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ICAM-Reg: Interpretable Classification and
Regression With Feature Attribution for Mapping
Neurological Phenotypes in Individual Scans
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Petru-Daniel Tudosiu, Fidel Alfaro-Almagro, Sean P. Fitzgibbon, Matthew F. Glasser,
Stephen M. Smith, and Emma C. Robinson™, for the Alzheimer’'s Disease Neuroimaging Initiative

Abstract— An important goal of medical imaging is to
be able to precisely detect patterns of disease specific
to individual scans; however, this is challenged in brain
imaging by the degree of heterogeneity of shape and
appearance. Traditional methods, based on image reg-
istration, historically fail to detect variable features of
disease, as they utilise population-based analyses, suited
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primarily to studying group-average effects. In this paper
we therefore take advantage of recent developments in
generative deep learning to develop a method for simul-
taneous classification, or regression, and feature attribu-
tion (FA). Specifically, we explore the use of a VAE-GAN
(variational autoencoder - general adversarial network) for
translation called ICAM, to explicitly disentangle class rel-
evant features, from background confounds, for improved
interpretability and regression of neurological phenotypes.
We validate our method on the tasks of Mini-Mental State
Examination (MMSE) cognitive test score prediction for the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort,
as well as brain age prediction, for both neurodevelop-
ment and neurodegeneration, using the developing Human
Connectome Project (dHCP) and UK Biobank datasets.
We show that the generated FA maps can be used to
explain outlier predictions and demonstrate that the inclu-
sion of a regression module improves the disentanglement
of the latent space. Our code is freely available on GitHub
https://github.com/CherBass/ICAM.

Index Terms—Brain imaging, deep generative models,
feature attribution, image-to-image translation.

I. INTRODUCTION

RAIN images represent a significant resource in the

development of mechanistic models of behaviour and
neurological/psychiatric disease as, in principle, they capture
measurable neuroanatomical traits that are heritable, present in
unaffected siblings and detectable prior to disease onset [1].
For many complex disorders, however, these features of
disease [2], [3] are subtle, variable and obscured by a
back-drop of significant natural variation in brain shape and
appearance [4], [5]; this makes them extremely difficult to
detect.

Traditional approaches for analysis of brain magnetic
resonance imaging (MRI) rely on group-wise comparisons
between disease and control groups, whereby they compare
all images in a global average space through performing
image registration to a template. Voxel-based morphometry
(VBM) is one such common method [6], which has been
used in countless studies of development, ageing and demen-
tia [7], [8], [9], [10], [11]. Other techniques include traditional
machine learning analysis based on comparisons of hand-
engineered features, for example metrics derived from cortical

For more information, see https://creativecommons.org/licenses/by/4.0/
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regions [12], [13], [14], [15], [16], [17], [18], or lesion
symptom mapping techniques [19]. More recent methods use
Gaussian processes [20] to detect diseased brain tissue as
outliers against a normative model, fit at each voxel. While
these methods have significantly improved understanding of
population average patterns of disease [7], they rely on spatial
normalisation and therefore lose power at the cortex due to
the impact of cortical heterogeneity [4], [21]. This also means
that they are not tuned to detect features of disease specific
to the individual, which are extremely important for diagnosis
and prognosis.

To address these limitations, recent studies have started
to apply deep learning methods to brain imaging datasets.
Deep learning is state-of-the-art for many image processing
tasks [22], and has shown strong promise for brain imag-
ing applications such as healthy tissue and lesion segmenta-
tion [23], [24], [25], [26]. Importantly, by design it can work
independently of any requirement for spatial normalisation.
However, deep learning methods do not, by default, return
explanations of the reasoning behind their predictions, leading
to them traditionally being referred to as “black box” models.

More recently, several approaches have been developed to
make these networks more interpretable through identifying
class-relevant features for a particular input. These include
post-hoc saliency based methods, designed to detect which
features of a specific image contribute most strongly to a
class prediction. These typically analyse the gradients or
activations of the network, with respect to a given input
image, and include approaches such as Gradient-weighted
Class Activation Mapping (Grad-CAM) [27], SHAP [28],
DeepTaylor [29], integrated gradients [30], guided backprop-
agation (backprop) [31], and Layer-wise backpropagation
(LRP) [32]. In addition, perturbation methods such as occlu-
sion [33] change or remove parts of the input image to generate
heatmaps, by evaluating its effect on the prediction.

Such methods have now been applied in various medical
imaging applications including in MRI and Positron Emis-
sion Tomography (PET) imaging datasets for Alzheimer’s
(AD) [34], [35], [36], [37] and Multiple Sclerosis (MS) [38]
classification, and cancer detection through breast density
regression [39]. However, while in principle, these methods
can be applied to detect features from individual images, the
results are typically low resolution and noisy, which makes
them hard to interpret. Often this leads to studies estimating
a group average to aggregate results across individuals, and
boost signal to noise to make stable population-wide infer-
ences [36], [37]. This loses individual specificity, and since
these feature attribution (FA) methods often detect similar
features in both healthy and disease groups, it is difficult to
interpret the results.

In addition, since these FA methods are applied to a CNN
following training, their power is limited by the constraints of
the network they are applied to. Such networks need only focus
on the most consistent or discriminative features, sufficient
to accurately predict each class. This is a particular issue
for medical imaging where diagnosis and treatment rely on
comprehensive capture of all features of disease [34], [35],
[36], [37], [38], [40]. For example, when applying LRP and

guided backprop to brain MRI, it was found that while they
were able to detect homogeneous brain structures such as
the hippocampus, they were unable to detect heterogeneous
structures such as cortical folds [36], [37].

