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ABSTRACT
Wepresent a dynamical approach to the study of unordered, attract-
ing manifolds of retrotone maps commonly known as carrying sim-
plices. Our approach is novel in that it uses the radial representation
of unordered manifolds over the probability simplex coupled with
distances between these manifolds measured by way of the Har-
nack andHausdorffmetrics. We establish Kuratowski convergence of
radial representations of unordered manifolds to a unique function
which then provides the locally Lipschitz radial representation of the
carrying simplex.
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1. Introduction

There is a large class of maps widely used to study discrete-time population dynamics that
preserve all faces of the first orthant of Euclidean space that are known as Kolmogorov
maps. By varying the functional forms of these maps, all the possible types of species inter-
actions for populations where there is no overlap of generations can bemodelled, including
predator-prey, mutualism and competition to name a few. Here we are interested in a spe-
cial subclass of those Kolmogorov maps that feature only competition which, following
recent research trends, we call retrotone. While much of the existing research uses compet-
itive map where we use retrotone map – indeed the distinction is not crucial (necessary)
for continuous time analogues – we prefer to use ‘retrotone’ to describe maps that repre-
sent competitive interactions that also have the specific feature that they preserve a convex
cone backwards in time. The Leslie–Gower map is an example of a competitionmodel that
is globally a retrotone map [17], but not all competitive maps are retrotone, even on their
global attractor; the planar Rickermap discussed later in Subsection 4.2 is a classic example
of a map that represents competitive interactions, but is only retrotone for a limited set of
parameter values.

The focus of the present work is the carrying simplex which is a well-studied feature
of population models with competitive interactions [7,11,12,23,26,27,31]. The carrying
simplex is a Lipschitz, codimension-one and compact invariant manifold that attracts all
nonzero points, and that is unordered, which means that the carrying simplex is non-
increasing in each coordinate direction. As we discuss later there are several ways of
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characterizing the carrying simplex, including as the set of nonzero points with globally
defined and bounded forward and backward orbits, or as the relative boundary of the global
attractor of bounded sets. The presence of the carrying simplex (which is asymptotically
complete) means that the limiting dynamics can be studied on the carrying simplex which
gives rise to a system of one fewer degree of freedom. This has been exploited by a number
of authors to study the global dynamics of both continuous and discrete-time population
models. For example, [10,16,17] study global dynamics of maps with a carrying simplex by
way of an index theorem. Baigent and Hou [3,4] utilize the carrying simplex in both con-
tinuous and discrete time models to construct Lyapunov functions on forward invariant
sets, and Montes de Oca and Zeeman [22] use the carrying simplex concept iteratively to
reduce a continuous-time competition model to an easily solved one-dimensional model.

That there exists such an invariant manifold under ecologically reasonable assumptions
is intuitive. We impose that the origin is unstable, which means that small population
densities grow; all the species cannot simultaneously go extinct. We also require that the
per-capita growth rate of a given species decreases with increasing densities of all species
(although we relax this to non-increasing for some densities later). This can be thought of
as modelling competition for resources. In differential equation models for competition,
these assumptions are typically sufficient for a carrying simplex to exist [11,14], but not
in the discrete time case. We follow other authors [12,15,26,31] and add further condi-
tions that render the map retrotone. Roughly speaking the retrotone property, which can
be imposed through spectral properties of the derivative of the map [12,15,26], aside from
modelling competitive interactions, puts restrictions on the maximal change in total pop-
ulation density over one generation, i.e. large radial changes under one application of the
map are not permitted. The retrotone properties of the map render the carrying simplex
unordered, so that it projects radially onto the probability simplex. Hence on the carrying
simplex, given the frequency of the species, i.e. a point in the probability simplex, the radial
coordinate, which is the total population density, is determined.

We argue that the radial representation, in which phase space is the cartesian product of
the probability simplex and the positive real line, is a natural coordinate choice, and it is the
main set of coordinates that we use here. In this description the carrying simplex is just the
graph of a continuous functions, locally Lipschitz on the interior of the phase space, over
the probability simplex. However, working with the radial representation presents techni-
cal difficulties at the boundary of phase space where derivatives can become unbounded.
To resolve this issue we use the Kuratowski metric to establish Hausdorff convergence of
the unordered manifolds generated by the graph transform approach. We generate one
increasing and one decreasing sequence of Kuratowski convergent sequences of unordered
manifolds and then we utilize the Harnack metric to show that the two limits are identical
and identified as the carrying simplex.

The paper is organized as follows. In Section 2, we introduce our notation and give
important definitions, such as for cone-orderings, unordered and weakly unordered sets,
retrotone maps and weakly retrotone maps, and attractors of various classes of sets. In par-
ticular, a definition of the carrying simplex is proposed (Definition 3.10). Since no standard
definition has been so far settled on, we choose to base our proposal on definitions in Refs
[12] and [26], perhaps with more dynamical flavour added (property (iv)). We mention
also some additional properties, (vi) up to (ix), that have appeared in some earlier papers.
We will see later that all those properties are satisfied under our assumptions. Section 3 is
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concerned with proof of the existence of the carrying simplex. Subsection 3.1 deals with
the dynamics of the map restricted to the boundary, and is crucial for establishing the
existence of a bounded rectangle on which the map is retrotone/weakly retrotone and
which contains the unique compact attractor of bounded sets. Conditions under which
the map is retrotone/weakly retrotone on the bounded rectangle are established in Sub-
sections 3.7 and 3.2 characterizes the compact attractor of bounded sets of the map. In
Subsection 3.3 we construct the carrying simplex/weak carrying simplex from sequences
of unordered/weakly unordered manifolds using the graph transform and Kuratowski
convergence radial coordinates, as well as give some of its properties. Attractor–repeller
pairings are used to establish further properties of the carrying simplex/weak carrying sim-
plex in Subsections 3.4, and 3.5 and 3.6 deal with asymptotic completeness and a Lipschitz
representation of the carrying simplex. In Section 4, we discuss some examples that illus-
trate the main ideas of the paper. Finally in Section 5, we show how to use our results
for retrotone [weakly retrotone] maps to derive conditions for the existence of a carrying
simplex [weak carrying simplex] for competitive systems of ordinary differential equations.

2. Notation and definitions

We will need the following notation and definitions.
‖·‖ stands for the Euclidean norm inRd, ‖·‖1 denotes the corresponding �1-norm inRd,

and ‖·‖∞ denotes the corresponding �∞-norm in Rd, d ≥ 1. For x, y ∈ Rd, x · y denotes
the standard inner product

∑d
i=1 xiyi in Rd.

For x ∈ Rd and A ⊂ Rd we write

dist(x,A) := inf{‖x − a‖ : a ∈ A},

and for nonempty compact A,B ⊂ Rd we denote by dH(A,B) their Hausdorff distance,

dH(A,B) := max{sup{dist(a,B) : a ∈ A}, sup{dist(b,A) : b ∈ B}}.

C+ := {x ∈ Rd : xi ≥ 0, i = 1, . . . , d}, and C++ := {x ∈ Rd : xi > 0, ı = 1, . . . , d} will
denote convex cones. C+ is often referred to as the first orthant and C++ is its interior.
∂C+ = C+ \ C++ is called the boundary of C+ (indeed, it is the boundary of C+ in Rd).

We denote N = {0, 1, 2, 3, . . .}. For a subset I ⊂ {1, . . . , d}, let R
d
I := {x ∈ Rd : xi = 0

for all i ∈ {1, . . . , d} \ I}, let (CI)+ := C+ ∩ R
d
I denote a k-dimensional face of CI , where

k = card I, and let (CI)++ := {x ∈ (CI)+ : xi > 0 for all i ∈ I} denote the relative interior
of (CI)+. ∂(CI)+ := (CI)+ \ (CI)++ is the relative boundary of (CI)+. A 1-dimensional
face is referred to as an ith axis, where I = {i}. Instead of (C{i})+, etc., we write (Ci)+,
etc. For x ∈ C+ let I(x) stand for the (unique) subset of {1, . . . , d} such that x ∈ (CI(x))++
(often I(x) is called the support of x).

Ā denotes the closure of A. Let D be a closed subset of C+. A ⊂ D is said to be rela-
tively open in D if there is an open subset U of Rd such that A = U ∩ D. IntD A (called the
relative interior of A in D) stands for the largest subset of A that is relatively open in D,
and bdD A = Ā \ IntD A. For x ∈ D, we say U ⊂ D is relative neighbourhood of x in D if
there exists a neighbourhoodV of x inRd such thatU = V ∩ D. Neighbourhoods/relative
neighbourhoods are tacitly assumed to be open/relatively open.
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For x, y ∈ C+, we write x ≤ y if xi ≤ yi for all i = 1, . . . , d, and x 	 y if xi < yi for all
i = 1, . . . , d. If x ≤ y but x 
= y we write x< y. The reverse relations are denoted by ≥,>
,�. Two points x, y ∈ C+ are said to be order-related if either x ≤ y or y ≤ x.

For x, y ∈ C+ such that x ≤ y we define the order interval as

[x, y] := {z ∈ C+ : x ≤ z ≤ y}.

We say B ⊂ C+ is order convex if for any x, y ∈ B with x ≤ y one has [x, y] ⊂ B.
Let ∅ 
= I ⊂ {1, . . . , d}. For x, y ∈ (CI)+, we write x ≤I y if xi ≤ yi for all i ∈ I, and

x 	I y if xi < yi for all i ∈ I. If x ≤I y but x 
= y we write x <I y. The reverse relations
are denoted by ≥I ,>I ,�I .

� := {x ∈ C+ :
∑d

i=1 xi = 1} denotes the standard probability (d − 1)-simplex. For
I ⊂ {1, . . . , d}, �I := � ∩ (CI)+.

For I ⊂ {1, . . . , d}, by πI we understand the orthogonal projection of C+ onto (CI)+.
� denotes the orthogonal projection along e onto V := e⊥, �u = u − (u · ê)ê = u −

(u · e)e/d. Here ei is the vector with a one at the ith position and zeros elsewhere and
e = ∑d

i=1 ei, ê = e/
√
d.

An important concept needed to describe the carrying simplex is that of unordered sets.
We also use a weaker notion of weakly unordered sets (introduced (but not in name) in
[15, Remark 2.1(f)]):

Definition 2.1: A set B ⊂ C+ is said to be unordered if no two distinct points of B are
ordered by the < relation.

A set B ⊂ C+ is said to beweakly unordered if for any ∅ 
= I ⊂ {1, . . . , d} no two distinct
points of B ∩ (CI)+ are ordered by the 	I relation.

Example 2.1: The standard probability simplex � ⊂ C+ is unordered.

Example 2.2: Let d>1. For a>0 consider the set

H(a) := bd
C+

[0, ae]

= {x ∈ C+ : ∀ i ∈ {1, . . . , d}0 ≤ xi ≤ a, ∃k ∈ {1, . . . , d} such that xk = a}.

The set H(a) is weakly unordered. To show this, suppose to the contrary that there are a
nonempty I ⊂ {1, . . . , d} and x, y ∈ H(a) ∩ (CI)+ with x 	I y, which means that xi < yi
for all i ∈ I and xj = yj = 0 for all j ∈ {1, . . . , d} \ I. But then xi < a for all 1 ≤ i ≤ d, so x
cannot belong to H(a). On the other hand, H(a) is not unordered: for example, ae1 < ae
and both belong to H(a).

