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Abstract. For a growing number of researchers, it is now accepted that the brain is a predictive 

organ that predicts the content of the sensorium and crucially the precision of—or confidence 

in—its own predictions. In order to predict the precision of its predictions, the brain has to infer 

the reliability of its own beliefs. This means that our brains have to recognise the precision of 

their predictions or, at least, their accuracy. In this paper, we argue that fluency is product of 

this recognition process. In short, to recognise fluency is to infer that we have a precise ‘grip’ 

on the unfolding processes that generate our sensations.  More specifically, we propose that it 

is changes in fluency — from unfelt to felt — that are both recognised and realised when 

updating predictions about precision. Unfelt fluency orients attention to unpredicted sensations, 

while felt fluency supervenes on—and contextualises—unfelt fluency; thereby rendering certain 

attentional processes, phenomenologically opaque. As such, fluency underwrites the precision 

we place in our predictions and therefore acts upon our perceptual inferences. Hence, the causes 

of conscious subjective inference have unconscious perceptual precursors. 
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How living organisms adapt to a constantly changing environment is a recurrent 

question since Darwin (1859) and von Uexküll (1934). Active Inference is an attempt to 

understand this adaptation from the point of view of brain function, cognition and behaviour. 

Active inference accounts for the way in which all living organisms manage to minimize 

surprise (i.e., the discrepancy between predicted and observed outcomes) via the perception-

action loop. To do that, brain constantly generates predictions about the sensorium to, 

effectively, produce an error or surprise signal (Clark, 2013b; Friston et al., 2011; Hohwy, 

2013). This prediction error is large when sensory inputs do not correspond to what was 

anticipated. The ensuing prediction error can be minimised in one of two ways. First, it can be 

used to revise beliefs or representations of the causes of sensations to produce more accurate 

predictions, as in perception. Second, one can act upon the world to generate sensations that are 

closer to predictions (Adams et al., 2013; Friston et al., 2016; Friston et al., 2011; Lanillos et 

al., 2021; Parr et al., 2022; Seth, 2013). In other words, both action and perception can be seen 

as in the service of minimising prediction error or surprise. 

However, not all prediction errors are equal: some predictions may be very precise, or 

some sensory input may be very imprecise. This means that the imperative is not simply to 

minimise prediction errors but only those that convey precise information relevant for belief 

updating—or affordance for action (Limanowski, 2017; Parr et al., 2018; Parr and Friston, 

2017a; Seth and Friston, 2016; Smith et al., 2019a; Sterzer et al., 2018). This account 

foregrounds the importance of precision; more specifically, precision-estimation and the 

ensuing precision weighting of prediction errors (Clark, 2013a). In terms of Bayesian belief 

updating, the relative precision of prior beliefs and sensory evidence determines the degree of 

belief updating. A prior belief that is held with great precision will be resistant to updating by 

a relatively imprecise prediction error. Neurophysiologically, the implicit sensitivity to 

prediction errors is thought to be mediated by the excitability of neuronal populations encoding 
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prediction errors (e.g., via the action of classical modulatory neurotransmitter systems and 

associated fast synchronous interactions in electrophysiology). Psychologically, this evinces a 

kind of selection that can be read as attentional selection or, its complement, sensory attenuation 

(Feldman and Friston, 2010). We will pursue the psychological reading of precision. 

To assess the precision of its predictions, brain relies on its own beliefs; that is to say 

about the precision of its prior predictions. The core idea developed in this paper is that 

fluency—the subjective experience associated with any cognitive treatment—plays a key role 

in prediction because it reflects or recognizes the precision of predictions and, in so doing, 

underwrites precise belief updating. However, we argue that it is not fluency itself that is firstly 

perceived but rather changes in fluency expectation. This change instantiates attentional set or 

mediates attentional selection (or attenuation) in response to violations and unexplained 

prediction errors.  

We begin by rehearsing the principles underlying active inference. We then review the 

works that foreground the importance of fluency in cognitive processes; particularly those 

concerning relative fluency. Finally, we suggest that if fluency underwrites the optimisation of 

precision in (Bayesian) belief updating, it is non-felt fluency (surprise) that play a key role in 

updating predictions about precisions—and furnishing a sense of felt fluency. 

 

 

About Active Inference 

Active inference is formulation of Predictive Processing (PP), applied to the perceptual, 

cognitive and enactive functioning of the brain. As above, it inherits from the foundational 

insights of Hermann von Helmholtz (1867) that cognitive processes are inferential processes 

(for a synthesis, see Hutchinson & Barret, 2019; Wiese & Metzinger, 2017).  

It is now widely accepted that PP provides a theoretical framework that accounts for 

many aspects of human and animal cognition in a way that no model has done previously (Clark, 
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2013b, 2018; Friston, 2009, 2010; Hohwy, 2016; Knill & Pouget, 2004; see also, Friston, 2010; 

Hutchinson & Barrett, 2019; Wiese & Metzinger, 2017).  

