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Eisenstein cohomology classes for GLN over
imaginary quadratic fields

By Nicolas Bergeron at Paris, Pierre Charollois at Paris and Luis E. García at London

Abstract. We study the arithmetic of degree N � 1 Eisenstein cohomology classes for
the locally symmetric spaces attached to GLN over an imaginary quadratic field k. Under nat-
ural conditions we evaluate these classes on .N � 1/-cycles associated to degree N extensions
L=k as linear combinations of generalized Dedekind sums. As a consequence we prove a re-
markable conjecture of Sczech and Colmez expressing critical values of L-functions attached
to Hecke characters of L as polynomials in Kronecker–Eisenstein series evaluated at tor-
sion points on elliptic curves with complex multiplication by k. We recover in particular the
algebraicity of these critical values.

1. Introduction

The relationship between Eisenstein series, the cohomology of arithmetic groups and
special values of L-functions has been studied extensively.

A classical example is that of weight 2 Eisenstein series attached to .˛; ˇ/ 2 .Q=Z/2.
Such a series can be defined as limits of finite sums:

E2;.˛;ˇ/.�/ D lim
M!C1

MX
mD�M

 
lim

N!C1

NX0

nD�N

e2i�.m˛Cnˇ/

.m� C n/2

!
.� 2 H /:

The prime on the sum means that we exclude the term .m; n/ D .0; 0/. When .˛; ˇ/ ¤ .0; 0/,
the holomorphic 1-form E2;.˛;ˇ/.�/d� on Poincaré’s upper half-plane H is invariant under
any subgroup � � SL2.Z/ that fixes .˛; ˇ/modulo Z2. This holomorphic form then represents
a cohomology class inH 1.�;C/. A remarkable feature of these classes is that they are rational
and even almost integral.
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A convenient and compact way to state the precise integrality properties of these co-
homology classes is to consider for each prime integer the “p-smoothed Eisenstein series”
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and suppose furthermore that � � �0.p/. Then E.p/
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for any base point �0 2 H , and it is classical (see e.g. [36, Theorem 13]) that we have
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Here D˛;ˇ denotes the generalized Dedekind sum

D˛;ˇ

�
a

c

�
D

cX
jD1

��
j � ˇ

c

����
a.j � ˇ/

c
� ˛

��
for c > 0 and .a; c/ D 1;

where the symbol ..x// is defined by

..x// D

´
x � Œx� � 1

2
if x is not an integer;

0 if x is an integer:

These sums define rational numbers and enjoy many beautiful arithmetical properties, see
e.g. [29]. On the other hand a formula of Siegel [36] expresses the values at non-positive inte-
gers of the �-functions attached to real quadratic fields as periods of Eisenstein series. The
expression (1.1) can therefore be turned into a very explicit expression for these special val-
ues. This implies in particular that they are essentially integral which is the key input in the
construction by Coates and Sinnott [10] of p-adic L-functions over real quadratic fields.

Using Selberg’s and Langlands’ theory of Eisenstein series Harder has vastly generalized
the above mentioned “Eisenstein cohomology classes.” In [18] he constructed a complement
to the cuspidal cohomology for the group GL2 over number fields and managed to construct
rational representatives. In a more recent work Harder even managed to address some integral-
ity properties of these classes, see [20]. However for the group GLN it is hard to check that
Eisenstein classes are rational and the automorphic form theory is not yet adapted to the study
of integrality properties of these classes.

For GLN over the field of rational numbers, Nori [27] and Sczech [32] have proposed
constructions of Eisenstein cohomology classes that have turned out to be very efficient in
practice to study the fine arithmetical properties of L-functions over totally real number fields,
see e.g. [2, 7, 8, 17]. Sczech’s approach more generally gives formulas analogous to (1.1). The
goal of this paper is to prove similar formulas for the group GLN over an imaginary quadratic
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field k. As a consequence we prove a remarkable conjecture of Sczech and Colmez [11, Con-
jecture, p. 205] expressing critical values of L-functions attached to Hecke characters of finite
extension of k as polynomials in Kronecker–Eisenstein series evaluated at torsion points on
elliptic curves with complex multiplication by k.

We now describe in more details our main results.

1.1. An Eisenstein cocycle for imaginary quadratic fields. Fix a positive integer
N � 2. Let k be a quadratic imaginary field with ring of integers O and let p � O be an
ideal of prime norm Np. Our first main result is the construction of an .N � 1/-cocycle for the
level p congruence subgroup

�0.p/ D

´ 
a tb

c D

!
2 SLN .O/ W a 2O; b 2ON�1; c 2 pN�1; D 2MN�1.O/

µ
of SLN .O/ taking values in the space of polynomials in certain classical series called Kron-
ecker–Eisenstein series.