Another important concept in the theory of carrying simplices is that of a retrotonemap.
Retrotonicity is the property that ensures that ordered points are ordered along backward
orbits.

Definition 2.2: A map F : C+ → C+ is retrotone in a subset B ⊂ C+, if, for all x, y ∈ B
with F(x) < F(y), one has that xi < yi provided yi > 0.
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A map F : C+ → C+ is weakly retrotone in B ⊂ C+ provided for all I ⊂ {1, . . . , d} and
any x, y ∈ B, if

F(x) < F(y) and Fi(x) < Fi(y) for all i ∈ I

then

x < y and xi < yi for all i ∈ I.

The name ‘retrotone’ in the context of competitive maps appeared first in Ref. [12]
and later in Refs [15,26] (however, notice that in Ref. [12] our ‘retrotone’ is called ‘strictly
retrotone’). The term ‘weakly retrotone’ was introduced in Ref. [15].

From now on, we assume that F = (F1, . . . , Fd) : C+ → C+ is a continuous map. We
will consider the dynamical system (Fn)∞n=0 on C+, where F0 = IdC+ and for convenience
we will write Fn = (Fn1 , . . . , F

n
d).

For x ∈ C+ we denote its forward orbit, O+(x), as

O+(x) := {Fn(x) : n ∈ N}.
A ⊂ C+ is forward invariant if F(A) ⊂ A, and invariant if F(A) = A.

By a backward orbit of x ∈ C+ we understand a set {. . . , x−n−1, x−n, . . . , x−2, x−1, x0}
such that x0 = x and x−n = F(x−n−1) for all n ∈ N (so as to allow for noninvertible maps).
A total orbit of x ∈ C+ is the union of a backward orbit of x and the forward orbit, O+(x).

Following the terminology as in Ref. [28] we say that B ⊂ C+ attracts the set A ⊂ C+ if
for each ε > 0 there is n0 ∈ N such that dist(Fn(x),B) < ε for all n ≥ n0 and all x ∈ A.

For a set A ⊂ C+ define its ω-limit set as

ω(A) :=
∞⋂
k=0

(∞⋃
l=k

Fl(A)

)
.

The dynamical system (Fn)∞n=0 is said to be asymptotically compact on A ⊂ C+ if for any
sequence (nk)∞k=0, nk → ∞, and any sequence (xk)∞k=0 ⊂ A, the sequence (Fnk(xk))∞k=0 has
a convergent subsequence.

Lemma 2.1 ([28, Proposition 2.10]): Assume that (Fn)∞n=0 is asymptotically compact on a
nonempty A. Then a compact B attracts A if and only if ω(A) ⊂ B.

Let B ⊂ C+ be forward invariant. By the compact attractor of bounded sets in B, wemean
a nonempty compact invariant set 	 ⊂ B that attracts any bounded A ⊂ B. Such a set is
unique (see [28, Theorem 2.19, p. 37]). By the compact attractor of neighbourhoods of com-
pact sets in Bwemean a nonempty compact invariant set 	 ⊂ B such that for any compact
A ⊂ B there is a relative neighbourhood U of A in B such that 	 attracts U. Such a set 	 is
unique (see [28, Theorem 2.19, p. 37]).

For B = C+ we say simply compact attractor of bounded sets, which is the same as the
compact attractor of neighbourhoods of compact sets.

Proposition 2.1 ([28, Theorem 2.20, p. 37]): Let B ⊂ C+ be forward invariant. The com-
pact attractor of bounded sets is characterized as the set of all x ∈ B having bounded total
orbits.
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A compact set B ⊂ C+ is called a uniform repeller in C+ if there is ε > 0 such that
lim infn→∞ dist(Fn(x),B) ≥ ε for any x ∈ C+ \ B. It is equivalent to the existence of a
neighbourhoodU ofB inC+ such that for each x ∈ U \ B there is n0 ∈ Nwith the property
that Fn(x) /∈ U for all n ≥ n0 (see [28, Remark 5.15, p. 136]).

We say that F : C+ → C+ is a Kolmogorov map if F = diag[id]f where f : C+ → C+.

Definition 2.3: The carrying simplex [resp. weak carrying simplex] for a Kolmogorov map
F : C+ → C+ is a subset 
 ⊂ C+ with the following properties:

(i) 
 is an unordered [resp. weakly unordered] subset of the (unique) compact attractor
of bounded sets 	.

(ii) 
 is homeomorphic via radial projection to the (d − 1)-dimensional standard prob-
ability simplex �.

(iii) F(
) = 
 and F�
 : 
 → 
 is a homeomorphism.
(iv) 
 attracts any bounded A ⊂ C+ with 0 /∈ Ā.
(v) For any x ∈ C+ \ {0} there is y ∈ 
 such that limn→+∞‖Fn(x) − Fn(y)‖ = 0 (this

property is called asymptotic completeness or asymptotic phase) [resp. for any x ∈ 	 \
{0} there is y ∈ 
 such that limn→+∞‖Fn(x) − Fn(y)‖ = 0].

For the carrying simplex, the unorderedness in (i) appears in Ref. [11] (but not explicitly
inRef. [32] or [33]) in the case of competitive systems ofODEs, and inRefs [26,27,31] in the
discrete time case. For the weak carrying simplex, the weak unorderedness in (i) appears in
Ref. [14] in the case of competitive systems of ODEs, and in Ref. [15] in the discrete time
case. The fact that 
 is contained in the compact attractor of bounded sets 	 is seldom
explicitly mentioned (as in Ref. [27]), but it follows from dissipativity assumed in other
papers.

Property (ii) is usually mentioned explicitly (but in Ref. [26] the homeomorphism is
defined in another way).

Invariance in (iii) is always mentioned.
To our knowledge, the only place where property (iv) has been explicitly stated is in Ref.

[15, p. 291]. Indeed, in many papers it can be inferred from the property that the carrying
simplex is obtained therein as the upper boundary of the repulsion basin of {0}, see, e.g.
[27,31].

Property (v) is present everywhere, starting from Ref. [11, Lemma 4.4].
Below we mention some additional properties.

(vi) 
 is the boundary (relative to C+) of 	 and 	 is order convex. In particular, 	 =
{αx : α ∈ [0, 1], x ∈ 
}.

(vii) 	 \ 
 = {αx : α ∈ [0, 1), x ∈ 
} is characterized as the set of all those x ∈ C+ that
have a backward orbit {. . . , x−2, x−1, x} with limn→∞ x−n = 0.

(viii) 
 is characterized as the set of all x ∈ C+ having total orbits that are bounded and
bounded away from 0.

(ix) The inverse (��
)−1 of the orthogonal projection of 
 along e is Lipschitz
continuous.

As stated earlier, in the existing papers (vi) is one of the main ingredients in the proof
of the existence of the carrying simplex (cf., for example, [26, Theorem 6.1]).
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The characterizations given in (vii) and (viii) appear in Ref. [26]. In the present paper,
they follow from abstract dynamical systems theory.

(ix) occurred first in Ref. [11]. Since then it has seldom appeared.
It has been frequently mentioned that the carrying simplex is unique. It follows from

the conjunction of (i) and (ii), or from (iv) (using forward invariance of all faces), however
in our approach it is simpler to use the additional property (viii).

3. Existence of a carrying simplex

We give two sets of assumptions which guarantee the existence of the carrying simplex
(Theorem 3.1).

In the case of the first set, (A1) up to (A4), we start by assuming the existence of some
bounded rectangle � such that F restricted to �, F��, is [weakly] retrotone (assumption
(A3)).Wework this way because not allmapswith a carrying simplex are retrotone on all of
C+ (an example is given in Subsection 4.2). We prove then that F�� satisfies Definition 2.3
with instances of C+ replaced by �. As [weak] retrotonicity is often difficult to prove
directly, in Subsection 3.7 we give sufficient conditions, formulated in terms of the spectral
radius of some matrix, for weak retrotonicity or retrotonicity to be satisfied. Those condi-
tions are fulfilled for many discrete time competition models, as explained in Section 4.

The second set of assumptions, with (A4) replaced by (A4), covers the case when F is
the time-onemap of a competitive system of ODEs, and we utilize it in Section 5 to recover
well-known conditions for the existence of a carrying simplex in a system of competitive
ODEs. Then retrotonicity on the whole of C+ is a consequence of the Müller–Kamke the-
ory [19,24]. On the other hand, (A4) may be difficult to check, so it is replaced by (A4).
Now, the role of � can be played by any sufficiently large rectangle.

The main part of the present section, Subsection 3.3, contains a proof of the existence
of a set 
 satisfying (i), (ii) and (iii) in Definition 2.3. Also, the additional property (vi) is
proved there.

In the second step (Subsection 3.4) we show that all points in C+ eventually enter and
stay in �, so that, with the help of the dynamical systems theory, 
 actually attracts any
bounded A ⊂ C+ with 0 /∈ Ā (property (iv)). The map is not required to be retrotone out-
side �. As a by-product, we obtain the satisfaction of the additional properties (vii) and
(viii).

Subsection 3.5 contains a proof of property (v) (so, only at that point can 
 be legit-
imately called the carrying simplex). A proof of the additional property (ix) is given in
Subsection 3.6.

We make the following assumptions:
Let F : C+ → C+ be a Kolmogorov map F := diag[id]f where f : C+ → C+ satisfies

(A1) f is continuous, with f (x) � 0 for all x ∈ C+;
(A2) fi(ei) = 1, i = 1, . . . , d;
(A3) there exists κ > 0 such that, putting � := [0, (1 + κ)e],

(A3-a) F�� : � → F(�) is a local homeomorphism,
(A3-b) F is weakly retrotone in �,

(A4) for any x, y ∈ C+, if x< y then
(A4-a) fi(x) ≥ fi(y) for all i, and
(A4-b) fi(x) > fi(y) for those i for which xi < yi;
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In (A3-a) by a local homeomorphism we mean that for each x ∈ � there exist a relative,
in �, neighbourhood U of x and a relative in F(�) neighbourhood V of F(x) such that
F�U : U → V is a homeomorphism.

Remark 3.1: From (A1) it follows that for any ∅ 
= I ⊂ {1, . . . , d} there holds
F((CI)++) ⊂ (CI)++ and F−1((CI)++) ⊂ (CI)++.

Remark 3.2: In (A2), we assume that each axis has a fixed point of F at ei, but by rescaling
we may deal with fixed point at qiei for any set of qi > 0, i = 1, . . . , d.

Put �′ := � \ {0}.
Lemma 3.1: Assume (A1) and (A3-a). Then F�� is a homeomorphism onto its image.

Proof: By (A3-a), the map F�� is a local homeomorphism. Since � is compact, F�� is
a proper map. Further, � being connected, its image F(�) is connected, and, as it does
not contain critical points (i.e. points where F is not locally invertible), we can apply [5,
Lemma 2.3.4] to conclude that the cardinality of (F��)−1(y) is constant for all y ∈ F(�). As
it follows from the Kolmogorov property and (A1) that card F−1(0) = 1, F�� is injective,
so, being continuous from a compact space, is a homeomorphism onto its image. �

(For similar reasoning see [26, Lemma 4.1]).
Sometimes instead of (A3)–(A4) we make the following stronger assumptions:

(A3′) there exists κ > 0 such that, putting � := [0, (1 + κ)e],
(A3′-a) F�� : � → F(�) is a local homeomorphism, and
(A3′-b) F is retrotone in �;

(A4′) for any x, y ∈ C+, if x< y then fi(x) > fi(y) for all i.

