Approximate Bayesian Methods for
Sequential Few-Shot Problems

Pau Ching Yap

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
of

University College London.

Department of Computer Science

University College London

March 2023

2

I, Pau Ching Yap, confirm that the work presented in this thesis is my
own. Where information has been derived from other sources, I confirm that

this has been indicated in the work.

Abstract

Neural networks are known to suffer from catastrophic forgetting when trained
on sequential datasets. While there have been numerous attempts to solve this
problem in large-scale supervised classification, little has been done to overcome
catastrophic forgetting in few-shot classification problems. We demonstrate that
the popular gradient-based model-agnostic meta-learning (MAML) algorithm

indeed suffers from catastrophic forgetting.

In this thesis, we introduce the Bayesian online meta-learning framework
to tackle the catastrophic forgetting issue in sequential few-shot classification
problems. Our framework utilises Bayesian online learning and meta-learning
along with Laplace approximation and variational inference to achieve this goal.
The experimental evaluations demonstrate that our framework can effectively
attain this objective in comparison to various baselines. As an additional utility,
we demonstrate empirically that our framework is capable of meta-learning on

sequentially arriving few-shot tasks from a stationary task distribution.

Laplace approximation entails Hessian computation for its Gaussian preci-
sion matrix. We extend the Kronecker-factored Hessian approximation method
in the large-scale classification setting to the gradient-based meta-learning
setting. The experiments illustrate the importance of this extension for a

principled framework when dealing with a long sequence of few-shot problems.

The final part of this thesis enhances the Bayesian online meta-learning
framework for automation and flexibility in handling a greater deal of sequential
few-shot problems. We utilise the long short-term memory networks (LSTMs)

to automate the meta-learning quick adaptation. The enhancement considers

Abstract 4

separating the neural network structure of a model, allowing the framework to
cope with different types of few-shot problems. We also incorporate a generative
classifier into the enhancement to act as a pointer that informs the model about

the few-shot problems it encounters.

Impact Statement

The work presented in this thesis exhibits various benefits both within and
outside academia. In the academic research field of artificial intelligence and
machine learning, our work has presented a new research direction in continual
learning for a sequence of few-shot problems. Continual learning and few-shot
learning are popular research directions that have attracted great attention
within the academic field of research. This thesis combines meta-learning for
few-shot classification along with continual learning to address catastrophic
forgetting. Our work can be extended in future research to handle few-shot
problems in other settings such as unsupervised learning and reinforcement

learning.

Artificial general intelligence has significantly gained public interest and
attention beyond the academic field. There are numerous industrial attempts
to create robots with general intelligence that can engage in human tasks.
The knowledge and experiences of a human being are continually accumulated
based on the events encountered. We naturally demand a robot with general
intelligence to possess the capability of knowledge accumulation in order to

integrate into the daily routines of human beings.

A possible future extension in the industry is to develop a personal assistant
robot, which is an agent tailored to integrate seamlessly into the dynamic
lifestyle and hobbies of a human being. For instance, the robot could initially
be trained to assist in culinary tasks, comprising a range of abilities from recipe
recommendation to meal preparation guidance. Subsequently, the robot’s skill

set can be expanded to include gardening, which is an entirely different domain

Impact Statement 6

that requires a distinct set of knowledge and experience. The versatility to
transition between culinary assistance and gardening support is crucial, since
human hobbies and lifestyle choices are prone to frequent changes. We strive
to create an agent that can deal with a wider range of problems, thus getting
closer to achieving artificial general intelligence. The work in Chapter 6 is
funded by the GoodAl company via GoodAl grant, which demonstrates an

industrial interest in our work.

Acknowledgements

I would like to express my gratitude to Professor David Barber, my primary
PhD supervisor, for his relentless guidance in my research work. My PhD
studies would not have been possible without his help and supervision. I am
also very grateful to my secondary supervisor Dr. Brooks Paige for his effort in
keeping my PhD research progress on track. I would like to express my deepest
appreciation to my loved ones for the unconditional love and mental support,
which assisted me through various obstacles in my studies. I would like to
thank my friends and fellow PhD colleagues in the group for the spontaneous

yet inspiring discussions about ongoing trends and ideas in research.

Contents

1 Introduction
1.1 Contributions
1.2 Thesis Structure
2 Related Work
2.1 Online Meta-Learning
2.1.1 Regret minimisation
2.1.2 Same underlying task distribution
2.2 Offline Meta-Learning
2.2.1 Probabilistic o
2.2.2 Non-probabilistic
2.3 Continual Learning
3 Background
3.1 Meta-Learning Lo
3.1.1 Inner and Outer Updates.
3.1.2 Model-Agnostic Meta-Learning
3.2 Bayesian Online Learning
3.3 Laplace Approximation
3.3.1 Precision Update Hyperparameter
3.3.2 Algorithm
3.4 Variational Inference o000

3.4.1 Posterior Approximation

25
29
30

32
33
33
34
34
34
35
35

Contents

3.4.2 Algorithm oL

4 Bayesian Online Meta-Learning

4.1 Framework Overview,
4.2 BoML with Laplace Approximation
4.2.1 Derivation and Implementation
4.2.2 Algorithm
4.3 BoOML with Variational Inference
4.3.1 Derivation and Implementation
4.3.2 Algorithmo
4.4 Experiments
4.4.1 Setup
4.4.2 Triathlon
443 Pentathlon. 00
4.5 BOML in Sequential Task Setting
4.5.1 Setting and Algorithm
4.5.2 Omniglot: Stationary Task Distribution
453 Results.
4.6 Discussiono
4.7 Ablation Studies
4.7.1 Varying Precision Update Hyperparameter

4.7.2 Analysing the Approximate Posterior Covariance

Hessian Approximation

5.1 Imtroductiono

5.2 Background
5.2.1 Fully-Connected Layers
5.2.2 Convolution Layers
5.2.3 Batch Normalisation Layers

5.3 Hessian Approximation for BomL

5.3.1 Pre-Adaptation Hessian

47

49
49
51
o1
23
53
23
25
o6
26
o8
60
63
63
64
65
66
68
68
69

Contents
5.3.2 Post-Adaptation Hessian
5.4 Experiments
5.4.1 Ignoring the Jacobian.
5.4.2 Analysing the Cross Terms
6 Automating Bayesian Online Meta-Learning
6.1 Introduction
6.2 Background
6.2.1 Learning-to-Learn with LSTM
6.2.2 Generative Classifier
6.2.3 Badger Architecture
6.3 Frameworko
6.3.1 Overview
6.3.2 LSTM Inner Loop
6.3.3 Task-Pointer
6.3.4 Relation to Badger
6.4 Implementation L.
6.4.1 Training Lo
6.4.2 Evaluationo
6.5 Experiments
6.5.1 Setup
6.5.2 Component Comparison
6.5.3 Results.
7 Conclusion and Discussion
7.1 Conclusion
7.2 Discussion
7.2.1 Advantage of BoML and BomML+
7.2.2 Disadvantage and Future Research

Appendices

10

82
85
85
88

92
92
94
94
96
97
98
98
99
100
101
101
101
103
103
103
105
106

110
110
112
112
113

115

Contents

A Hyperparameters
A.1 Triathlon and Pentathlon
A.2 Omniglot: Sequential Tasks
A.3 BoML+

Bibliography

11

115
115
117
117

118

List of Figures

1.1

1.2

An example of catastrophic forgetting when the knowledge do-
main datasets arrive sequentially for training: MNIST — SVHN
— ImageNet. When ImageNet arrives for training, the model
might forget the previously learned MNIST and SVHN (in dashed
line ——). A drastic performance drop on MNIST and SVHN
when training on the new dataset ImageNet is known as catas-

trophic forgetting.

An example of a task in the Omniglot knowledge domain. The
Omniglot classes are composed of various alphabets with different
characters, such as Latin character 1, Sanskrit character 14,
Greek character 3, and so forth. A task is formed by sampling a
specific number of classes. Few-shot learning seeks for a model
that can adapt quickly to a task using very few labelled examples.

The model performance is evaluated on the remaining data from

1.3

1.4

3.1

List of Figures

An example of the sequential few-shot classification problems
with evident dataset distributional shift: Omniglot — CIFAR-FS
— minilmageNet. The datasets arrive in sequential order for
training. Upon completion in training, we expect the model to
be able to handle tasks from all knowledge domains (connected
in —). We sample an unseen task from each knowledge domain
(arrow in —). For a sampled task from Omniglot as an example,
the model undergoes quick adaptation (in red dashed arrow

) using very few examples from the task and we evaluate the
few-shot performance (in blue dashed arrow ——) using the

remaining data from the same task.

An example of the intrinsic human learning behaviour of general-
ising to relevant tasks (in red arrow) and continually accumulate
knowledge from different domains (in blue arrow). Few-shot
learning handles a process of the red arrows, but it cannot man-
age a process of the blue arrows. Conversely, continual learning
deals with a process of the blue arrows, but it fails to handle
a process of the red arrows. Our sequential few-shot problems

setting assimilates both learning capabilities into a single agent.

An illustration of the base-novel split for the Omniglot classes.
Omniglot comprises 1623 characters from various alphabets and
each character is a class. We can, for instance, sample 1000
characters as the base set for meta-training and the remaining

classes as the novel set for meta-evaluation.

13

28

List of Figures

3.2 An example of a meta-training inner and outer loop in the 5-way

4.1

4.2

1-shot setting for Omniglot. We sample a meta-batch of tasks
Dl,...,D™, ... from a base set D of the Omniglot knowledge
domain. Each task m is split into the support set D™ and
query set D™, The support set D™ comprises one example
from each class of the 5-way task. For each task m, the inner
loop quickly adapts the meta-parameters 6 into a task-specific
om using D™°. The outer loop then aggregates the losses on
every 6™ with query set D™?. The aggregated loss is utilised to

update the meta-parameters 6.

The BOML process flow for meta-training and meta-evaluation on
an example sequence (Omniglot — CIFAR-FS — minilmageNet)
when each dataset arrives. Consider the CIFAR-FS knowledge
domain ®, for instance, ® is split into the base Dy and novel
132 sets when it arrives. Meta-training on this knowledge domain
only occurs on the base set Dy using the recursive formula in
Equation (4.3). The arrows in purple illustrate that the updated
posterior is being brought forward for the next meta-training
when a new dataset arrives. We meta-evaluate the few-shot
performance on the accumulated novel sets 731, 732 from the

knowledge domains that arrived so far.

The triathlon 5-way 1-shot sequence in this experiment.

14

List of Figures

4.3 Meta-evaluation accuracy across 3 seed runs on each dataset

along meta-training. Going from left to right on the z-axis of
the figure is the meta-training times of the knowledge domain
datasets that arrive in sequential order. The second row in
the figure, for instance, corresponds to the miniQuickDraw
knowledge domain. The first plot in the second row is empty
since miniQuickDraw has not arrived during the meta-training
time of Omniglot. The diagonal plot (middle plot) in the second
row corresponds to the meta-evaluation accuracy on the novel
set of mintQuickDraw when meta-training occurs on the base set
of miniQuickDraw. The off-diagonal plot (last plot) shows the
meta-evaluation on the miniQuickDraw novel set, when meta-
training occurs on the next knowledge domain CIFAR-FS. Higher
accuracy values in the off-diagonals indicate less forgetting. The
baseline TOE corresponds to an upper limit in the performance
since it has access to all datasets encountered so far. Sequential

MAML corresponds to a lower limit in the performance since

MAML forgets on previous datasets by design of the algorithm.

4.4 The pentathlon 5-way 1-shot sequence in this experiment.

15

29

60

4.5

4.6

4.7

List of Figures

Meta-evaluation accuracy across 3 seed runs on each dataset
along meta-training. Going from left to right on the z-axis of
the figure is the meta-training times of the knowledge domain
datasets that arrive in sequential order. Higher accuracy val-
ues indicate better results with less forgetting as we proceed to
new datasets. BOMLA with A = 100 gives good performance
in the off-diagonal plots (retains performances on previously
learned datasets), and has a minor performance trade-off in the
diagonal plots (learns less well on new datasets). The second
row in the figure, for instance, corresponds to the CIFAR-FS
knowledge domain. The first plot in the second row is empty
since CIFAR-FS has not arrived during the meta-training time
of Omniglot. The diagonal plot (second plot) in the second row
shows the meta-evaluation accuracy on the novel set of CIFAR-
F'S when meta-training occurs on the base set of CIFAR-FS. The
off-diagonal plots (last three plots) in the second row show the
meta-evaluation on the CIFAR-FS novel set, when meta-training
occurs on the subsequent knowledge domains miniImageNet,
VGG-Flowers and Aircraft. Sequential MAML gives better per-
formance in the diagonal plots (learns well on new datasets) but
worse performance in the off-diagonal plots (forgets previously
learned datasets). BOMVT is also able to retain performance on
previous datasets, although it may be unable to perform as good

as BOMLA due to sampling and estimator variance.

An example of the Omniglot task sequence for meta-training in

this experiment. Lo

Meta-evaluation accuracy across 3 seed runs on the novel tasks
along meta-training. Left: compares BOMLA to the baselines,
centre: compares BOMVI to the baselines, right: compares

BoMLA with different A values to BomVI.

16

4.8

4.9

List of Figures

Meta-evaluation accuracy across 3 seed runs on each dataset
along meta-training. Higher accuracy values indicate better re-
sults with less forgetting as we proceed to new datasets. BOMLA
with a large A = 1000 gives better performance in the off-diagonal
plots (retains performances on previously learned datasets) but
worse performance in the diagonal plots (does not learn well on
new datasets). A small A\ = 1 gives better performance in the di-
agonal plots (learns well on new datasets) but worse performance
in the off-diagonal plots (forgets previously learned datasets).
BoMVI is also able to retain performance on previous datasets,
although it may be unable to perform as good as BOMLA due

to sampling and estimator variance. L.

The change in the approximate posterior variance after meta-
training is completed on each dataset. Going from left to right
are the datasets of the pentathlon sequence. Going from top to
bottom are the convolutional layers of the neural network which
gets closer to the classifying layer. Each plot in the figure is the
colour-encoded variance corresponding to a specific knowledge
domain dataset and the meta-parameters of a specific layer in
the neural network model. The variance in each layer is flattened
into a two-dimensional matrix visualisation. A darker colour
indicates a higher variance. The variance increases in general as
the convolutional layer gets closer to the classifying layer. The

variance decreases in the raw level filters (Conv 1) as the model

learns along the pentathlon sequence.

17

5.1

5.2

2.3

5.4

List of Figures

An example of a fully-connected neural network with L = 2
layers and weight matrices Wi, W,;. The bias vectors are
omitted in this example. The weights are vectorised as ¢ =
[vec(W1)T', vec(Wy)T]T. The input ag, pre-activations hy, hy and
activations aj, ag interact according to Equation (5.4) using

activation functions fi, fo.o

A two-dimensional example of a 6-by-6 activation with spatial
location k € K for a 3-by-3 filter. For a convolutional operation
of stride 1, we have || = 16 in this example. The batch size

and input channels are ignored in the illustration

A two-dimensional example for a spatial offset ¢ of a 3-by-3 filter.
In this example we have |A| = 9. The input and output channels

are ignored in this illustration.

Meta-evaluation performance comparison across 3 seed runs on
the novel tasks along meta-training. Left: compares BOMLA
of Hessian approximation in Equations (5.39) and (5.40) (with
Jacobian) versus BOMLA of Hessian approximation in Equa-
tion (5.41) (without Jacobian). BOMLA that uses Hessian ap-
proximation without Jacobian (=) shows a large performance
degradation compared to that with Jacobian (—). Right:
meta-evaluation accuracy difference between BOMLA with Jaco-
bian at A = 0.01 and BOMLA without Jacobian at A = 1. The
difference evolves around zero, indicating that the adjustment
A =1 gives a quick fix to the posterior approximation when the

Jacobian is excluded in Hessian approximation.

18

List of Figures

5.5 The Fisher approximation F' corresponding to the Hessian in

Equation (5.43) after meta-training is completed on each dataset.
Going from left to right are the datasets of the pentathlon se-
quence. Going from top to bottom are the convolution layers and
the fully-connected classifier layer of the neural network. Each
plot in the figure is the colour-encoded Fisher approximation
Fy corresponding to a specific knowledge domain dataset and a
specific layer ¢ in the neural network model. F; for the middle
convolution layers (¢ = Conv 2, 3 and 4) are cropped as the
full matrices are too large to visualise. The F; matrices for the

convolution layers ¢ have entry values that are close to zero.

5.6 The absolute difference ‘17’ g—ﬁ@(trune)‘ between the full Fisher and

the truncated Fisher for each layer ¢ of the neural network model
after meta-training is completed on each dataset. Going from left
to right are the datasets of the pentathlon sequence. Going from
top to bottom are the convolution layers and the fully-connected
classifier layer of the neural network. Each plot in the figure is the
colour-encoded absolute difference ‘E - ﬁﬁ(tmnc” corresponding
to a specific knowledge domain dataset and a specific layer ¢ of
the neural network model. The absolute difference matrices for
the middle convolution layers (¢ = Conv 2, 3 and 4) are cropped
as the full matrices are too large to visualise. The absolute
difference matrices for the convolution layers ¢ have entry values

that are close to zero, but the absolute difference matrices for

the classifier layer have large entry values.

19

89

List of Figures

5.7 The absolute difference ‘E - F e(tmnc) between the full Fisher

6.1

6.2

and the truncated Fisher for a convolution and fully-connected
classifier layer ¢ of the neural network model after meta-training
is completed on Omniglot. We only retain the visualisation
for the first convolution layer (Conv 1) since the remaining
convolution layers have the same visualisation. The absolute
difference matrices for the convolution layers ¢ have entry values
that are close to zero. The absolute difference matrix for the
classifier layer corresponding to Omniglot has entry values in

the order of tens.

The computational graph for the gradients of £(¢) with respect
to the LSTM optimiser parameters ¢ when updating £ at time
step r — 1 and r. The gradients are allowed to flow through the
solid arrows during back-propagation, but the gradient flow is
prohibited along the dashed arrows. The optimisee corresponds
to a model which is usually a neural network with parameters &.
For a particular time step r, we update the optimisee parameters
&, by adding the output g, acquired from the LSTM. The LSTM
takes the gradients V, of objective f with respect to &, as inputs
along with hidden states h,.. When computing the gradients of
the LSTM parameters, we do not take the gradient flow from

V., into consideration.

An example architecture of a Badger agent. The shared expert
policy can be accessed by all experts. The red dashed line
—— illustrates the connection between the experts and the
shared expert policy. The selected experts ¢ and j in yellow
colour are responsible for the incoming input. Experts ¢ and j
communicate with each other and update their internal states

using the internal memories to give an output.

20

6.3

6.4

6.5

6.6

6.7

6.8

List of Figures

The process flow of BOML+ for training and evaluation on an
example sequence (Omniglot — CIFAR-FS — minilmageNet)
when each dataset arrives. The arrows in purple illustrate that
the updated posterior is being brought forward for the next
meta-training when a new dataset arrives. The items in red are
the elements newly-introduced in BoML+. This figure resembles
the BOML process flow in Figure 4.1, except for the elements in

red that are unique to BomL+.

The training processes of BOML+ when each dataset arrives.

Input and output layers HEI) and 0%0) from expert t are concate-

nated to the model structure.

The evaluation process of BOML+ on the accumulated novel set

pool. .

Computational graph for one step of the LSTM adaptation on a
D-dimensional meta-parameters 6. The LSTMs have shared pa-
rameters but separated hidden states. The gradients are allowed
to flow through the solid arrows during back-propagation, but
not the dashed arrows. The inner loop cross-entropy loss f is eval-
uated using the D-dimensional meta-parameters (6, ... 6P)T.
The gradients (V?,..., VP)T of f for a specific few-shot task
with respect to the meta-parameter elements are fed into the
LSTMs, and the LSTMs return the updates (g', ..., g”)7 for

each element of the meta-parameters.

The pentathlon knowledge domain dataset sequence.

21

. 102

List of Figures

6.9 Meta-evaluation accuracy across 3 seed runs on each dataset
along meta-training. Higher accuracy values indicate better
results with less forgetting as we proceed to new datasets. BOML+
without task-pointer in Run R4 can retain performances on
previously learned datasets since it performs best in the off-
diagonal plots. Most of the diagonal plots accuracies of Run R4
are as good as the others, indicating that it learns well on new

datasets too.

22

List of Tables

5.1

6.1

6.2

Al

A2

A3

Average reduction in the meta-evaluation accuracy when the
Jacobian is excluded in Hessian approximation for BOMLA with
A = 100. The average is taken over tasks from all datasets, after
meta-training is completed on the entire dataset sequence. The
values are reported by averaging over a total of 100 tasks along
with the 95% confidence interval. The performance reduction
is not apparent, since the confidence intervals along with the
averages cover small reduction values that are both above and

below zero. L

Meta-evaluation accuracies for Run R4 (BoML+ without task-
pointer) and Run R5 (BoML+ with task-pointer) on the datasets
upon the completion of meta-training across the entire pen-
tathlon sequence of knowledge domains.
Meta-evaluation accuracies for Run R1 (original BOML) and
Run R5 (BoMmL+ with task-pointer) on various datasets upon
the completion of meta-training across the entire pentathlon

sequence of knowledge domains.

Hyperparameters for the triathlon and pentathlon experiments

(same value for all datasets).

Hyperparameters for the triathlon and pentathlon experiments

(individual datasets). oL

Hyperparameters for the Omniglot sequential tasks experiment.

