CH-OH 0.29 0.16 

CH-H 0.06 0.07 

CH-CHO 0.18 0.12 

CH-COH 0.16 0.19 

CH-CO 0.14 0.15 

CH-H2O 0.02 0.01 

C-CH3 0.34 0.31 

C-CH2 0.27 0.26 

C-C 0.38 0.46 

C-OH 0.32 0.24 

C-O 0.34 0.41 

C-H 0.13 0.13 

C-CHO 0.20 0.29 

C-COH 0.21 0.27 

C-H2O 0.06  -0.006 

C-CO 0.25 0.25 

H-CH3 0.08 0.09 

H-CH2 0.07 0.06 

H-OH 0.10 0.04 

H-O 0.12 0.11 

H-H   0.003 -0.009 

H-CO 0.03 0.01 

H-CHO 0.01 -0.01 

H-COH 0.06 0.03 

O-CH3 5.00 5.00 

O-CH2 0.23 0.25 

O-COH 0.12 0.31 

O-CO 0.33 0.28 

O-O 0.36 0.41 

O-OH 0.23 0.21 

O-CHO 0.22 5.00 

C-CHOH 0.19 0.19 

CH-CHOH 0.17 0.01 

O-CHOH 0.26 0.23 
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a)                                   b) 

           

   c)                                    d) 

             

  e)                                    f) 

Figure A20: The DFT configurations of co-adsorbed (pairwise) species on the K-Ni(111) 

system: a) C-CH pair, b) C-CHO pair, c) C-C pair, d) C-OH pair, e) C-H pair and f) CH-CH 

pair. The schematics have the following colour convention: 1) blue atoms – Ni, 2) Purple atoms 

– K, 3) Grey atoms – carbon, 4) White atoms – hydrogen, 5) Red atoms – oxygen.  
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Table A42. The partial equilibrium (PE) ratios of MSR events on the Ni(111) and K-

Ni(111)-2.8% systems at 1273 K and 10.00 bar (H2O-CH4 ratio is maintained at 2:1) 

 

 

 

 

 

Event ID: elementary step 
PE ratio – pure 

Ni(111) 

PE ratio – Ni sites 

K-Ni(111)-2.8% 

PE ratio – K sites 

K-Ni(111)-2.8% 

R1:  CH4(g)  +  2*  ↔  CH3*  +  H* 0.87 0.85 0.86 

R2:  CH3*  +  *  ↔  CH2*  +  H* 0.56 0.60 0.56 

R3:  CH2*  +  *  ↔  CH*  +  H* 0.50 0.50 0.50 

R4:  CH*  +  *  ↔  C*  +  H* 0.50 0.50 0.50 

R5:  2H*  →  H2(g)  +  2* 1.00 1.00 1.00 

R6:  H2O(g)  +  *  ↔  H2O* 0.50 0.50 0.50 

R7:  H2O*  +  *  ↔  OH*  +  H* 0.92 0.91 0.63 

R8:  OH*  +  *  ↔  O*  +  H* 0.59 0.53 0.53 

R9:  CH*  +  OH*  ↔  CHOH*  +  * 1.00 1.00 1.00 

R10:  CHOH*  +  *  ↔  CHO*  +  H* Not defined Not defined 1.00 

R11:  CHOH*  +  *   ↔  COH*  +  H* 0.96 0.84 0.90 

R12:  CH*  +  O* ↔  CHO*  +  * 1.00 1.00 1.00 

R13:  C*  +  OH* ↔  COH*  +  * 1.00 1.00 1.00 

R14:  CHO*  +  *  ↔  CO*  +  H* 1.00 1.00 1.00 

R15:  COH*  +  * ↔  CO*  +  H* 1.00 1.00 1.00 

R16:  C*  +  O* ↔  CO*  +  * 1.00 1.00 1.00 

R17:  CO*  →  CO(g)  +  * 1.00 1.00 1.00 

R18:  CO*  +  O*  →  CO2(g)  +  2* 1.00 1.00 1.00 
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Table A43. The forward/reverse pre-exponential values of MSR events on the K-Ni(111)-

2.8% system at 1273 K and 10.00 bar (H2O-CH4 ratio is maintained at 2:1) 

 

 

Event ID: elementary step 

Pre-exp fwd (s-1) 

Ni sites  

K- Ni(111) 

Pre-exp rev (s-1) 

Ni sites  

K- Ni(111) 

Pre-exp fwd (s-1) 

K sites  

K- Ni(111) 

Pre-exp rev (s-1) 

K sites  

K- Ni(111) 

R1:  CH4(g)  +  2*  ↔  CH3*  +  H* 2.60 × 108 3.57 × 1014 1.09 × 108 1.28 × 1014 

R2:  CH3*  +  *  ↔  CH2*  +  H* 9.22 × 1013 5.00 × 1013 1.11 × 1014 5.92 × 1013 

R3:  CH2*  +  *  ↔  CH*  +  H* 2.73 × 1013 4.07 × 1013 2.66 × 1013 3.62 × 1013 

R4:  CH*  +  *  ↔  C*  +  H* 1.67 × 1014 1.22 × 1014 1.35 × 1014 8.81 × 1013 

R5:  2H*  →  H2(g)  +  2* 5.14 × 1015 0.00 4.44 × 1015 0.00 

R6:  H2O(g)  +  *  ↔  H2O* 1.94 × 108 4.85 × 1013 1.94 × 109 2.92 × 1014 

R7:  H2O*  +  *  ↔  OH*  +  H* 7.37 × 1012 2.09 × 1014 2.75 × 1012 8.86 × 1013 

R8:  OH*  +  *  ↔  O*  +  H* 7.21 × 1013 1.16 × 1014 6.34 × 1013 1.05 × 1014 

R9:  CH*  +  OH*  ↔  CHOH*  +  * 1.91 × 1013 9.76 × 1012 1.40 × 1013 1.22 × 1013 

R10:  CHOH*  +  *  ↔  CHO*  +  H* 2.38 × 1014 1.91 × 1014 9.94 × 1013 6.68 × 1013 

R11:  CHOH*  +  *   ↔  COH*  +  H* 3.51 × 1013 7.15 × 1012 2.67 × 1013 7.80 × 1012 

R12:  CH*  +  O* ↔  CHO*  +  * 2.29 × 1013 5.84 × 1012 1.88 × 1013 6.64 × 1012 

R13:  C*  +  OH* ↔  COH*  +  * 3.64 × 1013 5.16 × 1012 1.03 × 1013 4.02 × 1012 

R14:  CHO*  +  *  ↔  CO*  +  H* 2.28 × 1013 5.80 × 1012 2.39 × 1013 1.01 × 1013 

R15:  COH*  +  * ↔  CO*  +  H* 3.72 × 1013 3.73 × 1013 3.48 × 1013 3.38 × 1013 

R16:  C*  +  O* ↔  CO*  +  * 1.15 × 1014 1.02 × 1013 2.66 × 1013 6.07 × 1012 

R17:  CO*  →  CO(g)  +  * 2.07 × 1016 0.00 4.00 × 1016 0.00 

R18:  CO*  +  O*  →  CO2(g)  +  2* 4.72 × 1013 0.00 5.19 × 1013 0.00 
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A 3.1 Flux analysis for a typical reaction  

