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Abstract

Bird colonies on islands sustain elevated productivity and biomass on adjacent

reefs, through nutrient subsidies. However, the implications of this localized

enhancement on higher and often more mobile trophic levels (such as sharks

and rays) are unclear, as spatial trends in mobile fauna are often poorly cap-

tured by traditional underwater visual surveys. Here, we explore whether the

presence of seabird colonies is associated with enhanced abundances of sharks

and rays on adjacent coral reefs. We used a novel long-range water-landing

fixed-wing unoccupied aerial vehicle (UAV) to survey the distribution and den-

sity of sharks, rays and any additional megafauna, on and around tropical coral

islands (n = 14) in the Chagos Archipelago Marine Protected Area. We devel-

oped a computer-vision algorithm to distinguish greenery (trees and shrubs),

sand and sea glitter from visible ocean to yield accurate marine megafauna den-

sity estimation. We detected elevated seabird densities over rat-free islands, with

the commonest species, sooty tern, reaching densities of 932 � 199 per km�2

while none were observed over former coconut plantation islands. Elasmo-

branch density around rat-free islands with seabird colonies was 6.7 times

higher than around islands without seabird colonies (1.3 � 0.63 vs. 0.2 � SE

0.1 per km2). Our results are evidence that shark and ray distribution is sensi-

tive to natural and localized nutrient subsidies. Correcting for non-sampled

regions of images increased estimated elasmobranch density by 14%, and our

openly accessible computer vision algorithm makes this correction easy to

implement to generate shark and ray and other wildlife densities from any

aerial imagery. The water-landing fixed-wing long-range UAV technology used

in this study may provide cost effective monitoring opportunities in remote

ocean locations.

Introduction

Understanding the relationships between sharks and rays and

their habitats is key to making informed decisions in marine

conservation. Reef sharks and rays, occupy important meso-

and apex trophic levels, and fill important ecological roles,

including controlling prey distribution and acting as nutrient

vectors (Schmitz et al., 2010; Roff et al., 2016) meaning they

provide critical functions within marine ecosystems (Letessier

et al., 2022; Williams et al., 2018). Shark and ray numbers

have declined globally with over 30% of the 470 species listed

as ‘near-threatened’ to ‘critically endangered’ by the IUCN

(IUCN Red List, 2020), primarily due to unsustainable fish-

ing practices. Their conservation is further complicated by

conservative life history strategies, and often greater mobility

(Andrzejaczek et al., 2022; Tickler et al., 2017). In addition,

challenges in sampling mobile species make it difficult to

identify effective conservation measures (Dwyer et al., 2020).

It is therefore important to uncover associations and patterns

between sharks and rays and their habitat use, to inform con-

servation strategies and delineate marine protected areas

(MPAs).

Seabirds which forage at sea are a key link in the cycle

of redistributing nutrients in islands and coastal
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environments (Signa et al., 2021). Productivity and nutri-

ents from the open ocean are captured through foraging

and are transferred onto land through guano deposition.

This connectivity has been studied worldwide, including

in the Pacific, the Indian Ocean, the Southern Ocean and

the Arctic and Mediterranean, revealing increased nitro-

gen levels in terrestrial and marine organisms proximal to

bird populations; evidence for the pronounced effects

wildlife has on environments (Anderson & Polis, 1999;

Graham et al., 2018; Hentati-Sundberg et al., 2020; Lor-

rain et al., 2017; McCauley et al., 2012; Michelutti

et al., 2009; Otero et al., 2018; Shatova et al., 2016).

Recently, studies have demonstrated enhanced growth of

herbivorous fishes, macroalgae and sponges on tropical

coral reefs adjacent to the islands with bird colonies (Gra-

ham et al., 2018). These subsidised reefs may have a

greater capacity to recover following coral bleaching,

making seabird conservation and coral reef fishery man-

agement directly linked (Benkwitt et al., 2019), since coral

reef health can be promoted through seabird recoloniza-

tion following invasive species eradication programs

(Benkwitt et al., 2021).

It remains unclear whether localized gradients in pro-

ductivity influence the distribution of sharks and non-

filter feeding rays. Sharks and rays are sufficiently mobile

to behaviourally respond to fine-scale patchiness

(<10 km) in prey availability and nutrient subsidies

(Kiszka et al., 2016; Mourier et al., 2016), leading to

highly variable distribution and aggregative behaviour

(Bonnin et al., 2019). At the scale of the Indo-Pacific, the

geographical area of the Chagos Archipelago (also known

as the British Indian Ocean Territories ‘BIOT’ in polity)

harbours elevated shark abundances (Letessier

et al., 2019). At finer scales, shark distribution on coral

reefs and seamounts appears associated with prey avail-

ability (Tickler et al., 2017) and pelagic nutrient advection

(Hosegood et al., 2019; Letessier et al., 2016). However, it

remains unclear whether nutrient subsidies from seabird

colonies on islands may drive shark distribution. Here,

we take advantage of an existing contrast in seabird-

derived nutrient subsidies, between islands where humans

were historically present and islands that remain near-

pristine. Islands where humans were present were used as

monoculture coconut plantations and most native broad-

leaf trees there were felled, as a result (Carr, 2011; Gra-

ham et al., 2018). These plantation islands are now

infested with rats, which predate on tree saplings, chicks

and eggs, having a detrimental effect on seabirds, both in

the Chagos Archipelago and elsewhere (Borrelle

et al., 2015; Hilton & Cuthbert, 2010).