List of Tables 24

A.4 Hyperparameters for the BOML+ experiments. 117

Chapter 1

Introduction

A key objective in artificial intelligence is to create an agent that can both
accumulate knowledge over time and adapt quickly to unseen tasks using the
acquired knowledge. Machine learning in general requires a large amount of
data from a knowledge domain for training. The models trained under such
a condition are unable to adapt to unseen tasks using very few examples,
even if the tasks originate from the same knowledge domain. Such models
would also struggle if multiple datasets from different knowledge domains
arrive sequentially for training. The current typical machine learning methods
would either train all datasets together, or forget the previously acquired
knowledge if the new domain is adequately distinct from the previous ones. The
latter phenomenon is known as catastrophic forgetting in continual learning, as

illustrated in Figure 1.1.

Figure 1.1: An example of catastrophic forgetting when the knowledge domain
datasets arrive sequentially for training: MNIST — SVHN — Ima-
geNet. When ImageNet arrives for training, the model might forget
the previously learned MNIST and SVHN (in dashed line ==). A
drastic performance drop on MNIST and SVHN when training on the
new dataset ImageNet is known as catastrophic forgetting.

26

Continual learning (Goodfellow et al., 2013; Lee et al., 2017; Zenke et al.,
2017) aims to incorporate new knowledge to an existing system as training
data arrives in a sequential order. An important distinction between continual
learning and online learning (Zinkevich, 2003; Shalev-Shwartz, 2007) is that
continual learning handles distributional shift in the knowledge domains that
arrive in sequential order, whereas online learning takes data points in an online
manner from the same underlying dataset distribution for training.

Few-shot learning (Miller et al., 2000; Li et al., 2004; Lake et al., 2011)
focuses on adapting to unseen tasks using very few labelled examples from a
task as shown in Figure 1.2. Recent works show that meta-learning provides
promising approaches to few-shot classification problems (Santoro et al., 2016;
Finn et al., 2017; Ravi and Larochelle, 2017). Meta-learning or learning-to-learn
(Schmidhuber, 1987; Thrun and Pratt, 1998) takes the learning process a level
deeper — instead of learning from the labelled examples in the training process,
meta-learning learns the example-learning process.

Omniglot

Latin Latin Sanskrit Sanskrit Sanskrit Greek Greek Greek Greek Manipuri Manipuri
Char.1 Char.5 Char.2 Char.14 Char.39 Char.3 Char.19 Char.21 Char.22 Char.7 Char. 35

e 3*_5;_1 Y (.P * Quick adaptation

S SE’ V \P » Model

e Y|P X

e A {]%]> Eraat oo
AEREL:IE]

Figure 1.2: An example of a task in the Omniglot knowledge domain. The Omniglot
classes are composed of various alphabets with different characters, such
as Latin character 1, Sanskrit character 14, Greek character 3, and
so forth. A task is formed by sampling a specific number of classes.
Few-shot learning seeks for a model that can adapt quickly to a task
using very few labelled examples. The model performance is evaluated
on the remaining data from the task.

27

Despite being a promising solution to few-shot problems, meta-learning
methods suffer from a limitation where a meta-learned model loses its quick
adaptation ability on previous datasets as new ones arrive subsequently for
training. Some popular examples of different few-shot classification problems
are Omniglot (Lake et al., 2011), CIFAR-FS (Bertinetto et al., 2019) and
minilmageNet (Vinyals et al., 2016). A meta-learned model is restricted to
few-shot classification on a specific dataset, in the sense that the training and
evaluation few-shot tasks have to originate from the same distribution. The
current practice to handle few-shot classification from different datasets is to
meta-learn a model for each dataset separately (Snell et al., 2017; Vinyals et al.,
2016; Bertinetto et al., 2019). This thesis considers meta-learning a single model
for few-shot classification on multiple datasets with evident distributional shift

that arrive sequentially for training as illustrated in Figure 1.3.

Evaluate few-shot
performance

— — —>| Model m — — — — -

Quick adaptation /

/ |
/ |
| |
\ |
\ |
N lolv[@][>]r 0 I

NIRIEE W2 |

oV [PIF ||| O |
— (9 |?|5|T (ond |
: o[Y[e[7 7] || @l kbl |
- |

Figure 1.3: An example of the sequential few-shot classification problems with
evident dataset distributional shift: Omniglot — CIFAR-FS —
minilmageNet. The datasets arrive in sequential order for training.
Upon completion in training, we expect the model to be able to handle
tasks from all knowledge domains (connected in =——). We sample
an unseen task from each knowledge domain (arrow in =——). For a
sampled task from Omniglot as an example, the model undergoes quick
adaptation (in red dashed arrow ==) using very few examples from
the task and we evaluate the few-shot performance (in blue dashed
arrow =—=—) using the remaining data from the same task.

28

Why is the sequential few-shot problems setting important? Human
beings acquire knowledge continually starting from a very young age, and such
a capability corresponds to continual learning in our topic of discussion. Upon
learning on a specific subject, human beings tend to generalise to a different but
relevant area without requiring enormous extra effort to learn the relevant area.
This corresponds to few-shot learning in the machine learning terminology.
For instance, a pre-school child learning about numbers might require more
examples and practises when learning the numbers ‘17, ‘2" and ‘3’ initially. The
child can usually learn ‘4’; ‘5" and ‘6’ with fewer examples, after mastering the
previously learned numbers. This pattern of learning is also pertinent to other

knowledge domains such as object recognition.

Figure 1.4: An example of the intrinsic human learning behaviour of generalising
to relevant tasks (in red arrow) and continually accumulate knowledge
from different domains (in blue arrow). Few-shot learning handles a
process of the red arrows, but it cannot manage a process of the blue
arrows. Conversely, continual learning deals with a process of the blue
arrows, but it fails to handle a process of the red arrows. Our sequential
few-shot problems setting assimilates both learning capabilities into a
single agent.

Continual learning enables an agent to assimilate knowledge sequentially

across diverse domains. However, it is unable to generalise acquired knowledge

1.1. Contributions 29

to related tasks within a single knowledge domain, which is the crucial func-
tionality of few-shot learning. Contrarily, few-shot learning exhibits proficiency
in generalising to similar tasks within a knowledge domain, but it is incapable
of acquiring knowledge over time across a multitude of domains. Human beings
unknowingly employ these learning capabilities in our daily routines. We contin-
ually gather knowledge from various domains and utilise a high-level cognition
from previous experiences into solving a different but related problem. We
envision the possibility of creating a single agent with these skills consolidated

to achieve artificial general intelligence.

1.1 Contributions

We introduce a recursive framework to train a model that is applicable to
a broader scope of few-shot knowledge domains by overcoming catastrophic
forgetting. Bayesian online learning (BOL) (Opper, 1998) provides a principled
framework for the posterior of the model parameters, while model-agnostic meta-
learning (MAML) (Finn et al., 2017) finds a good model parameter initialisation
that can quickly few-shot adapt to unseen tasks. Our framework incorporates
BOL and meta-learning to give a recursive formula for the posterior of the
meta-parameters as new few-shot datasets arrive. Taking a MAP estimate in
implementation leads to Laplace approximation, whereas using a KL-divergence

leads to variational inference.

The full Hessian computation is necessary in Laplace approximation for
its Gaussian precision matrix. Hessian calculations are generally infeasible
due to the large size of the modern neural network architectures. Ritter et al.
(2018a) apply BOL with Laplace approximation to the large-scale classification
setting by approximating a Hessian with a block-diagonal Kronecker-factored
Fisher approximation. We extend this Hessian approximation method to the
gradient-based meta-learning setting. The extension results in a principled

Bayesian online meta-learning framework with Laplace approximation.

The Bayesian online meta-learning framework in its original form suf-

1.2. Thesis Structure 30

fers from a restriction where the quick adaptation of the framework uses a
hand-crafted gradient-based algorithm with a manually chosen learning rate.
Another restriction is that the framework can only manage a single few-shot
classification setting across all sequential datasets. We enhance the framework
to an automated and flexible method that can handle a wider range of few-shot
problems in a sequential order. Andrychowicz et al. (2016) previously use the
long short-term memory networks (LSTMs) to automate the learning process
for large-scale classification. We utilise LSTMs to automate the quick adapta-
tion component of meta-learning in our framework. Each dataset in a sequence
requires a different LSTM for quick adaptation. We incorporate a generative
classifier (van de Ven et al., 2021) into the enhancement to act as a pointer that
can inform the model on which LSTM should be responsible for a task during
the evaluation period. Generative classification is originally implemented for
class-incremental learning (van de Ven et al., 2021). The method is directly
applicable to our enhancement if we contemplate the sequential datasets as
‘classes’ that arrive sequentially for class-incremental learning. We also separate
the neural network structure of a model into the input, body and output layers
in the enhancement. This allows the framework to deal with different types of

few-shot problems.

1.2 Thesis Structure

Chapter 2 reviews prior research in the literature that is relevant to this
thesis. Chapter 3 gives a background explanation of meta-learning as well as
Bayesian online learning with Laplace approximation and variational inference
for posterior approximation.

Chapter 4 makes the following contributions in this thesis:

e We develop the Bayesian online meta-learning (BoMmL) framework for
sequential few-shot classification problems. Under this framework we
introduce the algorithms Bayesian online meta-learning with Laplace

approximation (BOMLA) and Bayesian online meta-learning with varia-

1.2. Thesis Structure 31

tional inference (BoMVI).

e We demonstrate that BOML can overcome catastrophic forgetting in the
sequential few-shot datasets setting with apparent distributional shift in

the datasets.

e We demonstrate empirically that BOML can also continually learn to
few-shot classify the novel classes in the sequential meta-training few-shot

tasks setting.
Chapter 5 is structured as follows:

e We review the block-diagonal Kronecker-factored Fisher approximation

method in the large-scale classification setting.

e We propose an approximation to the Fisher corresponding to BOMLA

that carries the desirable block-diagonal Kronecker-factored structure.

e We show empirically that the Fisher approximation in BOMLA is essential

for a long sequence of few-shot problems.
Chapter 6 makes the following contributions:

e We enhance the BOML framework to BOML+ by automating the meta-
learning quick adaptation component, splitting the neural network model
into different parts, and incorporating a generative classifier pointer into

the enhancement.
e We develop a highly parallelisable training procedure for BOML+.

e We illustrate empirically that BOML+ outperforms the original BOML

framework.

Chapter 7 concludes the thesis and provides an in-depth discussion of the work
in previous chapters.

Much of the work in Chapters 4 and 5 has been published in Yap et al.
(2020, 2021), and Chapter 6 is part of the project funded by GoodAl company
via the GoodAlI grant.

Chapter 2

Related Work

Continual learning and few-shot learning have emerged as widely pursued
research areas within the field of artificial intelligence. Meta-learning constitutes
the foundational element of few-shot learning. It enables a model to rapidly
adapt to unseen tasks even when presented with an extremely limited amount
of data, which is the core motivation of few-shot learning. Meta-learning
typically involves the extraction of higher-level insights that facilitates quick

generalisation to new tasks in the same knowledge domain.

The novelty of this thesis lies in the formulation of the sequential few-shot
problems setting, and the development of a mathematically grounded framework
for training in this setting. It is an approach that synthesises the advantages of
both continual learning and meta-learning to augment the learning capabilities
of an agent. Despite the pioneering nature of this thesis, it is important to
acknowledge that both continual learning and meta-learning are highly active
fields of research. A common practice in the current research paradigm is to

treat continual learning and few-shot learning as distinct research topics.

Our research integrates offline meta-learning with continual learning frame-
works to mitigate the issue of catastrophic forgetting in sequential few-shot
learning tasks. Empirical evidence from the experiment in Chapter 4.5 demon-
strates that our proposed framework is also capable of managing experimental
settings akin to online meta-learning. Our framework employs a probabilistic

offline meta-learning method in the sequential few-shot problems setting, albeit

2.1. Online Meta-Learning 33

the framework is implemented via a non-probabilistic method. This chapter
examines the existing literature in these research areas for a comprehensive

review of the advancements and methodologies.

2.1 Online Meta-Learning

The work in this thesis differs from online meta-learning in terms of its problem
setting and overall objective. In online meta-learning, the tasks that arrive
sequentially originate from the same area of knowledge domain. The primary
aim of online meta-learning is to leverage the knowledge obtained from pre-
vious tasks to reduce the number of samples required for effective training
on forthcoming tasks. However it is noteworthy that the reduction in sample
size for training in online meta-learning does not typically achieve the same
level of sample scarcity observed in few-shot learning. Furthermore, online
meta-learning predominantly focuses on optimising the efficiency of training
for future tasks, with less emphasis on the maintenance of performance on
previously encountered tasks. This aspect forms a critical distinction compared
to our framework, as our work seeks to balance the acquisition of new knowledge

with the retention of previous experience.

2.1.1 Regret minimisation

The goal in this setting is to minimise the regret function, with assumptions
made on the loss function rather than the task distribution. The regret function
in an online setting is defined as the difference between the model loss and
the best performance attainable by some comparison class of methods. Recent
works Finn et al. (2019) and Zhuang et al. (2019) belong to this category, where
the aim is to compete with the best meta-learner and supersede it. These
methods accumulate data as they arrive and meta-learn using all data acquired
so far.

Data accumulation is undesirable since the algorithmic complexity of
training increases with the amount of data accumulated, leading to longer

training times as new data arrive (Finn et al., 2019; He et al., 2019). The agent

2.2. Offline Meta-Learning 34

will eventually run out of memory for a long sequence of data. The BoML
framework on the other hand is advantageous, as it only takes the current data
and the posterior of the meta-parameters into consideration during optimisation.
This gives a framework with an algorithmic complexity independent of the

length of the dataset sequence.

2.1.2 Same underlying task distribution

Sequential tasks are assumed to originate from the same underlying task
distribution p(7) in this setting. Denevi et al. (2019) introduce the online-
within-online (OWO) and online-within-batch (OWB) settings, where OWO
encounters tasks and examples within tasks sequentially while OWB encounters
tasks sequentially but examples within tasks are in batch. Our work in the
sequential datasets setting is novel in overcoming few-shot catastrophic forget-
ting, where the goal is to few-shot classify unseen tasks drawn from a sequence
of distributions p(71),...,p(7Tr) as explained in Section 4.1. He et al. (2019),
Harrison et al. (2019) and Jerfel et al. (2019) look into continual meta-learning
for a non-stationary task distribution where the task boundaries are unknown
to the model. Jerfel et al. (2019) consider a latent task structure to adapt to

the non-stationary task distribution.

2.2 Offline Meta-Learning

Previous meta-learning works attempt to solve few-shot classification prob-
lems in an offline setting, under the assumption of having a stationary task
distribution during meta-training and meta-evaluation. A single meta-learned
model is aimed to few-shot classify one specific dataset with all base classes
of the dataset readily available in a batch for meta-training. There are two
general frameworks for the offline meta-learning setting: probabilistic and

non-probabilistic frameworks.

2.2.1 Probabilistic

The MAML algorithm can be cast into a probabilistic inference problem (Finn
et al., 2018) or with a hierarchical Bayesian structure (Grant et al., 2018;

2.3. Continual Learning 35

Yoon et al., 2018). Yoon et al. (2018) use Stein Variational Gradient Descent
(SVGD) for task-specific learning. Gordon et al. (2019) implement probabilistic
inference by considering the posterior predictive distribution with amortised
networks. Grant et al. (2018) discuss the use of a Laplace approximation in
the task-specific inner loop to improve MAML using the curvature information.
Although at first sight our work seems similar to Grant et al. (2018) due to the
use of Laplace approximation, our work is clearly distinct in terms of goal and
context. Grant et al. (2018) use Laplace approximation at the task-specific
level, whilst we use Laplace approximation at the meta-level for the meta-
parameters approximate posterior. The formulation in Grant et al. (2018) does
not accumulate past experience, whereas our work enables few-shot learning

on unseen tasks from multiple knowledge domains sequentially.

2.2.2 Non-probabilistic

Gradient-based meta-learning (Finn et al., 2017; Nichol et al., 2018; Rusu
et al., 2019) updates the meta-parameters by accumulating the gradients of
a meta-batch of task-specific inner loop updates. The meta-parameters will
be used as a model initialisation for a quick adaptation on the novel tasks.
Metric-based meta-learning (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017) utilises the metric distance between labelled examples. This method
assumes that base and novel classes are from the same dataset distribution,
and the metric distance estimations can be generalised to the novel classes

upon meta-learning the base classes.

2.3 Continual Learning

Lifelong learning, continual learning, and catastrophic forgetting are terms fre-
quently encountered in the literature within the same field of research. Lifelong
learning (Thrun and Pratt, 1998) describes the ongoing ability of an agent
to learn and adapt throughout the agent’s lifetime. The key characteristic of
lifelong learning is its ability to apply previously learned knowledge on new

tasks, which may or may not be directly related to previously encountered

2.3. Continual Learning 36

problems. Continual learning (Goodfellow et al., 2013) is often used inter-
changeably with lifelong learning, but it represents a more specific aspect of
the topic. Continual learning specifically refers to a model’s ability to learn
from a continuous stream of data and tasks. The main challenge in continual
learning is to acquire new knowledge while retaining information from previ-
ously learned tasks, without the need to store all the data from past tasks.
Catastrophic forgetting (Kirkpatrick et al., 2017) is a challenge that needs to
be addressed within continual learning. It describes the tendency of a model
to lose information about older tasks as it learns on new tasks. Catastrophic
forgetting happens because neural networks tend to overwrite weights that
were important for previous tasks when they are trained on new tasks that
might not originate from the same data distribution, leading to a performance
degradation on the old tasks. Special measures must therefore be taken when
there is a distributional shift in the sequential tasks. In terms of the conceptual
scope, lifelong learning is the broadest concept which encompasses continual
learning, and catastrophic forgetting is a specific issue within the topic of

continual learning.

Modern continual learning works (Goodfellow et al., 2013; Lee et al., 2017;
Zenke et al., 2017) focus primarily on large-scale supervised learning, in contrast
to our work that looks into continual few-shot classification across sequential
datasets with evident distributional shift. Wen et al. (2018) utilise few-shot
learning to improve on overcoming catastrophic forgetting via logit matching

on a small sample from the previous tasks.

The online learning element in our work is closely related to recent works
that overcome catastrophic forgetting in large-scale supervised classification
(Kirkpatrick et al., 2017; Zenke et al., 2017; Ritter et al., 2018a; Nguyen et al.,
2018). In particular, our work builds on the online Laplace approximation
method (Ritter et al., 2018a). Our work extends this method to the meta-
learning scenario to avoid forgetting in few-shot classification problems. Nguyen

et al. (2018) provide an alternative of using variational inference instead of

2.3. Continual Learning 37

Laplace approximation for approximating the posterior. Our work utilises this
approach and adapts the variational method to approximate the posterior of

the meta-parameters by adjusting the KL-divergence objective.

Chapter 3

Background

This chapter provides a background explanation of meta-learning in the single
dataset setting and reviews Bayesian online learning (BOL) for approximating

the posterior of the model parameters in large-scale classification setting.

3.1 Meta-Learning

The goal of meta-learning in few-shot classification is to acquire a model that is
able to perform well on an unseen task during evaluation after a quick adaptation
using very few examples from that unseen task. We review the concept and

terminology in meta-learning that differ from the large-scale machine learning.

3.1.1 Inner and Outer Updates

As meta-learning takes the typical learning process to a deeper level, a model
learns the example-learning process using the base set and evaluates its few-
shot adaptation capability on the novel set. Figure 3.1 shows a split of the
Omniglot classes into base and novel sets. The training process in meta-learning
that utilises the base set is called the meta-training stage, and the evaluation
process that reports the few-shot performance on the novel set is known as
the meta-evaluation stage. The base set in meta-learning resembles the
training dataset in the usual large-scale machine learning, whereas the novel
set resembles the testing dataset in machine learning.

Most meta-learning algorithms comprise an inner loop for example-learning

and an outer loop that learns the example-learning process. Meta-learning

3.1. Meta-Learning 39

Base set — for meta-training Novel set — for meta-evaluation
Latin Latin Sanskrit Sanskrit Greek Greek Greek Sanskrit Greek Manipuri Manipuri
Char.1 Char.5 Char.2 Char.39 Char.3 Char. 19 Char. 21 Char. 14 Char.22 Char.7 Char. 35

BESEE

CEEIEE

Figure 3.1: An illustration of the base-novel split for the Omniglot classes. Omniglot
comprises 1623 characters from various alphabets and each character
is a class. We can, for instance, sample 1000 characters as the base
set for meta-training and the remaining classes as the novel set for
meta-evaluation.

generally aims to find a good model parameter initialisation (called meta-
parameters) that can quickly adapt to unseen tasks. Figure 3.2 shows the
inner and outer loop of a meta-training step. Such algorithms often require
sampling a meta-batch of tasks at each iteration. A few-shot task, thereby
known as task, from a stationary task distribution p(7) in the classification
setting is formed by sampling a subset of classes from the pool of base set
or novel set during meta-training or meta-evaluation respectively. An N-way
K-shot task, refers to sampling N classes and using K examples per class for

few-shot quick adaptation.

An offline meta-learning algorithm learns a model only for a specific dataset
® from a single knowledge domain, which is divided into the set of base classes
D and novel classes D for meta-training and meta-evaluation respectively. Upon
completing meta-training on D, the goal is to perform well on an unseen task
D* sampled from the novel set D after a quick adaptation on a small subset
D+ (known as the support set) of D*. The performance of this unseen task
is evaluated on the query set ﬁ*’Q, where D*@ = 13*\23*5 Since D is not
accessible during meta-training, this support-query split is mimicked on the

base set D for meta-training as illustrated in Figure 3.2.

3.1. Meta-Learning 40

Sample tasks
from D
Inner loop _
Quickly adapt 6 into 6™ - —— <
on each D™S yZ N
7 Task m \
e \
_ 7 /DS [0|Y|@|F T
- / ANMGETR
1 P | alvjel=l=|| |\
0 D!, ... \D™) ... B
= \ dlylelsl4al| |
~ Q A
w ~ ~ \ ! m - / /
<\ - Y
Outer loop N N)
Update 6 by aggregating losses ~ 7

on all ™ with D™Q

Figure 3.2: An example of a meta-training inner and outer loop in the 5-way 1-shot
m

setting for Omniglot. We sample a meta-batch of tasks D',..., D™, ...
from a base set D of the Omniglot knowledge domain. Each task m is
split into the support set D™ and query set D™ . The support set
D™ comprises one example from each class of the 5-way task. For
each task m, the inner loop quickly adapts the meta-parameters 6 into a
task-specific 9™ using D™°. The outer loop then aggregates the losses
on every 6™ with query set D™, The aggregated loss is utilised to
update the meta-parameters 6.

