Genomics enabling personalised glaucoma care
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ABSTRACT

Glaucoma is a leading cause of visual impairment and a significant public health concern, but despite
ongoing advances in our understanding of the disease, several important clinical challenges remain.
With the number of affected people projected to increase substantially over coming decades, novel
approaches to screening, risk stratification, therapy, and glaucoma research are essential to deal with
this expanding burden in an efficient and cost-effective manner. Genomics may hold the key to
unlocking further biological insights and enabling precision medicine, in which glaucoma care is
tailored to the individual patient, based on their unique profile for disease. Here we provide an
overview of how genomics may enable cost-effective targeted population screening and personalised
predictions of risk, response to treatment, and effective lifestyle advice. Given rapid advances in
genetic testing technology and a move toward population-level genotyping, these early results have
several important implications that promise to revolutionise the way in which glaucoma is detected

and managed in years to come.
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CURRENT CHALLENGES IN GLAUCOMA CARE

Glaucoma is the leading cause of irreversible blindness globally and the second most common cause
of certifiable visual impairment in the United Kingdom (UK).[1,2] Loss of vision threatens not only
individual safety, independence, and emotional well-being, but results in an increased need for social
services, responsible for an estimated annual economic burden of £28 billion in the UK alone.[3]
Glaucoma affects over 80 million people worldwide,[4] or approximately 4% of all adults aged >50
years.[5] Despite substantial advances in our understanding of the disease in recent years, several
important clinical questions, spanning the spectrum of glaucoma care, remain unanswered. With
prevalence estimated to increase by almost 50% by 2040,[4] novel strategies to address this expanding

patient load are essential.

The progressive, irreparable nature of glaucoma means that early detection and treatment are critical
for the prevention of visual morbidity. However, the early stages of the disease are asymptomatic,
with up to two-thirds of those affected in the UK undiagnosed, or at least unaware of their
diagnosis.[5,6] Population screening would therefore necessitate mass ophthalmic examination which,
in the absence of adequate tests and a sufficiently high population prevalence, is neither feasible nor
recommended.[7] Is there a viable and cost-effective strategy that could potentially enable

community-based glaucoma screening?

Current treatment paradigms for glaucoma patients or people at risk of glaucoma are guided by an
evidence-based approach, but while landmark glaucoma trials have answered several important
clinical questions, they have also generated many more. For example, the Ocular Hypertension
Treatment Study (OHTS) demonstrated elevated intraocular pressure (IOP) to be a major risk factor
for primary open-angle glaucoma (POAG) and established that, on average, high IOP should be
treated even before manifest glaucoma is present.[8] However, only 11% of untreated participants
converted to POAG during the study period, suggesting that many were treated unnecessarily.
Similarly, the United Kingdom Glaucoma Treatment Study (UKGTS) showed that the use of
latanoprost compared to placebo more than halved visual field progression in those with established

glaucoma.[9] However, 75% of participants receiving placebo did not measurably progress, while
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15% of those in the treatment group demonstrated visual field deterioration within two years of follow
up. These observations beg the questions: (1) Do we need to treat everybody who meets diagnostic
criteria for glaucoma; and (2) would those who progressed, despite receiving therapy, benefit from

different or more intensive treatment?

Routine glaucoma monitoring is typically achieved through serial visual field assessment, but
presently, baseline prediction of which patients will progress is poor. Additionally, questions remain
as to which of the various treatment options available — including medication, laser, minimally-
invasive and penetrating surgery — represents the best therapeutic approach. Recently, the Laser in
Glaucoma and Ocular Hypertension (LiGHT) trial demonstrated that selective laser trabeculoplasty
(SLT) may be preferable to topical agents as a first-line therapy, with 74% of those in the SLT arm
maintaining target IOP after 3 years of follow up.[10] A large analysis of real-world SLT outcomes
showed that the average IOP response following therapy was an initial decrease, followed by a slow
rise over time.[11] However, a range of responses were observed, with some participants responding
well, and others not at all. Is there a way to predict who will respond to particular therapies and who

would benefit from alternative approaches?