For these reasons, new approaches have recently been
proposed which seek holistic explanations for a pheno-
type through learning to translate images from one class
to another [40], [41], [42], [43], [44], [45]. For example
Lenis et al. [43] identifies salient regions of any input image
by identifying the smallest feasible perturbation that would
change a predictor’s score. Similarly, Schutte et al. [44] trains
a StyleGAN [46] to simulate osteoarthritis in knee X-ray
images and [47] modifies a CycleGAN [45] to generate the
minimum pertubation required to change the disease class of
retinal images. Most similar to this work is Baumgartner et al.
[40], which uses a visual attribution (VA) GAN to translate
images classed as Alzheimer’s (AD) to instead resemble Mild
Cognitive Impairment (MCI). However, while this method
was able to detect more features of disease relative to post-
hoc methods, it was still unable to identify much of the
phenotypically variable changes around the cortex [48].

To address these problems in [48] we developed ICAM
(Interpretable Classification via disentangled representations
and feature Attribution Mapping); this improved on the state-
of-the-art image-to-image translation methods (Table II) [27],
[30], [31], [33], [40] by disentangling class-relevant attributes
(attr) from class-irrelevant content features. Sharp recon-
structions were then learnt through use of a Variational
Autoencoder (VAE) with a discriminator loss on the decoder
(Generative Adversarial Network, GAN). This not only allows
classification and generation of an attribution map from the
latent space, but also a more interpretable latent space that
can visualise differences between and within classes. By sam-
pling the latent space at test time to generate an FA map,
we demonstrated its ability to detect meaningful brain varia-
tion pertaining to Alzheimer’s disease (Fig. 1).

While in the past translation methods have been imple-
mented solely for classification, regression tasks are common
in medical imaging, as most diseases lie on a continuous
spectrum. The key contributions of this paper are therefore
as follows:

1 We extend ICAM [48] with an additional regression mod-
ule to support interpretation of heterogeneous continuous
phenotypes.

2 Performance is validated across three different tasks:
regression of healthy ageing in the UK Biobank, neurode-
velopment in the developing Human Connectome Project
(dHCP), and MMSE scores from ADNI.

3 We demonstrate that adding a regression model improves
the interpretability of the attribute latent space, and show
that in this way ICAM-reg can provide explanations for
subjects predicted as outliers by interpolating between the
attribute latent space encoding of two subjects within and
between age groups.

4 We perform additional experiments to validate transla-
tion, using an independent classification network, trained
on real images, to verify whether the model plausibly
changes the image class.
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Fig. 1. ADNI comparisons of Feature Attribution (FA) maps for different post-hoc and generative models. Results are visualised for one individual,
scanned twice longitudinally, during which time the subject was known to convert. Here, the ‘Real’ (ground-truth) disease map was calculated by
subtracting the difference between the two scans. ICAM (mean and variance maps) show good detection of regions known to be implicated in
Alzheimer’s disease: the ventricles (blue arrows), cortex (green arrows), and hippocampus (pink arrows); results align much more closely with the

ground truth than competing baseline methods.

Il. RELATED WORKS

Over recent years, several deep generative approaches to
image-to-image translation have emerged [41], [42], [45], [49],
[50], [51], where these have been applied to many different
domains, including medical imaging [40], [52], [53], [54].
Of these, Lee et al. [42], in particular, developed a domain
translation network called DRIT (Fig. 2b), which constrains
translation only to features specific to a class, by encoding
separate class-relevant (attribute) and class-irrelevant (content)
latent spaces, and employing a discriminator.

Separately, Baumgartner et al. [40] developed a conditional
‘visual attribution’ GAN which translated 3D MRI brain
scans, classified with Alzheimer’s disease (AD), towards the
appearance of scans with mild cognitive impairment (MCI): an
intermediate state between healthy cognition and AD (Fig. 2a).
This generates sharp reconstructions and realistic disease maps
that overlap with ground truth patterns of longitudinal atrophy.
However, the approach requires image class labels to be known
a priori and, in the absence of a latent space, it can only
produce a single deterministic output for each image, which
limits the modelling of more heterogeneous features.

Accordingly, in our work ICAM [48], we extended upon
the intuitions of these models to create one framework which
allows simultaneous classification and feature attribution,
using a more interpretable model. Compared to VA-GAN and
DRITH++ [40], [42], ICAM uses 2 shared disentangled latent
spaces, attribute and content, which encode for class-relevant
and class-irrelevant information, respectively. The use of a
shared attribute (class) latent space allows the addition of a
classification layer (and in this work, also a regression layer)
to the network (Fig. 2c), which enables the network to do
classification and visualisation of differences between and
within classes.

Other components of ICAM such as a FA map loss,
L2 reconstruction loss, and a 3D attribute latent space also
improve performance compared to VA-GAN and DRIT++
(as illustrated using ablation studies in [48]).

I1l. METHODS
The goal of ICAM [48] is to perform classification with
simultaneous feature attribution, by training a VAE-GAN to

fe,-class

ft‘»fred
X ‘: ; '\ E y
©

(b) DRIT

(a) VA-GAN (c) ICAM-reg

Fig. 2. Comparison of domain mapping methods. (a) VA-GAN translates
images of domain x to y. (b) DRIT can translate between domains
x and y through a shared content space C, and separate attribute
spaces AX and AY. (c) ICAM-reg uses shared content C and attribute
A spaces to translate between domains, which allows classification f¢,
and regression f02 layers to be applied to the attribute space A.

swap the classes of input images (x, y) by changing only
the features which are specific to the target phenotype. In
this paper, we extend the method with a regression module
(‘pred” - Fig 3) to support prediction of continuous
phenotypes.

