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Abstract 25 

During binocular rivalry, conflicting images are presented one to each eye and perception 26 

alternates stochastically between them. Despite stable percepts between alternations, modeling 27 

suggests that neural signals representing the two images change gradually, and that the duration 28 

of stable percepts are determined by the time required for these signals to reach a threshold that 29 

triggers an alternation. However, direct physiological evidence for such signals has been lacking. 30 

Here, we identify a neural signal in the human visual cortex that shows these predicted properties. 31 

We measured steady-state visual evoked potentials (SSVEP) in 84 human participants (62 32 

females, 22 males) who were presented with orthogonal gratings, one to each eye, flickering at 33 

different frequencies. Participants indicated their percept while EEG data were collected. The 34 

time courses of the SSVEP amplitudes at the two frequencies were then compared across 35 

different percept durations, within participants. For all durations, the amplitude of signals 36 

corresponding to the suppressed stimulus increased and the amplitude corresponding to the 37 

dominant stimulus decreased throughout the percept. Critically, longer percepts were 38 

characterized by more gradual increases in the suppressed signal and more gradual decreases of 39 

the dominant signal. Changes in signals were similar and rapid at the end of all percepts, 40 

presumably reflecting perceptual transitions. These features of the SSVEP time courses are well 41 

predicted by a model in which perceptual transitions are produced by the accumulation of noisy 42 

signals. Identification of this signal underlying binocular rivalry should allow strong tests of 43 

neural models of rivalry, bistable perception, and neural suppression.  44 
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Significance Statement 45 

During binocular rivalry, two conflicting images are presented to the two eyes and perception 46 

alternates between them, with switches occurring at seemingly random times. Rivalry is an 47 

important and longstanding model system in neuroscience, used for understanding neural 48 

suppression, intrinsic neural dynamics, and even the neural correlates of consciousness. All 49 

models of rivalry propose that it depends upon gradually changing neural activity that upon 50 

reaching some threshold triggers the perceptual switches. This manuscript reports the first 51 

physiological measurement of neural signals with that set of properties in human participants. 52 

The signals, measured with EEG in human observers, closely match the predictions of recent 53 

models of rivalry, and should pave the way for much future work.  54 
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INTRODUCTION 55 

When the two eyes are presented with incompatible patterns, often only one of the patterns is 56 

perceived at a time, and perception alternates between the two (Wheatstone, 1838). Such 57 

binocular rivalry provides a rare behavioral window to systematically study the processes 58 

controlling intrinsic neural dynamics and awareness. It is widely agreed that suppression of one 59 

pattern results from competition between populations of neurons, likely at multiple levels in the 60 

visual system, with some 'winning' and suppressing the others (e.g., Blake, 1989; Blake & 61 

Logothetis, 2002; Wilson, 2003).  62 

What causes the perceptual alternations in binocular rivalry remains more uncertain. 63 

Transitions in rivalry occur at seemingly random times, without conscious control, but the 64 

durations of stable percepts are in fact highly lawful, and follow an almost identical gamma 65 

distribution across many different stimulus variations (e.g., Brascamp et al., 2006; Cao et al., 66 

2018; Levelt, 1965; Skerswetat & Bex, 2023). To account for the timing of transitions, theories 67 

and models of rivalry propose that a dynamic neural process underlies the stable perceptual 68 

periods, for example, gradual changes due to adaptation of the neural population representing the 69 

dominant stimulus (e.g., Shpiro et al., 2009; Wilson, 2007) or noisy accumulation of activity in 70 

the neural populations representing both stimuli (Cao et al., 2016; Cao et al., 2021; Lankheet, 71 

2006). Alternations arise when the gradually changing activity crosses some threshold that 72 

allows the previously suppressed population to "win" the competition, become dominant, and 73 

suppress the previously dominant one. Without such gradual changes in an underlying and noisy 74 

signal, models cannot reproduce the characteristic shape of the behavioral percept duration 75 

distributions. 76 

Studies of online behavior support the idea of a gradually changing signal during rivalry. 77 
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Visual sensitivity in each eye during rivalry changes slowly over the course of a stable percept, 78 

with sensitivity of the dominant eye decreasing and the suppressed eye increasing following a 79 

transition (Alais et al., 2010). Continuous psychophysical tracking of perception with eye 80 

tracking and joysticks also provides some evidence for gradual changes (Naber et al., 2011; 81 