Unoccupied aerial vehicles give ecologists opportunities

to gather aerial data on sharks (Butcher et al., 2021) and

on islands which are often difficult to land boats on, such

as the islands surveyed in this study. Our UAV was cho-

sen for its endurance and water-landing capabilities,

meaning complex landing equipment such as slings or

hooks were not necessary (Hodgson et al., 2017).

However, UAV flights are often restricted to early

morning and late afternoon to avoid the reflection of the

sun on the sea surface (sea glints) known collectively as

sea glitter (Casella et al., 2016; Ellis et al., 2020; Kay

et al., 2009). Sea glitter can render parts of UAV or satel-

lite images taken over the sea unusable, as they obscure

the water below (Kanjir et al., 2018). Sea glitter is there-

fore an undesirable variable that can influence how many

animals can be detected. Aerial imagery is always likely to

contain some sea glitter, and – for coastal surveys – land

cover, and it is therefore important to account for these

elements when accurately measuring survey effort for

marine species.

Sea glitter in UAV imagery has previously been quanti-

fied subjectively into categorized bands of percentage cov-

erage (Hodgson et al., 2013), but quantifying this

coverage manually is time-consuming. Depending on the

research question or weighting given to sea glitter, it can

sometimes be ignored during analysis (Cornet &

Joyce, 2021). Most efforts to correct or account for glitter

appear in remote sensing literature (Muller-Karger

et al., 2018).

Sea glints can be corrected within multiband satellite

imagery using polarization imaging techniques combined

with correcting algorithms (Liang et al., 2019; Singh &

Shanmugam, 2014) using the near-infrared (NIR) channel

(Kay et al., 2009; Lyzenga et al., 2006). In addition,

methods to remove sea glitter in multispectral UAV

images for benthic and coral classification models have

been explored (Muslim et al., 2019). However, a method

is lacking for simply quantifying sea glitter, as well as land

(trees/shrubs), and exposed sand within red, green and

blue (RGB) images, with the purpose of quantifying the

area effectively surveyed.

Here we explore spatial patterns in sharks and rays

around tropical islands with and without seabirds (rat-

free and former plantation), using a novel water-landing

fixed-wing UAV. We use opportunistic and systematic

surveys over marine and terrestrial habitats, to (1) explore

sharks and rays and report other megafauna associated

with islands and coral reefs of the Chagos archipelago, (2)

determine whether there is an association between seabird

colony presence and the abundance of sharks and rays,

(3) infer the influence of terrestrial nutrient subsidies on

shark and ray distribution and conservation and (4)

develop a simple and reproducible computer-vision algo-

rithm and methodology for delineating trees, sand and

sea glitter, to quantify ocean area sampled in marine

aerial imagery. Finally, we comment of the broader
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applications of the water-landing fixed-wing UAV in con-

servation as a viable tool for data gathering in challenging

remote marine environments.

Materials and Methods

Study area

Our study was conducted in the Chagos Archipelago

(6°000 S 71°300 E) in May 2018 and February 2020. The

area was declared a 644 000 km2 marine protected area

(MPA) in 2010 and is presently the largest no-take area

in the Indian Ocean. The Chagos Archipelago has around

55 islands within its isolated archipelago, the largest being

Diego Garcia at 44 km2 which is the only inhabited

island. The lack of human presence means the atolls are

often considered “near pristine”. Twenty-six of the islands

(91.4% of the archipelago’s total landmass) had invasive

rats (Rattus rattus) while 29 were rat-free at the time of

sampling, with ten islands designated as Important Bird

and Biodiversity Areas (IBAs) (Carr et al., 2020).

Aerial transects and UAV design

We surveyed sharks and rays on the islands and the adja-

cent coral reef crests and flats, using a custom-made water-

landing fixed-wing UAV. Marine ecological UAV surveys

are usually completed using off the shelf multirotor systems

which are vulnerable to salt and water corrosion. Addition-

ally, the battery can quickly become depleted in strong

winds or squalls, cutting short flights and making landings

challenging. Our UAV with a larger payload capacity (take-

off weight ~4.5 kg), facilitates heavier, energy dense batte-

ries at ~570 g each, for sustained flights at 55 kph over long

distances, with the ability to better tolerate high wind gusts

and squalls. The UAV was adapted for water-landing from

a model ordinarily used for terrestrial surveying (Aeromao

Amphibious Talon, built in 2019) for the purposes of this

research. The UAV was hand-launched, from the research

vessel or from the island beaches. The bespoke system has a

two-meter wingspan and lands on the sea, for easy retrieval

(Fig. 1).

Survey images in 2018 were captured at nadir, with a

12 MP camera (Garmin VIRB) with a polarized lens, set

to record an image every second, while a forward-facing

live-link surveillance camera (RunCam 2, 1080p), allowed

for a live video stream to the ground control station. The

UAV underwent engineering improvements between the

two expeditions and the nadir camera was changed to the

SONY RX0 (100 sensor 15 MP).

