
Approximate Bayesian Methods for
Sequential Few-Shot Problems

Pau Ching Yap

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

March 2023

2

I, Pau Ching Yap, confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm that

this has been indicated in the work.

Abstract

Neural networks are known to suffer from catastrophic forgetting when trained

on sequential datasets. While there have been numerous attempts to solve this

problem in large-scale supervised classification, little has been done to overcome

catastrophic forgetting in few-shot classification problems. We demonstrate that

the popular gradient-based model-agnostic meta-learning (MAML) algorithm

indeed suffers from catastrophic forgetting.

In this thesis, we introduce the Bayesian online meta-learning framework

to tackle the catastrophic forgetting issue in sequential few-shot classification

problems. Our framework utilises Bayesian online learning and meta-learning

along with Laplace approximation and variational inference to achieve this goal.

The experimental evaluations demonstrate that our framework can effectively

attain this objective in comparison to various baselines. As an additional utility,

we demonstrate empirically that our framework is capable of meta-learning on

sequentially arriving few-shot tasks from a stationary task distribution.

Laplace approximation entails Hessian computation for its Gaussian preci-

sion matrix. We extend the Kronecker-factored Hessian approximation method

in the large-scale classification setting to the gradient-based meta-learning

setting. The experiments illustrate the importance of this extension for a

principled framework when dealing with a long sequence of few-shot problems.

The final part of this thesis enhances the Bayesian online meta-learning

framework for automation and flexibility in handling a greater deal of sequential

few-shot problems. We utilise the long short-term memory networks (LSTMs)

to automate the meta-learning quick adaptation. The enhancement considers

Abstract 4

separating the neural network structure of a model, allowing the framework to

cope with different types of few-shot problems. We also incorporate a generative

classifier into the enhancement to act as a pointer that informs the model about

the few-shot problems it encounters.

Impact Statement

The work presented in this thesis exhibits various benefits both within and

outside academia. In the academic research field of artificial intelligence and

machine learning, our work has presented a new research direction in continual

learning for a sequence of few-shot problems. Continual learning and few-shot

learning are popular research directions that have attracted great attention

within the academic field of research. This thesis combines meta-learning for

few-shot classification along with continual learning to address catastrophic

forgetting. Our work can be extended in future research to handle few-shot

problems in other settings such as unsupervised learning and reinforcement

learning.

Artificial general intelligence has significantly gained public interest and

attention beyond the academic field. There are numerous industrial attempts

to create robots with general intelligence that can engage in human tasks.

The knowledge and experiences of a human being are continually accumulated

based on the events encountered. We naturally demand a robot with general

intelligence to possess the capability of knowledge accumulation in order to

integrate into the daily routines of human beings.

A possible future extension in the industry is to develop a personal assistant

robot, which is an agent tailored to integrate seamlessly into the dynamic

lifestyle and hobbies of a human being. For instance, the robot could initially

be trained to assist in culinary tasks, comprising a range of abilities from recipe

recommendation to meal preparation guidance. Subsequently, the robot’s skill

set can be expanded to include gardening, which is an entirely different domain

Impact Statement 6

that requires a distinct set of knowledge and experience. The versatility to

transition between culinary assistance and gardening support is crucial, since

human hobbies and lifestyle choices are prone to frequent changes. We strive

to create an agent that can deal with a wider range of problems, thus getting

closer to achieving artificial general intelligence. The work in Chapter 6 is

funded by the GoodAI company via GoodAI grant, which demonstrates an

industrial interest in our work.

Acknowledgements

I would like to express my gratitude to Professor David Barber, my primary

PhD supervisor, for his relentless guidance in my research work. My PhD

studies would not have been possible without his help and supervision. I am

also very grateful to my secondary supervisor Dr. Brooks Paige for his effort in

keeping my PhD research progress on track. I would like to express my deepest

appreciation to my loved ones for the unconditional love and mental support,

which assisted me through various obstacles in my studies. I would like to

thank my friends and fellow PhD colleagues in the group for the spontaneous

yet inspiring discussions about ongoing trends and ideas in research.

Contents

1 Introduction 25

1.1 Contributions . 29

1.2 Thesis Structure . 30

2 Related Work 32

2.1 Online Meta-Learning . 33

2.1.1 Regret minimisation . 33

2.1.2 Same underlying task distribution 34

2.2 Offline Meta-Learning . 34

2.2.1 Probabilistic . 34

2.2.2 Non-probabilistic . 35

2.3 Continual Learning . 35

3 Background 38

3.1 Meta-Learning . 38

3.1.1 Inner and Outer Updates 38

3.1.2 Model-Agnostic Meta-Learning 40

3.2 Bayesian Online Learning . 42

3.3 Laplace Approximation . 44

3.3.1 Precision Update Hyperparameter 45

3.3.2 Algorithm . 46

3.4 Variational Inference . 47

3.4.1 Posterior Approximation 47

Contents 9

3.4.2 Algorithm . 47

4 Bayesian Online Meta-Learning 49

4.1 Framework Overview . 49

4.2 Boml with Laplace Approximation 51

4.2.1 Derivation and Implementation 51

4.2.2 Algorithm . 53

4.3 Boml with Variational Inference 53

4.3.1 Derivation and Implementation 53

4.3.2 Algorithm . 55

4.4 Experiments . 56

4.4.1 Setup . 56

4.4.2 Triathlon . 58

4.4.3 Pentathlon . 60

4.5 Boml in Sequential Task Setting 63

4.5.1 Setting and Algorithm 63

4.5.2 Omniglot: Stationary Task Distribution 64

4.5.3 Results . 65

4.6 Discussion . 66

4.7 Ablation Studies . 68

4.7.1 Varying Precision Update Hyperparameter 68

4.7.2 Analysing the Approximate Posterior Covariance 69

5 Hessian Approximation 71

5.1 Introduction . 71

5.2 Background . 72

5.2.1 Fully-Connected Layers 73

5.2.2 Convolution Layers . 76

5.2.3 Batch Normalisation Layers 79

5.3 Hessian Approximation for Boml 80

5.3.1 Pre-Adaptation Hessian 81

Contents 10

5.3.2 Post-Adaptation Hessian 82

5.4 Experiments . 85

5.4.1 Ignoring the Jacobian . 85

5.4.2 Analysing the Cross Terms 88

6 Automating Bayesian Online Meta-Learning 92

6.1 Introduction . 92

6.2 Background . 94

6.2.1 Learning-to-Learn with LSTM 94

6.2.2 Generative Classifier . 96

6.2.3 Badger Architecture . 97

6.3 Framework . 98

6.3.1 Overview . 98

6.3.2 LSTM Inner Loop . 99

6.3.3 Task-Pointer . 100

6.3.4 Relation to Badger . 101

6.4 Implementation . 101

6.4.1 Training . 101

6.4.2 Evaluation . 103

6.5 Experiments . 103

6.5.1 Setup . 103

6.5.2 Component Comparison 105

6.5.3 Results . 106

7 Conclusion and Discussion 110

7.1 Conclusion . 110

7.2 Discussion . 112

7.2.1 Advantage of Boml and Boml+ 112

7.2.2 Disadvantage and Future Research 113

Appendices 115

Contents 11

A Hyperparameters 115

A.1 Triathlon and Pentathlon . 115

A.2 Omniglot: Sequential Tasks . 117

A.3 Boml+ . 117

Bibliography 118

List of Figures

1.1 An example of catastrophic forgetting when the knowledge do-

main datasets arrive sequentially for training: MNIST → SVHN

→ ImageNet. When ImageNet arrives for training, the model

might forget the previously learned MNIST and SVHN (in dashed

line). A drastic performance drop on MNIST and SVHN

when training on the new dataset ImageNet is known as catas-

trophic forgetting. 25

1.2 An example of a task in the Omniglot knowledge domain. The

Omniglot classes are composed of various alphabets with different

characters, such as Latin character 1, Sanskrit character 14,

Greek character 3, and so forth. A task is formed by sampling a

specific number of classes. Few-shot learning seeks for a model

that can adapt quickly to a task using very few labelled examples.

The model performance is evaluated on the remaining data from

the task. 26

List of Figures 13

1.3 An example of the sequential few-shot classification problems

with evident dataset distributional shift: Omniglot→ CIFAR-FS

→ miniImageNet. The datasets arrive in sequential order for

training. Upon completion in training, we expect the model to

be able to handle tasks from all knowledge domains (connected

in). We sample an unseen task from each knowledge domain

(arrow in). For a sampled task from Omniglot as an example,

the model undergoes quick adaptation (in red dashed arrow

) using very few examples from the task and we evaluate the

few-shot performance (in blue dashed arrow) using the

remaining data from the same task. 27

1.4 An example of the intrinsic human learning behaviour of general-

ising to relevant tasks (in red arrow) and continually accumulate

knowledge from different domains (in blue arrow). Few-shot

learning handles a process of the red arrows, but it cannot man-

age a process of the blue arrows. Conversely, continual learning

deals with a process of the blue arrows, but it fails to handle

a process of the red arrows. Our sequential few-shot problems

setting assimilates both learning capabilities into a single agent. 28

3.1 An illustration of the base-novel split for the Omniglot classes.

Omniglot comprises 1623 characters from various alphabets and

each character is a class. We can, for instance, sample 1000

characters as the base set for meta-training and the remaining

classes as the novel set for meta-evaluation. 39

List of Figures 14

3.2 An example of a meta-training inner and outer loop in the 5-way

1-shot setting for Omniglot. We sample a meta-batch of tasks

D1, . . . ,Dm, . . . from a base set D of the Omniglot knowledge

domain. Each task m is split into the support set Dm,S and

query set Dm,Q. The support set Dm,S comprises one example

from each class of the 5-way task. For each task m, the inner

loop quickly adapts the meta-parameters θ into a task-specific

θ̃m using Dm,S. The outer loop then aggregates the losses on

every θ̃m with query set Dm,Q. The aggregated loss is utilised to

update the meta-parameters θ. 40

4.1 The Boml process flow for meta-training and meta-evaluation on

an example sequence (Omniglot→ CIFAR-FS→ miniImageNet)

when each dataset arrives. Consider the CIFAR-FS knowledge

domain D2 for instance, D2 is split into the base D2 and novel

D̂2 sets when it arrives. Meta-training on this knowledge domain

only occurs on the base set D2 using the recursive formula in

Equation (4.3). The arrows in purple illustrate that the updated

posterior is being brought forward for the next meta-training

when a new dataset arrives. We meta-evaluate the few-shot

performance on the accumulated novel sets D̂1, D̂2 from the

knowledge domains that arrived so far. 50

4.2 The triathlon 5-way 1-shot sequence in this experiment. 58

List of Figures 15

4.3 Meta-evaluation accuracy across 3 seed runs on each dataset

along meta-training. Going from left to right on the x-axis of

the figure is the meta-training times of the knowledge domain

datasets that arrive in sequential order. The second row in

the figure, for instance, corresponds to the miniQuickDraw

knowledge domain. The first plot in the second row is empty

since miniQuickDraw has not arrived during the meta-training

time of Omniglot. The diagonal plot (middle plot) in the second

row corresponds to the meta-evaluation accuracy on the novel

set of miniQuickDraw when meta-training occurs on the base set

of miniQuickDraw. The off-diagonal plot (last plot) shows the

meta-evaluation on the miniQuickDraw novel set, when meta-

training occurs on the next knowledge domain CIFAR-FS. Higher

accuracy values in the off-diagonals indicate less forgetting. The

baseline TOE corresponds to an upper limit in the performance

since it has access to all datasets encountered so far. Sequential

MAML corresponds to a lower limit in the performance since

MAML forgets on previous datasets by design of the algorithm. 59

4.4 The pentathlon 5-way 1-shot sequence in this experiment. 60

List of Figures 16

4.5 Meta-evaluation accuracy across 3 seed runs on each dataset

along meta-training. Going from left to right on the x-axis of

the figure is the meta-training times of the knowledge domain

datasets that arrive in sequential order. Higher accuracy val-

ues indicate better results with less forgetting as we proceed to

new datasets. BomLA with λ = 100 gives good performance

in the off-diagonal plots (retains performances on previously

learned datasets), and has a minor performance trade-off in the

diagonal plots (learns less well on new datasets). The second

row in the figure, for instance, corresponds to the CIFAR-FS

knowledge domain. The first plot in the second row is empty

since CIFAR-FS has not arrived during the meta-training time

of Omniglot. The diagonal plot (second plot) in the second row

shows the meta-evaluation accuracy on the novel set of CIFAR-

FS when meta-training occurs on the base set of CIFAR-FS. The

off-diagonal plots (last three plots) in the second row show the

meta-evaluation on the CIFAR-FS novel set, when meta-training

occurs on the subsequent knowledge domains miniImageNet,

VGG-Flowers and Aircraft. Sequential MAML gives better per-

formance in the diagonal plots (learns well on new datasets) but

worse performance in the off-diagonal plots (forgets previously

learned datasets). BomVI is also able to retain performance on

previous datasets, although it may be unable to perform as good

as BomLA due to sampling and estimator variance. 61

4.6 An example of the Omniglot task sequence for meta-training in

this experiment. 64

4.7 Meta-evaluation accuracy across 3 seed runs on the novel tasks

along meta-training. Left: compares BomLA to the baselines,

centre: compares BomVI to the baselines, right: compares

BomLA with different λ values to BomVI. 66

List of Figures 17

4.8 Meta-evaluation accuracy across 3 seed runs on each dataset

along meta-training. Higher accuracy values indicate better re-

sults with less forgetting as we proceed to new datasets. BomLA

with a large λ = 1000 gives better performance in the off-diagonal

plots (retains performances on previously learned datasets) but

worse performance in the diagonal plots (does not learn well on

new datasets). A small λ = 1 gives better performance in the di-

agonal plots (learns well on new datasets) but worse performance

in the off-diagonal plots (forgets previously learned datasets).

BomVI is also able to retain performance on previous datasets,

although it may be unable to perform as good as BomLA due

to sampling and estimator variance. 68

4.9 The change in the approximate posterior variance after meta-

training is completed on each dataset. Going from left to right

are the datasets of the pentathlon sequence. Going from top to

bottom are the convolutional layers of the neural network which

gets closer to the classifying layer. Each plot in the figure is the

colour-encoded variance corresponding to a specific knowledge

domain dataset and the meta-parameters of a specific layer in

the neural network model. The variance in each layer is flattened

into a two-dimensional matrix visualisation. A darker colour

indicates a higher variance. The variance increases in general as

the convolutional layer gets closer to the classifying layer. The

variance decreases in the raw level filters (Conv 1) as the model

learns along the pentathlon sequence. 69

List of Figures 18

5.1 An example of a fully-connected neural network with L = 2

layers and weight matrices W1, W2. The bias vectors are

omitted in this example. The weights are vectorised as ϑ =

[vec(W1)
T , vec(W2)

T]T . The input a0, pre-activations h1, h2 and

activations a1, a2 interact according to Equation (5.4) using

activation functions f1, f2. 73

5.2 A two-dimensional example of a 6-by-6 activation with spatial

location k ∈ K for a 3-by-3 filter. For a convolutional operation

of stride 1, we have |K| = 16 in this example. The batch size

and input channels are ignored in the illustration 76

5.3 A two-dimensional example for a spatial offset δ of a 3-by-3 filter.

In this example we have |∆| = 9. The input and output channels

are ignored in this illustration. 77

5.4 Meta-evaluation performance comparison across 3 seed runs on

the novel tasks along meta-training. Left: compares BomLA

of Hessian approximation in Equations (5.39) and (5.40) (with

Jacobian) versus BomLA of Hessian approximation in Equa-

tion (5.41) (without Jacobian). BomLA that uses Hessian ap-

proximation without Jacobian () shows a large performance

degradation compared to that with Jacobian (). Right:

meta-evaluation accuracy difference between BomLA with Jaco-

bian at λ = 0.01 and BomLA without Jacobian at λ = 1. The

difference evolves around zero, indicating that the adjustment

λ = 1 gives a quick fix to the posterior approximation when the

Jacobian is excluded in Hessian approximation. 87

List of Figures 19

5.5 The Fisher approximation F corresponding to the Hessian in

Equation (5.43) after meta-training is completed on each dataset.

Going from left to right are the datasets of the pentathlon se-

quence. Going from top to bottom are the convolution layers and

the fully-connected classifier layer of the neural network. Each

plot in the figure is the colour-encoded Fisher approximation

Fℓ corresponding to a specific knowledge domain dataset and a

specific layer ℓ in the neural network model. Fℓ for the middle

convolution layers (ℓ = Conv 2, 3 and 4) are cropped as the

full matrices are too large to visualise. The Fℓ matrices for the

convolution layers ℓ have entry values that are close to zero. . . 89

5.6 The absolute difference
∣∣F̃ℓ−F̃ (trunc)

ℓ

∣∣ between the full Fisher and

the truncated Fisher for each layer ℓ of the neural network model

after meta-training is completed on each dataset. Going from left

to right are the datasets of the pentathlon sequence. Going from

top to bottom are the convolution layers and the fully-connected

classifier layer of the neural network. Each plot in the figure is the

colour-encoded absolute difference
∣∣F̃ℓ − F̃

(trunc)
ℓ

∣∣ corresponding

to a specific knowledge domain dataset and a specific layer ℓ of

the neural network model. The absolute difference matrices for

the middle convolution layers (ℓ = Conv 2, 3 and 4) are cropped

as the full matrices are too large to visualise. The absolute

difference matrices for the convolution layers ℓ have entry values

that are close to zero, but the absolute difference matrices for

the classifier layer have large entry values. 90

List of Figures 20

5.7 The absolute difference
∣∣F̃ℓ − F̃

(trunc)
ℓ

∣∣ between the full Fisher

and the truncated Fisher for a convolution and fully-connected

classifier layer ℓ of the neural network model after meta-training

is completed on Omniglot. We only retain the visualisation

for the first convolution layer (Conv 1) since the remaining

convolution layers have the same visualisation. The absolute

difference matrices for the convolution layers ℓ have entry values

that are close to zero. The absolute difference matrix for the

classifier layer corresponding to Omniglot has entry values in

the order of tens. 91

6.1 The computational graph for the gradients of L(ϕ) with respect

to the LSTM optimiser parameters ϕ when updating ξ at time

step r − 1 and r. The gradients are allowed to flow through the

solid arrows during back-propagation, but the gradient flow is

prohibited along the dashed arrows. The optimisee corresponds

to a model which is usually a neural network with parameters ξ.

For a particular time step r, we update the optimisee parameters

ξr by adding the output gr acquired from the LSTM. The LSTM

takes the gradients ∇r of objective f with respect to ξr as inputs

along with hidden states hr. When computing the gradients of

the LSTM parameters, we do not take the gradient flow from

∇r into consideration. 95

6.2 An example architecture of a Badger agent. The shared expert

policy can be accessed by all experts. The red dashed line

illustrates the connection between the experts and the

shared expert policy. The selected experts i and j in yellow

colour are responsible for the incoming input. Experts i and j

communicate with each other and update their internal states

using the internal memories to give an output. 97

List of Figures 21

6.3 The process flow of Boml+ for training and evaluation on an

example sequence (Omniglot → CIFAR-FS → miniImageNet)

when each dataset arrives. The arrows in purple illustrate that

the updated posterior is being brought forward for the next

meta-training when a new dataset arrives. The items in red are

the elements newly-introduced in Boml+. This figure resembles

the Boml process flow in Figure 4.1, except for the elements in

red that are unique to Boml+. 98

6.4 The training processes of Boml+ when each dataset arrives. . . 102

6.5 Input and output layers θ(I)t and θ(O)
t from expert t are concate-

nated to the model structure. 102

6.6 The evaluation process of Boml+ on the accumulated novel set

pool. 103

6.7 Computational graph for one step of the LSTM adaptation on a

D-dimensional meta-parameters θ. The LSTMs have shared pa-

rameters but separated hidden states. The gradients are allowed

to flow through the solid arrows during back-propagation, but

not the dashed arrows. The inner loop cross-entropy loss f is eval-

uated using the D-dimensional meta-parameters (θ1, . . . , θD)T .

The gradients (∇1, . . . ,∇D)T of f for a specific few-shot task

with respect to the meta-parameter elements are fed into the

LSTMs, and the LSTMs return the updates (g1, . . . , gD)T for

each element of the meta-parameters. 104

6.8 The pentathlon knowledge domain dataset sequence. 105

List of Figures 22

6.9 Meta-evaluation accuracy across 3 seed runs on each dataset

along meta-training. Higher accuracy values indicate better

results with less forgetting as we proceed to new datasets. Boml+

without task-pointer in Run R4 can retain performances on

previously learned datasets since it performs best in the off-

diagonal plots. Most of the diagonal plots accuracies of Run R4

are as good as the others, indicating that it learns well on new

datasets too. 107

List of Tables

5.1 Average reduction in the meta-evaluation accuracy when the

Jacobian is excluded in Hessian approximation for BomLA with

λ = 100. The average is taken over tasks from all datasets, after

meta-training is completed on the entire dataset sequence. The

values are reported by averaging over a total of 100 tasks along

with the 95% confidence interval. The performance reduction

is not apparent, since the confidence intervals along with the

averages cover small reduction values that are both above and

below zero. 86

6.1 Meta-evaluation accuracies for Run R4 (Boml+ without task-

pointer) and Run R5 (Boml+ with task-pointer) on the datasets

upon the completion of meta-training across the entire pen-

tathlon sequence of knowledge domains. 107

6.2 Meta-evaluation accuracies for Run R1 (original Boml) and

Run R5 (Boml+ with task-pointer) on various datasets upon

the completion of meta-training across the entire pentathlon

sequence of knowledge domains. 108

A.1 Hyperparameters for the triathlon and pentathlon experiments

(same value for all datasets). 115

A.2 Hyperparameters for the triathlon and pentathlon experiments

(individual datasets). 116

A.3 Hyperparameters for the Omniglot sequential tasks experiment. 117

List of Tables 24

A.4 Hyperparameters for the Boml+ experiments. 117

Chapter 1

Introduction

A key objective in artificial intelligence is to create an agent that can both

accumulate knowledge over time and adapt quickly to unseen tasks using the

acquired knowledge. Machine learning in general requires a large amount of

data from a knowledge domain for training. The models trained under such

a condition are unable to adapt to unseen tasks using very few examples,

even if the tasks originate from the same knowledge domain. Such models

would also struggle if multiple datasets from different knowledge domains

arrive sequentially for training. The current typical machine learning methods

would either train all datasets together, or forget the previously acquired

knowledge if the new domain is adequately distinct from the previous ones. The

latter phenomenon is known as catastrophic forgetting in continual learning, as

illustrated in Figure 1.1.