The flux analysis for a generic reaction network. The symbol r (in Figure A21) is the net 

occurrence rate of an elementary step.  

 

Figure A21: The reaction network for the formation product I(g) from A(g). The above reaction 

has been used as a generic example to explain the flux analysis method.  

Upon reaching the steady state, the rate of coverage change of all intermediate species is 

zero. 𝜃 represents the fractional coverage of species (it is normalised with respect to the total 

number of sites).  

𝑑𝜃𝐵

𝑑𝑡
  = 𝑟1 − 𝑟2 = 0 eqA. 1 

𝑑𝜃𝐶

𝑑𝑡
  = 𝑟3 + 𝑟6 + 𝑟8 − 𝑟2 = 0 eqA. 2 

𝑑𝜃𝐷

𝑑𝑡
  = 𝑟4 − 𝑟3 = 0 eqA. 3 

𝑑𝜃𝐸

𝑑𝑡
  = 𝑟5 − 𝑟4  −  𝑟7 = 0 eqA. 4 

𝑑𝜃𝐹

𝑑𝑡
  = 𝑟7 − 𝑟6 = 0 eqA. 5 

𝑑𝜃𝐺

𝑑𝑡
  = 𝑟9 − 𝑟8 = 0 eqA. 6 

𝑑𝜃𝐻

𝑑𝑡
  = 𝑟10 − 𝑟9 = 0 eqA. 7 

𝑑𝜃𝐼

𝑑𝑡
  = 𝑟11 − 𝑟5  − 𝑟10 = 0 eqA. 8 

The following equations are derived from the above conditions: 

𝑟1 = 𝑟2  
eqA. 9 

𝑟2 = 𝑟3 + 𝑟6  +  𝑟8 
eqA. 10 

𝑟3 = 𝑟4 
eqA. 11 

𝑟2 = 𝑟3 + 𝑟6  +  𝑟8 
eqA. 12 
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𝑟3 = 𝑟4 
eqA. 13 

𝑟5 = 𝑟4 + 𝑟7 
eqA. 14 

𝑟6 = 𝑟7 
eqA. 15 

𝑟8 = 𝑟9 
eqA. 16 

𝑟9 = 𝑟10 
eqA. 17 

𝑟11 = 𝑟5 + 𝑟10 
eqA. 18 

In the current reaction network, there are three pathways to form the species I (which are 

shown below): 

 

Figure A22: Pictorial representation of the different pathways of a generic reaction network. 

The overall flux to form species I is given by the following relationship: 

𝑟𝑡𝑜𝑡𝑎𝑙 = 𝑟11 = 𝑟5 + 𝑟10 
eqA. 19 

The flux contribution of pathway 1 to the overall rate to form species I is estimated as follows:  

𝑟3 = 𝑟4 = 𝑟𝑝𝑎𝑡ℎ𝑤𝑎𝑦1 
eqA. 20 

𝐹𝑙𝑢𝑥𝑝𝑎𝑡ℎ𝑤𝑎𝑦1 (%) =  
𝑟𝑝𝑎𝑡ℎ𝑤𝑎𝑦1 × 100

𝑟𝑡𝑜𝑡𝑎𝑙
 =  

𝑟3  × 100

 𝑟5  +  𝑟10
 =  

𝑟4  × 100

 𝑟5  +  𝑟10
 eqA. 21 

The flux contribution of pathway 2 to the overall rate to form species I is computed as 

follows:  

𝑟6 = 𝑟7 = 𝑟𝑝𝑎𝑡ℎ𝑤𝑎𝑦2 
eqA. 22 

𝐹𝑙𝑢𝑥𝑝𝑎𝑡ℎ𝑤𝑎𝑦2 (%) =  
𝑟𝑝𝑎𝑡ℎ𝑤𝑎𝑦2 × 100

𝑟𝑡𝑜𝑡𝑎𝑙
 =  

𝑟6  × 100

 𝑟5  +  𝑟10
 =  

𝑟7  × 100

 𝑟5  +  𝑟10
 eqA. 23 

The flux contribution of pathway 3 to the overall rate to form species I is calculated as follows:  

𝑟8 = 𝑟9 = 𝑟10 =  𝑟𝑝𝑎𝑡ℎ𝑤𝑎𝑦3 
eqA. 24 

𝐹𝑙𝑢𝑥𝑝𝑎𝑡ℎ𝑤𝑎𝑦3 (%) =  
𝑟𝑝𝑎𝑡ℎ𝑤𝑎𝑦3 × 100

𝑟𝑡𝑜𝑡𝑎𝑙
 =  

𝑟8  × 100

 𝑟5  + 𝑟10
 =  

𝑟9  × 100

 𝑟5  + 𝑟10
 =  

𝑟10  × 100

 𝑟5  + 𝑟10
 eqA. 25 
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A 3.2 Flux analysis of MSR reaction on Ni(111) 

In Chapter 5, the flow diagram and event IDs of MSR have been depicted in Figure 20 and 

Table 8, respectively. At steady-state conditions, the rate of coverage change of all MSR 

intermediates is zero. The symbol 𝑟 (in equations below) indicates the overall occurrence rate 

of an elementary event. The suffix of symbol 𝑟 has been numbered based on the event ID of 

MSR steps (as shown in Table 8 of Chapter 5). The diffusion events are assumed to be quasi-

equilibrated. Thus, the net occurrence rates of all diffusions are zero. 𝜃 represents the 

fractional coverage of species (it is normalised with respect to total number of sites of the KMC 

lattice). 