A pixhawk cube 2 autopilot and Ardu Pilot Mission

Planner (Osborne, 2019) flight control software were used

Figure 1. The UAV system is handed back to the pilot by the daughter craft crew, after retrieval from a successful water landing, in 2018. We

outline how limited landing opportunities are for multirotor UAVs on many small islands, and in emergencies, this can jeopardise system safety if

there is an accidental water landing. Photograph courtesy of Three Wise Monkeys production company and Oceans Unmanned.
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for piloting the UAV, in fully automatic and semi-manual

modes (semi-manual can allow for altitude and speed to

be maintained but the pilot can control direction). We

opted to fly at 65 m altitude in 2018 and 100 m in 2020.

A trade-off exists between achieving meaningful and safe

aerial coverage whilst ensuring sufficient resolution to

detect wildlife and ensuring similar ground resolution

existed between the two expeditions. Our choice of alti-

tudes also reflect efforts to minimize wildlife disturbance

(Brisson-Curadeau et al., 2017).

In 2018, intermittent poor weather (high winds

>15 knots) meant flights were largely opportunistic, result-

ing in a sub-optimal sampling strategy. This resulted in the

lagoon and ocean-sided flights being imbalanced. In 2020,

challenges with logistics and weather were also encountered,

but flights overall followed scheduled routes as planned. On

some flights (n = 3) in 2020, technical issues with the cam-

era meant that film was recorded instead of still images. For

these flights, still frames were extracted at 1 per second inter-

val using Adobe Photoshop (AdobeInc., 2023). All flights

were conducted in <20 kph winds, which were recommend

for safe and more stable flying, resulting in good visual

observation opportunities, thereby limiting variability in vis-

ibility and detection of wildlife between sites.

Flights were beyond the visual line of sight (BVLOS)

and flight operations were conducted under a permit

from the BIOT Administration. Adjacent reefs were sur-

veyed by circumnavigating the islands, to ensure coverage

of both the lagoonal and forereef sides in a strip-transect

design (Fig. 2). Images produced using this method, do

not have decreased perception from the centre to the

edges of the images.

Maps were created using QGIS (QGISDevelopment-

Team, 2022). Over 15 flights flown (including those not

selected for use in our analysis), total distance travelled

was 156.9 km and ~15 500 images were gathered. Of this

image set, we decided to omit flights from Turtle Cove or

the middle of the Great Chagos Bank (GCB), as these

areas were either open ocean or did not represent typical

rat or non-rat islands (Table 1).

Figure 2. Flight tracks for ecological surveys around islands in the British Indian Ocean Territories (A). In June/July 2018 five flights were flown at

Peros Banhos (B) and three at the Salomon islands (C). In February 2020, a single flight was flown at Three Brothers (D), two flights were flown

at Egmont (E) part of the Western Great Chagos Banks islands, and three at Turtle Cove in Diego Garcia (F).
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Wildlife detection

To count wildlife, images were inspected by two indepen-

dent image analysts. Each image was magnified and

inspected, with adjustments to contrast and colour in

photoshop where needed, and detections where both

observers agreed were retained. A comma-separated

values file (CSV) of all images was created, and for each

image, the number of detections per taxon was documen-

ted, and identified to the lowest taxonomic level possible.

To guide identification of birds in UAV imagery, we con-

ducted visits to the islands and visually confirmed the

species present. To count large groups of birds which

were evenly spaced between individuals, on and around

the islands in UAV imagery, we scaled the area occupied

by 50–100 birds to the total area sampled by the image.

The frequency of the image capture resulted in overlap

in coverage between consecutive images. Exploratory anal-

ysis revealed that each individual animal was detected in

an average of five consecutive images. We therefore

retained every fifth image only, to avoid double counting.

This subset of the data frame was used in our models.

The original image set was ~15 000 images.

The ground sampling distance (GSD) is measured as

cm per pixel. GSD and image area were computed using

the PIX4D (Pix4D, 2019) Excel-based utility. GSD for

2018 was 3.67 and 3.57 cm/pixel in 2020.

Quantification and verification of the sea
glitter, sand and land delineation method

Many images contained sea glitter, sand and/or land, which

needed to be accounted for when calculating the area of

ocean that could potentially yield shark and ray observa-

tions. Computer vision techniques (Figure S1) using RGB

colour and greyscale thresholding were developed in

MATLAB (MathWorks, 2022), using the built-in Colour

Thresholding Application to distinguish unobscured sea

from trees, sand and sea glitter in each image. Thresholding

is a technique used in image processing to segment an

image into different regions based on colour or brightness

information (Mery & Pedreschi, 2005). It involves setting a

threshold value for each colour channel in an image and

then classifying pixels that fall above or below that thresh-

old. In this methodology, manual (by eye) and automated

(by MATLAB) masks were created, using values created

using manual thresholding. Creating masks manually in

the colour thresholding app represents output which is ‘as

good as we can get it’. However, processing the masks

manually for 1975 images would take too long. The pur-

pose of this algorithm is to mask areas of trees, using aver-

aged values of the manual masks, which we consider

optimal. It is not always possible to use colour thresholding

manually to delineate all the trees in the image, due to vari-

ations in foliage colour, some rocks and lighting, which is

why the verification of the method is important.