Figure 1.1: An example of catastrophic forgetting when the knowledge domain
datasets arrive sequentially for training: MNIST → SVHN → Ima-
geNet. When ImageNet arrives for training, the model might forget
the previously learned MNIST and SVHN (in dashed line). A
drastic performance drop on MNIST and SVHN when training on the
new dataset ImageNet is known as catastrophic forgetting.

26

Continual learning (Goodfellow et al., 2013; Lee et al., 2017; Zenke et al.,

2017) aims to incorporate new knowledge to an existing system as training

data arrives in a sequential order. An important distinction between continual

learning and online learning (Zinkevich, 2003; Shalev-Shwartz, 2007) is that

continual learning handles distributional shift in the knowledge domains that

arrive in sequential order, whereas online learning takes data points in an online

manner from the same underlying dataset distribution for training.

Few-shot learning (Miller et al., 2000; Li et al., 2004; Lake et al., 2011)

focuses on adapting to unseen tasks using very few labelled examples from a

task as shown in Figure 1.2. Recent works show that meta-learning provides

promising approaches to few-shot classification problems (Santoro et al., 2016;

Finn et al., 2017; Ravi and Larochelle, 2017). Meta-learning or learning-to-learn

(Schmidhuber, 1987; Thrun and Pratt, 1998) takes the learning process a level

deeper – instead of learning from the labelled examples in the training process,

meta-learning learns the example-learning process.

Figure 1.2: An example of a task in the Omniglot knowledge domain. The Omniglot
classes are composed of various alphabets with different characters, such
as Latin character 1, Sanskrit character 14, Greek character 3, and
so forth. A task is formed by sampling a specific number of classes.
Few-shot learning seeks for a model that can adapt quickly to a task
using very few labelled examples. The model performance is evaluated
on the remaining data from the task.

27

Despite being a promising solution to few-shot problems, meta-learning

methods suffer from a limitation where a meta-learned model loses its quick

adaptation ability on previous datasets as new ones arrive subsequently for

training. Some popular examples of different few-shot classification problems

are Omniglot (Lake et al., 2011), CIFAR-FS (Bertinetto et al., 2019) and

miniImageNet (Vinyals et al., 2016). A meta-learned model is restricted to

few-shot classification on a specific dataset, in the sense that the training and

evaluation few-shot tasks have to originate from the same distribution. The

current practice to handle few-shot classification from different datasets is to

meta-learn a model for each dataset separately (Snell et al., 2017; Vinyals et al.,

2016; Bertinetto et al., 2019). This thesis considers meta-learning a single model

for few-shot classification on multiple datasets with evident distributional shift

that arrive sequentially for training as illustrated in Figure 1.3.

Figure 1.3: An example of the sequential few-shot classification problems with
evident dataset distributional shift: Omniglot → CIFAR-FS →
miniImageNet. The datasets arrive in sequential order for training.
Upon completion in training, we expect the model to be able to handle
tasks from all knowledge domains (connected in). We sample
an unseen task from each knowledge domain (arrow in). For a
sampled task from Omniglot as an example, the model undergoes quick
adaptation (in red dashed arrow) using very few examples from
the task and we evaluate the few-shot performance (in blue dashed
arrow) using the remaining data from the same task.

28

Why is the sequential few-shot problems setting important? Human

beings acquire knowledge continually starting from a very young age, and such

a capability corresponds to continual learning in our topic of discussion. Upon

learning on a specific subject, human beings tend to generalise to a different but

relevant area without requiring enormous extra effort to learn the relevant area.

This corresponds to few-shot learning in the machine learning terminology.

For instance, a pre-school child learning about numbers might require more

examples and practises when learning the numbers ‘1’, ‘2’ and ‘3’ initially. The

child can usually learn ‘4’, ‘5’ and ‘6’ with fewer examples, after mastering the

previously learned numbers. This pattern of learning is also pertinent to other

knowledge domains such as object recognition.

Figure 1.4: An example of the intrinsic human learning behaviour of generalising
to relevant tasks (in red arrow) and continually accumulate knowledge
from different domains (in blue arrow). Few-shot learning handles a
process of the red arrows, but it cannot manage a process of the blue
arrows. Conversely, continual learning deals with a process of the blue
arrows, but it fails to handle a process of the red arrows. Our sequential
few-shot problems setting assimilates both learning capabilities into a
single agent.

Continual learning enables an agent to assimilate knowledge sequentially

across diverse domains. However, it is unable to generalise acquired knowledge

1.1. Contributions 29

to related tasks within a single knowledge domain, which is the crucial func-

tionality of few-shot learning. Contrarily, few-shot learning exhibits proficiency

in generalising to similar tasks within a knowledge domain, but it is incapable

of acquiring knowledge over time across a multitude of domains. Human beings

unknowingly employ these learning capabilities in our daily routines. We contin-

ually gather knowledge from various domains and utilise a high-level cognition

from previous experiences into solving a different but related problem. We

envision the possibility of creating a single agent with these skills consolidated

to achieve artificial general intelligence.

1.1 Contributions

We introduce a recursive framework to train a model that is applicable to

a broader scope of few-shot knowledge domains by overcoming catastrophic

forgetting. Bayesian online learning (BOL) (Opper, 1998) provides a principled

framework for the posterior of the model parameters, while model-agnostic meta-

learning (MAML) (Finn et al., 2017) finds a good model parameter initialisation

that can quickly few-shot adapt to unseen tasks. Our framework incorporates

BOL and meta-learning to give a recursive formula for the posterior of the

meta-parameters as new few-shot datasets arrive. Taking a MAP estimate in

implementation leads to Laplace approximation, whereas using a KL-divergence

leads to variational inference.

The full Hessian computation is necessary in Laplace approximation for

its Gaussian precision matrix. Hessian calculations are generally infeasible

due to the large size of the modern neural network architectures. Ritter et al.

(2018a) apply BOL with Laplace approximation to the large-scale classification

setting by approximating a Hessian with a block-diagonal Kronecker-factored

Fisher approximation. We extend this Hessian approximation method to the

gradient-based meta-learning setting. The extension results in a principled

Bayesian online meta-learning framework with Laplace approximation.

The Bayesian online meta-learning framework in its original form suf-

1.2. Thesis Structure 30

fers from a restriction where the quick adaptation of the framework uses a

hand-crafted gradient-based algorithm with a manually chosen learning rate.

Another restriction is that the framework can only manage a single few-shot

classification setting across all sequential datasets. We enhance the framework

to an automated and flexible method that can handle a wider range of few-shot

problems in a sequential order. Andrychowicz et al. (2016) previously use the

long short-term memory networks (LSTMs) to automate the learning process

for large-scale classification. We utilise LSTMs to automate the quick adapta-

tion component of meta-learning in our framework. Each dataset in a sequence

requires a different LSTM for quick adaptation. We incorporate a generative

classifier (van de Ven et al., 2021) into the enhancement to act as a pointer that

can inform the model on which LSTM should be responsible for a task during

the evaluation period. Generative classification is originally implemented for

class-incremental learning (van de Ven et al., 2021). The method is directly

applicable to our enhancement if we contemplate the sequential datasets as

‘classes’ that arrive sequentially for class-incremental learning. We also separate

the neural network structure of a model into the input, body and output layers

in the enhancement. This allows the framework to deal with different types of

few-shot problems.

1.2 Thesis Structure
Chapter 2 reviews prior research in the literature that is relevant to this

thesis. Chapter 3 gives a background explanation of meta-learning as well as

Bayesian online learning with Laplace approximation and variational inference

for posterior approximation.

Chapter 4 makes the following contributions in this thesis:

• We develop the Bayesian online meta-learning (Boml) framework for

sequential few-shot classification problems. Under this framework we

introduce the algorithms Bayesian online meta-learning with Laplace

approximation (BomLA) and Bayesian online meta-learning with varia-

1.2. Thesis Structure 31

tional inference (BomVI).

• We demonstrate that Boml can overcome catastrophic forgetting in the

sequential few-shot datasets setting with apparent distributional shift in

the datasets.

• We demonstrate empirically that Boml can also continually learn to

few-shot classify the novel classes in the sequential meta-training few-shot

tasks setting.

Chapter 5 is structured as follows:

• We review the block-diagonal Kronecker-factored Fisher approximation

method in the large-scale classification setting.

• We propose an approximation to the Fisher corresponding to BomLA

that carries the desirable block-diagonal Kronecker-factored structure.

• We show empirically that the Fisher approximation in BomLA is essential

for a long sequence of few-shot problems.

Chapter 6 makes the following contributions:

• We enhance the Boml framework to Boml+ by automating the meta-

learning quick adaptation component, splitting the neural network model

into different parts, and incorporating a generative classifier pointer into

the enhancement.

• We develop a highly parallelisable training procedure for Boml+.

• We illustrate empirically that Boml+ outperforms the original Boml

framework.

Chapter 7 concludes the thesis and provides an in-depth discussion of the work

in previous chapters.

Much of the work in Chapters 4 and 5 has been published in Yap et al.

(2020, 2021), and Chapter 6 is part of the project funded by GoodAI company

via the GoodAI grant.

Chapter 2

Related Work

Continual learning and few-shot learning have emerged as widely pursued

research areas within the field of artificial intelligence. Meta-learning constitutes

the foundational element of few-shot learning. It enables a model to rapidly

adapt to unseen tasks even when presented with an extremely limited amount

of data, which is the core motivation of few-shot learning. Meta-learning

typically involves the extraction of higher-level insights that facilitates quick

generalisation to new tasks in the same knowledge domain.

The novelty of this thesis lies in the formulation of the sequential few-shot

problems setting, and the development of a mathematically grounded framework

for training in this setting. It is an approach that synthesises the advantages of

both continual learning and meta-learning to augment the learning capabilities

of an agent. Despite the pioneering nature of this thesis, it is important to

acknowledge that both continual learning and meta-learning are highly active

fields of research. A common practice in the current research paradigm is to

treat continual learning and few-shot learning as distinct research topics.

Our research integrates offline meta-learning with continual learning frame-

works to mitigate the issue of catastrophic forgetting in sequential few-shot

learning tasks. Empirical evidence from the experiment in Chapter 4.5 demon-

strates that our proposed framework is also capable of managing experimental

settings akin to online meta-learning. Our framework employs a probabilistic

offline meta-learning method in the sequential few-shot problems setting, albeit

2.1. Online Meta-Learning 33

the framework is implemented via a non-probabilistic method. This chapter

examines the existing literature in these research areas for a comprehensive

review of the advancements and methodologies.

2.1 Online Meta-Learning
The work in this thesis differs from online meta-learning in terms of its problem

setting and overall objective. In online meta-learning, the tasks that arrive

sequentially originate from the same area of knowledge domain. The primary

aim of online meta-learning is to leverage the knowledge obtained from pre-

vious tasks to reduce the number of samples required for effective training

on forthcoming tasks. However it is noteworthy that the reduction in sample

size for training in online meta-learning does not typically achieve the same

level of sample scarcity observed in few-shot learning. Furthermore, online

meta-learning predominantly focuses on optimising the efficiency of training

for future tasks, with less emphasis on the maintenance of performance on

previously encountered tasks. This aspect forms a critical distinction compared

to our framework, as our work seeks to balance the acquisition of new knowledge

with the retention of previous experience.

2.1.1 Regret minimisation

The goal in this setting is to minimise the regret function, with assumptions

made on the loss function rather than the task distribution. The regret function

in an online setting is defined as the difference between the model loss and

the best performance attainable by some comparison class of methods. Recent

works Finn et al. (2019) and Zhuang et al. (2019) belong to this category, where

the aim is to compete with the best meta-learner and supersede it. These

methods accumulate data as they arrive and meta-learn using all data acquired

so far.

Data accumulation is undesirable since the algorithmic complexity of

training increases with the amount of data accumulated, leading to longer

training times as new data arrive (Finn et al., 2019; He et al., 2019). The agent

2.2. Offline Meta-Learning 34

will eventually run out of memory for a long sequence of data. The Boml

framework on the other hand is advantageous, as it only takes the current data

and the posterior of the meta-parameters into consideration during optimisation.

This gives a framework with an algorithmic complexity independent of the

length of the dataset sequence.

2.1.2 Same underlying task distribution

Sequential tasks are assumed to originate from the same underlying task

distribution p(T) in this setting. Denevi et al. (2019) introduce the online-

within-online (OWO) and online-within-batch (OWB) settings, where OWO

encounters tasks and examples within tasks sequentially while OWB encounters

tasks sequentially but examples within tasks are in batch. Our work in the

sequential datasets setting is novel in overcoming few-shot catastrophic forget-

ting, where the goal is to few-shot classify unseen tasks drawn from a sequence

of distributions p(T1), . . . , p(TT) as explained in Section 4.1. He et al. (2019),

Harrison et al. (2019) and Jerfel et al. (2019) look into continual meta-learning

for a non-stationary task distribution where the task boundaries are unknown

to the model. Jerfel et al. (2019) consider a latent task structure to adapt to

the non-stationary task distribution.

2.2 Offline Meta-Learning
Previous meta-learning works attempt to solve few-shot classification prob-

lems in an offline setting, under the assumption of having a stationary task

distribution during meta-training and meta-evaluation. A single meta-learned

model is aimed to few-shot classify one specific dataset with all base classes

of the dataset readily available in a batch for meta-training. There are two

general frameworks for the offline meta-learning setting: probabilistic and

non-probabilistic frameworks.

2.2.1 Probabilistic

The MAML algorithm can be cast into a probabilistic inference problem (Finn

et al., 2018) or with a hierarchical Bayesian structure (Grant et al., 2018;

2.3. Continual Learning 35

Yoon et al., 2018). Yoon et al. (2018) use Stein Variational Gradient Descent

(SVGD) for task-specific learning. Gordon et al. (2019) implement probabilistic

inference by considering the posterior predictive distribution with amortised

networks. Grant et al. (2018) discuss the use of a Laplace approximation in

the task-specific inner loop to improve MAML using the curvature information.

Although at first sight our work seems similar to Grant et al. (2018) due to the

use of Laplace approximation, our work is clearly distinct in terms of goal and

context. Grant et al. (2018) use Laplace approximation at the task-specific

level, whilst we use Laplace approximation at the meta-level for the meta-

parameters approximate posterior. The formulation in Grant et al. (2018) does

not accumulate past experience, whereas our work enables few-shot learning

on unseen tasks from multiple knowledge domains sequentially.

2.2.2 Non-probabilistic

Gradient-based meta-learning (Finn et al., 2017; Nichol et al., 2018; Rusu

et al., 2019) updates the meta-parameters by accumulating the gradients of

a meta-batch of task-specific inner loop updates. The meta-parameters will

be used as a model initialisation for a quick adaptation on the novel tasks.

Metric-based meta-learning (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,

2017) utilises the metric distance between labelled examples. This method

assumes that base and novel classes are from the same dataset distribution,

and the metric distance estimations can be generalised to the novel classes

upon meta-learning the base classes.

2.3 Continual Learning
Lifelong learning, continual learning, and catastrophic forgetting are terms fre-

quently encountered in the literature within the same field of research. Lifelong

learning (Thrun and Pratt, 1998) describes the ongoing ability of an agent

to learn and adapt throughout the agent’s lifetime. The key characteristic of

lifelong learning is its ability to apply previously learned knowledge on new

tasks, which may or may not be directly related to previously encountered

2.3. Continual Learning 36

problems. Continual learning (Goodfellow et al., 2013) is often used inter-

changeably with lifelong learning, but it represents a more specific aspect of

the topic. Continual learning specifically refers to a model’s ability to learn

from a continuous stream of data and tasks. The main challenge in continual

learning is to acquire new knowledge while retaining information from previ-

ously learned tasks, without the need to store all the data from past tasks.

Catastrophic forgetting (Kirkpatrick et al., 2017) is a challenge that needs to

be addressed within continual learning. It describes the tendency of a model

to lose information about older tasks as it learns on new tasks. Catastrophic

forgetting happens because neural networks tend to overwrite weights that

were important for previous tasks when they are trained on new tasks that

might not originate from the same data distribution, leading to a performance

degradation on the old tasks. Special measures must therefore be taken when

there is a distributional shift in the sequential tasks. In terms of the conceptual

scope, lifelong learning is the broadest concept which encompasses continual

learning, and catastrophic forgetting is a specific issue within the topic of

continual learning.

Modern continual learning works (Goodfellow et al., 2013; Lee et al., 2017;

Zenke et al., 2017) focus primarily on large-scale supervised learning, in contrast

to our work that looks into continual few-shot classification across sequential

datasets with evident distributional shift. Wen et al. (2018) utilise few-shot

learning to improve on overcoming catastrophic forgetting via logit matching

on a small sample from the previous tasks.

The online learning element in our work is closely related to recent works

that overcome catastrophic forgetting in large-scale supervised classification

(Kirkpatrick et al., 2017; Zenke et al., 2017; Ritter et al., 2018a; Nguyen et al.,

2018). In particular, our work builds on the online Laplace approximation

method (Ritter et al., 2018a). Our work extends this method to the meta-

learning scenario to avoid forgetting in few-shot classification problems. Nguyen

et al. (2018) provide an alternative of using variational inference instead of

2.3. Continual Learning 37

Laplace approximation for approximating the posterior. Our work utilises this

approach and adapts the variational method to approximate the posterior of

the meta-parameters by adjusting the KL-divergence objective.

Chapter 3

Background

This chapter provides a background explanation of meta-learning in the single

dataset setting and reviews Bayesian online learning (BOL) for approximating

the posterior of the model parameters in large-scale classification setting.

3.1 Meta-Learning
The goal of meta-learning in few-shot classification is to acquire a model that is

able to perform well on an unseen task during evaluation after a quick adaptation

using very few examples from that unseen task. We review the concept and

terminology in meta-learning that differ from the large-scale machine learning.

3.1.1 Inner and Outer Updates

As meta-learning takes the typical learning process to a deeper level, a model

learns the example-learning process using the base set and evaluates its few-

shot adaptation capability on the novel set. Figure 3.1 shows a split of the

Omniglot classes into base and novel sets. The training process in meta-learning

that utilises the base set is called the meta-training stage, and the evaluation

process that reports the few-shot performance on the novel set is known as

the meta-evaluation stage. The base set in meta-learning resembles the

training dataset in the usual large-scale machine learning, whereas the novel

set resembles the testing dataset in machine learning.

Most meta-learning algorithms comprise an inner loop for example-learning

and an outer loop that learns the example-learning process. Meta-learning

3.1. Meta-Learning 39

Figure 3.1: An illustration of the base-novel split for the Omniglot classes. Omniglot
comprises 1623 characters from various alphabets and each character
is a class. We can, for instance, sample 1000 characters as the base
set for meta-training and the remaining classes as the novel set for
meta-evaluation.

generally aims to find a good model parameter initialisation (called meta-

parameters) that can quickly adapt to unseen tasks. Figure 3.2 shows the

inner and outer loop of a meta-training step. Such algorithms often require

sampling a meta-batch of tasks at each iteration. A few-shot task, thereby

known as task, from a stationary task distribution p(T) in the classification

setting is formed by sampling a subset of classes from the pool of base set

or novel set during meta-training or meta-evaluation respectively. An N -way

K-shot task, refers to sampling N classes and using K examples per class for

few-shot quick adaptation.

An offline meta-learning algorithm learns a model only for a specific dataset

D from a single knowledge domain, which is divided into the set of base classes

D and novel classes D̂ for meta-training and meta-evaluation respectively. Upon

completing meta-training on D, the goal is to perform well on an unseen task

D̂∗ sampled from the novel set D̂ after a quick adaptation on a small subset

D̂∗,S (known as the support set) of D̂∗. The performance of this unseen task

is evaluated on the query set D̂∗,Q, where D̂∗,Q = D̂∗\D̂∗,S. Since D̂ is not

accessible during meta-training, this support-query split is mimicked on the

base set D for meta-training as illustrated in Figure 3.2.

3.1. Meta-Learning 40

Figure 3.2: An example of a meta-training inner and outer loop in the 5-way 1-shot
setting for Omniglot. We sample a meta-batch of tasks D1, . . . ,Dm, . . .
from a base set D of the Omniglot knowledge domain. Each task m is
split into the support set Dm,S and query set Dm,Q. The support set
Dm,S comprises one example from each class of the 5-way task. For
each task m, the inner loop quickly adapts the meta-parameters θ into a
task-specific θ̃m using Dm,S . The outer loop then aggregates the losses
on every θ̃m with query set Dm,Q. The aggregated loss is utilised to
update the meta-parameters θ.

3.1.2 Model-Agnostic Meta-Learning

Each meta-training step of the well-known meta-learning algorithm MAML

(Finn et al., 2017) aims to find meta-parameters θ that can act as a good

model parameter initialisation for quick adaptation to unseen tasks. Each

iteration of the MAML algorithm samples M tasks from the base class set D

and runs a few steps of stochastic gradient descent (SGD) for an inner loop

task-specific learning. The number of tasks sampled per iteration is known as

the meta-batch size. For task m, the inner loop outputs the task-specific

parameters θ̃m from a k-step SGD quick adaptation on the objective L(θ,Dm,S)

with the support set Dm,S and initialised at θ:

θ̃m = SGDk(L(θ,Dm,S)), (3.1)

where m = 1, . . . ,M . The outer loop gathers all task-specific adaptations to

update the meta-parameters θ using the loss L(θ̃m,Dm,Q) on the query set

3.1. Meta-Learning 41

Dm,Q. The overall MAML optimisation objective is

argmin
θ

1

M

M∑
m=1

L(SGDk(L(θ,Dm,S)),Dm,Q). (3.2)

Algorithm 1 gives the pseudo-code of the MAML algorithm in meta-training.

