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Abstract14

The use of machine learning models (ML) in spatial statistics and urban analytics is increasing.15

However, research studying the generalisability of ML models from a geographical perspective had16

been sparse, specifically on whether a model trained in one context can be used in another. The17

aim of this research is to explore the extent to which standard models such as convolutional neural18

networks being applied on urban images can generalise across different geographies, through two19

tasks. First, on the classification of street frontages and second, on the prediction of real estate20

values. In particular, we find in both experiments that the models do not generalise well. More21

interestingly, there are also differences in terms of generalisability within the first case study which22

needs further exploration. To summarise, our results suggest that in urban analytics there is a need23

to systematically test out-of-geography results for this type of geographical image-based models.24

1 Introduction28

Machine learning (ML) methods such as convolutional neural networks (CNN ) have achieved29

human-level accuracy in many computer vision tasks such as scene recognition, object30

detection and image segmentation [1, 16]. This level of computer intelligence has led to31

advances in intelligent transportation, medical imaging, robotics and in our case urban32

analytics. For example, these methods have been used to estimate socio-economic profiles33

[3], predict the perceived safety of streets [12, 20], classify street frontage quality [10] and to34

estimate property prices [9]. A key limitation is the lack of research on how machine learning35

methods on urban scenes generalise geographically. If a model trained in one context can be36

successfully used in another then there is less data annotations and thus more generalisable37

and spatially reproducible models[7]. To address this concern, this exploratory research38

aims to study whether standard machine learning models (CNN ) on urban images can39

generalise over vastly different geographical context on two common tasks in ML, namely an40

image-based classification task and a regression task.41
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1.1 Related work on the analysis of urban imagery42

Diving deeper into the analysis of urban imagery, Salesses et al. [18] collected data on the43

perception of safety from street image, using a crowd-sourced survey to study the number44

of homicides in US cities. Naik et al. [12] expanded on this by fitting a regression model45

[20] to predict perceived safety and liveliness. Recently, Law et al. [10] have constructed a46

CNN model to infer whether the street has active frontages or not. While, Law et al. [9],47

used both street level and aerial images to estimate house price directly using a CNN-based48

hedonic price model for the Greater London area.49

Despite the increase in research using urban imagery, studying how these models generalise50

geographically has been limited. Naik et al. [12] found that their urban computer vision51

models generalise poorly between the East and the West Coast in the United States. In an52

attempt to obtain a global model, [2] extended the Place Pulse dataset to 56 cities around the53

world. Using this dataset, Dubey et al. [2] trained a CNN model that can predict pairwise54

perceived safety from a pair of input StreetView images. Subsequently, they used this global55

model to make a similar prediction for six additional cities and found the prediction score56

conforms well through visual inspections. Our research main novelty is to study the concept57

of ML model generalisation from a geographical perspective; through a classification task58

(street frontage classification) and a regression task (real estate value prediction). For brevity,59

we term these case study 1 and case study 2.60

2 Method and Materials61

2.1 Case study 1: Street Frontage Classification62

The quality of street frontages is an important factor in urban design, as it contributes63

to the safety and liveliness of the public space [5]. In this study, active street frontage is64

defined as having windows and doors on the ground floor of the building frontage, as opposed65

to blank walls [14]. In case study 1, we investigate the extent to which a street frontage66

classification model which classifies a Google StreetView image into four frontage categories;67

blank frontage, single-side active frontage , both-sides active frontage and non-urban frontage68

can generalise to different geographical contexts.69

Front-facing street images were firstly collected using Google StreetView API [4] following70

similar procedures to [10]. In total we downloaded 109,419 front-facing StreetView images71

in London, 5972 images in Kyoto, 2157 images in Hong Kong, 6012 images in Tokyo, 274672

images in Barcelona, 4157 images in San Francisco, 3143 images in NYC and 4434 images in73