Images were first divided into folders of those which

contained land and those which did not. To make the

manual colour thresholding more effective, a Gaussian

blur was applied to all images, in MATLAB. By averaging

the colours of neighbouring pixels, the blur reduces the

contrast and sharpness of colours, resulting in a smoother

image with less noise.

Manual thresholding was used to delineate trees in 20

images taken from the folder which contains images with

land, using the colour thresholder app in MATLAB. For

TABLE 1. Flights which yielded usable imagery during the 2018 and 2020 expeditions. Flight two’s data was lost due to a technical issue. This

table reflects the omission of Turtle Cove and GCB images. All flights here are included in the data analysis.

Flight ID Island Atoll

Images after every

5th retained Distance (km)

% of flight

Lagoon Ocean

1 Ile Anglaise Saloman 85 5.8 0 100

3 Ile Anglaise Saloman 147 8.8 100 0

4 Ile Anglaise, Ile de la Pas* Saloman 210 13.7 100 0

5 Ile Diamont Peros Banhos 101 4.5 100 0

6 Ile Gabriel, Ile Poule Peros Banhos 265 14.7 35.47 64.53

7 Ile Gabriel, Ile Poule, Ile du Coin,

Ile Anglaise (PB)

Peros Banhos 237 9.7 100 0

8 Grand Ile Coquillage* Peros Banhos 224 11.8 44.64 55.36

9 Ile Vache Marine Peros Banhos 5 0.5 100 0

13 Iles Lubine (Egmont) Western Islands 190 17.7 72.63 27.37

14 Iles Lubine (Egmont) Western Islands 213 18.2 58.69 41.31

15 North Brother*, Middle Brother*,

South Brother*, Resurgence*

Western Islands 297 21.7 39.39 60.61

*Denotes islands without invasive rats.
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each image, greenery was represented by min and max

values in the red, blue and green channels. The 20 chan-

nel values were averaged to give an ‘RGB value’, which is

used in the masking process for the rest of the images. To

be included in the mask, pixels must have the same RGB

as the averaged value.

The mask values for sea glitter and sand were created

using a combination of manual identification of sea glints

at pixel level in greyscale images in photoshop

(Figure S2) and assessing the histogram distribution

(Figure S3) of the greyscale values of these pixels in the

image in MATLAB. For our image set, sea glitter and

sand were defined by greyscale pixel values ≥180 in the 0–
255 scale (black to white).

Once the averaged values of trees, sea glitter and sand

had been selected, the values were then applied to the

whole image set, to create masks (Fig. 3). Both the land

mask pixel cover and sea glitter/sand pixel cover were

combined, to estimate the percentage of the image that

was not usable.

To verify the land and sea glitter/sand identification

algorithms, a random sample of 21 images from the

Figure 3. Computer vision steps for batch masking and quantification of trees, sand and sea glitter in the UAV image set. See supplementary

information for full workflow. (A) The original image is imported. (B) A Gaussian blur is added. (C) Using the predetermined threshold values, the

algorithm computes a mask for the trees (shown in black), additionally, it has masked some areas of the sea incorrectly as trees. (D) The RGB

image is converted to greyscale. (E) The sea glitter and sand algorithm computes a mask for sand and sea glitter (shown in white). Pane F is a

colourized visual, highlighting the output of the algorithm; the black mask denotes trees, and the white mask denotes sand and sea glitter. The

remaining blue is the sampleable sea.
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subset containing these features was masked manually in

the colour thresholding app in MATLAB and then

masked automatically using the algorithm. Disagreement

between manual and automated masks was quantified as

the percentage of pixels in each image that were classified

differently by each method. A linear regression model was

used to compare percentages of pixels masked per image

between manual and automated methods using R statisti-

cal programming (RCoreTeam, 2022) and the difference

between mean percentage masking for each method

across images was tested using a paired ttest using R

package MOTE (Buchanan et al., 2019).

Analysis of faunal abundance

To assess associations between rat presence on islands

and the abundance of sharks and rays, we used general-

ized linear mixed models (GLMM) with Poisson errors,

implemented using the R package ‘lme4’ (Bates

et al., 2015) and multi-model inference to evaluate the

strength of support for effects.

Flights at Turtle Cove on Diego Garcia were excluded

from this analysis because they were targeted at a known

immature turtle aggregation (Stokes et al., 2023) area and

could not therefore be expected to give a representative

picture of turtle distribution in the area. Exploratory

analysis of the remaining data revealed that turtle and tel-

eost detections were too spatially aggregated to support

robust statistical inference, however, elasmobranch obser-

vations were sufficiently dispersed.