𝑑𝜃𝑓𝑐𝑐

𝑑𝑡
= −2𝑟1 − 𝑟2 − 𝑟3 − 𝑟4 +  2𝑟5 − 𝑟6 − 𝑟7 − 𝑟8 + 𝑟9 − 𝑟10  − 𝑟11 + 𝑟12 + 𝑟13

− 𝑟14 − 𝑟15 + 𝑟16  +  𝑟17 +  2𝑟18 = 0 

eqA. 26 

𝑑𝜃𝐶𝐻3
𝑑𝑡

= 𝑟1 − 𝑟2 = 0 
eqA. 27 

𝑑𝜃𝐶𝐻2
𝑑𝑡

= 𝑟2 − 𝑟3 = 0 
eqA. 28 

𝑑𝜃𝐶𝐻
𝑑𝑡

= 𝑟3 − 𝑟4  − 𝑟9  − 𝑟12 = 0 
eqA. 29 

𝑑𝜃𝐶
𝑑𝑡

= 𝑟4 − 𝑟13  − 𝑟16  = 0 
eqA. 30 

𝑑𝜃𝐻
𝑑𝑡

= 𝑟1 + 𝑟2  +  𝑟3 + 𝑟4 −  2𝑟5  +  𝑟7  + 𝑟8  +  𝑟10 + 𝑟11 + 𝑟14  + 𝑟15 = 0 
eqA. 31 

𝑑𝜃𝐻2𝑂
𝑑𝑡

= 𝑟6 − 𝑟7  = 0 
eqA. 32 

𝑑𝜃𝑂𝐻
𝑑𝑡

= 𝑟7 − 𝑟8  − 𝑟9  − 𝑟13 = 0 
eqA. 33 

𝑑𝜃𝑂
𝑑𝑡

= 𝑟8 − 𝑟12  − 𝑟16 − 𝑟18 = 0 
eqA. 34 

𝑑𝜃𝐶𝐻𝑂𝐻
𝑑𝑡

= 𝑟9 − 𝑟10  − 𝑟11 = 0 
eqA. 35 

𝑑𝜃𝐶𝐻𝑂
𝑑𝑡

= 𝑟10 + 𝑟12  − 𝑟14 = 0 
eqA. 36 

𝑑𝜃𝐶𝑂𝐻
𝑑𝑡

= 𝑟11 + 𝑟13  − 𝑟15 = 0 
eqA. 37 

𝑑𝜃𝐶𝑂
𝑑𝑡

= 𝑟14 + 𝑟15  +  𝑟16 − 𝑟17 − 𝑟18 = 0 
eqA. 38 
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From the above differential equations, the following relationships exist at steady state: 

𝑟1 = 𝑟2 
eqA. 39 

𝑟2 = 𝑟3 
eqA. 40 

𝑟3 = 𝑟4 + 𝑟9 +  𝑟12 
eqA. 41 

𝑟4 = 𝑟13 + 𝑟16  
eqA. 42 

𝑟6 = 𝑟7 
eqA. 43 

𝑟7 = 𝑟8 + 𝑟9 + 𝑟13 
eqA. 44 

𝑟8 = 𝑟12 + 𝑟16 + 𝑟18 
eqA. 45 

𝑟9 = 𝑟10 + 𝑟11 
eqA. 46 

𝑟14 = 𝑟10 + 𝑟12 
eqA. 47 

𝑟15 = 𝑟11 + 𝑟13 
eqA. 48 

𝑟14 + 𝑟15  + 𝑟16 =  𝑟17 + 𝑟18  
eqA. 49 

Upon reaching the steady state in KMC simulations, we check if the above relationships are 

satisfied using the event frequencies obtained from the KMC process statistics data. Using 

the aforementioned relationships, we can derive the following:  

𝑟1 = 𝑟3 = 𝑟4 + 𝑟9 +  𝑟12  
eqA. 50 

𝑟1  =   𝑟4 + 𝑟10 + 𝑟11 +  𝑟12  
eqA. 51 

𝑟1  =   𝑟4 + 𝑟14 + 𝑟11   
eqA. 52 

𝑟1  =   𝑟13 + 𝑟16 + 𝑟14 + 𝑟11  
eqA. 53 

𝑟1  =   𝑟14 + 𝑟15 + 𝑟16   
eqA. 54 

𝑟1  =  𝑟14 + 𝑟15 + 𝑟16 =  𝑟𝐶𝑂𝑠𝑝𝑒𝑐
𝑝𝑟𝑜𝑑

  eqA. 55 

The overall flux to form CO species (𝑟𝐶𝑂𝑠𝑝𝑒𝑐
𝑝𝑟𝑜𝑑

) on the Ni(111) surface, which is the main 

intermediate of all the MSR pathways, is given by eqA. 55. 
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There are totally five MSR pathways – the routes are shown in Figure A23. 

 

Figure A23: Pictorial representation of the different MSR pathways: Pathway 1 – CHOH 

pathway via CHO intermediate, Pathway 2 - CHOH pathway via COH intermediate, Pathway 

3 - CHO pathway, Pathway 4 – COH pathway, 5) Pathway 5 – CO pathway.  

The flux contributions of the different MSR pathways (depicted in Figure A23) are estimated 

using the equations below. 

