

Genomics enabling personalised glaucoma care

Authors:

Kelsey V. Stuart¹; Anthony P. Khawaja¹

Affiliations:

1 NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK

Correspondence:

Kelsey V. Stuart

Email: kelsey.stuart.20@ucl.ac.uk

Address: UCL Institute of Ophthalmology, 11–43 Bath Street, London EC1V 9EL, UK

Financial support:

KVS: UCL Overseas Research Scholarship (N/A), Fight for Sight (London) (1956A) and The Desmond Foundation (N/A). APK: UK Research and Innovation Future Leaders Fellowship (MR/T040912/1), Moorfields Eye Charity Career Development Fellowship (N/A) and a Lister Institute of Preventative Medicine Fellowship (N/A). Financial support from the UK Department of Health through an award made by the National Institute for Health Research (NIHR) to Moorfields Eye Hospital National Health Service (NHS) Foundation Trust and University College London (UCL) Institute of Ophthalmology for a Biomedical Research Centre (BRC) for Ophthalmology. The sponsors or funding organizations had no role in the design or conduct of this research.

Conflicts of interest:

KVS: None. APK: Consultant or lecturer: Abbvie, Aerie, Allergan, Google Health, Heidelberg Novartis, Reichert, Santen, Thea.

Acknowledgements:

This review article is based on a lecture given by APK for the Lister Institute Prize on 16th May 2023 at the UCL Institute of Ophthalmology, London, UK.

Ethical approval:

This review article does not involve human participants or animal subjects. Ethical Committee approval was not required.

1 ABSTRACT

2 Glaucoma is a leading cause of visual impairment and a significant public health concern, but despite
3 ongoing advances in our understanding of the disease, several important clinical challenges remain.
4 With the number of affected people projected to increase substantially over coming decades, novel
5 approaches to screening, risk stratification, therapy, and glaucoma research are essential to deal with
6 this expanding burden in an efficient and cost-effective manner. Genomics may hold the key to
7 unlocking further biological insights and enabling precision medicine, in which glaucoma care is
8 tailored to the individual patient, based on their unique profile for disease. Here we provide an
9 overview of how genomics may enable cost-effective targeted population screening and personalised
10 predictions of risk, response to treatment, and effective lifestyle advice. Given rapid advances in
11 genetic testing technology and a move toward population-level genotyping, these early results have
12 several important implications that promise to revolutionise the way in which glaucoma is detected
13 and managed in years to come.

14 **CURRENT CHALLENGES IN GLAUCOMA CARE**

15 Glaucoma is the leading cause of irreversible blindness globally and the second most common cause
16 of certifiable visual impairment in the United Kingdom (UK).[1,2] Loss of vision threatens not only
17 individual safety, independence, and emotional well-being, but results in an increased need for social
18 services, responsible for an estimated annual economic burden of £28 billion in the UK alone.[3]

19 Glaucoma affects over 80 million people worldwide,[4] or approximately 4% of all adults aged >50
20 years.[5] Despite substantial advances in our understanding of the disease in recent years, several
21 important clinical questions, spanning the spectrum of glaucoma care, remain unanswered. With
22 prevalence estimated to increase by almost 50% by 2040,[4] novel strategies to address this expanding
23 patient load are essential.

24 The progressive, irreparable nature of glaucoma means that early detection and treatment are critical
25 for the prevention of visual morbidity. However, the early stages of the disease are asymptomatic,
26 with up to two-thirds of those affected in the UK undiagnosed, or at least unaware of their
27 diagnosis.[5,6] Population screening would therefore necessitate mass ophthalmic examination which,
28 in the absence of adequate tests and a sufficiently high population prevalence, is neither feasible nor
29 recommended.[7] Is there a viable and cost-effective strategy that could potentially enable
30 community-based glaucoma screening?