The presence/absence of rats and island aspect (lagoon

side or oceanside) were tested as the fixed effects in the

model of elasmobranch counts, with island identity as a

random effect, and the log of area covered multiplied by

proportion of pixels without sea glitter/land/sand as an

offset. This offset allows us to interpret the model

responses as the density of individuals per unit of sea area

sampled. We ran a model both with and without the off-

set to compare its effect on elasmobranch density esti-

mates. Standard errors were bootstrapped by resampling

observations with replacement, recalculating densities for

each of 100 samples, and taking the standard error of the

sampled estimates.

Results

Computer vision verification

After subsetting the image set of ~15 000, our survey

recorded 1976 images, 12.3% of which contained land

>1% and 81.83% of images contained sea glitter >1%.

Across the 21 images tested for accuracy of the land algo-

rithm, an average of 92.9% of the pixels between the

manually and modelled masks matched. The average per-

centage of masked pixels was 26.1% in manually pro-

cessed images, and 28% using the computer vision

algorithm. A linear regression of this relationship

(Fig. 4A) indicated some overprediction of pixel density

at lower values and underprediction at higher values and

highlighted one strong outlier with 46.9% mask coverage

according to computer vision, compared to 8.9% for the

manual mask (48% of pixels classified differently by the

methods), though in the same image, sea glitter and sand

were manually computed as 13.4% and the modelled

mask was 12.9% (2% of pixels classified differently). The

outlier was in the flight over the Three Brothers Islands

(Fig. 4B). This outlier image (Fig. 4C) proved difficult to

mask for sea glitter and trees, both manually and using

the model (Fig. 3D). The original image contained deep

blue swathes of ocean and rock around the sand. Such

deep water is unusual so close to land in our image set.

Further examples of images that were more challenging to

classify are given in supplements (Figure S4). Addition-

ally, overexposed images that could not yield wildlife

detections, were categorized by the algorithm as sea glitter

or sand.

For every 1 pixel increase in the manual mask, the

pixels in the modelled mask will increase by 0.7 pixels

(95% CI [0.54 to 0.93]). The effect size comparing aver-

age per-image mask coverage between methods was negli-

gible (Cohen’s d = 0.08, 95% CI [�0.71 to 0.53]). No

linear relationship was detected between manual and

modelled coverage of the sea glitter and sand masks.

However, the average percentage coverage of sea glitter

and sand was similar between the manual and modelled

masks in the test images (10.23 vs. 11.96%), and the two

methods disagreed on glitter/sand classification for 11%

of pixels.

Faunal distribution and densities

Within the image set, we identified Sooty terns (Onycho-

prion fuscatus), Red-footed boobies (Sula sula), turtles

(Chelonia mydas and Eretmochelys imbricata) and the

common Tawny Nurse Shark (Nebrius ferrugineus) (Fer-

retti et al., 2018) to species level. Noddys (Anous sp.),

Frigate birds (Fregata sp.) and other terns could not be

identified further than genus level. We identified reef

sharks (Carcharhinus sp.), sting rays (Dasyatidae sp.) and

eagle rays (Myliobatidae sp.) to genus level and detections

of these together with the nurse shark were grouped as

‘elasmobranch’. Teleosts (bony fish) were not visually

identifiable to genus level. Tropical shearwaters and

brown boobies were observed directly but were not

detected in UAV imagery. Turtle nesting tracks were

detected in UAV images from Egmont, which were

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 7
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ground-truthed by visiting the island and visually inspect-

ing the nesting tracks. A manta ray (Mobula sp.) that we

estimated to be around 2 m across, and a whale shark

(Rhincodon typus) were detected during an opportunistic

flight over the Great Chagos Bank, though data from this

flight was not used in the final data set in the GLMM.

Examples of the detections can be found in supplements

(Figure S5).

Detections of marine and terrestrial species associated

with rat-free islands were higher and more varied than

those around rat-infested islands (Fig. 5A). Sooty terns

were crowded on nesting sites, reaching densities of

932 � 199 per km2. The Three Brothers flight had a

detection of more than one shark in the same image, off-

shore from nesting sooty terns on bare ground (Fig. 5B,

C). The UAV did not cause any wildlife disturbance as

the altitude was sufficient for it to not be viewed as a

threat.

The GLMM model of elasmobranch (shark and ray)

density as a function of just presence/absence of rats as

an explanatory effect had the strongest support, with only

weak support for differences between lagoon and ocean

side in elasmobranch density (Table 2). Using areas cor-

rected for masking by land and sea glitter, elasmobranch

density was 6.7 times higher around rat free islands than

around those with rats, with a similar (6.4-fold) differ-

ence using uncorrected areas (Fig. 6). Overall, correcting

for masking in images increased estimated elasmobranch

density by 14%.

Discussion

Overview

Previous studies suggest that rays and sharks are more

abundant in nutrient-enhanced areas (Kiszka et al., 2016).

