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Introduction

Abstract

Bird colonies on islands sustain elevated productivity and biomass on adjacent
reefs, through nutrient subsidies. However, the implications of this localized
enhancement on higher and often more mobile trophic levels (such as sharks
and rays) are unclear, as spatial trends in mobile fauna are often poorly cap-
tured by traditional underwater visual surveys. Here, we explore whether the
presence of seabird colonies is associated with enhanced abundances of sharks
and rays on adjacent coral reefs. We used a novel long-range water-landing
fixed-wing unoccupied aerial vehicle (UAV) to survey the distribution and den-
sity of sharks, rays and any additional megafauna, on and around tropical coral
islands (n = 14) in the Chagos Archipelago Marine Protected Area. We devel-
oped a computer-vision algorithm to distinguish greenery (trees and shrubs),
sand and sea glitter from visible ocean to yield accurate marine megafauna den-
sity estimation. We detected elevated seabird densities over rat-free islands, with
the commonest species, sooty tern, reaching densities of 932 + 199 per km 2
while none were observed over former coconut plantation islands. Elasmo-
branch density around rat-free islands with seabird colonies was 6.7 times
higher than around islands without seabird colonies (1.3 & 0.63 vs. 0.2 £ SE
0.1 per km?). Our results are evidence that shark and ray distribution is sensi-
tive to natural and localized nutrient subsidies. Correcting for non-sampled
regions of images increased estimated elasmobranch density by 14%, and our
openly accessible computer vision algorithm makes this correction easy to
implement to generate shark and ray and other wildlife densities from any
aerial imagery. The water-landing fixed-wing long-range UAV technology used
in this study may provide cost effective monitoring opportunities in remote
ocean locations.

(IUCN Red List, 2020), primarily due to unsustainable fish-
ing practices. Their conservation is further complicated by

Understanding the relationships between sharks and rays and
their habitats is key to making informed decisions in marine
conservation. Reef sharks and rays, occupy important meso-
and apex trophic levels, and fill important ecological roles,
including controlling prey distribution and acting as nutrient
vectors (Schmitz et al., 2010; Roff et al., 2016) meaning they
provide critical functions within marine ecosystems (Letessier
et al., 2022; Williams et al., 2018). Shark and ray numbers
have declined globally with over 30% of the 470 species listed
as ‘near-threatened’ to ‘critically endangered’ by the IUCN

conservative life history strategies, and often greater mobility
(Andrzejaczek et al., 2022; Tickler et al., 2017). In addition,
challenges in sampling mobile species make it difficult to
identify effective conservation measures (Dwyer et al., 2020).
It is therefore important to uncover associations and patterns
between sharks and rays and their habitat use, to inform con-
servation strategies and delineate marine protected areas
(MPAs).

Seabirds which forage at sea are a key link in the cycle
of redistributing nutrients in islands and coastal
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environments (Signa et al., 2021). Productivity and nutri-
ents from the open ocean are captured through foraging
and are transferred onto land through guano deposition.
This connectivity has been studied worldwide, including
in the Pacific, the Indian Ocean, the Southern Ocean and
the Arctic and Mediterranean, revealing increased nitro-
gen levels in terrestrial and marine organisms proximal to
bird populations; evidence for the pronounced effects
wildlife has on environments (Anderson & Polis, 1999;
Graham et al., 2018; Hentati-Sundberg et al., 2020; Lor-
rain et al., 2017; McCauley et al., 2012; Michelutti
et al., 2009; Otero et al., 2018; Shatova et al., 2016).
Recently, studies have demonstrated enhanced growth of
herbivorous fishes, macroalgae and sponges on tropical
coral reefs adjacent to the islands with bird colonies (Gra-
ham et al., 2018). These subsidised reefs may have a
greater capacity to recover following coral bleaching,
making seabird conservation and coral reef fishery man-
agement directly linked (Benkwitt et al., 2019), since coral
reef health can be promoted through seabird recoloniza-
tion following invasive species eradication programs
(Benkwitt et al., 2021).

It remains unclear whether localized gradients in pro-
ductivity influence the distribution of sharks and non-
filter feeding rays. Sharks and rays are sufficiently mobile
to behaviourally respond to fine-scale patchiness
(<10 km) in prey availability and nutrient subsidies
(Kiszka et al, 2016; Mourier et al, 2016), leading to
highly variable distribution and aggregative behaviour
(Bonnin et al., 2019). At the scale of the Indo-Pacific, the
geographical area of the Chagos Archipelago (also known
as the British Indian Ocean Territories ‘BIOT in polity)
harbours  elevated  shark  abundances  (Letessier
et al.,, 2019). At finer scales, shark distribution on coral
reefs and seamounts appears associated with prey avail-
ability (Tickler et al., 2017) and pelagic nutrient advection
(Hosegood et al., 2019; Letessier et al., 2016). However, it
remains unclear whether nutrient subsidies from seabird
colonies on islands may drive shark distribution. Here,
we take advantage of an existing contrast in seabird-
derived nutrient subsidies, between islands where humans
were historically present and islands that remain near-
pristine. Islands where humans were present were used as
monoculture coconut plantations and most native broad-
leaf trees there were felled, as a result (Carr, 2011; Gra-
ham et al., 2018). These plantation islands are now
infested with rats, which predate on tree saplings, chicks
and eggs, having a detrimental effect on seabirds, both in
the Chagos Archipelago and elsewhere (Borrelle
et al., 2015; Hilton & Cuthbert, 2010).