31 Current treatment paradigms for glaucoma patients or people at risk of glaucoma are guided by an
32 evidence-based approach, but while landmark glaucoma trials have answered several important
33 clinical questions, they have also generated many more. For example, the Ocular Hypertension
34 Treatment Study (OHTS) demonstrated elevated intraocular pressure (IOP) to be a major risk factor
35 for primary open-angle glaucoma (POAG) and established that, on average, high IOP should be
36 treated even before manifest glaucoma is present.[8] However, only 11% of untreated participants
37 converted to POAG during the study period, suggesting that many were treated unnecessarily.
38 Similarly, the United Kingdom Glaucoma Treatment Study (UKGTS) showed that the use of
39 latanoprost compared to placebo more than halved visual field progression in those with established
40 glaucoma.[9] However, 75% of participants receiving placebo did not measurably progress, while

41 15% of those in the treatment group demonstrated visual field deterioration within two years of follow
42 up. These observations beg the questions: (1) Do we need to treat everybody who meets diagnostic
43 criteria for glaucoma; and (2) would those who progressed, despite receiving therapy, benefit from
44 different or more intensive treatment?

45 Routine glaucoma monitoring is typically achieved through serial visual field assessment, but
46 presently, baseline prediction of which patients will progress is poor. Additionally, questions remain
47 as to which of the various treatment options available – including medication, laser, minimally-
48 invasive and penetrating surgery – represents the best therapeutic approach. Recently, the Laser in
49 Glaucoma and Ocular Hypertension (LiGHT) trial demonstrated that selective laser trabeculoplasty
50 (SLT) may be preferable to topical agents as a first-line therapy, with 74% of those in the SLT arm
51 maintaining target IOP after 3 years of follow up.[10] A large analysis of real-world SLT outcomes
52 showed that the average IOP response following therapy was an initial decrease, followed by a slow
53 rise over time.[11] However, a range of responses were observed, with some participants responding
54 well, and others not at all. Is there a way to predict who will respond to particular therapies and who
55 would benefit from alternative approaches?

56 The problem with evidence-based medicine is that it tells you what is best *on average*, and this one-
57 size-fits-all approach may not benefit all patients. However, with the increasing affordability and
58 availability of publicly available genotyping platforms, a more nuanced approach may be possible
59 through consideration of an individual's underlying genetic profile. Genomics may hold the key for
60 precision medicine, in which care is tailored to the individual patient, based on their unique profile for
61 disease susceptibility, prognosis, and response to therapy. This personalised approach could ensure
62 that treatment is provided to only those who would benefit, sparing unnecessary cost and side effects
63 for those who would not, ensuring efficient and effective healthcare provision.

64 **GENETICS AND PRECISION MEDICINE**

65 Glaucoma is one of the most heritable of all complex human diseases (estimated h^2 , 0.70) and may be
66 inherited as a simple (monogenic) or complex (polygenic) trait.[12,13] In adults, certain highly

67 penetrant genetic variants may be sufficient to cause disease, but are estimated to account for only 4%
68 of all POAG cases.[13] The most common form – caused by myocilin (*MYOC*) gene sequence
69 variations, first identified in 1997 – results in abnormal protein accumulation in the trabecular
70 meshwork (TM), impeded aqueous outflow and elevated IOP.[14,15]

71 Characterisation and improved understanding of the genetic and anatomical basis underlying myocilin
72 glaucoma holds promise for the development of curative therapeutic options for these patients in the
73 future. Disruption of mutant *MYOC* and its function using CRISPR-Cas9 gene-editing technology has
74 been shown to lower IOP and prevent further glaucomatous damage in a mouse model of the
75 disease.[16] Several clinical reports have also highlighted the potential benefit of gonioscopy-assisted
76 transluminal trabeculotomy (thereby directly bypassing the obstructed TM) in patients with myocilin
77 glaucoma and uncontrolled IOP despite maximal medical therapy.[17,18] If we knew which POAG
78 patients harboured pathogenic *MYOC* variants, then we could personalise their treatment by targeting
79 the TM with a precise surgical approach.