We therefore hypothesized that more productive reefs

and greater fish biomass levels adjacent to seabird colo-

nies as outlined by Graham et al., may attract more active

predatory fishes such as sharks and rays (Graham

et al., 2018). Consistent with this hypothesis, we docu-

mented elevated numbers of elasmobranchs adjacent to

islands without rats, which also had higher nesting sea-

bird abundance. This is consistent with the understanding

that nutrient subsidies from productive islands may affect
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Figure 4. (A) Plot showing relationship between tree cover (%) in

survey images using manual and computer vision masking. The

positive linear relationship was significant (r2 = 0.767, d.f. = 19,

P = 1.957e-07). (B) The outlier image from (A), and the same image

manually masked trees (C), and then trees masked by the algorithm

(D).
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the distribution of large, marine megafauna species such

as sharks and rays (Graham et al., 2018). We did not

detect a strong effect of lagoon or ocean sides of islands

on elasmobranch densities, which may be due to our

opportunistic sampling methods resulting in too few sam-

ples to detect any patterns.

Using the novel UAV system, we identified a range of

taxa, including sting rays, eagle rays, schooling teleost

fishes, nurse and reef sharks, and turtles during UAV

flights. We detected a feeding reef manta ray (Mobula

alfredi) and a whale shark (Rhincodon typus) alongside the

boat at a small sea mount, in the great Chagos bank

Figure 5. A density bar plot is faceted by marine and terrestrial species, per km2. These plots show the densities of each taxon, calculated from

the subsetted dataset used in the modelling analysis. The ‘old [coconut] plantation’ represents rat-infested islands and island without rat are

considered near ‘pristine’. Although Turtle Cove data was not used, detections of turtles at the Egmont Isles, were retained, as those islands are

representative of typical islands in the archipelago. Images from the Middle Brother Island (rat-free) in 2020, highlighting the even spacing of

sooty terns in a nesting area (B) and two nurse sharks (C).

TABLE 2. Model selection table for generalized linear mixed models

of elasmobranch density as a function of the presence of rats on adja-

cent islands (Rat) and whether the observation was lagoon or ocean

side of the island (Side), with island identity as the random effect.

Model

#

Fixed effects

structure d.f.

Log

likelihood AICc DAICc

AICc

weight

3 Rat 3 �104.784 215.6 0 0.557

2 Rat+Side 4 �104.765 217.5 1.97 0.208

1 Rat+Side+Rat:

Side

5 �104.333 218.7 3.12 0.117

5 NULL 2 �107.689 219.4 3.80 0.083

4 Side 3 �107.570 221.2 5.57 0.034

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 9
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(though these were not included in the data analyses as

they were not associated with islands).

We present evidence suggesting that quantification of

sea glitter, trees and sand can affect estimated densities,

and that computer vision methods and techniques are

replicable. Our study shows that water-landing fixed-wing

long-ranged UAVs are suitable tools for gathering ecologi-

cal data on sharks and rays around remote islands and

coral reefs and suggests that they could have wider appli-

cations beyond this study in conservation and MPA

management.

The use of a computer vision algorithm to
automate land/sea delineation

Coastal UAV surveys will often contain unusable areas

within some images, and sea glitter is often unavoidable.

Area calculations used in any statistical models therefore

needed to reflect proportion of unsampleable areas within

images (land and sea glitter). Computer vision was chosen

as a relatively simple tool for creating an automated, repli-

cable and adaptable, method to attempt batch land and sea

glitter quantification. The verification stage of method

development sought to test how accurately the threshold-

ing values chosen captured the trees and sea glitter/sand.

The linear model for tree masks shows overprediction in

the modelled masks at lower pixel densities and underpre-

diction at higher pixel densities in the modelled masks.

Images from the data set commonly include the reef area

adjacent to islands, which are shallow and aqua in colour,

and the model can differentiate between the two based on

colour. However, when an image contains deep blue areas

also containing dark colour green in them, such as around

the rocky shores of Middle Brother, or a deep large coral,

the model might mask those as trees. The sea glitter/sand

mask algorithm though not as accurate as the tree mask

algorithm, was still able to produce modelled masks with

89%-pixel similarity. Often, overexposed photos superfi-

cially reduced the overall accuracy of the modelled mask.

However, an overexposed photo is not likely to yield shark

or ray detections. The purpose of the computer vision algo-

rithm is to identify and quantify areas which are unusable

for shark and ray detections. Therefore, overexposed areas

of images, masked as sea glitter and sand, still technically

contribute to unusable parts of the image, albeit as an

unintended side-effect.

This method and verification process are easily replica-

ble in MATLAB using the colour thresholding app and

some rudimentary scripting (Data S6), and the resulting

offset value affected elasmobranch density estimates

appreciably. Our image set contained 1975 images, gener-

ated from two separate cameras, and at different times of

year and day. We attempted to average the heterogeneity

within the images to create an effective tool, which can

be used as one algorithm on large image sets or split into

two if no images contained land: script (1) land (2) sea

glitter and/or sand. The script may also be useful if

sampleable range of a terrestrial species in a UAV image

is stated only as a discrete area of trees, distinct in RGB

colour from the surrounding area. We detected a negligi-

ble difference in effective pixel coverage between manually

masked images compared to modelled masks (Cohen’s

d = 0.08). We would recommend increasing the initial

RGB averaging image set if Cohen’s d is medium (~0.5),
% values of pixel differences are high (>10%) and if no

linear relationship is present when pixel density between

the two mask types in the verification image set is plot-

ted. Every UAV image set has unique image composition

reflective of the time of day, terrain, sensor type, UAV

speed, weather and flight plan. Previously, methods for

quantification and removal of sea glitter are mostly asso-

ciated with satellite remote sensing work (Kay et al., 2009;

Lyzenga et al., 2006) with less consideration in drone-

based research. Our UAV algorithm compliments other,

more complex machine learning algorithms which focus

on wildlife detection, by being one which focuses on

quantification of habitats to support wildlife density esti-

mates. We therefore present this validated, quick and

adaptable computer vision delineation method in place of

more complex machine or deep learning algorithms

which may require technical expertise, powerful com-

puters and large training data sets (Dujon et al., 2021;

Gray et al., 2019; Lassalle et al., 2022).