Under (A3) we will occasionally need a modified form of (A4), namely

(A4) for any x, y ∈ �, if F(x) < F(y) then
(A4-a) fi(x) ≥ fi(y) for all i, and
(A4-b) for those i for which Fi(x) < Fi(y) there holds either xi = 0 or fi(x) > fi(y).

Similarly, under (A3′) we will occasionally need a modified form of (A4′), namely

(A4′) for any x, y ∈ �, if F(x) < F(y) then fi(x) > fi(y) for all i, provided xi > 0.

As will be seen later, the assumptions (A4) and (A3) are not, in general, independent of
each other. Our motivation is that we wish to strike a balance between assumptions that
are reasonably general and, on the other hand, easy to check.

In particular, since (A4) and (A3-b) imply (A4), one may well ask why we have not
chosen to assume the latter only. The reason is that in the case when F is given by a closed-
form formula and is not necessarily injective on the whole of C+ (as, for instance, in the
planar Ricker model, see Subsection 4.2), the checking of whether (A4) is satisfied could
be a difficult task, whereas (A4) is a simple consequence of the negativity of the relevant
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derivatives. On the other hand, when F is the time-one map in the semiflow generated by
a competitive system of ODEs, both (A4) and (A3-b) are fairly direct consequences of the
Müller–Kamke theorem (see Section 5), whereas we see no reason why (A4) should be
satisfied.

The remainder of this section is devoted to the proof of the following existence theorem
for the weak carrying simplex or carrying simplex:

Theorem 3.1: Under the assumptions (A1)–(A3), and (A4) or (A4) where κ can be arbi-
trary (so that � could be all of C+), there exists a weak carrying simplex 
. If we assume
additionally (A3′) or (A4′), 
 is a carrying simplex. Moreover, 
 satisfies the additional
properties (vi)–(ix).

3.1. Restriction of the dynamical system (Fn)∞n=0 to the axes

For F satisfying (A1) we define one-dimensional maps Gi : [0,∞) → [0,∞), i ∈
{1, . . . , d}, throughGi(s) := sgi(s), where gi(s) := fi(sei). The mapGi is the dynamical rule
F restricted to the forward invariant ith axis, and Gn

i , for n ∈ N, denotes the nth iterate
of Gi.

In the remainder of the present subsection, the terms from the theory of dynamical
systems, such as attractor, ω-limit set, etc. will refer to each one-dimensional dynamical
system (Gn

i )
∞
n=0, i = 1, . . . , d. The following results are straightforward to prove, cf., e.g.

[26, Lemma 6.6].

Lemma 3.2: Under (A1)–(A4), for i ∈ {1, . . . , d} the following holds.

(a) 1 is the unique fixed point of Gi on (0,∞).
(b)

Gi(s)

⎧⎪⎨⎪⎩
∈ (s, 1) for s ∈ (0, 1),
= s for s = 1
∈ (0, s) for s ∈ (1,∞).

(c) For any s ∈ (0,∞) the sequence (Gn
i (s)) converges, as n → ∞, to 1 in an eventually

monotone way.
(d) For s ∈ (1, 1 + κ] there holds Gi(s) ∈ (1, s), hence the sequence (Gn

i (s)) strictly
decreases to 1.

Under (A1)–(A3) and (A4), for i ∈ {1, . . . , d} the following holds.

(a)′ 1 is the unique fixed point of Gi on (0, 1 + κ].
(b)′

Gi(s)

⎧⎪⎨⎪⎩
∈ (s, 1) for s ∈ (0, 1),
= s for s = 1
∈ (1, s) for s ∈ (1, 1 + κ].
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(c)′ For any s ∈ (0, 1) the sequence (Gn
i (s)) strictly increases, as n → ∞, to 1, and for any

s ∈ (1, 1 + κ] the sequence (Gn
i (s)) strictly decreases, as n → ∞, to 1

Lemma 3.3: Let (A1)–(A3) hold. Assume moreover (A4) or (A4). Let a ∈ [0, 1 + κ]. Then
for each i ∈ {1, . . . , d} and each n ∈ N, Gn

i is an increasing homeomorphism of [0, a] onto
[0,Gn

i (a)].

Proposition 3.1: Let (A1)–(A3) hold. Assume moreover (A4) or (A4) where κ can be arbi-
trary. Then for each i ∈ {1, . . . , d}, the invariant set [0, 1] is the compact attractor of bounded
sets in [0,∞).

3.2. Existence of the compact attractor� of bounded sets

Throughout the present subsection, we assume (A1)–(A3). Later on, our assumptions will
be successively strengthened.

Lemma 3.4: (a) Assume (A4) or (A4). Let a ∈ (0, 1 + κ]. Then Fn([0, ae]) ⊂ [0,Gn(a)] =
Gn([0, a]) for all n ∈ N.

(b) Assume (A4). Let a>0. Then Fn([0, ae]) ⊂ Gn([0, a]) for all n ∈ N.

Proof: We prove the lemma by induction on n. For n=0 we have [0, a] = G0
i ([0, a]).

Assume that the inclusion holds for some n ∈ N.
In case (a), suppose to the contrary that there is x ∈ [0, ae] such that Fn+1(x) /∈

[0,Gn+1(a)], which means that there are j ∈ {1, . . . , d} such that Fn+1
j (x) > Gn+1

j (a). Fix
such a j. We have thus

F(Fn(x)) = Fn+1(x) > Gn+1
j (a)ej = F(Gn

j (a)ej)

with Fn(x),Gn
j (a)ej ∈ �, so, by weak retrotonicity (A3-b), Fnj (x) > Gn

j (a), which contra-
dicts our inductive assumption. The last equality is a consequence of Lemma 3.3.

In case (b), for x ∈ [0, ae],

Fn+1
i (x) = Fni (x)fi(F

n(x))

≤ Fni (x)fi(F
n
i (x)ei) (by (A4-b))

= Fni (x)gi(F
n
i (x)) = Gi(Fni (x)) (by the definitions of gi and Gi)

∈ Gi(Gn
i ([0, a])) (by inductive hypothesis).

�

From now on until the end of the present subsection, we assume additionally (A4) or
(A4).

Lemma 3.5: (a) For n ∈ N, Fn(�) ⊂ [0,Gn(1 + κ)]. In particular, F(�) ⊂ IntC+ �.
(b) F([0, e]) ⊂ [0, e]. Under (A3′) or (A4′), if x ∈ [0, e] \ {0, e1, . . . , ed} then F(x) ∈

Int(CI(x))+([0, e]).

Proof: The first sentences in (a) and (b) are direct consequences of Lemma 3.4. The second
sentence in (a) follows since, by Lemma 3.2(b) or (b)′, Gi(1 + κ) < 1 + κ for all i.
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Assume (A3′), and suppose to the contrary that there is x ∈ [0, e] \ {0, e1, . . . , ed} such
that F(x) ∈ bd(CI(x))+([0, e]). Take i ∈ I(x) such that Fi(x) = 1. We have F(x) > ei, and
there is j ∈ I(x), j 
= i, such that xj > 0. By retrotonicity (A3′-b), x �I(x) ei, a contradic-
tion.

Assume (A4′), and let x ∈ [0, e] \ {0, e1, . . . , ed}. If i ∈ I(x) is such that xi < 1 then, by
(A4′) and Lemma 3.2(b),

Fi(x) = xifi(x) ≤ xigi(xiei) = Gi(xi) < 1.

If xi = 1 then, as x 
= ek, k = 1, . . . , d, there is some j ∈ I(x) \ {i} such that xj > 0, so we
can apply (A4′) to conclude that

Fi(x) = xifi(x) < xigi(xiei) = Gi(xi) ≤ 1.

�

Let us now define what will be shown to be the global attractor of compact sets, named
	 in anticipation:

	 :=
∞⋂
n=0

Fn(�).

Such a definition was given in Ref. [15, Lemma 5.4]. 	, being the intersection of a decreas-
ing family of compact nonempty sets, is compact and nonempty. Further, since� ⊃ . . . ⊃
Fn(�) ⊃ Fn+1(�) . . ., there holds 	 = ω(�).

Lemma 3.6: 	 = ⋂∞
n=0 F

n([0, e]). Moreover, ei ∈ 	 for all i ∈ {1, . . . , d}.

Proof: Since [0, e] ⊂ �, the ‘⊃’ inclusion is straightforward. To prove the other inclu-
sion, observe first that it follows from Lemmas 3.5(a) and 3.2(c) or (c)′ that 	 ⊂ [0, e].
Consequently,

	 = ω(	) ⊂ ω([0, e]) =
∞⋂
n=0

Fn([0, e]),

where the last equality holds since [0, e] ⊃ . . . ⊃ Fn([0, e]) ⊃ Fn+1([0, e]) . . .. Finally, each
ei ∈ 	 because they are fixed points contained in �. �

It should be remarked that in Ref. [27, Proposition 3.5] an analogue of 	 was defined as
this same set

⋂∞
n=0 F

n([0, e]).
Until the end of the present subsection, in case of (A4) we assume furthermore that any

positive number can serve as κ.

Lemma 3.7: For a bounded A ⊂ C+ there is n0 such that Fn(A) ⊂ � for all n ≥ n0. In
particular, � attracts bounded sets A ⊂ C+.

Proof: Let A ⊂ C+ be a bounded set and choose a>1 such that A ⊂ [0, ae]. Since, by
Proposition 3.1, for each i ∈ {1, . . . , d} in the dynamical system (Gn

i ) the set [0, 1] attracts
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[0, a], there exists n0 ∈ N such that for all n ≥ n0 and all i ∈ {1, . . . , d} the set Gn
i ([0, a]) is

contained in [0, 1 + κ). From Lemma 3.4 it follows that

Fn([0, ae]) ⊂ Gn([0, a]) ⊂ �

for all n ≥ n0. �

Collecting the various results of this subsection together we obtain the following
characterization of 	:

Theorem 3.2: (a) 	 is the compact attractor of bounded sets in C+.
(b) 	 is characterized as the set of those x ∈ C+ for which there exists a bounded total orbit.

Proof: Let A ⊂ C+ be bounded. By Lemma 3.7, (Fn) is asymptotically compact on A;
moreover,ω(A) ⊂ ω(�) = 	. Therefore, by Lemma 2.1,	 attractsA. This proves (a). The
characterization given in (b) is a consequence of Proposition 2.1. �

A consequence of Theorem 3.2 is

Lemma 3.8: For x ∈ C+ the following are equivalent.

(1) x ∈ 	.
(2) There is a total orbit of x, contained in �.
(3) There is a bounded backward orbit of x.

	 is the largest compact invariant set inC+ (see [28, Theorem2.19, p. 37]). Further, since
	 ⊂ � and, by Lemma 3.1, F�� is a homeomorphism onto its image, F�	 is a homeomor-
phism onto 	, so ((F�	)n)∞−∞ is a (two-sided) dynamical system on the compact metric
space 	 (and 	 is the largest subset of C+ with that property).