Over the past decade, numerous studies have highlighted its relevance in major areas of 

psychology: vision (Rao & Ballard, 1999; Walsh, McGovern, Clark, & O'Connell, 2020), 

perceptual illusions (van Heusden, Harris, Garrido, & Hogendoorn, 2019), memory (Hindy, 

Ng, & Turk-Browne, 2016; Parr & Friston, 2017b), attention (Ainley, Apps, Fotopoulou, & 

Tsakiris, 2016; Feldman & Friston, 2010; Kanai, Komura, Shipp, & Friston, 2015; Parr & 

Friston, 2019), motivation (Tate, 2019), emotions (Joffily & Coricelli, 2013;  Barrett, 2017; 

Ridderinkhof, 2017; Wilkinson, Deane, Nave, & Clark, 2019), action (Friston, Daunizeau, & 

Kiebel, 2009; Shadmehr, Smith, & Krakauer, 2010), theory of mind (Friston & Frith, 2014), 

social interactions (Kahl & Kopp, 2018), and language (Kuperberg & Jaeger, 2016; Mitsugi & 

Macwhinner, 2016).  It is important to note that traditionally these psychological functions are 

considered in isolation (they would be autonomous processes). As soon as active inference 

makes it possible to account for each of them, it is not necessary to consider that these 

psychological functions are not so different. 

Active inference1 provides an account of one of the major characteristics of living 

systems: that is a generalised kind of homeostasis or self-organisation that can be read as 

minimizing the discrepancy between current sensations and predictions based on previous 

information that has been assimilated under a generative or world model entailed by the brain. 

But, minimizing discrepancy (e.g., prediction errors) is not a passive process, living systems 

actively control their sensed environment to maintain their internal equilibrium: i.e., active 

inference. Technically, active inference is a process theory for embodied brains that is an 

application of a variational principle of least action (called the free energy principle, Friston, 

2009; Friston & Stephan, 2007; Friston et al., 2012).  

 
1 For a complete review read: Parr, Pezzulo, Friston (2022) 
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Active inference is an instance of the Bayesian brain hypothesis (Doya, 2007): under 

which brain is a predictive system grounded on a generative model, which scaffolds Bayesian 

belief updating of probabilistic representations of how the hidden (i.e., unobservable) causes in 

the world generate (i.e. unobservable) sensations. This belief updating corresponds to inferring 

the causes of sensations. That is to say, a probabilistic generative model of the dependencies 

between (unobservable or hidden) causes and (observable or sensory) consequences allows us 

to recognise the causes of sensations—and generate predictions of sensations given their causes. 

Hierarchical generative models entertain nested causes of an increasingly abstract and domain-

general nature at successive levels of the hierarchy; usually, with a separation of temporal scales 

(Friston et al., 2017b; Hasson et al., 2008; Kiebel et al., 2008; Poeppel et al., 2008; Ramstead 

et al., 2018).  

Under hierarchical models, recognition or perception is mediated by top-down 

predictions and bottom-up prediction errors; where prediction errors are used to update 

(Bayesian; i.e., subpersonal) beliefs about hidden causes of the sensorium—and the synaptic 

weights that encode the causal regularities of the world. In short, our brain infers, from sensory 

inputs, an internal probabilistic model of the world (i.e., the body/environment system). In turn, 

this internal probabilistic model allows us to anticipate sensory inputs and to evaluate the 

discrepancy between current sensations and those predicted under our generative models. 

The brain constantly generates predictions and ensuing prediction error or surprise 

signals. As noted above, prediction errors can be reduced in two ways: by changing predictions 

or by selectively action-sorting sensory inputs (Friston, 2010). These two ways of minimising 

prediction error have been referred to in terms of perceptual and active inference, respectively.  

Both are in the service of minimising prediction errors or variational free energy (Ramstead et 

al., 2022), which can also be read as maximising (a lower bound on) the statistical evidence for 

the generative model. In philosophy, this has been referred to in terms of self-evidencing 
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(Hohwy, 2016); namely, acting or selectively sampling the sensorium to maximise the evidence 

for our generative models of the sensed world. 

Crucially, the brain has to make predictions about the precision of its own predictions. 

These precision predictions are necessary to weight prediction errors in a Bayes optimal 

fashion; namely, in proportion to the precision or reliability of the information they contain. 

This means that inference—i.e., Bayesian belief updating—is driven by precision-weighted 

prediction errors. The idea is that the more precise a prediction is expected to be, the prediction 

errors that result should be afforded more weight. Psychologically, this kind of precision 

weighting is often equated with attentional set (see Ainley et al., 2016; Clark, 2018; Feldman 

& Friston, 2010; Kanai et al., 2015). Physiologically, it is thought to rest upon the same synaptic 

gain mechanisms that underwrite attentional selection.  