Let us recall the definition of Kronecker–Eisenstein series (see [37, VIII, Section 12]).
We fix once and for all an embedding � W k ! C. For a fractional ideal I of k and non-negative
integers p and q, define

Kp;q.z;I ; s/ D pŠ
X

�2�.I/

z C �
q

.z C �/pC1jz C �js
;

where we assume that z 2 C satisfies z … �.I /. The series converges when Re.s/ > 1C q � p
and has analytic continuation to s 2 C that is regular at s D 0. It is a classical result due to
Damerell [13] that the values at s D 0 have the following algebraicity property:

(1.2) Kp;q.z0;I ; 0/ 2 �
1CpCq
1 ��qQ for z0 2 kn�.I /:

Here�1 denotes any period of a Q-rational holomorphic differential against a non-zero ratio-
nal homology class on an elliptic curve with CM by k defined over Q. In fact, these series have
almost integral values; we refer to [24] for precise results.

We introduce polynomials in the series Kp;q.z;I ; s/. For fractional ideals I1; : : : ;IN
and multi-indices I D .i1; : : : ; iN / 2 ZN

�0 and J D .j1; : : : ; jN / 2 ZN
�0, we set

KI;J .z;I1 ˚ � � � ˚ IN ; s/ D K
i1;j1.z1;I1; s/ � � �K

iN ;jN .zN ;IN ; s/:

More generally, for an O-lattice ƒ � kN , we pick fractional ideals I1; : : : ;IN such that
I1 ˚ � � � ˚ IN has finite index in ƒ and set

KI;J .z;ƒ; s/ D
X

�2ƒ=I1˚���˚IN

KI;J .z C �.�/;I1 ˚ � � � ˚ IN ; s/

D

X
�2ƒ

Y
1�k�N

ikŠ
zk C �.�k/

jk

.zk C �.�k//
ikC1jzk C �.�k/j

s
:

As the last expression shows, KI;J .z;ƒ; s/ does not depend on the choice of the fractional
ideals Ik . We set

KI;J .z;ƒ/ WD KI;J .z;ƒ; 0/:
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EachKI;J .z;ƒ/ defines a smooth function on an open subset of CN obtained by removing all
ƒ-translates of a finite number of hyperplanes. We write

F D hKI;J .
z;ƒ/ W 
 2 SLN .k/; ƒ � kN an O-latticei

for the C-span of SLN .k/-translates of all functions KI;J .z;ƒ/.
Next we introduce the p-smoothed series

KI;Jp .z;ON / D KI;J .z;p�1 ˚ON�1/ � Np �KI;J .z;ON /

and, for A 2MN .O/, we define the generalized Dedekind sum D
I;J
p .z; A/ by

DI;Jp .z; A/ D detA�1KI;Jp .A�1z; A�1ON /

if A is invertible and set DI;Jp .z; A/ D 0 otherwise. These sums are natural generalizations of
Dedekind sums for imaginary quadratic fields and N variables.

Our first theorem shows that the seriesDI;Jp .z; A/ can be combined into a homogeneous
.N � 1/-cocycle for �0.p/. In the following statement, for a multi-index I 2 ZN

�0, we write
jI j D i1 C � � � C iN . When I (resp. J ) runs over multi-indices with jI j D p (resp. jJ j D q),
the vectors

eI WD e
i1
1 � � � e

iN
N 2 SympCN .resp. eJ WD e1j1 � � � eN jN 2 SymqCN /

form a basis of SympCN (resp. of SymqCN /.

Theorem 1.1. Given 
1; : : : ; 
N 2 �0.p/, define

A.
/ D .
1e1j � � � j
N e1/ 2MN .O/:

The map
ˆ
p;q
p W �0.p/

N
! F ˝ SympCN

˝ SymqCN

given by
ˆ
p;q
p .z; 
/ D

X
jI jDp;jJ jDq

DI;Jp .z; A.
//˝ A.
/.eI ˝ eJ /

is a homogeneous .N � 1/-cocycle. Here the sum runs over all multi-indices I; J 2 ZN
�0 with

jI j D p and jJ j D q.