(In some papers [12,31] 	 is called the global attractor for F.)

3.3. Construction of the carrying simplex

In the present subsection, we always assume (A1)–(A3), and (A4) or (A4). At some places
we assume (A3′) or (A4′). For convenience we write F instead of F��.

Denote by T the radial projection of C+ \ {0} onto the unit probability simplex �,
T(x) := x/‖x‖1.

Following Ref. [2], let Û [resp. U] stand for the set of bounded and weakly unordered
[resp. unordered] hypersurfaces contained in � that are homeomorphic to the standard
probability simplex � via radial projection. In particular, a hypersurface S ∈ Û is at a
positive distance from the origin, as the radial projection is not defined at 0.

It follows that for any S ∈ Û the inverse of the restriction (T�S)−1 can be written as

� � u �→ R(u)u,

where R : � → (0,∞) is a continuous function (called the radial representation of S). In
other words,

x = R(T(x))T(x), x ∈ S.
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For S ∈ Û , its complement C+ \ S is the union of two disjoint sets, a bounded one, S−, and
an unbounded one, S+. One has S− = [0, 1)S, S+ = (1,∞)S.Wewill write ∂S for S ∩ ∂C+.
∂S = bdC+ S.

The following consequence of the weak unorderedness of an element of Û will be used
several times, so we formulate it as a separate lemma.

Lemma 3.9: Let S ∈ Û . There are no two points x< y on S such that xi < yi for all i ∈ I(y).

Proof: Suppose to the contrary that there are such x and y. Then x, y ∈ (CI(y))+ with
x 	I(y) y, which contradicts the fact that S is weakly unordered. �

Lemma 3.10: If S ∈ Û then F(S) ∈ Û . If S ∈ U then F(S) ∈ U . If (A3′) or (A4′) holds, F
maps Û into U .

Proof: Let S ∈ Û . We prove first that F(S) is weakly unordered. Indeed, suppose there
are ∅ 
= I ⊂ {1, . . . , d} and x, y ∈ S ∩ (CI)++ such that F(x) 	I F(y). Then, by weak
retrotonicity (A3-b), x 	I y, which is impossible.

Since F is continuous on C+ and S ⊂ � is compact, F(S) is compact, and, by
Lemma 3.5(a), F(S) is a subset of �′. Define F̂ on �′ as F̂ = F/‖F‖1, in other words,
F̂ = T ◦ F. Then F̂ is a continuous map on �′, and consequently the continuous map
F̂�S : S → � is proper. By Lemma 3.1, F is invertible, and T�F(S) is locally invertible at
each element of F(S), since otherwise F(S)would not be weakly unordered, which has been
excluded in the previous paragraph. Hence F̂�S is locally invertible at each x ∈ S, and we
can apply [5, Corollary 2.3.6] to conclude that F̂�S is a homeomorphism onto�. Therefore,
F(S) ∈ Û .

Let S ∈ U . If there are x, y ∈ S such that F(x) < F(y) then, by weak retrotonicity (A3-b),
x< y, which contradicts the unorderedness of S.

Assume that (A3′) or (A4′) holds, and let S ∈ Û . Suppose to the contrary that F(S) is
not unordered, that is, there are x, y ∈ S such that F(x) < F(y).

In the case of (A3′) it follows from retrotonicity (A3′-b) that xi < yi for all i ∈ I(y) =
I(F(y)), which is in contradiction to Lemma 3.9.

We consider now the case of (A4′).We already know that F(S) is weakly unordered, so, as
a consequence of Lemma 3.9, I(F(y)) is the disjoint union of two nonempty sets, J := {i ∈
I(F(y)) : 0 < Fi(x) = Fi(y)} and K := {i ∈ I(F(y)) : Fi(x) < Fi(y)}. By weak retrotonic-
ity (A3-b), xi ≤ yi for all i ∈ I(y) = I(F(y)), with xi < yi for all i ∈ K. Applying again
Lemma 3.9, this time to S, we obtain that xj = yj for at least one j ∈ J. Fix such a j. But
(A4′) gives us fj(x) > fj(y), hence Fj(x) = xjfj(x) > yjfj(y) = Fj(y), which contradicts the
fact that j ∈ J. �

We now introduce a partial order relation for the hypersurfaces in Û . For S, S′ ∈ Û ,
let R,R′ denote their respective radial representations. We write S � S′ if R(u) ≤ R′(u)
for all u ∈ �, S ≺ S′ if S � S′ and S 
= S′, and S≺≺ S′ if R(u) < R′(u) for all u ∈ �. It is
straightforward that S ≺ S′ if and only if R(u) ≤ R′(u) for all u ∈ � and there is v ∈ �

with R(v) < R′(v) and observe that S � S′ if and only if S ⊂ S′ ∪ (S′)− (or, which is the
same, S′ ⊂ S ∪ S+).

We assume the convention that 0≺≺ S for any S ∈ Û .
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For S � S′ we denote

〈S, S′〉 := [1,∞)S ∩ [0, 1]S′,

and for S≺≺ S′ we denote

〈〈S, S′〉〉 := (1,∞)S ∩ [0, 1)S′.

In other words, 〈S, S′〉 = {λu : λ ∈ [R(u),R′(u)], u ∈ �}, and 〈〈S, S′〉〉 = {λu : λ ∈ (R(u),
R′(u)), u ∈ �}. In particular, 〈0, S〉 = {λu : 0 ≤ λ ≤ R(u), u ∈ �} = [0, 1]S.

Notice that S � S′ if and only if S ⊂ 〈0, S′〉.
The following lemma shows that the volume 〈S, S′〉 between two hypersurfaces in Û is

the union of order intervals and hence is order convex.

Lemma 3.11: For S, S′ ∈ Û with S � S′,

〈S, S′〉 =
⋃
x∈S
y∈S′

[x, y]

and is order convex.

Proof: The ‘⊂ ’ inclusion is straightforward. Assume that z ∈ [x, y] with x ∈ S and y ∈ S′.
There are ξ ∈ S and η ∈ S′ such that z = αξ = βη. We claim that α ≥ 1 and β ≤ 1.
Indeed, suppose that α < 1. Then x ≤ z 	I ξ , where I := I(z) = I(ξ), with both x and
ξ in S. If I(x) = I then x 	I ξ , which contradicts the weak unorderedness of S. If not,
we can find x̃ ∈ S ∩ (C++)I so close to x that x̃ 	I ξ , which again contradicts the weak
unorderedness of S. The case β > 1 is excluded in much the same way. We have thus
z ∈ [R(T(z)),R′(T(z))]T(z), with ξ = R(T(z))T(z) and η = R′(T(z))T(z). Finally, as a
consequence of the equality, 〈S, S′〉 is order convex. �

The property described in the result below has appeared in the literature, see, e.g. [18,
Proposition 2.1]. As the assumptions of Fmade in the present paper are different (e.g. weak
retrotonicity), we have decided to give its reasonably complete proof.

Lemma 3.12: Assume (A1)–(A3). Then for any x, y ∈ �, if F(x) ≤ F(y), then

(i) x ≤ y,
(ii) [0, F(y)] ⊂ F([0, y]),
(iii) [F(x), F(y)] ⊂ F([x, y]).

Proof: Suppose that F(x) ≤ F(y). If F(x) = F(y), then as, by Lemma 3.1, F is a homeo-
morphism of� onto its image, x= y. This leaves the case F(x) < F(y), when the statement
(i) follows from (A3-b).

Regarding (ii), the conclusion is obvious if y=0. Assume y>0 with support I = I(y).
Then, by Lemma 3.10 for Û restricted to (CI)+,

S = bd
(CI)+

[0, y] ∈ Û�(CI)+ and F(S) = F( bd
(CI)+

[0, y]) ∈ Û�(CI)+ .

F��, being a homeomorphism of � onto F(�), takes bd�I [0, y] = bd(CI)+[0, y] = S onto
bd�I F([0, y]) = bd(CI)+ F([0, y]) = F(S). So F([0, y]) is a compact set contained in (CI)+
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whose relative boundary in (CI)+ equals F(S). Further, [0, y] is a (card I)-dimensional
topological disk whose manifold boundary, that is ([0, y] ∩ ∂(CI)+) ∪ S, separates R

d
I into

two components, one of them (the bounded one) being just [0, y] (the Jordan–Brouwer
separation theorem, see, e.g. [29, Theorem 4.7.15, p. 198]). The restriction F�[0,y], being a
homeomorphism onto its image, preserves the manifold boundary. It follows from (A1)
that F(([0, y] ∩ ∂(CI)+) ∪ S) = (F([0, y]) ∩ ∂(CI)+) ∪ F(S). The manifold boundary of
F([0, y]) separates R

d
I into two components, the bounded one being just F([0, y]). But that

component is just equal to 〈0, F(S)〉. For more on manifolds, their boundaries, etc., see
[21, pp. 24–27]. Since F(y) ∈ F(S), Lemma 3.11 shows [0, F(y)] ⊂ 〈0, F(S)〉 = F([0, y]), as
required.

Now we show that for x, y ∈ � such that F(x) ≤ F(y) we have [F(x), F(y)] ⊂ F([x, y]).
If F(x) = F(y) then as F is a homeomorphism x= y and the inequality holds trivially.
Thus suppose F(x) < F(y). Let ζ ∈ [F(x), F(y)] so that F(x) ≤ ζ ≤ F(y). In particular
0 ≤ ζ ≤ F(y) so that ζ ∈ [0, F(y)]. By the previous paragraph, ζ ∈ [0, F(y)] ⊂ F([0, y]).
Thus there exists z ∈ [0, y] such that F(z) = ζ , and then F(x) ≤ F(z) ≤ F(y), which by
weak retrotonicity gives x ≤ z ≤ y, i.e. z ∈ [x, y]. �

Lemma 3.13: For S ∈ Û , F(〈0, S〉) = 〈0, F(S)〉.

Proof:

〈0, F(S)〉 =
⋃

y∈F(S)

[0, y] (by Lemma 3.11)

=
⋃
x∈S

[0, F(x)]

⊂
⋃
x∈S

F([0, x]) (by Lemma 3.12)

= F

(⋃
x∈S

[0, x]

)
= F(〈0, S〉) (by Lemma 3.11).

Suppose to the contrary that there is z ∈ F(〈0, S〉) \ 〈0, F(S)〉. Let y be the unique mem-
ber of F(S) such that y = αz with α > 0. By our choice of z, we have α < 1 and y 	I z,
where I := I(z) = I(y). Let η ∈ S and ζ ∈ 〈0, S〉 be such that F(η) = y and F(ζ ) = z.Weak
retrotonicity (A3-b) yields η 	I ζ . Let x be the unique member of S such that x = βζ

with β ≥ 1. Then x ∈ S ∩ (CI)++, and either ζ = x or ζ 	I x. At any rate, η 	I x, which
contradicts the weak unorderedness of S. �

Lemma 3.14: F preserves the � and relations on Û .