3.1.2 Model-Agnostic Meta-Learning

Each meta-training step of the well-known meta-learning algorithm MAML
(Finn et al., 2017) aims to find meta-parameters 6 that can act as a good
model parameter initialisation for quick adaptation to unseen tasks. Each
iteration of the MAML algorithm samples M tasks from the base class set D
and runs a few steps of stochastic gradient descent (SGD) for an inner loop
task-specific learning. The number of tasks sampled per iteration is known as
the meta-batch size. For task m, the inner loop outputs the task-specific
parameters 0™ from a k-step SGD quick adaptation on the objective L(6, D)
with the support set D™ and initialised at 6:

0™ = SGD(L(0, D™)), (3.1)

where m = 1,..., M. The outer loop gathers all task-specific adaptations to
update the meta-parameters 6 using the loss £(6’~m,Dm7Q) on the query set

3.1. Meta-Learning 41

D™®. The overall MAML optimisation objective is
| M
in— Y L(SGDy(L(0,D™)), D™9). 3.2
axganin 1, 3 L(SGDU(L(0. D). D") 3.2

Algorithm 1 gives the pseudo-code of the MAML algorithm in meta-training.
Lines 4 — 7 correspond to the inner loop for M tasks, and line 8 denotes the
outer loop update of the meta-parameters . The outer loop update computes
the derivative with respect to the meta-parameters ¢ via the task-adapted
parameters 6™ for m = 1,...,M. Automatic differentiation simplifies the
process of differentiating through the inner loop updates, although internally
this requires constructing a computational graph whose complexity increases
with the number of inner update steps k. It is therefore essential to limit the

number of steps k in the inner loop to ensure a manageable computational cost.

Algorithm 1 MAML meta-training

1: Require: base set D, learning rate o, number of meta-training iterations
J, meta-batch size M
Initialise: ¢
for:=1,...,J do
for m =1 to M do
Sample task D™ = D™ U D™
Inner update 6™ = SGDy(L(, D))
end for
Outer update 6 < 0 — Vo5 > L(6™, D™Q)
end for

Algorithm 2 is the pseudo-code of MAML meta-evaluation on an unseen

task sampled from a novel set.

Algorithm 2 MAML meta-evaluation

1: Require: novel set 13, learning rate 3, meta-trained #, number of adapta-
tion steps K R R
Sample task D* = D*° U D*?
fori=1,...,K do R
Few-shot quick adaptation 6 < § — 3VyL(0, D*%)
end for R
Report performance on D*%

3.2. Bayesian Online Learning 42

Like most offline meta-learning algorithms, MAML assumes a stationary
task distribution during meta-training and meta-evaluation. Under this assump-
tion, a meta-learned model is only applicable to a specific dataset distribution.
When the model encounters a sequence of knowledge domains with datasets of
apparent distributional shift, it loses the few-shot adaptation ability on previous
domains as new ones arrive for meta-training. Our work aims to meta-learn a
single model for few-shot learning on multiple knowledge domains that arrive
sequentially for meta-training. In the few-shot classification setting, we achieve
this goal by incorporating meta-learning into the BOL framework to give the
Bayesian online meta-learning (BOML) framework that considers the posterior

of the meta-parameters.

3.2 Bayesian Online Learning

We briefly explain the use of BOL in approximating the posterior of the model
parameters to overcome catastrophic forgetting in the large-scale supervised
classification setting. Opper (1998) introduces BOL in the simplest setting of
online learning where the data points of a dataset D; = {(z1,y1), ..., (¢, y1)}
arrive in a sequential order for training. There is nothing that prohibits the
implementation of BOL to a more general setting where the datasets ©1,...,%,
arrive in sequential order instead. Each dataset might originate from different
underlying dataset distributions. For easier generalisation to our work later in
this thesis, we explain BOL in the setting of sequential datasets arrival rather

than online data points.

Upon the arrival of the new knowledge domain dataset ©,,;, we consider
the posterior p(¥|®1..11) of the model parameters ¥ of a neural network. We
emphasise the notational difference between the meta-parameters 6 and
model parameters 9 throughout this thesis. Using Bayes’ rule on the

posterior gives the recursive formula

_ _ p(®Dea|?) p(0[D14)
p(0D1:41) = p(U] D41, D1ie) = [0(011]0) p(O]D14) 46 (3.3)

3.2. Bayesian Online Learning 43

where Equation (3.3) follows from the assumption that each dataset ®; is
independent given ¥. The likelihood p(®:41]9) is computed based on the
newly-arrived dataset ©;,1 only. The prior p(?|D1.) can also be viewed as the
previous posterior due to the recursion in Equation (3.3).

The challenge in utilising Equation (3.3) is that the prior p(¥|®1.;) depends
on all the previous datasets ©q,...,®;. Moreover the normalised posterior
p(V¥D1.441) is usually intractable due to the relatively large structure of modern
neural networks. The key idea of BOL is to approximate the exact posterior
p(0|®1.) with a trainable parametric distribution g(9|¢;), where the parameter
¢ is trained using D1;. Opper (1998) splits the BOL algorithm into the
update and projection steps.

Update step: This step uses the approximate posterior g(¥|¢;) obtained from

the previous step for an update in the form of Equation (3.3):

_ p(Di11]0) q(V])
PO) = Ts 10) (o) 40 (34)

The new posterior p(¥|D¢y1, ¢¢) from the update step might not belong to the
same parametric distribution family as ¢(|¢;). In this case, the new posterior
has to be projected into the same family to obtain ¢(¥|¢sy1) in the following
step.

Projection step: This step aims to obtain a projection ¢(¥|¢;y1) that is as
close as possible to p(¥|D;y1, ¢;) with minimal loss. Opper (1998) suggests a
projection of minimising the KL-divergence between the new posterior and the
parametric g. The posterior is typically intractable due to the enormous size of
the modern neural network architectures. This leads to the requirement for a
good approximation of the posterior of the model parameters. A particularly
suitable candidate for this purpose is the Laplace approximation (MacKay, 1992;
Ritter et al., 2018b), as it simply adds a quadratic regulariser to the training
objective. Variational inference methods such as variational continual learning
(Nguyen et al., 2018) is another possible method to obtain an approximation

for the posterior of the model parameters. We explain both of these methods

3.3. Laplace Approximation 44

in Chapter 3.3 and Chapter 3.4 respectively.

3.3 Laplace Approximation

Laplace approximation is one of the possible methods for projection step in
BOL. We explore for a suitable parametric form to the approximate posterior

q(V|¢:). We consider finding a MAP estimate following from Equation (3.3):
Visr = argmax p(V[D) = arg max {log p(De1[V) + log p(v[D1)}. (3.5)

Since the posterior p(9]|®;.) of a neural network is intractable except for
small architectures, the unnormalised posterior p(¢|D;.) is considered instead.
Performing Taylor expansion on the logarithm of the unnormalised posterior

around a mode ¥} gives

log p(9]D1:4) ~ log p(V]|D1:¢ (0 = 0;)" A0 = 07), (3.6)

1
)‘19:19;: 9

where A; denotes the Hessian matrix of the negative log-posterior evaluated at

v} with entries
2

t 9@ 9Y0) e

The first order term of the Taylor expansion vanishes since the expansion is
performed around a mode, whilst the second order term remains for consid-
eration. The expansion in Equation (3.6) suggests using a Gaussian approx-
imate posterior ¢. Given a Gaussian ¢(9|¢;) with parameter ¢, = {u, Av},
a mean f;41 at step t + 1 with dataset ©;,; can be obtained by finding a
mode of the approximate posterior via a standard gradient-based optimisation

i1 = argming fY4 (0, g, Ay) with objective:

P, 1 M) = ~ 108 p(Dea) + 5 (0 —) A —). (38)

3.3. Laplace Approximation 45

The precision matrix is updated as
AtJrl == Ht+1 + At7 (39)

where H; ., is the Hessian matrix of the negative log-likelihood for ;. evalu-

ated at ;o1 with entries

2

9
Htil = —W 10gp(©t+1|19) . . (310)

=Ht+1
Since the full Hessian is intractable for large neural networks, we approximate it
with a block-diagonal Kronecker-factored Fisher information matrix as described

in Chapter 5.2.

3.3.1 Precision Update Hyperparameter

Ritter et al. (2018a) use a hyperparameter A\ as a multiplier to the Hessian

when updating the precision in Equation (3.9):
At+1 -)\HtJrl + At. (311)

In the large-scale supervised classification setting, this hyperparameter has
a regularising effect on the Gaussian posterior approximation for a balance
between having a good performance on a new dataset and maintaining the

performance on previous datasets (Ritter et al., 2018a).

We observe that
At+1 == /\(HtJrl + e 4 H1> -+ AO (312)

upon recursively expanding Equation (3.11). Notably, the original update in
Equation (3.9) is recovered by setting A = 1. The precision A; regularises the
optimisation of 9 at step t + 1 associated to the posterior p(1|®1.,41), which
is the update process from u; to py 1. A large A results in a sharply peaked

Gaussian posterior and is therefore unable to learn new datasets well, but can

3.3. Laplace Approximation 46

prevent forgetting previously learned datasets. A small A in contrast gives a
dispersed Gaussian posterior and allows better performance on new datasets by
sacrificing the performance on the previous datasets. Chapter 4.7.1 discusses

the effect of A in the experiments as an ablation study.

3.3.2 Algorithm

For a neural network model, gradient-based optimisation methods such as SGD
(Robbins and Monro, 1951) and Adam (Kingma and Ba, 2015) are the standard
gradient-based methods in finding a mode for the Laplace approximation

objective in Equation (3.8).

Algorithm 3 gives the pseudo-code of BOL with Laplace approximation.
The algorithm is formed of three main elements: training on a specific dataset
(lines 4 — 8), updating the Gaussian mean (line 9) and updating the Gaussian
precision (lines 10 — 11). For precision update in line 11, we review the Hessian
approximation method later in Chapter 5.2 that utilises the block-diagonal

Kronecker-factored Fisher approximation.

Algorithm 3 Bayesian online learning with Laplace approximation

1: Require: sequential datasets ®1,...,®, learning rate «, posterior regu-
lariser A\, number of training epochs J, number of mini-batches M

2: Initialise: g, Ag, ¥

3: fort=1to T do

4: for j=1,...,J do > training on D, (eg: Adam or SGD)

5: form=1,...,M do

6: V0 — aV Y0, w1, Ar_1)

7 end for

8: end for

9: Update mean py; < > update posterior mean
10: Approximate H; with block-diagonal Kronecker-factored Fisher F

11: Update precision A; <+ AH; + A4 > update posterior precision

12: end for

3.4. Variational Inference 47

3.4 Variational Inference

3.4.1 Posterior Approximation

As we mentioned in Chapter 3.2, variational inference also provides a suitable
framework for posterior approximation in the projection step of BOL. Consider
approximating the posterior ¢ by minimising the KL-divergence between the
parametric ¢ and the new posterior p(¥|D¢41, ¢¢) in Equation (3.4), where ¢ be-

longs to some pre-determined approximate posterior family O with parameters

Oy

q(9|pe1) = argergiﬂ Dxr(q(9]9) | p(De11]9) ¢(V] 1)) (3.13)

= argmin { — Eq(pjg)[log p(Ds+1]0)] + Drcw(a(9]9) | a(9]r)) -

qeQ

(3.14)

The optimisation in Equation (3.14) leads to minimising the objective fV(¢, ¢;)

with respect to ¢ to obtain the new parameters ¢;1:

FY (@, 61) = ~Eqi)[log p(Disa]9)] + Dic(a(919) [a(9]r))- (3.15)

One can use a Gaussian mean-field approximate posterior

D

Q(19|¢t) = H N(Mt,d: UtQ,d)a (3-16)

d=1

where ¢, = {4,004}, and D = dim(¥9). The first term in Equation (3.15)
can be estimated via simple Monte Carlo with local reparameterisation trick
(Kingma et al., 2015). The KL-divergence term in Equation (3.15) has a closed

form for Gaussian distributions.

3.4.2 Algorithm

Algorithm 4 gives the pseudo-code of BOL with variational inference. The

algorithm is formed of two main elements: training on a specific dataset

3.4. Variational Inference 48

(lines 4 — 8) and updating the posterior parameters of the Gaussian mean-field

approximation (line 9).

Algorithm 4 Bayesian online learning with variational inference

1:

,_.
=

Require: sequential datasets ®q,...,®r, learning rate «, number of
training epochs J, number of mini-batches M

Initialise: ¢g = {0, 00}
fort=1to T do
for j=1,...,J do > training on ©; (eg: Adam or SGD)
for m =1 to M do
¢ b —aVyfV(d, ¢i1)
end for
end for
pe < b, 0y <— o with ¢ = {p, 0} > update posterior parameters
end for

Variational Continual Learning (VCL) (Nguyen et al., 2018) implements

BOL with variational inference in large-scale machine learning settings. VCL

additionally boosts the performance by retaining important information from

the previous datasets in the memory. Representative data points from each

previous dataset are kept in a coreset, and the coreset is updated when a new

dataset arrives. The coreset is used in training as a memory replay mechanism,

with the objective of outrunning the posterior approximation error accumulated

over each dataset.

Chapter 4

Bayesian Online Meta-Learning

The central contribution of this chapter is to extend the benefits of meta-
learning to the BOL scenario, thereby training models that can generalise
across knowledge domains whilst dealing with parameter uncertainty in the

setting of sequentially arriving datasets.

4.1 Framework Overview

In this setting, meta-training occurs sequentially on the datasets ©q,..., 7.
Each dataset ®; can be seen as a knowledge domain with an associated under-
lying task distribution p(7;). A newly-arrived ©,; is separated into the base
class set D;,1 and novel class set ZStH for meta-training and meta-evaluation
respectively, where the tasks in these two stages are drawn from the task
distribution p(7;41). Notationally, let D, and Dﬁl denote the collection of
support sets and query sets respectively from D, 1, so that D, = DfH U D?H.

Using Bayes’ rule on the posterior gives the recursive formula

p<9|D1:t+1) S8 p(Df+17 Dﬁﬂ@)p(@ﬂ)l;t) (4‘1>
= p(DP.110, D5) p(D;110) p(6]Dre) (4.2)

—{ [008,16 001, D) 8} oS O (43

where Equation (4.1) follows from the assumption that each dataset is indepen-

dent given 6. Figure 4.1 illustrates the BOML process flow for meta-training

4.1. Framework Overview 50

and meta-evaluation as datasets arrive sequentially.

Dataset
arrival: n

:F D1 Do D3
S

(]

: ANVANVAN
» Split

£ | dataset Base Novel Base Novel Base Novel
< into: D D Do D, Ds Ds
=

=]

o

b4

(<]

: Meta-train Meta-train Meta-train
g on D, on Dy on Dy

=

o

= / /

® Update Update Update

3 posterior posterior posterior
=

=R

=]

Meta-evaluation Meta-evaluation Meta-evaluation
4 on D, on Dy, Dy on Dy, Dy, D3

Figure 4.1: The BOML process flow for meta-training and meta-evaluation on an
example sequence (Omniglot — CIFAR-FS — minilmageNet) when
each dataset arrives. Consider the CIFAR-FS knowledge domain ®4 for
instance, ®s is split into the base Dy and novel ﬁg sets when it arrives.
Meta-training on this knowledge domain only occurs on the base set
Dy using the recursive formula in Equation (4.3). The arrows in purple
illustrate that the updated posterior is being brought forward for the
next meta-training when a new dataset arrives. We meta-evaluate the
few-shot performance on the accumulated novel sets 131, ﬁg from the
knowledge domains that arrived so far.

From the meta-learning perspective, the parameters 6 introduced in Equa-
tion (4.3) can be viewed as the task-specific parameters in MAML. There are
various choices for the distribution p(d]0, D, ,) in Equation (4.3). In particular
if we choose to set it as the deterministic function of taking several steps of
SGD on loss £ with the support set collection DfH and initialised at 6, we
have

p(018, D7) = (0 — SGDL(L(6, D)), (4.4)

where 4(+) is the Dirac delta function. This recovers the MAML inner loop with

SGD quick adaptation in Equation (3.1). The recursion given by Equation (4.3)

4.2. BOML with Laplace Approximation 51

forms the basis of our approach and the remainder of this chapter explains how
we implement this.

The posterior in Equation (4.3) is typically intractable for modern neural
network architectures. This leads to the requirement for a good approximate
posterior. Chapters 4.2 and 4.3 demonstrate how we arrive at the algorithms
Bayesian online meta-learning with Laplace approximation (BOMLA) and
Bayesian online meta-learning with variational inference (BoMVI) by imple-
menting Laplace approximation and variational inference respectively to the

BOML posterior in Equation (4.3).

4.2 BoML with Laplace Approximation

4.2.1 Derivation and Implementation

As described in Chapter 3.3, the expansion in Equation (3.6) justifies the use
of a Gaussian approximate posterior since the second order term corresponds
to the log-probability of a Gaussian distribution. The BOML framework in
Equation (4.3) with a Gaussian approximate posterior ¢ of mean and precision

o1 = {1, Ay} from Laplace approximation gives a MAP estimate:

1
0" = arggnax { log pp + log p(DY, 1|0) — 5(9 —) A0 — ,ut)} (4.5)

with
By — / (D2, 10)p(816, DS,) db.

For an efficient optimisation, we use the deterministic 6 in Equation (4.4)

which leads to minimising the objective

. - 1
BOMLA G, iy, Ay) = fg(l) + fg(Z) + 5(9 —) A0 —), (4.6)

where

v M
1 1 m, m =(2 mS
():_Mmz_llogp Dt+?\9) and fg():_ mZ: og p(Dy7 |0

4.2. BOML with Laplace Approximation 52

with 0™ = SGD,(L(6, DZLHS)) for m=1,..., M and M denotes the number of
tasks sampled per iteration. The first term fe(l) in Equation (4.6) corresponds
to the MAML objective in Equation (3.2) with a cross-entropy loss, the second
term fg(Q) can be viewed as the pre-adaptation loss on the support set and the
last term can be seen as a regulariser.

The new approximate posterior has mean ;11 = arg ming fE94(6, 11y, Ay),

and the precision matrix is updated as
Avrr = AHypr + Hepr) + Ay, (4.7)

where X is the posterior-regularising hyperparameter introduced in Chap-
ter 3.3.1, ﬁtﬂ and H;,, are the Hessian matrices of the negative log-likelihood

for the query and support set respectively with entries

M
~ . 1 o? -
oo s m,Q|am
iy = Mm§_1 sa0 550 s (DL]0™)) . (4.8)
M
gl = LS P o) (49)
t+1]\4m:1 90 HPG) t+1 . .

The full Hessian matrices ﬁ[tﬂ and H, ., are intractable for a neural network
with larger architecture. We utilise a block-diagonal Kronecker-factored Fisher
approximation method to estimate the Hessian matrices. The Hessian H;
in Equation (4.9) can be approximated in the same manner as the Hessian in
Equation (3.10), and we explain the approximation of H;,; in Chapter 5.3.1.
The Hessian]:ltﬂ requires a special treatment in addition to the original
approximation method in the large-scale classification setting. We derive the
approximation to ﬁtﬂ in Chapter 5.3.2.

We discover that the Laplace approximation method provides a well-fitted
meta-training framework for BOML in Equation (4.3). Each updating step
in the approximation procedure can be modified to correspond to the meta-
parameters 0 for few-shot classification, instead of the model parameters ¢ for

large-scale supervised classification.

4.3. BoML with Variational Inference 53

4.2.2 Algorithm

Algorithm 5 gives the pseudo-code of the BOMLA algorithm. The algorithm is
formed of three main elements: meta-training on a specific base set (lines 4 —
11), updating the Gaussian mean (line 12) and updating the Gaussian precision
(lines 13 — 14). For precision update, we approximate the Hessian using a

block-diagonal Kronecker-factored Fisher approximation explained in Chapter 5.

Algorithm 5 Bayesian online meta-learning with Laplace approximation
(BoMLA)

1: Require: sequential base sets Dy, ..., Dr, learning rate «, hyperparameter
A, number of meta-training iterations J, meta-batch size M

2: Initialise: pq, Ag, 0

3: fort=1to T do

4: fort=1,...,J do > meta-training on base set D,

5: for m =1 to M do

6: Sample task D" = D5 U D™

7: Inner update 6™ = SGDy(L(0, D))

8: end for

9: Evaluate loss fEOMEA(0, py_1, Ay_y) in Equation (4.6)

10: Outer update 6 < 6 — aVy fEMEA (0, 1y 1, Ay 1)

11: end for

12: Update mean ji; <6 > posterior mean
13: Approximate H; and H; using Algorithm 9

14: Update precision A; < /\(Ht + Ht) + A > posterior precision
15: end for

4.3 BowML with Variational Inference

This section demonstrates how we arrive at the BOoMVI algorithm by imple-
menting an approximate variational inference method to the BOML posterior
in Equation (4.3). We proceed in a similar fashion to the BOL framework with

variational inference in Chapter 3.4.