A. Content and Attribute Latent Spaces

In ICAM, domain disentanglement is achieved through
encoding two separate latent spaces: a content encoder {E€}
(latent space z¢), whose objective is to encode class-irrelevant
(e.g. brain shape) information, and an attribute encoder
{E“*} (latent space z%), whose objective is to encode all
class-relevant features of disease. In both cases, the latent
spaces are shared between classes or domains (i.e. {E,
x — CHL{E. : y — C}). Note, in what follows, we refer to
domain or class interchangeably, in which the same meaning
is implied.

For the content encoder {E€}, class information is driven
out from the latent space {C} through training of a discrimi-
nator, { D¢}, with class adversarial content loss:

= Ez¢[log D°(E(x)) + log(1 — D(E“(x)))]

+ Ezg[log D(E“(y)) + log(1 = D(E“(y))]. (D)
The goal of the content encoder {E.} is therefore to learn a
representation whose domain cannot be distinguished by this

discriminator (an approach first proposed by Lee et al., [42]).
Training is also supported through L2 regularisation, to prevent

LP;

adv
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Fig. 3. Overview of method. An example of how ICAM performs classification/regression with FA map generation for 2 given input images x (of
class 0 [brain slice without lesions] and y (class 1 [brain slice with simulated lesions]). Note that Lgdv is applied to both real and generated images,

and that not all losses are plotted (see Equation 5 for full objective).

explosion of gradients, and Gaussian noise (added to the last
layer of the encoder) to prevent the latent space vanishing.
Without this the content space goes to zero since it is the
easiest way to make the space class invariant.

For the attribute encoder { £}, class information is driven
into the latent space, by appending a fully connected clas-
sification layer (fc,) with binary cross entropy loss ng B
In extension from our previous work [48], a regression
module fc,) is also added, using another fully connected
layer, trained using a smooth L1 loss (Lﬁasmoot »)- Importantly,
when training regression modules, a complementary binary
classification task must be run, in order to support the adver-
sarial training of the generator (Sec. III-B).

The training of the attribute latent space is performed
using variational inference, through application of a Kullback
Leibler (KL) loss Lﬁ; - This places a Gaussian prior over the
latent variables ensuring that the attribute latent space can be
sampled, which allows translation of a single subject at test
time, and the generation of mean and variance maps via the
use of rejection sampling (see below). During training, the
prediction modules fc, and fc, therefore work to encourage
separation of the domains within this latent space {A}, to sup-
port meaningful image translation. Further, a latent regression
loss [42] is implemented through sampling a random attribute
latent vector (z¢) from a Gaussian distribution, then recon-
structing:

LY = |[E“(G(E“(x), 2%) — %I @

The purpose of this loss, first proposed in DRIT++ [42],
is to encourage an invertible mapping between the attribute
latent space and the generated outputs.

B. Generation and Feature Attribution

Image translation and generation of FA maps is supported
through the training a generator {G}, which learns to synthe-
sise images conditioned on both the content and attribute latent
spaces (G : {z,z%} — %), (G : {z§, 25} — y), as well as to
translate between these domains. It achieves this by swapping
the content latent space: (G : {z§,, 2%} = w), (G : {z5, z;{} —
v), which is made possible since this space is class invariant.
Training of the generator is supported by optimisation of a
domain discriminator {D} with two losses: a) a domain
adversarial loss, Lfdv which seeks realistic image generation
by minimising the differences between translated (fake) and
real images; and b) a binary cross entropy classification loss,
Lgc g» Which seeks optimal classification of the two domains
following translation. Disentanglement is further encouraged
through rejection sampling of the attribute latent space dur-
ing training. This checks the class of each vector randomly
sampled from the attribute space (Fig. 4) to ensure that the
domain discriminator is passed a simulated image of the
opposing class. This is important since the objective of ICAMs
adversarial training is to encourage plausible franslation of the
images.

To visualise differences between the translated images
{v, u} and the original images {x,y}, we use a feature
attribution map {M}. This aims to retain only class-related
differences between two images (or two locations in the
attribute latent space) by subtracting the content from the
translated output ({M, = v — x}, {M, = u — y}). Generation
is regularised through an L1 loss (LY = ||M( )|l;,) which
encourages {M} to reflect a small feasible map, which leads
to a realistic translated image. At test time, we generate
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Fig. 4. Rejection sampling during training/ testing (a) An input image
is encoded into content and attribute spaces, and is passed through the
classifier to identify its class (0 in this example). (b) Attribute space A
is then randomly sampled until the classifier detects random vector of
the opposite class. The newly sampled vector is passed to the generator
along with the encoded content space to achieve translation between
class 0 and 1.

both a mean and variance through repeated rejection
sampling.

Finally, to further facilitate image generation, we apply
element-wise L1 and L2 loss to the reconstructed images
{x, 9} (Lf;), and the cyclically reconstructed images {x7, Vec}
(L7%)- The cycle consistency term also allows training with
unpaired images.