Lines 4 – 7 correspond to the inner loop for M tasks, and line 8 denotes the

outer loop update of the meta-parameters θ. The outer loop update computes

the derivative with respect to the meta-parameters θ via the task-adapted

parameters θ̃m for m = 1, . . . ,M . Automatic differentiation simplifies the

process of differentiating through the inner loop updates, although internally

this requires constructing a computational graph whose complexity increases

with the number of inner update steps k. It is therefore essential to limit the

number of steps k in the inner loop to ensure a manageable computational cost.

Algorithm 1 MAML meta-training
1: Require: base set D, learning rate α, number of meta-training iterations
J , meta-batch size M

2: Initialise: θ
3: for i = 1, . . . , J do
4: for m = 1 to M do
5: Sample task Dm = Dm,S ∪ Dm,Q
6: Inner update θ̃m = SGDk(L(θ,Dm,S))
7: end for
8: Outer update θ ← θ −∇θ

1
M

∑
m L(θ̃m,Dm,Q)

9: end for

Algorithm 2 is the pseudo-code of MAML meta-evaluation on an unseen

task sampled from a novel set.

Algorithm 2 MAML meta-evaluation

1: Require: novel set D̂, learning rate β, meta-trained θ, number of adapta-
tion steps K

2: Sample task D̂∗ = D̂∗,S ∪ D̂∗,Q

3: for i = 1, . . . , K do
4: Few-shot quick adaptation θ ← θ − β∇θL(θ, D̂∗,S)
5: end for
6: Report performance on D̂∗,Q

3.2. Bayesian Online Learning 42

Like most offline meta-learning algorithms, MAML assumes a stationary

task distribution during meta-training and meta-evaluation. Under this assump-

tion, a meta-learned model is only applicable to a specific dataset distribution.

When the model encounters a sequence of knowledge domains with datasets of

apparent distributional shift, it loses the few-shot adaptation ability on previous

domains as new ones arrive for meta-training. Our work aims to meta-learn a

single model for few-shot learning on multiple knowledge domains that arrive

sequentially for meta-training. In the few-shot classification setting, we achieve

this goal by incorporating meta-learning into the BOL framework to give the

Bayesian online meta-learning (Boml) framework that considers the posterior

of the meta-parameters.

3.2 Bayesian Online Learning

We briefly explain the use of BOL in approximating the posterior of the model

parameters to overcome catastrophic forgetting in the large-scale supervised

classification setting. Opper (1998) introduces BOL in the simplest setting of

online learning where the data points of a dataset Dt = {(x1, y1), ..., (xt, yt)}

arrive in a sequential order for training. There is nothing that prohibits the

implementation of BOL to a more general setting where the datasets D1, . . . ,Dt

arrive in sequential order instead. Each dataset might originate from different

underlying dataset distributions. For easier generalisation to our work later in

this thesis, we explain BOL in the setting of sequential datasets arrival rather

than online data points.

Upon the arrival of the new knowledge domain dataset Dt+1, we consider

the posterior p(ϑ|D1:t+1) of the model parameters ϑ of a neural network. We

emphasise the notational difference between the meta-parameters θ and

model parameters ϑ throughout this thesis. Using Bayes’ rule on the

posterior gives the recursive formula

p(ϑ|D1:t+1) = p(ϑ|Dt+1, D1:t) =
p(Dt+1|ϑ) p(ϑ|D1:t)∫
p(Dt+1|Θ) p(Θ|D1:t) dΘ

, (3.3)

3.2. Bayesian Online Learning 43

where Equation (3.3) follows from the assumption that each dataset Di is

independent given ϑ. The likelihood p(Dt+1|ϑ) is computed based on the

newly-arrived dataset Dt+1 only. The prior p(ϑ|D1:t) can also be viewed as the

previous posterior due to the recursion in Equation (3.3).

The challenge in utilising Equation (3.3) is that the prior p(ϑ|D1:t) depends

on all the previous datasets D1, . . . ,Dt. Moreover the normalised posterior

p(ϑ|D1:t+1) is usually intractable due to the relatively large structure of modern

neural networks. The key idea of BOL is to approximate the exact posterior

p(ϑ|D1:t) with a trainable parametric distribution q(ϑ|ϕt), where the parameter

ϕt is trained using D1:t. Opper (1998) splits the BOL algorithm into the

update and projection steps.

Update step: This step uses the approximate posterior q(ϑ|ϕt) obtained from

the previous step for an update in the form of Equation (3.3):

p(ϑ|Dt+1, ϕt) =
p(Dt+1|ϑ) q(ϑ|ϕt)∫
p(Dt+1|Θ) q(Θ|ϕt) dΘ

. (3.4)

The new posterior p(ϑ|Dt+1, ϕt) from the update step might not belong to the

same parametric distribution family as q(ϑ|ϕt). In this case, the new posterior

has to be projected into the same family to obtain q(ϑ|ϕt+1) in the following

step.

Projection step: This step aims to obtain a projection q(ϑ|ϕt+1) that is as

close as possible to p(ϑ|Dt+1, ϕt) with minimal loss. Opper (1998) suggests a

projection of minimising the KL-divergence between the new posterior and the

parametric q. The posterior is typically intractable due to the enormous size of

the modern neural network architectures. This leads to the requirement for a

good approximation of the posterior of the model parameters. A particularly

suitable candidate for this purpose is the Laplace approximation (MacKay, 1992;

Ritter et al., 2018b), as it simply adds a quadratic regulariser to the training

objective. Variational inference methods such as variational continual learning

(Nguyen et al., 2018) is another possible method to obtain an approximation

for the posterior of the model parameters. We explain both of these methods

3.3. Laplace Approximation 44

in Chapter 3.3 and Chapter 3.4 respectively.

3.3 Laplace Approximation

Laplace approximation is one of the possible methods for projection step in

BOL. We explore for a suitable parametric form to the approximate posterior

q(ϑ|ϕt). We consider finding a MAP estimate following from Equation (3.3):

ϑ∗
t+1 = argmax

ϑ
p(ϑ|D1:t+1) = argmax

ϑ
{log p(Dt+1|ϑ) + log p(ϑ|D1:t)}. (3.5)

Since the posterior p(ϑ|D1:t) of a neural network is intractable except for

small architectures, the unnormalised posterior p̃(ϑ|D1:t) is considered instead.

Performing Taylor expansion on the logarithm of the unnormalised posterior

around a mode ϑ∗
t gives

log p̃(ϑ|D1:t) ≈ log p̃(ϑ|D1:t)
∣∣
ϑ=ϑ∗t

− 1

2
(ϑ− ϑ∗

t)
TAt(ϑ− ϑ∗

t), (3.6)

where At denotes the Hessian matrix of the negative log-posterior evaluated at

ϑ∗
t with entries

Aijt = − ∂2

∂ϑ(i)∂ϑ(j)
log p̃(ϑ|D1:t)

∣∣∣∣
ϑ=ϑ∗t

. (3.7)

The first order term of the Taylor expansion vanishes since the expansion is

performed around a mode, whilst the second order term remains for consid-

eration. The expansion in Equation (3.6) suggests using a Gaussian approx-

imate posterior q. Given a Gaussian q(ϑ|ϕt) with parameter ϕt = {µt,Λt},

a mean µt+1 at step t + 1 with dataset Dt+1 can be obtained by finding a

mode of the approximate posterior via a standard gradient-based optimisation

µt+1 = argminϑ f
LA(ϑ, µt,Λt) with objective:

fLA(ϑ, µt,Λt) = − log p(Dt+1|ϑ) +
1

2
(ϑ− µt)TΛt(ϑ− µt). (3.8)

3.3. Laplace Approximation 45

The precision matrix is updated as

Λt+1 = Ht+1 + Λt, (3.9)

where Ht+1 is the Hessian matrix of the negative log-likelihood for Dt+1 evalu-

ated at µt+1 with entries

H ij
t+1 = −

∂2

∂ϑ(i)∂ϑ(j)
log p(Dt+1|ϑ)

∣∣∣∣
ϑ=µt+1

. (3.10)

Since the full Hessian is intractable for large neural networks, we approximate it

with a block-diagonal Kronecker-factored Fisher information matrix as described

in Chapter 5.2.

3.3.1 Precision Update Hyperparameter

Ritter et al. (2018a) use a hyperparameter λ as a multiplier to the Hessian

when updating the precision in Equation (3.9):

Λt+1 = λHt+1 + Λt. (3.11)

In the large-scale supervised classification setting, this hyperparameter has

a regularising effect on the Gaussian posterior approximation for a balance

between having a good performance on a new dataset and maintaining the

performance on previous datasets (Ritter et al., 2018a).

We observe that

Λt+1 = λ(Ht+1 + · · ·+H1) + Λ0 (3.12)

upon recursively expanding Equation (3.11). Notably, the original update in

Equation (3.9) is recovered by setting λ = 1. The precision Λt regularises the

optimisation of ϑ at step t+ 1 associated to the posterior p(ϑ|D1:t+1), which

is the update process from µt to µt+1. A large λ results in a sharply peaked

Gaussian posterior and is therefore unable to learn new datasets well, but can

3.3. Laplace Approximation 46

prevent forgetting previously learned datasets. A small λ in contrast gives a

dispersed Gaussian posterior and allows better performance on new datasets by

sacrificing the performance on the previous datasets. Chapter 4.7.1 discusses

the effect of λ in the experiments as an ablation study.

3.3.2 Algorithm

For a neural network model, gradient-based optimisation methods such as SGD

(Robbins and Monro, 1951) and Adam (Kingma and Ba, 2015) are the standard

gradient-based methods in finding a mode for the Laplace approximation

objective in Equation (3.8).

Algorithm 3 gives the pseudo-code of BOL with Laplace approximation.

The algorithm is formed of three main elements: training on a specific dataset

(lines 4 – 8), updating the Gaussian mean (line 9) and updating the Gaussian

precision (lines 10 – 11). For precision update in line 11, we review the Hessian

approximation method later in Chapter 5.2 that utilises the block-diagonal

Kronecker-factored Fisher approximation.

Algorithm 3 Bayesian online learning with Laplace approximation
1: Require: sequential datasets D1, . . . ,DT , learning rate α, posterior regu-

lariser λ, number of training epochs J , number of mini-batches M
2: Initialise: µ0, Λ0, ϑ
3: for t = 1 to T do
4: for j = 1, . . . , J do ▷ training on Dt (eg: Adam or SGD)
5: for m = 1, . . . ,M do
6: ϑ← ϑ− α∇ϑf

LA(ϑ, µt−1,Λt−1)
7: end for
8: end for
9: Update mean µt ← ϑ ▷ update posterior mean

10: Approximate Ht with block-diagonal Kronecker-factored Fisher F
11: Update precision Λt ← λHt + Λt−1 ▷ update posterior precision
12: end for

3.4. Variational Inference 47

3.4 Variational Inference

3.4.1 Posterior Approximation

As we mentioned in Chapter 3.2, variational inference also provides a suitable

framework for posterior approximation in the projection step of BOL. Consider

approximating the posterior q by minimising the KL-divergence between the

parametric q and the new posterior p(ϑ|Dt+1, ϕt) in Equation (3.4), where q be-

longs to some pre-determined approximate posterior family Q with parameters

ϕt:

q(ϑ|ϕt+1) = argmin
q∈Q

DKL(q(ϑ|ϕ) ∥ p(Dt+1|ϑ) q(ϑ|ϕt)) (3.13)

= argmin
q∈Q

{
− Eq(ϑ|ϕ)[log p(Dt+1|ϑ)] +DKL(q(ϑ|ϕ) ∥ q(ϑ|ϕt))

}
.

(3.14)

The optimisation in Equation (3.14) leads to minimising the objective fVI(ϕ, ϕt)

with respect to ϕ to obtain the new parameters ϕt+1:

fVI(ϕ, ϕt) = −Eq(ϑ|ϕ)[log p(Dt+1|ϑ)] +DKL(q(ϑ|ϕ) ∥ q(ϑ|ϕt)). (3.15)

One can use a Gaussian mean-field approximate posterior

q(ϑ|ϕt) =
D∏
d=1

N(µt,d, σ
2
t,d), (3.16)

where ϕt = {µt,d, σt,d}Dd=1 and D = dim(ϑ). The first term in Equation (3.15)

can be estimated via simple Monte Carlo with local reparameterisation trick

(Kingma et al., 2015). The KL-divergence term in Equation (3.15) has a closed

form for Gaussian distributions.

3.4.2 Algorithm

Algorithm 4 gives the pseudo-code of BOL with variational inference. The

algorithm is formed of two main elements: training on a specific dataset

3.4. Variational Inference 48

(lines 4 – 8) and updating the posterior parameters of the Gaussian mean-field

approximation (line 9).

Algorithm 4 Bayesian online learning with variational inference
1: Require: sequential datasets D1, . . . ,DT , learning rate α, number of

training epochs J , number of mini-batches M
2: Initialise: ϕ0 = {µ0, σ0}
3: for t = 1 to T do
4: for j = 1, . . . , J do ▷ training on Dt (eg: Adam or SGD)
5: for m = 1 to M do
6: ϕ← ϕ− α∇ϕf

VI(ϕ, ϕt−1)
7: end for
8: end for
9: µt ← µ, σt ← σ with ϕ = {µ, σ} ▷ update posterior parameters

10: end for

Variational Continual Learning (VCL) (Nguyen et al., 2018) implements

BOL with variational inference in large-scale machine learning settings. VCL

additionally boosts the performance by retaining important information from

the previous datasets in the memory. Representative data points from each

previous dataset are kept in a coreset, and the coreset is updated when a new

dataset arrives. The coreset is used in training as a memory replay mechanism,

with the objective of outrunning the posterior approximation error accumulated

over each dataset.

Chapter 4

Bayesian Online Meta-Learning

The central contribution of this chapter is to extend the benefits of meta-

learning to the BOL scenario, thereby training models that can generalise

across knowledge domains whilst dealing with parameter uncertainty in the

setting of sequentially arriving datasets.

4.1 Framework Overview

In this setting, meta-training occurs sequentially on the datasets D1, . . . ,DT .

Each dataset Di can be seen as a knowledge domain with an associated under-

lying task distribution p(Ti). A newly-arrived Dt+1 is separated into the base

class set Dt+1 and novel class set D̂t+1 for meta-training and meta-evaluation

respectively, where the tasks in these two stages are drawn from the task

distribution p(Tt+1). Notationally, let DSt+1 and DQt+1 denote the collection of

support sets and query sets respectively from Dt+1, so that Dt+1 = DSt+1 ∪D
Q
t+1.

Using Bayes’ rule on the posterior gives the recursive formula

p(θ|D1:t+1) ∝ p(DSt+1,D
Q
t+1|θ) p(θ|D1:t) (4.1)

= p(DQt+1|θ,DSt+1) p(DSt+1|θ) p(θ|D1:t) (4.2)

=

{∫
p(DQt+1|θ̃) p(θ̃|θ,DSt+1) dθ̃

}
p(DSt+1|θ) p(θ|D1:t) (4.3)

where Equation (4.1) follows from the assumption that each dataset is indepen-

dent given θ. Figure 4.1 illustrates the Boml process flow for meta-training

4.1. Framework Overview 50

and meta-evaluation as datasets arrive sequentially.

Figure 4.1: The Boml process flow for meta-training and meta-evaluation on an
example sequence (Omniglot → CIFAR-FS → miniImageNet) when
each dataset arrives. Consider the CIFAR-FS knowledge domain D2 for
instance, D2 is split into the base D2 and novel D̂2 sets when it arrives.
Meta-training on this knowledge domain only occurs on the base set
D2 using the recursive formula in Equation (4.3). The arrows in purple
illustrate that the updated posterior is being brought forward for the
next meta-training when a new dataset arrives. We meta-evaluate the
few-shot performance on the accumulated novel sets D̂1, D̂2 from the
knowledge domains that arrived so far.

From the meta-learning perspective, the parameters θ̃ introduced in Equa-

tion (4.3) can be viewed as the task-specific parameters in MAML. There are

various choices for the distribution p(θ̃|θ,DSt+1) in Equation (4.3). In particular

if we choose to set it as the deterministic function of taking several steps of

SGD on loss L with the support set collection DSt+1 and initialised at θ, we

have

p(θ̃|θ,DSt+1) = δ(θ̃ − SGDk(L(θ,DSt+1))), (4.4)

where δ(·) is the Dirac delta function. This recovers the MAML inner loop with

SGD quick adaptation in Equation (3.1). The recursion given by Equation (4.3)

4.2. Boml with Laplace Approximation 51

forms the basis of our approach and the remainder of this chapter explains how

we implement this.

The posterior in Equation (4.3) is typically intractable for modern neural

network architectures. This leads to the requirement for a good approximate

posterior. Chapters 4.2 and 4.3 demonstrate how we arrive at the algorithms

Bayesian online meta-learning with Laplace approximation (BomLA) and

Bayesian online meta-learning with variational inference (BomVI) by imple-

menting Laplace approximation and variational inference respectively to the

Boml posterior in Equation (4.3).

4.2 Boml with Laplace Approximation

4.2.1 Derivation and Implementation

As described in Chapter 3.3, the expansion in Equation (3.6) justifies the use

of a Gaussian approximate posterior since the second order term corresponds

to the log-probability of a Gaussian distribution. The Boml framework in

Equation (4.3) with a Gaussian approximate posterior q of mean and precision

ϕt = {µt,Λt} from Laplace approximation gives a MAP estimate:

θ∗ = argmax
θ

{
log p̄θ + log p(DSt+1|θ)−

1

2
(θ − µt)TΛt(θ − µt)

}
(4.5)

with

p̄θ =

∫
p(DQt+1|θ̃)p(θ̃|θ,DSt+1) dθ̃.

For an efficient optimisation, we use the deterministic θ̃ in Equation (4.4)

which leads to minimising the objective

fBomLA
t+1 (θ, µt,Λt) = f̄

(1)
θ + f̄

(2)
θ +

1

2
(θ − µt)TΛt(θ − µt), (4.6)

where

f̄
(1)
θ = − 1

M

M∑
m=1

log p(Dm,Qt+1 |θ̃m) and f̄
(2)
θ = − 1

M

M∑
m=1

log p(Dm,St+1 |θ),

4.2. Boml with Laplace Approximation 52

with θ̃m = SGDk(L(θ,Dm,St+1)) for m = 1, . . . ,M and M denotes the number of

tasks sampled per iteration. The first term f̄
(1)
θ in Equation (4.6) corresponds

to the MAML objective in Equation (3.2) with a cross-entropy loss, the second

term f̄
(2)
θ can be viewed as the pre-adaptation loss on the support set and the

last term can be seen as a regulariser.

The new approximate posterior has mean µt+1 = argminθ f
BomLA
t+1 (θ, µt,Λt),

and the precision matrix is updated as

Λt+1 = λ(H̃t+1 +Ht+1) + Λt, (4.7)

where λ is the posterior-regularising hyperparameter introduced in Chap-

ter 3.3.1, H̃t+1 and Ht+1 are the Hessian matrices of the negative log-likelihood

for the query and support set respectively with entries

H̃ ij
t+1 =

1

M

M∑
m=1

− ∂2

∂θ(i)∂θ(j)
log p(Dm,Qt+1 |θ̃m))

∣∣∣∣
θ=µt+1

, (4.8)

H ij
t+1 =

1

M

M∑
m=1

− ∂2

∂θ(i)∂θ(j)
log p(Dm,St+1 |θ)

∣∣∣∣
θ=µt+1

. (4.9)

The full Hessian matrices H̃t+1 and Ht+1 are intractable for a neural network

with larger architecture. We utilise a block-diagonal Kronecker-factored Fisher

approximation method to estimate the Hessian matrices. The Hessian Ht+1

in Equation (4.9) can be approximated in the same manner as the Hessian in

Equation (3.10), and we explain the approximation of Ht+1 in Chapter 5.3.1.

The Hessian H̃t+1 requires a special treatment in addition to the original

approximation method in the large-scale classification setting. We derive the

approximation to H̃t+1 in Chapter 5.3.2.

We discover that the Laplace approximation method provides a well-fitted

meta-training framework for Boml in Equation (4.3). Each updating step

in the approximation procedure can be modified to correspond to the meta-

parameters θ for few-shot classification, instead of the model parameters ϑ for

large-scale supervised classification.

4.3. Boml with Variational Inference 53

4.2.2 Algorithm

Algorithm 5 gives the pseudo-code of the BomLA algorithm. The algorithm is

formed of three main elements: meta-training on a specific base set (lines 4 –

11), updating the Gaussian mean (line 12) and updating the Gaussian precision

(lines 13 – 14). For precision update, we approximate the Hessian using a

block-diagonal Kronecker-factored Fisher approximation explained in Chapter 5.

Algorithm 5 Bayesian online meta-learning with Laplace approximation
(BomLA)

1: Require: sequential base sets D1, . . . ,DT , learning rate α, hyperparameter
λ, number of meta-training iterations J , meta-batch size M

2: Initialise: µ0, Λ0, θ
3: for t = 1 to T do
4: for i = 1, . . . , J do ▷ meta-training on base set Dt
5: for m = 1 to M do
6: Sample task Dmt = Dm,St ∪ Dm,Qt

7: Inner update θ̃m = SGDk(L(θ,Dm,St))
8: end for
9: Evaluate loss fBomLA

t (θ, µt−1,Λt−1) in Equation (4.6)
10: Outer update θ ← θ − α∇θf

BomLA
t (θ, µt−1,Λt−1)

11: end for
12: Update mean µt ← θ ▷ posterior mean
13: Approximate Ht and H̃t using Algorithm 9
14: Update precision Λt ← λ

(
H̃t +Ht

)
+ Λt−1 ▷ posterior precision

15: end for

4.3 Boml with Variational Inference
This section demonstrates how we arrive at the BomVI algorithm by imple-

menting an approximate variational inference method to the Boml posterior

in Equation (4.3). We proceed in a similar fashion to the BOL framework with

variational inference in Chapter 3.4.

4.3.1 Derivation and Implementation

Consider approximating the posterior by minimising the KL-divergence be-

tween the approximate posterior q and the Boml posterior in Equation (4.3),

where q belongs to some pre-determined approximate posterior family Q with

4.3. Boml with Variational Inference 54

parameters ϕt. This gives a new approximate posterior

q(θ|ϕt+1) = argmin
q∈Q

DKL

(
q(θ|ϕ)

∥∥ q̆ϕt), (4.10)

where

q̆ϕt =

{∫
p(DQt+1|θ̃) p(θ̃|θ,DSt+1)dθ̃

}
p(DSt+1|θ) q(θ|ϕt).