80 The genetics underpinning more than 95% of adult-onset POAG, however, is far more complex. In
81 these cases, multiple genetic risk factors, each with small effect, cumulatively contribute to disease.
82 While a single variant is generally insufficient to cause glaucoma, the combined burden across an
83 individual's genome may confer a risk equivalent to that seen in monogenic disease.[19] However,
84 high genetic risk is not deterministic – some patients with multiple risk factors don't develop
85 glaucoma, while others with only a few may develop disease – and this complexity makes identifying
86 individual risk factors difficult.

87 Despite this challenge, there have been considerable advances in the identification of POAG-related
88 genetic variants over the last decade. As recently as 2016, traditional case-control genome-wide
89 association studies (GWAS) had identified less than 10 common genetic variants significantly
90 associated with POAG at a genome-wide level of significance ($P<5\times10^{-8}$).[20] These results
91 explained very little underlying biology and were insufficient to enable clinically relevant risk
92 prediction. This all changed with the advent of large-scale epidemiological studies and the realisation
93 that many answers could be provided through genetic analysis of IOP.

94 It has long been known that IOP represents a key mediating factor for glaucoma.[21] The prevalence
95 of glaucoma increases exponentially with increasing IOP,[5] and lowering IOP reduces the risk of
96 both glaucoma onset and progression.[9] Even within a healthy population, IOP can vary twofold and
97 still be in the normal range.[5] IOP also has strong genetic basis (estimated h^2 , 0.55) and examining
98 variation within the normal range may therefore offer insights into pathologically elevated IOP and
99 glaucoma.[22]

100 The population-based UK Biobank study provided the necessary participant numbers to examine
101 these associations in substantially greater detail than previous GWAS.[23,24] Over 100,000
102 participants took part in a comprehensive eye and vision study,[25] including IOP measurement with
103 an Ocular Response Analyser (ORA).[26] The ORA is able to account for corneal biomechanical
104 properties and provides an estimate of true IOP, relatively independent of potential corneal
105 artefact.[27]

106 Combining this data with that from several smaller studies resulted in the identification of >100
107 genetic variants significantly associated with IOP and provided many important biological
108 insights.[21] Nearly all risk loci identified in the 2016 POAG GWAS were shown to be associated
109 with IOP (two were not), highlighting the importance of IOP as a risk factor for disease. Two genes
110 related to mitochondrial function (*ATXN2* and *TXNRD2*), previously thought to influence glaucoma
111 risk through a direct effect on the optic nerve, were shown instead to influence IOP. Four loci
112 previously associated with primary angle-closure glaucoma (*HGF*, *GLIS3*, *PLEKHA7*, and *FERMT2*)
113 were shown to influence IOP, suggesting that more subtle features of the angle-closure phenotype
114 might explain a proportion of IOP variance in the normal population. Many other novel associations,
115 including genes previously associated with childhood glaucoma (*LMX1B* and *LTBP2*), ocular
116 development (*MEIS1*, *SIX3*, and *ADAMTS18*), axial length (*RSPO1*), and iris architecture
117 (*TRAF3IP1*), were identified.

118 Notably, pathways involved in ocular development were found to be strongly enriched, suggesting
119 that IOP may be genetically determined through anatomical development of the eye. If the aqueous
120 outflow pathway is poorly developed, IOP may decompensate within the normal human lifespan,

121 increasing the risk for glaucoma in these individuals. Interestingly, the primary biological pathway
122 implicated in these analyses was for angiogenesis, with the main genes driving this relationship
123 (*VEGFC*, *ANGPT1*, and *ANGPT2*) known to play a role in lymphangiogenesis. While the trabecular
124 meshwork (TM), derived from epithelium and neural crest cells, and often considered the primary site
125 of dysfunction in glaucoma, bears no embryological or anatomical relationship to lymphatic tissue,
126 Schlemm's canal and collector channels, derived from endothelium and mesoderm, are related to
127 lymphatic vessels. This finding suggests that the distal aqueous outflow pathways, and not just the
128 TM, may be important in glaucoma pathogenesis.