Proof: Let S, S′ ∈ Û , S � S′, which means that S ⊂ 〈0, S′〉. Then, by Lemma 3.13, F(S) ⊂
F(〈0, S′〉) = 〈0, F(S′)〉, that is, F(S) � F(S′).

Assume that S≺≺ S′. By the previous paragraph, F(S) � F(S′), and by the fact that F�� is
a homeomorphism onto its image, F(S) and F(S′) are disjoint, consequently F(S)≺≺ F(S′).

�
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For any i ∈ {1, . . . , d}, by (A2), fi(ei) = 1, and 0 = F(0) < F(ei) = ei with 0i < (ei)i, so,
by (A4) or (A4), fi(0) > 1. Let ε ∈ (0, 1) be small enough that min1≤i≤d fi(x) > 1 for all
x ∈ 〈0, S0〉, where S0 := ε�. S0 ⊂ �, is unordered and projects homeomorphically on �,
so it belongs to U .
Proposition 3.2: {0} is a uniform repeller for (Fn)∞n=0.

Recall that we are not assuming that F is C1: As U in the definition of uniform repeller
we take 〈0, S0〉. It follows from the choice of S0 that there is δ > 0 such that fi(x) ≥ 1 + δ,
i ∈ {1, . . . , d}, consequently ‖F(x)‖1 ≥ (1 + δ)‖x‖1, for all x ∈ U. So, if x ∈ U \ {0} we
have that there exists n0 ∈ N with the property that Fn0(x) /∈ U (n0 is not larger than the
least nonnegative integer n such that (1 + δ)n‖x‖1 ≥ ε, where ε > 0 is as in the definition
of S0). Since F�� is a homeomorphism onto its image contained in �, there holds Fn(x) /∈
U for all n ≥ n0. �

The sequence Sn := Fn(S0) ∈ U by Lemma 3.10. Denote by Rn : � → (0,∞) the radial
representation of Sn. By our choice of S0, we have S0 ≺≺ S1. Lemma 3.14 implies Sn ≺≺ Sn+1
for all n = 1, 2, . . .. As a consequence, for each u ∈ � the sequence (Rn(u))∞n=0 is strictly
increasing. Let R∗ stand for its pointwise limit.

We define

S∗ := {R∗(u)u : u ∈ �}.
We recall the definition of Kuratowski limit.

Definition3.1: S̃ is theKuratowski limit of the sequence (Sn)∞n=0 if the following conditions
are satisfied:

(K1) For each x ∈ S̃ there is a sequence (xn)∞n=0 such that xn ∈ Sn and limn→∞ xn = x.
(K2) For any sequence (xnk)

∞
k=1 with xnk ∈ Snk and nk −→

k→∞
∞, if limk→∞ xnk = x then

x ∈ S̃.

See [1, Definition 4.4.13]. Recall that dH stands for the Hausdorff metric on the fam-
ily 2� of nonempty compact subsets of �. (2�, dH) is a compact metric space (see [1,
Theorem 4.4.15]).

Lemma 3.15: (1) S∗ ⊂ S̃.
(2) S∗ is weakly unordered.

Proof: (1) is a consequence of the definitions of S∗ and S̃. Suppose to the contrary that
x, y ∈ S∗ ∩ (CI)+ are such that x 	I y. By construction, there are u, v ∈ �I such that
x = limn→∞ Rn(u)u and y = limn→∞ Rn(v)v. Since the relation 	I is relatively open in
(CI)+, Rn(u)u 	I Rn(v)v for n sufficiently large. But Rn(u)u,Rn(v)v ∈ Sn ∩ (CI)+, which
contradicts the weak unorderedness of Sn. �

Lemma 3.16: (1) dH(Sn, S̃) → 0 as n → ∞.
(2) S̃ is invariant under F.



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 17

Recall that F denotes here F��, so the invariance of S̃ means that, first, if x ∈ S̃ then
F(x) ∈ S̃, and, second, if x ∈ � is such that F(x) ∈ S̃ then x ∈ S̃.

Proof: Part (1) is a consequence of the fact that for the compact�, the Kuratowski conver-
gence and the convergence in theHausdorffmetric are the same, see [1, Proposition 4.4.15].

As a consequence, dH(Sn+1, S̃) → 0, as n → ∞. But Sn+1 = F(Sn), hence dH(F(Sn),
S̃) → 0 as n → ∞. On the other hand, F(Sn) converge to F(̃S) in the Hausdorff metric, so
S̃ = F(̃S). �

Next we consider the convergence of suitably generated decreasing sequences of weakly
unordered sets.

Put S0 := bdC+ � = H(1 + κ) ∈ Û (see Example 2.2). We will consider a sequence
(Sn)∞n=0, where S

n := Fn(S0). Lemma 3.10 shows that Sn := Fn(S0) ∈ Û for n = 1, 2, . . ..
By Lemma 3.5(a), we have S1 ≺≺ S0 and by Lemma 3.14, Sn+1 ≺≺ Sn for all n = 1, 2, . . ..

Denote by Rn : � → (0,∞) the radial representation of Sn. Since S0 ≺≺ S0, it follows
from Lemma 3.14 that Sn ≺≺ Sn ≺≺ . . . ≺≺ S1 ≺≺ S0 for all n ∈ N, consequently S∗ ≺≺ S0.
Again by Lemma 3.14, S∗ ≺≺ Sn for all n ∈ N, whichmeans that R∗(u) < . . . < Rn+1(u) <

Rn(u) < . . . < R0(u) for all u ∈ �. Therefore there exists limn→∞ Rn(u) =: R∗(u) ∈
[R∗(u),R0(u)). Define S∗ := {R∗(u)u : u ∈ �}, and put Š to be the Kuratowski limit of the
sequence (Sn)∞n=0. Note that by construction Š ⊂ [1,∞)S∗.

The following are analogues of Lemmas 3.15 and 3.16.

Lemma 3.17: (1) S∗ ⊂ Š.
(2) S∗ is weakly unordered.

Lemma 3.18: (1) dH(Sn, Š) → 0 as n → ∞.
(2) Š is invariant under F.

We introduce now the Harnack metric on C+. For more details see [20].
For x, y ∈ C+, x 
= 0, we define

λ(x, y) := sup{λ ≥ 0 : y − λx ∈ C+} = min
{
yi
xi

: 1 ≤ i ≤ d such that xi > 0
}
.

We put λ(x, y) = ∞ if and only if x=0. Following Ref. [20], we call λ the order function
on C+. μ(x, y) := min{λ(x, y), λ(y, x)} is the symmetrized order function on C+.

We define on C+ \ {0} the Harnack metric:

h(x, y) := 1 − μ(x, y).

Let x ≤ y both belong to (CI)++ for some ∅ 
= I ⊂ {1, . . . , d}. We have

μ(x, y) = λ(y, x) = min
{
xi
yi

: i ∈ I
}
.

The following is straightforward.

Lemma3.19: Let limn→∞ xn = x, limn→∞ yn = y, xn ≤ yn for all n ∈ N, and xn, yn, x, y ∈
(CI)++ for some ∅ 
= I ⊂ {1, . . . , d}. Then h(x, y) = limn→∞ h(xn, yn).
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Lemma 3.20: Let ∅ 
= I ⊂ {1, . . . , d} and x< y, x, y ∈ � ∩ (CI)++, be such that F(x) <

F(y) and Fi(x) < Fi(y) for i ∈ I. Then for each ∅ 
= J ⊂ I there holds

μ(πJ(F(x)),πJ(F(y))) > μ(πJ(x),πJ(y)).

Consequently

h(πJ(F(x)),πJ(F(y))) < h(πJ(x),πJ(y)).

Proof: We claim that

Fi(x)
Fi(y)

= xifi(x)
yifi(y)

>
xi
yi
.

Indeed, the above follows directly from (A4-b). In case of (A4), by weak retrotonicity in�

(A3-b), for each i ∈ I there holds xi < yi, and we can apply (A4-b).
Therefore,

μ(πJ(x),πJ(y)) = min
{
xi
yi

: i ∈ J
}

< min
{
Fi(x)
Fi(y)

: i ∈ J
}

= μ(πJ(F(x)),πJ(F(y))).

�

Now with the aid of the Harnack metric we may establish

Theorem 3.3: S∗ = S̃ = Š = S∗.

Proof: Westart by proving that S̃ = Š. Suppose not. Thismeans, in viewof Lemmas 3.15(1)
and 3.17(1), that there is v ∈ � such that the half-line starting at 0 and passing through v
intersects S̃ at x and intersects Š at y, where x< y. Put I := I(x). We have x, y ∈ (CI)++ and
x 	I y.

By Lemmas 3.16(2) and 3.18(2), S̃ and Š are invariant.
From weak retrotonicity (A3-b) it follows that F−n(x) 	I F−n(y) for all n ∈ N.
We write

α(x) := {z ∈ � : there is nk → ∞ such that F−nk(x) → z as k → ∞},
and similarly for α(y).

Fix ξ ∈ α(x). By passing to a subsequence, if necessary, we can assume that F−nk(y)
converges to η ∈ α(y) for the same sequence nk → ∞. There holds, by the closedeness of
the ≤ relation, ξ ≤ η. Put ∅ 
= J := I(ξ). Then ξ = πJ(ξ) and πJ(ξ),πJ(η) ∈ (CJ)++. We
have, in view of Lemmas 3.19 and 3.20,

h(πJ(ξ),πJ(η)) = lim
k→∞

h(πJ(F−nk(x)),πJ(F−nk(y))

= sup
n∈N

h(πJ(F−n(x)),πJ(F−n(y)) > 0,
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from which it follows that πJ(ξ) < πJ(η). Let K 
= ∅ be the set of those j ∈ J for which
ξj < ηj. Weak retrotonicity (A3-b) implies F−1(ξ) < F−1(η) and (F−1)j(ξ) < (F−1)j(η)

for all j ∈ K. We have, by Lemmas 3.19 and 3.20,

h(πK(ξ),πK(η)) = lim
k→∞

h(πK(F−nk(x)),πK(F−nk(y))

= sup
n∈N

h(πK(F−n(x)),πKF−n(y))

= lim
k→∞

h(πK(F−nk−1(x)),πK(F−nk−1(y))

= h(πK(F−1(ξ)),πK(F−1(η))).

But, again by Lemma 3.20, h(πK(F−1(ξ)),πK(F−1(η))) > h(πK(ξ),πK(η)), a contradic-
tion.

In a similar way we prove that it is impossible to have x, y ∈ S̃ [resp. x, y ∈ Š] with x< y.
As a consequence, we obtain the equality S∗ = S̃ [resp. S∗ = Š]. �

Proposition 3.3: (a) The functions Rn : � → (0,∞) converge uniformly, as n → ∞,
to R∗.

(b) The functions Rn : � → (0,∞) converge uniformly, as n → ∞, to R∗.
(c) S∗ ∈ Û . Under (A3′) or (A4′), S∗ ∈ U .
(d) S∗ is invariant under F.