Similar to BomLA, we use the deterministic θ̃ in Equation (4.4). This

leads to minimising the objective

fBomVI
t+1 (ϕ, ϕt) = f̆

(1)
ϕ + f̆

(2)
ϕ +DKL(q(θ|ϕ)∥q(θ|ϕt)), (4.11)

where

f̆
(1)
ϕ = − 1

M

M∑
m=1

Eq(θ|ϕ)
[
log p(Dm,Qt+1 |θ̃m)

]
,

f̆
(2)
ϕ = − 1

M

M∑
m=1

Eq(θ|ϕ)
[
log p(Dm,St+1 |θ)

]
,

with θ̃m = SGDk(L(θ,Dm,St+1)) for m = 1, . . . ,M and M denotes the number

of tasks sampled per iteration. We use a Gaussian mean-field approximation

q(θ|ϕt) =
∏D

d=1N(µt,d, σ
2
t,d), where ϕt = {µt,d, σt,d}Dd=1, D = dim(θ) and the

objective in Equation (4.11) is minimised over ϕ. Using a Gaussian posterior

results in a closed-form KL-divergence in Equation (4.11).

The term f̆
(1)
ϕ in Equation (4.11) is rather cumbersome to estimate in

optimisation. To compute its Monte Carlo estimate, we have to generate samples

θr ∼ q for r = 1, . . . , R, and run a quick adaptation on each sampled meta-

parameters θr before evaluating their log-likelihoods. This is computationally

intensive and the estimator is prone to a large variance. Moreover, every

quickly-adapted sample from θr contributes to the meta-learning gradients of

the posterior mean and covariance, resulting in a high computational cost when

taking the meta-gradients.

To solve these impediments, we introduce a slight modification to the

4.3. Boml with Variational Inference 55

SGD quick adaptation θ̃m. Instead of taking the gradients with respect to

the sampled meta-parameters, we consider the gradients with respect to the

posterior mean. A one-step SGD quick adaptation, for instance, becomes:

θ̃m = θ − α∇µtL(µt,D
m,S
t+1). (4.12)

This gives θ̃m ∼ N(µ̃t, diag(σ2
t)) where

µ̃t = µt − α∇µtL(µt,D
m,S
t+1), (4.13)

since θ ∼ N(µt, diag(σ2
t)). A quick adaptation with more steps works in a

similar fashion. With this modification, we can calculate the Monte Carlo

estimate for the term f̆
(1)
ϕ in Equation (4.11) using the local reparameterisation

trick as usual.

4.3.2 Algorithm

Algorithm 6 gives the pseudo-code of the BomVI algorithm. The algorithm is

formed of two main elements: meta-training on a specific base set (line 4 – 11)

and updating the posterior parameters of the Gaussian mean-field approxima-

tion (line 12).

Algorithm 6 Bayesian online meta-learning with variational inference
(BomVI)

1: Require: sequential base sets D1, . . . ,DT , learning rate α, number of
meta-training iterations J , meta-batch size M

2: Initialise: ϕ0 = {µ0, σ0}
3: for t = 1 to T do
4: for i = 1, . . . , J do ▷ meta-training on base set Dt
5: for m = 1 to M do
6: Sample task Dmt = Dm,St ∪ Dm,Qt

7: Inner update θ̃m = SGDk(L(θ,Dm,St))
8: end for
9: Evaluate loss fBomVI

t (ϕ, ϕt−1) in Equation (4.11)
10: Outer µ← µ− α∇µf

BomVI
t (ϕ, ϕt−1), σ ← σ − α∇σf

BomVI
t (ϕ, ϕt−1)

11: end for
12: Update µt ← µ and σt ← σ ▷ update posterior parameters
13: end for

4.4. Experiments 56

4.4 Experiments

4.4.1 Setup

Model structure: For all the experiments in this chapter, we employ the

model architecture proposed by Vinyals et al. (2016) that consists of 4 modules

with 64 filters of size 3×3, followed by a batch normalisation, a ReLU activation

and a 2 × 2 max-pooling. A fully-connected layer is appended to the final

module before getting the class probabilities with softmax. Tables A.1 and A.2

in Appendix A.1 record the hyperparameters used in the experiments.

Datasets: The following are the datasets involved and their formation in the

experiments.

1. Omniglot

Omniglot (Lake et al., 2011) comprises 1623 characters from 50 alpha-

bets and each character has 20 instances. We use 1100 characters for

meta-training, 100 characters for validation and the remaining for meta-

evaluation. New classes with rotations in the multiples of 90° are formed

after splitting the characters as mentioned. The Omniglot dataset is also

used in Chapter 4.5 for another experiment with a different setup, which

we explain thereafter in that chapter.

2. miniQuickDraw

QuickDraw (Ha and Eck, 2017) comprises 345 categories of drawings

collected from the players in the game “Quick, Draw!”. We generate

miniQuickDraw by randomly sampling 1000 instances in each class of

QuickDraw.

3. CIFAR-FS

CIFAR-FS (Bertinetto et al., 2019) has 100 classes of objects and each

class comprises 600 images. We use the same split as Bertinetto et al.

(2019): 64 classes for meta-training, 16 classes for validation and 20

classes for meta-evaluation.

4.4. Experiments 57

4. miniImageNet

miniImageNet (Vinyals et al., 2016) takes 100 classes and 600 instances in

each class from the ImageNet dataset. We use the same split as Ravi and

Larochelle (2017): 64 classes for meta-training, 16 classes for validation

and 20 classes for meta-evaluation.

5. VGG-Flowers

VGG-Flowers (Nilsback and Zisserman, 2008) comprises 102 different

types of flowers as the classes. We randomly split 66 classes for meta-

training, 16 classes for validation and 20 classes for meta-evaluation.

6. Aircraft

Aircraft (Maji et al., 2013) is a fine-grained dataset consisting of 100

aircraft models as the classes and each class has 100 images. We randomly

split 64 classes for meta-training, 16 classes for validation and 20 classes

for meta-evaluation.

Baselines: We compare our algorithms to the following baselines.

1. Train-On-Everything (TOE)

When a new dataset arrives for meta-training, we randomly re-initialise

the meta-parameters and run MAML meta-training using all datasets

encountered so far. Each inner loop update samples a specific number of

tasks from each dataset available. The inner losses of the tasks from all

datasets are aggregated for an outer loop update.

2. Sequential MAML

Upon the arrival of a new dataset, we run MAML to meta-train only

on the newly-arrived dataset. We should be reminded that MAML is

only capable of handling few-shot tasks from the same underlying task

distribution by design.

3. Follow The Meta-Leader (FTML)

We introduce a slight modification to FTML (Finn et al., 2019) on its

4.4. Experiments 58

evaluation method, as FTML is not designed for few-shot learning on

unseen tasks. FTML comprises two types of data accumulation during

the training phase: a task buffer and a dataset buffer. Both buffers are

initially empty. The task buffer is for the sequential accumulation of

tasks as they arrive, whereas the dataset buffer is for the incremental

data accumulation within a given task. As a new task arrives for training,

it is first added to the task buffer. The datapoints within the task are

also added to the dataset buffer as they arrive in an online manner for

the training of the meta-parameters. This optimisation requires sampling

from the task buffer across all tasks encountered so far. Upon the arrival

of all data in the current task, FTML moves on to the subsequent task

for training with a re-initialised dataset buffer.

The evaluation phase involves a quick adaptation of meta-parameters to

the current task, which is known as the Update-Procedure in FTML.

The Update-Procedure utilises all data accumulated in the dataset buffer

for quick adaptation to the current task. The evaluation performance

is recorded using a held-out test set from the same task. This differs

from our Boml setting that evaluates on new and unseen tasks. In our

experiments, we apply Update-Procedure in FTML to the data from

unseen tasks, rather than the data from the same training task as in the

original FTML.

4.4.2 Triathlon

We implement BomLA and BomVI to the 5-way 1-shot triathlon sequences.

This experiment considers the few-shot triathlon sequence as in Figure 4.2.

Figure 4.2: The triathlon 5-way 1-shot sequence in this experiment.

4.4. Experiments 59

Figure 4.3: Meta-evaluation accuracy across 3 seed runs on each dataset along
meta-training. Going from left to right on the x-axis of the figure is the
meta-training times of the knowledge domain datasets that arrive in
sequential order. The second row in the figure, for instance, corresponds
to the miniQuickDraw knowledge domain. The first plot in the second
row is empty since miniQuickDraw has not arrived during the meta-
training time of Omniglot. The diagonal plot (middle plot) in the
second row corresponds to the meta-evaluation accuracy on the novel
set of miniQuickDraw when meta-training occurs on the base set of
miniQuickDraw. The off-diagonal plot (last plot) shows the meta-
evaluation on the miniQuickDraw novel set, when meta-training occurs
on the next knowledge domain CIFAR-FS. Higher accuracy values in
the off-diagonals indicate less forgetting. The baseline TOE corresponds
to an upper limit in the performance since it has access to all datasets
encountered so far. Sequential MAML corresponds to a lower limit in
the performance since MAML forgets on previous datasets by design of
the algorithm.

The distributional shift from Omniglot to miniQuickDraw is less drastic,

compared to the shift from miniQuickDraw to CIFAR-FS. Omniglot and

miniQuickDraw are both gray-scale and the image drawings are formed of

simple strokes in both datasets. The result in Figure 4.3 shows that BomLA and

BomVI are able to prevent catastrophic forgetting in both dataset transitions.

BomLA, in particular, is able to proceed to the miniQuickDraw meta-training

phase with almost no forgetting on Omniglot. In other words, the meta-

level pattern of Omniglot is retained throughout the meta-training period of

miniQuickDraw. There is a small trade-off in the performance of CIFAR-

4.4. Experiments 60

FS as BomLA and BomVI avoid catastrophically forgetting Omniglot and

miniQuickDraw.

Since this experiment focuses on 5-way classification tasks, the baseline

accuracy of random guessing stands at 20%. It is noteworthy that the result

in Figure 4.3 is obtained via 1-shot learning, which traditionally presents a

significant challenge for achieving high accuracy in classification problems. The

Boml implementations surpass the baseline accuracy of random guessing by

a substantial margin, and pose a remarkable achievement in the sequential

few-shot problems setting.

Sequential MAML gives a noticeable drop in the performance of Omniglot

and miniQuickDraw when meta-training on CIFAR-FS. TOE is able to retain

the few-shot performance as it has access to all previous datasets, whilst FTML

gives a mixed performance. We elaborate on the result interpretation, the

BomLA-BomVI comparison and the choice of λ along with the next experiment

pentathlon, which resembles the setting of this experiment except with a more

challenging dataset sequence.

4.4.3 Pentathlon

We implement BomLA and BomVI to the more challenging pentathlon se-

quence as in Figure 4.4.

Figure 4.4: The pentathlon 5-way 1-shot sequence in this experiment.

Figure 4.5 shows that BomLA and BomVI are able to prevent few-shot

catastrophic forgetting in the pentathlon dataset sequence. TOE is also able

to retain the few-shot performance as it has access to all datasets encountered

so far. Since TOE learns all datasets from random re-initialisation each time it

encounters a new dataset, the meta-training time required to achieve a similarly

4.4. Experiments 61

Figure 4.5: Meta-evaluation accuracy across 3 seed runs on each dataset along
meta-training. Going from left to right on the x-axis of the figure is the
meta-training times of the knowledge domain datasets that arrive in
sequential order. Higher accuracy values indicate better results with
less forgetting as we proceed to new datasets. BomLA with λ = 100
gives good performance in the off-diagonal plots (retains performances
on previously learned datasets), and has a minor performance trade-off
in the diagonal plots (learns less well on new datasets). The second
row in the figure, for instance, corresponds to the CIFAR-FS knowledge
domain. The first plot in the second row is empty since CIFAR-FS has
not arrived during the meta-training time of Omniglot. The diagonal
plot (second plot) in the second row shows the meta-evaluation accuracy
on the novel set of CIFAR-FS when meta-training occurs on the base
set of CIFAR-FS. The off-diagonal plots (last three plots) in the second
row show the meta-evaluation on the CIFAR-FS novel set, when meta-
training occurs on the subsequent knowledge domains miniImageNet,
VGG-Flowers and Aircraft. Sequential MAML gives better performance
in the diagonal plots (learns well on new datasets) but worse performance
in the off-diagonal plots (forgets previously learned datasets). BomVI
is also able to retain performance on previous datasets, although it may
be unable to perform as good as BomLA due to sampling and estimator
variance.

good meta-evaluation performance is longer compared to other runs. Sequential

MAML catastrophically forgets the previously learned datasets but has the

best performance on new datasets compared to other runs. FTML gives a

4.4. Experiments 62

mixed performance on different datasets.

The baselines TOE and FTML can be memory-intensive as the dataset

sequence becomes longer. They take the brute-force approach to prevent

forgetting by memorising all datasets. Unlike TOE and FTML, our algorithms

BomLA and BomVI only take the newly-arrived dataset and the posterior

of the meta-parameters into consideration during optimisation. This gives a

framework with an algorithmic complexity independent of the length of the

dataset sequence.

Choosing λ: Tuning the posterior-regularising hyperparameter λ for precision

update in Equation (4.7) corresponds to balancing between a smaller perfor-

mance trade-off on a new dataset and less forgetting on previous datasets. We

compare BomLA with different λ values and BomVI in Chapter 4.7.1 as an

ablation study.

BomLA-BomVI comparison: As shown in Figure 4.5, BomLA with ap-

propriate λ is superior to BomVI in the performance. This is due to BomLA

having a better posterior approximation than BomVI. Whilst BomLA has a

Gaussian approximate posterior with block-diagonal precision, BomVI uses

a Gaussian mean-field approximation for the posterior. Trippe and Turner

(2017) compare the performances of variational inference with different covari-

ance structures, and discover that variational inference with block-diagonal

covariance performs worse than mean-field approximation. This is because the

block-diagonal covariance in variational inference prohibits variance reduction

methods such as local reparameterisation trick for Monte Carlo estimation. We

therefore implement BomVI using the simplest diagonal covariance structure

in order to maintain the sampling and estimator variance at an acceptable

level.

The variance of the Monte Carlo estimate has been proven problematic

(Kingma et al., 2015; Trippe and Turner, 2017), and we addressed this issue in

Chapter 4.3. As an ablation study, we analyse the change in the approximate

posterior covariance in Chapter 4.7.2 whilst meta-training occurs sequentially

4.5. Boml in Sequential Task Setting 63

on datasets from different knowledge domains.

4.5 Boml in Sequential Task Setting

We demonstrate empirically that Boml can also continually learn to few-shot

classify the novel classes in the sequential few-shot tasks setting, where all tasks

originate from a single stationary task distribution.

4.5.1 Setting and Algorithm

This setting only involves one dataset D with an associated underlying task

distribution p(T), where D is separated into the base and novel class sets. In

this setting, D1, . . . ,Dt+1 denote the non-overlapping tasks formed from the

base class set and they arrive sequentially for meta-training.

When a task Dt arrives, we break the data points of Dt into mini-batches.

Each mini-batch is further split into the support and query sets for inner and

outer loop updates. Algorithms 7 and 8 show the corresponding modifications

of BomLA and BomVI under this setting in blue.

Algorithm 7 BomLA for stationary task distribution
1: Require: sequential tasks D1, . . . ,DT , learning rate α, posterior regulariser
λ, number of epochs J , number of mini-batches M

2: Initialise: µ0, Λ0, θ
3: for t = 1 to T do
4: for i = 1, . . . , J do ▷ meta-training on task Dt
5: for m = 1 to M do
6: Split the batch Dmt = Dm,St ∪ Dm,Qt

7: Inner update θ̃m = SGDk(L(θ,Dm,St))
8: end for
9: Evaluate loss fBomLA

t (θ, µt−1,Λt−1) in Equation (4.6)
10: Outer update θ ← θ − α∇θf

BomLA
t (θ, µt−1,Λt−1)

11: end for
12: Update mean µt ← θ ▷ posterior mean
13: Approximate Ht and H̃t using Algorithm 9
14: Update precision Λt ← λ

(
H̃t +Ht

)
+ Λt−1 ▷ posterior precision

15: end for

4.5. Boml in Sequential Task Setting 64

Algorithm 8 BomVI for stationary task distribution
1: Require: sequential tasks D1, . . . ,DT , learning rate α, number of epochs
J , number of mini-batches M

2: Initialise: ϕ0 = {µ0, σ0}
3: for t = 1 to T do
4: for i = 1, . . . , J do ▷ meta-training on task Dt
5: for m = 1 to M do
6: Split the batch Dmt = Dm,St ∪ Dm,Qt

7: Inner update θ̃m = SGDk(L(θ,Dm,St))
8: end for
9: Evaluate loss fBomVI

t (ϕ, ϕt−1) in Equation (4.11)
10: Outer µ← µ− α∇µf

BomVI
t (ϕ, ϕt−1), σ ← σ − α∇σf

BomVI
t (ϕ, ϕt−1)

11: end for
12: Update µt ← µ and σt ← σ ▷ update posterior parameters
13: end for

4.5.2 Omniglot: Stationary Task Distribution

We run the sequential tasks experiment on the Omniglot dataset. To increase

the difficulty level, we split the dataset based on the alphabets (super-classes)

instead of the characters (classes) as in Figure 4.6. The goal of this experiment

is to classify the 5-way 5-shot novel tasks sampled from the meta-evaluation

alphabets. Table A.3 in Appendix A.2 shows the hyperparameters used in

this experiment. We explain the model structure and alphabet splits in this

experiment before proceeding to the results.

Figure 4.6: An example of the Omniglot task sequence for meta-training in this
experiment.

Model structure: We use the model architecture proposed by Vinyals et al.

(2016) that takes 4 modules with 64 filters of size 3× 3, followed by a batch

normalisation, a ReLU activation and a 2× 2 max-pooling. A fully-connected

layer is appended to the final module before getting the class probabilities with

softmax.

4.5. Boml in Sequential Task Setting 65

Alphabet split: The Omniglot dataset comprises 50 alphabets (super-classes).

Each alphabet has numerous characters (classes) and each character has 20

instances. As the meta-training alphabets arrive sequentially, we form non-

overlapping sequential tasks from each arriving alphabet, and the tasks also

do not overlap in the characters. We use 35 alphabets for meta-training, 7

alphabets for validation and 8 alphabets for meta-evaluation. The alphabet

splits are as follows:

1. 35 alphabets for meta-training

Alphabet_of_the_Magi, Angelic, Armenian, Atlantean, Avesta,

Asomtavruli_(Georgian), Aurek-Besh, Balinese, Bengali,

Braille, Burmese_(Myanmar), Early_Aramaic, Grantha,

Gujarati, Gurmukhi, Hebrew, Japanese_(hiragana),

Inuktitut_(Canadian_Aboriginal_Syllabics), Kannada, Keble,

Japanese_(katakana), Korean, Latin, Malayalam, Manipuri,

Malay_(Jawi_-_Arabic), Mongolian, Oriya, Sanskrit, Sylheti,

Ojibwe_(Canadian_Aboriginal_Syllabics), Tengwar, Tifinagh,

Old_Church_Slavonic_(Cyrillic), ULOG

2. 7 alphabets for validation

Anglo-Saxon_Futhorc, Arcadian, Cyrillic, Ge_ez, Glagolitic,

N_Ko, Blackfoot_(Canadian_Aboriginal_Syllabics)

3. 8 alphabets for meta-evaluation

Atemayar_Qelisayer, Futurama, Greek, Mkhedruli_(Georgian),

Syriac_(Estrangelo), Syriac_(Serto), Tagalog, Tibetan

4.5.3 Results

We compare our algorithms to the baselines TOE, Sequential MAML and

FTML similar to the triathlon and pentathlon experiments but in the sequential

tasks setting. Figure 4.7 shows that BomLA and BomVI can accumulate

4.6. Discussion 66

few-shot classification ability on the novel tasks over time, as the tasks arrive

sequentially for meta-training. The knowledge acquired from previous meta-

training tasks is carried forward in the form of a posterior, which is then used as

a prior when a new task arrives for meta-training. Despite having access to all

previous tasks, TOE shows no positive forward transfer in the meta-evaluation

accuracy each time it encounters a new task. FTML and sequential MAML are

inferior to BomLA and BomVI in the performance. BomLA with λ = 0.01

gives the best performance in this experiment.

Figure 4.7: Meta-evaluation accuracy across 3 seed runs on the novel tasks along
meta-training. Left: compares BomLA to the baselines, centre: com-
pares BomVI to the baselines, right: compares BomLA with different
λ values to BomVI.

4.6 Discussion
We notice that the optimal value of λ varies considerably across different ex-

perimental settings. The optimal λ value for the triathlon and pentathlon

experiments in Chapter 4.4 is determined to be λ = 100. In contrast, the opti-

mal λ for the Omniglot sequential task experiment in Chapter 4.5 is discovered

to be λ = 0.01. The substantial distinction in the optimal λ values between

these experimental settings is believed to stem from the diversity of the knowl-

edge domains in different settings. The triathlon and pentathlon experiments

consider knowledge domains from a broad spectrum, whereas the sequential

task experiment is confined to tasks within the Omniglot knowledge domain.

This distinction in the variation of the knowledge domains is conjectured as the

primary factor contributing to the observed variation in the optimal λ values

4.6. Discussion 67

across these experimental setups.

On a brief inspection, we observe that the arrangement order of the

knowledge domain datasets does not significantly impact the performance of

the Boml framework. This is further validated by the Omniglot sequential

task experiment, since the task sequence is randomly generated in this setting.

The sequences of both the alphabets and the tasks at the character level are

arbitrarily formed.

Finn et al. (2019) discover that TOE does not explicitly learn the structure

across tasks, thus unable to fully utilise the data. The TOE performance in

Figure 4.7 of the Omniglot experiment is coherent with the TOE result in Finn

et al. (2019). The result figures in Finn et al. (2019) show a TOE result similar

to ours in the Omniglot experiment. In contrast, TOE in the triathlon and

pentathlon experiments performs well as it has access to drastically more data

points than TOE in the Omniglot experiment, and samples numerous tasks

from all previous datasets.