The problem with evidence-based medicine is that it tells you what is best on average, and this one-
size-fits-all approach may not benefit all patients. However, with the increasing affordability and
availability of publicly available genotyping platforms, a more nuanced approach may be possible
through consideration of an individual’s underlying genetic profile. Genomics may hold the key for
precision medicine, in which care is tailored to the individual patient, based on their unique profile for
disease susceptibility, prognosis, and response to therapy. This personalised approach could ensure
that treatment is provided to only those who would benefit, sparing unnecessary cost and side effects

for those who would not, ensuring efficient and effective healthcare provision.

GENETICS AND PRECISION MEDICINE

Glaucoma is one of the most heritable of all complex human diseases (estimated 42, 0.70) and may be

inherited as a simple (monogenic) or complex (polygenic) trait.[12,13] In adults, certain highly
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penetrant genetic variants may be sufficient to cause disease, but are estimated to account for only 4%
of all POAG cases.[13] The most common form — caused by myocilin (MYOC) gene sequence
variations, first identified in 1997 — results in abnormal protein accumulation in the trabecular

meshwork (TM), impeded aqueous outflow and elevated IOP.[14,15]

Characterisation and improved understanding of the genetic and anatomical basis underlying myocilin
glaucoma holds promise for the development of curative therapeutic options for these patients in the
future. Disruption of mutant MYOC and its function using CRISPR-Cas9 gene-editing technology has
been shown to lower IOP and prevent further glaucomatous damage in a mouse model of the
disease.[16] Several clinical reports have also highlighted the potential benefit of gonioscopy-assisted
transluminal trabeculotomy (thereby directly bypassing the obstructed TM) in patients with myocilin
glaucoma and uncontrolled IOP despite maximal medical therapy.[17,18] If we knew which POAG
patients harboured pathogenic MYOC variants, then we could personalise their treatment by targeting

the TM with a precise surgical approach.

The genetics underpinning more than 95% of adult-onset POAG, however, is far more complex. In
these cases, multiple genetic risk factors, each with small effect, cumulatively contribute to disease.
While a single variant is generally insufficient to cause glaucoma, the combined burden across an
individual’s genome may confer a risk equivalent to that seen in monogenic disease.[19] However,
high genetic risk is not deterministic — some patients with multiple risk factors don’t develop
glaucoma, while others with only a few may develop disease — and this complexity makes identifying

individual risk factors difficult.

Despite this challenge, there have been considerable advances in the identification of POAG-related
genetic variants over the last decade. As recently as 2016, traditional case-control genome-wide
association studies (GWAS) had identified less than 10 common genetic variants significantly
associated with POAG at a genome-wide level of significance (P<5x10%).[20] These results
explained very little underlying biology and were insufficient to enable clinically relevant risk
prediction. This all changed with the advent of large-scale epidemiological studies and the realisation

that many answers could be provided through genetic analysis of IOP.



94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

It has long been known that IOP represents a key mediating factor for glaucoma.[21] The prevalence
of glaucoma increases exponentially with increasing IOP,[5] and lowering IOP reduces the risk of
both glaucoma onset and progression.[9] Even within a healthy population, IOP can vary twofold and
still be in the normal range.[5] IOP also has strong genetic basis (estimated 4% 0.55) and examining
variation within the normal range may therefore offer insights into pathologically elevated IOP and

glaucoma.[22]

The population-based UK Biobank study provided the necessary participant numbers to examine
these associations in substantially greater detail than previous GWAS.[23,24] Over 100,000
participants took part in a comprehensive eye and vision study,[25] including [OP measurement with
an Ocular Response Analyser (ORA).[26] The ORA is able to account for corneal biomechanical
properties and provides an estimate of true IOP, relatively independent of potential corneal

artefact.[27]