Unoccupied aerial vehicles give ecologists opportunities
to gather aerial data on sharks (Butcher et al., 2021) and
on islands which are often difficult to land boats on, such
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as the islands surveyed in this study. Our UAV was cho-
sen for its endurance and water-landing capabilities,
meaning complex landing equipment such as slings or
hooks were not necessary (Hodgson et al., 2017).

However, UAV flights are often restricted to early
morning and late afternoon to avoid the reflection of the
sun on the sea surface (sea glints) known collectively as
sea glitter (Casella et al., 2016; Ellis et al., 2020; Kay
et al,, 2009). Sea glitter can render parts of UAV or satel-
lite images taken over the sea unusable, as they obscure
the water below (Kanjir et al., 2018). Sea glitter is there-
fore an undesirable variable that can influence how many
animals can be detected. Aerial imagery is always likely to
contain some sea glitter, and — for coastal surveys — land
cover, and it is therefore important to account for these
elements when accurately measuring survey effort for
marine species.

Sea glitter in UAV imagery has previously been quanti-
fied subjectively into categorized bands of percentage cov-
erage (Hodgson et al., 2013), but quantifying this
coverage manually is time-consuming. Depending on the
research question or weighting given to sea glitter, it can
sometimes be ignored during analysis (Cornet &
Joyce, 2021). Most efforts to correct or account for glitter
appear in remote sensing literature (Muller-Karger
et al., 2018).

Sea glints can be corrected within multiband satellite
imagery using polarization imaging techniques combined
with correcting algorithms (Liang et al., 2019; Singh &
Shanmugam, 2014) using the near-infrared (NIR) channel
(Kay et al, 2009; Lyzenga et al, 2006). In addition,
methods to remove sea glitter in multispectral UAV
images for benthic and coral classification models have
been explored (Muslim et al., 2019). However, a method
is lacking for simply quantifying sea glitter, as well as land
(trees/shrubs), and exposed sand within red, green and
blue (RGB) images, with the purpose of quantifying the
area effectively surveyed.

Here we explore spatial patterns in sharks and rays
around tropical islands with and without seabirds (rat-
free and former plantation), using a novel water-landing
fixed-wing UAV. We use opportunistic and systematic
surveys over marine and terrestrial habitats, to (1) explore
sharks and rays and report other megafauna associated
with islands and coral reefs of the Chagos archipelago, (2)
determine whether there is an association between seabird
colony presence and the abundance of sharks and rays,
(3) infer the influence of terrestrial nutrient subsidies on
shark and ray distribution and conservation and (4)
develop a simple and reproducible computer-vision algo-
rithm and methodology for delineating trees, sand and
sea glitter, to quantify ocean area sampled in marine
aerial imagery. Finally, we comment of the broader
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applications of the water-landing fixed-wing UAV in con-
servation as a viable tool for data gathering in challenging
remote marine environments.

Materials and Methods

Study area

Our study was conducted in the Chagos Archipelago
(6°00" S 71°30" E) in May 2018 and February 2020. The
area was declared a 644 000 km® marine protected area
(MPA) in 2010 and is presently the largest no-take area
in the Indian Ocean. The Chagos Archipelago has around
55 islands within its isolated archipelago, the largest being
Diego Garcia at 44 km® which is the only inhabited
island. The lack of human presence means the atolls are
often considered “near pristine”. Twenty-six of the islands
(91.4% of the archipelago’s total landmass) had invasive
rats (Rattus rattus) while 29 were rat-free at the time of
sampling, with ten islands designated as Important Bird
and Biodiversity Areas (IBAs) (Carr et al., 2020).

Aerial transects and UAV design

We surveyed sharks and rays on the islands and the adja-

cent coral reef crests and flats, using a custom-made water-

Our water—landing\fi\xed—wing system can be
safely landed on water, even in emergencies.
Waterproofing ensures the communication \

systems are operational and the system is
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landing fixed-wing UAV. Marine ecological UAV surveys
are usually completed using off the shelf multirotor systems
which are vulnerable to salt and water corrosion. Addition-
ally, the battery can quickly become depleted in strong
winds or squalls, cutting short flights and making landings
challenging. Our UAV with a larger payload capacity (take-
off weight ~4.5 kg), facilitates heavier, energy dense batte-
ries at ~570 g each, for sustained flights at 55 kph over long
distances, with the ability to better tolerate high wind gusts
and squalls. The UAV was adapted for water-landing from
a model ordinarily used for terrestrial surveying (Aeromao
Amphibious Talon, built in 2019) for the purposes of this
research. The UAV was hand-launched, from the research
vessel or from the island beaches. The bespoke system has a
two-meter wingspan and lands on the sea, for easy retrieval
(Fig. 1).

Survey images in 2018 were captured at nadir, with a
12 MP camera (Garmin VIRB) with a polarized lens, set
to record an image every second, while a forward-facing
live-link surveillance camera (RunCam 2, 1080p), allowed
for a live video stream to the ground control station. The
UAV underwent engineering improvements between the
two expeditions and the nadir camera was changed to the
SONY RXO0 (1” sensor 15 MP).