𝐹𝑙𝑢𝑥𝑝𝑎𝑡ℎ𝑤𝑎𝑦1 (%) =  
𝑟𝑝𝑎𝑡ℎ𝑤𝑎𝑦1  × 100

𝑟𝐶𝑂𝑠𝑝𝑒𝑐
𝑝𝑟𝑜𝑑  =  

𝑟10  × 100

 𝑟14  +  𝑟15  +  𝑟16
 eqA. 56 

𝐹𝑙𝑢𝑥𝑝𝑎𝑡ℎ𝑤𝑎𝑦2 (%) =  
𝑟𝑝𝑎𝑡ℎ𝑤𝑎𝑦2  × 100

𝑟𝐶𝑂𝑠𝑝𝑒𝑐
𝑝𝑟𝑜𝑑  =  

𝑟11  × 100

 𝑟14  +  𝑟15  +  𝑟16
 eqA. 57 

𝐹𝑙𝑢𝑥𝑝𝑎𝑡ℎ𝑤𝑎𝑦3 (%) =  
𝑟𝑝𝑎𝑡ℎ𝑤𝑎𝑦3 × 100

𝑟𝐶𝑂𝑠𝑝𝑒𝑐
𝑝𝑟𝑜𝑑  =  

𝑟12 × 100

 𝑟14  + 𝑟15  + 𝑟16
 eqA. 58 

𝐹𝑙𝑢𝑥𝑝𝑎𝑡ℎ𝑤𝑎𝑦4 (%) =  
𝑟𝑝𝑎𝑡ℎ𝑤𝑎𝑦4  × 100

𝑟𝐶𝑂𝑠𝑝𝑒𝑐
𝑝𝑟𝑜𝑑  =  

𝑟13  × 100

 𝑟14  +  𝑟15  +  𝑟16
 eqA. 59 

𝐹𝑙𝑢𝑥𝑝𝑎𝑡ℎ𝑤𝑎𝑦5 (%) =  
𝑟𝑝𝑎𝑡ℎ𝑤𝑎𝑦5  × 100

𝑟𝐶𝑂𝑠𝑝𝑒𝑐
𝑝𝑟𝑜𝑑  =  

𝑟16  × 100

 𝑟14  +  𝑟15  +  𝑟16
 eqA. 60 

For the K-Ni(111)-2.8% system, we follow a similar procedure to obtain the pathway 

contributions (%).  
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A 3.3 Calculation of thermal/entropic contributions and free energies  

We have used the ASE thermochemistry module to estimate the thermal, entropic and free 

energies of gas-phase molecules/adsorbates. The ASE thermochemistry module uses the 

equations of the textbook “Essentials of Computational Chemistry” (Chapter 10) by C.J 

Cramer. The thermal energy of gas-phase species is computed using eqA. 61. 

𝐻𝑔𝑎𝑠 =
𝑁𝑡𝑟𝑎𝑛𝑠
2

𝑘𝐵 𝑇 + 
𝑁𝑟𝑜𝑡
2
𝑘𝐵 𝑇 + ∑

ℎ 𝑣𝑘

exp (
ℎ 𝑣𝑘
𝑘𝐵 𝑇

) −  1

3𝑁−𝑁𝑡𝑟𝑎𝑛𝑠− 𝑁𝑟𝑜𝑡

𝑘

 +  𝑘𝐵 𝑇 eqA. 61 

In eqA. 61, 𝑁𝑡𝑟𝑎𝑛𝑠 indicates the number of translational modes, 𝑁𝑟𝑜𝑡 is the number of rotational 

modes, 𝑣𝑘 represents the vibrational frequency of any kth mode and 𝑇 is the temperature. For 

any gas-phase species, 𝑁𝑡𝑟𝑎𝑛𝑠 takes the value 3. In the case of monoatomic gas-phase 

species, 𝑁𝑟𝑜𝑡 value is 0. The 𝑁𝑟𝑜𝑡 values for linear and non-linear gas-phase molecules are 2 

and 3, respectively.  

The total entropic contribution of gas-phase species is calculated by using eqA. 62. The 

translational component of the entropic contribution is provided by eqA. 63.  

𝑆𝑔𝑎𝑠 = 𝑆𝑡𝑟𝑎𝑛𝑠 + 𝑆𝑟𝑜𝑡  +  𝑆𝑣𝑖𝑏 +  𝑆𝑒𝑙𝑒𝑐 − 𝑘𝐵  log𝑒
𝑃

𝑃𝑜
 eqA. 62 

𝑆𝑡𝑟𝑎𝑛𝑠 = 𝑘𝐵  (log𝑒 (
(2𝜋𝑚𝑘𝐵𝑇)

3
2

ℎ3
 
𝑘𝐵𝑇

𝑃𝑜
)+ 

5

2
) eqA. 63 

In eqA. 62 and eqA. 63, 𝑃𝑜 is the standard pressure (in bar) and 𝑚 is the mass of the molecule. 

In the case of a monoatomic gas, the rotational component of the entropy is zero. The 

rotational components of the entropies of linear and non-linear molecules are computed using 

eqA. 64 and eqA. 65, respectively.  

𝑆𝑟𝑜𝑡 = 𝑘𝐵  (log𝑒 (
8𝜋2𝐼𝑘𝐵𝑇

𝜎 ℎ2
) + 1) eqA. 64 

𝑆𝑟𝑜𝑡 = 𝑘𝐵  (log𝑒 (
√𝜋𝐼𝐴𝐼𝐵𝐼𝐶

𝜎
 (
8𝜋2𝑘𝐵𝑇

ℎ2
)

3
2

)+ 
3

2
) 

eqA. 65 

𝑆𝑣𝑖𝑏 = 𝑘𝐵  ∑

(

 
 ℎ𝑣𝑖

𝑘𝐵𝑇 (exp(
ℎ 𝑣𝑖
𝑘𝐵 𝑇

) −  1)
− log𝑒 (1 − exp (−

ℎ 𝑣𝑖
𝑘𝐵 𝑇

))

)

 
 

𝐷𝑂𝐹𝑣𝑖𝑏

𝑖

 eqA. 66 

𝑆𝑒𝑙𝑒𝑐 = 𝑘𝐵 log𝑒(2𝑆𝑠𝑝𝑖𝑛 +  1)  
eqA. 67 
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In eqA. 64 and  eqA. 65, the symbols 𝐼 and 𝜎 indicate the moment of inertia and symmetry 

factor, respectively. The vibrational component of the entropy is given by eqA. 66. For ground 

state with higher spin multiplicity, the electronic component of the entropy (𝑆𝑒𝑙𝑒𝑐) is estimated. 

We use eqA. 67 to compute 𝑆𝑒𝑙𝑒𝑐, where 𝑆𝑠𝑝𝑖𝑛 indicates the spin multiplicity. For instance, for 

a doublet, the value of 𝑆𝑠𝑝𝑖𝑛 is 0.5. On the other hand, in the case of a triplet,  𝑆𝑠𝑝𝑖𝑛 takes the 

value 1.  

The harmonic approximation is employed to estimate the thermal/entropic contributions of 

species adsorbed on the Ni(111) surface. The frustrated translations/rotations of adsorbates 

are treated as vibrations. The thermal contribution of an adsorbate with 𝑁 atoms is given by 

eqA. 68 (the “PV” term is negligible in this case). We use eqA. 69 to calculate the entropic 

contribution of an adsorbate.  