4.3.1 Derivation and Implementation

Consider approximating the posterior by minimising the KL-divergence be-
tween the approximate posterior ¢ and the BOML posterior in Equation (4.3),

where ¢ belongs to some pre-determined approximate posterior family Q with

4.3. BoML with Variational Inference 54

parameters ¢;. This gives a new approximate posterior

q(0|pr11) = argergin Dy, (q(¢9|¢) H cj¢t), (4.10)

where

to. = { [pDRAI8) (816 D5,)48 (D3, 16) a0l

Similar to BOMLA, we use the deterministic § in Equation (4.4). This

leads to minimising the objective

23V, 60) = 1+ £+ Diu(a(019)a(6]60)), (4.11)

where

Eq(010) logp t+1 ‘em)}

= ||M§

ff) = —% Z Eqe10) [log p(D;2710)]
with 0" = SGDk(E(Q,Dli’f)) form =1,..., M and M denotes the number
of tasks sampled per iteration. We use a Gaussian mean-field approximation
q(01¢0) = T11 N(pa, 02,), where ¢, = {0, 00a}7,, D = dim(6) and the
objective in Equation (4.11) is minimised over ¢. Using a Gaussian posterior
results in a closed-form KL-divergence in Equation (4.11).

The term f(;l) in Equation (4.11) is rather cumbersome to estimate in
optimisation. To compute its Monte Carlo estimate, we have to generate samples
0, ~qforr=1,...,R, and run a quick adaptation on each sampled meta-
parameters 6, before evaluating their log-likelihoods. This is computationally
intensive and the estimator is prone to a large variance. Moreover, every
quickly-adapted sample from 6, contributes to the meta-learning gradients of
the posterior mean and covariance, resulting in a high computational cost when

taking the meta-gradients.

To solve these impediments, we introduce a slight modification to the

4.3. BoML with Variational Inference 55

SGD quick adaptation gm. Instead of taking the gradients with respect to
the sampled meta-parameters, we consider the gradients with respect to the

posterior mean. A one-step SGD quick adaptation, for instance, becomes:

0" =0 — aV,, L(u, DIvY). (4.12)
This gives 0™ ~ N (fi, diag(c?)) where

i = = oV L, DY), (4.13)

since 8 ~ N(u,diag(o?)). A quick adaptation with more steps works in a
similar fashion. With this modification, we can calculate the Monte Carlo
estimate for the term f(;l) in Equation (4.11) using the local reparameterisation

trick as usual.

4.3.2 Algorithm

Algorithm 6 gives the pseudo-code of the BOMVI algorithm. The algorithm is
formed of two main elements: meta-training on a specific base set (line 4 — 11)
and updating the posterior parameters of the Gaussian mean-field approxima-

tion (line 12).

Algorithm 6 Bayesian online meta-learning with variational inference
(BomVI)

1: Require: sequential base sets Dy, ..., Dy, learning rate a, number of
meta-training iterations J, meta-batch size M

2: Initialise: ¢g = {po, 00}

3: fort=1to T do

4: fori=1,...,J do > meta-training on base set D,

5: for m =1 to M do

6: Sample task D" = D™ U D}

7: Inner update 6™ = SGDy(L(6, D))

8: end for

9: Evaluate loss fE°%V(¢, ¢;_;) in Equation (4.11)

10: Outer p + p— aV, B¢, ¢11), 0 < 0 — aV, [PV, 1)
11: end for

12: Update p; < pand oy < o > update posterior parameters

13: end for

4.4. Experiments 56

4.4 Experiments

4.4.1 Setup

Model structure: For all the experiments in this chapter, we employ the
model architecture proposed by Vinyals et al. (2016) that consists of 4 modules
with 64 filters of size 3 x 3, followed by a batch normalisation, a ReLU activation
and a 2 X 2 max-pooling. A fully-connected layer is appended to the final
module before getting the class probabilities with softmax. Tables A.1 and A.2

in Appendix A.1 record the hyperparameters used in the experiments.

Datasets: The following are the datasets involved and their formation in the

experiments.

1. Omniglot
Omniglot (Lake et al., 2011) comprises 1623 characters from 50 alpha-
bets and each character has 20 instances. We use 1100 characters for
meta-training, 100 characters for validation and the remaining for meta-
evaluation. New classes with rotations in the multiples of 90° are formed
after splitting the characters as mentioned. The Omniglot dataset is also
used in Chapter 4.5 for another experiment with a different setup, which

we explain thereafter in that chapter.

2. mintQuickDraw
QuickDraw (Ha and Eck, 2017) comprises 345 categories of drawings
collected from the players in the game “Quick, Draw!”. We generate
miniQuickDraw by randomly sampling 1000 instances in each class of

QuickDraw.

3. CIFAR-FS
CIFAR-FS (Bertinetto et al., 2019) has 100 classes of objects and each
class comprises 600 images. We use the same split as Bertinetto et al.
(2019): 64 classes for meta-training, 16 classes for validation and 20

classes for meta-evaluation.

4.4. Experiments 57

4. miniImageNet
minilmageNet (Vinyals et al., 2016) takes 100 classes and 600 instances in
each class from the ImageNet dataset. We use the same split as Ravi and
Larochelle (2017): 64 classes for meta-training, 16 classes for validation

and 20 classes for meta-evaluation.

5. VGG-Flowers
VGG-Flowers (Nilsback and Zisserman, 2008) comprises 102 different
types of flowers as the classes. We randomly split 66 classes for meta-

training, 16 classes for validation and 20 classes for meta-evaluation.

6. Aircraft
Aircraft (Maji et al., 2013) is a fine-grained dataset consisting of 100
aircraft models as the classes and each class has 100 images. We randomly
split 64 classes for meta-training, 16 classes for validation and 20 classes

for meta-evaluation.
Baselines: We compare our algorithms to the following baselines.

1. Train-On-Everything (TOE)
When a new dataset arrives for meta-training, we randomly re-initialise
the meta-parameters and run MAML meta-training using all datasets
encountered so far. Each inner loop update samples a specific number of
tasks from each dataset available. The inner losses of the tasks from all

datasets are aggregated for an outer loop update.

2. Sequential MAML
Upon the arrival of a new dataset, we run MAML to meta-train only
on the newly-arrived dataset. We should be reminded that MAML is
only capable of handling few-shot tasks from the same underlying task

distribution by design.

3. Follow The Meta-Leader (FTML)
We introduce a slight modification to FTML (Finn et al., 2019) on its

4.4. Experiments 58

evaluation method, as FTML is not designed for few-shot learning on
unseen tasks. FTML comprises two types of data accumulation during
the training phase: a task buffer and a dataset buffer. Both buffers are
initially empty. The task buffer is for the sequential accumulation of
tasks as they arrive, whereas the dataset buffer is for the incremental
data accumulation within a given task. As a new task arrives for training,
it is first added to the task buffer. The datapoints within the task are
also added to the dataset buffer as they arrive in an online manner for
the training of the meta-parameters. This optimisation requires sampling
from the task buffer across all tasks encountered so far. Upon the arrival
of all data in the current task, FTML moves on to the subsequent task

for training with a re-initialised dataset buffer.

The evaluation phase involves a quick adaptation of meta-parameters to
the current task, which is known as the Update-Procedure in F'TML.
The Update-Procedure utilises all data accumulated in the dataset buffer
for quick adaptation to the current task. The evaluation performance
is recorded using a held-out test set from the same task. This differs
from our BOML setting that evaluates on new and unseen tasks. In our
experiments, we apply Update-Procedure in FTML to the data from
unseen tasks, rather than the data from the same training task as in the

original FTML.

4.4.2 Triathlon

We implement BOMLA and BOMVI to the 5-way 1-shot triathlon sequences.

This experiment considers the few-shot triathlon sequence as in Figure 4.2.

.

M

Omniglot miniQuickDraw CIFAR-FS

Figure 4.2: The triathlon 5-way 1-shot sequence in this experiment.

Figure 4.3:

4.4. Experiments 59

Meta-evaluation accuracy (%)
100

P s
[/PRGN
[N K

80 |f |-

Omniglot

60 fi]

o}
o

50 223

PR %

TR S

.".:—"""' & A, O
ANV

BOML

BOMLA,
A =100

BOMVI

(=]
o

AP
T b S s]

miniQuickDraw
wm
o

Baseline

Sequential
MAML

- TOE
- FTML

s dradik tiROSERY
ry «’5@6_;,-“.:'._;?:% Sty
TR
L

',

o
o

CIFAR-FS
i
S

Omniglot meta-train miniQuickDraw meta-train CIFAR-FS meta-train
Meta-training time

Meta-evaluation accuracy across 3 seed runs on each dataset along
meta-training. Going from left to right on the x-axis of the figure is the
meta-training times of the knowledge domain datasets that arrive in
sequential order. The second row in the figure, for instance, corresponds
to the miniQuickDraw knowledge domain. The first plot in the second
row is empty since miniQuickDraw has not arrived during the meta-
training time of Omniglot. The diagonal plot (middle plot) in the
second row corresponds to the meta-evaluation accuracy on the novel
set of miniQuickDraw when meta-training occurs on the base set of
miniQuickDraw. The off-diagonal plot (last plot) shows the meta-
evaluation on the miniQuickDraw novel set, when meta-training occurs
on the next knowledge domain CIFAR-FS. Higher accuracy values in
the off-diagonals indicate less forgetting. The baseline TOE corresponds
to an upper limit in the performance since it has access to all datasets
encountered so far. Sequential MAML corresponds to a lower limit in
the performance since MAML forgets on previous datasets by design of
the algorithm.

The distributional shift from Omniglot to miniQuickDraw is less drastic,

compared to the shift from miniQuickDraw to CIFAR-FS. Omniglot and

mintQuickDraw are both gray-scale and the image drawings are formed of

simple strokes in both datasets. The result in Figure 4.3 shows that BOMLA and

BoMVT are able to prevent catastrophic forgetting in both dataset transitions.

BOMLA, in particular, is able to proceed to the miniQuickDraw meta-training

phase with

almost no forgetting on Omniglot. In other words, the meta-

level pattern of Omniglot is retained throughout the meta-training period of

miniQuickDraw. There is a small trade-off in the performance of CIFAR-

4.4. Experiments 60

FS as BOMLA and BoMVI avoid catastrophically forgetting Omniglot and
miniQuickDraw.

Since this experiment focuses on 5-way classification tasks, the baseline
accuracy of random guessing stands at 20%. It is noteworthy that the result
in Figure 4.3 is obtained via 1-shot learning, which traditionally presents a
significant challenge for achieving high accuracy in classification problems. The
BoML implementations surpass the baseline accuracy of random guessing by
a substantial margin, and pose a remarkable achievement in the sequential
few-shot problems setting.

Sequential MAML gives a noticeable drop in the performance of Omniglot
and miniQuickDraw when meta-training on CIFAR-FS. TOE is able to retain
the few-shot performance as it has access to all previous datasets, whilst FTML
gives a mixed performance. We elaborate on the result interpretation, the
BOMLA-BOMVI comparison and the choice of A along with the next experiment
pentathlon, which resembles the setting of this experiment except with a more

challenging dataset sequence.

4.4.3 Pentathlon

We implement BOMLA and BOMVT to the more challenging pentathlon se-

quence as in Figure 4.4.

1

Omniglot CIFAR-FS minilmageNet VGG-Flowers Aircraft

Figure 4.4: The pentathlon 5-way 1-shot sequence in this experiment.

Figure 4.5 shows that BOMLA and BOMVI are able to prevent few-shot
catastrophic forgetting in the pentathlon dataset sequence. TOE is also able
to retain the few-shot performance as it has access to all datasets encountered
so far. Since TOE learns all datasets from random re-initialisation each time it

encounters a new dataset, the meta-training time required to achieve a similarly

Meta-evaluation accuracy (%)

4.4. Experiments 61

11| e e
H
5 il
o 80|¢
E
g
O 60
60
#50
&
I 40 R (A e b
o 4
30
=)
< . TNERTT O Ve G ooy IR ey
Z N
© 40 ATV
=
1<)
£
‘230
g
gm DB, i i,
2 60 <
1S)
) 50 BOML
O] BOMLA, A = 100 R
S0 BOMVI PR o it WA pat P
50 Baseline
“‘5 R A Sequential MAML
—~ -e
S0 TOE
3 -- FTML
30
Omniglot meta-train CIFAR-FS meta-train =~ minilmageNet meta-train VGG-Flowers meta-train Aircraft meta-train

Meta-training time

Figure 4.5: Meta-evaluation accuracy across 3 seed runs on each dataset along

meta-training. Going from left to right on the z-axis of the figure is the
meta-training times of the knowledge domain datasets that arrive in
sequential order. Higher accuracy values indicate better results with
less forgetting as we proceed to new datasets. BOMLA with A = 100
gives good performance in the off-diagonal plots (retains performances
on previously learned datasets), and has a minor performance trade-off
in the diagonal plots (learns less well on new datasets). The second
row in the figure, for instance, corresponds to the CIFAR-FS knowledge
domain. The first plot in the second row is empty since CIFAR-FS has
not arrived during the meta-training time of Omniglot. The diagonal
plot (second plot) in the second row shows the meta-evaluation accuracy
on the novel set of CIFAR-FS when meta-training occurs on the base
set of CIFAR-FS. The off-diagonal plots (last three plots) in the second
row show the meta-evaluation on the CIFAR-FS novel set, when meta-
training occurs on the subsequent knowledge domains minilmageNet,
VGG-Flowers and Aircraft. Sequential MAML gives better performance
in the diagonal plots (learns well on new datasets) but worse performance
in the off-diagonal plots (forgets previously learned datasets). BoMVI
is also able to retain performance on previous datasets, although it may
be unable to perform as good as BOMLA due to sampling and estimator
variance.

good meta-evaluation performance is longer compared to other runs. Sequential

MAML catastrophically forgets the previously learned datasets but has the

best performance on new datasets compared to other runs. FTML gives a

4.4. Experiments 62

mixed performance on different datasets.

The baselines TOE and FTML can be memory-intensive as the dataset
sequence becomes longer. They take the brute-force approach to prevent
forgetting by memorising all datasets. Unlike TOE and FTML, our algorithms
BoMLA and BoMVI only take the newly-arrived dataset and the posterior
of the meta-parameters into consideration during optimisation. This gives a
framework with an algorithmic complexity independent of the length of the

dataset sequence.

Choosing \: Tuning the posterior-regularising hyperparameter A for precision
update in Equation (4.7) corresponds to balancing between a smaller perfor-
mance trade-off on a new dataset and less forgetting on previous datasets. We
compare BOMLA with different A\ values and BOMVI in Chapter 4.7.1 as an

ablation study.

BoMLA-BoMVI comparison: As shown in Figure 4.5, BOMLA with ap-
propriate A is superior to BOMVTI in the performance. This is due to BOMLA
having a better posterior approximation than BoMVI. Whilst BOMLA has a
Gaussian approximate posterior with block-diagonal precision, BOMVTI uses
a Gaussian mean-field approximation for the posterior. Trippe and Turner
(2017) compare the performances of variational inference with different covari-
ance structures, and discover that variational inference with block-diagonal
covariance performs worse than mean-field approximation. This is because the
block-diagonal covariance in variational inference prohibits variance reduction
methods such as local reparameterisation trick for Monte Carlo estimation. We
therefore implement BOMVT using the simplest diagonal covariance structure
in order to maintain the sampling and estimator variance at an acceptable

level.

The variance of the Monte Carlo estimate has been proven problematic
(Kingma et al., 2015; Trippe and Turner, 2017), and we addressed this issue in
Chapter 4.3. As an ablation study, we analyse the change in the approximate

posterior covariance in Chapter 4.7.2 whilst meta-training occurs sequentially

4.5. BOML in Sequential Task Setting 63

on datasets from different knowledge domains.

4.5 BOML in Sequential Task Setting

We demonstrate empirically that BOML can also continually learn to few-shot
classify the novel classes in the sequential few-shot tasks setting, where all tasks

originate from a single stationary task distribution.

4.5.1 Setting and Algorithm

This setting only involves one dataset ® with an associated underlying task
distribution p(7T), where © is separated into the base and novel class sets. In
this setting, Dy, ..., D1 denote the non-overlapping tasks formed from the

base class set and they arrive sequentially for meta-training.

When a task D; arrives, we break the data points of D; into mini-batches.
Each mini-batch is further split into the support and query sets for inner and
outer loop updates. Algorithms 7 and 8 show the corresponding modifications

of BOMLA and BoMVT under this setting in blue.

Algorithm 7 BoMLA for stationary task distribution

1: Require: sequential tasks Dy, ..., Dr, learning rate «, posterior regulariser
A, number of epochs J, number of mini-batches M

2: Initialise: g, Ag, 0

3: fort=1to T do

4: fori=1,...,J do > meta-training on task D;

5: for m =1to M do

6: Split the batch Dy* = D™ U D™<

7: Inner update 6™ = SGDy(L(6, D))

8: end for

9: Evaluate loss fBoMYA (0 11,1, Ay_1) in Equation (4.6)

10: Outer update 6 < 0 — aVy fEOMEA (0 1y, Ay_1)

11: end for

12: Update mean pu; <0 > posterior mean
13: Approximate H; and H; using Algorithm 9

14: Update precision A; +)\(Ht + Ht) + A > posterior precision

15: end for

4.5. BOML in Sequential Task Setting 64

Algorithm 8 BoMVI for stationary task distribution

1: Require: sequential tasks Dy, ..., Dy, learning rate a, number of epochs
J, number of mini-batches M

2: Initialise: ¢g = {10, 00}

3: fort=1to T do

4: fori=1,...,J do > meta-training on task D;

5: for m =1to M do

6: Split the batch Dy* = D™ U D™<

7: Inner update 6™ = SGDy(L(6, D))

8: end for

9: Evaluate loss fBMVI(¢, ¢;_;) in Equation (4.11)

10: Outer p + p— aV,fB"V(p, ¢1-1), 0 < 0 — aV, [PV, 1)
11: end for

12: Update p; < pand o < o > update posterior parameters
13: end for

4.5.2 Omniglot: Stationary Task Distribution

We run the sequential tasks experiment on the Omniglot dataset. To increase
the difficulty level, we split the dataset based on the alphabets (super-classes)
instead of the characters (classes) as in Figure 4.6. The goal of this experiment
is to classify the 5-way 5-shot novel tasks sampled from the meta-evaluation
alphabets. Table A.3 in Appendix A.2 shows the hyperparameters used in
this experiment. We explain the model structure and alphabet splits in this

experiment before proceeding to the results.

,jV » eoe » a » —u » eoe
Latin Sanskrit Sanskrit
Task 1 Task 1 Task 2

Figure 4.6: An example of the Omniglot task sequence for meta-training in this
experiment.

Model structure: We use the model architecture proposed by Vinyals et al.
(2016) that takes 4 modules with 64 filters of size 3 x 3, followed by a batch
normalisation, a ReLU activation and a 2 x 2 max-pooling. A fully-connected
layer is appended to the final module before getting the class probabilities with

softmax.

4.5. BOML in Sequential Task Setting 65

Alphabet split: The Omniglot dataset comprises 50 alphabets (super-classes).
Each alphabet has numerous characters (classes) and each character has 20
instances. As the meta-training alphabets arrive sequentially, we form non-
overlapping sequential tasks from each arriving alphabet, and the tasks also
do not overlap in the characters. We use 35 alphabets for meta-training, 7
alphabets for validation and 8 alphabets for meta-evaluation. The alphabet

splits are as follows:

1. 35 alphabets for meta-training

Alphabet_of_the_Magi, Angelic, Armenian, Atlantean, Avesta,
Asomtavruli_(Georgian), Aurek-Besh, Balinese, Bengali,
Braille, Burmese_(Myanmar), Early_Aramaic, Grantha,
Gujarati, Gurmukhi, Hebrew, Japanese_(hiragana),
Inuktitut_(Canadian_Aboriginal_Syllabics), Kannada, Keble,
Japanese_(katakana), Korean, Latin, Malayalam, Manipuri,
Malay_(Jawi_-_Arabic), Mongolian, Oriya, Sanskrit, Sylheti,
Ojibwe_(Canadian_Aboriginal_Syllabics), Tengwar, Tifinagh,
01d_Church_Slavonic_(Cyrillic), ULOG

2. 7 alphabets for validation

Anglo-Saxon_Futhorc, Arcadian, Cyrillic, Ge_ez, Glagolitic,

N_Ko, Blackfoot_(Canadian_Aboriginal_Syllabics)

3. 8 alphabets for meta-evaluation

Atemayar_Qelisayer, Futurama, Greek, Mkhedruli_(Georgian),

Syriac_(Estrangelo), Syriac_(Serto), Tagalog, Tibetan

4.5.3 Results

We compare our algorithms to the baselines TOE, Sequential MAML and
FTML similar to the triathlon and pentathlon experiments but in the sequential

tasks setting. Figure 4.7 shows that BOMLA and BOMVI can accumulate

4.6. Discussion 66

few-shot classification ability on the novel tasks over time, as the tasks arrive
sequentially for meta-training. The knowledge acquired from previous meta-
training tasks is carried forward in the form of a posterior, which is then used as
a prior when a new task arrives for meta-training. Despite having access to all
previous tasks, TOE shows no positive forward transfer in the meta-evaluation
accuracy each time it encounters a new task. FTML and sequential MAML are
inferior to BOMLA and BOMVTI in the performance. BOMLA with A = 0.01

gives the best performance in this experiment.

©
=

96

95

©
i

©

=

s]

94

S

93

|/
92| |
I

=

BOMLA BOMLA, A = 0.01

91 £

Meta-evaluation accuracy (%)
o]] =<} % © ©o

" === FTML 84 % === BOMLA, A =0.1
=== TOE BOMILA, A = 1.0
2 =+ Sequential MAML 82 =--+ Sequential MAML 89 —— BOMVI
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

Meta-training task index

Figure 4.7: Meta-evaluation accuracy across 3 seed runs on the novel tasks along
meta-training. Left: compares BOMLA to the baselines, centre: com-
pares BOMVI to the baselines, right: compares BOMLA with different
A values to BomVTI.