In order to assess the precision of its predictions, our brain must have subpersonal beliefs 

about the precision of its own predictions and therefore has to infer the reliability of its own 

beliefs. This means that our brains have to estimate the precision of their predictions. This 

estimation is ubiquitous in all inference settings. Perhaps the simplest example would be in 

statistics, where one has to estimate the standard error—of some group mean or expectation—

based upon the sum of squared prediction errors. Please see (Kanai et al., 2015) for an example 

of this precision encoding or uncertainty quantification as implemented in the brain—as a 

model of attention in separating feature from ground.  

In short, predicting precision is a key aspect of inference, in the sense of estimating the 

certainty. We consider that if fluency plays a key role in predicting precision, it is relative 

fluency that plays a key role in revising predictions about precision. 

 

About fluency and relative fluency 
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In the field of memory, Jacoby and colleagues (Jacoby & Dallas, 1981; Jacoby, Kelley 

& Dywan, 1989; Jacoby & Whitehouse, 1989; Kelley & Jacoby, 1990, 1998; Whittlesea, Jacoby 

& Girard, 1990) leveraged the ideas of Hermann von Helmholtz (1867)—in the field of 

perception—that cognitive processes are inferential processes (see also Brunswik, 1956). They 

were the first to suggest that the experience of memory originates in an inference based on a 

phenomenological cue, fluency. Fluency is generally defined as the subjective (metacognitive 

or qualitative) experience of the level of ease with which our own cognitive processes proceed 

(Alter & Oppenheimer, 2009; Reber & Schwarz, 2001)2.  

But fluency is phenomenologically transparent to its own causal source, in the sense that 

it does not represent such a source (Metzinger, 2003). Introspecting fluency will not reveal what 

brought it about, it is only a subjective feeling.  This is why assigning it a source must rely on 

an attributional process (the fluency attribution heuristic, Jacoby & Dallas, 1981). This 

attributional process relies on an inference: if fluency is felt, its origin can only be what I am 

aware of, the processed stimulus. Consequently, felt fluency leads to the orientation of attention 

to the stimulus selected for processing (Turo, Collins & Brouillet, 2022)3.  

As predicting precision is a key aspect of inference (see above), fluency could play a 

key role in active inference. Indeed, it informs the cognitive system about expectations toward 

the stimulus, according to the properties of the stimulus and past experiences. In short, fluency 

 
2 Several empirical studies suggest that fluency is involved in a wide variety of judgements (for an overview, see 
Alter & Oppenheimer, 2009). Furthermore, it has been shown that fluency is evinced at different levels—and 
entails diverse contents that allow people to experience the world as unitary (see Winkielman, Ziembowicz & 
Nowak, 2015). Fluency has been referred to as perceptual fluency, when it involves perceptual processes (Jacoby 
& Whitehouse, 1989), conceptual fluency when it involves semantic processing (Whittelsea, 1993) and motor 
fluency when motor processes are involved (Yang, Gallo & Beilock, 2009). 
3 It was highlighted that: in a distance judgment task the stimulus will be perceived as closer (Alter & 
Oppenheimer, 2008; Mrkva, Travers & van Boven, 2018), in a memory judgment task the stimulus will be 
considered as old (Lanska, Olds & Westerman, 2014; Brouillet et al., 2022), in a hedonic judgment task the 
stimulus will be judged as positive (Reber, Winkielman & Schwarz, 1998; Milhau, Brouillet & Brouillet, 2013) 
and aesthetic (Reber, Schwarz & Winkielman, 2004; Zhang et al., 2022). 
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is interpreted as a metacognitive signal that tells us that there is minimal error in the execution 

of the current process.  

The idea that fluency is an integral part of active inference was implicit in the work of 

Hesp, Smith, Parr, Allen, Friston and Ramstead (2021). In their work, they demonstrate that 

hierarchical Bayesian networks, solved using active inference (Friston, Parr & de Vries, 2018), 

make it possible to account for emotional valence. To evince this, they formalized emotional 

valence as a state of self that is inferred on the basis of fluctuations in the estimated confidence 

(or precision) that an agent has in its generative model that informs his decisions. According to 

their results, they propose that it would be changes in processing fluency across different 

domains that that would be at the root of affective states.  

Based on the idea that fluency can be seen through the lens of Helmholtzian inference 

— that underlies predictive coding — Brielmann and Dayan (2022) proposed a computational 

model of aesthetic value. They consider that stimuli that are predictable (under the generative 

model) are those that are processed fluently. Indeed, the brain continuously predicts the next 

sensory input and greater fluency corresponds to a precise match between predictions and the 

sensory input. Thus, fluency can be thought as signifying a resolution of prediction errors, or at 

least, as a signal of smaller prediction errors and greater precision. Moreover, according to the 

so-called hedonic marking fluency, increasing fluency is the main determinant of how 

positively a sense experience is evaluated. 