More concretely, the cocycle property of ˆp;qp means that

ˆ
p;q
p .
z; 

1; : : : ; 

N / D 
ˆ

p;q
p .
z; 
1; : : : ; 
N /

D

X
jI jDp; jJ jDq

DI;Jp .z; A.
//˝ 
A.
/.eI ˝ eJ /

for any 
; 
1; : : : ; 
N 2 �0.p/, andX
1�k�NC1

.�1/k�1ˆ
p;q
p .z; 
1; : : : ; b
k; : : : ; 
NC1/ D 0

for any 
1; : : : ; 
NC1 2 �0.p/ (here as usual the notation b
k means that the term 
k is to be
omitted).

More generally, in the body of the paper we introduce a cocycleˆp;qp .z; 
;ƒ.I // for the
O-lattice ƒ.I / D I�1 ˚ON�1 of kN .
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1.2. Application to critical values of Hecke L-functions. We refer to [15, Section 1]
or [9, 30, 34] for generalities on Hecke characters. Let L=k be a field extension of degree
N > 1 and let n W L! k denote the norm map. We fix an algebraic Hecke character  k of k
of infinity type .p; q/ 2 Z2 and a Dirichlet character � of L, and consider the algebraic Hecke
character

(1.3) � D � � . k ı n/

of L. We denote the conductor of � by f , so that for ˛ � 1 mod f we have

�..˛// D n.˛/pn.˛/
q
:

Note that if k is a maximal CM field in L, then any algebraic Hecke character � of L is of the
above form.

The Hecke L-function of � is

L.�; s/ D
Y

.P;f/D1

.1 � �.P/NP�s/�1 D
X

.a;f/D1

�.a/Na�s;

where the sum, resp. the product, runs over integral ideals a, resp. prime ideals P, of OL
coprime to f . The global L-function of � is

ƒ.�; s/ D L1.�; s/L.�; s/;

where
L1.�; s/ D

Y
vj1

�.�v; s/:

Here each �v with vj1 is of the form

zpzq D .zz/
w
2

�
z

z

�p�q
2

;

with w D p C q (the weight), and

�.�v; s/ D 2.2�/
�.s�w

2
C
jp�qj
2

/�

�
s �

w

2
C
jp � qj

2

�
:

The value L.�; s0/ at an integer s0 2 Z is said to be critical if and only if

ordsDs0L1.�; s/ D ordsDs0L1.�
�1; 1 � s/ D 0:

In our case this is equivalent to

w

2
�
jp � qj

2
< s0 < 1C

w

2
C
jp � qj

2
:

Our second main result is that for critical s0 the value L.�; s0/ can be expressed as
an explicit polynomial in Kronecker–Eisenstein series; answering positively a conjecture of
Sczech and Colmez [11, Conjecture, p. 205]. Note that the complex conjugate  k has weight
.q; p/ and that multiplying � by an integral power of the norm character shifts s by an integer.
Thus we may assume that p < 0 and q � 0 and consider only the critical value L.�; 0/.
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Our result is more conveniently expressed in terms of partial zeta functions, as follows.
For integers p; q and integral ideals a, f of OL, define

�
p;q
f
.a; s/ D

X0

x2U.f/n1Cfa�1

n.x/
q

n.x/pC1jn.x/j2s
; Re.s/� 0:

Here U.f/ denotes the group of units of O�L that are congruent to 1 modulo f . (Since uu D 1
for every u 2 O�, this is well-defined provided that p C q C 1 is divisible by the order of
the subgroup n.U.f// of O�, which we assume.) Choosing integral ideals a1; : : : ; ar giving
a system of representatives for the ray class group Cf , we can write

L.�; s/ D
X
j

�.aj /Na�sj �
�p�1;q
f

.aj ; s/:

Given two distinct prime ideals P and zP of OL coprime to f and a, we define also the
“smoothed” partial zeta functions

�
p;q
f;P
.a; s/ D NP�s�

p;q
f
.aP; s/ � NP1�s�

p;q
f
.a; s/;

�
p;q

f;P;zP
.a; s/ D NzP�s�p;q

f;P
.azP; s/ � NzP�s�p;q

f;P
.a; s/:

These modified zeta functions appear in an expression for L.�; s/ with modified Euler factors
at P and zP. Namely, setting

LP.� � N; s/ D .1 � �.P/NP1�s/�1; LzP.�; s/ D .1 � �.
zP/NzP�s/�1;

and using the fact that a1P; : : : ; arP is also a system of representatives of Cf , we have

LP.� � N; s/�1L.�; s/ D
X
j

�.ajP/Na�sj �
�p�1;q
f;P

.aj ; s/;

LzP.�; s/
�1LP.� � N; s/�1L.�; s/ D

X
j

�.ajP zP/Na�sj �
�p�1;q

f;P;zP
.aj ; s/;

Theorem 1.2 below shows that, for appropriate choices of P and zP, the zeta function
�
�p�1;q

f;P;zP
.aj ; s/ can be expressed using the Eisenstein cocycle of Theorem 1.1.