In the triathlon and pentathlon experiments, sequential MAML suffers

from catastrophic forgetting due to the apparent distributional shift in the

datasets. The Omniglot experiment, on the other hand, has tasks originating

from the same underlying distribution. As a result sequential MAML in this

setting is able to accumulate few-shot ability, although it performs worse than

BomLA and BomVI as shown in Figure 4.7 since there is only one task

available at a time.

Since the original FTML is not aimed for unseen few-shot tasks and does

not deal with sequential datasets setting as in the triathlon and pentathlon

experiments, we have to modify FTML as described in Chapter 4.4.1. Sampling

from previous tasks in the buffer is a key feature of the FTML algorithm.

Certainly one can sample many tasks from the buffer to achieve perfect memory

in the triathlon and pentathlon experiments, but such a baseline setup has

been taken into consideration by TOE. Therefore we choose to retain the online

characteristic of the original FTML in our modified implementation.

4.7. Ablation Studies 68

4.7 Ablation Studies

4.7.1 Varying Precision Update Hyperparameter

Tuning the BomLA hyperparameter λ for precision update in Equation (4.7)

corresponds to balancing between a smaller performance trade-off on a new

dataset and less forgetting on previous datasets. As shown in Figure 4.8,

a larger λ = 1000 results in a more concentrated Gaussian posterior and

is therefore unable to learn new datasets well, but can better retain the

performances on previous datasets. A smaller λ = 1 on the other hand gives a

widespread Gaussian posterior and learns better on new datasets by sacrificing

the performance on the previous datasets.

Figure 4.8: Meta-evaluation accuracy across 3 seed runs on each dataset along
meta-training. Higher accuracy values indicate better results with
less forgetting as we proceed to new datasets. BomLA with a large
λ = 1000 gives better performance in the off-diagonal plots (retains
performances on previously learned datasets) but worse performance
in the diagonal plots (does not learn well on new datasets). A small
λ = 1 gives better performance in the diagonal plots (learns well on
new datasets) but worse performance in the off-diagonal plots (forgets
previously learned datasets). BomVI is also able to retain performance
on previous datasets, although it may be unable to perform as good as
BomLA due to sampling and estimator variance.

4.7. Ablation Studies 69

In this experiment, the value λ = 100 provides the optimal balance between

old and new datasets. Ideally we seek for a good performance on both old and

new datasets, but in reality there is a trade-off between retaining performance on

old datasets and learning well on new datasets due to posterior approximation

errors.

4.7.2 Analysing the Approximate Posterior Covariance

We visualise the covariance of the meta-parameters approximate posterior from

BomVI to better understand how the uncertainty in the algorithm prevents

catastrophic forgetting in few-shot classification problems. Since BomVI uses

a Gaussian mean-field approximation, we examine the variance of the meta-

parameters in a neural network model.

Figure 4.9: The change in the approximate posterior variance after meta-training
is completed on each dataset. Going from left to right are the datasets
of the pentathlon sequence. Going from top to bottom are the convolu-
tional layers of the neural network which gets closer to the classifying
layer. Each plot in the figure is the colour-encoded variance correspond-
ing to a specific knowledge domain dataset and the meta-parameters
of a specific layer in the neural network model. The variance in each
layer is flattened into a two-dimensional matrix visualisation. A darker
colour indicates a higher variance. The variance increases in general as
the convolutional layer gets closer to the classifying layer. The variance
decreases in the raw level filters (Conv 1) as the model learns along the
pentathlon sequence.

We follow the pentathlon sequence going from left to right in Figure 4.9:

Omniglot→ CIFAR-FS→ miniImageNet→ VGG-Flowers→ Aircraft.

4.7. Ablation Studies 70

The Gaussian mean-field approximation becomes increasingly concentrated in

general as it learns on more datasets. This is especially true for the earlier

layers (Conv 1 and Conv 2), meaning that the posterior progressively becomes

very confident on the meta-parameters of the raw-level filters. The variance for

the layer closest to the classifier (Conv 4) remains large in general, although

there are some filters with decreasing variance. As the convolutional layer gets

closer to the classifying layer, a larger fine-tuning in the meta-parameters is

needed (Ravi and Beatson, 2019) to cope with few-shot tasks from different

knowledge domains.

The approximate posterior covariance from BomLA is too large for visuali-

sation since it is block-diagonal. The BomLA covariance for each convolutional

layer has dimension D ×D where D is the number of meta-parameters in a

convolutional layer. In theory, the BomLA covariance should also follow a

similar pattern as the BomVI variance.

Chapter 5

Hessian Approximation

5.1 Introduction

Since the full Hessian matrices in Equation (3.10), Equation (4.8) and Equa-

tion (4.9) are intractable for large neural networks, we seek for some efficient

and relatively close approximations to the Hessian matrices. Diagonal approxi-

mations (Denker and LeCun, 1991; Kirkpatrick et al., 2017) are memory and

computationally efficient, but sacrifice approximation accuracy as they ignore

the interaction between parameters.

We consider instead separating a Hessian matrix into blocks where different

blocks are associated to different layers of a neural network. A particular

diagonal block corresponds to the Hessian for a particular layer of the neural

network. The block-diagonal Kronecker-factored approximation (Martens and

Grosse, 2015; Grosse and Martens, 2016; Botev et al., 2017) utilises the fact

that each diagonal block of the Hessian is Kronecker-factored for a single data

point. This provides a better Hessian approximation as it takes the parameter

interactions within a layer into consideration.

We begin this chapter by reviewing Hessian approximation in the large-

scale classification setting that adopts the block-diagonal Kronecker-factored

Fisher approximation method (Martens and Grosse, 2015; Grosse and Martens,

2016; Osawa et al., 2020). We then extend the block-diagonal Kronecker-

factored Fisher approximation to the few-shot classification setting for our

5.2. Background 72

Boml framework, and demonstrate empirically the importance of having a

good Hessian approximation in the Boml framework.

5.2 Background

Consider estimating the Hessian matrix in Equation (3.10) for the large-scale

classification setting. We approximate the Hessian for a single data point (x, y)

using the Fisher information matrix associated to the model parameters ϑ:

F = E(x,y)∼pϑ(x,y)

[
∇ϑ log pϑ(y|x)∇ϑ log pϑ(y|x)T

]
, (5.1)

which guarantees the positive semi-definiteness of the approximation. By

Bayes’ rule, the joint distribution for the data point under parameter ϑ is

pϑ(x, y) = pϑ(y|x)p(x), where p(x) is the distribution over inputs x, and pϑ(y|x)

is the predictive distribution for outputs y from a model with parameters ϑ.

It is a well-known property that taking expectation of Hessian for a single

data point over pϑ(x, y) leads to the Fisher in Equation (5.1), since

E
[
−∇2

ϑ log pϑ(y|x)
]

= E
[
−∇ϑ

(
∇ϑpϑ(y|x)
pϑ(y|x)

)]
(5.2)

= −
∫
∇2
ϑpϑ(y|x)p(x) dx dy + E

[
∇ϑ log pϑ(y|x)∇ϑ log pϑ(y|x)T

]
. (5.3)

Equation (5.3) follows from the quotient rule of differentiation. The first

term of Equation (5.3) is equal to zero since ∇2
ϑ

∫
pϑ(y|x)p(x) dx dy = 0 under

regularity conditions, which completes the proof.

We review the block-diagonal Kronecker-factored approximation to the

large-scale learning Hessian in Equation (3.10) for fully-connected layers, con-

volutional layers and batch normalisation layers of neural networks in Chap-

ters 5.2.1 – 5.2.3.

5.2. Background 73

5.2.1 Fully-Connected Layers

The work in this section is presented by Martens and Grosse (2015). We

consider a fully-connected neural network with L layers and model parameters

ϑ = [vec(W1)
T , . . . , vec(WL)

T]T , where Wℓ is the weight of layer ℓ for ℓ =

{1, . . . , L} and vec denotes stacking the columns of a matrix into a vector. We

denote the input of the neural network as a0 = x and the output of the neural

network as aL. As the input passes through each layer of the neural network,

the pre-activation hℓ and activation aℓ for layer ℓ are

hℓ = Wℓaℓ−1 and aℓ = fℓ(hℓ), (5.4)

where fℓ is the activation function of layer ℓ. If a bias vector is applicable in

calculating the pre-activation of a layer, we append the bias vector to the last

column of the weight matrix and append a scalar one to the last element of

the activation.

Figure 5.1: An example of a fully-connected neural network with L = 2 layers and
weight matrices W1, W2. The bias vectors are omitted in this example.
The weights are vectorised as ϑ = [vec(W1)

T , vec(W2)
T]T . The input

a0, pre-activations h1, h2 and activations a1, a2 interact according to
Equation (5.4) using activation functions f1, f2.

Let L(y, nnϑ(x)) = − log pϑ(y|x) be the loss between the true label y and

the output prediction of a neural network with model parameters ϑ. The

5.2. Background 74

gradient of the loss with respect to ϑ can be computed by back-propagating

through the neural network, starting from the final layer. Going backward for

ℓ from L to 1, we have

∂

∂Wℓ

L(y, nnϑ(x)) =
(
∂

∂aℓ
L(y, nnϑ(x)) · f ′

ℓ(hℓ)

)(
∂hℓ
∂Wℓ

)T

= gℓa
T
ℓ−1 (5.5)

where

∂hℓ
∂Wℓ

= aℓ−1, gℓ :=
∂

∂aℓ
L(y, nnϑ(x)) · f ′

ℓ(hℓ),
∂

∂aℓ−1

L(y, nnϑ(x)) = W T
ℓ gℓ.

The derivative of loss L(y, nnϑ(x)) with respect to the vectorised

parameters ϑ = [vec(W1)
T vec(W2)

T . . . vec(WL)
T]T can be annotated as

∂ϑL = [vec(∂W1L)
T vec(∂W2L)

T . . . vec(∂WL
L)T]T , where we write ∂ϑL =

∂
∂ϑ
L(y, nnϑ(x)) in shorthand. The operator vec(·) vectorises matrices into

vectors by stacking the columns together.

The Fisher information matrix F in Equation (5.1) can thus be expressed

block-wise, with the (i, j)-th block:

Fij = E(x,y)∼pϑ(x,y)

[
vec(∂Wi

L) vec(∂Wj
L)T

]
(5.6)

= E(x,y)∼pϑ(x,y)

[
vec(gia

T
i−1) vec(gja

T
j−1)

T
]
, (5.7)

where Equation (5.7) follows from the derivation in Equation (5.5). A fruitful

consequence is that Equation (5.7) can be expressed in terms of Kronecker

products.

The Kronecker product between two matrices A ∈ Rm×n and B ∈ Rp×q

is defined as

A⊗B =


A1,1B · · · A1,nB

...

Am,1B · · · Am,nB

 , (5.8)

where Ai,j is the (i, j)-th entry of A, and (A⊗B) ∈ Rmp×nq. Kronecker product

satisfies the following basic properties. For vectors u ∈ Rm and v ∈ Rn, matrices

5.2. Background 75

A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×r, D ∈ Rq×s and X ∈ Rq×n, we have:

(P1) vec(uvT) = v ⊗ u

(P2) (A⊗B)T = AT ⊗BT

(P3) (A⊗B)(C ⊗D) = AC ⊗BD

(P4) (A⊗B) vec(X) = vec(BXAT)

By setting the non-diagonal block approximations of the Fisher in Equa-

tion (5.6) to zero, we assume Fij ≈ 0 for i ̸= j. Proceeding from Equation (5.7),

the ℓ-th diagonal block Fℓ of the Fisher information matrix can be approximated

as

Fℓ = E(x,y)∼pϑ(x,y)
[(aℓ−1 ⊗ gℓ)(aℓ−1 ⊗ gℓ)T] (5.9)

= E(x,y)∼pϑ(x,y)
[aℓ−1a

T
ℓ−1 ⊗ gℓgTℓ] (5.10)

≈ Ex∼p̂(x)[aℓ−1a
T
ℓ−1]⊗ Ey∼pϑ(y|x)[gℓg

T
ℓ] (5.11)

= Aℓ−1 ⊗Gℓ, (5.12)

where Aℓ−1 = Ex∼p̂(x)[aℓ−1a
T
ℓ−1] and Gℓ = Ey∼pϑ(y|x)[gℓgTℓ]. Equation (5.9)

follows from Equation (5.7) with Property (P1), whereas Equation (5.10) is a

direct result of Properties (P2) and (P3). Equation (5.11) follows by bringing

the expectation into the Kronecker product and considering the inputs x from

the empirical data distribution p̂(x) instead of the unknown true distribution

p(x). The Gaussian log-probability term can be calculated efficiently using

Property (P4) without expanding the Kronecker product:

(Aℓ−1 ⊗Gℓ) vec(Wℓ −W ∗
ℓ) = vec(Gℓ(Wℓ −W ∗

ℓ)A
T
ℓ−1). (5.13)

Data points often come in batches during training. For a batch of size B

we have the approximations

Aℓ−1 ≈
1

B
ăℓ−1ă

T
ℓ−1, Gℓ ≈

1

B
ğℓğ

T
ℓ , (5.14)

5.2. Background 76

where ăℓ−1 and ğℓ are the batched version of activations and gradients with

an extra final dimension of shape B. Putting the blocks together for layers

ℓ = 1, . . . , L gives the block-diagonal Kronecker-factored Fisher approximation

F ≈


A0 ⊗G1 0

. . .

0 AL−1 ⊗GL

 . (5.15)

5.2.2 Convolution Layers

Grosse and Martens (2016) extend the block-diagonal Kronecker-factored Fisher

approximation for fully-connected layers to that for convolution layers. Consider

a convolutional operation with stride 1 and padding R for convenience.

Due to the special condition of the convolutional operations, an activation

ai,k for a specific layer with single data point should be considered in terms

of spatial locations k ∈ K with index i ∈ {1, . . . I} over the number of input

channels I of the weights. Figure 5.2 gives a two-dimensional illustration for

the spatial locations of a 3-by-3 filter in the simple 6-by-6 activation. The

batch size and input channels are ignored in the illustration.

Figure 5.2: A two-dimensional example of a 6-by-6 activation with spatial location
k ∈ K for a 3-by-3 filter. For a convolutional operation of stride 1, we
have |K| = 16 in this example. The batch size and input channels are
ignored in the illustration

A convolutional operation uses weight wc,i,δ and bias bc, with subscript

c ∈ {1, . . . , C} over the number of output channels C, and the index δ ∈ ∆

for spatial offset of filter from its center. The convolution operation computes

5.2. Background 77

pre-activation hc,k as

hc,k =
∑
δ∈∆

wc,i,δ ai,k+δ + bc. (5.16)

Figure 5.3 shows a two-dimensional illustration for the spatial offsets of a 3-by-3

filter, where the input and output channels are ignored in the example. The

weight parameter associated to the spatial offset δ = (+1, 0) is wc,i,(+1,0) for

input channel i and output channel c.

Figure 5.3: A two-dimensional example for a spatial offset δ of a 3-by-3 filter. In
this example we have |∆| = 9. The input and output channels are
ignored in this illustration.

For generalisation purpose, the activation of layer ℓ should be stored as

a matrix of shape (B|K|, I|∆|) with batch size B. This is achieved by first

collecting the activation for each spatial location k ∈ K and then flattening into

an activation Ăℓ of shape (B|K|, I). We then apply the expansion operator J·K

to Ăℓ which extract patches in each spatial location within the spatial offsets of

the filter, resulting in
q
Ăℓ

y
of shape (B|K|, I|∆|). The activation and expanded

activation in the single data point B = 1 case are denoted as Aℓ and JAℓK

respectively. The expansion operation is conducted as follows:

q
Ăℓ

y
kB+b,i|∆|+δ =

(
Ăℓ

)
(k+δ)B+b,i

= a
(b)
i,k+δ, (5.17)

such that k + δ ∈ K, and b denotes the activation for data b in a batch of size

B.

The weight parameters are also modified into shape (C, |∆|, I) and then

flatten into Wℓ of shape (C, I|∆|). We denote the expanded input and output

of a neural network with layers ℓ = 1, . . . , L as
q
Ă0

y
and

q
ĂL

y
respectively.

As the input passes through each layer of the neural network, the pre-activation

5.2. Background 78

Hℓ and expanded activation
q
Ăℓ

y
for layer ℓ are

Hℓ =
q
Ăℓ−1

y
W T
ℓ and

q
Ăℓ

y
= fℓ(Hℓ), (5.18)

where fℓ is the activation function of layer ℓ. If a bias vector is involved in

the pre-activation calculation, we append the bias vector to the last column of

the weight matrix Wℓ and append a column of 1’s to the last column of the

expanded activation
q
Ăℓ

y
.

Similar to the fully-connected layers, we define the gradient of loss

L(y, nnϑ(x)) with respect to the pre-activation Hℓ for a mini-batch of size

B as Ğℓ := ∂Hℓ
L. The gradient in the single data point B = 1 case is denoted

by Gℓ. For convolution layers ℓ = 1, . . . , L, the ℓ-th diagonal block Fisher Fℓ in

Equation (5.6) is approximated by

Fℓ = E(x,y)∼pϑ(x,y)

[
vec(∂Wℓ

L) vec(∂Wℓ
L)T

]
(5.19)

≈ Ex∼p̂(x)
[
JAℓ−1KT JAℓ−1K

]
⊗ Ey∼pϑ(y|x)

[
GTℓ Gℓ

]
(5.20)

≈ Aℓ−1 ⊗Gℓ, (5.21)

where

Aℓ−1 =
1

B

q
Ăℓ−1

yTq
Ăℓ−1

y
and Gℓ =

1

B|K|
ĞTℓ Ğℓ

are the approximation to Kronecker products in Equation (5.20) when the

data is in batch. The approximation in Equation (5.20) assumes for spatial

homogeneity on the activation and pre-activation elements in Equation (5.16)

as follows:

• Ex∼p̂(x)[ai,k] =M(i), ∀i ∈ {1, . . . , I}, ∀k ∈ K, and some function M .

That is the first order statistics of the activations are independent of the

spatial location.

• Ex∼p̂(x)[ai,k ai′,k′] = Ω(i, i′, k′−k), ∀i, i′ ∈ {1, . . . , I}, ∀k, k′ ∈ K, and some

function Ω.

5.2. Background 79

• Ey∼pϑ(y|x)[(∂hc,kL)(∂hc′,k′L)] = Γ(c, c′, k′ − k), ∀c, c′ ∈ {1, . . . , C}, ∀k, k′ ∈

K, and some function Γ.

That is the second order statistics of the activations and gradients with

respect to pre-activations at any spatial locations k and k′ depends only

on k′ − k.

5.2.3 Batch Normalisation Layers

A batch normalisation layer often follows after a convolution layer. Suppose

that the convolution layer before batch normalisation has Cℓ number of output

channels. For a mini-batch of size B, batch normalisation first normalise the

inputs xb in the batch for b = 1, . . . , B with

x̃b =
xb − µ√
σ2 + ϵ

, (5.22)

where

µ =
1

B

B∑
b=1

xb and σ2 =
1

B

B∑
b=1

(xb − µ)2 (5.23)

are the batch mean and variance respectively. A small ϵ is added for numerical

stability. The output of the batch normalisation layer is yb = γx̃b + β for

b = 1, . . . , B, where γ, β ∈ RCℓ are the trainable weights and biases respectively.

We adopt the unit-wise Fisher approximation for batch normalisation

layers (Osawa et al., 2020). Suppose that the ℓ-th layer of a neural network is a

batch normalisation layer. The unit-wise method first aggregates the elements

of γ and β according to the output channels c = 1, . . . , Cℓ and re-arrange the

parameters into Wℓ = [γ1, β1, . . . , γCℓ
, βCℓ

]T ∈ R2Cℓ . Rather than computing

the full ℓ-th Fisher block

Fℓ = E(x,y)∼pϑ(x,y)
[
(∂Wℓ

L)(∂Wℓ
L)T

]
∈ R2Cℓ×2Cℓ , (5.24)

the unit-wise method instead approximates Fℓ by blocks F (c)
ℓ for c = 1, . . . , Cℓ,

5.3. Hessian Approximation for Boml 80

which gives

Fℓ ≈


F

(1)
ℓ 0

. . .

0 F
(Cℓ)
ℓ

 . (5.25)

Each block F (c)
ℓ considers only the parameter interaction between γc and βc of

channel c, for c = 1, . . . , Cℓ:

F
(c)
ℓ = E(x,y)∼pϑ(x,y)

 (∂γcL)
2 (∂γcL)(∂βcL)

(∂βcL)(∂γcL) (∂βcL)
2

 . (5.26)

For a neural network taking inputs of batch size B, the Fisher approximation

for block F (c)
ℓ becomes

F
(c)
ℓ ≈

1

B

B∑
b=1

 (∂γcLb)
2 (∂γcLb)(∂βcLb)

(∂βcLb)(∂γcLb) (∂βcLb)
2

 , (5.27)

where Lb denotes the loss L with respect to the b-th input and label.

5.3 Hessian Approximation for Boml

Recall that the Hessian matrices H̃t+1 in Equation (4.8) and Ht+1 in Equa-

tion (4.9) associated to BomLA have entries:

H ij
t+1 =

1

M

M∑
m=1

− ∂2

∂θ(i)∂θ(j)
log p(Dm,St+1 |θ)

∣∣∣∣
θ=µt+1

,

H̃ ij
t+1 =

1

M

M∑
m=1

− ∂2

∂θ(i)∂θ(j)
log p(Dm,Qt+1 |θ̃m))

∣∣∣∣
θ=µt+1

.

We indicate Ht+1 as the pre-adaptation Hessian for knowledge domain Dt+1,

and H̃t+1 as the post-adaptation Hessian corresponding to the task-specific

adapted parameters θ̃m for tasks m = 1, . . . ,M . We estimate the Hessian

matrices Ht+1 and H̃t+1 for a single data point because the cross-entropy losses

in the objective Equation (4.6) are often averaged over the batch of data points

in a task.

5.3. Hessian Approximation for Boml 81

5.3.1 Pre-Adaptation Hessian

The Hessian Ht+1 can be approximated in the same manner as the block-

diagonal Kronecker-factored approximation in Chapter 5.2, since the log-

likelihood in Ht+1 is considered over the pre-adapted meta-parameters θ. Before

θ is adapted via inner loop to a specific task, the approximation method for

the Hessian with respect to θ is of no difference to that of the Hessian with

respect to the model parameters ϑ in Chapter 5.2.