4.6 Discussion

We notice that the optimal value of \ varies considerably across different ex-
perimental settings. The optimal A value for the triathlon and pentathlon
experiments in Chapter 4.4 is determined to be A = 100. In contrast, the opti-
mal A for the Omniglot sequential task experiment in Chapter 4.5 is discovered
to be A = 0.01. The substantial distinction in the optimal A values between
these experimental settings is believed to stem from the diversity of the knowl-
edge domains in different settings. The triathlon and pentathlon experiments
consider knowledge domains from a broad spectrum, whereas the sequential
task experiment is confined to tasks within the Omniglot knowledge domain.
This distinction in the variation of the knowledge domains is conjectured as the

primary factor contributing to the observed variation in the optimal A values

4.6. Discussion 67

across these experimental setups.

On a brief inspection, we observe that the arrangement order of the
knowledge domain datasets does not significantly impact the performance of
the BOML framework. This is further validated by the Omniglot sequential
task experiment, since the task sequence is randomly generated in this setting.
The sequences of both the alphabets and the tasks at the character level are

arbitrarily formed.

Finn et al. (2019) discover that TOE does not explicitly learn the structure
across tasks, thus unable to fully utilise the data. The TOE performance in
Figure 4.7 of the Omniglot experiment is coherent with the TOE result in Finn
et al. (2019). The result figures in Finn et al. (2019) show a TOE result similar
to ours in the Omniglot experiment. In contrast, TOE in the triathlon and
pentathlon experiments performs well as it has access to drastically more data
points than TOE in the Omniglot experiment, and samples numerous tasks

from all previous datasets.

In the triathlon and pentathlon experiments, sequential MAML suffers
from catastrophic forgetting due to the apparent distributional shift in the
datasets. The Omniglot experiment, on the other hand, has tasks originating
from the same underlying distribution. As a result sequential MAML in this
setting is able to accumulate few-shot ability, although it performs worse than
BOMLA and BoOMVI as shown in Figure 4.7 since there is only one task

available at a time.

Since the original FTML is not aimed for unseen few-shot tasks and does
not deal with sequential datasets setting as in the triathlon and pentathlon
experiments, we have to modify FTML as described in Chapter 4.4.1. Sampling
from previous tasks in the buffer is a key feature of the FTML algorithm.
Certainly one can sample many tasks from the buffer to achieve perfect memory
in the triathlon and pentathlon experiments, but such a baseline setup has
been taken into consideration by TOE. Therefore we choose to retain the online

characteristic of the original FTML in our modified implementation.

4.7. Ablation Studies
4.7 Ablation Studies

68

4.7.1 Varying Precision Update Hyperparameter

Tuning the BOMLA hyperparameter A for precision update in Equation (4.7)

corresponds to balancing between a smaller performance trade-off on a new

dataset and less forgetting on previous datasets. As shown in Figure 4.8,

a larger A\ = 1000 results in a more concentrated Gaussian posterior and

is therefore unable to learn new datasets well, but can better retain the

performances on previous datasets. A smaller A = 1 on the other hand gives a

widespread Gaussian posterior and learns better on new datasets by sacrificing

the performance on the previous datasets.

Meta-evaluation accuracy (%)

100

Omniglot

e g e e

tanre -

BOML Pl e

BOMLA, A=1000
—— BOMLA, A=100
—— BOMIA, A=1
BOMVI

Baseline
Sequential MAML

Omniglot meta-train

CIFAR-FS meta-train

minilmageNet meta-train VGG-Flowers meta-train
Meta-training time

Aircraft meta-train

Figure 4.8: Meta-evaluation accuracy across 3 seed runs on each dataset along
meta-training. Higher accuracy values indicate better results with
less forgetting as we proceed to new datasets. BOMLA with a large
A = 1000 gives better performance in the off-diagonal plots (retains
performances on previously learned datasets) but worse performance
in the diagonal plots (does not learn well on new datasets). A small
A = 1 gives better performance in the diagonal plots (learns well on
new datasets) but worse performance in the off-diagonal plots (forgets
previously learned datasets). BOMVI is also able to retain performance
on previous datasets, although it may be unable to perform as good as
BoOMLA due to sampling and estimator variance.

4.7. Ablation Studies 69

In this experiment, the value A = 100 provides the optimal balance between
old and new datasets. Ideally we seek for a good performance on both old and
new datasets, but in reality there is a trade-off between retaining performance on
old datasets and learning well on new datasets due to posterior approximation

CITOorS.

4.7.2 Analysing the Approximate Posterior Covariance
We visualise the covariance of the meta-parameters approximate posterior from
BoMVI to better understand how the uncertainty in the algorithm prevents
catastrophic forgetting in few-shot classification problems. Since BOMVT uses
a Gaussian mean-field approximation, we examine the variance of the meta-
parameters in a neural network model.

Omniglot CIFAR-FS mmlImageNet VGG Flowers Aircraft

e j-["- w-"-_ﬁ.”

._lrl

f

Figure 4.9: The change in the approximate posterior variance after meta-training
is completed on each dataset. Going from left to right are the datasets
of the pentathlon sequence. Going from top to bottom are the convolu-
tional layers of the neural network which gets closer to the classifying
layer. Each plot in the figure is the colour-encoded variance correspond-
ing to a specific knowledge domain dataset and the meta-parameters
of a specific layer in the neural network model. The variance in each
layer is flattened into a two-dimensional matrix visualisation. A darker
colour indicates a higher variance. The variance increases in general as
the convolutional layer gets closer to the classifying layer. The variance
decreases in the raw level filters (Conv 1) as the model learns along the
pentathlon sequence.

We follow the pentathlon sequence going from left to right in Figure 4.9:

Omniglot — CIFAR-FS — minilmageNet — VGG-Flowers — Aircraft.

4.7. Ablation Studies 70

The Gaussian mean-field approximation becomes increasingly concentrated in
general as it learns on more datasets. This is especially true for the earlier
layers (Conv 1 and Conv 2), meaning that the posterior progressively becomes
very confident on the meta-parameters of the raw-level filters. The variance for
the layer closest to the classifier (Conv 4) remains large in general, although
there are some filters with decreasing variance. As the convolutional layer gets
closer to the classifying layer, a larger fine-tuning in the meta-parameters is
needed (Ravi and Beatson, 2019) to cope with few-shot tasks from different
knowledge domains.

The approximate posterior covariance from BOMLA is too large for visuali-
sation since it is block-diagonal. The BOMLA covariance for each convolutional
layer has dimension D x D where D is the number of meta-parameters in a
convolutional layer. In theory, the BOMLA covariance should also follow a

similar pattern as the BoMVI variance.

Chapter 5

Hessian Approximation

5.1 Introduction

Since the full Hessian matrices in Equation (3.10), Equation (4.8) and Equa-
tion (4.9) are intractable for large neural networks, we seek for some efficient
and relatively close approximations to the Hessian matrices. Diagonal approxi-
mations (Denker and LeCun, 1991; Kirkpatrick et al., 2017) are memory and
computationally efficient, but sacrifice approximation accuracy as they ignore

the interaction between parameters.

We consider instead separating a Hessian matrix into blocks where different
blocks are associated to different layers of a neural network. A particular
diagonal block corresponds to the Hessian for a particular layer of the neural
network. The block-diagonal Kronecker-factored approximation (Martens and
Grosse, 2015; Grosse and Martens, 2016; Botev et al., 2017) utilises the fact
that each diagonal block of the Hessian is Kronecker-factored for a single data
point. This provides a better Hessian approximation as it takes the parameter

interactions within a layer into consideration.

We begin this chapter by reviewing Hessian approximation in the large-
scale classification setting that adopts the block-diagonal Kronecker-factored
Fisher approximation method (Martens and Grosse, 2015; Grosse and Martens,
2016; Osawa et al., 2020). We then extend the block-diagonal Kronecker-

factored Fisher approximation to the few-shot classification setting for our

5.2. Background 72

BoML framework, and demonstrate empirically the importance of having a

good Hessian approximation in the BOML framework.

5.2 Background

Consider estimating the Hessian matrix in Equation (3.10) for the large-scale
classification setting. We approximate the Hessian for a single data point (z,y)

using the Fisher information matrix associated to the model parameters ¥:

F = E @ y)po(ay) [Vﬁ log py(y|z)Vy log pﬁ(y|$)T] ; (5.1)

which guarantees the positive semi-definiteness of the approximation. By
Bayes’ rule, the joint distribution for the data point under parameter ¥ is
po(x,y) = po(y|x)p(x), where p(z) is the distribution over inputs x, and py(y|z)

is the predictive distribution for outputs y from a model with parameters .

It is a well-known property that taking expectation of Hessian for a single

data point over py(z,y) leads to the Fisher in Equation (5.1), since

E[-V logpﬂ(ylm)}
_ E[— vﬁ(wpﬂ—(y‘@ﬂ (5:2)

po(ylz)
= —/Vipﬁ(ylw)p(:r) dxdy+E[Vﬂ10gpﬁ(y|$)vﬁ10gpz9(y|x)T . (53)

Equation (5.3) follows from the quotient rule of differentiation. The first
term of Equation (5.3) is equal to zero since V3 [py(y|z)p(x) dx dy = 0 under

regularity conditions, which completes the proof.

We review the block-diagonal Kronecker-factored approximation to the
large-scale learning Hessian in Equation (3.10) for fully-connected layers, con-
volutional layers and batch normalisation layers of neural networks in Chap-

ters 5.2.1 — 5.2.3.

5.2. Background 73

5.2.1 Fully-Connected Layers

The work in this section is presented by Martens and Grosse (2015). We
consider a fully-connected neural network with L layers and model parameters
¥ = [vec(W)T, ... ,vec(WL)T|T, where W is the weight of layer ¢ for ¢ =
{1,..., L} and vec denotes stacking the columns of a matrix into a vector. We
denote the input of the neural network as ay = x and the output of the neural
network as ay. As the input passes through each layer of the neural network,

the pre-activation h, and activation a, for layer ¢ are
hg = Wgag,1 and Ay = fg(hg), (54)

where f, is the activation function of layer /. If a bias vector is applicable in
calculating the pre-activation of a layer, we append the bias vector to the last
column of the weight matrix and append a scalar one to the last element of

the activation.

ap

!
sosll

|h1 Wiao

ay = f1<h1)
| o
ho = Waay

az = fa(h2)

Figure 5.1: An example of a fully-connected neural network with L = 2 layers and
weight matrices W1, Wa. The bias vectors are omitted in this example.
The weights are vectorised as 9 = [vec(W1)T, vec(W2)T]T. The input
ap, pre-activations hy, ho and activations ap, ag interact according to
Equation (5.4) using activation functions fi, fo.

Let £(y,nny(z)) = — log py(y|x) be the loss between the true label y and

the output prediction of a neural network with model parameters 9. The

5.2. Background 74

gradient of the loss with respect to ¥ can be computed by back-propagating
through the neural network, starting from the final layer. Going backward for

¢ from L to 1, we have

Ohy

oo Ll mmo()) = (a%uy, any(2)) - fé(he)) (W) —gal, (55)

where
oh) , 9
a_mj@ = a1, Gi= a—aes(y,nnﬁ(fﬁ)) - fo(he), aaeilg(%nnﬂ(fﬂ)) =W/ g

The derivative of loss £(y,nng(z)) with respect to the vectorised
parameters ¥ = [vec(W1)T vec(W2)T ... vec(W)T]" can be annotated as
0L = [vec(Ow, L)T vec(Ow,£)T ... vec(Ow, £)T]F, where we write 0y€ =
2 £(y,nny(z)) in shorthand. The operator vec(-) vectorises matrices into

vectors by stacking the columns together.

The Fisher information matrix F' in Equation (5.1) can thus be expressed

block-wise, with the (4, j)-th block:

Fij = Egup (o | vee(0, £) vee(dw, £)" (5.6)

= Efeypatoa | veclgial) vee(gial)] (5.7)

where Equation (5.7) follows from the derivation in Equation (5.5). A fruitful
consequence is that Equation (5.7) can be expressed in terms of Kronecker

products.

The Kronecker product between two matrices A € R™*" and B € RP*4

is defined as
Al,lB cee Al,nB

A9B=| © .1 (58)
ApaB - AnnB
where A, ; is the (7, j)-th entry of A, and (A® B) € R™*™. Kronecker product

satisfies the following basic properties. For vectors u € R™ and v € R"™, matrices

5.2. Background 75

AER™n B R, C e R, D e R™ and X € R we have:
(P1) vec(uv?) =v®@u

(P2) (A® B)T = AT @ BT

(P3) (A® B)(C® D) =AC ® BD

(P4) (A® B)vec(X) = vec(BX AT)

By setting the non-diagonal block approximations of the Fisher in Equa-
tion (5.6) to zero, we assume F;; ~ 0 for i # j. Proceeding from Equation (5.7),
the /-th diagonal block F} of the Fisher information matrix can be approximated

as

Fy = E@y)opyan [(ae-1 @ ge)(ae—1 @ ge)T] (5.9)
= Euy)pp(sy [00-1071 @ 909] (5.10)
~ Eopiyae10_1] ® Byp,yia (9007) (5.11)
= A1 ® G, (5.12)

where Apy = E,pwlaciai_i] and G¢ = Eyop, 10 (9097). Equation (5.9)
follows from Equation (5.7) with Property (P1), whereas Equation (5.10) is a
direct result of Properties (P2) and (P3). Equation (5.11) follows by bringing
the expectation into the Kronecker product and considering the inputs x from
the empirical data distribution p(z) instead of the unknown true distribution
p(z). The Gaussian log-probability term can be calculated efficiently using
Property (P4) without expanding the Kronecker product:

(Ag_l ® Gz) V@C(Wg — WZ*) = VeC(Gg(Wg — WZ*)Ag—l)' (513)
Data points often come in batches during training. For a batch of size B

we have the approximations

I, .
Ag,l =~ Eag,lagll, Gg ~ —ggg,{, (514)

5.2. Background 76

where a,_; and g, are the batched version of activations and gradients with

an extra final dimension of shape B. Putting the blocks together for layers

¢ =1,..., L gives the block-diagonal Kronecker-factored Fisher approximation
Ao ® Gy 0
F =~) (5.15)
0 A1 ® Gy

5.2.2 Convolution Layers

Grosse and Martens (2016) extend the block-diagonal Kronecker-factored Fisher
approximation for fully-connected layers to that for convolution layers. Consider
a convolutional operation with stride 1 and padding R for convenience.

Due to the special condition of the convolutional operations, an activation
a; for a specific layer with single data point should be considered in terms
of spatial locations k € K with index ¢ € {1,...1} over the number of input
channels I of the weights. Figure 5.2 gives a two-dimensional illustration for
the spatial locations of a 3-by-3 filter in the simple 6-by-6 activation. The

batch size and input channels are ignored in the illustration.

f— Spatial location k € K

Activation

Figure 5.2: A two-dimensional example of a 6-by-6 activation with spatial location
k € K for a 3-by-3 filter. For a convolutional operation of stride 1, we
have || = 16 in this example. The batch size and input channels are
ignored in the illustration

A convolutional operation uses weight w,.;s and bias b., with subscript
c € {1,...,C} over the number of output channels C, and the index 6 € A

for spatial offset of filter from its center. The convolution operation computes

5.2. Background 77

pre-activation h.y as

hep = Z We,i 5 Qi kts + be. (5.16)

dEA
Figure 5.3 shows a two-dimensional illustration for the spatial offsets of a 3-by-3
filter, where the input and output channels are ignored in the example. The
weight parameter associated to the spatial offset § = (41,0) is we; (11,0 for

input channel 7 and output channel c.

+1

Spatial offset
-1 0 (+1 5:(+1,0)EA

-1

Figure 5.3: A two-dimensional example for a spatial offset J of a 3-by-3 filter. In
this example we have |A| = 9. The input and output channels are
ignored in this illustration.

For generalisation purpose, the activation of layer ¢ should be stored as
a matrix of shape (B|K|, I|A]) with batch size B. This is achieved by first
collecting the activation for each spatial location k£ € K and then flattening into
an activation A, of shape (B|K|,I). We then apply the expansion operator [-]
to A, which extract patches in each spatial location within the spatial offsets of
the filter, resulting in H./Zlg]] of shape (B|K|, I|A|). The activation and expanded
activation in the single data point B = 1 case are denoted as A, and [.A/]

respectively. The expansion operation is conducted as follows:

[[-’ZV]] kB+bilAl+6 (“Zl@)(kJra)Ber,i - az(,blzwv (5.17)

such that k£ + 6 € K, and b denotes the activation for data b in a batch of size
B.

The weight parameters are also modified into shape (C,|Al,I) and then
flatten into W, of shape (C, I|A|). We denote the expanded input and output
of a neural network with layers £ = 1,..., L as [[.»Zlo]] and [[./iL]] respectively.

As the input passes through each layer of the neural network, the pre-activation

5.2. Background 78

‘H, and expanded activation [[Ag]] for layer ¢ are
He = [[/vlefl]] WKT and [[fig]] = fo(Ho), (5.18)

where f; is the activation function of layer /. If a bias vector is involved in
the pre-activation calculation, we append the bias vector to the last column of
the weight matrix W, and append a column of 1’s to the last column of the
expanded activation [[./Zlg]].

Similar to the fully-connected layers, we define the gradient of loss
L(y,nny(z)) with respect to the pre-activation H, for a mini-batch of size
Bas G, = 0w, L. The gradient in the single data point B = 1 case is denoted
by G,. For convolution layers ¢ = 1,..., L, the /-th diagonal block Fisher Fj in
Equation (5.6) is approximated by

Fy = Eoy)py (o) [VeC(E)WZS) vec(@WZS)T] (5.19)
~ Ean [T TA] © By, i [T (5.20)
~ A1 @Gy, (5.21)
where
Ay = ~[Aa] " [Aia] and G = - GTG

are the approximation to Kronecker products in Equation (5.20) when the
data is in batch. The approximation in Equation (5.20) assumes for spatial
homogeneity on the activation and pre-activation elements in Equation (5.16)

as follows:

o Eoplair] =M(i), Vie {1,...,1}, Vk € K, and some function M.
That is the first order statistics of the activations are independent of the

spatial location.

o E,pwlaikarw) = Q3,7 K —k),Vi,i" € {1,...,1},Vk, k' € K, and some

function f).

5.2. Background 79

® By (o) (On, ., £)(On, , L)) = T(c,c, K — k), Ve, € {1,...,C}, Vk, k' €
KC, and some function I'.
That is the second order statistics of the activations and gradients with

respect to pre-activations at any spatial locations k and &’ depends only

on k' — k.

5.2.3 Batch Normalisation Layers

A batch normalisation layer often follows after a convolution layer. Suppose
that the convolution layer before batch normalisation has C; number of output
channels. For a mini-batch of size B, batch normalisation first normalise the

inputs x; in the batch for b=1,..., B with

G b T (5.22)

b —)
Vo?+e
where

B B
1 g 1 2
L=z be and o7 = B ;(xb — 1) (5.23)

b=1
are the batch mean and variance respectively. A small € is added for numerical
stability. The output of the batch normalisation layer is y, = vz, + £ for

b=1,..., B, where v, 3 € R are the trainable weights and biases respectively.

We adopt the unit-wise Fisher approximation for batch normalisation
layers (Osawa et al., 2020). Suppose that the ¢-th layer of a neural network is a
batch normalisation layer. The unit-wise method first aggregates the elements
of v and 8 according to the output channels ¢ =1,...,C,; and re-arrange the
parameters into W, = [y1, 81, .- .,7¢,, Bc,)t € R?*““. Rather than computing
the full /-th Fisher block

Fy = Euy)mpy (a) [(Ow, £) (0w, £)] € RV, (5.24)

the unit-wise method instead approximates Fy by blocks F; E(C) fore=1,...,C,,

5.3. Hessian Approximation for BOML 80

which gives
P 0

Q

Fy (5.25)

0 F{
Each block F e(c) considers only the parameter interaction between ~. and [, of

channel ¢, for c=1,...,Cp:

¢ (0,.£)? (0,.£)(05.£)
FK() = E(%y)Npqs(ﬂc,y) § !) . (5.26)

For a neural network taking inputs of batch size B, the Fisher approximation

for block F becomes

° 8'Yc£b (a"/c’gb) (aﬂcgb)

Z ‘ , (5.27)

=1 | (95.£5)(0,.Lp) (05.£5)?
where £, denotes the loss £ with respect to the b-th input and label.

5.3 Hessian Approximation for BOML

Recall that the Hessian matrices ﬁtﬂ in Equation (4.8) and Hyy; in Equa-

tion (4.9) associated to BOMLA have entries:

)
O=pt+1

- 1 M 82
HY, = 7 > ~ 500540 log p(Dy"710)
m=1

2

M
~ 1 0 ™
Htjﬂ = M Z_l—mlogp() |9))

O=pi1+1

We indicate H;,; as the pre-adaptation Hessian for knowledge domain ®,, 1,
and ﬁtH as the post-adaptation Hessian corresponding to the task-specific
adapted parameters g™ for tasks m = 1,..., M. We estimate the Hessian
matrices Hyy 1 and fItH for a single data point because the cross-entropy losses
in the objective Equation (4.6) are often averaged over the batch of data points

in a task.

5.3. Hessian Approximation for BOML 81

5.3.1 Pre-Adaptation Hessian
The Hessian H;.; can be approximated in the same manner as the block-
diagonal Kronecker-factored approximation in Chapter 5.2, since the log-
likelihood in H;, is considered over the pre-adapted meta-parameters 6. Before
0 is adapted via inner loop to a specific task, the approximation method for
the Hessian with respect to 6 is of no difference to that of the Hessian with
respect to the model parameters ¢ in Chapter 5.2.

For an N-way K-shot setting corresponding to the knowledge domain
®;.1, the support set Df}rf has size B = |Dﬁf| = NK, fortaskm=1,..., M.
This results in the /-th block Kronecker-factored approximation for H;,; on a

single data points as follows.

1. For a fully-connected layer ¢:

with @, and g§* acquired as in Equation (5.14) using Dby .