Surveyed wildlife associated with the
islands

We saw consistently low densities of sooty terns, frigate

birds and red-footed boobies emerging from the aerial
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Figure 6. Predicted elasmobranch densities around non-rat and rat-

infested islands, either where no correction was included for land and

sea glitter coverage (no offset), or where correction was included

(offset). Error bars are standard errors.
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detections, suggesting lower abundance on rat-infested

islands. Although brown boobies and tropical shearwaters

are known to be present at surveyed atolls and islands

(Diego Garcia, Middle Brother, Perhos Banos atoll, Salo-

man islands and Egmont atoll) (Carr et al., 2020), these

species were not detectable in the UAV images. These

species are scarce on rat-free islands and absent on rat-

infested ones in the case of the brown booby (Hilton &

Cuthbert, 2010), or keeping to nests in burrows or shel-

tered nooks during the day in the case of the shearwater.

This behaviour can make them less detectable in UAV-

gathered images.

Sooty terns were the most abundant bird, reaching high

densities on rat-free islands, nesting with closely packed,

equidistant spacing on open ground, where they were eas-

ily detectable in UAV imagery. Other birds that nest in

dense vegetation (noddies, red-footed boobies) may be

less detectable due to screening by foliage. To improve

detection rate and hence relative abundance estimates of

such species, a thermal infrared (TIR) camera could com-

plement RGB imagery during early morning flights

(Whitworth et al., 2022). Flights targeting arboreal birds

using the fixed-wing UAV can have altitude reduced to

50 m to attain a usable resolution within the images

(GSD ~1.74 cm), though consideration for any wildlife

disturbance should be mitigated, by having a tertiary

observer documenting animal behaviour. Remote moni-

toring techniques like this could be especially useful on

islands which are difficult to land boats on.

Densities of marine sharks and rays

We found that Nurse sharks are particularly conspicuous

in UAV images, but identifying other sharks and rays at

species level from UAV imagery can be difficult. In shal-

low water or when at the surface, we could identify the

Tawny Nurse Shark (Nebrius ferrugineus) at species level

and eagle ray at genus level (Aetobatus). It is likely that

reef shark species detected are either Silvertip sharks

(Carcharhinus albimarginatus), Grey reef sharks (Carchar-

hinus amblyrhynchos) or Blacktip reef sharks (Carcharhi-

nus melanopterus) (Ferretti et al., 2018; Graham

et al., 2010).

Although other comparisons of shark and ray densities

between rat and non-rat islands in the Chagos Archipel-

ago are not available, we can compare our results to simi-

lar studies from tropical Indo-Pacific reefs. In French

Polynesia, UAV flights at 12 m altitude showed elasmo-

branch densities as high as 93 km�2 at sites where baiting

was used to attract sharks, but much lower at un-

provisioned sites (2 km�2), and comparable to our den-

sity estimates around rate-free islands (1.3 km�2) (Kiszka

et al., 2016).

However, underwater surveys have given higher densi-

ties, with towed-diver surveys in Pacific Island chains

yielding reef shark densities from 10.6 to 23 km�2

(Nadon et al., 2012), and grey reef shark densities esti-

mated using mark recapture methods around Palmyra

(considered near pristine) estimated to be 21.3 sharks

km2 (Bradley et al., 2017). Our lower density estimates

may partly or wholly reflect low detectability using aerial

surveys in shallow clear waters, emphasizing the need to

interpret these numbers as a minimum. However, we

have no reason to expect detectability to vary between

islands with and without rats in this study, so expect the

relative differences in estimated density to reflect a true

relative abundance contrast. In deeper water, where varia-

tion in time spent at the surface gives greater scope for

availability bias, the approach described might still pro-

vide a useful signal of relative abundance if methods are

applied at consistent locations and under consistent con-

ditions over time, although results need to be treated with

caution in this case.

This contrast shows evidence that elasmobranchs are

more abundant around islands that host seabird colonies.

The effect of rat invasion on island seabird colonies is

well-established (Carr et al., 2020; Harper & Bun-

bury, 2015) and our results are consistent with the

hypothesis that this effect has knock-on effects on elasmo-

branchs (Ferretti et al., 2018). The higher densities of

shark and rays around rat-free (or near-pristine) islands

is not unique to the Chagos Archipelago but is likely pre-

sent at other islands where foraging seabirds nest or

spend extended periods of time (McCauley et al., 2012).