Proof: Since � is compact, we use the fact that uniform convergence (to a func-
tion that is necessarily continuous) is equivalent to continuous convergence: for any
sequence (un)∞n=1 ⊂ � convergent to u there holds limn→∞ Rn(un) = R∗(u). To prove
the latter, observe that for any subsequence such that limk→∞ Rnk(unk)unk = x there
holds, by (K2) in Definition 3.1 and Theorem 3.3, x ∈ S∗. As, by the continuity of
T, limk→∞ T(Rnk(unk)unk) = T(x) and T(Rnk(unk)unk) = unk → u as k → ∞, we have
T(x) = u, hence x = R∗(u)u. This proves (a), the part of part (b) being similar.

Since S∗ equals, by Theorem 3.3, the Kuratowski limit S̃, it is compact, and as the
radial projection T�S∗ : S∗ → � is a continuous bijection, S∗ is homeomorphic to �. By
Lemma 3.15(2), S∗ is weakly unordered, consequently S∗ ∈ Û . The last sentence in part (c)
is a consequence of the equality S∗ = S̃, Lemmas 3.16(2) and 3.10.

Part (d) is, again in view of S∗ = S̃, a consequence of Lemma 3.16(2). �

We set 
 := S∗.
Observe that, by Proposition 3.3(c)–(d), 
 satisfies (i), (ii) and (iii) in the definition of

the carrying simplex [weak carrying simplex]. Notice also that by taking ε sufficiently small
in the definition of S0 we see that 
 attracts all points in � \ {0}.

Theorem 3.4: The compact attractor of bounded sets 	 = 〈0,
〉.
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Proof:

ω(�) =
∞⋂
n=0

cl

( ∞⋃
k=n

Fk(〈0, S0〉)
)

=
∞⋂
n=0

Fn(〈0, S0〉) (by Fn+1(〈0, S0〉) ⊂ Fn(〈0, S0〉))

=
∞⋂
n=0

〈0, Sn〉 (by Lemma 3.13)

= {αv : v ∈ �, 0 ≤ α ≤ inf
n
Rn(v)}

= {αv : v ∈ �, 0 ≤ α ≤ R∗(v)} = 〈0,
〉.
�

As it is straightforward that 
 is the relative boundary of 〈0,
〉 in C+, the satisfaction
of the additional property (vi) follows from Theorem 3.4 together with Lemma 3.11.

3.4. Back to dynamics on C+
Assume (A1)–(A3), and (A4) or (A4) where in case of (A4) we assume furthermore that
any positive number or ∞ can serve as κ. From now on, F is considered defined on the
whole of C+ again.

By Proposition 3.2, {0} ⊂ 	 is a uniform repeller (indeed, Proposition 3.2 states that {0}
is a uniform repeller for F��; but, as � is forward invariant, {0} is a uniform repeller for F,
too).

Recall that, by Theorem 3.2(b), 	 is the compact attractor of bounded sets in C+, which
is the same as the compact attractor of neighbourhoods of compact sets in C+. In the con-
text of Conley’s attractor–repeller pairs [6] we may decompose � into an attractor 
, a
repeller {0} and a set of connecting orbits. According to Ref. [28, Theorem 5.17, p. 137],
the compact attractor 	 of neighbourhoods of compact sets in C+ is the union of pairwise
disjoint sets,

	 = {0} ∪ E ∪ H, (1)

with the following properties:

• H attracts any bounded A ⊂ C+ with 0 /∈ Ā; further, if x ∈ C+ \ H has a bounded
backward orbit {. . . , x−n−1, x−n, . . . , x−2, x−1, x} then limn→∞ x−n = 0;

• E consists of those x ∈ 	 for which there exists a bounded total orbit {. . . , x−n−1, x−n,
. . . , x−2, x−1, x, x1, x2, . . . , xn, xn+1, . . .} such that limn→∞ x−n = 0 and limn→∞
dist(xn,H) = 0.

We claim that E = (0, 1)
. Indeed, because F�	 is a homeomorphism of 	 onto itself
and 
 is invariant, E ∩ 
 = ∅. As 0 /∈ E ⊂ 	, and 	 \ {0} is the disjoint union of (0, 1)

and 
, there holds E = (0, 1)
 and H = 
.

So we have the following classification of points in x ∈ C+.
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Theorem 3.5: (a) If x ∈ (0, 1)
, then Fn(x) ∈ (0, 1)
 for all n ∈ N and limn→∞
dist(Fn(x),
) = 0; furthermore, there exists a backward orbit {. . . , x−2, x−1, x} with
limn→∞ x−n = 0.

(b) If x ∈ 
, then Fn(x) ∈ 
 for all n ∈ N; furthermore, there exists a backward orbit
contained in 
.

(c) If x ∈ (1,∞)
 then limn→∞ dist(Fn(x),
) = 0, and there are the following possibili-
ties:
(1) Fn(x) ∈ (1,∞)
 for all n ∈ N;
(2) there is n0 ∈ N \ {0} such that Fn(x) ∈ (1,∞)
 for n = {0, . . . , n0 − 1} and

Fn(x) ∈ 
 for n ≥ n0;
(3) there is n0 ∈ N \ {0} such that Fn(x) ∈ (1,∞)
 for n = {0, . . . , n0 − 1} and

Fn(x) ∈ (0, 1)
 for n ≥ n0 .

Further we have

Proposition 3.4: 
 attracts any bounded A ⊂ C+ with 0 /∈ Ā. In other words, 
 is the
compact attractor of neighbourhoods of compact sets in C+ \ {0}.

We have thus obtained property (iv) in the definition of the carrying simplex [weak
carrying simplex], as well as the additional properties (vii) and (viii).

It follows from general results on attractors, see, e.g. [28, Theorems 2.39 and 2.40], that

, being a compact attractor of neighbourhoods of compact sets, is stable, meaning that
for each neighbourhood U of 
 in C+ there exists a neighbourhood V of 
 in C+ such
that Fn(V) ⊂ U for all n ∈ N. Indeed, by our construction, {〈〈Sn, Sn〉〉 : n ∈ N} is a base
of relatively open forward invariant neighbourhoods of 
, from which the stability of 


follows in a straightforward way.

3.5. Asymptotic completeness

Assume (A1)–(A3), and (A4) or (A4) where in case of (A4) we assume furthermore that
any positive number can serve as κ.

Proposition 3.5: Let additionally (A3′) or (A4′) hold. For each x ∈ C+ \ {0} there exists
y ∈ 
 such that limn→∞‖Fn(x) − Fn(y)‖ = 0.

Proof: As the case x ∈ 
 is obvious, in view of Lemma 3.7 and Theorem 3.5, by replacing x
with some of its iterates, we can assume that either Fn(x) ∈ (0, 1)
 or Fn(x) ∈ (1,∞)
 ∩
�, for all n ∈ N.

In the case Fn(x) ∈ (0, 1)
 for all n, let An := (Fn��)−1((Fn(x) + R
d+) ∩ 
). The

sets An are compact and, since (Fn(x) + R
d+) ∩ 
 are nonempty, they are nonempty,

too. We claim that An+1 ⊂ An. Indeed, let η ∈ An+1, which means that Fn+1(η) ∈ 


and Fn+1(x) ≤ Fn+1(η). Weak retrotonicity (A3-b) gives that Fn(x) ≤ Fn(η), that is, η ∈
(Fn��)−1((Fn(x) + R

d+) ∩ 
). The intersectionA := ⋂∞
n=0 An is compact and nonempty.

Pick y ∈ A. By construction, Fn(x) < Fn(y) for all n ∈ N. Suppose to the con-
trary that ‖Fn(x) − Fn(y)‖ 
→ 0 as n → ∞. Take a subsequence nk → ∞ such that
limk→∞ Fnk(x) = u and limk→∞ Fnk(y) = vwith u 
= v. Since the ≤ relation is preserved
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in the limit, we have u ≤ v, consequently u< v. By Theorem 3.5, both u and v belong to
,
which contradicts the unorderedness of 
 (Proposition 3.3(c)).

In the case Fn(x) ∈ (1,∞)
 ∩ � for all n, letAn := (Fn��)−1([0, Fn(x)] ∩ 
). The sets
An are compact and nonempty. We claim that An+1 ⊂ An. Indeed, let η ∈ An+1, which
means that Fn+1(η) ∈ 
 and Fn+1(η) ≤ Fn+1(x). Weak retrotonicity (A3-b) gives that
Fn(η) ≤ Fn(x), that is, η ∈ (Fn��)−1([0, Fn(x)] ∩ 
). The intersection A := ⋂∞

n=0 An is
compact and nonempty. Pick y ∈ A. By construction, Fn(y) < Fn(x) for all n ∈ N. The
rest of the proof goes as in the previous paragraph. �

Without the additional assumptions stated in Proposition 3.5 we have the weaker result.

Proposition 3.6: For each x ∈ 	 \ {0} there exists y ∈ 
 such that limn→∞‖Fn(x) −
Fn(y)‖ = 0.

Proof: Let a nonzero x ∈ 	 \ 
. The sets An are now defined as (Fn��)−1((Fn(x) +
R
d+) ∩ 
 ∩ (CI)+), where I := I(x). As in the proof of Proposition 3.5 we obtain the

existence of y ∈ 
 ∩ (CI)+ such that Fn(x) < Fn(y) for all n ∈ N. Take a subsequence
nk → ∞ such that limk→∞ Fnk(x) = u and limk→∞ Fnk(y) = v. By the closedness of the
≤ relation, u ≤ v. For j ∈ {1, . . . , d} \ I we have uj = vj = 0.

Let i ∈ I. By Lemma 3.20,

lim
k→∞

h(πi(Fnk(x)),πi(Fnk(y))) = inf
n∈N

h(πi(Fn(x)),πi(Fn(y))). (2)

As a consequence, 0 = ui < vi is impossible, that is, either ui = vi = 0 or 0 < ui ≤ vi.
Suppose 0 < ui < vi. It follows from (2) with the help of Lemma 3.19 that

h(πi(u),πi(v)) = lim
k→∞

h(πi(Fnk(x)),πi(Fnk(y)))

= inf
n∈N

h(πi(Fn(x)),πi(Fn(y)))

= lim
k→∞

h(πi(Fnk+1(x)),πi(Fnk+1(y))) = h(πi(F(u)),πi(F(v))).

But by Lemma 3.20, h(πi(F(u)),πi(F(v))) < h(πi(u),πi(v)), a contradiction. Since u= v
for any convergent subsequence, the statement of the proposition holds. �

Therefore, (v) is satisfied. Hence, since now on, 
 can be legitimately called the [weak]
carrying simplex.

For another proof of Proposition 3.5, see [26, Appendix], and for another proof of
Proposition 3.6, see [15, Lemma 5.3].

3.6. Lipschitz property

We formulate the simple geometrical result:

Lemma 3.21: Let S ∈ Û . Then

(a) ��S is injective, consequently, a homeomorphism onto its image;
(b) ‖�x − �y‖ ≥ 1√

1+d
‖x − y‖ for any x, y ∈ S.
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Proof: If ��S were not injective, there would be x, y ∈ S with y = x + αe for some α > 0,
which contradicts Lemma 3.9.