𝐻𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 = ∑
ℎ 𝑣𝑘

exp (
ℎ 𝑣𝑘
𝑘𝐵 𝑇

)  −  1

3𝑁

𝑘

 eqA. 68 

𝑆𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 =  𝑘𝐵∑

(

 
 ℎ𝑣𝑖

𝑘𝐵𝑇 (exp(
ℎ 𝑣𝑖
𝑘𝐵 𝑇

) −  1)
− log𝑒 (1 − exp (−

ℎ 𝑣𝑖
𝑘𝐵 𝑇

))

)

 
 

3𝑁

𝑖

 eqA. 69 

 

Table A44. KMC replicas of the Ni(111) system at 1273 K and 10.00 bar (H2O-CH4 ratio   

is maintained at 2:1) 

KMC runs CH coverage (ML) Carbon coverage (ML) 
Turnover rate 

(molecules sites-1 s-1) 

Random seed 1 0.1266 0.1872 -6.57 × 104 

Random seed 2 0.1266 0.1877 -6.38 × 104 

Random seed 3 0.1257 0.1837 -6.97 × 104 

Random seed 4 0.1263 0.1878 -6.22 × 104 

Random seed 5 0.1262 0.1873 -6.27 × 104 

Average values  
0.1263  

(±0.0004) 
0.1867  

(±0.0017) 
-6.48 × 104 

(±3.02 × 103) 
 

Note: The value provided in the parenthesis is the KMC population standard deviation (also 

called as the “KMC standard error”). 
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Table A45. KMC replicas of the K-Ni(111)-2.8% system at 1273 K and 10.00 bar  (H2O-

CH4 ratio is maintained at 2:1) 

KMC runs CH coverage (ML) Carbon coverage (ML) 
Turnover rate 

(molecules sites-1 s-1) 

Random seed 1 0.1280 0.1731 -2.18 × 105 

Random seed 2 0.1144 0.1687 -2.38 × 105 

Random seed 3 0.1129 0.1687 -2.36 × 105 

Random seed 4 0.1125 0.1687 -2.29 × 105 

Random seed 5 0.1151 0.1719 -2.21 × 105 

Average values 
0.1166 

(±0.0065) 
0.1702 

(±0.0021) 
-2.29 × 105 

   (±8.79 × 103) 
 

Note: The value provided in the parenthesis is the KMC standard error.  

The KMC predictions with different random seed generators are shown for the Ni(111) and K-

Ni(111)-2.8% systems in Table A44 and Table A45, respectively. The population average and 

standard deviation of coverage/turnover rate values have been estimated. As shown in Table 

A44 and Table A45, the stochastic variability in KMC coverage predictions is 

minimal/negligible. On the other hand, the turnover rate values change substantially for the 

different KMC replicas. The KMC turnover rate standard errors for the Ni(111) and K-Ni(111)-

2.8% models are 3.02e+03 and 8.79e+03, respectively. Nevertheless, these deviations 

(around 3-5% of the average turnover rate value) are well within the limits to make reliable 

comparisons. It is evident from Table A44 and Table A45 that the average turnover rate of K-

Ni(111)-2.8% is around 3.5 times (close to 250%) larger than the average turnover rate of 

Ni(111). Thus, the KMC standard errors do not have any impact on the conclusions/claims 

made in Chapter 5. 
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Table A46. The DORC result variability in KMC simulations of MSR on the K-Ni(111)-

2.8% system 

KMC runs 
Turnover rate – actual 
(molecules sites-1 s-1) 

Turnover rate – R12 sensitivity 
(molecules sites-1 s-1) 

Random seed 1 -2.18 × 105 -2.33 × 105 

Random seed 2 -2.38 × 105 -2.24 × 105 

Random seed 3 -2.36 × 105 -2.35 × 105 

Random seed 4 -2.29 × 105 -2.39 × 105 

Random seed 5 -2.21 × 105 -2.41 × 105 

Average values -2.29 × 105 (±8.79 × 103) -2.34 × 105 (±6.37 × 103) 

XRC,R12  0.25 (±0.49) 

 

The DORC analysis (established by Campbell) is a useful approach to identify the rate-

determining step of any reaction network. The DORC value for any event i is computed as 

follows:  

XRC,i = 
ki
R
 (
δR

δki
)
kj ≠ i,   Ki 

  eqA. 70 

In the above equation, ki represents the rate constant of event i, Ki indicates the equilibrium 

constant of event i and R is the MSR turnover rate. Usually, the rate constant of the desired 

event is perturbed by around 5-10% and the change in turnover rate is recorded. If XRC,i value 

is around -1, then event i is rate-inhibiting. On the other hand, a XRC,i value closer to 1 indicates 

that event i is the rate-limiting step. If XRC,i is around 0, then event i has no impact on the 

turnover rate.  

In the current KMC model, we find that there is a degree of variability in the turnover rate 

prediction. This mainly arises due to the inherent stochastic nature of KMC. As shown in Table 

A46, for different random seeds, the variability in turnover rate prediction of the K-Ni(111)-

2.8% KMC model is as high as 20%. We performed the sensitivity analysis for event R12 by 

perturbing its rate constant by 10%. The KMC turnover rate predictions for different random 

seeds are shown in the last column of Table A46. We found the average values of the turnover 

rates and estimated the DORC value using eqA. 70. Furthermore, we employed error 
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propagation to quantify the variability in DORC value. As shown in Table A46, the error 

estimate of DORC is 0.49 – this is not an acceptable range. Therefore, it is not feasible to 

obtain reliable DORC values from the current KMC system. In the literature, there are very 

few studies that report DORC values using KMC models. Although Liu et al.49 and Lozano-

Reis et al.24 have computed DORC values with KMC, the authors have not provided 

information about the number of replica runs and the degree of perturbation. Furthermore, the 

error estimate in DORC prediction has not been reported.  

Some recommendations to reduce the error in DORC prediction using KMC include – 1) The 

rate constant perturbation value must be finalised by performing several trial simulations, 2) 

The number of KMC replica runs must be fixed. 3) The replica simulations should be carried 

out for longer timescales to reduce the KMC standard error. The aforementioned procedure 

must be performed for all the desirable events. Since this is a computationally intensive task, 

it is beyond the scope of the current study to estimate DORC.  

 

Figure A24: The potential energy diagram of the C2OH mechanism on Ni(111) and K-Ni(111)  

In Figure A24, we show the removal mechanism of C2 precursor on the Ni(111) and K-Ni(111) 

facets. It is interesting to observe that C2 reacts with OH species to form the C2OH 

intermediate. Subsequently, the C2OH intermediate undergoes dissociation to form COH 

species on the Ni(111) and K-Ni(111) surfaces. In comparison to Ni(111), we find that it is 

kinetically favourable to form the C2OH intermediate on K-Ni(111) (as illustrated in Figure A24). 