2. For a convolution layer ¢:
1 — T R T
Fy %(m; [A7] [[A?il]]) ® (m; (9:") g;”) (5.29)
= Af—l ® GZ7
with [[fvlzn_l]] and G acquired as in Equation (5.21) using Dﬁf .

3. For a batch normalisation layer ¢, the diagonal block FZ(C) of the F,

approximation is:

| @) (008 (9580

a1
B~ g 2

. (5.30)
1 (050 (0n8) (06.87)

5.3. Hessian Approximation for BOML 82

as in Equation (5.27) where £ denotes the loss £ with respect to the
b-th input and label from the support set Dﬁf of task m.

5.3.2 Post-Adaptation Hessian

The Hessian }N[tﬂ requires a special treatment in addition to the original
approximation method, since its log-likelihood is considered over the adapted
parameters 0™ = SGDy(L(6, D™5)) for task m whilst the derivative in H,,,
is taken with respect to the meta-parameters 6.

Each (z,y) pair for the Fisher in BOMLA is associated to a task m. The
Fisher information matrix F corresponding to the Hessian ﬁtﬂ for a single
data point is

. 1 X
F = — 3" E|Vologpg (ylx)Vologpy (yl2)" | (5.31)

m=1

R BN G oz (1) oz o () (2] (532)
_Mm 20 gm 108 Pgm (Y|L)V gm 108 Pgm (Y |T 20) .

=1

where the expectation in F is taken over (z,y) ~ Pgm (ylz)p(x) from the
query set. The additional Jacobian matrix % breaks the Kronecker-factored
structure described by Martens and Grosse (2015) for the original Fisher in
Equation (5.1). It is therefore necessary to derive an adjusted approximation
to the Hessian]:QH with some further assumptions.

Finn et al. (2017) show that the first step of the quick adaptation in
0™ contributes the largest change to the meta-evaluation objective, and the
remaining adaptation steps give a relatively small change to the objective. We

can reasonably assume a one-step SGD quick adaptation for task m:
0™ =0 — VoL(0, D™) (5.33)

in order to approximate the Fisher, although in other parts of the framework
we use a few-step SGD as usual. We consider a cross-entropy loss for £. By

imposing the one-step SGD assumption, the (7, j)-th entry of the Jacobian term

5.3. Hessian Approximation for BOML 83

can be interpreted as

0*(—log p(D™1))

am\4 __ 7if
(Vot™)" =17 - 900000

(5.34)

where [is the corresponding identity matrix.

The Hessian term in Equation (5.34) is identical to the Hessian H;; except
without the summation over tasks m = 1,..., M. We should be aware that
both Hessian matrices are considering approximations for a single data point.
As such, we can approximate the Hessian in V0™ for a single data point using

the same approximation to H;.; in Chapter 5.3.1.

The Jacobian V@ém is the batched version of 27 since V@ém uses the

00 7’

entire support set D™° for computation. Breaking the expectation structure

in Equation (5.32) results in the approximation

- 1 M
F~ Mmzl (1 - F)TEE[V% 10 D (1) Vg 10g P (y12)" | (1= F), (5.35)
Fm

where

F = E|Vlog po(y]2) Vs log po(yl2)" |

with expectation of F' taken over (z,y) ~ pg(y|x)p(x) from the support set.
The ¢-th diagonal block approximation of the term (I — F) for layer ¢ is

(I-F),~1— A1 ®Gy, (5.36)

where A,_; and G, are acquired the exact same way as in Equation (5.28) for
a fully-connected layer or Equation (5.29) for a convolutional layer. If layer ¢
corresponds to batch normalisation, then Fj is approximated using the block

approximation in Equation (5.30).
The ¢-th diagonal block approximation for the Fisher with respect to
the task adapted parameters 0" is Fj" ~ gg‘_l ® é}]‘, where gﬂl are é’f are

acquired based on the block-diagonal Kronecker-factored Fisher approximation

5.3. Hessian Approximation for BOML 84

described in Chapter 5.2 with batch size B = |Dﬁ? . If layer ¢ corresponds to

batch normalisation, then we use the approximation in Equation (5.27) instead.

Putting the approximations together, the ¢-th diagonal block of F in
Equation (5.32) is

1

M
~ = D (L= A1 ® GO (AR © G (1 — At © Go), (5.37)

m=1

F,

for fully-connected or convolution layers. We expand ﬁ’g using Property (P3)

of Kronecker products to give

M
- 1 N B B N B N
B~ M Z [A;”_l ® Gy — (A1) AL ® (G)' G — AL Ay @ GG

m=1

+ (Amn) AT Ay ® (G)TGPGy|.
(5.38)

Finally, moving the meta-batch averaging into the Kronecker factors gives the

approximation:

Fy A ©Gy— (AZ—l)TAvé—l ® (GZ)TéE — A1 Ay © GG,

_ _ (5.39)
+ (Arm)T A1 Ay ® (Go) " GG,
where
- 1 M ~ 1 M
Ag,l = MmZ:lAfl and G@ = MmZ:ng .
If layer ¢ is a batch normalisation layer, we have
F,~ F— (F)"F, - F,Fo + (F)"FF, (5.40)

= M
where F, = & >0 F".

Algorithm 9 shows the pseudo-code of block-diagonal Kronecker-factored
Hessian approximation for the BOML framework. In general, the approximations

to Fy in BEquations (5.39) and (5.40) are applicable to any gradient-based meta-

5.4. Experiments 85

learning methods with a few-step gradient descent inner loop.

Algorithm 9 Block-diagonal Kronecker-factored Hessian approximation for
BoML
1: Require: base set D;, number of tasks My, number of neural network
layers L
2: for m =1 to My do
Sample task D" = D™ U DY
Inner update 6" = SGDy(L(6, D))
for /=1to L do
Approximate H; with F, in Equations (5.28) — (5.30) using D/™°
Compute F}" using D}
Approximate H; with F, in Equations (5.39) and (5.40)
9: end for
10: end for B
11: return Approximation for H; and H;

Hessian approximation for BOML might seem daunting at first sight, since
we need to approximate two Hessian matrices ﬁtﬂ and Hy. 1. At a closer
inspection the approximation for Hessian H;,; can be reused to approximate
the Hessian FIHL For a fully-connected or convolution layer ¢, we keep the
two pairs gg,l, ég and A,_1, Gy in memory. If layer ¢ corresponds to batch

normalisation, we keep Fy and F; in memory instead.

5.4 Experiments

5.4.1 Ignoring the Jacobian

We should be aware that the full approximation in Equations (5.39) and (5.40)
for the Hessian f[tﬂ requires an extensive calculation for the cross terms. This

is due to the inclusion of Jacobian % for the Fisher F in Equation (5.32).

This experiment investigates the effect of neglecting the Jacobian matrix
in the Fisher F. Consider re-running the triathlon, pentathlon and Omniglot

sequential task experiments in Chapter 4.4 by ignoring the additional Jaco-

bian matrix 860% in Equation (5.32). This results in the truncated Fisher

5.4. Experiments 86

approximation for the /-th block:
F'™9)~ A, ,®G, and F™ ~ Z £ (5.41)

where all the cross terms in Equations (5.39) and (5.40) are ignored. The former

I?’Z(tmnc) approximation is for a fully-connected or convolution layer, whilst the

latter approximation is for a batch normalisation layer. We compare BOMLA
that uses approximation F, v with Jacobian included versus BOMLA that uses

7~ (trunc)

approximation Fj with Jacobian excluded for each layer ¢ of the neural

network model.

Dataset Average accuracy (%) reduction
Triathlon -1.61 £+ 2.48
Pentathlon -1.88 +£1.94

Table 5.1: Average reduction in the meta-evaluation accuracy when the Jacobian
is excluded in Hessian approximation for BOMLA with A = 100. The
average is taken over tasks from all datasets, after meta-training is
completed on the entire dataset sequence. The values are reported by
averaging over a total of 100 tasks along with the 95% confidence interval.
The performance reduction is not apparent, since the confidence intervals
along with the averages cover small reduction values that are both above
and below zero.

Table 5.1 shows the mean reduction in the meta-evaluation accuracy when
the Jacobian is excluded in Hessian approximation for BOMLA with precision
update hyperparameter A = 100. The mean is considered over tasks from all
knowledge domains, after meta-training is completed on the entire dataset
sequence. The performance decline is not apparent for the triathlon and
pentathlon sequences, since these dataset sequences are relatively short with
length 3 and 5 respectively.

We proceed to the Omniglot sequential task setting with a long few-shot
problem sequence of length 254. We discover that omitting the Jacobian
in Hessian approximation induces a significant error which deteriorates the

meta-evaluation performance. Figure 5.4 (left) illustrates the performance

5.4. Experiments 87

o ©
oS N B O
N

~ &
Accuracy difference
o
T
1

©© 0 W 0 © O
(=)}

with Jacobian
—— without Jacobian

[3S]

Meta-evaluation accuracy (%)

0 50 100 150 200 250 -3 0 50 100 150 200 250

Meta-training task index

Figure 5.4: Meta-evaluation performance comparison across 3 seed runs on the
novel tasks along meta-training. Left: compares BOMLA of Hessian
approximation in Equations (5.39) and (5.40) (with Jacobian) versus
BoMLA of Hessian approximation in Equation (5.41) (without Jaco-
bian). BOMLA that uses Hessian approximation without Jacobian
(—) shows a large performance degradation compared to that with
Jacobian (—). Right: meta-evaluation accuracy difference between
BoMLA with Jacobian at A = 0.01 and BOMLA without Jacobian at
A = 1. The difference evolves around zero, indicating that the adjust-
ment A = 1 gives a quick fix to the posterior approximation when the
Jacobian is excluded in Hessian approximation.

degradation for omitting the Jacobian in BOMLA Hessian approximation. The

comparison is made with A value fixed at A = 0.01.

Nonetheless it is possible to adjust the approximate posterior by tuning
the hyperparameter \. We compare BOMLA without Jacobian at A = 1 to
the full BOMLA with Jacobian at A = 0.01. Figure 5.4 (right) shows that
BoMLA without Jacobian at A = 1 and BOMLA with Jacobian at A = 0.01
give a similar performance, since the performance difference between these two
runs evolves around zero. The hyperparameter \ allows an opportunity to
fix the error in the posterior approximation. When lacking in computational
resource, tuning \ provides an alternative cost-effective solution for posterior

approximation.

5.4. Experiments 88
5.4.2 Analysing the Cross Terms

This section investigates the cross terms of F, for neural network layers (¢ =

1,..., L. We employ the pentathlon sequence for easier visualisation:
Omniglot — CIFAR-FS — minilmageNet — VGG-Flowers — Aircraft.

We mentioned earlier about ignoring the Jacobian in Equation (5.32), which

leads to the assumption: 3
0™

—]
00

(5.42)

?

where [is an identity matrix. This further brings us to the assumption
where the Hessian in Equation (5.34) is approximately zero when ignoring the

Jacobian:
9?(—log p(D™°10))
500500 ~ 0. (5.43)

To investigate whether this is a reasonable assumption, Figure 5.5 examines
the Fisher F' in Equation (5.35) that approximates the pre-adaptation Hessian
in Equation (5.43) for a single data point. If the assumption in Equation (5.43)

is reasonable, then Figure 5.5 should show that the approximation

F,~0 (5.44)

holds for all layers ¢ of the neural network model.

Figure 5.5 illustrates the blocks of Fisher approximation F, corresponding
to all neural network layers ¢ for each dataset in the pentathlon sequence. The
Fisher approximation values corresponding to the fully-connected classifier

layer is relatively large compared to that of the convolution layers.

The visualisation in Figure 5.5 might mislead one into believing that
Equation (5.44) is a valid assumption, since the assumption holds for almost all
layers of the neural network. The numerical values of F} for the classifier layer ¢
is also not as large, since the value bar only ranges to a single digit. Nonetheless

we should take into consideration that the cross terms in Equations (5.39) and

5.4. Experiments 89

Omniglot CIFAR-FS minilmageNet VGG-Flowers Aircraft
i
>
=]
o
&)
(=}
(=}
=
o
o
z
5 1.0
Oo
(=}
=
0.8
(=)
o 0.6
>
=)
S
S 0.4
mn
—
° 0.2
<
z 0.0
o
Oo
o
n
et
o
—
2
G
k7]
wn o
S
@]

Figure 5.5: The Fisher approximation F' corresponding to the Hessian in Equa-
tion (5.43) after meta-training is completed on each dataset. Going
from left to right are the datasets of the pentathlon sequence. Going
from top to bottom are the convolution layers and the fully-connected
classifier layer of the neural network. Each plot in the figure is the
colour-encoded Fisher approximation Fy corresponding to a specific
knowledge domain dataset and a specific layer £ in the neural network
model. Fy for the middle convolution layers (¢ = Conv 2, 3 and 4) are
cropped as the full matrices are too large to visualise. The Fy matrices
for the convolution layers ¢ have entry values that are close to zero.

(5.40) involve multiplication which might amplify the error for excluding F' in
the Fisher approximation F.

Figure 5.5 demonstrates empirically that the assumption in Equation (5.43)
is appropriate for the convolution layers, but not for the output classifier
layer. Figure 5.6 further verifies this claim by showing the absolute difference
‘E - I?’E(tmnc)} between the full Fisher and the truncated Fisher for each layer
¢ of the neural network model. The Fisher I?‘Z(trunc) that excludes the Jacobian

provides a reasonable approximation for a convolution layer ¢, but it gives a

5.4. Experiments 90

poor approximation for the classifier layer.

Omniglot CIFAR-FS minilmageNet VGG-Flowers Aircraft

Conv 1

0 1500

Conv 2

0 1500

200

175

150

125

Conv 3

0 1500

100

75

50

25

Conv 4
o

0 1500

Classifier
200

Figure 5.6: The absolute difference ‘ﬁ’g — ﬁé(trunc)| between the full Fisher and the
truncated Fisher for each layer ¢ of the neural network model after
meta-training is completed on each dataset. Going from left to right
are the datasets of the pentathlon sequence. Going from top to bottom
are the convolution layers and the fully-connected classifier layer of the
neural network. Each plot in the figure is the colour-encoded absolute
difference ‘ﬁg — ﬁe(mmc) ! corresponding to a specific knowledge domain
dataset and a specific layer £ of the neural network model. The absolute
difference matrices for the middle convolution layers (¢ = Conv 2, 3
and 4) are cropped as the full matrices are too large to visualise. The
absolute difference matrices for the convolution layers ¢ have entry
values that are close to zero, but the absolute difference matrices for
the classifier layer have large entry values.

E(trunc)

Since the absolute difference ﬁ’g — is small for almost all layers /,

one might believe that it is appropriate to employ the approximation ﬁg(tmnc)

without Jacobian. It is however important to realise that the absolute difference
for the classifier layer is in the order of hundreds over all the pentathlon
datasets except for Omniglot. We take a closer look at the absolute difference

F,— ﬁ}(tmnc)‘ for the classifier layer £ on the Omniglot dataset in Figure 5.7.

5.4. Experiments 91

The absolute difference for the classifier layer on the Omniglot dataset is in the
order of tens, although not as large as that of the other datasets in the order

of hundreds.

Omniglot

Conv

15

1500

10

0

Classifier

200

Figure 5.7: The absolute difference ’17} —F e(mmc)| between the full Fisher and the
truncated Fisher for a convolution and fully-connected classifier layer
£ of the neural network model after meta-training is completed on
Omniglot. We only retain the visualisation for the first convolution
layer (Conv 1) since the remaining convolution layers have the same
visualisation. The absolute difference matrices for the convolution layers
{ have entry values that are close to zero. The absolute difference matrix
for the classifier layer corresponding to Omniglot has entry values in
the order of tens.

The approximation error of E(trunc

) for the classifier layer ¢ is very large,
despite being a reasonable approximation for the convolution layers. As illus-
trated in earlier experiments of Chapter 5.4.1, employing the approximation
F, @(trum) without Jacobian induces a significant performance deterioration for
a longer sequence of few-shot problems. The posterior approximation error is
not apparent in the shorter triathlon and pentathlon sequences, but the error

accumulates over a long sequence.

Chapter 6

Automating Bayesian Online

Meta-Learning

6.1 Introduction

BoOML has been shown to achieve its goal for sequential few-shot classification
problems (Yap et al., 2021). The current BoML framework for few-shot classifi-
cation is, however, limited in several ways. A key limitation is that the inner
loop adaptation uses a hand-crafted stochastic gradient descent (SGD) method
with manually picked learning rate and number of steps. The quick adaptation
components from different knowledge domains do not have to communicate
with each other when they encounter unseen tasks, since the quick adaptation

for each knowledge domain is pre-fixed.

Another limitation of BOML is its inflexibility. BOML requires the sequen-
tial datasets to be of the same few-shot setting, since BOML only learns a single
neural network model for all datasets in a sequence. For instance, all datasets
of the triathlon and pentathlon sequences in Chapter 4.4 share the same 5-way
1-shot setting. As a result the neural network model in BOML insists on having
the specific output dimension of 5. In order to overcome this limitation, we
consider the input and output layers of the neural network model separately
for each dataset, and the remaining layers are shared across all the knowledge

domain datasets as in BOML.

6.1. Introduction 93

This chapter aims to enhance the original BOML to the BOML+ framework
that is highly related to the Badger architecture (Rosa et al., 2019). We
automate the inner loop adaptation mechanism to replace the hand-crafted
few-step SGD inner loops. We achieve this goal by learning an LSTM that
outputs quick adaptation steps for each knowledge domain. This is inspired by
previous works (Andrychowicz et al., 2016; Li and Malik, 2017) on learning-
to-learn that automate the update process of the parameters to replace the

traditional gradient descent methods.

Since each knowledge domain has its own LSTM for quick adaptation, a
task-pointer mechanism is required to communicate which LSTM should be
responsible for adaptation when a novel task arrives. We implement a class-
incremental learning method to train a generative classifier (van de Ven et al.,
2021) for identifying the domain-belonging of the novel tasks. The domain
knowledge datasets are considered as ‘classes’ that arrive sequentially for class-
incremental learning to train for a generative classifier. A class-incremental
learning method is necessary in contrast to a conventional classifier, due to the
requirement for a mechanism capable of learning continually from ‘classes’ that

arrive in a sequential manner.

During meta-evaluation, the trained generative classifier informs the agent
on the knowledge domain of a novel task via prediction using the support set
images from the novel task. The process of assigning tasks to their respective
knowledge domains closely resembles that of labelling the classes of images in a
dataset. Such labelling processes can be expensive in terms of human effort. A
pragmatic approach is to utilise labels during training to create a task-labelling
mechanism that manages the costly labelling process during the evaluation
phase. This establishes the purpose of training a generative classifier for the

task-pointer mechanism.

This chapter demonstrates the enhancement of BOML to an automated
framework BOML+ with greater flexibility. We develop a highly parallelisable

training process for BOML+, and demonstrate the new evaluation workflow in

6.2. Background 94

BowmL+. The experiments show empirically that BOML+ outperforms BoML
during evaluation. The work in this chapter was completed under a project
funded by GoodAl via the GoodAl grant. We briefly review the learning-to-
learn method (Andrychowicz et al., 2016), class-incremental learning method
(van de Ven et al., 2021) and Badger architecture (Rosa et al., 2019) before

proceeding to BOML+.

6.2 Background

6.2.1 Learning-to-Learn with LSTM

We briefly explain the learning-to-learn framework by Andrychowicz et al. (2016)
before proceeding to our work. Large-scale machine learning often utilises some
hand-crafted gradient descent methods such as SGD, Adam or Adagrad for
optimisation. These methods are carefully designed with hyperparameters
such as learning rate introduced for tuning. Although these methods are
proven to be useful, extra time and computational cost are necessary for
hyperparameter tuning to give the optimum result. As such Andrychowicz
et al. (2016) introduce an automated framework in replacement of the hand-
crafted algorithm for large-scale machine learning optimisation. The automated
framework comprises LSTMs that take the parameter gradients as inputs and
return the parameter updates as outputs. We need a method to train the
LSTMs into an automated parameter-updating framework.

Consider an optimiser (eg. LSTM) with parameters ¢. The goal in large-
scale classification is to optimise the parameters £ of a model (also known as
optimisee) with respect to the objective function f. With a slight abuse of
notation, the final trained optimisee parameters can be written as a function of
the objective and the optimiser parameters £*(f, ¢). The meta-level objective
with respect to the optimiser parameters is defined as £(¢) = E¢[f(£*(f, ¢))].
Figure 6.1 illustrates the computational graph for the gradients of £(¢) with
respect to the LSTM optimiser parameters ¢ when updating ¢ at time step

r—1and r.

6.2. Background 95

r—1 r

Optimisee €1 | m & | m Ert1

hy | g1

|
Optimiser hp_q |
T
I

Figure 6.1: The computational graph for the gradients of £(¢) with respect to the
LSTM optimiser parameters ¢ when updating £ at time step r — 1 and
r. The gradients are allowed to flow through the solid arrows during
back-propagation, but the gradient flow is prohibited along the dashed
arrows. The optimisee corresponds to a model which is usually a neural
network with parameters £&. For a particular time step r, we update
the optimisee parameters &, by adding the output g, acquired from the
LSTM. The LSTM takes the gradients V, of objective f with respect to
&, as inputs along with hidden states h,.. When computing the gradients
of the LSTM parameters, we do not take the gradient flow from V,
into consideration.

The goal is to train an optimiser, which is an LSTM m(-, -, ¢) with param-
eters ¢, to output update steps g, for the optimisee parameters &, at time step
r. Instead of considering only the final step £*, the original work accumulates

weighted sum of objectives over some time horizon R:

L(g) =E;

> wrf(&)] : (6.1)

where £r+1 = £r + gr and

I =m(V,, b, o) (6.2)

hr—f—l

with V, = V¢f(&,), hidden states h, of the LSTM and weights w,.
Upon completing the optimisation on £(¢) with respect to ¢, the parameter

¢ is updated by &,..1 = &, + g, for update step r + 1 where g, is provided by
the trained LSTM m(VT, hy, ¢*) with optimised parameters ¢*.