Skerswetat & Bex, 2023).  82 

 Neural signals corresponding to the monocular stimuli, including those measured by 83 

SSVEP amplitude (Brown & Norcia, 1997; Katyal et al., 2016), BOLD signals (Haynes & Rees, 84 

2005; Tong et al., 1998; Wunderlich et al., 2005), and coherence between EEG or MEG channels 85 

(Cosmelli et al., 2004), show strong modulations during rivalry, strengthening and weakening in 86 

synchrony with perceptual dominance and suppression, beginning in the lateral geniculate 87 

nucleus and continuing throughout visual cortex. Given this match to perception, the periods of 88 

strengthening and weakening are naturally shorter in individuals with more rapid behavioral 89 

alternation rates (Bock et al., 2023; Spiegel et al., 2019).  90 

Less is known about the time course of neural signals between transitions. Activity in 91 

higher level visual areas appears to change gradually compared to changes produced by matched 92 

abrupt alternations of non-rivalrous stimuli (de Jong et al., 2020), and a recent paper reports an 93 

intriguing trend for these changes to be more gradual in individuals with slower alternation rates 94 

(Bock et al., 2023). However, to show that one has measured a gradually changing signal that 95 

underlies transitions in rivalry it is key to show, within subjects, that once the signal reaches a 96 

threshold, a perceptual switch occurs. An equivalent formulation is that the time required for the 97 

signal to attain a particular level, i.e., the rate of signal change, or its slope during the time course, 98 

predicts percept duration. Previous work has not attempted to identify signals with this key 99 

property. 100 
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Below we identify a gradually changing neural signal during rivalry whose rate of change 101 

determines percept duration, matching theoretical predictions. We used EEG measurements of 102 

steady-state visual potentials (SSVEPs), taken from a large previously existing dataset (Katyal et 103 

al., 2019). We found activity corresponding to the dominant and suppressed percepts changed 104 

gradually leading up to perceptual switches. Critically, the changes in SSVEP amplitude were 105 

more rapid during shorter percepts, and more gradual during longer ones. These trends can be 106 

produced by a simple accumulator model, fit to the behavioral data only.  107 

MATERIALS AND METHODS  108 

Experimental Design 109 

Dataset 110 

We used a previously reported dataset, comprising 84 participants (62 females, 22 males) from a 111 

study on binocular rivalry (Katyal et al., 2019). EEG signals were recorded from 34 channels in 112 

the 10/20 system, and preprocessed with standard methods. The present report focuses on data 113 

recorded during the binocular rivalry task. To aid statistical reliability of our results, we used a 114 

smaller sample of 21 participants out of the 84 for exploratory analyses and the full set of 84 115 

participants to validate the analysis (Katyal et al., 2019). Dataset have been posted on the Data 116 

Repository for U of M (https://doi.org/10.13020/9sy5-a716). 117 

Task and stimuli  118 

Twelve 120-s runs of a binocular rivalry task were acquired for each participant, during which 119 

they were presented with orthogonal (± 45°) gray scale gratings, one to each eye, as illustrated in 120 

the upper left box in Figure 1A. One grating flickered at 14.4 Hz and the other at 18.0 Hz in each 121 

run, counterbalanced between eyes across runs. Participants were instructed to press one of three 122 
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buttons, indicating a dominant percept of “tilt left”, “tilt right”, or a mixed percept, whenever 123 

their perception changed. They were asked to report dominance once one grating filled >90% of 124 

the stimulus field and mixed otherwise (Katyal et al., 2019). 125 

Statistical Analysis 126 

EEG preprocessing 127 

Raw EEG data were first downsampled from 1024 Hz to 360 Hz, and then filtered sequentially 128 

with a 0.1-179 Hz band-pass filter and a band-stop filter around electrical line noises, which are 129 

60 Hz and 120 Hz. To remove ocular and muscle artifacts, an ICA analysis was implemented. In 130 

addition, the data were transformed with the Current Source Density toolbox (Kayser & Tenke, 131 