129 This hypothesis is well demonstrated in mouse models of glaucoma, with eyes from mice with
130 induced *ANGPT1* and *ANGPT2* deletions showing no Schlemm's canal development but a normal
131 TM.[28] Similarly, intracameral delivery of *VEGFC* resulted in sprouting, proliferation, and growth
132 of Schlemm's canal and a sustained reduction in IOP in adult mice.[29] These results raise the
133 question of whether we may be able to predict which patients will respond to treatments that target the
134 TM (like SLT or trabeculotomy) or identify those that may benefit from alternative therapies. Our
135 hypothesis is that patients with a genetic signature for raised IOP due to a Schlemm's canal and
136 collector channel problem will not respond as well to TM-targeted treatments.

137 **PREDICTION AND RISK STRATIFICATION**

138 Aside from biological insights, an important question is whether these genetic factors can be used to
139 predict IOP and whether this may be clinically relevant to glaucoma. Applied to an independent study,
140 these genome-wide significant genetic factors explained 17% of variance in IOP, and when examined
141 in a second independent US cohort of 3,853 POAG cases and 33,480 controls, there was a strong
142 correlation between the genetic variants' association with IOP and their association with
143 glaucoma.[21] This dose-response relationship suggests that, genetically, any variant that influences
144 IOP has a corresponding magnitude of effect on glaucoma risk.

145 Receiver operator characteristic (ROC) curves were then used to examine whether these IOP genetic
146 factors, combined with age and sex, could predict prevalent glaucoma. These POAG predictive

147 models performed well for both high tension glaucoma (HTG) and normal tension glaucoma (NTG),
148 with areas under the ROC curve of 0.76 and 0.71, respectively.[21] While this level of predictive
149 ability is not diagnostic, and we would never expect a genetic test to be diagnostic, this level of
150 performance is sufficient to enable identification of a high-risk subset of the population (see below).
151 The relatively strong performance of IOP genetic factors in predicting NTG confirms that IOP is an
152 important risk factor even in low-tension glaucoma subtypes.

153 Another approach to glaucoma risk stratification and prediction is the use of polygenic risk scores
154 (PRS). The total number of risk variants present, often weighted by their magnitude of effect, are
155 combined into a single probabilistic value (the PRS) that represents a quantitative summary of an
156 individual's genetic susceptibility to a specific trait or disease.[30] In a clinical context, a PRS can
157 then be used to stratify a population based on underlying levels of genetic susceptibility to disease. A
158 recent POAG PRS demonstrated considerable risk stratification in an independent Australian cohort,
159 with those in the top 10% of the PRS distribution having a >15-fold risk for glaucoma compared to
160 those in the bottom 10%, and a >4-fold risk compared to the bottom 90%. [31]

161 The ability to identify those at high genetic risk for glaucoma has important implication for future
162 screening strategies. Although early detection and timely intervention are essential to prevent
163 glaucoma-related visual morbidity, population-based screening for the disease is not currently
164 recommended.[7,32] Even with good diagnostic tests, screening for relatively low prevalence
165 conditions such as undetected glaucoma, results in many false positive referrals and has the potential
166 to overburden healthcare services. However, in the future, should population-level genetic data be
167 available, those at the highest risk for glaucoma (in the top 10% of the PRS distribution, for example)
168 could be identified. Applying the same diagnostic test to this selected population (with a much higher
169 glaucoma prevalence) would result in far fewer false positives and may potentially prove to be a cost-
170 effective screening strategy.[7]

171 With ongoing population ageing and increased access to eyecare services, the global burden of
172 glaucoma (which is projected to increase to 112 million by 2040) threatens to overwhelm already
173 stretched healthcare services.[4,33] In the OHTS trial, almost 90% of participants with ocular

174 hypertension did not develop glaucoma after more than 6 years of follow up.[8] Risk stratification of
175 these patients will therefore become essential to delivering cost-effective and efficient care. In the
176 future, genomics may facilitate this by enabling prediction of which patients will progress, allowing
177 for targeted and appropriate allocation of limited resources.