A pixhawk cube 2 autopilot and Ardu Pilot Mission
Planner (Osborne, 2019) flight control software were used

LY
w

;

Multirotor UAVs often have a limited radio
range (<9km) and must be landed on either
the beach or deck areas before the battery
exhausts.

locatable.

Figure 1. The UAV system is handed back to the pilot by the daughter craft crew, after retrieval from a successful water landing, in 2018. We
outline how limited landing opportunities are for multirotor UAVs on many small islands, and in emergencies, this can jeopardise system safety if

there is an accidental water landing. Photograph courtesy of Three Wise Monkeys production company and Oceans Unmanned.
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for piloting the UAYV, in fully automatic and semi-manual
modes (semi-manual can allow for altitude and speed to
be maintained but the pilot can control direction). We
opted to fly at 65 m altitude in 2018 and 100 m in 2020.
A trade-off exists between achieving meaningful and safe
aerial coverage whilst ensuring sufficient resolution to
detect wildlife and ensuring similar ground resolution
existed between the two expeditions. Our choice of alti-
tudes also reflect efforts to minimize wildlife disturbance
(Brisson-Curadeau et al., 2017).

In 2018, intermittent poor weather (high winds
>15 knots) meant flights were largely opportunistic, result-
ing in a sub-optimal sampling strategy. This resulted in the
lagoon and ocean-sided flights being imbalanced. In 2020,
challenges with logistics and weather were also encountered,
but flights overall followed scheduled routes as planned. On
some flights (n = 3) in 2020, technical issues with the cam-
era meant that film was recorded instead of still images. For
these flights, still frames were extracted at 1 per second inter-
val using Adobe Photoshop (Adobelnc., 2023). All flights
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were conducted in <20 kph winds, which were recommend
for safe and more stable flying, resulting in good visual
observation opportunities, thereby limiting variability in vis-
ibility and detection of wildlife between sites.

Flights were beyond the visual line of sight (BVLOS)
and flight operations were conducted under a permit
from the BIOT Administration. Adjacent reefs were sur-
veyed by circumnavigating the islands, to ensure coverage
of both the lagoonal and forereef sides in a strip-transect
design (Fig. 2). Images produced using this method, do
not have decreased perception from the centre to the
edges of the images.

Maps were created using QGIS (QGISDevelopment-
Team, 2022). Over 15 flights flown (including those not
selected for use in our analysis), total distance travelled
was 156.9 km and ~15 500 images were gathered. Of this
image set, we decided to omit flights from Turtle Cove or
the middle of the Great Chagos Bank (GCB), as these
areas were either open ocean or did not represent typical
rat or non-rat islands (Table 1).

Indian Ocean

©

)

024 6km 0 > Ak
F——+ .
>

Legend

- Island with rats

Island without rats

Transects

(A) '-’1 F k 4]
\ ] é ‘
L\
4 -
<.
0 20 40 60km
Feamy —+——1

(F)

0 0.5 1km

» —t—1

Figure 2. Flight tracks for ecological surveys around islands in the British Indian Ocean Territories (A). In June/July 2018 five flights were flown at
Peros Banhos (B) and three at the Salomon islands (C). In February 2020, a single flight was flown at Three Brothers (D), two flights were flown
at Egmont (E) part of the Western Great Chagos Banks islands, and three at Turtle Cove in Diego Garcia (F).
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TABLE 1. Flights which yielded usable imagery during the 2018 and 2020 expeditions. Flight two's data was lost due to a technical issue. This
table reflects the omission of Turtle Cove and GCB images. All flights here are included in the data analysis.

% of flight
Images after every -
Flight ID Island Atoll 5th retained Distance (km) Lagoon Ocean
1 lle Anglaise Saloman 85 5.8 0 100
3 lle Anglaise Saloman 147 8.8 100 0
4 lle Anglaise, lle de la Pas* Saloman 210 13.7 100 0
5 lle Diamont Peros Banhos 101 4.5 100 0
6 lle Gabriel, lle Poule Peros Banhos 265 14.7 35.47 64.53
7 lle Gabriel, lle Poule, Ile du Coin, Peros Banhos 237 9.7 100 0
lle Anglaise (PB)
8 Grand lle Coquillage* Peros Banhos 224 11.8 44.64 55.36
9 lle Vache Marine Peros Banhos 5 0.5 100 0
13 lles Lubine (Egmont) Western Islands 190 17.7 72.63 27.37
14 lles Lubine (Egmont) Western Islands 213 18.2 58.69 41.31
15 North Brother*, Middle Brother*, Western Islands 297 21.7 39.39 60.61

South Brother*, Resurgence*

*Denotes islands without invasive rats.

Wildlife detection

To count wildlife, images were inspected by two indepen-
dent image analysts. Each image was magnified and
inspected, with adjustments to contrast and colour in
photoshop where needed, and detections where both
observers agreed were retained. A comma-separated
values file (CSV) of all images was created, and for each
image, the number of detections per taxon was documen-
ted, and identified to the lowest taxonomic level possible.
To guide identification of birds in UAV imagery, we con-
ducted visits to the islands and visually confirmed the
species present. To count large groups of birds which
were evenly spaced between individuals, on and around
the islands in UAV imagery, we scaled the area occupied
by 50-100 birds to the total area sampled by the image.