2006a; Kayser & Tenke, 2006b; Perrin, Pernier, Bertrand, & Echallier, 1989) to improve the 132 

specificity of EEG signals. The preprocessing procedure has been described previously (Katyal 133 

et al., 2019).  134 

Time-frequency analysis  135 

We first calculated the signal-noise ratio (SNR) for each electrode. Amplitudes within ±0.02 Hz 136 

around the signal frequencies (14.4 Hz and 18.0 Hz) as well as a noise frequency (16.2 Hz) were 137 

calculated using Fourier transforms for each run of each participant. We then averaged across 138 

runs and SNR was estimated as the difference of the mean amplitudes at the signal and noise 139 

frequencies divided by the amplitude at the noise frequency.  140 

The frequencies used for our analyses were not precisely the frequencies that were specified 141 

in the empirical design. When we used the specified frequencies, we observed small linear 142 

changes in the phase over time during scans indicating that the true stimulus frequency was 143 

slightly different, likely due to display software timing. To identify the “true” stimulus 144 



 Neural Signal Underlying Rivalry 

 

8 

 

frequencies, we conducted a grid search of frequencies and found the frequencies that minimized 145 

the phase shift during scans. These frequencies were determined to be 14.4016 Hz and 18.0016 146 

Hz.  147 

To estimate the SSVEP amplitudes over time, defined as the strength of EEG signal 148 

modulation related to the two frequency-tagged stimuli, we used a phase-specific filter, assuming 149 

the phase of SSVEP was a constant shift relative to the stimulus phase (see also Bock et al., 2023; 150 

Jamison et al., 2015). The phase-specific filtering was computed by multiplying the EEG series 151 

𝐴(𝑡) by a sinusoidal wave at the stimulus frequency 𝑓𝜙 and phase 𝜓. Then, we smoothed the 152 

resultant by a Gaussian window Φ(𝜏)  of 200-ms standard deviation, so that the estimated 153 

amplitude ℎ𝑓𝜙𝜓(𝑡) was continuous and smooth: 154 

ℎ𝑓𝜙𝜓
′ (𝑡) = 𝐴(𝑡) sin  (2𝜋𝑓𝜙𝑡 + 𝜓)#(1)  

ℎ𝑓𝜙𝜓(𝑡) = ∫ ℎ𝑓𝜙𝜓
′ (𝑡 + 𝜏)Φ(𝜏)𝑑𝜏

+∞

−∞

#(2)  

Because the phase offset of neural response in each scan was unknown and phase varied 155 

slightly scan to scan due to delay in the stimulus presentation software, we determined the phase 156 

𝜓 empirically. We selected the phase that maximized the integral of the amplitude function, for 157 

each participant and each scan, using a grid search with the precision of 0.1 rad: 158 

𝜓 = argmax
𝜑

∫ ℎ𝑓𝜙𝜑(𝑡)𝑑𝑡
∞

0

# (3)  

To aid in combining data across runs and observers, the SSVEP amplitudes for each run 159 

were z-scored across time. This yielded a time course of SSVEP amplitudes for each frequency 160 

that was used in our analyses below. 161 
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Data Epoching and Period Selection 162 

To analyze effects of percept duration, we extracted the SSVEP amplitude time course between 163 

the start and end of each uninterrupted period of perceptual dominance (Drew et al., 202). 164 

Illustrated by Figure 1C, these periods corresponded to the time between an initial button press 165 

corresponding to an unmixed percept followed by a second button press corresponding to the 166 

opposite unmixed or the mixed percept with no presses between. To have a reliable estimation of 167 

time course, we excluded percepts shorter than 1.5 seconds, because the SSVEP signal during 168 

short periods may be affected by the temporal smoothing of our filter used to estimate amplitude. 169 

Periods longer than 5 seconds were also excluded, because some participants had very few of 170 

that length, and also they may have simply resulted from missed reporting of a switch due to an 171 

attentional lapse.  172 

Time-point-wise comparison 173 

Our first analysis simply tested whether the amplitudes of the SSVEP signals from percepts of 174 

different duration differed at individual time points. We aligned the SSVEP amplitudes to either 175 

the start or the end of periods and used a simple linear model to test whether SSVEP amplitudes 176 

at each time point were linearly related to percept duration (i.e., higher amplitude in longer 177 

duration periods and lower for shorter periods). We selected durations longer than 1.5 sec to 178 

allow adequate time between decision and button press, and shorter than 5 sec to allow adequate 179 