178 A risk stratification calculator based on the results of the OHTS trial has already been developed and
179 incorporates several clinical parameters, including IOP, central corneal thickness, vertical cup-disc
180 ratio (vCDR), visual field pattern standard deviation, and age.[34] However, addition of a single well-
181 known genetic risk factor for IOP and glaucoma – a variant in the *TMCO1* gene (rs4656461) – to the
182 calculator, demonstrated a hazard ratio of 1.73 per additional risk allele (equivalent to a 3-fold greater
183 risk in homozygotes), a magnitude of effect equivalent to a participant being 33 years older, having a
184 baseline vCDR 0.43 larger, or having a baseline IOP 12mmHg higher.[35] Although this study needs
185 replication, it provides a good indication of how genomics may further enhance current clinical risk
186 stratification strategies.

187 **LIFESTYLE ADVICE**

188 While genomics has the potential to revolutionise decision making for the treating clinician, in future
189 it may also help to inform lifestyle advice for individuals with glaucoma. Despite patients often
190 asking what additional measures they can take to complement their treatment plan, for many years
191 there has been limited evidence to support lifestyle and dietary recommendations in glaucoma.[30] If
192 genetics is able to identify those at substantially higher risk for glaucoma, but before the overt onset
193 of disease, these individuals need to be empowered with advice on behaviours that may reduce their
194 risk for progression. However, these environmental and dietary factors are often difficult to quantify
195 precisely, and previous studies have often been limited by small sample sizes and a lack of genetic
196 data. This line of research has been greatly advanced by the advent of large-scale epidemiological
197 studies, such as the UK Biobank, with detailed participant phenotyping, as well as ocular and genetic
198 data.[23–25]

199 Within the UK Biobank, investigators were able to quantify the total dietary caffeine intake (not just
200 that from common dietary sources, such as tea and coffee) of more than 100,000 participants, using
201 the Oxford WebQ, an online dietary questionnaire.[36] Combining this with data from a
202 comprehensive eye and vision sub-study,[25] they were able to conduct the largest study of the
203 relationship between caffeine and glaucoma to date. Overall, total caffeine intake was associated with
204 slightly lower IOP and had no association with glaucoma.[37] However, after stratifying participants
205 according to their underlying genetic risk, based on a PRS for IOP,[21] an interesting finding
206 emerged. For those in the top quartile of the PRS distribution, caffeine was significantly associated
207 with higher IOP and greater odds of glaucoma, suggesting that caffeine may represent an important
208 risk factor, but only in those who are genetically predisposed. The assessment of these gene-
209 environment interactions (in which a certain factor has a differential effect depending on genetic risk)
210 requires very large sample sizes and may explain why the lifestyle glaucoma literature has been
211 hampered in the past.[30] Caffeine is an adenosine receptor antagonist and may affect aqueous
212 humour homeostasis through effects on ciliary body and TM receptors.[38,39] The authors
213 hypothesised that in individuals at low genetic risk with a well-developed outflow system, caffeine-
214 induced IOP fluctuations could be tolerated without consequence, but that in individuals at high
215 genetic risk with limited outflow reserve, these could lead to higher IOP and glaucoma risk.

216 A similar dietary analysis for alcohol consumption has also been performed in the UK Biobank.[40]
217 Although prior studies had suggested that alcohol may be detrimental for glaucoma, the quality of
218 evidence supporting this relationship was poor.[41] In UK Biobank participants, alcohol intake was
219 found to be adversely associated with IOP, glaucoma, and two structural biomarkers of glaucoma –
220 OCT-derived macular retinal nerve fibre layer (mRNFL) thickness and ganglion cell-inner plexiform
221 later (GCIPL) thickness – regardless of their genetic makeup. However, when participants were
222 further stratified according to their genetic risk, based on a comprehensive glaucoma PRS,[31] a
223 similar finding to the caffeine analysis emerged. While no association between alcohol intake and IOP
224 was evident in those at the lowest genetic risk, progressively stronger adverse associations were

225 demonstrated in those at higher risk, again suggesting that genetic susceptibility to disease may
226 determine whether certain factors influence glaucoma risk.[40]

227 Research into environmental risks for glaucoma continues to produce new discoveries and better
228 characterisation of the potential role of lifestyle and dietary factors. For example, similar results have
229 recently been demonstrated for salt intake but not for physical activity.[42,43] These discoveries may
230 eventually lead to personalised lifestyle and dietary recommendations for glaucoma patients in the
231 future.