The frequency of the image capture resulted in overlap
in coverage between consecutive images. Exploratory anal-
ysis revealed that each individual animal was detected in
an average of five consecutive images. We therefore
retained every fifth image only, to avoid double counting.
This subset of the data frame was used in our models.
The original image set was ~15 000 images.

The ground sampling distance (GSD) is measured as
cm per pixel. GSD and image area were computed using
the PIX4D (Pix4D, 2019) Excel-based utility. GSD for
2018 was 3.67 and 3.57 cm/pixel in 2020.

Quantification and verification of the sea
glitter, sand and land delineation method

Many images contained sea glitter, sand and/or land, which
needed to be accounted for when calculating the area of

ocean that could potentially yield shark and ray observa-
tions. Computer vision techniques (Figure S1) using RGB
colour and greyscale thresholding were developed in
MATLAB (MathWorks, 2022), using the built-in Colour
Thresholding Application to distinguish unobscured sea
from trees, sand and sea glitter in each image. Thresholding
is a technique used in image processing to segment an
image into different regions based on colour or brightness
information (Mery & Pedreschi, 2005). It involves setting a
threshold value for each colour channel in an image and
then classifying pixels that fall above or below that thresh-
old. In this methodology, manual (by eye) and automated
(by MATLAB) masks were created, using values created
using manual thresholding. Creating masks manually in
the colour thresholding app represents output which is ‘as
good as we can get it’. However, processing the masks
manually for 1975 images would take too long. The pur-
pose of this algorithm is to mask areas of trees, using aver-
aged values of the manual masks, which we consider
optimal. It is not always possible to use colour thresholding
manually to delineate all the trees in the image, due to vari-
ations in foliage colour, some rocks and lighting, which is
why the verification of the method is important.

Images were first divided into folders of those which
contained land and those which did not. To make the
manual colour thresholding more effective, a Gaussian
blur was applied to all images, in MATLAB. By averaging
the colours of neighbouring pixels, the blur reduces the
contrast and sharpness of colours, resulting in a smoother
image with less noise.

Manual thresholding was used to delineate trees in 20
images taken from the folder which contains images with
land, using the colour thresholder app in MATLAB. For
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each image, greenery was represented by min and max
values in the red, blue and green channels. The 20 chan-
nel values were averaged to give an ‘RGB value’, which is
used in the masking process for the rest of the images. To
be included in the mask, pixels must have the same RGB
as the averaged value.

The mask values for sea glitter and sand were created
using a combination of manual identification of sea glints
at pixel level in greyscale images in photoshop
(Figure S2) and assessing the histogram distribution

(Figure S3) of the greyscale values of these pixels in the

M. Schiele et al.

image in MATLAB. For our image set, sea glitter and
sand were defined by greyscale pixel values >180 in the 0—
255 scale (black to white).

Once the averaged values of trees, sea glitter and sand
had been selected, the values were then applied to the
whole image set, to create masks (Fig. 3). Both the land
mask pixel cover and sea glitter/sand pixel cover were
combined, to estimate the percentage of the image that
was not usable.

To verify the land and sea glitter/sand identification
algorithms, a random sample of 21 images from the

Figure 3. Computer vision steps for batch masking and quantification of trees, sand and sea glitter in the UAV image set. See supplementary
information for full workflow. (A) The original image is imported. (B) A Gaussian blur is added. (C) Using the predetermined threshold values, the
algorithm computes a mask for the trees (shown in black), additionally, it has masked some areas of the sea incorrectly as trees. (D) The RGB
image is converted to greyscale. (E) The sea glitter and sand algorithm computes a mask for sand and sea glitter (shown in white). Pane F is a
colourized visual, highlighting the output of the algorithm; the black mask denotes trees, and the white mask denotes sand and sea glitter. The

remaining blue is the sampleable sea.

6 © 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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subset containing these features was masked manually in
the colour thresholding app in MATLAB and then
masked automatically using the algorithm. Disagreement
between manual and automated masks was quantified as
the percentage of pixels in each image that were classified
differently by each method. A linear regression model was
used to compare percentages of pixels masked per image
between manual and automated methods using R statisti-
cal programming (RCoreTeam, 2022) and the difference
between mean percentage masking for each method
across images was tested using a paired ftest using R
package MOTE (Buchanan et al., 2019).

Analysis of faunal abundance

To assess associations between rat presence on islands
and the abundance of sharks and rays, we used general-
ized linear mixed models (GLMM) with Poisson errors,
implemented wusing the R package ‘Ime4’ (Bates
et al.,, 2015) and multi-model inference to evaluate the
strength of support for effects.

Flights at Turtle Cove on Diego Garcia were excluded
from this analysis because they were targeted at a known
immature turtle aggregation (Stokes et al., 2023) area and
could not therefore be expected to give a representative
picture of turtle distribution in the area. Exploratory
analysis of the remaining data revealed that turtle and tel-
eost detections were too spatially aggregated to support
robust statistical inference, however, elasmobranch obser-
vations were sufficiently dispersed.