For an N -way K-shot setting corresponding to the knowledge domain

Dt+1, the support set Dm,St+1 has size B =
∣∣Dm,St+1

∣∣ = NK, for task m = 1, . . . ,M .

This results in the ℓ-th block Kronecker-factored approximation for Ht+1 on a

single data points as follows.

1. For a fully-connected layer ℓ:

Fℓ ≈
(

1

MB

M∑
m=1

ămℓ−1

(
ămℓ−1

)T)⊗ (
1

MB

M∑
m=1

ğmℓ
(
ğmℓ

)T) (5.28)

=: Aℓ−1 ⊗Gℓ,

with ămℓ−1 and ğmℓ acquired as in Equation (5.14) using Dm,St+1 .

2. For a convolution layer ℓ:

Fℓ ≈
(

1

MB

M∑
m=1

q
Ămℓ−1

yTq
Ămℓ−1

y)
⊗
(

1

MB|K|

M∑
m=1

(
Ğmℓ

)T Ğmℓ) (5.29)

=: Aℓ−1 ⊗Gℓ,

with
q
Ămℓ−1

y
and Ğmℓ acquired as in Equation (5.21) using Dm,St+1 .

3. For a batch normalisation layer ℓ, the diagonal block F
(c)
ℓ of the Fℓ

approximation is:

F
(c)
ℓ ≈

1

MB

MB∑
b=1

 (
∂γcL

m
b

)2 (
∂γcL

m
b

)(
∂βcL

m
b

)(
∂βcL

m
b

)(
∂γcL

m
b

) (
∂βcL

m
b

)2
 (5.30)

5.3. Hessian Approximation for Boml 82

as in Equation (5.27) where Lmb denotes the loss L with respect to the

b-th input and label from the support set Dm,St+1 of task m.

5.3.2 Post-Adaptation Hessian

The Hessian H̃t+1 requires a special treatment in addition to the original

approximation method, since its log-likelihood is considered over the adapted

parameters θ̃m = SGDk(L(θ,Dm,S)) for task m whilst the derivative in H̃t+1

is taken with respect to the meta-parameters θ.

Each (x, y) pair for the Fisher in BomLA is associated to a task m. The

Fisher information matrix F̃ corresponding to the Hessian H̃t+1 for a single

data point is

F̃ =
1

M

M∑
m=1

E
[
∇θ log pθ̃m(y|x)∇θ log pθ̃m(y|x)

T
]

(5.31)

=
1

M

M∑
m=1

E
[(

∂θ̃m

∂θ

)T

∇θ̃m log pθ̃m(y|x)∇θ̃m log pθ̃m(y|x)
T

(
∂θ̃m

∂θ

)]
, (5.32)

where the expectation in F̃ is taken over (x, y) ∼ pθ̃m(y|x)p(x) from the

query set. The additional Jacobian matrix ∂θ̃m

∂θ
breaks the Kronecker-factored

structure described by Martens and Grosse (2015) for the original Fisher in

Equation (5.1). It is therefore necessary to derive an adjusted approximation

to the Hessian H̃t+1 with some further assumptions.

Finn et al. (2017) show that the first step of the quick adaptation in

θ̃m contributes the largest change to the meta-evaluation objective, and the

remaining adaptation steps give a relatively small change to the objective. We

can reasonably assume a one-step SGD quick adaptation for task m:

θ̃m = θ −∇θL(θ,Dm,S) (5.33)

in order to approximate the Fisher, although in other parts of the framework

we use a few-step SGD as usual. We consider a cross-entropy loss for L. By

imposing the one-step SGD assumption, the (i, j)-th entry of the Jacobian term

5.3. Hessian Approximation for Boml 83

can be interpreted as

(
∇θθ̃

m
)ij

= I ij − ∂2(− log p(Dm,S|θ))
∂θ(i)∂θ(j)

, (5.34)

where I is the corresponding identity matrix.

The Hessian term in Equation (5.34) is identical to the Hessian Ht+1 except

without the summation over tasks m = 1, . . . ,M . We should be aware that

both Hessian matrices are considering approximations for a single data point.

As such, we can approximate the Hessian in ∇θθ̃
m for a single data point using

the same approximation to Ht+1 in Chapter 5.3.1.

The Jacobian ∇θθ̃
m is the batched version of ∂θ̃m

∂θ
, since ∇θθ̃

m uses the

entire support set Dm,S for computation. Breaking the expectation structure

in Equation (5.32) results in the approximation

F̃ ≈ 1

M

M∑
m=1

(
I − F

)T E[∇θ̃m log pθ̃m(y|x)∇θ̃m log pθ̃m(y|x)
T
]

︸ ︷︷ ︸
Fm

(
I − F

)
, (5.35)

where

F = E
[
∇θ log pθ(y|x)∇θ log pθ(y|x)T

]
with expectation of F taken over (x, y) ∼ pθ(y|x)p(x) from the support set.

The ℓ-th diagonal block approximation of the term
(
I − F

)
for layer ℓ is

(
I − F

)
ℓ
≈ Iℓ − Aℓ−1 ⊗Gℓ, (5.36)

where Aℓ−1 and Gℓ are acquired the exact same way as in Equation (5.28) for

a fully-connected layer or Equation (5.29) for a convolutional layer. If layer ℓ

corresponds to batch normalisation, then Fℓ is approximated using the block

approximation in Equation (5.30).

The ℓ-th diagonal block approximation for the Fisher with respect to

the task adapted parameters θ̃m is Fm
ℓ ≈ Ãmℓ−1 ⊗ G̃m

ℓ , where Ãmℓ−1 are G̃m
ℓ are

acquired based on the block-diagonal Kronecker-factored Fisher approximation

5.3. Hessian Approximation for Boml 84

described in Chapter 5.2 with batch size B =
∣∣Dm,Qt+1

∣∣. If layer ℓ corresponds to

batch normalisation, then we use the approximation in Equation (5.27) instead.

Putting the approximations together, the ℓ-th diagonal block of F̃ in

Equation (5.32) is

F̃ℓ ≈
1

M

M∑
m=1

(Iℓ − Aℓ−1 ⊗Gℓ)
T (Ãmℓ−1 ⊗ G̃m

ℓ)(Iℓ − Aℓ−1 ⊗Gℓ), (5.37)

for fully-connected or convolution layers. We expand F̃ℓ using Property (P3)

of Kronecker products to give

F̃ℓ ≈
1

M

M∑
m=1

[
Ãmℓ−1 ⊗ G̃m

ℓ − (Aℓ−1)
T Ãmℓ−1 ⊗ (Gℓ)

T G̃m
ℓ − Ãmℓ−1Aℓ−1 ⊗ G̃m

ℓ Gℓ

+ (Aℓ−1)
T Ãmℓ−1Aℓ−1 ⊗ (Gℓ)

T G̃m
ℓ Gℓ

]
.

(5.38)

Finally, moving the meta-batch averaging into the Kronecker factors gives the

approximation:

F̃ℓ ≈Ãℓ−1 ⊗ G̃ℓ − (Aℓ−1)
T Ãℓ−1 ⊗ (Gℓ)

T G̃ℓ − Ãℓ−1Aℓ−1 ⊗ G̃ℓGℓ

+ (Aℓ−1)
T Ãℓ−1Aℓ−1 ⊗ (Gℓ)

T G̃ℓGℓ,
(5.39)

where

Ãℓ−1 =
1

M

M∑
m=1

Ãmℓ−1 and G̃ℓ =
1

M

M∑
m=1

G̃m
ℓ .

If layer ℓ is a batch normalisation layer, we have

F̃ℓ ≈ F̃ℓ − (Fℓ)
T F̃ℓ − F̃ℓFℓ + (Fℓ)

T F̃ℓFℓ, (5.40)

where F̃ℓ = 1
M

∑M
m=1 F

m
ℓ .

Algorithm 9 shows the pseudo-code of block-diagonal Kronecker-factored

Hessian approximation for the Boml framework. In general, the approximations

to F̃ℓ in Equations (5.39) and (5.40) are applicable to any gradient-based meta-

5.4. Experiments 85

learning methods with a few-step gradient descent inner loop.

Algorithm 9 Block-diagonal Kronecker-factored Hessian approximation for
Boml
1: Require: base set Dt, number of tasks MH , number of neural network

layers L
2: for m = 1 to MH do
3: Sample task Dmt = Dm,St ∪ Dm,Qt

4: Inner update θ̃m = SGDk(L(θ,Dm,St))
5: for ℓ = 1 to L do
6: Approximate Ht with Fℓ in Equations (5.28) – (5.30) using Dm,St

7: Compute Fm
ℓ using Dm,Qt

8: Approximate H̃t with F̃ℓ in Equations (5.39) and (5.40)
9: end for

10: end for
11: return Approximation for H̃t and Ht

Hessian approximation for Boml might seem daunting at first sight, since

we need to approximate two Hessian matrices H̃t+1 and Ht+1. At a closer

inspection the approximation for Hessian Ht+1 can be reused to approximate

the Hessian H̃t+1. For a fully-connected or convolution layer ℓ, we keep the

two pairs Ãℓ−1, G̃ℓ and Aℓ−1, Gℓ in memory. If layer ℓ corresponds to batch

normalisation, we keep F̃ℓ and Fℓ in memory instead.

5.4 Experiments

5.4.1 Ignoring the Jacobian

We should be aware that the full approximation in Equations (5.39) and (5.40)

for the Hessian H̃t+1 requires an extensive calculation for the cross terms. This

is due to the inclusion of Jacobian ∂θ̃m

∂θ
for the Fisher F̃ in Equation (5.32).

This experiment investigates the effect of neglecting the Jacobian matrix

in the Fisher F̃ . Consider re-running the triathlon, pentathlon and Omniglot

sequential task experiments in Chapter 4.4 by ignoring the additional Jaco-

bian matrix ∂θ̃m

∂θ
in Equation (5.32). This results in the truncated Fisher

5.4. Experiments 86

approximation for the ℓ-th block:

F̃
(trunc)
ℓ ≈ Ãℓ−1 ⊗ G̃ℓ and F̃

(trunc)
ℓ ≈ 1

M

M∑
m=1

Fm
ℓ (5.41)

where all the cross terms in Equations (5.39) and (5.40) are ignored. The former

F̃
(trunc)
ℓ approximation is for a fully-connected or convolution layer, whilst the

latter approximation is for a batch normalisation layer. We compare BomLA

that uses approximation F̃ℓ with Jacobian included versus BomLA that uses

approximation F̃
(trunc)
ℓ with Jacobian excluded for each layer ℓ of the neural

network model.

Dataset Average accuracy (%) reduction

Triathlon -1.61 ± 2.48
Pentathlon -1.88 ± 1.94

Table 5.1: Average reduction in the meta-evaluation accuracy when the Jacobian
is excluded in Hessian approximation for BomLA with λ = 100. The
average is taken over tasks from all datasets, after meta-training is
completed on the entire dataset sequence. The values are reported by
averaging over a total of 100 tasks along with the 95% confidence interval.
The performance reduction is not apparent, since the confidence intervals
along with the averages cover small reduction values that are both above
and below zero.

Table 5.1 shows the mean reduction in the meta-evaluation accuracy when

the Jacobian is excluded in Hessian approximation for BomLA with precision

update hyperparameter λ = 100. The mean is considered over tasks from all

knowledge domains, after meta-training is completed on the entire dataset

sequence. The performance decline is not apparent for the triathlon and

pentathlon sequences, since these dataset sequences are relatively short with

length 3 and 5 respectively.

We proceed to the Omniglot sequential task setting with a long few-shot

problem sequence of length 254. We discover that omitting the Jacobian

in Hessian approximation induces a significant error which deteriorates the

meta-evaluation performance. Figure 5.4 (left) illustrates the performance

5.4. Experiments 87

Figure 5.4: Meta-evaluation performance comparison across 3 seed runs on the
novel tasks along meta-training. Left: compares BomLA of Hessian
approximation in Equations (5.39) and (5.40) (with Jacobian) versus
BomLA of Hessian approximation in Equation (5.41) (without Jaco-
bian). BomLA that uses Hessian approximation without Jacobian
() shows a large performance degradation compared to that with
Jacobian (). Right: meta-evaluation accuracy difference between
BomLA with Jacobian at λ = 0.01 and BomLA without Jacobian at
λ = 1. The difference evolves around zero, indicating that the adjust-
ment λ = 1 gives a quick fix to the posterior approximation when the
Jacobian is excluded in Hessian approximation.

degradation for omitting the Jacobian in BomLA Hessian approximation. The

comparison is made with λ value fixed at λ = 0.01.

Nonetheless it is possible to adjust the approximate posterior by tuning

the hyperparameter λ. We compare BomLA without Jacobian at λ = 1 to

the full BomLA with Jacobian at λ = 0.01. Figure 5.4 (right) shows that

BomLA without Jacobian at λ = 1 and BomLA with Jacobian at λ = 0.01

give a similar performance, since the performance difference between these two

runs evolves around zero. The hyperparameter λ allows an opportunity to

fix the error in the posterior approximation. When lacking in computational

resource, tuning λ provides an alternative cost-effective solution for posterior

approximation.

5.4. Experiments 88

5.4.2 Analysing the Cross Terms

This section investigates the cross terms of F̃ℓ for neural network layers ℓ =

1, . . . , L. We employ the pentathlon sequence for easier visualisation:

Omniglot→ CIFAR-FS→ miniImageNet→ VGG-Flowers→ Aircraft.

We mentioned earlier about ignoring the Jacobian in Equation (5.32), which

leads to the assumption:
∂θ̃m

∂θ
≈ I, (5.42)

where I is an identity matrix. This further brings us to the assumption

where the Hessian in Equation (5.34) is approximately zero when ignoring the

Jacobian:
∂2(− log p(Dm,S|θ))

∂θ(i)∂θ(j)
≈ 0. (5.43)

To investigate whether this is a reasonable assumption, Figure 5.5 examines

the Fisher F in Equation (5.35) that approximates the pre-adaptation Hessian

in Equation (5.43) for a single data point. If the assumption in Equation (5.43)

is reasonable, then Figure 5.5 should show that the approximation

Fℓ ≈ 0 (5.44)

holds for all layers ℓ of the neural network model.

Figure 5.5 illustrates the blocks of Fisher approximation Fℓ corresponding

to all neural network layers ℓ for each dataset in the pentathlon sequence. The

Fisher approximation values corresponding to the fully-connected classifier

layer is relatively large compared to that of the convolution layers.

The visualisation in Figure 5.5 might mislead one into believing that

Equation (5.44) is a valid assumption, since the assumption holds for almost all

layers of the neural network. The numerical values of Fℓ for the classifier layer ℓ

is also not as large, since the value bar only ranges to a single digit. Nonetheless

we should take into consideration that the cross terms in Equations (5.39) and

5.4. Experiments 89

Figure 5.5: The Fisher approximation F corresponding to the Hessian in Equa-
tion (5.43) after meta-training is completed on each dataset. Going
from left to right are the datasets of the pentathlon sequence. Going
from top to bottom are the convolution layers and the fully-connected
classifier layer of the neural network. Each plot in the figure is the
colour-encoded Fisher approximation Fℓ corresponding to a specific
knowledge domain dataset and a specific layer ℓ in the neural network
model. Fℓ for the middle convolution layers (ℓ = Conv 2, 3 and 4) are
cropped as the full matrices are too large to visualise. The Fℓ matrices
for the convolution layers ℓ have entry values that are close to zero.

(5.40) involve multiplication which might amplify the error for excluding F in

the Fisher approximation F̃ .

Figure 5.5 demonstrates empirically that the assumption in Equation (5.43)

is appropriate for the convolution layers, but not for the output classifier

layer. Figure 5.6 further verifies this claim by showing the absolute difference∣∣F̃ℓ − F̃
(trunc)
ℓ

∣∣ between the full Fisher and the truncated Fisher for each layer

ℓ of the neural network model. The Fisher F̃ (trunc)
ℓ that excludes the Jacobian

provides a reasonable approximation for a convolution layer ℓ, but it gives a

5.4. Experiments 90

poor approximation for the classifier layer.

Figure 5.6: The absolute difference
∣∣F̃ℓ − F̃

(trunc)
ℓ

∣∣ between the full Fisher and the
truncated Fisher for each layer ℓ of the neural network model after
meta-training is completed on each dataset. Going from left to right
are the datasets of the pentathlon sequence. Going from top to bottom
are the convolution layers and the fully-connected classifier layer of the
neural network. Each plot in the figure is the colour-encoded absolute
difference

∣∣F̃ℓ − F̃
(trunc)
ℓ

∣∣ corresponding to a specific knowledge domain
dataset and a specific layer ℓ of the neural network model. The absolute
difference matrices for the middle convolution layers (ℓ = Conv 2, 3
and 4) are cropped as the full matrices are too large to visualise. The
absolute difference matrices for the convolution layers ℓ have entry
values that are close to zero, but the absolute difference matrices for
the classifier layer have large entry values.

Since the absolute difference
∣∣F̃ℓ − F̃

(trunc)
ℓ

∣∣ is small for almost all layers ℓ,

one might believe that it is appropriate to employ the approximation F̃
(trunc)
ℓ

without Jacobian. It is however important to realise that the absolute difference

for the classifier layer is in the order of hundreds over all the pentathlon

datasets except for Omniglot. We take a closer look at the absolute difference∣∣F̃ℓ − F̃
(trunc)
ℓ

∣∣ for the classifier layer ℓ on the Omniglot dataset in Figure 5.7.

5.4. Experiments 91

The absolute difference for the classifier layer on the Omniglot dataset is in the

order of tens, although not as large as that of the other datasets in the order

of hundreds.

Figure 5.7: The absolute difference
∣∣F̃ℓ − F̃

(trunc)
ℓ

∣∣ between the full Fisher and the
truncated Fisher for a convolution and fully-connected classifier layer
ℓ of the neural network model after meta-training is completed on
Omniglot. We only retain the visualisation for the first convolution
layer (Conv 1) since the remaining convolution layers have the same
visualisation. The absolute difference matrices for the convolution layers
ℓ have entry values that are close to zero. The absolute difference matrix
for the classifier layer corresponding to Omniglot has entry values in
the order of tens.

The approximation error of F̃ (trunc)
ℓ for the classifier layer ℓ is very large,

despite being a reasonable approximation for the convolution layers. As illus-

trated in earlier experiments of Chapter 5.4.1, employing the approximation

F̃
(trunc)
ℓ without Jacobian induces a significant performance deterioration for

a longer sequence of few-shot problems. The posterior approximation error is

not apparent in the shorter triathlon and pentathlon sequences, but the error

accumulates over a long sequence.

Chapter 6

Automating Bayesian Online

Meta-Learning

6.1 Introduction

Boml has been shown to achieve its goal for sequential few-shot classification

problems (Yap et al., 2021). The current Boml framework for few-shot classifi-

cation is, however, limited in several ways. A key limitation is that the inner

loop adaptation uses a hand-crafted stochastic gradient descent (SGD) method

with manually picked learning rate and number of steps. The quick adaptation

components from different knowledge domains do not have to communicate

with each other when they encounter unseen tasks, since the quick adaptation

for each knowledge domain is pre-fixed.

Another limitation of Boml is its inflexibility. Boml requires the sequen-

tial datasets to be of the same few-shot setting, since Boml only learns a single

neural network model for all datasets in a sequence. For instance, all datasets

of the triathlon and pentathlon sequences in Chapter 4.4 share the same 5-way

1-shot setting. As a result the neural network model in Boml insists on having

the specific output dimension of 5. In order to overcome this limitation, we

consider the input and output layers of the neural network model separately

for each dataset, and the remaining layers are shared across all the knowledge

domain datasets as in Boml.

6.1. Introduction 93

This chapter aims to enhance the original Boml to the Boml+ framework

that is highly related to the Badger architecture (Rosa et al., 2019). We

automate the inner loop adaptation mechanism to replace the hand-crafted

few-step SGD inner loops. We achieve this goal by learning an LSTM that

outputs quick adaptation steps for each knowledge domain. This is inspired by

previous works (Andrychowicz et al., 2016; Li and Malik, 2017) on learning-

to-learn that automate the update process of the parameters to replace the

traditional gradient descent methods.

Since each knowledge domain has its own LSTM for quick adaptation, a

task-pointer mechanism is required to communicate which LSTM should be

responsible for adaptation when a novel task arrives. We implement a class-

incremental learning method to train a generative classifier (van de Ven et al.,

2021) for identifying the domain-belonging of the novel tasks. The domain

knowledge datasets are considered as ‘classes’ that arrive sequentially for class-

incremental learning to train for a generative classifier. A class-incremental

learning method is necessary in contrast to a conventional classifier, due to the

requirement for a mechanism capable of learning continually from ‘classes’ that

arrive in a sequential manner.

During meta-evaluation, the trained generative classifier informs the agent

on the knowledge domain of a novel task via prediction using the support set

images from the novel task. The process of assigning tasks to their respective

knowledge domains closely resembles that of labelling the classes of images in a

dataset. Such labelling processes can be expensive in terms of human effort. A

pragmatic approach is to utilise labels during training to create a task-labelling

mechanism that manages the costly labelling process during the evaluation

phase. This establishes the purpose of training a generative classifier for the

task-pointer mechanism.

This chapter demonstrates the enhancement of Boml to an automated

framework Boml+ with greater flexibility. We develop a highly parallelisable

training process for Boml+, and demonstrate the new evaluation workflow in

6.2. Background 94

Boml+. The experiments show empirically that Boml+ outperforms Boml

during evaluation. The work in this chapter was completed under a project

funded by GoodAI via the GoodAI grant. We briefly review the learning-to-

learn method (Andrychowicz et al., 2016), class-incremental learning method

(van de Ven et al., 2021) and Badger architecture (Rosa et al., 2019) before

proceeding to Boml+.

6.2 Background

6.2.1 Learning-to-Learn with LSTM

We briefly explain the learning-to-learn framework by Andrychowicz et al. (2016)

before proceeding to our work. Large-scale machine learning often utilises some

hand-crafted gradient descent methods such as SGD, Adam or Adagrad for

optimisation. These methods are carefully designed with hyperparameters

such as learning rate introduced for tuning. Although these methods are

proven to be useful, extra time and computational cost are necessary for

hyperparameter tuning to give the optimum result. As such Andrychowicz

et al. (2016) introduce an automated framework in replacement of the hand-

crafted algorithm for large-scale machine learning optimisation. The automated

framework comprises LSTMs that take the parameter gradients as inputs and

return the parameter updates as outputs. We need a method to train the

LSTMs into an automated parameter-updating framework.