Furthermore, the C2OH intermediate has higher thermodynamic stability on K-Ni(111) than 

Ni(111). The above result is a “first approximation” for the coke removal mechanism. Detailed 

DFT investigations are needed to find other pathways of coke removal. These studies can 

potentially aid in the design of Ni catalysts that are resistant to coking.  
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Table A47. The overall event frequencies of MSR steps on Ni(111) and K-Ni(111)-2.8% 

at 1273 K, 10.00 bar and H2O-CH4 ratio maintained at 2:1.   

 

Event ID: elementary step 

 

Ni(111) 

Ntot−events
Ntotal sites ×  𝜏  

 

 

K-Ni(111)-2.8% 

NNi−events
Ntotal sites ×  𝜏  

 

 

K-Ni(111)-2.8% 

NK−events
Ntotal sites ×  𝜏  

 

 

K-Ni(111)-2.8% 

Ntot−events
Ntotal sites ×  𝜏  

 

R1:  CH4(g)  +  2*  ↔  CH3*  +  H* 6.36 × 104 2.27 × 105 1.81 × 103 2.29 × 105 

R2:  CH3*  +  *  ↔  CH2*  +  H* 6.36 × 104 2.27 × 105 1.98 × 103 2.29 × 105 

R3:  CH2*  +  *  ↔  CH*  +  H* 6.36 × 104 2.74 × 105 -4.47 × 104 2.29 × 105 

R4:  CH*  +  *  ↔  C*  +  H* 9.60 × 102 1.23 × 105 -7.19 × 104 5.07 × 104 

R5:  2H*  →  H2(g)  +  2* 1.91 × 105 6.67 × 105 2.23 × 104 6.89 × 105 

R6:  H2O(g)  +  *  ↔  H2O* 6.38 × 104 1.22 × 105 1.10 × 105 2.32 × 105 

R7:  H2O*  +  *  ↔  OH*  +  H* 6.38 × 104 1.28 × 105 1.03 × 105 2.31 × 105 

R8:  OH*  +  *  ↔  O*  +  H* 6.21 × 104 1.26 × 105 9.12 × 104 2.17 × 105 

R9:  CH*  +  OH*  ↔  CHOH*  +  * 5.60 × 102 7.41 × 102 2.75 × 103 3.49 × 103 

R10:  CHOH*  +  *  ↔  CHO*  +  H* 0.00 0.00 54.9 54.9 

R11:  CHOH*  +  *   ↔  COH*  +  H* 5.60 × 102 9.61 × 102 2.47 × 103 3.43 × 103 

R12:  CH*  +  O* ↔  CHO*  +  * 6.18 × 104 1.37 × 105 3.75 × 104 1.75 × 105 

R13:  C*  +  OH* ↔  COH*  +  * 1.15 × 103 1.51 × 103 9.14 × 103 1.07 × 104 

R14:  CHO*  +  *  ↔  CO*  +  H* 6.18 × 104 1.35 × 105 3.98 × 104 1.75 × 105 

R15:  COH*  +  * ↔  CO*  +  H* 1.71 × 103 6.95 × 103 7.14 × 103 1.41 × 104 

R16:  C*  +  O* ↔  CO*  +  * 3.47 × 102 6.04 × 102 3.93 × 104 3.99 × 104 

R17:  CO*  →  CO(g)  +  * 6.38 × 104 1.52 × 105 7.42 × 104 2.27 × 105 

R18:  CO*  +  O*  →  CO2(g)  +  2* 80.00 4.39 × 102 1.89 × 103 2.33 × 103 
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Table A48. The overall event frequencies of MSR steps on Ni(111) and K-Ni(111)-2.8% 

(divided by the number of sites of the corresponding site type) at 1273 K, 10.00 bar and 

H2O-CH4 ratio maintained at 2:1. 

 

 

Event ID: elementary step 

 

Ni(111) 

NNi−events
NNi−sites ×  𝜏  

 

 

K-Ni(111)-2.8% 

NNi−events
NNi−sites ×  𝜏  

 

 

K-Ni(111)-2.8% 

NK−events
NK−sites ×  𝜏  

 

R1:  CH4(g)  +  2*  ↔  CH3*  +  H* 6.36 × 104 2.76 × 105 1.02 × 104 

R2:  CH3*  +  *  ↔  CH2*  +  H* 6.36 × 104 2.76 × 105 1.11 × 104 

R3:  CH2*  +  *  ↔  CH*  +  H* 6.36 × 104 3.33 × 105 -2.51 × 105 

R4:  CH*  +  *  ↔  C*  +  H* 9.60 × 102 1.49 × 105 -4.04 × 105 

R5:  2H*  →  H2(g)  +  2* 1.91 × 105 8.11 × 105 1.25 × 105 

R6:  H2O(g)  +  *  ↔  H2O* 6.38 × 104 1.48 × 105 6.17 × 105 

R7:  H2O*  +  *  ↔  OH*  +  H* 6.38 × 104 1.56 × 105 5.80 × 105 

R8:  OH*  +  *  ↔  O*  +  H* 6.21 × 104 1.54 × 105 5.13 × 105 

R9:  CH*  +  OH*  ↔  CHOH*  +  * 5.60 × 102 9.02 × 102 1.54 × 104 

R10:  CHOH*  +  *  ↔  CHO*  +  H* 0.00 0.00 3.09 × 102 

R11:  CHOH*  +  *   ↔  COH*  +  H* 5.60 × 102 1.17 × 103 1.39 × 104 

R12:  CH*  +  O* ↔  CHO*  +  * 6.18 × 104 1.67 × 105 2.11 × 105 

R13:  C*  +  OH* ↔  COH*  +  * 1.15 × 103 1.84 × 103 5.14 × 104 

R14:  CHO*  +  *  ↔  CO*  +  H* 6.18 × 104 1.65 × 105 2.23 × 105 

R15:  COH*  +  * ↔  CO*  +  H* 1.71 × 103 8.45 × 103 4.01 × 104 

R16:  C*  +  O* ↔  CO*  +  * 3.47 × 102 7.35 × 102 2.21 × 105 

R17:  CO*  →  CO(g)  +  * 6.38 × 104 1.86 × 105 4.17 × 105 

R18:  CO*  +  O*  →  CO2(g)  +  2* 80.00 5.34 × 102 1.06 × 104 
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Appendix 1V 