The presence/absence of rats and island aspect (lagoon
side or oceanside) were tested as the fixed effects in the
model of elasmobranch counts, with island identity as a
random effect, and the log of area covered multiplied by
proportion of pixels without sea glitter/land/sand as an
offset. This offset allows us to interpret the model
responses as the density of individuals per unit of sea area
sampled. We ran a model both with and without the off-
set to compare its effect on elasmobranch density esti-
mates. Standard errors were bootstrapped by resampling
observations with replacement, recalculating densities for
each of 100 samples, and taking the standard error of the
sampled estimates.

Results

Computer vision verification

After subsetting the image set of ~15 000, our survey
recorded 1976 images, 12.3% of which contained land
>1% and 81.83% of images contained sea glitter >1%.
Across the 21 images tested for accuracy of the land algo-
rithm, an average of 92.9% of the pixels between the
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manually and modelled masks matched. The average per-
centage of masked pixels was 26.1% in manually pro-
cessed images, and 28% using the computer vision
algorithm. A linear regression of this relationship
(Fig. 4A) indicated some overprediction of pixel density
at lower values and underprediction at higher values and
highlighted one strong outlier with 46.9% mask coverage
according to computer vision, compared to 8.9% for the
manual mask (48% of pixels classified differently by the
methods), though in the same image, sea glitter and sand
were manually computed as 13.4% and the modelled
mask was 12.9% (2% of pixels classified differently). The
outlier was in the flight over the Three Brothers Islands
(Fig. 4B). This outlier image (Fig. 4C) proved difficult to
mask for sea glitter and trees, both manually and using
the model (Fig. 3D). The original image contained deep
blue swathes of ocean and rock around the sand. Such
deep water is unusual so close to land in our image set.
Further examples of images that were more challenging to
classify are given in supplements (Figure S4). Addition-
ally, overexposed images that could not yield wildlife
detections, were categorized by the algorithm as sea glitter
or sand.

For every 1 pixel increase in the manual mask, the
pixels in the modelled mask will increase by 0.7 pixels
(95% CI [0.54 to 0.93]). The effect size comparing aver-
age per-image mask coverage between methods was negli-
gible (Cohen’s d = 0.08, 95% CI [—-0.71 to 0.53]). No
linear relationship was detected between manual and
modelled coverage of the sea glitter and sand masks.
However, the average percentage coverage of sea glitter
and sand was similar between the manual and modelled
masks in the test images (10.23 vs. 11.96%), and the two
methods disagreed on glitter/sand classification for 11%
of pixels.

Faunal distribution and densities

Within the image set, we identified Sooty terns (Onycho-
prion fuscatus), Red-footed boobies (Sula sula), turtles
(Chelonia mydas and Eretmochelys imbricata) and the
common Tawny Nurse Shark (Nebrius ferrugineus) (Fer-
retti et al., 2018) to species level. Noddys (Anous sp.),
Frigate birds (Fregata sp.) and other terns could not be
identified further than genus level. We identified reef
sharks (Carcharhinus sp.), sting rays (Dasyatidae sp.) and
eagle rays (Myliobatidae sp.) to genus level and detections
of these together with the nurse shark were grouped as
‘elasmobranch’. Teleosts (bony fish) were not visually
identifiable to genus level. Tropical shearwaters and
brown boobies were observed directly but were not
detected in UAV imagery. Turtle nesting tracks were
detected in UAV images from Egmont, which were
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Figure 4. (A) Plot showing relationship between tree cover (%) in
survey images using manual and computer vision masking. The
positive linear relationship was significant (> = 0.767, d.f. =19,
P = 1.957e-07). (B) The outlier image from (A), and the same image
manually masked trees (C), and then trees masked by the algorithm

(D).

ground-truthed by visiting the island and visually inspect-
ing the nesting tracks. A manta ray (Mobula sp.) that we
estimated to be around 2 m across, and a whale shark
(Rhincodon typus) were detected during an opportunistic
flight over the Great Chagos Bank, though data from this
flight was not used in the final data set in the GLMM.
Examples of the detections can be found in supplements
(Figure S5).

Detections of marine and terrestrial species associated

Modelled masks % pixel distribution

with rat-free islands were higher and more varied than
those around rat-infested islands (Fig. 5A). Sooty terns
were crowded on nesting sites, reaching densities of
932 4 199 per km® The Three Brothers flight had a
detection of more than one shark in the same image, off-
shore from nesting sooty terns on bare ground (Fig. 5B,
C). The UAV did not cause any wildlife disturbance as
the altitude was sufficient for it to not be viewed as a
threat.

The GLMM model of elasmobranch (shark and ray)
density as a function of just presence/absence of rats as
an explanatory effect had the strongest support, with only
weak support for differences between lagoon and ocean
side in elasmobranch density (Table 2). Using areas cor-
rected for masking by land and sea glitter, elasmobranch
density was 6.7 times higher around rat free islands than
around those with rats, with a similar (6.4-fold) differ-
ence using uncorrected areas (Fig. 6). Overall, correcting
for masking in images increased estimated elasmobranch
density by 14%.