Paris. In London, 10,000 images were manually labelled in order to train the initial model,74

and in each of the seven cities, 350 images were labelled.75

Following [10], we train a Street-Frontage-Net classifier SFN(·) that takes Streetview76

image S as input and returns a probability vector for each frontage class k. SFN uses a77

pretrained VGG16 architecture [19] from Imagenet as a feature extractor. These features78

then get pushed through a pair of fully-connected layers where a Softmax activation function79

is used in the final layer to estimate the probability of the four frontage class for an input80

image. We then split the dataset and use 60% for training, 20% for validation and 20% for81

testing and train the SFN using stochastic gradient descent (lr=0.001 ). We minimise the82

categorical cross entropy loss function; H(y, ŷ) = −
∑M

k=1 yklog(ŷk) where ŷk is the predicted83

probability for class k with M classes, and yk is the true probability for the same class. For84

more details of the data collection process and architecture, please see Law et al. [10].85

For case study 1, we study the extent to which the SFN model trained in London can86

2            GeoML generalisation



Figure 1 Case Study 1: Street frontage classification model [10]

generalise across the seven other cities. We report the classification accuracy, or the number87

of times the prediction of the frontage class matches the four observed frontage classes. Fig88

2 shows example of the streetview images.89

2.2 Case study 2: Real estate value prediction90

In case study 2, we study the extent to which an urban image-based real estate value91

regression model can generalise between London and Kyoto. We adopt an existing end-to-end92

methodology akin to [9] that estimates the real estate value from both its location attributes93

and visual attributes from urban images. To ensure that the cases are more comparable, we94

construct a parsimonious hedonic price model to predict the real estate value (price per sqm)95

based on location and visual attributes at the street segment level.96

Figure 2 Examples of Google Street images from left to right, London, Kyoto, Paris and Tokyo.

In terms of the property attributes, we use the UK Land Registry Price Paid dataset [15],97

coupled with detail attributes from Nationwide Housing Society [13] to form the house price98

data in London. For Kyoto, we used the Rosenka dataset, which is a road valuation dataset99

from 2012 which gives the mean land price per sqm for each street [17]. We calculate the100

mean house price sqm at the street-level from the London data in order to match with the101

Kyoto data. In terms of the location attributes, we calculate two street network accessibility102

measures which are commonly included in house price models [9]. Specifically, we calculate103

closeness centrality, which measures the inverse average distance to all other streets in the104

network as a proxy for capturing geographic accessibility, and betweenness centrality, which105

measures the number of shortest paths overlap from all streets to all streets as a proxy for106

street hierarchy and congestion of a city [6].107

In terms of the visual attributes, we used the same front-facing streetview images from108

case study 1 for London. Following [9], we have also collected aerial images using Microsoft109

Bing Maps API [11] for both London and Kyoto. In total, the dataset consists of 39, 346110

aerial image samples in London and 7, 040 in Kyoto. The output variable, price per sqm,111

is log transformed, which is a standard procedure in the literature [9], while all the input112
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attributes are normalised to have a mean of 0 and a standard deviation of 1.113

Following [9], we train a model H(·) with the streetview and aerial images while controlling114

for the contribution of the housing attributes. To extract visual features from the StreetView115

images S and aerial images A, we define two functions F (S) and G(A) which extract features116

as additional inputs into a hedonic price model. Both networks adopt a VGG-like [19] CNN117

architecture, where we take the value at the final flattened convolutional layer followed by118

a pair of fully-connected layers. We then concatenate the output of these two networks119

followed by two additional fully-connected layers in compressing the feature vectors output120

of F (S) and G(A) to a visual summary scalar response.121

Figure 3 Case study 2: Hedonic price model architecture [9]

This visual response can then be included as an additional independent variable in an122

OLS model where we can compare a standard linear model; HL(X) = β0 +
∑
βX + ε, which123

only uses the housing attributes X, to an extended model HL(X,S,A) that includes the124

visual summary response as HL(X,S,A) = β0 +
∑
βX + γV (F (S), G(A)) + ε, where β are125

the OLS regression weights for the location attributes, and γ as the weights for the visual126

summary response. We then split the dataset and use 70% for training, 15% for validation127

and 15% for testing and train the model using ADAM [8](learning rate=0.001) minimising128

the mean squared error loss function. For more details of the data collection process and129

architecture, please see Law et al. [9].130

The aims of case study 2 are two-fold. First, to test whether the method works in a131

vastly different context, in this case Kyoto. Second, to test the extent to which the image132

features trained with the London data can be used and generalised to Kyoto and vice versa.133