Consider an optimiser (eg. LSTM) with parameters ϕ. The goal in large-

scale classification is to optimise the parameters ξ of a model (also known as

optimisee) with respect to the objective function f . With a slight abuse of

notation, the final trained optimisee parameters can be written as a function of

the objective and the optimiser parameters ξ∗(f, ϕ). The meta-level objective

with respect to the optimiser parameters is defined as L(ϕ) = Ef
[
f(ξ∗(f, ϕ))

]
.

Figure 6.1 illustrates the computational graph for the gradients of L(ϕ) with

respect to the LSTM optimiser parameters ϕ when updating ξ at time step

r − 1 and r.

6.2. Background 95

Figure 6.1: The computational graph for the gradients of L(ϕ) with respect to the
LSTM optimiser parameters ϕ when updating ξ at time step r − 1 and
r. The gradients are allowed to flow through the solid arrows during
back-propagation, but the gradient flow is prohibited along the dashed
arrows. The optimisee corresponds to a model which is usually a neural
network with parameters ξ. For a particular time step r, we update
the optimisee parameters ξr by adding the output gr acquired from the
LSTM. The LSTM takes the gradients ∇r of objective f with respect to
ξr as inputs along with hidden states hr. When computing the gradients
of the LSTM parameters, we do not take the gradient flow from ∇r
into consideration.

The goal is to train an optimiser, which is an LSTM m(·, ·, ϕ) with param-

eters ϕ, to output update steps gr for the optimisee parameters ξr at time step

r. Instead of considering only the final step ξ∗, the original work accumulates

weighted sum of objectives over some time horizon R:

L(ϕ) = Ef

[
R∑
r=1

wrf(ξr)

]
, (6.1)

where ξr+1 = ξr + gr and  gr

hr+1

 = m(∇r, hr, ϕ) (6.2)

with ∇r = ∇ξf(ξr), hidden states hr of the LSTM and weights wr.

Upon completing the optimisation on L(ϕ) with respect to ϕ, the parameter

ξ is updated by ξr+1 = ξr + gr for update step r + 1 where gr is provided by

the trained LSTM m
(
∇r, hr, ϕ

∗) with optimised parameters ϕ∗.

6.2. Background 96

6.2.2 Generative Classifier

We adopt a class-incremental learning method, where classes of a dataset arrive

sequentially, to train for a generative classifier (van de Ven et al., 2021). The

generative classifier uses Bayes’ rule p(y|x) ∝ p(x|y)p(y) for classification, where

x is an input from dataset D = {(xi, ỹi)}ni=1, and y is the label prediction of x.

There are two steps involved in estimating the likelihood p(x|y) for classi-

fication using Bayes’ rule: VAE training and likelihood estimation.

VAE training: A VAE model is learned for each class of a dataset (van de

Ven et al., 2021), in which the classes arrive in sequential order for training.

The encoder qφ, decoder pψ and prior pprior for the VAEs are:

qφ(z|x) = N
(
·
∣∣∣µ(x)
φ , σ(x)

φ

2
I
)
, pψ(x|z) = N

(
·
∣∣µzψ, I), pprior(z) = N(·|0, I),

(6.3)

where µ(x)
φ and σ(x)

φ are the outputs of an encoder neural network of parameters

φ that takes input x, and µzψ is the output of a decoder neural network of

parameters ψ taking input z. The VAEs are optimised using a variational lower

bound to p(x) =
∫
pψ(x|z)pprior(z)dz:

LB(φ, ψ) = Eqφ(z|x)[log pψ(x|z)]−DKL(qφ(z|x)∥pprior(z)). (6.4)

Likelihood estimation: The trained encoder and decoder for each class are

used to estimate the likelihood p(x|y = c) for every class c:

p(x|y = c) =
1

S

S∑
s=1

pψc

(
x|z(s)

)
pprior

(
z(s)

)
qφc

(
z(s)|x

) , (6.5)

where φc and ψc are the VAE parameters for class c, and S is the number of

importance samples drawn. Finally a label prediction is returned based on

which class gives the highest likelihood for a given x, as argmaxy p(y|x) =

argmaxy p(x|y)p(y) by Bayes’ rule and the distribution p(y) is assumed to be

uniform over all classes.

6.2. Background 97

6.2.3 Badger Architecture

The Badger architecture (Rosa et al., 2019) seeks for an agent that can adapt

quickly to unseen tasks. The architecture comprises many experts, each has its

own internal memory and internal state. All experts share the same expert policy

that is optimised via the outer loop, aiming for a fast inner loop adaptation

strategy for each expert. When an input arrives, the inner loop is triggered

to update the internal states of the relevant experts together with the help

of the shared expert policy in order to acquire an output. A communication

mechanism is often involved to determine the experts that should be responsible

for work and to pass messages between experts for the inner loop updates.

Figure 6.2 shows the badger structure within an agent.

Figure 6.2: An example architecture of a Badger agent. The shared expert policy
can be accessed by all experts. The red dashed line illustrates
the connection between the experts and the shared expert policy. The
selected experts i and j in yellow colour are responsible for the incoming
input. Experts i and j communicate with each other and update their
internal states using the internal memories to give an output.

6.3. Framework 98

6.3 Framework

6.3.1 Overview

This project enhances the Boml framework by automating the inner loops

using LSTMs, and introducing a task-pointer mechanism to communicate the

responsibilities of different LSTMs. Figure 6.3 illustrates the new components

introduced in Boml+. The elements in red in Figure 6.3 are unique to Boml+

compared to the original Boml. The task-pointer in Boml+ is trained in-

crementally on the base sets D1, . . . ,DT . A new dataset-specific adaptation

LSTM is trained as each knowledge domain Dt for t = 1, . . . , T arrive sequen-

tially. We explain these new components in Boml+ before progressing to the

implementation of Boml+.

Figure 6.3: The process flow of Boml+ for training and evaluation on an example
sequence (Omniglot→ CIFAR-FS→ miniImageNet) when each dataset
arrives. The arrows in purple illustrate that the updated posterior is
being brought forward for the next meta-training when a new dataset
arrives. The items in red are the elements newly-introduced in Boml+.
This figure resembles the Boml process flow in Figure 4.1, except for
the elements in red that are unique to Boml+.

6.3. Framework 99

6.3.2 LSTM Inner Loop

The original Boml inner loops use a traditional gradient descent method as in

Equation (4.4). The SGD inner loop is a hand-crafted algorithm, in which the

hyperparameters such as the learning rate and the number of adaptation steps

are manually decided. Inspired by a learning-to-learn method (Andrychowicz

et al., 2016), we automate the inner loops using LSTMs that output few-shot

updates in replacement of the SGD updates. For each knowledge domain

Dt, we assign an LSTM mt(·, ·, ϕt) for quick adaptation to any task from this

knowledge domain.

Our training implementation differs from the original learning-to-learn

algorithm (Andrychowicz et al., 2016), since we need the LSTMs for quick

adaptation on few-shot tasks as in Equation (4.4) whereas the original framework

by Andrychowicz et al. (2016) does long range parameter updates for a large-

scale training. A few-shot inner loop adaptation only uses very few examples

for an update on the meta-paramters θ, whilst the large-scale trained LSTM

has access to large batches of examples. An inner loop often takes very few

steps (possibly just one step) of gradient update, whilst the large-scale setting

involves many sequential gradient update steps. As such we modify the training

method of the LSTMs in Chapter 6.2.1 to fit our few-shot setting.

The procedure to train a few-shot LSTM parameters ϕ is as follows: first

acquire the trained meta-parameters θ as usual using original Boml on some

base set D, then train for a few-shot LSTM with slight modifications. For few-

shot tasks m = 1, . . . ,M , we obtain ∇(m) in Equation (6.6) from the support

set Dm,S of task m using the trained meta-parameters θ as initialisation, so

that g(m)

h1

 = m
(
∇(m), h0, ϕ

)
(6.6)

with ∇(m) = ∇θf(θ,Dm,S). The objective corresponding to Equation (6.1) in

6.3. Framework 100

our few-shot case becomes

L(ϕ) = Ef

[
M∑
m=1

f
(
θ̃(m),Dm,Q

)]
, (6.7)

where θ̃m = θ+g(m), with Dm,Q being the query set of task m, weights wm set to

unity, and f is the cross-entropy loss. Instead of accumulating over r (training

time steps) in Equation (6.1), the loss in Equation (6.7) is accumulated over

the few-shot tasks m = 1, . . . ,M . Upon completing an optimisation on L(ϕ)

with respect to ϕ, the inner loop adaptation in Boml+ for task m becomes

θ̃m = θ + g(m), (6.8)

where g(m) is provided by the trained LSTM m
(
∇(m), h0, ϕ

∗) with optimised

parameters ϕ∗.

6.3.3 Task-Pointer

Since we have a separate LSTM for each knowledge domain, we need a mecha-

nism to identify which LSTM should be responsible for quick adaptation when

an unseen few-shot task arrives. We train a generative classifier G(φ, ψ) using

a class-incremental learning method (van de Ven et al., 2021) as described in

Chapter 6.2.2, where φ and ψ are the parameters of the generative classifier’s

VAE encoders and decoders respectively.

The base sets D1, . . . ,DT are considered as ‘classes’ that arrive sequentially

and we learn a new VAE that is class-specific Vt(φt, ψt) when a new base set Dt
arrives. The final generative classifier G has encoder and decoder parameters

φ = {φ1, . . . , φT} and ψ = {ψ1, . . . , ψT}.

When an unseen task arrives, we use the few-shot inputs x from its

support set and estimate the likelihood p(x|y = t) of knowledge domain Dt for

t = 1, . . . , T . Each few-shot input with greatest likelihood forms a vote for the

knowledge domain. The knowledge domain that gets the most votes from the

predictions is the final decision, and the expert associated to this knowledge

6.4. Implementation 101

domain is triggered.

6.3.4 Relation to Badger

The Boml+ framework in this project is highly related to the GoodAI Badger

architecture (Rosa et al., 2019). In the Badger context, the Boml+ meta-

parameters θ correspond to the shared expert policy. The outer loop

updates the meta-parameters θ as the knowledge domain datasets D1, . . . ,DT

arrive sequentially for training. The internal memory of the expert t

associated to knowledge domain Dt includes the LSTM mt(·, ·, ϕt) for t =

1, . . . , T . The inner loops use the LSTMs for quick adaptation on few-shot

tasks. The internal memory of expert t also stores the output classifying layer

θ
(O)
t and the input convolutional layer θ(I)t of the meta-parameters. These are

required if we intend to be flexible on the types of few-shot tasks that the agent

can consider. The generative classifier task-pointer G(φ, ψ) is associated to

the connectivity of all experts in the form of a passive collaboration. In our

setting, only a single expert is responsible to a knowledge domain.

6.4 Implementation
Recall from Chapter 4.1 that the datasets Dt = Dt ∪ D̂t, t = 1, . . . , T arrive

sequentially for training. In our framework, training occurs sequentially on the

base sets D1, . . . ,DT , whilst evaluation occurs cumulatively on the novel sets

D̂1, . . . , D̂T .

6.4.1 Training

An important advantage of the Boml+ framework is that the training process

is highly parallelisable. Figure 6.4 illustrates the parallel training processes of

all the Boml+ components. The processes are parallelised, and Process A is

fully isolated from Processes B and C.

Process A is responsible for training the generative classifier task-pointer.

It trains a VAE that is knowledge domain-specific Vt(φt, ψt) on a newly arrived

base set Dt, as explained in Chapter 6.2.2. The trained VAE for each dataset is

accumulated for the final generative classifier G(φ, ψ), where φ = {φ1, . . . , φT}

6.4. Implementation 102

Figure 6.4: The training processes of Boml+ when each dataset arrives.

and ψ = {ψ1, . . . , ψT}.

In order to be flexible on the few-shot tasks that the agent can consider,

we consider the meta-parameters θ in separate parts of input, body and output,

such that θ = (θ
(I)
t , θ(C), θ

(O)
t). The dataset-specific meta-parameters θ(I)t and

θ
(O)
t are kept in the internal memory of the expert in charge of knowledge

domain Dt as illustrated in Figure 6.5.

Figure 6.5: Input and output layers θ
(I)
t and θ

(O)
t from expert t are concatenated

to the model structure.

The concatenated meta-parameters θ is meta-trained by Process B using the

objective in Equation (4.6) for BomLA or Equation (4.11) for BomVI. The mid-

layer meta-parameters θ(C) is the shared expert policy in Badger terminology.

It evolves in a similar fashion to the original Boml meta-parameters, as

meta-training proceeds sequentially on the base sets D1, . . . ,DT . We pass on

6.5. Experiments 103

the meta-parameters θ = (θ
(I)
t , θ(C), θ

(O)
t) trained on Dt to Process C, and a

knowledge domain-specific LSTM mt(·, ·, ϕt) is trained via the method described

in Chapter 6.3.2. Meanwhile Process B continues meta-training θ on the next

base set Dt+1.

6.4.2 Evaluation

The goal towards the end of training is to carry out few-shot learning on tasks

from all novel sets D̂1, . . . , D̂T . The novel sets are accumulated in a novel set

pool as knowledge domains arrive in sequential order. Figure 6.6 shows the

evaluation process of Boml+.

Figure 6.6: The evaluation process of Boml+ on the accumulated novel set pool.

When an unseen task arrives from a novel set pool, it is split into a support

set – which is a small few-shot set for quick adaptation, and the remaining

as a query set for performance reporting. All images of the support set are

passed to the task-pointer G(φ, ψ) for generative prediction. The highest vote

gives the final decision on the knowledge domain assignment, and its associated

expert, say expert i, is triggered. The adaptation LSTM mi(·, ·, ϕi) from

expert i runs quick adaptation using the support set on the meta-parameters

θ = (θ
(I)
i , θ(C), θ

(O)
i), where θ(I)i and θ(O)

i are from the internal memory of expert

i. The adapted θ̃ finally reports the few-shot performance using the query set.

6.5 Experiments

6.5.1 Setup

Few-shot classification model structure: For the experiments in this

chapter, we use the model architecture that takes 3 modules with 16 filters of

size 3× 3, followed by a batch normalisation, a ReLU activation and a 2× 2

6.5. Experiments 104

max-pooling. A fully-connected layer is appended to the final module before

getting the class probabilities with softmax. Table A.4 in Appendix A.3 records

the hyperparameters used in the Boml+ experiments.

Quick adaptation LSTM structure: For the automated inner loops in each

knowledge domain, we utilise the coordinate-wise LSTM structure proposed

by Andrychowicz et al. (2016) using two-layer LSTMs with 20 hidden units in

each layer. As illustrated in Figure 6.7, the LSTM operates in a coordinate-

wise manner on the elements of the meta-parameters. Each element of the

meta-parameters corresponds to a separate activation in the LSTM structure.

Figure 6.7: Computational graph for one step of the LSTM adaptation on a D-
dimensional meta-parameters θ. The LSTMs have shared parameters
but separated hidden states. The gradients are allowed to flow through
the solid arrows during back-propagation, but not the dashed arrows.
The inner loop cross-entropy loss f is evaluated using the D-dimensional
meta-parameters (θ1, . . . , θD)T . The gradients (∇1, . . . ,∇D)T of f for
a specific few-shot task with respect to the meta-parameter elements are
fed into the LSTMs, and the LSTMs return the updates (g1, . . . , gD)T

for each element of the meta-parameters.

Task-pointer structure: Each knowledge domain in the few-shot problem

sequence corresponds to a single VAE in the generative classifier learned via

class-incremental learning. The means and variances of the Gaussian VAE

encoders and decoders are provided by neural networks of 3 fully-connected

layers with 2000 hidden units. Each layer is followed by a ReLU activation.

The bottleneck z dimension is 100.

6.5. Experiments 105

Knowledge domain sequence: We investigate Boml+ using the pentathlon

sequence as in Chapter 4.4.3. The pentathlon sequence is chosen over triathlon,

Figure 6.8: The pentathlon knowledge domain dataset sequence.

since it is a more challenging sequence and the enhancement effect of Boml+

would be more visible. The Omniglot sequential task setting in Chapter 4.5

is not suitable for Boml+, since there is no evident distributional shift in the

sequential tasks and thus not possible to study the effect of introducing a

new expert in Boml+ for each knowledge domain dataset. We pick the best

performing Boml algorithm, that is BomLA with a properly tuned λ, to

represent Boml for the comparison with Boml+.

6.5.2 Component Comparison

There are three newly-introduced elements in Boml+: the LSTMs for auto-

mated inner loop, the dataset-specific input and output layer meta-parameters

θ
(I)
t and θ

(O)
t for each knowledge domain Dt, and a generative classifier task-

pointer. The bottom-line expectation on Boml+ described in Run R5 below is

to perform at least as good as the original Boml in Run R1. We check the

few-shot performance step-by-step, and compare the following combinations on

the pentathlon dataset sequence.

R1 Original Boml

R2 Boml + LSTM adaptations

R3 Boml + specific θ(I)t & θ
(O)
t

R4 Boml + specific θ(I)t & θ
(O)
t + LSTM adaptations

R5 Boml + specific θ(I)t & θ
(O)
t + LSTM adaptations + task-pointer (Boml+)

6.5. Experiments 106

Run R1 implements the original Boml using the best-performing BomLA

with λ = 5 as the representative of Boml. Run R2 implements the automated

LSTM quick adaptation on top of the Boml framework. Run R3 separates

the input and output layer of the meta-parameters for each knowledge domain.

The purpose of Runs R2 and R3 is to individually investigate the performance

of the new elements in Boml+. Run R4 combines the two elements in Runs R2

and R3, resulting in Boml+ without the task-pointer element. Finally, Run R5

gives the complete Boml+ with all elements included.

6.5.3 Results

Figure 6.9 shows the few-shot performances of Runs R1 – R4. Since the

task-pointer training is fully isolated from the other elements, we evaluate the

effectiveness of the task-pointer in Run R5 separately after the training of

all other elements completes. The diagonal plots in Figure 6.9 indicate how

well the runs can learn on new datasets, and the off-diagonal plots show the

capability of the runs in retaining their performances on previously learned

datasets as meta-training proceeds. Table 6.1 shows that the task-pointer

is capable of pointing the tasks appropriately to their respective knowledge

domains.

The two elements of Boml+: a) LSTM adaptations, and b) dataset-specific

input and output layer meta-parameters, drastically improve the Boml perfor-

mance as shown by Run R4 () in Figure 6.9. An interesting observation

from the result is that the two elements individually do not give apparent

improvement to Boml. This is clearly visible from the following two compar-

isons: Run R1 () vs Run R2 () and Run R1 () vs Run R3 ().

The comparison between Runs R1 and R2 shows that using LSTM adapta-

tions in Run R2 can retain the performance on previously learned datasets

(off-diagonal plots), but it learns less well on new datasets (diagonal plots).

The comparison between Runs R1 and R3, on the other hand, illustrates that

using dataset-specific input and output layer meta-parameters in Run R3 can

learn well on new datasets (diagonal plots), but it works less well in retaining

6.5. Experiments 107

Figure 6.9: Meta-evaluation accuracy across 3 seed runs on each dataset along
meta-training. Higher accuracy values indicate better results with less
forgetting as we proceed to new datasets. Boml+ without task-pointer
in Run R4 can retain performances on previously learned datasets since
it performs best in the off-diagonal plots. Most of the diagonal plots
accuracies of Run R4 are as good as the others, indicating that it learns
well on new datasets too.

the performance on previously learned datasets (off-diagonal plots). When

these two elements combine in Run R4 (), it inherits the advantages of

both elements, giving a method that can both learn well on new datasets and

retaining performance on previously learned datasets.

Dataset Run R4 (no task-pointer) Run R5 (Boml+ with task-pointer)

Omniglot 85.46 ± 0.52 85.57 ± 0.52
CIFAR-FS 36.22 ± 0.60 36.31 ± 0.59
miniImageNet 29.09 ± 0.45 28.81 ± 0.44
VGG-Flowers 54.49 ± 0.68 54.96 ± 0.70
Aircraft 31.93 ± 0.52 31.42 ± 0.52

Table 6.1: Meta-evaluation accuracies for Run R4 (Boml+ without task-pointer) and
Run R5 (Boml+ with task-pointer) on the datasets upon the completion
of meta-training across the entire pentathlon sequence of knowledge
domains.

6.5. Experiments 108

Recall that the generative classifier task-pointer exhibits a passive collab-

oration between experts by assigning each unseen task to its corresponding

expert. We expect the trained generative classifier to correctly point each task

to the expert in charge, and thus giving a performance as good as Run R4

(Boml+ without task-pointer). Since Run R4 performs best in Figure 6.9,

it suffices to compare the task-pointer performance of Run R5 (Boml+) to

Run R4. Table 6.1 shows that Boml+ with task-pointer performs equally as

good as Run R4. This indicates that Boml+ outperforms Boml in every aspect

when all newly-introduced components are implemented together in Boml+.

Dataset Run R1 (original Boml) Run R5 (Boml+ with task-pointer)

Omniglot 77.84 ± 1.65 85.57 ± 0.52
CIFAR-FS 33.68 ± 1.80 36.31 ± 0.59
miniImageNet 28.04 ± 1.30 28.81 ± 0.44
VGG-Flowers 49.97 ± 2.22 54.96 ± 0.70
Aircraft 31.72 ± 1.93 31.42 ± 0.52

Table 6.2: Meta-evaluation accuracies for Run R1 (original Boml) and Run R5
(Boml+ with task-pointer) on various datasets upon the completion
of meta-training across the entire pentathlon sequence of knowledge
domains.