numbers of percepts. Linear models were fit separately for each participant and significance of 180 

parameters was tested with a simple t-test across participants. 181 

Inter-timepoint Modeling for the SSVEP Amplitudes 182 

As noted above, we predicted that the neural signals corresponding to the dominant and 183 

suppressed stimuli would change gradually during the period, and that further, this change would 184 
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be more gradual for longer periods. To test this, we fit a model to the set of SSVEP time courses, 185 

of varying period duration, rather than just to individual time points. We used the simplest 186 

possible model of amplitude change, a linear slope. The model contained a term representing the 187 

slope, and another factor for the interaction between that slope and period duration, allowing it to 188 

be shallower for longer periods. We fit separate models to the dominant and the suppressed 189 

amplitudes for all periods simultaneously. 190 

Specifically, the models were of the form: 191 

𝐴𝑖,𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2 ⋅ 𝑑𝑖 + 𝛽3𝑡 ⋅ 𝑑𝑖#(5)  

where t is the time in period i, i.e., the time after button press, 𝑑𝑑 is the duration of the period, 192 

and  𝐴𝑖,𝑡 is the amplitude in the period at time 𝑡. 𝛽0 is the mean signal during the period, 𝛽1 is the 193 

slope of the changing signal during the period, 𝛽2 allows the mean signal to differ for different 194 

period durations, and critically 𝛽3  allows the slope to change as a linear function of period 195 

duration.  196 

Again, linear models were fit separately for each participant and significance of 197 

parameters was tested with a t-test across participants. We excluded the last 500 s of each period 198 

from this analysis, as this segment likely included the transition between percepts and also the 199 

response generation for next button press (Drew et al., 2022), and used the remaining portion. To 200 

ease computation, we also centered the time index at the center of the period, so that t = 0 fell at 201 

the middle time point of each trimmed period. 202 

Accumulation-to-threshold simulation 203 

To demonstrate that an accumulation-to-threshold model (Cao et al., 2016) predicts signals 204 

similar to our observed SSVEP amplitudes, we fit a simple version of it to our behavioral data.  205 

We used a standard one-sided drift-diffusion model (Cao et al., 2016; Ratcliff & Smith, 2004) 206 
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and assumed the drifting signal controlled the rivalry time course. Starting from  𝑑0, the signal 207 

accumulated to the threshold  𝜃 with a fixed drifting rate  𝜇 and gaussian noise with variance  𝜎 208 

throughout the percept period. Perceptual switches occurred when the signal reached the 209 

threshold. We fixed the distance to the threshold, |𝑑 − 𝑑0| , to be 1, because we were fitting to 210 

behavioral distributions and so units of distance are arbitrary. We fit the free parameters 𝜇 and  𝜎 211 

to the distribution of percept durations, the only two free parameters necessary to determine the 212 

distribution of durations. The distribution produced by such a model follows an inverse gaussian 213 

distribution (Tuckwell, 2005): 214 

𝑓(𝑡) =
𝜃−𝑥0

√2𝜋𝜎2𝑡3
exp [−

(𝜃−𝑥0−𝜇𝑡)2

2𝜎2𝑡
 ] #(6)215 

ere 𝑓(𝑡) is the probability density function of percept duration 𝑡. The parameters were estimated 216 

by fitting this functional form to the distribution of non-mixed percepts pooled across all 217 

participants (Figure 1D), including durations from 200 msecs to 10 secs. We used the MATLAB 218 

function fitdist. 219 

For comparison with our data, we used the model to simulate neural activity in 2-min 220 

simulated blocks, assuming alternating percepts (i.e., no mixed percepts). We did this by fitting 221 

subsequent percepts with drift in the opposite direction, with 𝑥0 set to the ending point of the 222 

previous duration and theta alternating between positive and negative values. We then smoothed 223 

the time course with the same smoothing filter used for our SSVEP amplitude estimation, and 224 

normalized the data by z-scoring the signal from each run, again as was done for the SSVEP 225 

amplitudes.  We plot the results of simulating 100 blocks and binning and averaging data. 226 
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RESULTS 227 

Opposing and gradual changes in SSVEP signals 228 

84 observers viewed two orthogonal sinusoidal grating patches presented one to each eye (Figure 229 