Let U.f/1 � U.f/ be the subgroup of units of relative norm one, and let U.f/0 � U.f/1

be a torsion–free subgroup that maps bijectively to U.f/1=U.f/1tors. We also fix a isomor-
phism ˛ W L! kN of k-vector spaces and denote the O-lattice ˛.fa�1/ � kN by ƒ.fa�1/.1)

Through the isomorphism ˛ the automorphism of L defined by multiplication by ui corre-
sponds to a matrix Ui that belongs to the intersection �.ƒ.fa�1// of AutO.ƒ.fa�1// with
SLN .k/. Moreover, given a prime ideal P of OL coprime to f and a and of prime norm
p D n.P/, the matrices Ui belong to �0.p; ƒ.fa�1//.

We denote by �1; : : : ; �N the embeddings ofL into C that restrict to the fixed embedding
� W k ! C.

Theorem 1.2. Let p; q be non-negative integers, f be an ideal of OL and let a1; : : : ; ar
be integral ideals that form a system of representatives of the ray class group Cf . Then there

1) In Lemma 4.1 we prove that ƒ.fa�1/ is of type ƒ.I /.
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exist v0 2 kN and two prime ideals P and zP with p D n.P/ prime, such that

ŒU.f/ W U.f/0� det.�i .˛.ej ///�
p;q

f;P;zP
.a; 0/

D
1

.pŠ/N

X
�2SN�1

sgn.�/

�

X
x2zP�1f=f
x¤0

hˆ
pN;qN
p .v0 C ˛.x/; u� ; ƒ.fa�1//; .n ı ˛�1/p ˝ .n ı ˛�1/

q
i

for a 2 ¹a1; : : : ; arº. Here the first sum runs over the symmetric group SN�1 of permutations
onN �1 letters and for � 2 SN�1 we set u� D .1; U�.1/; U�.1/U�.2/; : : : ; U�.1/ � � �U�.N�1//.

Note that each term of the double sum on the right hand side is a generalized Dedekind
sum and therefore a polynomial in Kronecker–Eisenstein series evaluated at torsion points
on elliptic curves with complex multiplication by k. From (1.2) we deduce the following
corollary. Note that �.aj / 2 Q, so that the algebraicity of L.�; 0/ follows from that of the
�
�p�1;q
f

.aj ; 0/.

Corollary 1.3. Let �1 be any non–zero period of a Q-rational global differential on
an elliptic curve with complex multiplication by k, defined over Q. Let � be an algebraic Hecke
character of the form (1.3). Assume that p < 0 and q � 0. Then

L.�; 0/ 2 �N.q�p/1 ��NqQ:

Remark. As was pointed out to us by Don Blasius, one can take �1 to be a period of
a holomorphic differential on an elliptic curve defined over kab – the maximal abelian extension
of k. Then

L.�; 0/ 2 �N.q�p/1 ��NqkabE;

where E is the CM field generated by the values of �. This follows from the fact that the ratio
of two arithmetic automorphic functions with Fourier coefficients in Qab , and having the same
weight, takes value in kab when evaluated at a CM point.

In fact, one can be more precise: Blasius [5] proves a reciprocity law for values at CM
points of modular forms which generalizes that of Shimura for functions. According to it, if
a value transforms by a Hecke character, then it is the Deligne period of the motive attached
to the Hecke character. Since Theorem 1.2 expresses the L.�; 0/ as a linear combination of
products of values of L-functions of modular Eisenstein series, the general law of Blasius
should apply to show the following: LetM.�/ be the motive – defined overL, with coefficients
inE, and of rank one – attached to � and let cCResL=QM.�/ be the period attached by Deligne
[14, Section 8], we have

L.ResL=QM.�// D c
CResL=QM.�/ 2 .E ˝C/�=E�

as conjectured by Deligne [14] as part of a much more general picture.