This effect could reflect enhanced overall elasmobranch

abundance, however, given that most of the Chagos

islands remain rat-infested, and the limited intensity of

coverage reported here, it is possible that the enhanced

density we observed around rat-free islands simply reflects

a redistribution of the existing population, which would

be a less positive conservation outcome. Confirming the

potential for rat eradication on oceanic islands to enhance

overall populations of sharks and rays will require larger-

scale and long-term monitoring of these populations, a

goal that fixed-wing drones could help achieve cost-

effectively.

The use of water-landing fixed-wing UAVs
in ecology and conservation

Our UAV survey methods produced sufficient detections

to statistically detect significant differences in elasmo-

branch densities between habitats, without the need for

traditional invasive sampling techniques. Spatial differ-

ences in wildlife on islands with and without rats can fur-

ther support the case for rat eradications in general, and

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 11
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the use of a novel water-landing fixed-wing UAV for this

application has wider conservation applications in other

MPAs around the world. Long-range water-landing UAVs

have both abilities to cover large areas (currently a

~10 km range at 45–55 kph, 1 h+ endurance, in favour-

able winds not exceeding 20 kph at take-off) and to col-

lect images of a high enough resolution for the detection

of sharks and rays as a tool for conservation monitoring.

The UAV can be sent to areas which may be deemed too

dangerous or expensive to send people, opening new

opportunities for data collection and extending our spa-

tial and temporal understanding of other ecological ques-

tions. The waterproofed UAV allows for simple landing

anywhere on the sea without the need for a large, cleared

area of land or complex landing gear on a vessel. The

UAV is low-cost (<USD $3000 to build) in comparison

to other fixed-wing systems such as the Scan Eagle

(Hodgson et al., 2017) and it uses open-source mission

planning software and requires two people to operate it.

This makes the system a realistic technology option for

the Global South, providing technology acceptance and

stakeholder selection are carefully considered (Hubbard

et al., 2023).

Future steps towards the further use of a water-landing

fixed-wing UAV include detection of illegal, unreported

and unregulated (IUU) fishing, which has been identified

as one of an increasing threat to regional biodiversity

(Collins et al., 2021; Collins et al., 2023). Our UAV sys-

tem will ultimately include onboard automatic detection

algorithms designed to make surveying MPAs and Exclu-

sive Economic Zone (EEZ) borders for illegal fishing ves-

sels more efficient and the system will continue to be

developed as a valuable data collection tool for IUU activ-

ities (Morton, 2021). We are also applying and adapting

established technology adoption and acceptance methods

(Hahn et al., 2022; Rezaei et al., 2020; Venkatesh &

Bala, 2008) to understand and where possible alleviate

barriers to long-term use of this (and other) UAV systems

in the hands of local users in the Global South. In the

future, this UAV - in combination with our computer

vision algorithm for simple delineation and quantification

of objects of relevance in the images - provides a set of

tools for marine and terrestrial fauna monitoring in

remote islands with low barrier to entry.
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Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Appendix S1. Supporting information.

Figure S1. Complete workflow of the computer vision

method for delineating trees, sand and sea glitter.

Figure S2. Sea glints inspection and manual delineation

at the pixel level, using Photoshop. The pixel values

(between 0 and 255) within the delineation zone were

compared to the image pixel histograms created in

MATLAB. A range (170–255) was selected which incorpo-

rated all glints and sand.

Figure S3. Histograms from greyscale images containing

(i) sand and (ii) sea glitter, both with examples from

greyscale images. The threshold values of 180–255 encom-

passed sea glitter and sand pixels. The first large spike in

the sea glitter histogram depicts dark areas of sea. Sea

glints alone, range from 225 to 255.

Figure S4. Examples of images where the automated algo-

rithm for tree detection either overpredicted (A), pre-

dicted accurately (B) or underpredicted mask coverage

(C). Figure 6, image (A) shows no greenery. In manual

delineation, as there are no trees, zero pixels were selected

manually, however, the algorithm masked the darker blue

green of larger corals. Figure 6B shows a 0.9% difference

between modelled and manual masks, highlighting an

optimal image for the model.

Figure S5. Examples of detections from 2018 to 2020. (A)

Turtle at Egmont atoll, (B) Shark in the Saloman islands,

(C) Teleosts at Middle Brother island, D() Nurse sharks at

Middle Brother island, (E) Shark at Grand Ile Coquillage,

(F) Nurse shark at Grand Ile Coquillage, (G) Red footed

boobies at Grand Ile Coquillage, (H) Eagle ray at Grand Ile

Coquillage, (I) Whale shark at the Great Chagos Bank, (J)

Frigate bird at Resurgence island, (K) Turtles at Egmont

atoll, (L) Manta ray at the Great Chagos Bank.

Data S1. The script for pulling images into the algorithm,

which has the averaged channel values for RGB and sea

glitter and sand quantification, using automated masks.

Pixel distribution within the sea glitter and sand masks

were quantified in MATLAB by using a difference func-

tion (utilising the ‘Exclusive Or’ function) with binary

mask inputs (a�b)2, where a = pixels in image one and

b = pixels in image two. This function identifies the num-

ber of pixels in the two images that are different from

each other, which is then expressed as a %.
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