L1+ Ly = Ex y[IG(E“(x), E“(x)) — x|
+IG(E(y), E“(y)) — yli]
+ Ex,y[”G(Ec(x)a E“(x)) — x|
+IGE D), E“0) —vl21,  (3)
LY+ L5 = Ex y[IIG(E (), E“(w)) — xIlh
+IG(E (1), E“(v)) — vl
+ Ex,y[”G(EC(D)a E(u)) —x|2
+IG(E (n), E“(0)) — yll2]. (4

This means the full objective function of our network is:

: D¢ D D
Gmin, , max ApeLyqy + ApLyg, + Apgcr LpcE

+ ’IBCE(LgaCE + LlE;l;mooth) + ’IKLL%“L + j'ML[IVI
+AzaLi 4 dree(Li% + LS + L5 + L) (5)

C. Training Details

ICAM is trained in a similar fashion to Lee et al. [42]. For
each iteration, the content discriminator is updated twice, fol-
lowed by the update of the encoders, generators, and domain
discriminators (i.e. each training iteration uses 3 batches to
perform these updates). For each update of the generator, one
input is selected for each class (e.g. 2 inputs including class
0 and 1). All experiments use the following hyperparameters:
learning rate for content discriminator = 0.00004, learning
rate for the rest = 0.0001, Adam optimiser with betas =
0.5, 0999), Apc = 1, ip = 1, Apcg = 10, kL =
001, Ay = 10, Aza = 1, Aree = 100, Apye, = 1 for
discriminator optimisation, and Ap,., = 5 for generator
optimisation. These parameters were optimised for a 2D
data set of simulated cortical lesions, as previously described

in [48]. Regression experiments use a network pre-trained for
classification, refined with addition of the regression loss.

IV. RESULTS

We evaluate the performance of ICAM-reg through three
experiments: 1) brain age prediction (using data from UK
Biobank); 2) regression of birth age (using neonatal data from
the developing Human Connectome Project - dHCP); and
3) prediction of MMSE scores (using data from ADNI).
We compare against VA-GAN (for ADNI and UK Biobank),
and against post-hoc saliency methods (for ADNI). All exper-
iments were trained with PyTorch [55] using NVIDIA TITAN
GPUs. For an extensive ablation study and evaluation of the
impact of changing ICAM hyperparameters please refer to [48]
and the project GitHub page.!

A. Brain Age Prediction for the UK Biobank Cohort

1) UK Biobank Dataset and Training: The performance of
ICAM and VA-GAN for brain age prediction was validated
using T1 MRI data from healthy subjects (aged 45-80 years)
acquired for the UK Biobank [56], [57]. T1 image processing
(see also [56]) involved bias correction using FAST [58],
brain extraction using BET [59] and linear registration to MNI
space, using FLIRT [60]. The input into the networks was
resized to 128 x 160 x 128 voxels, and normalised in range
[0, 1]. For our classification experiments we used 11,735 MRI
volumes, with a ‘young’ class defined as 45-60 years (average
age 54.6£3.4 years) and an ‘old’ class defined as 70-80 years
(average age 73.01+2.2 years). Young subjects were separated
into training, validation, and testing set sizes of: 6706, 373 and
372. Older subjects were separated into training, validation,
and testing set sizes of 3856, 214 and 214.

For regression we used all available subjects (21,388),
where adversarial training of the classifier was supported by
defining two classes at the mid-range (45-65 and 65-80);
subjects corresponding to the young class (average age 57.6 =
4.8 years) were separated into training, validation, and testing
sets with sizes: 10715, 595 and 595; subjects corresponding to
the old class (average age of 70.0 £ 3.3 years) were separated
into training, validation, and testing sets with sizes: 8535,
474 and 474. Performance on FA map generation was com-
pared against VA-GAN trained using the default parameters
provided in [40]. Both networks were trained for 50 epochs.

2) UK Biobank Results: In previous work [48], we com-
pared feature attribution with ICAM and VA-GAN, and found
that [CAM generated FA maps that better matched patterns
of ‘ground-truth’ atrophy observed between longitudinally
acquired scans (see also Fig 1). In this work, to demonstrate
more conclusively whether translation by ICAM and VA-GAN
fully changes the image class, we trained an independent
binary age classifier (old vs young) using the same architecture
as the ICAM attribute encoder. The classifier was trained using
the ‘Real’ 3D T1 MRI images (Table I, row 1), or on outputs
generated by ICAM (Table I, row 2) and VA-GAN (Table I,
row 3), with training and test sets kept as before. Results

1 https://github.com/CherBass/ICAM#ablation-and-parameter-optimisation
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A) Aged matched old to young translation
Real- old (sub 1)  Real- old (sub 2) ICAM mean FA ICAM mean FA
age 77, pred 79 age 77, pred 73

sub 1- old to young sub 2- old to young

Coronal Sagittal

Axial

B) Outlier explanation

Real- young (sub 3) Real- young (sub 4)
age 47, pred 48 age 47, pred 56

ICAM FA
sub 4 to 3 trans

ICAM FA
sub 3 to 4 trans

Fig. 5. UK Biobank regression: here we show two different ways in which FA maps derived from ICAM-reg can be used to explain outlier predictions.
In the left box we show, FA maps resulting from translating two individuals (true age 77) towards a classification of young (using rejection sampling).
In this example subject 1 is predicted as older (79) and subject 2 is predicted as younger (73); this correlates with the FA maps, which show greater

age-related changes for subject 1. On the right we show FA maps derived

from interpolating between two subjects within the attribute latent space.

Again both have the same true age but subject 4 is predicted as much older than subject 3. The FA maps provide an explanation for this difference,
showing that to translate subject 4 towards subject 3 it is necessary to fill in the ventricles and reduce cortical atrophy - all changes associated with

healthy ageing.