232 **FUTURE DIRECTIONS**

233 Recent studies and novel analytical approaches, including POAG GWAS meta-analysis,[44] GWAS
234 for optic nerve head morphology,[45] and multitrait GWAS, combining glaucoma, IOP and vCDR
235 data,[31,46] have further enabled genetic discovery and advanced our understanding of glaucoma
236 pathogenesis. Modelling suggests that even larger studies will lead to substantial increases in the
237 number of genetic variants identified and variance explained.[47] Ultimately, this will lead to
238 improved glaucoma risk scores, especially with new methods of PRS construction,[48] further
239 enabling risk stratification and the potential for precision glaucoma management.

240 Unfortunately, the majority of genetic data currently available is derived from European populations,
241 with limited generalisability and poorer PRS performance in other ancestries.[49] There is an urgent
242 need for more and improved glaucoma genetic data from non-European participants. The first GWAS
243 for POAG in Africans identified only one genetic risk locus,[50] but much larger ongoing projects,
244 such as the H3 Eyes of Africa project,[51] promise to improve this genetic discovery.

245 While the only way to target those at high risk in the general population is if everyone has genetic
246 data available, there are several indications that population-level genotyping may soon become a
247 distinct reality. Direct-to-consumer genotyping platforms, such as 23andMe (www.23andme.com),
248 already offer a glaucoma PRS and clinicians may soon start encountering patients with knowledge of
249 their genetic risk for glaucoma.

250 Ambitious projects, such as the Our Future Health study (www.ourfuturehealth.org.uk), which aims to
251 genotype 5 million UK adults (approximately 10% of the adult population) by 2025, are already
252 underway and promise to revolutionise genomics health research. For as little as £20 per participant,
253 the study will provide not only genetic data relevant to glaucoma, but for a range of disease outcomes
254 and health states. This may pave the way for all healthcare users eventually being genotyped and the
255 information being held centrally, which clinicians and researchers may be able to utilise.

256 **CONCLUSION**

257 Genomics promises to change the way we detect glaucoma in the general population, enabling early
258 detection and the prevention of glaucoma-related visual impairment and blindness. It will assist with
259 risk stratification so that we can focus appropriate interventions on those at high risk, but also save
260 limited resources by avoiding unnecessary treatment on individuals who will not benefit. It has the
261 potential to lead to personalised glaucoma treatment, allowing clinicians to provide the most
262 appropriate therapy to the individual patient from the outset, rather than following the trial-and-error
263 approach of traditional treatment algorithms. It may also inform lifestyle and dietary advice for
264 glaucoma patients in the future. Although much research is still needed, every indication suggests that
265 genomics holds the key to unlocking further biological insights and to delivering personalised, cost-
266 effective, and efficient glaucoma care in years to come.