6.2. Background 96

6.2.2 Generative Classifier

We adopt a class-incremental learning method, where classes of a dataset arrive
sequentially, to train for a generative classifier (van de Ven et al., 2021). The
generative classifier uses Bayes’ rule p(y|x) o p(z|y)p(y) for classification, where

x is an input from dataset D = {(x;, 7;)}I;, and y is the label prediction of z.
There are two steps involved in estimating the likelihood p(z|y) for classi-

fication using Bayes’ rule: VAE training and likelihood estimation.

VAE training: A VAE model is learned for each class of a dataset (van de
Ven et al., 2021), in which the classes arrive in sequential order for training.

The encoder ¢, decoder py and prior pyior for the VAEs are:

ap(zl) = N (-

©,087T), po(alz) = N(-|#5.1), pprior(2) = N(J0, 1),

(6.3)
where 1" and o are the outputs of an encoder neural network of parameters
¢ that takes input x, and pj, is the output of a decoder neural network of

parameters ¢ taking input z. The VAEs are optimised using a variational lower

bound to p(z) = [py(x]2)pprior(2)dz:

LB(#,9) = By, (21 [l0g py(2]2)] = Drr(gp (2[2) |Pprior (2))- (6.4)

Likelihood estimation: The trained encoder and decoder for each class are

used to estimate the likelihood p(x|y = ¢) for every class ¢:

S
1 Do, (x|z(s)>pprior (Z(S))
plaly=c) =5 : (6.5)
S ; G (2)]2)
where ¢. and 1. are the VAE parameters for class ¢, and S is the number of
importance samples drawn. Finally a label prediction is returned based on
which class gives the highest likelihood for a given x, as argmax, p(y|r) =
arg max, p(z|y)p(y) by Bayes’ rule and the distribution p(y) is assumed to be

uniform over all classes.

6.2. Background 97

6.2.3 Badger Architecture

The Badger architecture (Rosa et al., 2019) seeks for an agent that can adapt
quickly to unseen tasks. The architecture comprises many experts, each has its
own internal memory and internal state. All experts share the same expert policy
that is optimised via the outer loop, aiming for a fast inner loop adaptation
strategy for each expert. When an input arrives, the inner loop is triggered
to update the internal states of the relevant experts together with the help
of the shared expert policy in order to acquire an output. A communication
mechanism is often involved to determine the experts that should be responsible
for work and to pass messages between experts for the inner loop updates.

Figure 6.2 shows the badger structure within an agent.

Shared expert policy

Input Output

Internal
states O

Internal
states O

Figure 6.2: An example architecture of a Badger agent. The shared expert policy
can be accessed by all experts. The red dashed line —— illustrates
the connection between the experts and the shared expert policy. The
selected experts 7 and j in yellow colour are responsible for the incoming
input. Experts ¢ and j communicate with each other and update their
internal states using the internal memories to give an output.

6.3. Framework

6.3 Framework

6.3.1 Overview

This project enhances the BOML framework by automating the inner loops
using LSTMs, and introducing a task-pointer mechanism to communicate the
responsibilities of different LSTMs. Figure 6.3 illustrates the new components
introduced in BOML+. The elements in red in Figure 6.3 are unique to BOML+
compared to the original BOML. The task-pointer in BOML+ is trained in-
crementally on the base sets Dy, ..
LSTM is trained as each knowledge domain ®, for t = 1,...,T arrive sequen-

tially. We explain these new components in BOML+ before progressing to the

implementation of BOML+.

™
A

Dataset
arrival:

., Dr. A new dataset-specific adaptation

A

A

-]
=
g
% dataset Base Novel Base Novel Base Novel
g: into: D] Dl D2 D2 Dg Dg
N/ / /
©
= . . .
3 Train Train Train
3 task-pointer task-pointer task-pointer
§' Meta-train Meta-train Meta-train
% on D; on Dy on Dy
|l / / /
=%
B
=y Train Train Train
% LSTM / LSTM / LSTM
E' Update Update Update
posterior posterior posterior
Meta-evaluation Meta-evaluation Meta-evaluation
\ | on D, on Dy, Dy on Dy, Dy, Dy

Figure 6.3:

the elements in red that are unique to BOML+.

The process flow of BoML+ for training and evaluation on an example
sequence (Omniglot — CIFAR-FS — minilmageNet) when each dataset
arrives. The arrows in purple illustrate that the updated posterior is
being brought forward for the next meta-training when a new dataset
arrives. The items in red are the elements newly-introduced in BoML+.
This figure resembles the BOML process flow in Figure 4.1, except for

6.3. Framework 99

6.3.2 LSTM Inner Loop

The original BOML inner loops use a traditional gradient descent method as in
Equation (4.4). The SGD inner loop is a hand-crafted algorithm, in which the
hyperparameters such as the learning rate and the number of adaptation steps
are manually decided. Inspired by a learning-to-learn method (Andrychowicz
et al., 2016), we automate the inner loops using LSTMs that output few-shot
updates in replacement of the SGD updates. For each knowledge domain
D,, we assign an LSTM my(-, -, ¢;) for quick adaptation to any task from this

knowledge domain.

Our training implementation differs from the original learning-to-learn
algorithm (Andrychowicz et al., 2016), since we need the LSTMs for quick
adaptation on few-shot tasks as in Equation (4.4) whereas the original framework
by Andrychowicz et al. (2016) does long range parameter updates for a large-
scale training. A few-shot inner loop adaptation only uses very few examples
for an update on the meta-paramters 6, whilst the large-scale trained LSTM
has access to large batches of examples. An inner loop often takes very few
steps (possibly just one step) of gradient update, whilst the large-scale setting
involves many sequential gradient update steps. As such we modify the training

method of the LSTMs in Chapter 6.2.1 to fit our few-shot setting.

The procedure to train a few-shot LSTM parameters ¢ is as follows: first
acquire the trained meta-parameters 6 as usual using original BOML on some
base set D, then train for a few-shot LSTM with slight modifications. For few-
shot tasks m = 1,..., M, we obtain V(™ in Equation (6.6) from the support
set D™ of task m using the trained meta-parameters # as initialisation, so

that
(m)
(A m(v<m>, ho, ¢) (6.6)
hy

with V(™ = V, f(6, D™). The objective corresponding to Equation (6.1) in

6.3. Framework 100

our few-shot case becomes

L(¢)=Ef

i f(é<m>,1>m7@)] , (6.7)

where 6™ = 6+ g™, with D™ being the query set of task m, weights w,, set to
unity, and f is the cross-entropy loss. Instead of accumulating over r (training
time steps) in Equation (6.1), the loss in Equation (6.7) is accumulated over
the few-shot tasks m = 1,..., M. Upon completing an optimisation on £(¢)

with respect to ¢, the inner loop adaptation in BOML+ for task m becomes
™ =0+ g™, (6.8)

where ¢(™ is provided by the trained LSTM m(V(m), ho, ng*) with optimised

parameters ¢*.

6.3.3 Task-Pointer

Since we have a separate LSTM for each knowledge domain, we need a mecha-
nism to identify which LSTM should be responsible for quick adaptation when
an unseen few-shot task arrives. We train a generative classifier G(y,) using
a class-incremental learning method (van de Ven et al., 2021) as described in
Chapter 6.2.2, where ¢ and v are the parameters of the generative classifier’s

VAE encoders and decoders respectively.

The base sets Dy, ..., Dr are considered as ‘classes’ that arrive sequentially
and we learn a new VAE that is class-specific V;(¢y, ¥;) when a new base set D,

arrives. The final generative classifier G has encoder and decoder parameters

90:{9017"'790T} and¢:{¢1>---,¢T}-

When an unseen task arrives, we use the few-shot inputs z from its
support set and estimate the likelihood p(z|y = t) of knowledge domain ®; for
t=1,...,T. Each few-shot input with greatest likelihood forms a vote for the
knowledge domain. The knowledge domain that gets the most votes from the

predictions is the final decision, and the expert associated to this knowledge

6.4. Implementation 101

domain is triggered.

6.3.4 Relation to Badger

The BoML+ framework in this project is highly related to the GoodAI Badger
architecture (Rosa et al., 2019). In the Badger context, the BOML+ meta-
parameters 6 correspond to the shared expert policy. The outer loop
updates the meta-parameters 6 as the knowledge domain datasets ©q,..., D7
arrive sequentially for training. The internal memory of the expert ¢
associated to knowledge domain ©; includes the LSTM my(-, -, ¢;) for t =
1,...,T. The inner loops use the LSTMs for quick adaptation on few-shot
tasks. The internal memory of expert ¢ also stores the output classifying layer
9§O) and the input convolutional layer le) of the meta-parameters. These are
required if we intend to be flexible on the types of few-shot tasks that the agent
can consider. The generative classifier task-pointer G(p, 1) is associated to

the connectivity of all experts in the form of a passive collaboration. In our

setting, only a single expert is responsible to a knowledge domain.

6.4 Implementation

Recall from Chapter 4.1 that the datasets ©, = D, U ﬁt, t=1,...,T arrive
sequentially for training. In our framework, training occurs sequentially on the

base sets Dy, ..., Dy, whilst evaluation occurs cumulatively on the novel sets

Di,...,Dr.

6.4.1 Training

An important advantage of the BOML+ framework is that the training process
is highly parallelisable. Figure 6.4 illustrates the parallel training processes of
all the BOML+ components. The processes are parallelised, and Process A is
fully isolated from Processes B and C.

Process A is responsible for training the generative classifier task-pointer.
It trains a VAE that is knowledge domain-specific V; (i, ¥;) on a newly arrived
base set Dy, as explained in Chapter 6.2.2. The trained VAE for each dataset is

accumulated for the final generative classifier G(p,), where ¢ = {¢1,..., 071}

6.4. Implementation 102

Base set Dy —_— Dy e D; —_— e
Task-pointer Task-pointer Task-pointer e ...
VAE: V1 (¢1, 1) VAE: Va (@2, 1)2) VAE: V3(p3,3)

BOML meta-train
0 — (0(1) 9(©) 9(0))

B — _ -
Process B BOML meta-train BOML mMeta-train ———e—p BOML MEta-train ey —
6=(6",6,67) | 6=(65",6,6,”

\

)
- N 1\ \

LSTM LSTM

ml 77¢1 m2 9 a¢2)
. - AN)

Process C

Figure 6.4: The training processes of BOML+ when each dataset arrives.

and ¢ = {¢1,..., U1}

In order to be flexible on the few-shot tasks that the agent can consider,
we consider the meta—parameters f in separate parts of input, body and output,
such that 6 = (6 ,0(©) 9)) The dataset-specific meta-parameters Gt(l) and
Qt(o) are kept in the internal memory of the expert in charge of knowledge

domain ®; as illustrated in Figure 6.5.

Expert pool: input layers

Dataset-specific convolutional
input layer meta-parameters

Mid-layer meta-parameters

Dataset-specific classifier
output layer meta-parameters

Figure 6.5: Input and output layers Ht(l) and 0,50) from expert ¢ are concatenated
to the model structure.

The concatenated meta-parameters is meta-trained by Process B using the
objective in Equation (4.6) for BOMLA or Equation (4.11) for BoMVI. The mid-
layer meta-parameters () is the shared expert policy in Badger terminology.
It evolves in a similar fashion to the original BOML meta-parameters, as

meta-training proceeds sequentially on the base sets Dy,...,Dr. We pass on

6.5. Experiments 103

the meta-parameters 6 = (Ht(l), 6, Ht(o)) trained on D; to Process C, and a
knowledge domain-specific LSTM my(+, -, ¢) is trained via the method described
in Chapter 6.3.2. Meanwhile Process B continues meta-training ¢ on the next

base set Dyyq.

6.4.2 FEvaluation

The goal towards the end of training is to carry out few-shot learning on tasks
from all novel sets 731, e ,ZST. The novel sets are accumulated in a novel set
pool as knowledge domains arrive in sequential order. Figure 6.6 shows the

evaluation process of BOML+.

few-shot adaptation

Novel set pool

Support vote _Task-pointer assign = LSTM adapt 6 Task-specific report Few-shot

. Dy SPUL” oy G(p, 1) mi(-, -, b5 erformance
Dy p, _ sample Unseen (. i) 0 P
~ . task 7
Ds & Query
5 set report performance

Figure 6.6: The evaluation process of BOML+ on the accumulated novel set pool.

When an unseen task arrives from a novel set pool, it is split into a support
set — which is a small few-shot set for quick adaptation, and the remaining
as a query set for performance reporting. All images of the support set are
passed to the task-pointer G(p, 1) for generative prediction. The highest vote
gives the final decision on the knowledge domain assignment, and its associated
expert, say expert i, is triggered. The adaptation LSTM my(-,-, ¢;) from
expert ¢ runs quick adaptation using the support set on the meta-parameters
0= (6",6©)

0(0)), where Qi(l) and 950) are from the internal memory of expert

(e

1. The adapted 0 finally reports the few-shot performance using the query set.

6.5 Experiments

6.5.1 Setup
Few-shot classification model structure: For the experiments in this
chapter, we use the model architecture that takes 3 modules with 16 filters of

size 3 x 3, followed by a batch normalisation, a ReLU activation and a 2 x 2

6.5. Experiments 104

max-pooling. A fully-connected layer is appended to the final module before
getting the class probabilities with softmax. Table A.4 in Appendix A.3 records

the hyperparameters used in the BOML+ experiments.

Quick adaptation LSTM structure: For the automated inner loops in each
knowledge domain, we utilise the coordinate-wise LSTM structure proposed
by Andrychowicz et al. (2016) using two-layer LSTMs with 20 hidden units in
each layer. As illustrated in Figure 6.7, the LSTM operates in a coordinate-
wise manner on the elements of the meta-parameters. Each element of the

meta-parameters corresponds to a separate activation in the LSTM structure.

Figure 6.7: Computational graph for one step of the LSTM adaptation on a D-
dimensional meta-parameters . The LSTMs have shared parameters
but separated hidden states. The gradients are allowed to flow through
the solid arrows during back-propagation, but not the dashed arrows.
The inner loop cross-entropy loss f is evaluated using the D-dimensional
meta-parameters (01, ...,07)T. The gradients (V!,..., VP)T of f for
a specific few-shot task with respect to the meta-parameter elements are
fed into the LSTMs, and the LSTMs return the updates (g*,..., g”)7
for each element of the meta-parameters.

Task-pointer structure: Each knowledge domain in the few-shot problem
sequence corresponds to a single VAE in the generative classifier learned via
class-incremental learning. The means and variances of the Gaussian VAE
encoders and decoders are provided by neural networks of 3 fully-connected
layers with 2000 hidden units. Each layer is followed by a ReLU activation.

The bottleneck z dimension is 100.

6.5. Experiments 105

Knowledge domain sequence: We investigate BOML+ using the pentathlon

sequence as in Chapter 4.4.3. The pentathlon sequence is chosen over triathlon,

1

Omniglot CIFAR-FS minilmageNet VGG-Flowers Aircraft

Figure 6.8: The pentathlon knowledge domain dataset sequence.

since it is a more challenging sequence and the enhancement effect of BoML+
would be more visible. The Omniglot sequential task setting in Chapter 4.5
is not suitable for BOML+, since there is no evident distributional shift in the
sequential tasks and thus not possible to study the effect of introducing a
new expert in BOML+ for each knowledge domain dataset. We pick the best
performing BOML algorithm, that is BOMLA with a properly tuned A\, to

represent BOML for the comparison with BOML+.

6.5.2 Component Comparison

There are three newly-introduced elements in BoML+: the LSTMs for auto-
mated inner loop, the dataset-specific input and output layer meta-parameters
Qt(l) and HIEO) for each knowledge domain ®;, and a generative classifier task-
pointer. The bottom-line expectation on BOML+ described in Run R5 below is
to perform at least as good as the original BOML in Run R1. We check the
few-shot performance step-by-step, and compare the following combinations on

the pentathlon dataset sequence.

R1 Original BoML

R2 BowMmL + LSTM adaptations

R3 BOML + specific 61" & 6{°)

R4 BoOML + specific 9,51) & GEO) + LSTM adaptations

R5 BOML + specific 6" & 6\ + LSTM adaptations + task-pointer (BoMmL+)

6.5. Experiments 106

Run R1 implements the original BOML using the best-performing BOMLA
with A = 5 as the representative of BOML. Run R2 implements the automated
LSTM quick adaptation on top of the BOML framework. Run R3 separates
the input and output layer of the meta-parameters for each knowledge domain.
The purpose of Runs R2 and R3 is to individually investigate the performance
of the new elements in BOML+. Run R4 combines the two elements in Runs R2
and R3, resulting in BoOML+ without the task-pointer element. Finally, Run R5

gives the complete BOML+ with all elements included.

6.5.3 Results

Figure 6.9 shows the few-shot performances of Runs R1 — R4. Since the
task-pointer training is fully isolated from the other elements, we evaluate the
effectiveness of the task-pointer in Run R5 separately after the training of
all other elements completes. The diagonal plots in Figure 6.9 indicate how
well the runs can learn on new datasets, and the off-diagonal plots show the
capability of the runs in retaining their performances on previously learned
datasets as meta-training proceeds. Table 6.1 shows that the task-pointer
is capable of pointing the tasks appropriately to their respective knowledge
domains.

The two elements of BoML+: a) LSTM adaptations, and b) dataset-specific
input and output layer meta-parameters, drastically improve the BOML perfor-
mance as shown by Run R4 (—) in Figure 6.9. An interesting observation
from the result is that the two elements individually do not give apparent
improvement to BOML. This is clearly visible from the following two compar-
isons: Run R1 (=) vs Run R2 (—) and Run R1 (—) vs Run R3 (—).
The comparison between Runs R1 and R2 shows that using LSTM adapta-
tions in Run R2 can retain the performance on previously learned datasets
(off-diagonal plots), but it learns less well on new datasets (diagonal plots).
The comparison between Runs R1 and R3, on the other hand, illustrates that
using dataset-specific input and output layer meta-parameters in Run R3 can

learn well on new datasets (diagonal plots), but it works less well in retaining

6.5. Experiments

Meta-evaluation accuracy (%)

107

= - S T - Y ~ s v e - RS PO D P

80 K‘w e Ao ot bty R AN AN -+ /S Asets: A4 s
3 S RS T e
260
£
1) 40

20

40 AU MANAANELPNAAD s Ao TS M DAMINACA W
» & SNV ORI S A R s VAR s o PO A GO
o)
3:: 30
=)
©20
o
d)
Z 30
[
g
g 25
E20
S
£ 60
o
z
)
40
Q
&)
> 20

35

—— Run 1 (BOML)

'35 30 —— Run 2 (BOML & LSTMs)
5 —— Run 3 (BOML & separate meta-parameters)
E 25 —— Run 4 (BOML+ without task-pointer)

20]

Omniglot meta-train

Meta-training time

CIFAR-FS meta-train ~ minilmageNet meta-train VGG-Flowers meta-train Aircraft meta-train

Figure 6.9: Meta-evaluation accuracy across 3 seed runs on each dataset along
meta-training. Higher accuracy values indicate better results with less
forgetting as we proceed to new datasets. BOML+ without task-pointer
in Run R4 can retain performances on previously learned datasets since
it performs best in the off-diagonal plots. Most of the diagonal plots
accuracies of Run R4 are as good as the others, indicating that it learns
well on new datasets too.

the performance on previously learned datasets (off-diagonal plots). When

these two elements combine in Run R4 (

), it inherits the advantages of

both elements, giving a method that can both learn well on new datasets and

retaining performance on previously learned datasets.

Dataset Run R4 (no task-pointer) Run R5 (BomL+ with task-pointer)
Omniglot 85.46 + 0.52 85.57 + 0.52
CIFAR-FS 36.22 + 0.60 36.31 + 0.59
mintImageNet 29.09 £+ 0.45 28.81 4+ 0.44
VGG-Flowers 54.49 £+ 0.68 54.96 £+ 0.70
Aircraft 31.93 + 0.52 31.42 + 0.52

Table 6.1: Meta-evaluation accuracies for Run R4 (BoMmL+ without task-pointer) and
Run R5 (BoML+ with task-pointer) on the datasets upon the completion
of meta-training across the entire pentathlon sequence of knowledge
domains.

6.5. Experiments 108

Recall that the generative classifier task-pointer exhibits a passive collab-
oration between experts by assigning each unseen task to its corresponding
expert. We expect the trained generative classifier to correctly point each task
to the expert in charge, and thus giving a performance as good as Run R4
(BoMmL+ without task-pointer). Since Run R4 performs best in Figure 6.9,
it suffices to compare the task-pointer performance of Run R5 (BOML+) to
Run R4. Table 6.1 shows that BOML+ with task-pointer performs equally as
good as Run R4. This indicates that BOML+ outperforms BOML in every aspect

when all newly-introduced components are implemented together in BOML+.

Dataset Run R1 (original BoML) Run R5 (BomL+ with task-pointer)
Omniglot 77.84 £ 1.65 85.57 + 0.52
CIFAR-FS 33.68 £ 1.80 36.31 = 0.59
minilmageNet 28.04 4+ 1.30 28.81 + 0.44
VGG-Flowers 49.97 £ 2.22 54.96 + 0.70
Aircraft 31.72 £ 1.93 31.42 £+ 0.52

Table 6.2: Meta-evaluation accuracies for Run R1 (original BoML) and Run R5
(BoML+ with task-pointer) on various datasets upon the completion
of meta-training across the entire pentathlon sequence of knowledge
domains.