1A) and reported their percept with a button press. We measured perceptual dominance duration 230 

as the period of time between two consecutive button presses, with one indicating perception of 231 

“tilt left” and one “tilt right”, or vice versa, thus excluding periods of perceiving a mixture of the 232 

two gratings from analysis.  233 

Durations of percepts during rivalry followed the typical distribution shape (Figure 1D). 234 

On average, participants' dominance periods lasted 2.825 sec (SD = 0.609 s). We selected 235 

dominance periods longer than 1.5 second but shorter than 5 second for additional analysis, in 236 

order to have a large enough sample for robust estimation of the time course within and across 237 

observers to conduct time course analysis (see Methods). 238 

Neural signals during rivalry showed an opposing pattern expected from previous work. 239 

Figure 2A plots the time course of SSVEP amplitudes during stable perceptual periods between 240 

successive button presses whose timings are indicated by the starts and ends of the horizontal 241 

rasters. Neural signals at the frequency of the perceptually dominant stimulus were high at the 242 

time of the initial button presses and fell monotonically until the next button press (which 243 

indicated that perception had transitioned to a mixed percept or to the other grating). The 244 

suppressed grating showed the inverse pattern, starting low and rising throughout the period to a 245 

peak around the time of the second button press.  246 

The large data set allowed us to examine trends in SSVEP amplitudes as a function of 247 

percept duration. For both dominant and suppressed signals, amplitudes changed gradually 248 

throughout the period, and generally most rapidly towards the end, particularly 500 msec before 249 
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the end. The initial gradual change appeared to lengthen as duration increased, while the late 250 

rapid change appeared to not depend greatly on duration. To better visualize differences in the 251 

time course as a function of duration, we averaged signals within three bins with different 252 

duration ranges; Figure 2B plots binned averages for time points following and aligned to the 253 

first button press (left) and preceding and aligned to the second button press (right).   254 

Slower changes in SSVEP signals for longer durations 255 

In Figure 2B, the slopes of the time courses for different bins diverged following the first button 256 

press, as early as 0.5 sec. But preceding the second button press, the SSVEP time courses were 257 

relatively similar beginning about 1 sec before the button press. This pattern is what one would 258 

expect if percept duration was determined by neural signals accumulating at different rates until 259 

they reach a threshold, where similar transitions are initiated regardless of duration.   260 

To test formally how the SSVEP time courses varied with percept duration, we fit linear 261 

models to the data (See Methods). We first tested for differences in the SSVEP amplitudes as a 262 

function of duration for each timepoint independently (Figure 2B). Note that while the Figure 263 

plots binned and averaged data, statistical tests were conducted on unaveraged data. Timepoints 264 

where there was a significant effect of duration on amplitude are shown by the horizontal lines. 265 

Effects were visible beginning around 600 msec following the first button press, with shorter 266 

durations showing lower dominant amplitudes and higher suppressed amplitudes, indicative of 267 

more rapid change. Leading up to the second button press, time courses were more similar across 268 

durations, with the dominant amplitudes appearing almost identical across durations, and the 269 

suppressed signal rising to a slightly higher peak for shorter durations. 270 

To more directly test whether the SSVEP time courses differed in rate of change across 271 

durations, we fit lines to the time courses from all durations, and tested for differences in slope. 272 
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We excluded the last 500 msec of the time courses, because theories predict little differences in 273 

signal there. We used a model that included a global mean (𝛽0 ) and global slope (𝛽1 ), but also 274 

terms modeling linear effects of duration on the mean (𝛽2 ) and on the slope (𝛽3 ); the last 275 

allows a test of whether the slope of the time course changed with duration (See Methods).  The 276 

model was fit for each participant separately, for both dominant and suppressed signals, and the 277 

significance of each coefficient was tested across participants with t-tests. Figure 3a plots results 278 

from Oz based on its highest SNR. 279 

As expected, a significant decreasing trend during the period was observed in the 280 

amplitudes for the dominant stimulus as well as a significant increasing trend for the suppressed 281 

stimulus ( 𝛽1
̅̅ ̅ =  −0.36 (Dominant) and 0.29 (Suppressed), t(83) = 8.23 and 6.73 separately, p 282 