Relation to other works. In the case N D 2 Theorem 1.1 is proved by Sczech [31]
and Ito [22], in case .p; q/ D .0; 0/, and Obaisi [28] proved the corresponding Theorem 1.2.
In general, partial results towards both Theorem 1.2 and Corollary 1.3 are obtained by Colmez
in [11]; see also [16] for related works.
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Corollary 1.3 is not new. In the caseL D k it is due to Damerell [13]. In the caseN D 2 it
is due to Ito [22]. In general, it is a particular case of a theorem announced by Harder in [19,21]
that deals with Hecke L-functions associated to extensions L=k with k an arbitrary CM fields.
When L D k is CM, this was known before thanks to works of Shimura [35] and Blasius [5].
Harder provided a proof of his theorem for N D 2 in [18], but to the authors’ knowledge the
full details of Harder’s proof for N > 2 have never appeared in print. However, the fact that
the (regularized) L-value of the Hecke character divided by the “Katz period” is algebraic has
recently been fully proved by Kings and Sprang [25] using completely different techniques that
allow them to deduce good integrality results. This generalizes works of Shimura and Katz in
the case of a CM field to arbitrary extensions of CM fields. In the case where k is a quadratic
imaginary field, integrality results of the same quality could be deduced from Theorem 1.2
and works of Katz [24] showing that certain regularization (“smoothing”) of the expression
(1.2) are algebraic integers. We expect that, in combination with recent work of Andreatta and
Iovita [1], the explicit formula of Theorem 1.2, conjectured by Sczech and Colmez, could be
used to p-adically interpolate L-values of algebraic Hecke characters of F in the non-split
case.

Note that, quite similarly as in the work of Kings and Sprang, the cohomology class stud-
ied in this paper takes its roots in a certain equivariant cohomology class; we discuss the latter
in [4]. The topological origin of this class is enough to give an elementary direct proof of the
integrality of critical values of Hecke L-functions associated to totally real fields, see [2, 3, 27].

To conclude let us mention that it is not clear to us if the formula of Theorem 1.2 can be
generalized to the case where k is an arbitrary CM field.

1.3. Notation and conventions. We write jS j for the cardinality of a set S . Throughout
the paper we fix an integer N � 2 and let

V D CN (column vectors):

We write V D V ˝C C for the complex conjugate of V and V _ for the (C-linear) dual of V ;
we identify V _ with the space of length N row vectors using the standard dot product. We
write e1; : : : ; eN for the standard basis of V and z1; : : : ; zN for the standard coordinates on V
and set 𝜕zi D 𝜕=𝜕zi . For a multi-index I D .i1; : : : ; iN / 2 ZN

�0, we write

eI D e
i1
1 � � � e

iN
N 2 SymNV;

zI D z
i1
1 � � � z

iN
N 2 SymNV _;

zI D z1
i1 � � � zN

iN 2 SymNV
_
:

We denote the transpose of a matrix X by tX and set X� D tX . We denote by 1N the
identity matrix of rank N and by diag.t1; : : : ; tN / a diagonal matrix with diagonal entries
t1; : : : ; tN . Let

G D SLN .C/;

K D SU.N /;

X D SLN .C/=SU.N /:

The Lie algebras of G and K are denoted by g and k respectively.
We write A�.X/ for the space of smooth differential forms on X .
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Throughout the paper we fix an imaginary quadratic field k and an embedding � W k ! C.
We write Np for the norm of a prime ideal p. We denote by O the ring of integers of k and
define

Vk D k
N (column vectors);

Gk D SLN .k/;

G D Resk=QSLN;k

The standard simplex (a simplicial set) is denoted by �N , and its geometric realization
by j�N j. We write �k ��r for the join of two simplices.

2. Differential forms on the symmetric space of SLN .C/

Fix an integer N � 2 and let V D CN (column vectors). We identify the points of the
symmetric space

X WD G=K

of G D SLN .C/ with positive definite hermitian N -by-N matrices h of unit determinant via
the map

gK 7! h WD tg�1 � g�1I

under this identification the action of g 2 G on X by left multiplication corresponds to the
action g � h WD tg�1hg�1. A matrix h 2 X defines a positive definite hermitian form on CN

given by v 7! v�hv. The entries hij .1 � i; j � N/ of h define smooth functions hij W X ! C.
We write S.V / for the space of Schwartz functions on V . For p; q � 0, let

(2.1) V p;q D SympV _ ˝ SymqV I

it is naturally a representation of G. We will identify elements of V p;q with linear function-
als on the tensor product of the complex vector spaces SympV (homogeneous holomorphic
polynomials of degree p on V _) and SymqV

_
(homogeneous anti-holomorphic polynomials

of degree q on V ).
The natural action of G on S.V / defined by .g � f /.v/ D f .g�1v/ turns S.V /˝ V p;q

into a smooth G-module. Let A�.X IS.V /˝ V p;q/ be the space of differential forms on X
valued in S.V /˝ V p;q . This space carries an action of G given by

.g; !.x; Y // 7! g � !.g�1x; g�1Y /; x 2 X; Y 2 ^TxX:

In this section we introduce G-invariant differential forms

 p;q 2 AN�1.X IS.V /˝ V p;q/G

valued in this G-module.