 

Table A49. The formation energies (eV) of CHx and CxHy species on Ni(111) 

Species Formation energy (eV) 

CH3* 0.13 

CH2* 0.83 

CH* 1.13 

C* 2.25 

H* -0.67 

C2H2* 1.90 

C2H* 2.89 

C2* 4.04 

C3* 6.00 

C4ring* 8.38 

C5ring* 10.84 

C6ring* 12.85 

C4branch* 8.83 

C5branch* 10.49 

C6branch* 12.73 
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Table A50. The vibrational wavenumbers of initial states 

 

System Vibrational wavenumbers (cm-1)  

CH3* 2830.80, 2830.35, 2765.35, 1285.50, 1285.21, 1165.14, 479.61, 479.20,  
400.02, 360.04, 224.63, 224.04 

CH2* 
3009.83, 2351.06, 1431.41, 663.80, 590.88, 532.43, 360.15, 310.70, 
282.07 

CH* 3031.00, 656.49, 655.91, 629.34, 418.43, 418.14 

C* 579.57, 540.45, 540.45 

H* 1150.49, 859.07, 858.27 

C2H2* 
3027.59, 3013.34, 1209.13, 1049.62, 848.31, 811.55, 698.64, 476.33,  
441.63, 300.47, 272.89, 266.23 

C2H* 
3075.17, 1341.09, 867.52, 700.79, 486.19, 421.69, 395.86, 319.00, 
224.11 

C2* 1410.88, 498.03, 441.07, 355.20, 346.76, 331.42 

C3* 
1496.96, 1142.00, 480.87, 469.23, 430.87, 386.03, 349.35, 255.02, 
165.31 

C4ring*  
1379.02, 1286.76, 934.73, 525.08, 492.97, 440.33, 398.89, 379.29, 
361.13, 344.84, 257.83, 171.76 

C5ring* 
1332.60, 1320.78, 1046.08, 903.61, 584.70, 503.14, 470.33, 446.91, 
397.95, 388.64, 370.72, 351.52, 333.15, 223.21, 129.96 

C6ring* 
1166.79, 1165.27, 1165.25, 972.75, 972.75, 893.61, 741.88, 547.85, 
547.84, 433.08, 424.30, 424.29, 391.81, 391.79, 377.45, 236.90, 236.89, 
192.63 

C4branch*  
1041.92, 1041.91, 985.48, 520.65, 511.77, 511.77, 447.83, 447.82, 
444.99, 302.76, 289.45, 289.45 

C5branch*  
1421.41, 1133.15, 1051.81, 860.22, 581.95, 524.83, 510.80, 480.65, 
469.27, 444.80, 381.90, 369.05, 327.99, 266.04, 244.10 

C6branch* 
1119.86, 1104.68, 1102.15, 1097.64, 774.38, 638.52, 540.40, 513.27, 
509.80, 506.67, 494.23, 475.56, 436.74, 393.96, 380.38, 331.75, 283.92, 
271.11 
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Table A51. The vibrational wavenumbers of transition states 

Event ID: elementary step Vibrational wavenumbers (cm-1) 

R1: CH4(g) + 2*  =  CH3*  +  H* 
3105.25, 3067.22, 2962.35, 1566.86, 1390.55, 1371.81, 
1138.80, 837.03, 725.34, 386.47, 363.21, 134.98, 91.16, 
34.37, 898.83i 

R2: CH3*  +  *  =  CH2* +  H* 
3008.28, 2514.45, 1851.07, 1369.35, 863.10, 706.56, 
536.77, 451.14, 323.89, 266.87, 131.18, 850.24i 

R3: CH2* +  *  =  CH*  + H* 
3054.45, 1207.13, 880.83, 676.57, 609.92, 466.83, 414.54, 
360.17, 585.20i 

R4: CH* +  *  =  C*  + H* 1858.43, 561.04, 522.37, 517.84, 128.04, 811.49i 

R6: CH* +  CH*  =  C2H2* 
3054.31, 3045.92, 888.31, 836.40, 675.44, 665.96, 
594.81, 587.56, 449.24, 443.09, 233.76, 453.22i 

R7: C2H2*  +  *  =  C2H* +  H* 
3079.93, 1523.39, 1356.40, 884.79, 690.55, 523.41, 
430.19, 389.81, 323.31, 264.15, 220.82, 1014.03i 

R8: C2H*  +  *   =   C2* + H* 
1393.89, 1234.60, 570.71, 452.46, 397.13, 357.48, 
333.07, 313.82, 868.29i 

R9: C* +  C*  = C2* 569.09, 545.80, 539.49, 488.30, 361.02, 435.96i 

R10: C2* +  C*  = C3* 
1327.00, 547.43, 521.96, 456.39, 432.39,  
363.59, 353.53, 297.70, 455.68i 

R11: C3* +  C*  = C4ring 
1490.01, 1131.41, 539.16, 508.66, 484.21, 473.89, 424.22, 
379.41, 332.13, 271.28, 158.72, 462.73i 

R12: C3* +  C*  = C4branch 
1272.40, 1044.56, 575.89, 555.98, 504.77, 495.80, 432.06, 
391.35, 324.90, 288.54, 110.82, 444.04i 

R13: C4ring + C*  = C5ring 
1386.58, 1273.35, 947.35, 549.15, 537.71, 510.33, 
503.03, 435.87, 397.22, 386.20, 367.90, 314.52, 256.12, 
184.24, 425.75i 

R14: C4branch + C*  = C5branch 
1059.78, 987.86, 946.14, 554.09, 531.96, 513.76, 508.71, 
502.76, 461.50, 453.14, 442.79, 322.19, 302.03, 272.36, 
425.46i 

R15: C5ring + C*  = C6ring 
1448.29, 1261.76, 1097.77, 860.17, 579.62, 573.88, 527.93, 
481.14, 459.56, 428.92, 400.86, 396.69, 385.80, 382.58, 
287.29, 223.21, 157.00, 488.40i 

R16: C5branch + C*  = C6branch 
1306.23, 1143.17, 1087.81, 835.10, 637.44, 577.81, 
527.24, 519.21, 504.09, 481.71, 465.33, 419.61, 398.29, 
345.24, 339.39, 240.46, 165.36, 400.83i 
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Figure A25: The C-C coupling events to form C6 chain on the Ni(111) facet. 