Table 6.2 shows the final evaluation accuracies achieved upon the comple-

tion of training across the entire sequence of knowledge domains, for a clearer

comparison between Boml and its enhanced version Boml+. In this context,

Run R1 represents the original Boml described in Chapter 4. We deploy the

best performing Boml, which is the BomLA algorithm, to represent Boml for

baseline comparison in this experiment setting. Empirical evidence indicates

that Boml+ surpasses Boml in terms of accuracy performance. Notably,

Boml+ demonstrates superiority in retaining previously acquired knowledge

while learning on new datasets. This improved knowledge retention capability

in Boml+ can be attributed to the unique integration of distinct compartments,

as previously discussed for the result in Figure 6.9. The Boml+ framework

allows a dedicated internal memory for each knowledge domain. Nonetheless

it is essential to acknowledge that the observed enhancement in performance

6.5. Experiments 109

with Boml+ is relatively modest in its significance. We should thoroughly

re-consider the trade-off between the increased computational demand and the

marginal improvement in performance. This assessment is critical in determin-

ing the overall effectiveness and practical applicability of Boml+ in real-world

scenarios.

Chapter 7

Conclusion and Discussion

7.1 Conclusion

This thesis introduced the Bayesian online meta-learning (Boml) framework

with two algorithms: BomLA and BomVI for sequential few-shot classification

problems. Our framework can overcome catastrophic forgetting in few-shot

classification problems on datasets with evident distributional shift. Boml

merged the BOL framework with meta-learning via Laplace approximation or

variational inference. The experiments show that BomLA and BomVI are

able to retain the few-shot classification ability when trained on sequential

datasets with apparent distributional shift. This results in an ability to perform

few-shot classification on multiple datasets with a single meta-learned model.

BomLA and BomVI are also able to continually learn to few-shot classify the

novel tasks, as the tasks from a stationary distribution arrive sequentially for

meta-training.

BomLA with a suitable precision-updating hyperparameter λ outperforms

BomVI in the experiments. This coincides with the fact that BomLA has

a better posterior approximation than BomVI. The Gaussian approximate

posterior of BomLA utilises a block-diagonal precision that considers the

parameter interactions within a neural network layer, whilst the Gaussian mean-

field approximation of BomVI ignores the parameter interactions in a neural

network. Previous work showed that a block-diagonal covariance structure in

7.1. Conclusion 111

variational inference could not improve the performance in comparison to the

mean-field approximation, due to a higher Monte Carlo estimator variance.

Taking the parameter interactions into consideration is essential for a good

posterior approximation, as it enables a continual learning method capable of

handling more complex challenges.

We derived the necessary alterations in the Hessian approximation for

BomLA, as we optimise the meta-parameters for few-shot classification instead

of the usual model parameters in large-scale classification. The complete

Fisher approximation for the Hessian matrices in BomLA requires extensive

computation of matrix cross-terms. For a shorter sequence of knowledge

domains, we showed that it is possible to simplify the Fisher calculation in

BomLA without apparent performance degradation. Such a simplification

is especially useful when lacking in computational resources. Nonetheless

the complete Fisher approximation for BomLA is essential when dealing

with a longer sequence of few-shot problems. The experiments illustrate a

significant performance deterioration without using the complete BomLA

Fisher approximation when handling a long sequence of few-shot classification

problems.

The final part of this thesis enhanced Boml to the Boml+ framework

by introducing three key elements into Boml. Firstly we introduced an

automated inner loop adaptation mechanism to Boml and replaced the hand-

crafted SGD quick adaptation with LSTM inner loop adaptations that are

knowledge domain-specific. We enhanced the flexibility on the few-shot problem

settings that the agent can consider, by including the input and output layer

meta-parameters that are knowledge domain-specific into the experts’ internal

memories. The experiment results illustrate that these two elements together

produce a framework that can both learn well on new datasets and retain

performance on previously learned datasets. Finally we also introduced a

generative classifier task-pointing mechanism for a passive collaboration between

the experts. The task-pointer uses a small subset of examples from the arriving

7.2. Discussion 112

unseen task to identify which expert should be responsible for adapting this

task.

The enhancements in Boml+ are essential to overcome certain limitations

of Boml. Each dataset in the knowledge domain sequence with evident

distributional shift needs a dataset-specific quick adaptation method. When

using SGD inner loop in Boml, this necessity translates to fine-tuning various

hyperparameters such as the number of adaptation steps and learning rate for

each knowledge domain. If each knowledge domain uses an SGD with different

hyperparameters, then the Boml agent has to be informed on the knowledge

domain identity when an unseen task arrives during meta-evaluation. Otherwise

the agent could not identify which SGD adaptation settings should be applied.

Boml+ addresses these issues by automating the SGD inner loop using LSTMs

and introducing a task-pointing mechanism to identify the knowledge domain

identity during meta-evaluation.

7.2 Discussion

7.2.1 Advantage of Boml and Boml+

An important reason to employ BOL in Boml and Boml+ over non-Bayesian

approaches such as regret-based methods in an online setting is that BOL

provides a grounded framework that suggests using the previous posterior as

the prior recursively. BOL implicitly keeps a memory on previous knowledge

via the posterior, in contrast to recent online meta-learning methods that

explicitly accumulate previous data in a task buffer (Finn et al., 2019; Zhuang

et al., 2019). Explicitly keeping a memory on previous data often triggers an

important question: how should the carried-forward data be processed in future

rounds, in order to accumulate knowledge? Finn et al. (2019) update the meta-

parameters at each iteration using data sampled from the accumulated task

buffer. This defeats the purpose of online learning, which by definition means

to update the parameters each round using only the new data encountered.

Having to re-train on previous data to avoid forgetting also increases the

7.2. Discussion 113

training time as the data accumulates (Finn et al., 2019; He et al., 2019).

Certainly one can clamp the amount of data at some maximal limit and sample

from the buffer, but the final performance of such an algorithm would be

dependent on the samples being informative and of good quality which may

vary across different seed runs. In contrast to memorising the datasets, having

an implicit memory via the posterior in Boml and Boml+ automatically deals

with the question on how to process carried-forward data and allows a better

knowledge accumulation process.

Boml handles data from different knowledge domains in a genuinely

sequential manner. Our framework does not require revisiting any data from

previous knowledge domains when dealing with a new dataset. The previously

acquired experiences from various knowledge domains are implicitly embedded

in the Boml posterior of the meta-parameters. Boml+ additionally enhances

the Boml framework for automation and greater flexibility. Boml+ utilises an

LSTM for each knowledge domain in replacement of the Boml SGD inner loop.

The Boml+ agent with a generative classifier task-pointer automatically detects

the relevant LSTM for quick adaptation when a novel task arrives. We address

the inflexibility of Boml by separating the input and output layers of the meta-

parameters for each knowledge domain. Unlike the Boml framework, such

flexibility in Boml+ enables the agent to cope with few-shot tasks of different

settings. An advantage of the Boml+ framework is its highly parallelisable

training process. Therefore the individual mechanisms of Boml+ can be further

developed on their own without affecting the rest of the framework.

7.2.2 Disadvantage and Future Research

The enhancements in Boml+ have addressed some limitations of Boml, and

the remaining are left for future development. Both Boml and Boml+ are

developed for sequential few-shot classification problems. A possible future

work is to extend the frameworks to a broader scope such as reinforcement

learning and unsupervised learning. The current state of the Boml and Boml+

frameworks are designed to avoid catastrophic forgetting on previously learned

7.2. Discussion 114

few-shot problems. In other words, there is no active transfer of previous

knowledge when solving a new problem. For a future scope of research, we

can design a framework that actively includes previous experience to aid the

learning process on a new knowledge domain. Boml+ has only one expert

responsible for each knowledge domain. A possible future development is to

introduce a dynamic collaboration between the experts when adapting to novel

tasks.

Appendix A

Hyperparameters

A.1 Triathlon and Pentathlon
Tables A.1 and A.2 are the hyperparameters used in the triathlon and pentathlon

experiments.

Hyperparameter BomLA BomVI

Posterior regulariser λ (various values) -
Precision initialisation values 10−4 ∼ 10−2 -
Number of tasks sampled for Hessian approx. 5000 -
Covariance initialisation values - exp(−5)
Number of Monte Carlo samples - 20
Meta-batch size M 32 32
Number of query samples per class 15 15
Number of iterations per dataset 5000 5000
Outer loop optimiser Adam Adam
Outer loop learning rate 0.001 0.001
Number of tasks sampled for meta-evaluation 100 100

Table A.1: Hyperparameters for the triathlon and pentathlon experiments (same
value for all datasets).

A.1. Triathlon and Pentathlon 116

H
yp

er
pa

ra
m

et
er

O
m

ni
gl

ot
m

in
iQ

ui
ck

D
ra

w
C

IF
A

R
-F

S
m

in
iI

m
ag

eN
et

V
G

G
-F

lo
w

er
s

A
ir

cr
af

t

N
um

be
ro

fi
nn

er
SG

D
st

ep
s

in
m

et
a-

tr
ai

ni
ng

(k
)

1
3

5
5

5
5

In
ne

r
SG

D
le

ar
ni

ng
ra

te
(α

)
0.
4

0.
2

0.
1

0.
1

0.
1

0.
1

O
ut

er
le

ar
ni

ng
ra

te
de

ca
y

sc
he

du
le

(n
on

e
fo

rB
o
m

V
I)

-
×
0.
1

ha
lfw

ay
×
0.
1

ha
lfw

ay
×
0.
1

ha
lfw

ay
×
0.
1

ev
er

y
10

00
it

er
at

io
ns

×
0.
1

ha
lfw

ay
N

um
be

ro
fi

nn
er

SG
D

st
ep

s
in

m
et

a-
ev

al
ua

ti
on

3
5

10
10

10
10

T
ab

le
A

.2
:

H
yp

er
pa

ra
m

et
er

s
fo

r
th

e
tr

ia
th

lo
n

an
d

pe
nt

at
hl

on
ex

pe
ri

m
en

ts
(i

nd
iv

id
ua

ld
at

as
et

s)
.

A.2. Omniglot: Sequential Tasks 117

A.2 Omniglot: Sequential Tasks
Table A.3 shows the hyperparameters used in the Omniglot stationary task

distribution experiment.

Hyperparameter BomLA BomVI

Posterior regulariser λ 0.01 -
Precision initialisation values 10−4 ∼ 10−2 -
Covariance initialisation values - exp(−10)
Number of Monte Carlo samples - 5
Number of mini-batches M 1 1
Number of query samples per class (meta-evaluation) 15 15
Number of epochs per task 50 50
Number of inner SGD steps in meta-training (k) 5 5
Inner SGD learning rate (α) 0.1 0.1
Outer loop optimiser Adam Adam
Outer loop learning rate 0.001 0.001
Number of tasks sampled for meta-evaluation 100 100
Number of inner SGD steps in meta-evaluation (k) 10 10

Table A.3: Hyperparameters for the Omniglot sequential tasks experiment.

A.3 Boml+

Hyperparameter Boml+

Posterior regulariser λ 5
Precision initialisation values 10−4 ∼ 10−2

Number of tasks sampled for Hessian approx. 5000
Meta-batch size M 32
Number of query samples per class 15
Number of iterations per dataset 5000
Outer loop optimiser Adam
Outer loop learning rate 0.001
Number of tasks sampled for meta-evaluation 100
Number of LSTM quick adaptation steps 1
Number of importance samples drawn for task-pointer S 100

Table A.4: Hyperparameters for the Boml+ experiments.

Table A.4 records the hyperparameters used in the Boml+ experiments.

The dataset-specific hyperparameters when learning the meta-parameters are

same as that in Table A.2 for the pentathlon experiments.

Bibliography

M. Andrychowicz, M. Denil, S. Gómez, M. W. Hoffman, D. Pfau, T. Schaul,

B. Shillingford, and N. de Freitas. Learning to Learn by Gradient Descent

by Gradient Descent. In Advances in Neural Information Processing Systems

29, 2016.

L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi. Meta-Learning with

Differentiable Closed-Form Solvers. In International Conference on Learning

Representations, 2019.

A. Botev, H. Ritter, and D. Barber. Practical Gauss-Newton Optimisation

for Deep Learning. In Proceedings of the 34th International Conference on

Machine Learning, 2017.

G. Denevi, D. Stamos, C. Ciliberto, and M. Pontil. Online-Within-Online

Meta-Learning. In Advances in Neural Information Processing Systems 32,

2019.

J. S. Denker and Y. LeCun. Transforming Neural-Net Output Levels to

Probability Distributions. In Advances in Neural Information Processing

Systems 3, 1991.

C. Finn, P. Abbeel, and S. Levine. Model-Agnostic Meta-Learning for Fast

Adaptation of Deep Networks. In Proceedings of the 34th International

Conference on Machine Learning, 2017.

C. Finn, K. Xu, and S. Levine. Probabilistic Model-Agnostic Meta-Learning.

In Advances in Neural Information Processing Systems 31, 2018.

BIBLIOGRAPHY 119

C. Finn, A. Rajeswaran, S. Kakade, and S. Levine. Online Meta-Learning. In

Proceedings of the 36th International Conference on Machine Learning, 2019.

I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An Empirical

Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks.

arXiv preprint, arXiv:1312.6211, 2013.

J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. Turner. Meta-Learning

Probabilistic Inference for Prediction. In International Conference on Learn-

ing Representations, 2019.

E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths. Recasting Gradient-

Based Meta-Learning as Hierarchical Bayes. In International Conference on

Learning Representations, 2018.

R. Grosse and J. Martens. A Kronecker-Factored Approximate Fisher Matrix

for Convolution Layers. In Proceedings of the 33rd International Conference

on Machine Learning, 2016.

D. Ha and D. Eck. A Neural Representation of Sketch Drawings. arXiv preprint,

arXiv:1704.03477, 2017.

J. Harrison, A. Sharma, C. Finn, and M. Pavone. Continuous Meta-Learning

without Tasks. arXiv preprint, arXiv:1912.08866, 2019.

X. He, J. Sygnowski, A. Galashov, A. A. Rusu, Y. Teh, and R. Pascanu.

Task Agnostic Continual Learning via Meta Learning. arXiv preprint,

arXiv:1906.05201, 2019.

G. Jerfel, E. Grant, T. Griffiths, and K. A. Heller. Reconciling Meta-Learning

and Continual Learning with Online Mixtures of Tasks. In Advances in

Neural Information Processing Systems 32, 2019.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In

International Conference on Learning Representations, 2015.

BIBLIOGRAPHY 120

D. P. Kingma, T. Salimans, and M. Welling. Variational Dropout and the Local

Reparameterization Trick. In Advances in Neural Information Processing

Systems 28, 2015.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.

Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis,

C. Clopath, D. Kumaran, and R. Hadsell. Overcoming Catastrophic Forget-

ting in Neural Networks. Proceedings of the National Academy of Sciences,

2017.

G. Koch, R. Zemel, and R. Salakhutdinov. Siamese Neural Networks for

One-Shot Image Recognition. In 32th International Conference on Machine

Learning Deep Learning Workshop, 2015.

B. Lake, R. Salakhutdinov, J. Gross, and J.B. Tenenbaum. One Shot Learning

of Simple Visual Concepts. In Proceedings of the 33rd Annual Conference of

the Cognitive Science Society, 2011.

S. Lee, J. Kim, J. Jun, J. Ha, and B. Zhang. Overcoming Catastrophic Forget-

ting by Incremental Moment Matching. In Advances in Neural Information

Processing Systems 30, 2017.

F. Li, R. Fergus, and P. Perona. Learning Generative Visual Models from

Few Training Examples: An Incremental Bayesian Approach Tested on 101

Object Categories. In Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops, 2004.

K. Li and J. Malik. Learning to Optimize. In International Conference on

Learning Representations, 2017.

D. J. C. MacKay. A Practical Bayesian Framework for Backpropagation

Networks. Neural Computation, 1992.

S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi. Fine-Grained

Visual Classification of Aircraft. arXiv preprint, arXiv:1306.5151, 2013.

BIBLIOGRAPHY 121

J. Martens and R. Grosse. Optimizing Neural Networks with Kronecker-

Factored Approximate Curvature. In Proceedings of the 32nd International

Conference on Machine Learning, 2015.

E. G. Miller, N. E. Matsakis, and P. A. Viola. Learning from One Example

Through Shared Densities on Transforms. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2000.

C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner. Variational Continual

Learning. In International Conference on Learning Representations, 2018.

A. Nichol, J. Achiam, and J. Schulman. On First-Order Meta-Learning Algo-

rithms. arXiv preprint, arXiv:1803.02999, 2018.

M. Nilsback and A. Zisserman. Automated Flower Classification over a Large

Number of Classes. In 2008 Sixth Indian Conference on Computer Vision,

Graphics and Image Processing, 2008.

M. Opper. A Bayesian Approach to Online Learning. In Online Learning in

Neural Networks. Cambridge University Press, 1998.

K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, C. Foo, and R. Yokota. Scalable and

Practical Natural Gradient for Large-Scale Deep Learning. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2020.

S. Ravi and A. Beatson. Amortized Bayesian Meta-Learning. In International

Conference on Learning Representations, 2019.

S. Ravi and H. Larochelle. Optimization as a Model for Few-Shot Learning. In

International Conference on Learning Representations, 2017.

H. Ritter, A. Botev, and D. Barber. Online Structured Laplace Approximations

for Overcoming Catastrophic Forgetting. In Advances in Neural Information

Processing Systems 31, 2018a.

BIBLIOGRAPHY 122

H. Ritter, A. Botev, and D. Barber. A Scalable Laplace Approximation for

Neural Networks. In International Conference on Learning Representations,

2018b.

H. Robbins and S. Monro. A Stochastic Approximation Method. The Annals

of Mathematical Statistics, 1951.

M. Rosa, O. Afanasjeva, S. Andersson, J. Davidson, N. Guttenberg, P. Hlubucek,

M. Poliak, J. Vitku, and J. Feyereisl. BADGER: Learning to (Learn [Learn-

ing Algorithms] through Multi-Agent Communication). arXiv preprint,

arXiv:1912.01513, 2019.

A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero,

and R. Hadsell. Meta-Learning with Latent Embedding Optimization. In

International Conference on Learning Representations, 2019.

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-

Learning with Memory-Augmented Neural Networks. In Proceedings of the

33rd International Conference on Machine Learning, 2016.

J. Schmidhuber. Evolutionary Principles in Self-Referential Learning. On

Learning How to Learn: The Meta-Meta-Meta...-Hook. Diploma thesis,

Institut für Informatik, Technische Universität München, 1987.

S. Shalev-Shwartz. Online Learning: Theory, Algorithms, and Applications.

PhD thesis, The Hebrew University of Jerusalem, 2007.

J. Snell, K. Swersky, and R. Zemel. Prototypical Networks for Few-Shot

Learning. In Advances in Neural Information Processing Systems 30, 2017.

S. Thrun and L. Pratt. Learning to Learn: Introduction and Overview. Springer,

Boston, MA, 1998.

B. L. Trippe and R. E. Turner. Overpruning in Variational Bayesian Neural

Networks. In Advances in Neural Information Processing Systems 30 –

Advances in Approximate Bayesian Inference Workshop, 2017.

BIBLIOGRAPHY 123

G. M. van de Ven, Z. Li, and A. S. Tolias. Class-Incremental Learning With

Generative Classifiers. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, 2021.

O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Match-

ing Networks for One Shot Learning. In Advances in Neural Information

Processing Systems 29, 2016.

J. Wen, Y. Cao, and R. Huang. Few-Shot Self Reminder to Overcome Catas-

trophic Forgetting. arXiv preprint, arXiv:1812.00543, 2018.

P. Yap, H. Ritter, and D. Barber. Bayesian Online Meta-Learning with Laplace

Approximation. In International Conference on Learning Representations –

Beyond Tabula Rasa in RL (BeTR-RL) Workshop, 2020.

P. Yap, H. Ritter, and D. Barber. Addressing Catastrophic Forgetting in

Few-Shot Problems. In Proceedings of the 38th International Conference on

Machine Learning, 2021.

J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn. Bayesian Model-

Agnostic Meta-Learning. In Advances in Neural Information Processing

Systems 31, 2018.

F. Zenke, B. Poole, and S. Ganguli. Continual Learning through Synaptic

Intelligence. In Proceedings of the 34th International Conference on Machine

Learning, 2017.

Z. Zhuang, Y. Wang, K. Yu, and S. Lu. No-Regret Non-Convex Online Meta-

Learning. arXiv preprint, arXiv:1910.10196, 2019.

M. Zinkevich. Online Convex Programming and Generalized Infinitesimal

Gradient Ascent. In Proceedings of the 20th International Conference on

Machine Learning, 2003.

	Introduction
	Contributions
	Thesis Structure

	Related Work
	Online Meta-Learning
	Regret minimisation
	Same underlying task distribution

	Offline Meta-Learning
	Probabilistic
	Non-probabilistic

	Continual Learning

	Background
	Meta-Learning
	Inner and Outer Updates
	Model-Agnostic Meta-Learning

	Bayesian Online Learning
	Laplace Approximation
	Precision Update Hyperparameter
	Algorithm

	Variational Inference
	Posterior Approximation
	Algorithm

	Bayesian Online Meta-Learning
	Framework Overview
	Boml with Laplace Approximation
	Derivation and Implementation
	Algorithm

	Boml with Variational Inference
	Derivation and Implementation
	Algorithm

	Experiments
	Setup
	Triathlon
	Pentathlon

	Boml in Sequential Task Setting
	Setting and Algorithm
	Omniglot: Stationary Task Distribution
	Results

	Discussion
	Ablation Studies
	Varying Precision Update Hyperparameter
	Analysing the Approximate Posterior Covariance

	Hessian Approximation
	Introduction
	Background
	Fully-Connected Layers
	Convolution Layers
	Batch Normalisation Layers

	Hessian Approximation for Boml
	Pre-Adaptation Hessian
	Post-Adaptation Hessian

	Experiments
	Ignoring the Jacobian
	Analysing the Cross Terms

	Automating Bayesian Online Meta-Learning
	Introduction
	Background
	Learning-to-Learn with LSTM
	Generative Classifier
	Badger Architecture

	Framework
	Overview
	LSTM Inner Loop
	Task-Pointer
	Relation to Badger

	Implementation
	Training
	Evaluation

	Experiments
	Setup
	Component Comparison
	Results

	Conclusion and Discussion
	Conclusion
	Discussion
	Advantage of Boml and Boml+
	Disadvantage and Future Research

	Appendices
	Hyperparameters
	Triathlon and Pentathlon
	Omniglot: Sequential Tasks
	Boml+

	Bibliography