In the model they proposed, they adapted the generative model to make the processing 

of specific stimuli more fluent, that is to say more predictable. To do that they operationalized 

processing fluency as the likelihood of a stimulus, given the system state at a given time. 

Technically, this corresponds to increasing the precision of the likelihood model. In two 

experiments, their model was able to capture the classic effects observed in the literature on 

aesthetic evaluations. In turn, these results support the idea that sensory experiences associated 
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with smaller prediction errors (i.e., greater precision), for which fluency is the marker, are more 

pleasurable.  

While Brielmann and Dayan’s model supports the idea that fluency is an intrinsic part 

of predictive processing, it seems important to consider the distinction proposed by Whittlesea 

and Leboe (2003) between absolute fluency and relative fluency4 to explain the role of fluency 

from an active inference perspective.   

Absolute fluency refers to an increasing degree of fluency (e.g., the speed of 

processing), which results in a subjective feeling of fluency (c.f., recognising that one is 

becoming increasingly fluent)5. The works mentioned in the preceding paragraphs considered 

absolute fluency. In distinction, relative fluency refers to a violation of expectation and 

consequent surprise: for example, you expect something to appear immediately, and it doesn't, 

but then appears after a delay. In this case, that something will seem more fluid than if it had 

appeared immediately. Cinema often uses this phenomenon to keep viewers spellbound 

According to the SCAPE model (Whittlesea, 1997), the discrepancy attribution 

hypothesis (Whittlesea, 2002, 2004; Whittlesea & Leboe, 2000, 2003; Whittlesea & Williams, 

1998, 2000, 2001a, 2001b) furnishes an account of this phenomenon6. For example, in their 

core experiment, Whittlesea and Williams (1998) wanted to highlight the role of surprise in 

creating a sense of familiarity. In the first phase (experiment 3) they asked participants to learn 

a list composed of real words (e.g., table), orthographically regular non-words (e.g., hension), 

and orthographically irregular non-words (e.g., stofwus). Then, in a second phase, participants 

 
4 Westerman (2008) uses the concept of relative fluency in a significantly distinct sense from Whittlesea and 

Leboe (2003): fluency is relative to a benchmark (the proportion of fluent items to non-fluent items) 
5 A priming task is a good example: if we present the word "doctor" and immediately after the word "nurse" we 
will feel a sense of fluency whereas if "nurse" is preceded by the word "tree" that will not be the case. 
6 Since several researches have supported the discrepancy attribution hypothesis (Aßfalg & Bernstein, 2012; 

Aßfalg, Currie & Bernstein, 2017; Breneiser & Mcdaniel, 2006; Brouillet et al., 2017; Brouillet, Servajean, Josa, 

Gimenez, Turo & Michelland, 2023; Brouillet, Rousset & Perrin, 2022; Bruett & Leynes, 2015; Chen & Mo, 2002; 

Goldinger & Hansen, 2005; Hansen, & Wänke, 2013; Hansen, Dechêne & Wänke, 2008; Joordens, Ozubko, & 

Niewiadomski, 2008; Thomas, Lindsey, & Lakshmanan, 2010; Wänke & Hansen, 2015; Wilbert & Haider, 2012; 

Willems & Van der Linden, 2006). 
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were presented with old items (i.e., presented in the first phase) and new items (i.e., not 

presented in the first phase but with the same characteristics as the old items). Subjects were 

asked to perform three tasks on each item: to pronounce it, to decide if it were a word or non-

word (lexical decision task), and to decide if it had been presented in the first phase.  

It is the results on the new words that are most interesting. They revealed that the real 

words were pronounced more easily than the other two types and that the orthographically 

regular non-words were pronounced more easily than the orthographically irregular non-words. 

Results on the lexical decision task showed that real words were judged more rapidly than 

orthographically regular non-words and these ones more rapidly than orthographically irregular 

non-words. They highlighted that there were more false alarms (i.e., new words are judged as 

having been presented in the first phase when they were not) for orthographically regular non-

words than for real words and for orthographically irregular non-word. The difference between 

real words and orthographically irregular non-words was no significant.   

If feeling of familiarity was only associated with absolute fluency of processing, then 

the proportion of new items judged as old (called false alarm) should have been higher for real 

words than orthographically regular non-words. But it is the opposite that was observed. To 

explain what they called the Hension Effect, the authors evoke the discrepancy attribution 

hypothesis: the surprise associated with the pronounceability of the orthographically regular 

non-word, while their perceptual identification is more difficult than for real words (they do not 

exist in the lexicon), generates a feeling of familiarity. This is because—in the context of a 

recognition test—participants cannot attribute surprise to its source, so they attribute the fluency 

felt to the most obvious source, the stimulus, that is consequently regarded as having been 

present in the learning phase.  