Discussion

Overview

Previous studies suggest that rays and sharks are more
abundant in nutrient-enhanced areas (Kiszka et al., 2016).
We therefore hypothesized that more productive reefs
and greater fish biomass levels adjacent to seabird colo-
nies as outlined by Graham et al., may attract more active
predatory fishes such as sharks and rays (Graham
et al, 2018). Consistent with this hypothesis, we docu-
mented elevated numbers of elasmobranchs adjacent to
islands without rats, which also had higher nesting sea-

bird abundance. This is consistent with the understanding
that nutrient subsidies from productive islands may affect

8 © 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Figure 5. A density bar plot is faceted by marine and terrestrial species, per km?. These plots show the densities of each taxon, calculated from
the subsetted dataset used in the modelling analysis. The ‘old [coconut] plantation’ represents rat-infested islands and island without rat are
considered near ‘pristine’. Although Turtle Cove data was not used, detections of turtles at the Egmont Isles, were retained, as those islands are
representative of typical islands in the archipelago. Images from the Middle Brother Island (rat-free) in 2020, highlighting the even spacing of

sooty terns in a nesting area (B) and two nurse sharks (C).

TABLE 2. Model selection table for generalized linear mixed models
of elasmobranch density as a function of the presence of rats on adja-
cent islands (Rat) and whether the observation was lagoon or ocean
side of the island (Side), with island identity as the random effect.

the distribution of large, marine megafauna species such
as sharks and rays (Graham et al, 2018). We did not
detect a strong effect of lagoon or ocean sides of islands
on elasmobranch densities, which may be due to our

Model  Fixed effects Log AlCc opportunistic sampling methods resulting in too few sam-
# structure d.f. likelihood AICc DAICc weight ples to detect any patterns.

3 Rat 3 104784 2156 0O 0.557 Usn.1g the.novel. UAV system, we identified 'a range of

5 Rat+Side 4 _104765 2175 197 0208 taxa, including sting rays, eagle rays, schooling teleost

1 Rat+Side+Rat: 5  —104.333 2187 3.12  0.117 fishes, nurse and reef sharks, and turtles during UAV

Side flights. We detected a feeding reef manta ray (Mobula

5 NULL 2 107689 2194 380 0.083 alfredi) and a whale shark (Rhincodon typus) alongside the

Side 3 —107.570 221.2 557 0.034 boat at a small sea mount, in the great Chagos bank

© 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 9
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Figure 6. Predicted elasmobranch densities around non-rat and rat-
infested islands, either where no correction was included for land and
sea glitter coverage (no offset), or where correction was included
(offset). Error bars are standard errors.

(though these were not included in the data analyses as
they were not associated with islands).

We present evidence suggesting that quantification of
sea glitter, trees and sand can affect estimated densities,
and that computer vision methods and techniques are
replicable. Our study shows that water-landing fixed-wing
long-ranged UAVs are suitable tools for gathering ecologi-
cal data on sharks and rays around remote islands and
coral reefs and suggests that they could have wider appli-
cations beyond this study in conservation and MPA
management.

The use of a computer vision algorithm to
automate land/sea delineation

Coastal UAV surveys will often contain unusable areas
within some images, and sea glitter is often unavoidable.
Area calculations used in any statistical models therefore
needed to reflect proportion of unsampleable areas within
images (land and sea glitter). Computer vision was chosen
as a relatively simple tool for creating an automated, repli-
cable and adaptable, method to attempt batch land and sea
glitter quantification. The verification stage of method
development sought to test how accurately the threshold-
ing values chosen captured the trees and sea glitter/sand.
The linear model for tree masks shows overprediction in
the modelled masks at lower pixel densities and underpre-
diction at higher pixel densities in the modelled masks.
Images from the data set commonly include the reef area
adjacent to islands, which are shallow and aqua in colour,
and the model can differentiate between the two based on
colour. However, when an image contains deep blue areas
also containing dark colour green in them, such as around
the rocky shores of Middle Brother, or a deep large coral,
the model might mask those as trees. The sea glitter/sand
mask algorithm though not as accurate as the tree mask

M. Schiele et al.

algorithm, was still able to produce modelled masks with
89%-pixel similarity. Often, overexposed photos superfi-
cially reduced the overall accuracy of the modelled mask.
However, an overexposed photo is not likely to yield shark
or ray detections. The purpose of the computer vision algo-
rithm is to identify and quantify areas which are unusable
for shark and ray detections. Therefore, overexposed areas
of images, masked as sea glitter and sand, still technically
contribute to unusable parts of the image, albeit as an
unintended side-effect.