In view of the linearity of � and the fact that no two points in S are in the 	 relation,
we will prove (b) if we show that for any nonzero u ∈ Rd \ (C++ ∪ (−C++)) there holds

‖�u‖
‖u‖ ≥ 1√

1 + d
. (3)

Let u ∈ Rd be arbitrary nonzero. Again by linearity, we can restrict ourselves to the case
when u = ±ê + v, where v ∈ V . If ‖v‖ < 1√

d
, then ‖v‖∞ ≤ ‖v‖ < 1√

d
, so u ∈ C++ ∪

(−C++). Consequently, for u ∈ Rd \ (C++ ∪ (−C++)) we have ‖v‖ ≥ 1√
d
and, by the

Pythagorean theorem,
‖�u‖
‖u‖ = ‖v‖

‖ê + v‖ = ‖v‖√
1 + ‖v‖2

≥ 1√
1 + d

.

�

As 
 ∈ Û , the additional property (ix) follows.

3.7. A sufficient condition for retrotonicity of themap Fwhen C1

In the case of discrete-time models checking whether (A3) or (A3′) is satisfied may not be
an easy task. In the present subsection, we give a simple criterion when F is C1.

Recall that the spectral radius ρ(P) of a squarematrix P is themodulus of the eigenvalue
with maximum modulus. A nonsingularM-matrix is a square matrix P = ρ0I − Z where
Z is nonnegative and ρ0 exceeds the spectral radius of Z and that a P-matrix is a square
matrix P with positive principal minors. It is a standard result that every nonsingular M-
matrix is a P-matrix. Moreover, every eigenvalue of a nonsingularM-matrix has a positive
real part and every real eigenvalue of a P-matrix is positive [13].

In Ref. [8] Gale and Nikaidô proved an important result on the invertibility of maps
whose derivatives are P-matrices on rectangular subsets of Rd: If � ⊂ Rd is a rectangle
and F : � → Rd is a continuously differentiable map such that DF(x) is a P-matrix for all
x ∈ � then F is injective in �.

Our standing assumption in the present subsection is that F is a Kolmogorov map
satisfying (A1′), (A2), (C) and (GN), where

(A1′) f is of class C1, with f (x) � 0 for all x ∈ C+;
(C) Df (x) ≤ 0 with its diagonal terms negative, for all x ∈ C+;
(GN) The d × dmatrix Z(x) = ((− xi

fi(x)
∂fi(x)
∂xj )) has spectral radius ρ(Z(x)) < 1 for all x ∈

[0, e] \ {0}.

Sometimes instead of (C) a stronger assumption is made:

(C′) Df (x) 	 0 for all x ∈ C+.

We pause a little to reflect on the C1 property. The standard definition of a C1 map on
C+ is that it can be extended to a C1 map on an open subset of Rd containing C+. In fact,
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since C+ is sufficiently regular, it follows fromWhitney’s extension theorem (see, e.g. [25])
that the definitions are just the same as in the case of functions defined on open sets, with
derivatives replaced by one-sided derivatives where necessary.

As usual, DF(x) denotes the Jacobian matrix of F at the point x. If F is invertible with
differentiable inverse F−1 then by DF−1 we mean the derivative of F−1; this matrix is to be
distinguished from (DF)−1, the matrix inverse of DF.

Remark 3.3: In view of (A1′), (C) implies (A4), and (C′) implies (A4′).

Remark 3.4: Observe that (GN) is equivalent to saying that for any x ∈ [0, e] \ {0} the
card I(x) × card I(x) matrix Z(x) := (− xi

fi(x)
∂fi(x)
∂xj )i,j∈I(x) has spectral radius less than 1.

Remark 3.5: Regarding (GN), observe that for all x ∈ C+ there holds

DF(x) = diag[f (x)](I − Z(x)). (4)

It follows from (GN), by the continuity of the spectral radius of a matrix, that for any
sufficiently small κ > 0 there holds ρ(x) < 1 for all x ∈ [0, (1 + κ)e] \ {0}.

We choose such a κ > 0, and put � := [0, (1 + κ)e].

Lemma 3.22: For x ∈ �, (DF(x))−1
ij ≥ 0 for all i, j ∈ {1, . . . , d}; moreover, for x ∈ �′,

• (DF(x))−1
ii > 0 for all i ∈ I(x);

• Under (C′), (DF(x))−1
ij > 0 for all i, j ∈ I(x).

• DFij(x) ≤ 0 for i 
= j andDFii(x) > 0 for i = 1, . . . , d. Under (C′),DFij(x) < 0 for i 
= j,
provided xi > 0.

Proof: Let x ∈ �′. Then Z(x) is a nonnegative matrix with ρ(Z(x)) < 1. P(x) := I −
Z(x) is an M-matrix, and also a P-matrix for x ∈ �. Since, by (4), DF = diag[f ](I −
Z), ρ(Z(x)) < 1, Z(x)ij ≥ 0 for i, j ∈ I(x), and f (x) � 0 we find that (DF(x))−1 = (I −
Z(x))−1 diag[f (x)]−1 = (

∑∞
k=0 Z(x)k) diag[f (x)]−1 ≥ 0 for x ∈ �, and (DF(x))−1

ii > 0
for i ∈ I(x) [under (C′), (DF(x))−1

ij > 0 for i, j ∈ I(x)].
Lastly, sinceDF(x) is a nonsingularM-matrix its diagonal elementsmust be positive and

its off-diagonal elements must be non-positive. The final sentence follows directly from
(A1′) and (C′) by the form of Z(x). �

Proposition 3.7: (a) F�� is a C1-diffeomorphism onto its image.
(b) F is weakly retrotone in �. If (C′) holds, then F is retrotone in �.

Proof: By Lemma 3.22, DF(x) is invertible at each x ∈ �, so the inverse function theorem
implies that F�� is a local C1 diffeomorphism. Applying Lemma 3.1 gives us that F�� is
indeed a C1 diffeomorphism. For an alternative approach, see [8, Theorem 4].

We proceed to the proof of part (b).Wewill proveweak retrotonicity by induction on the
dimension d. For d=1 it follows from (GN) that F is increasing on the segment [0, 1 + κ],
so the required property holds. Now, let d>1 and assume that weak retrotonicity holds for
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any system satisfying (A1′), (C) and (GN), of dimension< d. Suppose to the contrary that
there exist x, y ∈ � and (up to possible relabelling) 1 ≤ m ≤ d such that

F(x) ≤ F(y) but

{
xi > yi for i = 1, 2, . . . ,m
xi ≤ yi for i = m + 1, . . . , d.

First suppose m=d, i.e. F(x) ≤ F(y) but x � y. As noted in the proof of Lemma 3.22,
under the stated conditions DF is a P-matrix on �. Thus by [8, Theorem 3], for x, y ∈ �,
the inequalities F(x) ≤ F(y) and x ≥ y only have the solution x= y, and so the casem=d
is not possible.

This leaves the case 1 ≤ m < d. We identify the subspace {(ξ1, . . . , ξm, 0, . . . , 0)} with
Rm. Define H : � ∩ Rm → Rm, H = (H1, . . . ,Hm), by

Hi(α1, . . . ,αm) := Fi(α1, . . . ,αm, ym+1, . . . , yd).

Observe that H satisfies all the conditions imposed on F, in particular DH has positive
diagonal entries and non-positive off-diagonal entries. For i = 1, 2, . . . ,m one has

Hi(y1, . . . , ym) = Fi(y) ≥ Fi(x) = Fi(x1, . . . , xm, xm+1, . . . , xd)

≥ Fi(x1, . . . , xm, ym+1, . . . , yd) = Hi(x1, . . . , xm),

where the second inequality holds because xm+1 ≤ ym+1, . . . , xd ≤ yd and Fi is non-
increasing in its xm+1, . . . , xd arguments. But this contradicts our inductive assump-
tion. �

It should be mentioned that Proposition 3.7 appeared as [15, Lemma 5.1], and, in the
case of (C′), as [26, Proposition 1.1].

We collect what we have just proved as

Proposition 3.8: • (A1′), (A2), (C) and (GN) imply (A1)–(A4),
• (A1′), (A2), (C′) and (GN) imply (A1)–(A4), (A3′) and (A4′).

4. Examples

The purpose of the present section is to give simple examples relating to well-known
models from theoretical ecology to illustrate the applicability of our results.

The examples given in this section cover the situation when F is given by some closed-
form formula. Direct checking whether (A3) is satisfied appeared to be a hopeless task,
so we use (GN) instead. On the other hand, it is easy to check (C) or (C′). In the case of
Beverton–Holt (Subsection 4.1) or Atkinson–Allen (Subsection 4.3) F is a (weakly) retro-
tone homeomorphism on the whole of C+, whereas for the Ricker case (Subsection 4.2)
the ‘box’ � on which F is a (weakly) retrotone homeomorphism cannot be too large.

4.1. d=1: Beverton–Holt map

Let n=1. Observe that our assumptions have now the following meaning:
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(A1′
1) f is of class C1 on [0,∞), and f (x) > 0 for all x ≥ 0;

(A21) f (1) = 1;
(C′

1) f ′(x) < 0 for all x ≥ 0;
(GN)1 F′(x) = xf ′(x) + f (x) > 0 for x ∈ (0, 1].

Take f (x) = 2
1+x , so that F(x) = 2x

1+x . The map F has fixed points only at x=0,1. (A1′)1,
(A2)1 are easily checked and f ′(x) = − 2

(1+x)2 < 0 shows (C′)1 is satisfied on C+ = [0,∞).
Finally,

Z(x) = − x
f (x)

f ′(x) = x
x + 1

< 1, x ∈ [0,∞),

equivalently

F′(x) = − 2x
(1 + x)2

+ 2
1 + x

= 2
(1 + x)2

> 0, x ∈ [0,∞).

F is a homeomorphism from [0,∞) onto [0, 2) and we may take � = [0, 1 + κ], where
κ > 0 is arbitrary. The fixed point x=1 is the carrying simplex and it is easy to check that
it attracts any A ⊂ (0,∞) with 0 /∈ Ā.

Any x ∈ (0, 1) has a unique backward orbit {. . . , x−n−1, x−n, . . . , x−1, x} strictly
decreasing, as n → ∞, to 0. Its forward orbit strictly increases, as n → ∞, to 1.

The forward orbit of any x>1 strictly decreases to 1. No x>1 has an (infinite) back-
ward orbit, however for any x ∈ (0, 2) there are n0 ≥ 1 and x = F(x−1) < x−1 = F(x−2) <

. . . < x−n0+1 = F(x−n0) < x−n0 .

4.2. d=2: planar Rickermap

Consider the following planar Ricker model:

F(x, y) = (xer(1−x−ay), yes(1−y−bx)) (5)

where r,s>0, a, b ≥ 0. Thus

f (x, y) = (er(1−x−ay), es(1−y−bx)).

The map F : C+ → C+ where C+ = [0,∞)2, always has (0, 0), e1 = (1, 0) and e2 = (0, 1)
as fixed points, so (A1′) and (A2) are satisfied.

DF(x, y) =
(

er(1−x−ay)(1 − rx) −arxer(1−x−ay)

−sbyes(1−y−bx) es(1−y−bx)(1 − sy)

)
and Z(x, y) = (

ccrx arx
sby sy ).