It is important to note that felt fluency—related to the pronounceability of 

orthographically regular non-words—is relative to the fact that their perceptual identification 
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was difficult (non-felt fluency), hence the term “relative fluency” used by the authors. It is the 

surprise that emerges from the gap between a phenomenal sense of non-felt fluency and a 

phenomenal sense of felt fluency that orients attention to the ongoing sensory processing.  

Recently, Brouillet et al. (2023) observed similar results (Experiment 2, new words) to 

those of Whittlesea and Williams (1998). However, their results show that the gap between 

non-felt fluency and felt fluency acts both anteriorly (forward) and posteriorly (backward). 

They manipulated the discrepancy between conceptual and perceptual fluency, using an 

adaptation of the sentence stem paradigm (Whittlesea, 1993): words to be recognized were 

predictable or non-predictable and Gaussian noise (Reber et al, 1998) was used to manipulate 

the readability of the words. With a noisy background (no-perceptual fluency), participants 

were more likely to judge a new word as old for predictable words (conceptual fluency) than 

when the background was noiseless (perceptual fluency). This situation is similar to that of 

Whittlesea and Williams (1998): non-felt fluency (no-perceptual fluency) precedes felt fluency 

(conceptual fluency). But, when the background was noiseless (perceptual fluency), 

participants were more likely to judge a new word as old for non-predictable words (no-

conceptual fluency) than for predictable words (conceptual fluency). In this situation non-felt 

fluency (no-conceptual fluency) follows felt fluency (perceptual fluency). Taken together these 

results suggest that it is relative fluency that orients attention to surprising sensory input and 

accompanying phenomenology. In the context of a memory task — as the surprise is transparent 

to its origin — participants attribute the source of phenomenal sensations to prior experience 

with the stimulus.  

In the same vein, Brouillet, Milhau, Brouillet and Servajean (2017) tested the 

discrepancy hypothesis through the effect of motor fluency that preceded the words to be 

recognized. In this paradigm, participants had to perform a fluent gesture (e.g., dominant 

hand and ipsilateral gesture) or a non-fluent gesture (e.g., dominant hand and contralateral 
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gesture) just before the recognition task. The gesture had no relationship with the meaning 

of the words. The results showed that ipsilateral side gestures (high motoric fluency) were 

easier to execute than contralateral side gestures (less motoric fluency), and that words 

which followed an ipsilateral side gesture were more likely to be reported as recognized 

than words that followed a contralateral side gesture. The results on new words are, once 

again, interesting. When they appear on the screen it is non-fluency that is experienced but 

before the word appeared, participants have experienced fluency. This discrepancy generates a 

non-specific signal that automatically triggers the search for an explanation. Since participants 

cannot firmly attribute this nonspecific signal to its source, they attribute it to the most salient 

source—the stimulus—and thus they infer that the word was on the learning list and report that 

they recognize it.  

In further paper, Brouillet, Rousset and Perrin (2022) showed an effect of discrepancy 

through the transfer of the motor feeling of fluency linked to the participants’ past interactions 

with the environment, independently of the stimulus in progress. In this paradigm, they 

constructed an experiment that comprised two steps. Firstly, participants had to perform a 

perceptual discrimination task (distinguishing a square from a circle) that involved a fluent 

gesture (ipsilateral side) or non-fluent gesture (contralateral side) to respond. Motor fluency vs. 

non-fluency was implicitly associated with the colour of the geometric shapes (blue vs. 

magenta). Second, they had to perform a classical memory recognition task:  learning a list of 

pseudo-words and recognize them among new pseudo-words. During the recognition phase, 

pseudo-words (Old and New) appeared, either with the colour associated with motor fluency or 

with the colour associated with non-motor fluency. Results highlighted that pseudo-words 

presented in a colour associated with an ipsilateral gesture (motor fluency), lead to more 

frequent “old” (i.e., learned) responses, than non-words presented in a colour associated with a 

contralateral gesture (non-motor fluency).  Again, it is particularly interesting that new pseudo-



13 

 

words were recognized as old — when they were presented in the colour associated with a 

fluent gesture. This strengthens previous results: it is the discrepancy between colour (felt 

fluency) and new pseudo-words (non-felt fluency) that leads participants to attribute the origin 

of the phenomenal experience to pseudo-words, and to infer that they must be old words. So, 

these results show that the cognitive system uses motor fluency — engendered by preceding 

actions — even if these past actions have no link with items processed. On the other hand, they 

show that the cognitive system is sensitive to the gap between non-felt fluency and felt fluency, 

which results in a deployment of attention to current sensory inputs and in the context of 

recognition task they judge items as old.   