 

         

Figure A26: The C-C coupling events to form C10 ring on the Ni(111) surface. 
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A 4.1 Flux analysis of methane cracking and C-C coupling reactions  

 

Figure A27: Pictorial representation of methane cracking and C-C coupling reaction network. 

 

At steady-state conditions, the rate of change of intermediate species will be zero.  

𝑑𝜃𝐶𝐻3
𝑑𝑡

=   R1 − R2  = 0 
eqA. 71 

𝑑𝜃𝐶𝐻2
𝑑𝑡

=   R2 − R3  =  0 
eqA. 72 

𝑑𝜃𝐶𝐻
𝑑𝑡

  =   R3 − R4 − 2R6  = 0 
eqA. 73 

𝑑𝜃𝐶
𝑑𝑡
    =   R4 − 2R9 − R10 − R11 − R12  −  R13 − R14  − R15  − R16  = 0 

eqA. 74 

𝑑𝜃𝐻
𝑑𝑡
    =    R1 + R2 + R3 + R4 + 2R5 + R7  +  R8  = 0  

eqA. 75 

𝑑𝜃𝐶2𝐻2
𝑑𝑡

 =   R6 − R7  = 0 
eqA. 76 
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𝑑𝜃𝐶2𝐻

𝑑𝑡
 =   R7 − R8  = 0  

eqA. 77 

𝑑𝜃𝐶2
𝑑𝑡

 =   R8 + R9 − R10  = 0 
eqA. 78 

𝑑𝜃𝐶3
𝑑𝑡

 =  R10 − R11 − R12  = 0  
eqA. 79 

𝑑𝜃𝐶4𝑟𝑖𝑛𝑔
𝑑𝑡

 =  R11 − R13  = 0 
eqA. 80 

𝑑𝜃𝐶5𝑟𝑖𝑛𝑔
𝑑𝑡

 =  R13 − R15  = 0 
eqA. 81 

𝑑𝜃𝐶6𝑟𝑖𝑛𝑔
𝑑𝑡

 =  R15 − R17  = 0 
eqA. 82 

𝑑𝜃𝐶4𝑏𝑟𝑎𝑛𝑐ℎ
𝑑𝑡

 =  R12 − R14  = 0 
eqA. 83 

𝑑𝜃𝐶5𝑏𝑟𝑎𝑛𝑐ℎ
𝑑𝑡

 =  R14 − R16 = 0 
eqA. 84 

𝑑𝜃𝐶6𝑏𝑟𝑎𝑛𝑐ℎ
𝑑𝑡

 =  R16 − R18 = 0 
eqA. 85 

𝑑𝜃𝑓𝑐𝑐

𝑑𝑡
 =  −2R1  −  R2  −   R3  −  R4   −  2R5  + R6 − R7 − R8 + R9 + R10

+ R11 + R12 + R13 + R14 + R15 + R16 + R17 + R18  = 0 

eqA. 86 

 

From the above equations, the following relationships exist at the steady state: 

R1  =  R2 
eqA. 87 

R2  =  R3 
eqA. 88 

R3  =  R4 +  2R6 
eqA. 89 

R6  =  R7 
eqA. 90 

R7  =  R8 
eqA. 91 

R8 + R9  = R10 
eqA. 92 

R10 = R11 + R12  
eqA. 93 

R11  =  R13 
eqA. 94 

R13  =  R15 
eqA. 95 

R15 = R17  
eqA. 96 
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R12  =  R14 
eqA. 97 

R14 = R16 
eqA. 98 

R16 = R18 
eqA. 99 

From the aforementioned relationships, the following can be derived: 

R1  =  R4 +  2R6 
eqA. 100 

R4   = 2R9 + R10 + 3(R17 + R18)   
eqA. 101 

R1  =  2R9 + R10 + 3(R17 + R18) +  2R6  
eqA. 102 

R10  = R9 + R6   
eqA. 103 

R1  =  3R10 + 3(R17 + R18) 
eqA. 104 

R10  = R17 + R18  
eqA. 105 

R1  =  6(R17 + R18) 
eqA. 106 

R𝑐𝑜𝑛𝑠
𝐶𝐻4  = R1  = 6(R17 + R18) = 6 R𝑝𝑟𝑜𝑑

𝑐𝑜𝑘𝑒   eqA. 107 

It is evident from eqA. 107 that the rate of CH4 consumption (R𝑐𝑜𝑛𝑠
𝐶𝐻4 ) is six times the rate of 

coke production (R𝑝𝑟𝑜𝑑
𝑐𝑜𝑘𝑒 ) – this balances the stochiometry as coke production involves the 

desorption of C6 ring-based structures (which includes six carbon atoms). As shown in Figure 

A27, there are two pathways to coking: 1) C6 ring pathway and 2) C6 branch pathway.  

The flux contribution of C6 ring pathway (%) is estimated as follows: 

R11 = R13 = R15  = R17 = Rring−pathway  
eqA. 108 

FluxC6ring−pathway (%) =  
Rring−pathway  × 100

R𝑝𝑟𝑜𝑑
𝑐𝑜𝑘𝑒  =  

R11 × 100

 R17 + R18
 =  

R13 × 100

 R17 + R18

= 
R15 × 100

 R17 + R18
= 
R17 × 100

 R17 + R18
 

eqA. 109 

 

The flux contribution of C6 branch pathway (%) is estimated as follows: 

R12 = R14 = R16  = R18  =   Rbranch−pathway 
eqA. 110 
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FluxC6branch−pathway (%) =  
Rbranch−pathway × 100 

R𝑝𝑟𝑜𝑑
𝑐𝑜𝑘𝑒  =  

R12 × 100

 R17 + R18
 

=  
R14 × 100

 R17 + R18
= 
R16 × 100

 R17 + R18
= 
R18 × 100

 R17 + R18
   

eqA. 111 

 

           

Figure A28: Comparison of MK predicted coking rates with experimental rates (taken from the 

literature158,170). 

As shown in Figure A28, we systematically compared the MK predictions with available 

experimental data (appropriate unit conversions have been made). The MK predicted coking 

rates are close to 1000 times slower than the experimental rates. This is an expected outcome 

as the MK model does not capture the end-to-end dynamics of the coking process. 

Furthermore, the metal support interactions are not taken into account in the MK model.  
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