TABLE |
BIOBANK GENERATION EXPERIMENT COMPARING ACCURACY SCORE
FOR CLASSIFICATION (YOUNG Vs OLD) OF REAL, ICAM GENERATED,
AND VA-GAN GENERATED DATA. NOTE THAT BECAUSE VA-GAN
CAN ONLY DO OLD TO YOUNG TRANSLATION, IT HAS
ONLY 1 RESULT IN THE TABLE

Dataset Accuracy - young  Accuracy - old
Real 0.938 0.859

ICAM (translated) 0.822 0.865
VA-GAN (translated) 0.122 N/A

(Table T) show that classification with images generated by
ICAM performs slightly worse than the real data (82.2%
compared to 93.8%), which is to be expected in a complex
3D generation task. By contrast, VA-GAN outputs perform
much worse (12.2%). Note that because VA-GAN can only
translate in one direction, it has only 1 result in the table.
Next, we trained ICAM-reg’s regression layer to predict
ages of the MRI brain scans: resulting in a precision of of
2.20 + 1.86 mean absolute error (MAE) (Fig. 7). We found
that the resulting FA maps explained outlier predictions well.
For example in Fig. 5 A), FA maps of two subjects, scanned
at 77 years, and translated to resemble the younger age
class, indicate greater age-related changes (e.g. ventricular and
cortical atrophy) in subject 1 (which is predicted as older - 79)
relative to subject 2 (which is predicted as younger - 73).
In B) 2 subjects from the young group are directly compared
by translating between them. In this case, subject 4 is pre-
dicted to be much older than their true age (predicted=56;
true=47 years); whereas, subject 3 has predicted age 49, close
to their true age (47). Evidence for the outlier prediction
of subject 4 is presented through the translation, indicating
the presence of larger ventricles, hippocampal atrophy and

cortical shrinking (relative to the more typical presentation
of subject 3).

In addition, we investigated the improvement in separa-
tion of the model’s latent space afforded through regression
(Fig. 8), where this result is further underlined in Fig. 6,
which shows clearly that interpolation between images of two
different ages smoothly translates both predicted ages and FA
maps, for the generated images.

Finally, since it is required by the ICAM-reg framework to
train regression tasks with complementary binary classifica-
tion, we investigated whether imbalancing the classification
(by moving the cut-off between classes) would impact the
performance and interpretability of the FA maps. We ran a
smaller version of the network (output channel dimensions
13:26:52 instead of 16:32:64), for three different thresholds:
one at 60 years (where the young age group is 40-60 and the
old age group is 60-90); one at 65 years (where the young
age group is 40-65 and the old age group is 65-90); and one
at 70 years (where the young age group is 40-70 and the
old age group is 70-90). Since we now had different training,
validation and testing splits, we selected a subset of 100 test
examples which overlapped across all experiments. Results in
Fig. 9 show ICAM-reg FA maps generated for one randomly
selected subject of age 66. These return very similar FA mean
maps for each experiment, despite the subject belonging to a
different age classification each time. Importantly, we observe
similar changes to key areas associated with healthy ageing.
We did find that age prediction error varied across experi-
ments: 3.27 (threshold 60), 3.67 (threshold 65) and 3.77 MAE
(threshold 70); this may reflect the use of different training
splits. We therefore conclude that while threshold selection is
unlikely to lead to large differences in prediction and FA map
generation, it could be a hyperparameter that can be tuned.
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Fig. 6. Biobank interpolation between and within groups. Here, we show an example of interpolation of the attribute latent space, with the
corresponding FA maps for each vector. We overlay the interpolated FA maps on the original image, with red maps indicating an increase pixel
intensity. We first encode each image to its attribute latent space (using £%), and get an age prediction. We then linearly interpolate between these
two spaces, and get an age prediction and FA map for each vector. We demonstrate that our ICAM-reg model can successfully achieve interpolation
between and within groups (i.e. within the aged group, and between the aged and young groups). We find that we get both smoothly interpolated

FA maps, and interpolated age predictions between two subjects. The green arrows point to the cortex, and blue arrows point to the ventricles.
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Fig. 7. Biobank (top) and dHCP (bottom) age prediction on the test
dataset using ICAM-reg. For biobank, the age prediction error is 2.20 +
1.86 MAE. For dHCP, the birth age prediction MAE is 0.806 + 0.634, for
ICAM-reg, and 1.525 + 1.160, for the baseline network.

B. dHCP Experiments

1) dHCP Dataset and Training: In this experiment we sought
to demonstrate that ICAM-reg can work well for prediction
of challenging phenotypes, and detection of focal lesions,
from relatively small, heterogenous, datasets. We used 699
3D T2 MRI scans from the dHCP [61], [62]: an open data
set of multimodal brain scans acquired from preterm and term
neonates. Here, preterm is defined as birth prior to 37 weeks
gestational age (GA), where some preterm neonates were
scanned twice: at birth and at term equivalent age. The data set

includes 143 preterm images (class 1, mean gestation age at
birth: 31.8 4+ 3.85 weeks, mean post-menstrual age at scan:
41.0 + 1.99 weeks) and 556 term controls (class 0, mean
age at birth: 40.0 £ 1.27 week, mean post-menstrual age at
scan: 41.4 £ 1.74). In this experiment ICAM-reg was trained
to classify between preterms and terms, and predict birth age
from the term age scan (i.e. scans acquired after 37 weeks
post-menstrual). Examples were split into train, validation and
test sets according to a 446:55:55 split (for term subjects) and
115:14:14 split (for preterm subjects).