REFERENCES

- 1 GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. *Lancet Glob Heal*. 2021;9:e144–60.
- 2 Quartilho A, Simkiss P, Zekite A, *et al*. Leading causes of certifiable visual loss in England and Wales during the year ending 31 March 2013. *Eye*. 2016;30:602–7.
- 3 Pezzullo L, Streatfeild J, Simkiss P, *et al*. The economic impact of sight loss and blindness in the UK adult population. *BMC Health Serv Res*. 2018;18:63.
- 4 Tham Y-C, Li X, Wong TY, *et al*. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. *Ophthalmology*. 2014;121:2081–90.
- 5 Chan MPY, Broadway DC, Khawaja AP, *et al*. Glaucoma and intraocular pressure in EPIC-Norfolk Eye Study: cross sectional study. *BMJ*. 2017;358:j3889.
- 6 McCann P, Hogg R, Wright DM, *et al*. Glaucoma in the Northern Ireland Cohort for the Longitudinal Study of Ageing (NICOLA): cohort profile, prevalence, awareness and associations. *Br J Ophthalmol*. 2020;104:1492–9.
- 7 Hamid S, Desai P, Hysi P, *et al*. Population screening for glaucoma in UK: current recommendations and future directions. *Eye*. 2022;36:504–9.
- 8 Kass MA, Heuer DK, Higginbotham EJ, *et al*. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. *Arch Ophthalmol*. 2002;120:701–13.
- 9 Garway-Heath DF, Crabb DP, Bunce C, *et al*. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. *Lancet*. 2015;385:1295–304.
- 10 Gazzard G, Konstantakopoulou E, Garway-Heath D, *et al*. Selective laser trabeculoplasty versus eye drops for first-line treatment of ocular hypertension and glaucoma (LiGHT): a multicentre randomised controlled trial. *Lancet*. 2019;393:1505–16.
- 11 Khawaja AP, Campbell JH, Kirby N, *et al*. Real-World Outcomes of Selective Laser Trabeculoplasty in the United Kingdom. *Ophthalmology*. 2020;127:748–57.
- 12 Wang K, Gaitsch H, Poon H, *et al*. Classification of common human diseases derived from shared genetic and environmental determinants. *Nat Genet*. 2017;49:1319–25.

- 13 Stein JD, Khawaja AP, Weizer JS. Glaucoma in Adults—Screening, Diagnosis, and Management. *JAMA*. 2021;325:164.
- 14 Stone EM, Fingert JH, Alward WL, *et al.* Identification of a gene that causes primary open angle glaucoma. *Science*. 1997;275:668–70.
- 15 van der Heide CJ, Alward WLM, Flamme-Wiese M, *et al.* Histochemical Analysis of Glaucoma Caused by a Myocilin Mutation in a Human Donor Eye. *Ophthalmol Glaucoma*. 2018;1:132–8.
- 16 Jain A, Zode G, Kasetti RB, *et al.* CRISPR-Cas9-based treatment of myocilin-associated glaucoma. *Proc Natl Acad Sci U S A*. 2017;114:11199–204.
- 17 Boese EA, Alward WLM, Fingert JH. Gonioscopy-Assisted Transluminal Trabeculotomy for Myocilin Juvenile Glaucoma. *Ophthalmol Glaucoma*. 2022;5:369–70.
- 18 Dhillon S, Deol S, Tatham AJ. Genotype guided glaucoma surgery. *Eye*. 2023;doi:10.1038/s41433-023-02484-1.
- 19 Khera A V, Chaffin M, Aragam KG, *et al.* Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. *Nat Genet*. 2018;50:1219–24.
- 20 Bailey JNC, Loomis SJ, Kang JH, *et al.* Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. *Nat Genet*. 2016;48:189–94.
- 21 Khawaja AP, Cooke Bailey JN, Wareham NJ, *et al.* Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. *Nat Genet*. 2018;50:778–82.
- 22 Sanfilippo PG, Hewitt AW, Hammond CJ, *et al.* The heritability of ocular traits. *Surv Ophthalmol*. 2010;55:561–83.
- 23 Sudlow C, Gallacher J, Allen N, *et al.* UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLoS Med*. 2015;12:e1001779.
- 24 Bycroft C, Freeman C, Petkova D, *et al.* The UK Biobank resource with deep phenotyping and genomic data. *Nature*. 2018;562:203–9.
- 25 Chua SYL, Thomas D, Allen N, *et al.* Cohort profile: design and methods in the eye and vision consortium of UK Biobank. *BMJ Open*. 2019;9:e025077.

26 Kaushik S, Pandav SS. Ocular Response Analyzer. *J Curr Glaucoma Pract.* 2012;6:17–9.

27 Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. *J Cataract Refract Surg.* 2005;31:156–62.

28 Thomson BR, Heinen S, Jeansson M, *et al.* A lymphatic defect causes ocular hypertension and glaucoma in mice. *J Clin Invest.* 2014;124:4320–4.

29 Aspelund A, Tammela T, Antila S, *et al.* The Schlemm's canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. *J Clin Invest.* 2014;124:3975–86.