< 0.001 for both). The beta weights indicate that during a period, the amplitude for the dominant 283 

stimulus decreased 0.36 and the amplitude for the suppressed stimulus increased 0.29 per second 284 

on average. Critically, 𝛽3 was significantly different from zero for both the dominant stimulus 285 

and suppressed stimulus (𝛽3
̅̅ ̅ =  −0.07 (Dominant) and 0.06 (Suppressed), t(83) = 7.21, 5.74 286 

separately, p < 0.001 for both), and the direction was opposite from the slope of the time course  287 

(𝛽1). This showed that as durations increased, the changes of SSVEP amplitudes became slower; 288 

specifically, for every 1 sec increase in percept duration, the change in amplitude slowed by over 289 

20% for both the dominant and suppressed stimuli. These results did not depend upon the length 290 

of time excluded at the end of the percept duration (all p < 0.05, shown in Figure 3b). 291 

We repeated the model fitting for data from all electrodes. The same trends were visible 292 

in most electrodes; i.e., amplitudes decreased for the dominant stimulus during the period, and 293 

increased for the suppressed stimulus (𝛽1) and these slopes depended on the dominance duration 294 

(𝛽3). 𝛽1, and 𝛽3 were significantly different from zero in almost all electrodes for the dominant 295 



 Neural Signal Underlying Rivalry 

 

15 

 

stimulus, but fewer for the suppressed stimulus. (Figure 3c). We also fit the model to the last 500 296 

msec of periods, and found few effects of duration, confirming theoretical predictions of smaller 297 

differences immediately before responses. 298 

This pattern of results matches the predictions of theories that propose rivalry is 299 

determined by noisy neural signals accumulating until they reach a threshold, with shorter 300 

durations resulting from more rapid accumulation, and longer durations from slower 301 

accumulation, due to the cumulative effects of noise. To demonstrate formally that such a model 302 

predicts the patterns observed in SSVEP data, we fit a simple drift-diffusion model to our 303 

behavioral data and simulated neural time courses from the drifting signal in the model (see 304 

Methods). The simulation reproduced the major trends in our data, the visible varying slope at 305 

the beginning of percept periods and almost the same time course before the end (Figure 4). We 306 

emphasize that the model used in the simulation was fit to the behavioral distributions alone; the 307 

neural signals are true predictions of the model, not fits. Because our simulation did not include 308 

an estimate of the time required to generate a response and press the button (i.e., reaction time), 309 

the peaks and troughs are shifted by ~250 msec in time relative to the SSVEP data. 310 

DISCUSSION 311 

Our results provide clear evidence for an accumulating perceptual signal during stable percepts 312 

in rivalry: Longer percept durations were associated with more gradual changes in the SSVEP 313 

amplitudes, and shorter durations with more rapid ones. This pattern strongly suggests that the 314 

SSVEP contains a neural signal whose evolution controls the timing of perceptual alternations. 315 

  Our findings are in general agreement with past behavioral work, and one study using 316 

intracranial recordings, suggesting that the time course of signals related to rivalry change 317 

gradually during perceptual periods (Alais et al., 2010; de Jong et al., 2020; Naber et al., 2011; 318 



 Neural Signal Underlying Rivalry 

 

16 

 

Skerswetat & Bex, 2023). These studies did not examine correlates of percept duration, however. 319 

Intrinsic neural oscillations do appear to wax and wane during a percept in a way that predicts its 320 

duration (Doesburg et al., 2005; Doesburg et al., 2009; Drew et al., 2022). Our frequency-tagged 321 

SSVEP signals are more closely tied to stimulus representations, and so should be more 322 

attractive targets for neural modeling (see below). The frequency tagging made it difficult to 323 

measure intrinsic oscillations in our study, and future work could examine whether and how 324 

intrinsic oscillations interact with stimulus representations during rivalry. Both rate of change in 325 

SSVEP amplitudes and frequency of intrinsic oscillations are also related to individual 326 

differences in rivalry switch rate (Bock et al., 2023; Fesi & Mendola, 2015; Katyal et al., 2019). 327 