Combining this data with that from several smaller studies resulted in the identification of >100
genetic variants significantly associated with IOP and provided many important biological
insights.[21] Nearly all risk loci identified in the 2016 POAG GWAS were shown to be associated
with IOP (two were not), highlighting the importance of IOP as a risk factor for disease. Two genes
related to mitochondrial function (ATXN2 and TXNRD?2), previously thought to influence glaucoma
risk through a direct effect on the optic nerve, were shown instead to influence IOP. Four loci
previously associated with primary angle-closure glaucoma (HGF, GLIS3, PLEKHA7, and FERMT?2)
were shown to influence IOP, suggesting that more subtle features of the angle-closure phenotype
might explain a proportion of IOP variance in the normal population. Many other novel associations,
including genes previously associated with childhood glaucoma (LMX1B and LTBP2), ocular
development (MEIS1, SIX3, and ADAMTS138), axial length (RSPO]I), and iris architecture

(TRAF3IP1), were identified.

Notably, pathways involved in ocular development were found to be strongly enriched, suggesting
that IOP may be genetically determined through anatomical development of the eye. If the aqueous

outflow pathway is poorly developed, IOP may decompensate within the normal human lifespan,
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increasing the risk for glaucoma in these individuals. Interestingly, the primary biological pathway
implicated in these analyses was for angiogenesis, with the main genes driving this relationship
(VEGFC, ANGPT1, and ANGPT2) known to play a role in lymphangiogenesis. While the trabecular
meshwork (TM), derived from epithelium and neural crest cells, and often considered the primary site
of dysfunction in glaucoma, bears no embryological or anatomical relationship to lymphatic tissue,
Schlemm’s canal and collector channels, derived from endothelium and mesoderm, are related to
lymphatic vessels. This finding suggests that the distal aqueous outflow pathways, and not just the

TM, may be important in glaucoma pathogenesis.

This hypothesis is well demonstrated in mouse models of glaucoma, with eyes from mice with
induced ANGPT1 and ANGPT?2 deletions showing no Schlemm’s canal development but a normal
TM.[28] Similarly, intracameral delivery of VEGFC resulted in sprouting, proliferation, and growth
of Schlemm’s canal and a sustained reduction in IOP in adult mice.[29] These results raise the
question of whether we may be able to predict which patients will respond to treatments that target the
TM (like SLT or trabeculotomy) or identify those that may benefit from alternative therapies. Our
hypothesis is that patients with a genetic signature for raised IOP due to a Schlemm’s canal and

collector channel problem will not respond as well to TM-targeted treatments.

PREDICTION AND RISK STRATIFICATION

Aside from biological insights, an important question is whether these genetic factors can be used to
predict IOP and whether this may be clinically relevant to glaucoma. Applied to an independent study,
these genome-wide significant genetic factors explained 17% of variance in IOP, and when examined
in a second independent US cohort of 3,853 POAG cases and 33,480 controls, there was a strong
correlation between the genetic variants’ association with IOP and their association with
glaucoma.[21] This dose-response relationship suggests that, genetically, any variant that influences

IOP has a corresponding magnitude of effect on glaucoma risk.

Receiver operator characteristic (ROC) curves were then used to examine whether these IOP genetic

factors, combined with age and sex, could predict prevalent glaucoma. These POAG predictive
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models performed well for both high tension glaucoma (HTG) and normal tension glaucoma (NTG),
with areas under the ROC curve of 0.76 and 0.71, respectively.[21] While this level of predictive
ability is not diagnostic, and we would never expect a genetic test to be diagnostic, this level of
performance is sufficient to enable identification of a high-risk subset of the population (see below).
The relatively strong performance of IOP genetic factors in predicting NTG confirms that IOP is an

important risk factor even in low-tension glaucoma subtypes.