30 Stuart KV, Pasquale LR, Kang JH, *et al.* Towards modifying the genetic predisposition for glaucoma: An overview of the contribution and interaction of genetic and environmental factors. *Mol Aspects Med.* 2023;93:101203.

31 Craig JE, Han X, Qassim A, *et al.* Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. *Nat Genet.* 2020;52:160–6.

32 Chou R, Selph S, Blazina I, *et al.* Screening for Glaucoma in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. *JAMA.* 2022;327:1998–2012.

33 Fu DJ, Ademisoye E, Shih V, *et al.* Burden of Glaucoma in the United Kingdom: A Multicenter Analysis of United Kingdom Glaucoma Services. *Ophthalmol Glaucoma.* 2023;6:106–15.

34 Gordon MO, Beiser JA, Brandt JD, *et al.* The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. *Arch Ophthalmol.* 2002;120:714–20.

35 Scheetz TE, Faga B, Ortega L, *et al.* Glaucoma Risk Alleles in the Ocular Hypertension Treatment Study. *Ophthalmology.* 2016;123:2527–36.

36 Liu B, Young H, Crowe FL, *et al.* Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. *Public Health Nutr.* 2011;14:1998–2005.

37 Kim J, Aschard H, Kang JH, *et al.* Intraocular Pressure, Glaucoma, and Dietary Caffeine Consumption: A Gene-Diet Interaction Study from the UK Biobank. *Ophthalmology.* 2021;128:866–76.

38 Ribeiro JA, Sebastião AM. Caffeine and adenosine. *J Alzheimers Dis.* 2010;20:S3-15.

39 Spinozzi E, Baldassarri C, Acquaticci L, *et al.* Adenosine receptors as promising targets for the management of ocular diseases. *Med Chem Res.* 2021;30:353–70.

40 Stuart KV, Luben RN, Warwick AN, *et al.* The Association of Alcohol Consumption with Glaucoma and Related Traits: Findings from the UK Biobank. *Ophthalmol Glaucoma.* 2023;6:366–79.

41 Stuart KV, Madjedi K, Luben RN, *et al.* Alcohol, Intraocular Pressure, and Open-Angle Glaucoma: A Systematic Review and Meta-analysis. *Ophthalmology.* 2022;129:637–52.

42 Stuart KV, Biradar M, Luben R, *et al.* Association of urinary sodium excretion with glaucoma and related traits. *Investig Ophthalmol Vis Sci.* 2023;64:2908.

43 Madjedi KM, Stuart KV, Chua SY, *et al.* The Association of Physical Activity with Glaucoma and Related Traits in the UK Biobank. *Ophthalmology.* 2023;130:1024–36.

44 Gharahkhani P, Jorgenson E, Hysi P, *et al.* Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. *Nat Commun.* 2021;12:1258.

45 Alipanahi B, Hormozdiari F, Behsaz B, *et al.* Large-scale machine-learning-based phenotyping significantly improves genomic discovery for optic nerve head morphology. *Am J Hum Genet.* 2021;108:1217–30.

46 Han X, Gharahkhani P, Hamel AR, *et al.* Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci. *Nat Genet.* 2023;55:1116–25.

47 Xu Z, Hysi P, Khawaja AP. Genetic Determinants of Intraocular Pressure. *Annu Rev Vis Sci.* 2021;7:727–46.

48 Choi SW, Mak TS-H, O'Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. *Nat Protoc.* 2020;15:2759–72.

49 Cooke Bailey JN, Funk KL, Cruz LA, *et al.* Diversity in Polygenic Risk of Primary Open-Angle Glaucoma. *Genes.* 2022;14:111.

50 Genetics of Glaucoma in People of African Descent (GGLAD) Consortium, Hauser MA, Allingham RR, *et al.* Association of Genetic Variants With Primary Open-Angle Glaucoma Among Individuals With African Ancestry. *JAMA.* 2019;322:1682–91.

51 Olawoye O, Chuka-Okosa C, Akpa O, *et al.* Eyes of Africa: The Genetics of Blindness: Study Design and Methodology. *BMC Ophthalmol.* 2021;21:272.