Wilbert & Haider (2012) were the first, to our knowledge, to brought out a link between 

fluency and (the processing of) prediction errors. The authors used the discrepancy hypothesis 

to explain the feeling of having committed an error. Their assumption was that a subjective 

discrepancy between the expected and the experienced feeling of typing triggers a search 

process for the cause, resulting in the attribution of the discrepancy to a typing error. To show 

this, participants had to type visually presented letters, one at a time. After having finished 

typing, they were asked to judge whether or not they had correctly typed the actual word (or 

pseudo-words). Results show that it is the perceived violation of an expectation regarding 

fluency of typing that leads to the subjective experience of having made a mistake (e.g., 

expecting to type pseudowords slowly and typing them quickly and correctly).  

But the most interesting result, for our purposes, was obtained in their experiment 4. Its 

aim was to find out whether an expectation violation in itself is sufficient to produce the 

subjective feeling of having made an error, or whether this subjective feeling results from the 

attribution of the perceived expectation violation to a cause. Instead of only asking participants 

to judge the correctness of their typing after typing the letters, they were asked to first judge 

whether their typing matched their expectations. When a participant reported that their typing 



14 

 

differed from their expectations, they were asked to choose between two alternatives: a) they 

had to decide whether the strange sensation was due to a mistake being made or to some other 

non-specific cause, b) they had to decide whether the strange sensation was due to a mistake 

being made or to a strange sequence of letters in the word. Two conditions were thus 

manipulated: a non-specific origin of the strange sensation vs. a specific origin of the strange 

sensation. Results showed that in the unspecific condition, the rates of false alarms (i.e., respond 

that the stimulus is present when it is not) and misses (i.e., the stimulus is present but there is 

no response) were higher for pseudo-words—hard to pronounce (unfelt fluency) but easy to 

type (felt fluency)—than for lexical words. By contrast, in the specific condition (given an 

increased rate of misses for pseudo-words), the rate of false alarms did not differ between 

pseudo-words and lexical words. This is particularly interesting, because it is the false alarms 

that are based on an attribution of a cause when a strange feeling during typing is experienced. 

Conversely, for misses, a judgment about a cause is not necessary, because it corresponds to 

the situation in which participants decided they did not commit an error, even though an error 

was made. As the authors point out, the results of this experiment provide clear evidence that 

participants do not rely on only the error signal when they have to judge whether or not they 

correctly typed a word. Rather, they seem to be influenced by perceiving a discrepancy between 

expected fluency and experienced fluency of their processing, which they then resolve by 

searching for a cause that can best explain the current situation (i.e., answer the question asked). 

In short, the judgment of having made an error is, by itself, the result of an attribution of a cause 

associated with expected fluency which turned into experienced fluency. 

In short, all these experiments show that the phenomenological perception of a gap 

directs attention, and that the fluency experienced is merely the consequence of a non-felt 

fluency or an expected fluency. This is why we consider that there is a close similarity between 

what the SCAPE model tells us about cognitive functioning, via the discrepancy hypothesis, 
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and the theoretical framework of active inference. Indeed, according to the active inference 

account, these experiments support the idea that non-felt fluency or expected fluency leads, via 

the heightening of felt fluency, to a revision of precision expectations (i.e., surprise or 

unresolved prediction errors); namely, an active updating of attentional set. Consequently, the 

results observed following the presence of a gap between non-felt fluency and felt fluency 

resonate with the principles of active inference. Thereafter, we shall refer to unfelt fluency as 

non-felt fluency. 

 

Unfelt and felt fluency in active inference 

According to the discrepancy attribution hypothesis and active inference framework it 

seems obvious that surprise plays a key role in cognitive processing. It is important to specify 

that surprise is not a state (i.e., an emotional state of mind induced by an unexpected event). 

Surprise is an attribute of sensations, technically known as self-information or surprisal (Levy, 

2008; Tribus, 1961): it is a warning signal which, on the one hand, informs the system that there 

is a gap between what is observed and what is predicted and, on the other hand, leads a 

redeployment of attention to the unfolding of the process being inferred. In short, the more a 

prediction is contradicted by the sensory evidence, the more sensitive we are to the ensuing 

prediction errors. As a result, it follows a stimulus-bound change in attentional set. 

 These subpersonal changes can then be recognised as unfelt fluency; namely non-

conscient recognising a change in attentional set; i.e., recognising when our attention is drawn 

to something we cannot explain—or did not predict. On this reading, unfelt fluency is 

phenomenologically transparent (surprise) until it is rendered opaque by the mental action that 

attends its recognition, felt fluency. Mental action in this instance refers to top-down or 

endogenous attention (Limanowski, 2017; Limanowski, 2022; Limanowski and Blankenburg, 

2013; Metzinger, 2003). In other words, although felt fluency may be phenomenologically 



16 

 

transparent, it may render unfelt fluency opaque, in the sense that I can report “I lost a fluent 

grip on this task because my attention was distracted”. The explicit nature of felt versus unfelt 

fluency is not unlike the distinction between endogenous and exogenous attention. Please see 

(Jiang et al., 2013; Limanowski, 2017; Solms and Friston, 2018) for further discussion. 