 Our results provide physiological support to models of rivalry that attempt to capture the 328 

stochastic properties of percept durations between alternations (e.g., Brascamp et al., 2006; Cao 329 

et al., 2021; Moreno-Bote et al., 2007; Wilson, 2007). In most current models, different 330 

populations of neurons encode the two visual stimuli, and the populations' input contains 331 

independent additive noise. Competitive inhibition between the populations ensures only one is 332 

highly active at a time, corresponding to perceptual dominance of the corresponding stimulus. To 333 

allow switching, most models include a gradual change in activity, with the dominant population 334 

decreasing and the suppressed population increasing over time. Once activity levels pass some 335 

threshold, the suppressed population 'escapes' suppression and perception flips. Earlier theories 336 

assumed neural adaptation caused the decrease in the dominant population's response (Lankheet, 337 

2006; Lehky, 1995; Wilson, 2007), but later modeling studies suggest that an alternative theory, 338 

in which activity in the two populations accumulates over time, can better predict the distribution 339 

of perceptual durations across conditions (Brascamp et al., 2006; Cao et al., 2014; Cao et al., 340 

2021; Moreno-Bote et al., 2007).  341 
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Our results are most consistent with this latter theory. Adaptation theories generally also 342 

predict that the changes in activity occur at a fixed rate, but with non-accumulating additive 343 

noise pushing activity across threshold at different times. Accordingly, these theories predicting 344 

similar slopes for the changing activity in different percept durations. The accumulation theories, 345 

on the other hand, model changes in activity as due to a stochastic random walk to a threshold, 346 

with greater or lesser amounts of accumulating noise causing variability in time to reach 347 

threshold.  These models predict that shorter durations are caused by more rapid random walks, 348 

i.e., signal changes with steeper slopes (Cao et al., 2016).  349 

A simple drift-diffusion model was used to bridge between the accumulation theories and 350 

our observed neural signals (Figure 4). Such a model, fit only to behavioral results, predicts 351 

gradually changing neural signals that closely resemble our SSVEP amplitudes, which 352 

demonstrates that drift-diffusion models can in principle account for the observed accumulation. 353 

One other hallmark of a signal that is noisily accumulating to a threshold (at least in most 354 

models) is that immediately before the threshold time courses converge to have similar slopes 355 

(e.g., O’Connel et al., 2012). We observed this pattern in both our model simulations and in our 356 

SSVEP data, where the end of time courses was similar regardless of duration. We did, however, 357 

see an elevation of suppressed signal at the end of shorter periods. This effect was relatively 358 

small, and was statistically reliable only at the Oz electrode.  Accordingly, we do not speculate 359 

on its functional significance. 360 

The accumulation theory, along with the increasing evidence of top-down modulation of 361 

perceptual rivalry, puts rivalry in the framework of decision making (Frassle et al., 2014): Our 362 

results resemble the accumulation-to-threshold of evidence that is observed in such tasks (e.g., 363 

O’Connell et al., 2012; Schall, 2019). That is, the magnitude of the SSVEP may reflect the 364 
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strength of accumulated evidence that this used by later areas to reach a decision. The decision-365 

making framework has recently been extended to include the notion of value as part of a further 366 

reconceptualization of bistable perception (Safavi & Dayan 2022). The approach generally, and 367 

our results specifically, agree with past work that finds that the SSVEP does not necessarily 368 

match conscious perceptual reports (Davidson et al., 2020). 369 

The accumulating signal, particularly for the suppressed stimulus, was observed primarily 370 

in posterior electrodes. This likely reflects the origin of the SSVEP response, which is believed 371 

to be in occipital visual areas V1-V4 (Di Russo et al., 2007; Zhang et al., 2011; Jamison et al., 372 

2015). Future work can measure this signal with methods that possess higher spatial precision. 373 

Nevertheless, our results represent one of the first reports of accumulating signals at this 374 

relatively early stage, with information persisting until the perceptual transition. Evidence for 375 

informational persistence in the early visual cortex has also been found in working memory tasks 376 

(Harrison & Tong, 2009; Zhao et al., 2022). Accumulating signals have been most frequently 377 

identified in later visual areas such as LIP (e.g., O'Connel, et al., 2012; Roitman & Shadlen 2002; 378 

Shadlen & Newsome, 1996) in work that failed to find accumulation at earlier stages (e.g., area 379 

MT). The conditions under which information persists and/or accumulates in earlier visual areas 380 

remains an important open question.  381 

Similar accumulating signals have also been modeled as build-up of predictive error 382 