2.1. Polynomial forms. Fix a vector v 2 V . We write .hv/1; : : : ; .hv/N (respectively
.dhv/1; : : : ; .dhv/N / for the components of the vector hv (respectively dhv):

.hv/i D
X

1�j�N

hij vj 2 C
1.X/;

.dhv/i D
X

1�j�N

dhij vj 2 A
1.X/:
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Define

p.v/ D 2.�1/
N.N�1/

2

X
i�1

.�1/i�1.hv/i .dhv/N ^ � � � ^2.dhv/i
^ � � � ^ .dhv/1 2 A

N�1.X/:

(Here, as usual, the term under the symbol b is to be omitted.) Note that, as a function of v,
p is a (holomorphic) polynomial of degree N and so defines a form

p 2 AN�1.X ICŒV �/:

The conjugate polynomial p.v/ defines a form in AN�1.X ICŒV �/. Since h is hermitian, we
have

.hv/i D
X
j

hij vj D
X
j

vjhj i D .v
�h/i

and so we can write

p.v/ D 2.�1/
N.N�1/

2

X
i�1

.�1/i�1.v�h/i .v
�dh/N

^ � � � ^ 2.v�dh/i ^ � � � ^ .v�dh/1:

(2.2)

Lemma 2.1. The form p is G-invariant. That is, for g 2 G we have

g�p.gv/ D p.v/; v 2 V:

Proof. Let us assume that v ¤ 0 (the case v D 0 is obvious). The statement then fol-
lows from the fact that given a representation of a group G on an N -dimensional complex
vector space W , and a basis e1; : : : ; eN of W with dual basis e_1 ; : : : ; e

_
N 2 W

_, the element
e1 ˝ e

_
1 C � � � C eN ˝ e

_
N of W ˝W _ is G-invariant.

Namely, consider the C-vector spaceW � C1.X/ spanned by .v�h/1; : : : ; .v�h/N . For
g 2 G we have

.gv/�.g � h/ D v�tg.tg�1hg�1/ D v�hg�1:

This shows that W is naturally a representation of G that is isomorphic to the dual V _ of V .
The same statement (with same proof) holds for the C-vector space zW � A1.X/ spanned by
.v�dh/1; : : : ; .v

�dh/N .
Consider the map

W ˝^N�1 zW ! ^N zW ; w ˝ zw D dw ^ zw:

Here ^N zW ' C � .v�dh/N ^ � � � ^ .v�dh/1 is isomorphic to the trivial G-representation via
the map z � .v�dh/N ^ � � � ^ .v�dh/1 7! z. Thus we obtain a pairing

W ˝^N�1 zW ! C:

A direct check shows that the basis

.�1/N�i .v�dh/N ^ � � � ^
2.v�dh/i ^ � � � ^ .v�dh/1 .1 � i � N/

of ^N�1 zW is dual to the basis .v�h/i (1 � i � N ) of W , and the lemma follows.
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Lemma 2.2. Let v ¤ 0. Then the form

.v�hv/�Np.v/ 2 AN�1.X/

is closed.

Proof. An equivalent statement is the equality

(2.3) Nd.v�hv/ ^ p.v/ D .v�hv/dp.v/:

Differentiating (2.2) we obtain

dp.v/ D 2.�1/
N.N�1/

2 d

�X
i�1

.�1/i�1.v�h/i .v
�dh/N

^ � � � ^ 2.v�dh/i ^ � � � ^ .v�dh/1
�

D 2N.�1/
.NC2/.N�1/

2 .v�dh/N ^ � � � ^ .v
�dh/1:

(2.4)

On the other hand we have d.v�hv/ D
P
j .v
�dh/j vj and hence

Nd.v�hv/ ^ p.v/ D 2N.�1/
N.N�1/

2

�X
j

.v�dh/j vj

�
^

�X
i�1

.�1/i�1.v�h/i .v
�dh/N

^ � � � ^ 2.v�dh/i ^ � � � ^ .v�dh/1
�

D 2N.�1/
N.N�1/

2

X
j

.�1/j�1.v�dh/j vj .v
�h/j .v

�dh/N

^ � � � ^3.v�dh/j ^ � � � ^ .v�dh/1

D 2N.�1/
.NC2/.N�1/

2

�X
j

vj .v
�h/j

�
.v�dh/N ^ � � � ^ .v

�dh/1

D .v�hv/dp.v/

and the assertion follows.