Table 6.2 shows the final evaluation accuracies achieved upon the comple-
tion of training across the entire sequence of knowledge domains, for a clearer
comparison between BOML and its enhanced version BOML+. In this context,
Run R1 represents the original BOML described in Chapter 4. We deploy the
best performing BOML, which is the BOMLA algorithm, to represent BOML for
baseline comparison in this experiment setting. Empirical evidence indicates
that BOML+ surpasses BOML in terms of accuracy performance. Notably,
BoML+ demonstrates superiority in retaining previously acquired knowledge
while learning on new datasets. This improved knowledge retention capability
in BOML+ can be attributed to the unique integration of distinct compartments,
as previously discussed for the result in Figure 6.9. The BOML+ framework
allows a dedicated internal memory for each knowledge domain. Nonetheless

it is essential to acknowledge that the observed enhancement in performance

6.5. Experiments 109

with BOML+ is relatively modest in its significance. We should thoroughly
re-consider the trade-off between the increased computational demand and the
marginal improvement in performance. This assessment is critical in determin-
ing the overall effectiveness and practical applicability of BOML+ in real-world

scenarios.

Chapter 7

Conclusion and Discussion

7.1 Conclusion

This thesis introduced the Bayesian online meta-learning (BoMmL) framework
with two algorithms: BOMLA and BOMVT for sequential few-shot classification
problems. Our framework can overcome catastrophic forgetting in few-shot
classification problems on datasets with evident distributional shift. BoML
merged the BOL framework with meta-learning via Laplace approximation or
variational inference. The experiments show that BOMLA and BoMVTI are
able to retain the few-shot classification ability when trained on sequential
datasets with apparent distributional shift. This results in an ability to perform
few-shot classification on multiple datasets with a single meta-learned model.
BOoMLA and BoMVT are also able to continually learn to few-shot classify the
novel tasks, as the tasks from a stationary distribution arrive sequentially for
meta-training.

BoMLA with a suitable precision-updating hyperparameter A outperforms
BoMVTI in the experiments. This coincides with the fact that BOMLA has
a better posterior approximation than BOMVI. The Gaussian approximate
posterior of BOMLA utilises a block-diagonal precision that considers the
parameter interactions within a neural network layer, whilst the Gaussian mean-
field approximation of BOMVI ignores the parameter interactions in a neural

network. Previous work showed that a block-diagonal covariance structure in

7.1. Conclusion 111

variational inference could not improve the performance in comparison to the
mean-field approximation, due to a higher Monte Carlo estimator variance.
Taking the parameter interactions into consideration is essential for a good
posterior approximation, as it enables a continual learning method capable of

handling more complex challenges.

We derived the necessary alterations in the Hessian approximation for
BOMLA, as we optimise the meta-parameters for few-shot classification instead
of the usual model parameters in large-scale classification. The complete
Fisher approximation for the Hessian matrices in BOMLA requires extensive
computation of matrix cross-terms. For a shorter sequence of knowledge
domains, we showed that it is possible to simplify the Fisher calculation in
BoOMLA without apparent performance degradation. Such a simplification
is especially useful when lacking in computational resources. Nonetheless
the complete Fisher approximation for BOMLA is essential when dealing
with a longer sequence of few-shot problems. The experiments illustrate a
significant performance deterioration without using the complete BOMLA
Fisher approximation when handling a long sequence of few-shot classification

problems.

The final part of this thesis enhanced BOML to the BOML+ framework
by introducing three key elements into BOML. Firstly we introduced an
automated inner loop adaptation mechanism to BOML and replaced the hand-
crafted SGD quick adaptation with LSTM inner loop adaptations that are
knowledge domain-specific. We enhanced the flexibility on the few-shot problem
settings that the agent can consider, by including the input and output layer
meta-parameters that are knowledge domain-specific into the experts’ internal
memories. The experiment results illustrate that these two elements together
produce a framework that can both learn well on new datasets and retain
performance on previously learned datasets. Finally we also introduced a
generative classifier task-pointing mechanism for a passive collaboration between

the experts. The task-pointer uses a small subset of examples from the arriving

7.2. Discussion 112

unseen task to identify which expert should be responsible for adapting this
task.

The enhancements in BOML+ are essential to overcome certain limitations
of BoML. Each dataset in the knowledge domain sequence with evident
distributional shift needs a dataset-specific quick adaptation method. When
using SGD inner loop in BOML, this necessity translates to fine-tuning various
hyperparameters such as the number of adaptation steps and learning rate for
each knowledge domain. If each knowledge domain uses an SGD with different
hyperparameters, then the BOML agent has to be informed on the knowledge
domain identity when an unseen task arrives during meta-evaluation. Otherwise
the agent could not identify which SGD adaptation settings should be applied.
BoML+ addresses these issues by automating the SGD inner loop using LSTMs
and introducing a task-pointing mechanism to identify the knowledge domain

identity during meta-evaluation.

7.2 Discussion

7.2.1 Advantage of BoML and BoML+

An important reason to employ BOL in BOML and BOML+ over non-Bayesian
approaches such as regret-based methods in an online setting is that BOL
provides a grounded framework that suggests using the previous posterior as
the prior recursively. BOL implicitly keeps a memory on previous knowledge
via the posterior, in contrast to recent online meta-learning methods that
explicitly accumulate previous data in a task buffer (Finn et al., 2019; Zhuang
et al., 2019). Explicitly keeping a memory on previous data often triggers an
important question: how should the carried-forward data be processed in future
rounds, in order to accumulate knowledge? Finn et al. (2019) update the meta-
parameters at each iteration using data sampled from the accumulated task
buffer. This defeats the purpose of online learning, which by definition means

to update the parameters each round using only the new data encountered.

Having to re-train on previous data to avoid forgetting also increases the

7.2. Discussion 113

training time as the data accumulates (Finn et al., 2019; He et al., 2019).
Certainly one can clamp the amount of data at some maximal limit and sample
from the buffer, but the final performance of such an algorithm would be
dependent on the samples being informative and of good quality which may
vary across different seed runs. In contrast to memorising the datasets, having
an implicit memory via the posterior in BOML and BOML+ automatically deals
with the question on how to process carried-forward data and allows a better
knowledge accumulation process.

BoML handles data from different knowledge domains in a genuinely
sequential manner. Our framework does not require revisiting any data from
previous knowledge domains when dealing with a new dataset. The previously
acquired experiences from various knowledge domains are implicitly embedded
in the BOML posterior of the meta-parameters. BoML+ additionally enhances
the BOML framework for automation and greater flexibility. BOML+ utilises an
LSTM for each knowledge domain in replacement of the BOML SGD inner loop.
The BOML+ agent with a generative classifier task-pointer automatically detects
the relevant LSTM for quick adaptation when a novel task arrives. We address
the inflexibility of BOML by separating the input and output layers of the meta-
parameters for each knowledge domain. Unlike the BOML framework, such
flexibility in BOML+ enables the agent to cope with few-shot tasks of different
settings. An advantage of the BOML+ framework is its highly parallelisable
training process. Therefore the individual mechanisms of BOML+ can be further

developed on their own without affecting the rest of the framework.

7.2.2 Disadvantage and Future Research

The enhancements in BOML+ have addressed some limitations of BOML, and
the remaining are left for future development. Both BOML and BoOML+ are
developed for sequential few-shot classification problems. A possible future
work is to extend the frameworks to a broader scope such as reinforcement
learning and unsupervised learning. The current state of the BOML and BoOML+

frameworks are designed to avoid catastrophic forgetting on previously learned

7.2. Discussion 114

few-shot problems. In other words, there is no active transfer of previous
knowledge when solving a new problem. For a future scope of research, we
can design a framework that actively includes previous experience to aid the
learning process on a new knowledge domain. BOML+ has only one expert
responsible for each knowledge domain. A possible future development is to
introduce a dynamic collaboration between the experts when adapting to novel

tasks.

Appendix A

Hyperparameters

A.1 Triathlon and Pentathlon

Tables A.1 and A.2 are the hyperparameters used in the triathlon and pentathlon

experiments.

Hyperparameter BoMLA BomVI
Posterior regulariser A (various values) -
Precision initialisation values 107% ~ 1072 -
Number of tasks sampled for Hessian approx. 5000 -
Covariance initialisation values - exp(—5)
Number of Monte Carlo samples - 20
Meta-batch size M 32 32
Number of query samples per class 15 15
Number of iterations per dataset 5000 5000
Outer loop optimiser Adam Adam
Outer loop learning rate 0.001 0.001
Number of tasks sampled for meta-evaluation 100 100

Table A.1: Hyperparameters for the triathlon and pentathlon experiments (same
value for all datasets).

116

Triathlon and Pentathlon

Al

‘(syesejep renprarpur) sjyuourtadxe uoryjejued pue UoyIeL) oY) 10] siojeoweredodAl :g'V S[qeR],

UOT)eN[eAd-BIOUT UT

0T 0T 0T 01 G ¢ sdogs (IHG IouUl JO IoqUINN

Kemjrey SUOI}RIINI Kemjrey (IAINOE 10J aUOU) S[NPaYdSs

T°0X 0007 A10A8 T'0X ARmJ[ey T°()X 10X Kemjrey 1°(0x - ARDOp 9)el SUIIRS[I2IN()

(v)

1o 10 10 o ¢0 70 oyer Surmres] (JHS IouU]

() Sururer)-ejowr ur

g g G G ¢ T sdojs (IS IouUl Jo Ioquiny
PRIDITY SIOMO[I-DHDHA ONOSewiuis SA-YVALD MeI([YPmEP)ruiw Jo[siuu) YeurereddAy

A.2. Omniglot: Sequential Tasks 117

A.2 Omniglot: Sequential Tasks

Table A.3 shows the hyperparameters used in the Omniglot stationary task

distribution experiment.

Hyperparameter BoMLA BomVI
Posterior regulariser A 0.01 -
Precision initialisation values 1074~ 1072 -
Covariance initialisation values - exp(—10)
Number of Monte Carlo samples - 5
Number of mini-batches M 1 1
Number of query samples per class (meta-evaluation) 15 15
Number of epochs per task 50 50
Number of inner SGD steps in meta-training (k) 5 5
Inner SGD learning rate («) 0.1 0.1
Outer loop optimiser Adam Adam
Outer loop learning rate 0.001 0.001
Number of tasks sampled for meta-evaluation 100 100
Number of inner SGD steps in meta-evaluation (k) 10 10

Table A.3: Hyperparameters for the Omniglot sequential tasks experiment.

A.3 BoML+
Hyperparameter BoML+

Posterior regulariser A)
Precision initialisation values 1074 ~ 1072
Number of tasks sampled for Hessian approx. 5000
Meta-batch size M 32
Number of query samples per class 15
Number of iterations per dataset 5000
Outer loop optimiser Adam
Outer loop learning rate 0.001
Number of tasks sampled for meta-evaluation 100
Number of LSTM quick adaptation steps 1

Number of importance samples drawn for task-pointer S° 100

Table A.4: Hyperparameters for the BOML+ experiments.

Table A.4 records the hyperparameters used in the BOML+ experiments.
The dataset-specific hyperparameters when learning the meta-parameters are

same as that in Table A.2 for the pentathlon experiments.

Bibliography

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul,
B. Shillingford, and N. de Freitas. Learning to Learn by Gradient Descent

by Gradient Descent. In Advances in Neural Information Processing Systems

29, 2016.

L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi. Meta-Learning with
Differentiable Closed-Form Solvers. In International Conference on Learning

Representations, 2019.

A. Botev, H. Ritter, and D. Barber. Practical Gauss-Newton Optimisation
for Deep Learning. In Proceedings of the 34th International Conference on

Machine Learning, 2017.

G. Denevi, D. Stamos, C. Ciliberto, and M. Pontil. Online-Within-Online
Meta-Learning. In Advances in Neural Information Processing Systems 32,

2019.

J. S. Denker and Y. LeCun. Transforming Neural-Net Output Levels to
Probability Distributions. In Advances in Neural Information Processing

Systems 3, 1991.

C. Finn, P. Abbeel, and S. Levine. Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. In Proceedings of the 34th International

Conference on Machine Learning, 2017.

C. Finn, K. Xu, and S. Levine. Probabilistic Model-Agnostic Meta-Learning.

In Advances in Neural Information Processing Systems 31, 2018.

BIBLIOGRAPHY 119

C. Finn, A. Rajeswaran, S. Kakade, and S. Levine. Online Meta-Learning. In
Proceedings of the 36th International Conference on Machine Learning, 2019.

I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An Empirical
Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks.

arXiv preprint, arXiv:1312.6211, 2013.

J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. Turner. Meta-Learning
Probabilistic Inference for Prediction. In International Conference on Learn-

g Representations, 2019.

E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths. Recasting Gradient-
Based Meta-Learning as Hierarchical Bayes. In International Conference on

Learning Representations, 2018.

R. Grosse and J. Martens. A Kronecker-Factored Approximate Fisher Matrix
for Convolution Layers. In Proceedings of the 33rd International Conference

on Machine Learning, 2016.

D. Ha and D. Eck. A Neural Representation of Sketch Drawings. arXiv preprint,
arXiv:1704.03477, 2017.

J. Harrison, A. Sharma, C. Finn, and M. Pavone. Continuous Meta-Learning

without Tasks. arXiv preprint, arXiv:1912.08866, 2019.

X. He, J. Sygnowski, A. Galashov, A. A. Rusu, Y. Teh, and R. Pascanu.
Task Agnostic Continual Learning via Meta Learning. arXiv preprint,

arXiv:1906.05201, 2019.

G. Jerfel, E. Grant, T. Griffiths, and K. A. Heller. Reconciling Meta-Learning
and Continual Learning with Online Mixtures of Tasks. In Advances in

Neural Information Processing Systems 32, 2019.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In

International Conference on Learning Representations, 2015.

BIBLIOGRAPHY 120

D. P. Kingma, T. Salimans, and M. Welling. Variational Dropout and the Local
Reparameterization Trick. In Advances in Neural Information Processing

Systems 28, 2015.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis,
C. Clopath, D. Kumaran, and R. Hadsell. Overcoming Catastrophic Forget-

ting in Neural Networks. Proceedings of the National Academy of Sciences,

2017.

G. Koch, R. Zemel, and R. Salakhutdinov. Siamese Neural Networks for
One-Shot Image Recognition. In 32th International Conference on Machine

Learning Deep Learning Workshop, 2015.

B. Lake, R. Salakhutdinov, J. Gross, and J.B. Tenenbaum. One Shot Learning
of Simple Visual Concepts. In Proceedings of the 33rd Annual Conference of
the Cognitive Science Society, 2011.

S. Lee, J. Kim, J. Jun, J. Ha, and B. Zhang. Overcoming Catastrophic Forget-
ting by Incremental Moment Matching. In Advances in Neural Information

Processing Systems 30, 2017.

F. Li, R. Fergus, and P. Perona. Learning Generative Visual Models from
Few Training Examples: An Incremental Bayesian Approach Tested on 101
Object Categories. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops, 2004.

K. Li and J. Malik. Learning to Optimize. In International Conference on

Learning Representations, 2017.

D. J. C. MacKay. A Practical Bayesian Framework for Backpropagation
Networks. Neural Computation, 1992.

S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi. Fine-Grained
Visual Classification of Aircraft. arXiv preprint, arXiv:1306.5151, 2013.

BIBLIOGRAPHY 121

J. Martens and R. Grosse. Optimizing Neural Networks with Kronecker-
Factored Approximate Curvature. In Proceedings of the 32nd International

Conference on Machine Learning, 2015.

E. G. Miller, N. E. Matsakis, and P. A. Viola. Learning from One Example
Through Shared Densities on Transforms. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2000.

C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner. Variational Continual

Learning. In International Conference on Learning Representations, 2018.

A. Nichol, J. Achiam, and J. Schulman. On First-Order Meta-Learning Algo-
rithms. arXiv preprint, arXiv:1803.02999, 2018.

M. Nilsback and A. Zisserman. Automated Flower Classification over a Large
Number of Classes. In 2008 Sizth Indian Conference on Computer Vision,

Graphics and Image Processing, 2008.

M. Opper. A Bayesian Approach to Online Learning. In Online Learning in
Neural Networks. Cambridge University Press, 1998.

K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, C. Foo, and R. Yokota. Scalable and
Practical Natural Gradient for Large-Scale Deep Learning. IEEFE Transactions
on Pattern Analysis and Machine Intelligence, 2020.

S. Ravi and A. Beatson. Amortized Bayesian Meta-Learning. In International

Conference on Learning Representations, 2019.

S. Ravi and H. Larochelle. Optimization as a Model for Few-Shot Learning. In

International Conference on Learning Representations, 2017.

H. Ritter, A. Botev, and D. Barber. Online Structured Laplace Approximations
for Overcoming Catastrophic Forgetting. In Advances in Neural Information

Processing Systems 31, 2018a.

BIBLIOGRAPHY 122

H. Ritter, A. Botev, and D. Barber. A Scalable Laplace Approximation for

Neural Networks. In International Conference on Learning Representations,

2018b.

H. Robbins and S. Monro. A Stochastic Approximation Method. The Annals
of Mathematical Statistics, 1951.

M. Rosa, O. Afanasjeva, S. Andersson, J. Davidson, N. Guttenberg, P. Hlubucek,
M. Poliak, J. Vitku, and J. Feyereisl. BADGER: Learning to (Learn |Learn-
ing Algorithms| through Multi-Agent Communication). arXiv preprint,
arXiv:1912.01513, 2019.

A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero,
and R. Hadsell. Meta-Learning with Latent Embedding Optimization. In

International Conference on Learning Representations, 2019.

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-
Learning with Memory-Augmented Neural Networks. In Proceedings of the

33rd International Conference on Machine Learning, 2016.

J. Schmidhuber. Evolutionary Principles in Self-Referential Learning. On
Learning How to Learn: The Meta-Meta-Meta...-Hook. Diploma thesis,
Institut fiir Informatik, Technische Universitdt Miinchen, 1987.

S. Shalev-Shwartz. Online Learning: Theory, Algorithms, and Applications.
PhD thesis, The Hebrew University of Jerusalem, 2007.

J. Snell, K. Swersky, and R. Zemel. Prototypical Networks for Few-Shot

Learning. In Advances in Neural Information Processing Systems 30, 2017.

S. Thrun and L. Pratt. Learning to Learn: Introduction and Overview. Springer,

Boston, MA, 1998.

B. L. Trippe and R. E. Turner. Overpruning in Variational Bayesian Neural
Networks. In Advances in Neural Information Processing Systems 30 —

Advances in Approximate Bayesian Inference Workshop, 2017.

BIBLIOGRAPHY 123

G. M. van de Ven, Z. Li, and A. S. Tolias. Class-Incremental Learning With
Generative Classifiers. In Proceedings of the IEEE/CVFE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, 2021.

O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Match-
ing Networks for One Shot Learning. In Advances in Neural Information

Processing Systems 29, 2016.

J. Wen, Y. Cao, and R. Huang. Few-Shot Self Reminder to Overcome Catas-
trophic Forgetting. arXiv preprint, arXiv:1812.00543, 2018.

P. Yap, H. Ritter, and D. Barber. Bayesian Online Meta-Learning with Laplace
Approximation. In International Conference on Learning Representations —

Beyond Tabula Rasa in RL (BeTR-RL) Workshop, 2020.

P. Yap, H. Ritter, and D. Barber. Addressing Catastrophic Forgetting in
Few-Shot Problems. In Proceedings of the 38th International Conference on
Machine Learning, 2021.

J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn. Bayesian Model-
Agnostic Meta-Learning. In Advances in Neural Information Processing

Systems 31, 2018.

F. Zenke, B. Poole, and S. Ganguli. Continual Learning through Synaptic
Intelligence. In Proceedings of the 34th International Conference on Machine

Learning, 2017.

Z. Zhuang, Y. Wang, K. Yu, and S. Lu. No-Regret Non-Convex Online Meta-
Learning. arXiv preprint, arXiv:1910.10196, 2019.

M. Zinkevich. Online Convex Programming and Generalized Infinitesimal
Gradient Ascent. In Proceedings of the 20th International Conference on

Machine Learning, 2003.

	Introduction
	Contributions
	Thesis Structure

	Related Work
	Online Meta-Learning
	Regret minimisation
	Same underlying task distribution

	Offline Meta-Learning
	Probabilistic
	Non-probabilistic

	Continual Learning

	Background
	Meta-Learning
	Inner and Outer Updates
	Model-Agnostic Meta-Learning

	Bayesian Online Learning
	Laplace Approximation
	Precision Update Hyperparameter
	Algorithm

	Variational Inference
	Posterior Approximation
	Algorithm

	Bayesian Online Meta-Learning
	Framework Overview
	Boml with Laplace Approximation
	Derivation and Implementation
	Algorithm

	Boml with Variational Inference
	Derivation and Implementation
	Algorithm

	Experiments
	Setup
	Triathlon
	Pentathlon

	Boml in Sequential Task Setting
	Setting and Algorithm
	Omniglot: Stationary Task Distribution
	Results

	Discussion
	Ablation Studies
	Varying Precision Update Hyperparameter
	Analysing the Approximate Posterior Covariance

	Hessian Approximation
	Introduction
	Background
	Fully-Connected Layers
	Convolution Layers
	Batch Normalisation Layers

	Hessian Approximation for Boml
	Pre-Adaptation Hessian
	Post-Adaptation Hessian

	Experiments
	Ignoring the Jacobian
	Analysing the Cross Terms

	Automating Bayesian Online Meta-Learning
	Introduction
	Background
	Learning-to-Learn with LSTM
	Generative Classifier
	Badger Architecture

	Framework
	Overview
	LSTM Inner Loop
	Task-Pointer
	Relation to Badger

	Implementation
	Training
	Evaluation

	Experiments
	Setup
	Component Comparison
	Results

	Conclusion and Discussion
	Conclusion
	Discussion
	Advantage of Boml and Boml+
	Disadvantage and Future Research

	Appendices
	Hyperparameters
	Triathlon and Pentathlon
	Omniglot: Sequential Tasks
	Boml+

	Bibliography