(Weilnhammer et al., 2017). That is, signal magnitude may reflect a growing difference between 383 

current perception and sensory input. These error-prediction signals were primarily found in 384 

frontal and insular cortices, and so our results in posterior electrodes generally favor an evidence 385 

accumulation account. However, we cannot rule out the possibility that the posterior signals 386 

reflect feedback from higher areas. 387 
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Altogether our results strongly constrain theories about and models of binocular rivalry. 388 

The approach taken here may also be applicable to many other bistable percepts, that could be 389 

controlled by a similar accumulating noisy signal (Cao et al., 2016). In rivalry, the accumulating 390 

signal we identified may help answer many additional questions about rivalry's neural bases and 391 

computational mechanisms. For example, it should be possible to investigate the origin of the 392 

accumulating noise, and fluctuations in attention, which may modulate rivalry (Drew et al., 2022; 393 

Li et al., 2017; Paffen & Alias, 2011), are promising candidates.  394 
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Figures 537 

Figure 1. Illustration of the paradigm and the SNR. (A) Stimuli were flickering 538 

at 14.4 Hz and 18 Hz (counterbalanced across runs) to induce SSVEP. (B) SNR 539 

for different electrodes. (C) Magenta and green curves represent illustrative 540 

SSVEP amplitudes for the two frequency-tagged stimuli. We epoched the data 541 

based on uninterrupted perceptual periods. Periods with dominance durations 542 

less than 1.5 sec or longer than 5 sec were excluded. (D) Histogram showing the 543 

distribution of all reported percept durations from all participants.  544 
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Figure 2. Time courses for perceptual periods of different lengths. (A) SSVEP 545 

amplitudes (from Oz) as a function of dominance duration, averaged within each 546 

of 100 bins for visualization. SSVEP amplitudes associated with the dominant 547 

stimulus decrease over periods, while the SSVEP amplitude associated with the 548 

suppressed increase. (B) SSVEP amplitudes averaged for short, medium, and long 549 

perceptual durations, for both dominant and suppressed stimuli. We aligned each 550 

period to the start (left) and end (right) of the period separately. The slope 551 

succeeding the period start differs as a function of duration, but differences are 552 

smaller preceding period end. Solid horizontal lines indicate significant effects of 553 

duration on the amplitude (t-test, p < 0.01), tested with linear regression at each 554 

time point (See Methods).  555 
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Figure 3. Linear model fits to SSVEP time courses. (A) Model coefficients for 556 

electrode Oz, for SSVEP amplitudes at the dominant stimulus frequency (purple) 557 

and the suppressed stimuli frequency (green). Colored dots plot individual 558 

participant coefficients and black symbols plot across participant means and 559 

standard errors of the mean. To aid interpretation, the intercept 𝛽0 is not shown, 560 

instead, we show the average amplitude 𝐴. (B) 𝛽1  and 𝛽3  for Oz as (A), with 561 

different excluded duration lengths from 0 msec (whole time course included) to 562 

1000 msec, i.e., the final second of the time course was excluded from analysis. 563 

Data were excluded to avoid effects of the transition at the end of the period, and 564 

the model fits in A) excluded 500 msec. Little effect of excluded duration was 565 

observed: All 𝛽1s and 𝛽3s were significant regardless of the amount of the time 566 

course that was excluded (all p < 0.05). (C) Distribution of statistical reliability (t-567 

score) of 𝛽1 and 𝛽3, across electrodes. Electrodes shown in green indicate where 568 

the coefficients are significantly different from zero (t-test, p < 0.05, Bonferroni 569 

corrected, m = 136 (34 electrodes x 4 parameters)).  570 
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Figure 4. Results of a simple accumulator model. (A) The signal accumulates 571 

(drifts) with a fixed rate 𝜇 and Gaussian noise with variance 𝜎. When it reaches 572 

the threshold 𝜃 , the threshold and the drifting rate inverts and the signal 573 

accumulates to the other percept. (B) Model accumulator signals averaged within 574 

100 duration bins, as in Figure 2A. C Averaged model signals within 3 bins 575 

aligned to the start (left) and end (right) of the period separately, as was done for 576 

SSVEP data in Figure 2B. The slope succeeding the period start differs as a 577 

function of duration, but time courses converge preceding the period end, similar 578 

to the patterns seen in the SSVEP data. 579 