Under our assumptions (C) is satisfied, and (C′) holds provided a>0 and b>0.
The eigenvalues λ of Z(x, y) satisfy λ2 − (rx + sy)λ + rsxy(1 − ab) = 0, so by the Jury
condition the matrix Z(x, y) has spectral radius less than one when (x, y) ∈ C+ satisfies

rx + sy < 1 + rsxy(1 − ab) < 2. (6)

The bounded connected component� ⊂ C+ of the set defined by (6) is a simply connected
region whose closure contains the points (0, 0), (1/r, 0), (0, 1/s). For the Ricker model to
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satisfy (GN) on [0, 1]2 we require [0, 1]2 ⊂ �. Thus natural conditions are

r, s < 1 and r + s < 1 + rs(1 − ab) < 2

(since e1, e2, (1, 1) must belong to �̄). Indeed, the former condition is redundant: r + s <

1 + rs(1 − ab) is equivalent to (1 − r)(1 − s) > rsab, fromwhich it follows that r and s are
either both > 1 or both < 1, and r+s<2 gives r,s<1.

Since the boundary of � in C+ is the graph of a decreasing function we can take � =
[0, 1 + κ]2, where κ > 0 is so small that

(1 + κ)(r + s) < 1 + (1 + κ)2rs(1 − ab) < 2.

In view of Proposition 3.7(b) we have the following.

Lemma4.1: For the Rickermap (5) assumptions (C) and (GN) are satisfied if r, s > 0, a, b ≥
0 and

r + s < 1 + rs(1 − ab) < 2 (7)

If r,s,a,b>0 and (7) holds then (C′) and (GN) are satisfied, so that there is a carrying simplex
consisting of a curve that connects the two axial fixed points (r, 0) and (0, s) (Figure 1).

4.3. Arbitrary d: Atkinson–Allenmap

The Atkinson–Allen map is given by

Fi(x) = bxi + 2(1 − b)xi
1 + (Ax)i

, i = 1, . . . , d, (8)

where b ∈ (0, 1) and A>0. A more slightly general map, which includes (8), called the
generalized competitive Atkinson–Allen map, was studied in Ref. [9] where the map was

Figure 1. The carrying simplex (green solid line) for the planar Ricker map (5) when a = 3/2, b = 4/3,
r = s = 3/2.
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shown to have a carrying simplex for a large range of positive parameter values. In Ref.
[15], these results are extended to cover cases where some parameters are zero.

If the range of b is extended to include b=0 themap (8) reduces to a Leslie–Gowermap,
and this is known to have a carrying simplex for all A � 0 [9] and all A>0 with aii > 0
when i = 1, . . . , d [15]. If the range of b is extended to include b=1, F is the identity map
and there is no carrying simplex.

For (8) we have

fi(x) = b + 2(1 − b)
1 + (Ax)i

, i = 1, . . . , d.

f is continuously differentiable on C+ and fi(x) ≥ b > 0 so that assumption (A1′). is
satisfied. It is also easy to check that fi(ei) = 1 so assumption (A4) is satisfied. As

∂fi(x)
∂xj

=
(−2(1 − b)aij

(1 + (Ax)i)2

)
< 0 as b ∈ (0, 1)

so that assumption (C′) is satisfied. Now ρ(Z(x)) = ρ(diag[x]−1 Z(x)
mathopdiag[x]) ≤ ‖diag[x]−1 Z(x) diag[x]‖ for any matrix norm. Let us choose the �∞-
norm , so that

ρ(Z(x)) ≤ ‖diag[x]−1 Z(x) diag[x])‖∞

= max
i

3∑
j=1

1
xi
Zij(x)xj

= max
i

d∑
j=1

−xj
fi

∂fi
∂xj

= max
i

d∑
j=1

− xj
b + 2(1−b)

1+(Ax)i

(−2(1 − b)aij
(1 + (Ax)i)2

)

= 2(1 − b)max
i

(Ax)i
b + 2(1−b)

1+(Ax)i

1
(1 + (Ax)i)2

≤ 2(1 − b)max
s≥0

s
(1 + s)(b(1 + s) + 2(1 − b)

= 1 − √
(2 − b)b

1 − b
∈ (0, 1) when b ∈ (0, 1),

which confirms assumption (GN). Hence the Atkinson–Allen map has a carrying simplex
for all values of b ∈ (0, 1) andA>0. Figure 2 shows an example of the carrying simplex for

the Atkinson–Allen map (8) when d=3 and A =
(

1 1/2 1/3
1/3 1 1/2
1/2 1/3 1

)
together with a selection

of orbits, all of which are attracted to the carrying simplex.
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Figure 2. The carrying simplex (green surface) for the Atkinson–Allen (d= 3) map (8) when b = 1/4

and A =
(

1 1/2 1/3
1/3 1 1/2
1/2 1/3 1

)
.

5. An application to competitive systems of ODEs

This section is devoted to the case when F is a time-one map of the semiflow generated by
an autonomous competitive system of ODEs. Even when the vector field is given by some
formula, it is seldom possible to find a formula for F. We have at our disposal, however,
the Müller–Kamke theory [19,24], which allows us to show that F is a (weakly) retro-
tone homeomorphism onto its image. Further, (A4) is a consequence of the competitivity
property of the ODE system.

Consider an autonomous system of ordinary differential equations of the form

dxi
dt

= xigi(x), i ∈ {1, . . . , d}, x = (x1, . . . , xd) ∈ C+, (9)

where g = (g1, . . . , gd) : C+ → Rd. Such systems are called Kolmogorov systems of ODEs.
We denote P = diag[Id]g, P = (P1, . . . ,Pd). Dg denotes the derivative matrix of g (if it

exists).
The first assumption is

(H1) g is of class C1.

For x ∈ C+ denote by �(·; x) = (�1(·; x), . . . ,�d(·; x)) the (unique by (H1)) nonex-
tendible solution of (9) taking value x at time 0.

Observe that if x ∈ (CI)++ for some I ⊂ {1, . . . , d} then �(t; x) ∈ (CI)++ as long as it
exists. Indeed, it follows from the Kolmogorov form of (9) and the uniqueness of solutions
that �j(t; x) = 0 for all j ∈ {1, . . . , d} \ I.

As a consequence, since (CI)++ is a relatively open subset of (CI)+, it follows from
the extension theorem for ODEs that the nonextendible solution �(t; x) is defined for t ∈
(τmin(x), τmax(x)) with τmin(x) < 0 < τmin(x).
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The local flow (continuous-time dynamical system) � on a subset D(�) of R × C+
satisfies the following properties:

(EF0) D(�) is an open subset of R × C+ containing {(0, x) : x ∈ C+}, and � is C1;
(EF1) �(0; x) = x for all x ∈ C+;
(EF2)

�(t2;�(t1; x)) = �(t1 + t2; x),

which is to be interpreted so that if for some t1, t2 ∈ R and x ∈ C+ one of the sides as
well as �(t1, x) exist then the other side exists, too, and the equality holds.

By (EF1)–(EF2), we have the formula

�(−t,�(t; x)) = x, (10)

provided that �(t; x) exists. In particular, it follows that for each t>0 the map �(t; ·) is a
C1 diffeomorphism onto its image.

We will give now a representation of its inverse in terms of a solution of system (9) with
P replaced with −P. For x ∈ C+ and fixed t ∈ R such that �(t; x) exists we put φ(s) :=
�(s; x), s ∈ (τmin(x), τmax(x)). Let χ(θ) := φ(t − θ). There holds, where˙= d

ds ,

dχ
dθ

(θ) = −φ̇(t − θ) = −P(φ(t − θ)) = −P(χ(θ)), θ ∈ (t − τmax(x), t − τmin(x)).

We formulate the result of the above calculation as the following.

Lemma 5.1: Assume that x ∈ C+ and t ∈ R are such that �(t; x) exists. Then x is equal to
the value at time θ = t of the solution of the initial value problem⎧⎨⎩

dξi
dθ

= −ξigi(ξ), i ∈ {1, . . . , d}, ξ ∈ C+,

ξ(0) = �(t; x).
(11)

The next assumptions are:

(H2) for each 1 ≤ i ≤ d there holds gi(ei) = 0;
(H3) Dg(x) ≤ 0 with its diagonal entries negative, for all x ∈ C+.

Sometimes instead of (H3) we make the following stronger assumption:

(H3′) Dg(x) 	 0, for all x ∈ C+.

We deduce from (H2) and the negativity of the diagonal terms in (H3) that the vector
field restricted to an i-axis takes value 0 at 0 and ei, has a positive direction between 0 and ei
and a negative direction to the right of ei. In view of that, from the nonpositivity property of
the off-diagonal entries it follows that if x ∈ ∏d

i=1[0, 1 + κ] then�(t; x) ∈ ∏d
i=1[0, 1 + κ]

for t ≥ 0 as long as �(t; x) exists, for any κ > 1. In particular, from the standard ODEs
extension theorem we obtain that �(t; x) exists for any t ≥ 0 and any x ∈ C+.



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 31

We now set the map F(·) = �(1; ·).
For x ∈ C++ and i ∈ {1, . . . , d} we write

fi(x) = Fi(x)
xi

= exp
(∫ 1

0
gi(�(τ ; x)) dτ

)
. (12)

By the continuous dependence of solutions of ODEs on initial values and the continuity of
gi, the formula (12) for fi extends to the whole of C+. Since F is continuous on C+, we have
that F = diag[Id]f with f given by (12) on ∂C+, too. Therefore (A1) is fulfilled.

The fulfilment of (A2) follows directly from (H2).
As F(·) = �(1; ·) is a diffeomorphism onto its image, (A3-a) is satisfied.

Lemma 5.2: For any t>0, �(t; ·) is weakly retrotone in C+, and, under (H3′), is retrotone
in C+.

Proof: Since �(t; ·) is injective, proving the statement is just showing monotonicity of its
inverse on the faces of C+. This, by Lemma 5.1, follows along the lines of the proof of [11,
Proposition 2.2], which is in turn a consequence of the Müller–Kamke theorem, see, e.g.
[30, Theorem 2] and [30, Theorem 4] for (H3′). �

We have thus obtained (A3-b), and (A3′-b) for (H3′). Consequently, (A3) is satisfied,
and, under (H3′), (A3′) is satisfied, for all κ > 0.

We proceed now to proving (A4). For x, y ∈ C+ we have, by (12), for any i ∈ {1, . . . , d},
fi(x)
fi(y)

= exp
(∫ 1

0
(gi(�(s, x) − gi(�(s, y)) ds

)
.

For each s ∈ [0, 1] there holds

g(�(s, x)) − g(�(s, y)) =
(∫ 1

0
Dg(θ�(s, x) + (1 − θ)�(s, y)) dθ

)
(�(s, x) − �(s, y)).

(13)

It follows from (H3) that the matrix on the right-hand side of (13) has non-positive entries
and negative diagonal entries. Under (H3′), that matrix has all entries negative.

Assume now that x, y ∈ C+ are such that F(x) < F(y). Applying Lemma 5.2 and com-
paring the signs of the entries/coordinates on the right-hand side of (13) gives the desired
inequalities for gi(�(s, x)) − gi(�(s, y)), s ∈ [0, 1).

We can thus apply Theorem 3.1 to obtain the existence of the carrying simplex [weak
carrying simplex] for F:

Theorem 5.1: Under the assumptions (H1), (H2) and (H3) [resp. (H3′)] the competitive
system of ordinary differential equations (9) has a weak carrying simplex [resp. carrying
simplex].
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