To our knowledge, there are relatively few studies that illustrate the importance of unfelt 

fluency for active sensing and perceptual synthesis. If the work of the Whittlesea’s team has 

paved the way, it is, in our opinion, a direction of travel where the discrepancy between what 

is expected and what is perceived does not directly concern the processing of stimuli but how 

these stimuli are processed. Indeed, these studies allow us to understand, on one hand, that the 

cognitive system considers the fluency felt regardless of its origin and, on other hand, that unfelt 

fluency underwrites perceptual synthesis because it operates as a non-conscious process that 

orients attention, even if its origin is not the stimulus processed (but rather the precision with 

which stimuli can be predicted).  

The emerging story here is that there is an intimate relationship between hierarchical 

predictive processing; particularly of precision, fluency and attention during an active 

engagement with the sensorium. In brief, we have pointed to evidence that suggests the 

estimation of the precision of various sources of evidence (e.g., prediction errors) in Bayesian 

belief updating in the brain is crucial for an optimal balance of prior beliefs and sensory 

evidence. This optimal balance rests on predicting the precision of prediction errors in 

perceptual hierarchies that, when optimal, constitutes unfelt fluency. From a psychological 

perspective, this can be likened to exogenous attention. In a hierarchical setting, the 

recognition—and implicitly instantiation—of optimal precision renders unfelt fluency opaque 

and implies a hierarchically deeper representation of fluency; namely felt fluency. Because 

predictive coding formulations of active inference rest upon ascending prediction errors and 

descending predictions, felt fluency can be read as inferring some fluent processing at lower 
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hierarchical levels while, at the same time, issuing top-down predictions that place priors over 

the mediation of unfelt fluency; namely, precision at lower levels of the hierarchy. Because, 

neurobiologically, this kind of precision control is thought to be mediated by modulatory 

neurotransmitter systems: e.g., monoaminergic systems such as dopamine, norepinephrine, et 

cetera (Moran et al., 2013; Parr and Friston, 2017a), there is a close connection between the 

notion of felt fluency and felt uncertainty as articulated in certain applications of active inference 

to sentient behaviour (Solms, 2018). For example, Solms (2019) assimilates consciousness to a 

sense of uncertainty. In Solms’ thesis, felt uncertainty is mediated by ascending 

neuromodulatory systems which represent the dénouement of hierarchical processing in the 

brain (Solms, 2021).  

To summarize, the theoretical considerations concerning active inference, in particular 

the need for the organism to make predictions about its own predictions on the one hand, and 

to assess the precision of its predictions on the other hand, have allowed us to propose that 

unfelt fluency is used to assess the precision of our predictions and the feeling of fluency 

supervenes on—or is an attributional inference about—the resulting optimisation of active 

inference; i.e., fluent or skilled exchange with the sensorium, which is experienced as a precise 

grip on the world of affordances (Bruineberg and Rietveld, 2014).  

 

Conclusion 

The aim of this paper was to propose, based on both theoretical considerations and 

experimental works, that felt fluency, the subjective metacognitive experience associated to the 

causes of the ongoing process, can be read as recognising and contextualising unfelt fluency; 

where unfelt fluency optimises predictions of the precision of sensory processing. On this view 

it is unfelt fluency that instantiates attention, in response to unresolved prediction errors or 

surprise. 
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In summary, our sentient behaviour can be understood in terms of active inference under 

a generative model that includes a certain cognitive set called fluency. This cognitive (or 

attentional) set is both cause and consequence of a fluent, precise predictive processing of 

sensory exchanges with the world. It is a cause because it provides top-down—i.e., prior—

constraints on the precision of processing at lower levels of the hierarchy. These predictions of 

precision ensure the (Bayes) optimal deployment of attention and, consequently, precise and 

confident action selection. At the same time, it is a consequence of lower-level processing when 

prediction errors are lower than predicted. This “prediction error of prediction errors” furnishes 

bottom-up messages that revise (Bayesian) beliefs about cognitive or attentional set, and a 

suitable adjustment of the precision at lower levels. See (Feldman and Friston, 2010; Kanai et 

al., 2015; Parr and Friston, 2017b, 2019; Parr et al., 2020; Smith et al., 2019b) for a technical 

discussion and illustration using simulations and numerical experiments. In other words, 

changes in unfelt fluency (i.e., precision) induce felt fluency.  