To address both of these aims, we estimated six linear regression models on the testset, each134

of which are different combinations of housing attributes, and visual attributes of the two135

cities. Hedonic price models M1 to M3 deliver predictions for London, while models M4136

to M6 for Kyoto. Model M1 is the baseline hedonic price model for London that includes137

the housing attributes only. Model M2 is the same as the London-baseline but includes138

both housing attributes and visual response retrieved from the London-trained-CNN model139

on London images. Model M3 includes both the housing attributes and visual response140

retrieved from the Kyoto-trained-CNN model on London images. Model M4 is the baseline141

hedonic price model for Kyoto that includes the housing attributes only. Model M5 is the142

same as the Kyoto-baseline but includes both the housing attributes and the visual response143

retrieved from the Kyoto-trained-CNN model on Kyoto images. Model M6 includes both144

the housing attributes and the visual response retrieved from London-trained-CNN model on145

Kyoto images. For each model, we report the adjusted R-squared measures, as a general146

goodness of fit metric (Table 1).147
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3 Results and Conclusion148

Presenting the results of case study 1, Table 1 shows the accuracy of 87.5% for the baseline149

London model which were used to make inference for the seven other cities namely; Paris at150

77.26%, New York at 73.30%, Barcelona at 70.48%, San Francisco at 69.43%, Hong Kong at151

67.78%, Kyoto at 56.25% and Tokyo at 52.20%. These results confirm a naive assumption152

that architecturally more similar cities can achieve a higher accuracy.153

Table 1 Case study 1 results

Cities Accuracy
London 87.50%
Paris 77.26%
NYC 73.30%
Barca 70.48%
SFO 69.43%
HKG 67.78%
Kyoto 56.25%
Tokyo 52.20%

Table 2 Case study 2 results

Location Model adjR2
London M1 (noVis) 63.90%
London M2 (LonVis) 71.6%
London M3 (KyoVis) 63.90%
Kyoto M4 (noVis) 29.30%
Kyoto M5 (KyoVis) 42.40%
Kyoto M6 (LonVis) 29.90%

Table 2 shows the goodness of fit (adjR2) results for case study 2, comparing the six154

regression models. The results show that the goodness of fit improved from 63.9% (M1155

London baseline) to 71.6% for London (M2) and from 29.3% (M4 Kyoto baseline)to 42.4%156

for Kyoto (M5) when including its own visual response. However, there is no improvement157

when using the Kyoto visual response in the London hedonic price model (M3) and a158

negligible improvement when using the London visual response in the Kyoto model (M6).159

To summarise, this exploratory research studied whether a standard (ML) model such as160

CNN can generalise well geographically for two tasks, classification of street frontages and161

prediction of real estate values. For both tasks, we have found poor model generalisability162

across different geographical contexts, albeit we also noticed differences in generalisability.163

For example in case study 1, we found that the street frontage classification model trained164

using only the London StreetView images generalises better to cities that are architecturally165

more similar to London, such as Paris (eg. western style, bricks, stones), and poorer for cities166

that are architecturally dissimilar, such as Kyoto (eg. eastern style, wood, concrete). In case167

study 2, we confirm that response extracted from urban images can improve existing real168

estate value predictions for both London and Kyoto. However, we also found that the visual169

response learnt from one context cannot be easily generalised to another context, echoing170

the result of previous research [12]. A number of limitations remain, including the lack of171

samples and the lack of cross cities analysis. For example, whether a model trained in other172

cites can generalise to London and whether a model trained in a subset or all of the cities173

can generalise better (eg. Dubey et al. 2016 [2]). There were also a lack of case studies174

in the house price prediction tasks due to the difficulty in collecting comparable data in175

different cities. From a geographical perspective, future research could also consider how176

spatial dependence differs across different geographies for this type of model. To end, these177

results suggest that there is a need to systematically test ML models in different geographies178

as well as the need for human evaluation experiments to study these differences in detail for179

future research. Even though the results are not conclusive, it serves as an initial exploration180

on ML models generalisation from a geographical perspectives.181
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