Image pre-processing involved using diffeomorphic multi-
modal (T1w/T2w) registration (ANTs SyN) to estimate non-
linear transforms to a 40 week template from the extended
atlas [62], [63], [64]. This was necessary to allow the network
to train, since without this step the network was challenged by
stark changes in image appearance across the cohort, caused
by rapid tissue maturation, and further confounded by the
relatively small and imbalanced nature of the data set. For
related reasons (to preserves age-related tissue maturational
differences), images were rescaled to [0,1] by normalising
across the intensity range of the entire group. Images were
then brain extracted (using blurred masks), and CSF, ventricles
and the skull were removed in order to focus the attention of
the model on brain tissue differences between the groups.

ICAM-reg was pre-trained on UK Biobank data; then
trained on dHCP birth age regression for a further
1000 epochs, using the same hyperparameters. Performance
was compared against a baseline CNN network, trained with
same architecture as E“, using smooth L1 loss, with Adam
optimiser (learning rate = 0.0001, betas = [0.5, 0.999]) for
1000 epochs.

2) dHCP Results: Results are shown in Figs. 7 and 10.
We report a birth age prediction MAE of 0.806 & 0.634 for
ICAM-reg vs 1.525 £ 1.160 for the baseline CNN (Fig. 7).
In addition, we report a higher correlation coefficient for
ICAM-reg (Spearman correlation test, p < 0.0001, 0.873 for
ICAM-reg and 0.695 for the baseline network).

For qualitative analysis we tested ICAM-reg on previously
unseen images of subjects with punctate white matter lesions
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Fig. 8. tSNE plots comparing the latent space of ICAM (left) and ICAM-reg (right). Top row shows the separation of old and young classes. Bottom
row shows the distribution binned for every 5 years. In each case the results are plotted for the test subjects of each model.
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Fig. 9. FA map robustness: ICAM-reg was run three times, with three
different thresholds determining the classification splits. Columns 2-4
show FA mean maps for each experiment. Maps are shown for the
same subject (aged 66 years) translated from old to young. Features
stay broadly consistent with similar changes to key areas associated with
healthy ageing: ventricles (blue arrows), hippocampus (pink arrows), and
cortex (green arrows).

(PWML), which are commonly seen in preterm babies [20],
[65], to test whether these would be detected in the FA maps.
The results are shown in Fig.10 with yellow arrows pointing
at the lesions. Quantitative analysis of the detection rates
for these lesions resulted in a recall of 0.805 £ 0.078 and
precision of 0.004 £ 0.004, for term subjects, and recall
0.73440.102 and precision 0.00410.005 for preterm subjects.
Note, unlike for the ADNI and biobank results, here the FA
maps were thresholded at 0.01 to remove some of the image

generation noise from the calculation, and binarise the masks.
Binarisation was necessary as we sought to test purely whether
lesions were being detected (or not) through calculation of
precision and recall scores. We tested several thresholds (range
0-0.25) and reported results with the most optimal threshold
for recall-precision trade-off. These results suggest ICAM-reg
consistently detects lesions in both cohorts.

C. ADNI Experiments: Ground-Truth Evaluation
of FA Maps

In the final experiment, we demonstrate the performance
of ICAM’s feature attribution against ground truth maps of
disease progression estimated for AD to MCI conversion
using the ADNI dataset, and extend [48] to explore modelling
regression of MMSE scores. The MMSE is a test that is
commonly used for the assessment of dementia by examining
memory, thinking and problem-solving abilities of a patient.
The score ranges between 1-30 with scores of 25-30 consid-
ered normal, 21-24 indicates mild dementia, 10-20 indicates
moderate dementia, and 9 or lower indicates severe dementia.

1) ADNI Dataset: The data used in this study was obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu), first launched in 2003, and led by
Principal Investigator Michael W. Weiner, MD [66]. We used
1,053 3T T1 images, pre-processed with N4 bias correc-
tion [67], brain extracted using Freesurfer [68] and rigidly
registered to the MNI space using Niftyreg [69]. Images were
normalised in range [—1, 1], and resized to 128 x 160 x
128 voxels.

For our classification experiments (used for comparisons
in Table II) we split the dataset into AD and MCI classes,
with 257 AD and 674 MCI volumes used for training. For our
regression experiments we split the dataset into AD and MCI



BASS et al.: ICAM-Reg: INTERPRETABLE CLASSIFICATION AND REGRESSION WITH FEATURE ATTRIBUTION 967

ICAM
mean FA map

ICAM
translation

Real (preterm)
Lesions

Axial

ICAM
mean FA map

ICAM
translation

Real (preterm)
Lesion

Fig. 10. dHCP results. Here we show detection of punctate white matter lesions (yellow arrows) on previously unseen images by ICAM-reg.