This method and verification process are easily replica-
ble in MATLAB using the colour thresholding app and
some rudimentary scripting (Data S6), and the resulting
offset value affected elasmobranch density estimates
appreciably. Our image set contained 1975 images, gener-
ated from two separate cameras, and at different times of
year and day. We attempted to average the heterogeneity
within the images to create an effective tool, which can
be used as one algorithm on large image sets or split into
two if no images contained land: script (1) land (2) sea
glitter and/or sand. The script may also be useful if
sampleable range of a terrestrial species in a UAV image
is stated only as a discrete area of trees, distinct in RGB
colour from the surrounding area. We detected a negligi-
ble difference in effective pixel coverage between manually
masked images compared to modelled masks (Cohen’s
d =0.08). We would recommend increasing the initial
RGB averaging image set if Cohen’s d is medium (~0.5),
% values of pixel differences are high (>10%) and if no
linear relationship is present when pixel density between
the two mask types in the verification image set is plot-
ted. Every UAV image set has unique image composition
reflective of the time of day, terrain, sensor type, UAV
speed, weather and flight plan. Previously, methods for
quantification and removal of sea glitter are mostly asso-
ciated with satellite remote sensing work (Kay et al., 2009;
Lyzenga et al., 2006) with less consideration in drone-
based research. Our UAV algorithm compliments other,
more complex machine learning algorithms which focus
on wildlife detection, by being one which focuses on
quantification of habitats to support wildlife density esti-
mates. We therefore present this validated, quick and
adaptable computer vision delineation method in place of
more complex machine or deep learning algorithms
which may require technical expertise, powerful com-
puters and large training data sets (Dujon et al., 2021;
Gray et al., 2019; Lassalle et al., 2022).

Surveyed wildlife associated with the
islands

We saw consistently low densities of sooty terns, frigate
birds and red-footed boobies emerging from the aerial

10 © 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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detections, suggesting lower abundance on rat-infested
islands. Although brown boobies and tropical shearwaters
are known to be present at surveyed atolls and islands
(Diego Garcia, Middle Brother, Perhos Banos atoll, Salo-
man islands and Egmont atoll) (Carr et al., 2020), these
species were not detectable in the UAV images. These
species are scarce on rat-free islands and absent on rat-
infested ones in the case of the brown booby (Hilton &
Cuthbert, 2010), or keeping to nests in burrows or shel-
tered nooks during the day in the case of the shearwater.
This behaviour can make them less detectable in UAV-
gathered images.

Sooty terns were the most abundant bird, reaching high
densities on rat-free islands, nesting with closely packed,
equidistant spacing on open ground, where they were eas-
ily detectable in UAV imagery. Other birds that nest in
dense vegetation (noddies, red-footed boobies) may be
less detectable due to screening by foliage. To improve
detection rate and hence relative abundance estimates of
such species, a thermal infrared (TIR) camera could com-
plement RGB imagery during early morning flights
(Whitworth et al., 2022). Flights targeting arboreal birds
using the fixed-wing UAV can have altitude reduced to
50 m to attain a usable resolution within the images
(GSD ~1.74 cm), though consideration for any wildlife
disturbance should be mitigated, by having a tertiary
observer documenting animal behaviour. Remote moni-
toring techniques like this could be especially useful on
islands which are difficult to land boats on.

Densities of marine sharks and rays

We found that Nurse sharks are particularly conspicuous
in UAV images, but identifying other sharks and rays at
species level from UAV imagery can be difficult. In shal-
low water or when at the surface, we could identify the
Tawny Nurse Shark (Nebrius ferrugineus) at species level
and eagle ray at genus level (Aetobatus). It is likely that
reef shark species detected are either Silvertip sharks
(Carcharhinus albimarginatus), Grey reef sharks (Carchar-
hinus amblyrhynchos) or Blacktip reef sharks (Carcharhi-
nus melanopterus) (Ferretti et al., 2018 Graham
et al., 2010).

Although other comparisons of shark and ray densities
between rat and non-rat islands in the Chagos Archipel-
ago are not available, we can compare our results to simi-
lar studies from tropical Indo-Pacific reefs. In French
Polynesia, UAV flights at 12 m altitude showed elasmo-
branch densities as high as 93 km ™ at sites where baiting
was used to attract sharks, but much lower at un-
provisioned sites (2 km™2), and comparable to our den-
sity estimates around rate-free islands (1.3 km™2) (Kiszka
et al., 2016).

UAV and Computer Vision Methods For Marine Ecology

However, underwater surveys have given higher densi-
ties, with towed-diver surveys in Pacific Island chains
yielding reef shark densities from 10.6 to 23 km™?
(Nadon et al., 2012), and grey reef shark densities esti-
mated using mark recapture methods around Palmyra
(considered near pristine) estimated to be 21.3 sharks
km? (Bradley et al,, 2017). Our lower density estimates
may partly or wholly reflect low detectability using aerial
surveys in shallow clear waters, emphasizing the need to
interpret these numbers as a minimum. However, we
have no reason to expect detectability to vary between
islands with and without rats in this study, so expect the
relative differences in estimated density to reflect a true
relative abundance contrast. In deeper water, where varia-
tion in time spent at the surface gives greater scope for
availability bias, the approach described might still pro-
vide a useful signal of relative abundance if methods are
applied at consistent locations and under consistent con-
ditions over time, although results need to be treated with
caution in this case.

This contrast shows evidence that elasmobranchs are
more abundant around islands that host seabird colonies.
The effect of rat invasion on island seabird colonies is
well-established (Carr et al, 2020; Harper & Bun-
bury, 2015) and our results are consistent with the
hypothesis that this effect has knock-on effects on elasmo-
branchs (Ferretti et al., 2018). The higher densities of
shark and rays around rat-free (or near-pristine) islands
is not unique to the Chagos Archipelago but is likely pre-
sent at other islands where foraging seabirds nest or
spend extended periods of time (McCauley et al., 2012).
This effect could reflect enhanced overall elasmobranch
abundance, however, given that most of the Chagos
islands remain rat-infested, and the limited intensity of
coverage reported here, it is possible that the enhanced
density we observed around rat-free islands simply reflects
a redistribution of the existing population, which would
be a less positive conservation outcome. Confirming the
potential for rat eradication on oceanic islands to enhance
overall populations of sharks and rays will require larger-
scale and long-term monitoring of these populations, a
goal that fixed-wing drones could help achieve cost-
effectively.