Another approach to glaucoma risk stratification and prediction is the use of polygenic risk scores
(PRS). The total number of risk variants present, often weighted by their magnitude of effect, are
combined into a single probabilistic value (the PRS) that represents a quantitative summary of an
individual’s genetic susceptibility to a specific trait or disease.[30] In a clinical context, a PRS can
then be used to stratify a population based on underlying levels of genetic susceptibility to disease. A
recent POAG PRS demonstrated considerable risk stratification in an independent Australian cohort,
with those in the top 10% of the PRS distribution having a >15-fold risk for glaucoma compared to

those in the bottom 10%, and a >4-fold risk compared to the bottom 90%.[31]

The ability to identify those at high genetic risk for glaucoma has important implication for future
screening strategies. Although early detection and timely intervention are essential to prevent
glaucoma-related visual morbidity, population-based screening for the disease is not currently
recommended.[7,32] Even with good diagnostic tests, screening for relatively low prevalence
conditions such as undetected glaucoma, results in many false positive referrals and has the potential
to overburden healthcare services. However, in the future, should population-level genetic data be
available, those at the highest risk for glaucoma (in the top 10% of the PRS distribution, for example)
could be identified. Applying the same diagnostic test to this selected population (with a much higher
glaucoma prevalence) would result in far fewer false positives and may potentially prove to be a cost-

effective screening strategy.[7]

With ongoing population ageing and increased access to eyecare services, the global burden of
glaucoma (which is projected to increase to 112 million by 2040) threatens to overwhelm already

stretched healthcare services.[4,33] In the OHTS trial, almost 90% of participants with ocular
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hypertension did not develop glaucoma after more than 6 years of follow up.[8] Risk stratification of
these patients will therefore become essential to delivering cost-effective and efficient care. In the
future, genomics may facilitate this by enabling prediction of which patients will progress, allowing

for targeted and appropriate allocation of limited resources.

A risk stratification calculator based on the results of the OHTS trial has already been developed and
incorporates several clinical parameters, including IOP, central corneal thickness, vertical cup-disc
ratio (vVCDR), visual field pattern standard deviation, and age.[34] However, addition of a single well-
known genetic risk factor for [OP and glaucoma — a variant in the TMCOI gene (rs4656461) — to the
calculator, demonstrated a hazard ratio of 1.73 per additional risk allele (equivalent to a 3-fold greater
risk in homozygotes), a magnitude of effect equivalent to a participant being 33 years older, having a
baseline vCDR 0.43 larger, or having a baseline IOP 12mmHg higher.[35] Although this study needs
replication, it provides a good indication of how genomics may further enhance current clinical risk

stratification strategies.

LIFESTYLE ADVICE

While genomics has the potential to revolutionise decision making for the treating clinician, in future
it may also help to inform lifestyle advice for individuals with glaucoma. Despite patients often
asking what additional measures they can take to complement their treatment plan, for many years
there has been limited evidence to support lifestyle and dietary recommendations in glaucoma.[30] If
genetics is able to identify those at substantially higher risk for glaucoma, but before the overt onset
of disease, these individuals need to be empowered with advice on behaviours that may reduce their
risk for progression. However, these environmental and dietary factors are often difficult to quantify
precisely, and previous studies have often been limited by small sample sizes and a lack of genetic
data. This line of research has been greatly advanced by the advent of large-scale epidemiological
studies, such as the UK Biobank, with detailed participant phenotyping, as well as ocular and genetic

data.[23-25]
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Within the UK Biobank, investigators were able to quantify the total dietary caffeine intake (not just
that from common dietary sources, such as tea and coffee) of more than 100,000 participants, using
the Oxford WebQ, an online dietary questionnaire.[36] Combining this with data from a
comprehensive eye and vision sub-study,[25] they were able to conduct the largest study of the
relationship between caffeine and glaucoma to date. Overall, total caffeine intake was associated with
slightly lower IOP and had no association with glaucoma.[37] However, after stratifying participants
according to their underlying genetic risk, based on a PRS for IOP,[21] an interesting finding
emerged. For those in the top quartile of the PRS distribution, caffeine was significantly associated
with higher IOP and greater odds of glaucoma, suggesting that caffeine may represent an important
risk factor, but only in those who are genetically predisposed. The assessment of these gene-
environment interactions (in which a certain factor has a differential effect depending on genetic risk)
requires very large sample sizes and may explain why the lifestyle glaucoma literature has been
hampered in the past.[30] Caffeine is an adenosine receptor antagonist and may affect aqueous
humour homeostasis through effects on ciliary body and TM receptors.[38,39] The authors
hypothesised that in individuals at low genetic risk with a well-developed outflow system, caffeine-
induced IOP fluctuations could be tolerated without consequence, but that in individuals at high

genetic risk with limited outflow reserve, these could lead to higher IOP and glaucoma risk.