TABLE Il
ADNI EXPERIMENTS COMPARING BASELINES WITH ICAM.
NETWORKS ARE COMPARED USING NORMALISED CROSS
CORRELATION (NCC) BETWEEN THE ABSOLUTE VALUES OF THE
ATTRIBUTION MAPS AND THE GROUND TRUTH MAPS. THE POSITIVE
NCC (+) COMPARES THE GROUND TRUTH MAP TO THE FA MAP
WHEN TRANSLATING BETWEEN CLASS 0 (MCI) To 1 (AD),
AND VICE VERSA FOR THE NEGATIVE NCC (—). VALUES
REPORTED ARE THE MEAN AND STANDARD DEVIATION
ACROSS THE TEST SUBJECTS

Network NCC (-) NCC (+)
Guided Grad-CAM [27]  0.244 £ 0.047  0.339 £ 0.068
Grad-CAM [27] 0.321 £0.059  0.461 £ 0.086
Occlusion [33] 0.360 = 0.037  0.354 £ 0.057
Integrated gradients [30] 0.378 £0.064  0.404 4 0.059
LRP [32] 0.390 +0.033  0.387 £ 0.039
Guided backprop [31] 0.541 £0.054 0.532 £ 0.052
VA-GAN [40] 0.653 +0.142 N/A
ICAM-reg 0.655 £ 0.086  0.611 £ 0.059
ICAM 0.683 + 0.097 0.652 + 0.083

classes, with 223 AD and 626 MCI volumes used for training.
The average age of training subjects was 74.91 £8.1 (for AD)
and 71.97 &£ 7.8 (for MCI), with average MMSE scores of
23.02 &+ 2.6 (AD) and 27.75 £ 2.6 (MCI). For testing and
validation, the same 122 subjects (61 each) were used for both
classification and regression experiments. The average age of
validation subjects was 75.88 £+ 6.8 (for AD) and 73.67£7.0
(for MCI) with mean time between scans of 2.20 £ 0.9 years.
The average validation MMSE scores were 23.72 + 4.3 (AD)
and 26.95 & 2.8 (MCI). The average age of test subjects was
75.63 £ 7.6 (for AD) and 73.44 + 7.6 (for MCI) with mean
time between scans of 2.19 &£ 1.0. The average test MMSE
scores were 24.21 £4.1 (AD) and 26.77 £ 3.0 (MCI).

2) ADNI Training: ICAM-reg experiments were performed to
jointly classify AD from MCI whilst also regressing MMSE,
where it is assumed that these two tasks are correlated. We
compare performance against ICAM [48], trained purely on
MCI-AD classification, and a range of baseline methods:
VA-GAN [40], Grad-CAM, guided Grad-CAM [27], guided
backprop [31], integrated gradients [30], occlusion [33] and
Layer-wise Relevance Propagation (LRP) [32].

VA-GAN was trained using default parameters and post-hoc
methods were applied following training of a simple 3D
ResNet with 4 down ResNet blocks, and a fully connected
layer for classification of AD vs MCI. Saliency maps were then

generated using the captum library [70], where: Grad-CAM
was implemented on the last convolutional block of the ResNet
(with a size of 4 x 5 x 4) and was up-sampled to the input
size for visualization; integrated gradients was implemented
by considering a baseline volume with constant value of 0,
and the integral was computed using 200 steps; and occlusion
was implemented using occlusion blocks with value 0, size
10 x 10 x 10 and stride 5.

All networks (including VA-GAN) were trained for
300 epochs. Both ICAM networks were then further refined,
for another 200 epochs, using updated lambdas (4,. = 10,
and Apcp = 20). It was not possible to refine VA-GAN
any further because generator and discriminator losses went
to zero during training (often after 150 epochs). The baseline
classifier network was trained for 50 epochs with learning rate
of 0.0001, SGD with momentum of 0.9, for 50 epochs, and
using a weighted BCE loss (to account for class-unbalanced
training).

Methods were evaluated by comparing the overlap of the
proposed FA maps against ground truth, obtained by subtract-
ing the difference between test scans (acquired before and
after conversion) following rigid alignment. All ground truth
maps and FA maps were masked to ensure that the returned
normalised cross correlation (NCC) values reference brain
tissue only. We also report the classification and regression
performance of the ICAM-reg and ResNet models only (since
VA-GAN does not support supervised learning).

3) ADNI Results: Results comparing the NCC of the pro-
posed FA maps with ‘ground-truth’ disease maps (Table II)
show that all versions of ICAM outperform VA-GAN, and
post-hoc saliency methods. We further demonstrate qualita-
tively in Fig. 1, that relevant areas of brain atrophy are detected
using ICAM by comparing with disease map (ground truth).
Classification accuracy of ICAM-reg for the AD vs MCI pre-
diction was 60.7%; whereas for the simple ResNet prediction
was 61.7%. At the same time, regression of the MMSE score
returns MMSE prediction of 2.82 £ 2.14 mean absolute error.
Importantly, we cannot compare this to VA-GAN or other FA
methods, as they cannot be normally applied to regression
tasks.

V. DISCUSSION

In our previous work [48] we developed a novel framework,
ICAM, for classification with feature attribution, and showed
that it outperforms state-of-the-art feature attribution methods
on classification tasks for individual subject feature detection.
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In this work, we extended ICAM to include a regression
module, ICAM-reg. We then sought to test whether, when
trained on a large dataset (UK Biobank), ICAM-reg could
learn to disentangle its attribute latent space, so as to sup-
port meaningful interpolation between images, and generate
subject-specific explanations for outlier predictions. We also
demonstrated that ICAM-reg can work on much smaller and
more heterogeneous datasets ({HCP, ADNI), while continu-
ing to detect relevant features not explicitly defined during
training, i.e. white matter lesions in the dHCP neonatal data;
and predict clinically relevant phenotypes such as age at birth
(dHCP) and cognitive test scores (ADNI).

It is important to stress that for all examples ICAM-reg runs
simultaneous regression and classification, where the choice
of classifier must be complementary. This is because the back-
bone of the algorithm remains an image-to-image translation
network that trains discriminator networks to change the class
of input images. To this end, we tested the impact of selecting
different thresholds for converting the regression task to a
classification task (i.e. splitting the dataset into 2 groups)
using the UK Biobank dataset, and have found that threshold
selection can have a small impact on performance and the
interpretability of the FA maps, and thus can be considered a
hyperparameter that can be tuned.