The use of water-landing fixed-wing UAVs
in ecology and conservation

Our UAV survey methods produced sufficient detections
to statistically detect significant differences in elasmo-
branch densities between habitats, without the need for
traditional invasive sampling techniques. Spatial differ-
ences in wildlife on islands with and without rats can fur-
ther support the case for rat eradications in general, and
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the use of a novel water-landing fixed-wing UAV for this
application has wider conservation applications in other
MPAs around the world. Long-range water-landing UAVs
have both abilities to cover large areas (currently a
~10 km range at 45-55 kph, 1 h+ endurance, in favour-
able winds not exceeding 20 kph at take-off) and to col-
lect images of a high enough resolution for the detection
of sharks and rays as a tool for conservation monitoring.
The UAV can be sent to areas which may be deemed too
dangerous or expensive to send people, opening new
opportunities for data collection and extending our spa-
tial and temporal understanding of other ecological ques-
tions. The waterproofed UAV allows for simple landing
anywhere on the sea without the need for a large, cleared
area of land or complex landing gear on a vessel. The
UAV is low-cost (<USD $3000 to build) in comparison
to other fixed-wing systems such as the Scan Eagle
(Hodgson et al., 2017) and it uses open-source mission
planning software and requires two people to operate it.
This makes the system a realistic technology option for
the Global South, providing technology acceptance and
stakeholder selection are carefully considered (Hubbard
et al., 2023).

Future steps towards the further use of a water-landing
fixed-wing UAV include detection of illegal, unreported
and unregulated (IUU) fishing, which has been identified
as one of an increasing threat to regional biodiversity
(Collins et al., 2021; Collins et al., 2023). Our UAV sys-
tem will ultimately include onboard automatic detection
algorithms designed to make surveying MPAs and Exclu-
sive Economic Zone (EEZ) borders for illegal fishing ves-
sels more efficient and the system will continue to be
developed as a valuable data collection tool for IUU activ-
ities (Morton, 2021). We are also applying and adapting
established technology adoption and acceptance methods
(Hahn et al., 2022; Rezaei et al.,, 2020; Venkatesh &
Bala, 2008) to understand and where possible alleviate
barriers to long-term use of this (and other) UAV systems
in the hands of local users in the Global South. In the
future, this UAV - in combination with our computer
vision algorithm for simple delineation and quantification
of objects of relevance in the images - provides a set of
tools for marine and terrestrial fauna monitoring in
remote islands with low barrier to entry.
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Supporting Information

Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

Appendix S1. Supporting information.

Figure S1. Complete workflow of the computer vision
method for delineating trees, sand and sea glitter.

Figure S2. Sea glints inspection and manual delineation
at the pixel level, using Photoshop. The pixel values
(between 0 and 255) within the delineation zone were
compared to the image pixel histograms created in
MATLAB. A range (170-255) was selected which incorpo-
rated all glints and sand.

Figure S3. Histograms from greyscale images containing
(i) sand and (ii) sea glitter, both with examples from
greyscale images. The threshold values of 180-255 encom-
passed sea glitter and sand pixels. The first large spike in
the sea glitter histogram depicts dark areas of sea. Sea
glints alone, range from 225 to 255.

Figure S4. Examples of images where the automated algo-
rithm for tree detection either overpredicted (A), pre-
dicted accurately (B) or underpredicted mask coverage
(C). Figure 6, image (A) shows no greenery. In manual

UAV and Computer Vision Methods For Marine Ecology

delineation, as there are no trees, zero pixels were selected
manually, however, the algorithm masked the darker blue
green of larger corals. Figure 6B shows a 0.9% difference
between modelled and manual masks, highlighting an
optimal image for the model.

Figure S5. Examples of detections from 2018 to 2020. (A)
Turtle at Egmont atoll, (B) Shark in the Saloman islands,
(C) Teleosts at Middle Brother island, D() Nurse sharks at
Middle Brother island, (E) Shark at Grand Ile Coquillage,
(F) Nurse shark at Grand Ile Coquillage, (G) Red footed
boobies at Grand Ile Coquillage, (H) Eagle ray at Grand Ile
Coquillage, (I) Whale shark at the Great Chagos Bank, (J)
Frigate bird at Resurgence island, (K) Turtles at Egmont
atoll, (L) Manta ray at the Great Chagos Bank.

Data S1. The script for pulling images into the algorithm,
which has the averaged channel values for RGB and sea
glitter and sand quantification, using automated masks.
Pixel distribution within the sea glitter and sand masks
were quantified in MATLAB by using a difference func-
tion (utilising the ‘Exclusive Or’ function) with binary
mask inputs (a—b)*, where a = pixels in image one and
b = pixels in image two. This function identifies the num-
ber of pixels in the two images that are different from
each other, which is then expressed as a %.
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