The key aspect of this context-sensitive predictive processing is that the cause of felt 

fluency—c.f.: felt uncertainty (Solms, 2018)—arises from internal inferences about the 

precision of predictive processing, not the sensorium. This means that a sense of fluency cannot 

be attributed to its subpersonal cause—and is therefore plausibly attributed to the sensorium. 

This formulation gracefully accommodates attribution theories of fluency while, at the same 

time, emphasising the causal role of changes in the precision or unfelt fluency of predictive 

processing. A closely related perspective on the key role of inferred precision can be found in 

computational accounts of phenomenology and metacognition. For example, (Sandved-Smith 

et al., 2021) offer a computational phenomenology of mental action, modelling meta-awareness 

and attentional control that is formally consistent with the current account of fluency. 

Specifically, the authors propose a model of meta-awareness and attentional control using 

hierarchical active inference. They “cast mental action as policy selection over higher-level 
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cognitive states and add a further hierarchical level to model meta-awareness states that 

modulate the expected confidence (precision) in the mapping between observations and hidden 

cognitive states.” In so doing, they differentiate between “the capacity to explicitly notice the 

current content of consciousness” (c.f., felt fluency) and attentional processes per se (c.f., unfelt 

fluency). 

Having made these connections, we proposed that unfelt fluency could be considered as 

the cue that increases precision in our own predictions because it is the cause of inferences. To 

support this proposition, we have presented several experiments that endorse this view. Firstly, 

it seems that the cognitive system is nothing more than an inferential process associated with 

the monitoring and recognition of the ongoing process and the resulting subjective feeling of 

(felt) fluency. Secondly, it seems that cognitive system uses felt fluency, which supervenes 

on—and contextualises—unfelt fluency, for attributing precision to its inferences (predictions). 

Thirdly, unfelt fluency seems to underwrite a foundational kind of cognitive or attentional set, 

since it is used even when not directly related to the processed stimulus but to the ongoing 

process associated with the individual's activity.  

If the core role of inference advanced by von Helmholtz—that any mental state is 

realised by unconscious inference—then the causes of the subjective (conscious) inference must 

have unconscious perceptual precursors. It was James (1890) who suggested that consciousness 

was preceded by a state of pre-consciousness, called the fringe of consciousness, which shapes 

this consciousness (see, Mangan, 2003). On the current view7, this fringe of consciousness 

would include unfelt fluency; namely, the subpersonal (possibly pre-conscious) changes in 

precision at low levels of hierarchical processing. This level of processing has a crucial and 

adaptive function because it signals whether or not you need to allocate more attention to 

ongoing processes.  

 
7 See, Reber, Fazendeiro & Winkielman (2002) who have linked fluency to Fringe of Consciousness. 
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Perspective 

We have pursued the idea that the experience of fluent processing reflects the degree to 

which beliefs are updated. Our theoretical treatment of fluency rests upon current formulations 

of the predictive brain, with a special focus on the encoding of uncertainty — or its complement, 

precision (e.g., inverse variance). This theoretical treatment can be contrasted with more 

descriptive approaches to the Bayesian brain and rational (or bounded rational) decision-

making: e.g., (Ernst and Banks, 2002; Kahneman and Tversky, 1973). Predictive coding (and 

active inference) commits to a neuronal process theory that foregrounds the explicit 

estimation—and neuronal representation—of Bayesian beliefs (Friston et al., 2017a; Shipp, 

2016). Bayesian beliefs in this setting are subpersonal (i.e., they are not propositional or folk 

psychology beliefs): they are implicit probability distributions encoded by neuronal activity and 

synaptic gain (Friston et al., 2006). This is an important issue from two perspectives. 

First, there is an explicit appeal to priors in the ensuing Bayesian inference that explains 

apparently irrational decision-making in terms of hierarchical inference. In other words, unlike 

appeals to Bayesian statistics as a description of decision-making, c.f., (Gardner, 2019), active 

inference tries to explain any given (e.g., perceptual) decision in terms of the appropriate priors 

that are inherited from experience: technically, for any given choice behaviour and loss function 

there are always some Bayesian priors that render the behaviour Bayes optimal—this is known 

as the complete class theorem (Brown, 1981; Wald, 1947). Second, this neuronally plausible 

explanation for belief updating foregrounds the importance of encoding a belief that includes 

its precision. This is the key aspect of the current account of felt and unfelt fluency that rests 

upon the observation that belief updating entails estimating or inferring the precision of beliefs. 

This precision can be read as a subpersonal ‘confidence’ in various beliefs or expectations 

during belief updating (Bays and Wolpert, 2007; Feldman and Friston, 2010; Limanowski and 

Friston, 2018; Mathys et al., 2011; Moran et al., 2013). However, optimising this subpersonal, 
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unfelt ‘confidence’ rests on mental action, which equips it with a certain phenomenology that 

we associate with felt fluency. 
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