A similar dietary analysis for alcohol consumption has also been performed in the UK Biobank.[40]
Although prior studies had suggested that alcohol may be detrimental for glaucoma, the quality of
evidence supporting this relationship was poor.[41] In UK Biobank participants, alcohol intake was
found to be adversely associated with IOP, glaucoma, and two structural biomarkers of glaucoma —
OCT-derived macular retinal nerve fibre layer (mMRNFL) thickness and ganglion cell-inner plexiform
later (GCIPL) thickness — regardless of their genetic makeup. However, when participants were
further stratified according to their genetic risk, based on a comprehensive glaucoma PRS,[31] a
similar finding to the caffeine analysis emerged. While no association between alcohol intake and IOP

was evident in those at the lowest genetic risk, progressively stronger adverse associations were
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demonstrated in those at higher risk, again suggesting that genetic susceptibility to disease may

determine whether certain factors influence glaucoma risk.[40]

Research into environmental risks for glaucoma continues to produce new discoveries and better
characterisation of the potential role of lifestyle and dietary factors. For example, similar results have
recently been demonstrated for salt intake but not for physical activity.[42,43] These discoveries may
eventually lead to personalised lifestyle and dietary recommendations for glaucoma patients in the

future.

FUTURE DIRECTIONS

Recent studies and novel analytical approaches, including POAG GWAS meta-analysis,[44] GWAS
for optic nerve head morphology,[45] and multitrait GWAS, combining glaucoma, IOP and vCDR
data,[31,46] have further enabled genetic discovery and advanced our understanding of glaucoma
pathogenesis. Modelling suggests that even larger studies will lead to substantial increases in the
number of genetic variants identified and variance explained.[47] Ultimately, this will lead to
improved glaucoma risk scores, especially with new methods of PRS construction,[48] further

enabling risk stratification and the potential for precision glaucoma management.

Unfortunately, the majority of genetic data currently available is derived from European populations,
with limited generalisability and poorer PRS performance in other ancestries.[49] There is an urgent
need for more and improved glaucoma genetic data from non-European participants. The first GWAS
for POAG in Africans identified only one genetic risk locus,[50] but much larger ongoing projects,

such as the H3 Eyes of Africa project,[51] promise to improve this genetic discovery.

While the only way to target those at high risk in the general population is if everyone has genetic
data available, there are several indications that population-level genotyping may soon become a
distinct reality. Direct-to-consumer genotyping platforms, such as 23andMe (www.23andme.com),
already offer a glaucoma PRS and clinicians may soon start encountering patients with knowledge of

their genetic risk for glaucoma.
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Ambitious projects, such as the Our Future Health study (www.ourfuturehealth.org.uk), which aims to
genotype 5 million UK adults (approximately 10% of the adult population) by 2025, are already
underway and promise to revolutionise genomics health research. For as little as £20 per participant,
the study will provide not only genetic data relevant to glaucoma, but for a range of disease outcomes
and health states. This may pave the way for all healthcare users eventually being genotyped and the

information being held centrally, which clinicians and researchers may be able to utilise.

CONCLUSION

Genomics promises to change the way we detect glaucoma in the general population, enabling early
detection and the prevention of glaucoma-related visual impairment and blindness. It will assist with
risk stratification so that we can focus appropriate interventions on those at high risk, but also save
limited resources by avoiding unnecessary treatment on individuals who will not benefit. It has the
potential to lead to personalised glaucoma treatment, allowing clinicians to provide the most
appropriate therapy to the individual patient from the outset, rather than following the trial-and-error
approach of traditional treatment algorithms. It may also inform lifestyle and dietary advice for
glaucoma patients in the future. Although much research is still needed, every indication suggests that
genomics holds the key to unlocking further biological insights and to delivering personalised, cost-

effective, and efficient glaucoma care in years to come.
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