Nevertheless, through experiments on UK Biobank,
we demonstrate that ICAM can more comprehensively trans-
late the class of input images, relative to VA-GAN [40]
(Table I). Further visual comparison (Fig 1) shows that while
VA-GAN is only able to slightly modify the images by
changing pixel intensities in order to generate FA maps, ICAM
can drastically change the input image in order to change its
class, and thus also generate more reliable FA maps. Fig. 1
shows that qualitatively the pattern of atrophy detected by
ICAM aligns with the ‘Real’ (ground truth) disease map, and
with known patterns of brain tissue loss reported for AD,
which starts in the hippocampus, and progresses from medial
to lateral temporal lobes, to the parietal and frontal lobes in
late stages [71]. A common and easily observed side-effect
of tissue loss is the growth of fluid filled spaces (such as
the ventricles) which is also picked up here. While there
are undoubtedly interaction effects from age-related decline,
the mean time interval between scans is not long (around
2 years), and these results qualitatively agree with previous
papers that have attempted to disentangle pathological atrophy
from healthy ageing [71], [72], [73]. By contrast, VA-GAN
was less able to detect atrophy of the more heterogeneous
regions of the cortex. Equally the best performing post-hoc
saliency methods (guided-backprop and LRP) also show less
sensitivity, with LRP also returning asymmetric predictions,
which may reflect the inability of post-hoc methods to capture
redundant features.

In separate experiments, we show that brain age prediction
by ICAM-reg (2.20 £ 1.86 MAE, Fig. 7) performs highly
competitively relative to other deep learning methods trained
on age prediction in UK Biobank, with reported test MAE
scores of 2.14+0.05 [74], 2.71£2.10 (female) and 2.914+2.18
(male) [75], and 4.006 [76]. Alongside the age prediction,
we find that ICAM-reg can provide meaningful and individual

explanations for old and young classification, as well as
outlier predictions (Figs. 5, 6). We also demonstrated that our
regression model has a more interpretable latent space than
our previous model [48], through use of a tSNE comparison
(Fig. 8), and demonstrated interpolation of the latent space
between and within groups (Fig. 6).

In our dHCP experiments, we compared our regression
model to a baseline CNN that has the same architecture
as our attribute encoder and found that ICAM-reg performs
better than the baseline CNN on birth age prediction (Fig. 7).
Despite significant class imbalance ICAM-reg’s error (Fig. 7)
is approximately consistent across the age range. This may
be attributed to the fact that each forward pass through the
network takes an example from each class, meaning that each
class is sampled in a balanced way during training. At the
same time, the model returns subject specific FA explanations
of the predictions, which consistently detect punctate white
matter lesions, within individuals (a known feature of preterm
birth, Fig. 10). These are detected despite stark changes in
image intensity and appearance over this neonatal period. This
is further demonstrated by our qualitative experiments where
we computed precision and recall scores between ground truth
maps and generated FA maps, and found a high recall (i.e.
high rate of lesion detection) and low precision (i.e. high
amount of false positives). That precision is extremely low
is not surprising since ICAM-reg is trained to predict birth
age, therefore the FA maps should be expected to pick up on
the diffuse tissue maturation changes known to exist between
the two groups rather than explicitly focusing on the PWMLs.

For ADNI we show that ICAM-reg can predict cognitive
scores related to Alzheimer’s (MMSE scores), and provide
meaningful FA map explanations that highlight individualised
patterns of brain atrophy better than baseline methods (Fig. 1).
One challenge with using longitudinal brain atrophy, as ground
truth for validation, is that this also incorporates age-related
changes [11]. This may be why NCC scores are reduced for
ICAM-reg (based on MMSE) relative to ICAM (based on
disease classification only).

Moreover reported classification of AD versus MCI, for
both ICAM-reg and the baseline ResNet does not achieve
state-of-the art performance, which some studies report as
high as 76% [77], [78]. While optimising classification and
regression scores was not the main objective of this paper, the
relatively strong performance on UK Biobank age regression
suggests that results on ADNI might be improved if the con-
founding effects of age, sex and scanner site were removed by
for example, adding additional deconfounding modules to the
network. Improved performance may also be achieved through
better balancing of MMSE values across the training and test
sets [79], addressing MMSE heteroscedasticity through use of
through a different loss, and inclusion of additional modalities
for example T2 FLAIR or PET.

Finally, there are several challenges that could still be
investigated in future work. First, while ICAM has been
applied to regression and binary classification problems, it has
still not been tested on multi-class datasets. Second, while
ICAM shows some potential for subject specific modelling
of disease progression, for example conversion of progressive



BASS et al.: ICAM-Reg: INTERPRETABLE CLASSIFICATION AND REGRESSION WITH FEATURE ATTRIBUTION 969

MCI to full AD, or projecting the neurological impact of
preterm birth, considerable more effort would be required
prior to clinical translation to ensure the model is unbiased
and generalises across scanners and sites. Finally, it is still
challenging to apply ICAM to small and diverse data sets,
particularly developmental cohorts, across which tissue inten-
sities and brain shape change very rapidly. This was addressed
for the dHCP experiments in this paper by using non-linear
registration to remove gross brain shape variation and thus
reduce the amount of variation the network had to learn. In
future, these challenges could be addressed via application of
GAN augmentation techniques [80] to increase training data
for smaller datasets, and latent space clustering strategies to
further encourage disentanglement of imbalanced classes [81].
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