2.2. Schwartz forms. We can now define the forms p;q mentioned in the introduction
to this section. First we consider the case p D q D 0: for v 2 V , we define

 0;0.v/ D e�v
�hvp.v/:

Remark. The form 0;0 arises naturally as a component of a characteristic form defined
by Mathai and Quillen. More precisely, the vector bundle V D X � V over X with fiber V
carries a tautological metric, and the main result of [26] is the construction of a canonical Thom
form U 2 A2N .X � V / and an infinitesimal transgression zU of U in A2N�1.X/ (denoted
�iXUt in [26, Section 7]). A vector v 2 V defines a section of V overX , and the form  0;0.v/

is essentially obtained from zU by contracting with the vector fields 𝜕z1 ; : : : ; 𝜕zN (this gives
a form in AN�1.X � V /) and then pulling back by this section. We refer to [3] for more
details on this perspective.



12 Bergeron, Charollois and García, Eisenstein cohomology classes for GLN

Note that the hermitian form v 7! v�hv on V is positive definite and so  0;0, as a func-
tion of v, belongs to the Schwartz space S.V /. Also note that, for any g 2 G, the expression
v�hv is invariant upon replacing h with g�h and v with gv, and so Lemma 2.1 implies that
 0;0 is G-invariant:

(2.5) g� 0;0.gv/ D  0;0.v/; g 2 G:

Thus  0;0 2 AN�1.X IS.V //G .
For arbitrary p; q � 0 we define

 p;q 2 AN�1.X IS.V /˝ V p;q/G

so that its value on P ˝Q, where P (resp.Q) is a holomorphic polynomial of degree p on V _

(resp. a holomorphic polynomial of degree q on V ), is given by

 p;q.v; P ˝Q/ D Q.v/P.�𝜕z1 ; : : : ;�𝜕zN / 
0;0.v/:

From now on we often omit the indices p; q and simply write  .v; P ˝Q/. One can give
a more explicit expression for  .v; P ˝Q/: the identity

�𝜕zi
�
e�v

�hv
�
D .v�h/ie

�v�hv

gives
P.�𝜕z1 ; : : : ;�𝜕zN /

�
e�v

�hv
�
D P..v�h/1; : : : ; .v

�h/N /e
�v�hv

I

since if p.v/ is an anti-holomorphic polynomial, we have 𝜕zip.v/ D 0 for all i , and we con-
clude that

 .v; P ˝Q/ D e�v
�hvp.v; P;Q/;

with
p.v; P;Q/ WD Q.v/P.v�h/p.v/:

Note that p. � ; P;Q/ is an anti-holomorphic polynomial in v of degree N C p C q. This
expression shows that, generalizing the invariance property (2.5), we have

g� .gv; gP ˝ gQ/ D  .v; P ˝Q/:(2.6)

The following is a generalization of Lemma 2.2.

Lemma 2.3. Let v ¤ 0. For any P 2 SympV and Q 2 SymqV _, the form

.v�hv/�N�pp.v; P;Q/ 2 AN�1.X/

is closed.

Proof. Since dQ.v/ D 0, it suffices to assume thatQ D 1 and that P is monomial, say
P D eI for some multi-index I of degree p. Then P.v�h/ D .v�h/i11 � � � .v

�h/
iN
N and

dP.v�h/ D

�X
j

ij
d.v�h/j

.v�h/j

�
P.v�h/;
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and so

dP.v�h/ ^ p.v/ D 2.�1/
N.N�1/

2 P.v�h/

�X
j

ij
d.v�h/j

.v�h/j

�

^

�X
i�1

.�1/i�1.v�h/i .v
�dh/N ^ � � � ^

2.v�dh/i ^ � � � ^ .v�dh/1
�

D 2.�1/
N.N�1/

2 P.v�h/
X
j

ij .�1/
j�1.v�dh/j ^ .v

�dh/N

^ � � � ^3.v�dh/j ^ � � � ^ .v�dh/1
D 2.�1/

.NC2/.N�1/
2

�X
j

ij

�
P.v�h/.v�dh/N ^ � � � ^ .v

�dh/1

D pN�1P.v�h/dp.v/;

where the last equality follows from (2.4). Using (2.3) we compute

d..v�hv/�N�pP.v�h/p.v//

D .v�hv/�N�p�1
�
�.N C p/d.v�hv/ ^ P.v�h/p.v/

C .v�hv/dP.v�h/ ^ p.v/C .v�hv/P.v�h/dp.v/
�

D .v�hv/�N�p
�
�.N C p/N�1 C pN�1 C 1

�
P.v�h/dp.v/

D 0:

2.3. Mellin transform. We define �.v; s/ to be the Mellin transform of  .v/; that is,
for holomorphic polynomials P and Q define

(2.7) �.v; P ˝Q; s/ D

Z 1
0

 .tv; P ˝Q/tsCNCp�q
dt

t
:

Then

(2.8) g��.gv; gP ˝ gQ; s/ D �.v; P ˝Q; s/; g 2 G;

because  is G-invariant. Since p.tv; P;Q/ D tNCpCqp.v; P;Q/, we have

�.v; P ˝Q; s/ D

Z 1
0

e�t
2v�hvtsC2NC2p

dt

t
p.v; P;Q/

D 2�1�.N C p C s
2
/.v�hv/�

s
2
�N�pp.v; P;Q/:

(2.9)

Lemma 2.4. We have

d�.v; P ˝Q; s/ D c.s/.v�hv/�
s
2
�N�pQ.v/P.v�h/dp.v/;

where c.s/ D .�4N/�1s�.N C p C s
2
/.

Proof. By Lemma 2.3 we have

d..v�hv/�N�pp.v; P;Q// D 0:
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Using (2.3), we compute

2�.N C p C s
2
/�1d�.v; P ˝Q; s/

D d..v�hv/�
s
2 .v�hv/�N�pp.v; P;Q//

D �2�1s.v�hv/�1�
s
2d.v�hv/ ^ .v�hv/�N�pp.v; P;Q/

D �.2N /�1s.v�hv/�
s
2
�N�pQ.v/P.v�h/dp.v/:

Using Lemma 2.4, we can represent the form d�.v; P ˝Q; s/ as a Mellin transform:
we define

� 2 AN .X IS.V /˝ V p;q/G

by

(2.10) �.v; P ˝Q/ D e�v
�hvQ.v/P.v�h/dp.v/I

then the above lemma implies that

(2.11) d�.v; P ˝Q; s/ D �
s

2N

Z 1
0

�.tv; P ˝Q/tsCNCp�q
dt

t
:

For further reference we note the homogeneity property (which follows from (2.9)):

(2.12) �.zv; P.z � /˝Q.z�1 � /; s/ D jzj�sz�N�.v; P ˝Q; s/

for z 2 C�.

2.4. Example: The caseN D 2. We compute the form 0;0.v/whenN D 2. We have

 0;0.v/ D �2e�v
�hv..hv/1.dhv/2 � .hv/2.dhv/1/

D �2e�v
�hv.!11v1

2
C !12v1v2 C !22v2

2/;

with

!11 D h11dh21 � h21dh11 D h11dh12 � h12dh11;

!12 D h11dh22 � h12dh21 C h21dh12 � h22dh11;

!22 D h21dh22 � h22dh21:

Let us rewrite the expression in classical coordinates. For � D .z; y/ 2 H3 D C �R>0, write

g� D

 
y
1
2 zy�

1
2

0 y�
1
2

!
:

The map � 7! g�K identifies H3 with X D SL2.C/=SU.2/. In these coordinates we have

h� D
tg�
�1g�1� D

 
y�

1
2 0

�zy�
1
2 y

1
2

! 
y�

1
2 �zy�

1
2

0 y
1
2

!

D y�1

 
1 �z

�z y2 C jzj2

!
;
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and
v�h�v D jg

�1
� vj2 D y�1.jv1 � zv2j

2
C jyv2j

2/:

Hence

dh� D �y
�2dy

 
1 �z

�z y2 C jzj2

!
C y�1d

 
1 �z

�z y2 C jzj2

!

D �h�y
�1dy C y�1

 
0 �dz

�dz 2ydy C zdz C zdz

!
and we compute

!11 D y
�2dz;

!12 D �2.y
�1dy C y�2zdz/;

!22 D 2zy
�1dy � dz C z2y�2dz:

Writing  0;0.v/ D  .v/ydy C  .v/zdz C  .v/zdz, we obtain

 .v/z D 2e
�v�h�v � v2

2;

 .v/y D �2e
�v�h�v.�2y�1v1v2 C 2zy

�1v2
2/

D 4y�1e�v
�h�v.v1 � zv2/v2;

 .v/z D �2y
�2e�v

�h�v.v1
2
� 2zv1v2 C z

2v2
2/

D �2y�2e�v
�h�v.v1 � zv2/

2
:

The Mellin transform �0;0.v; s/ D �.v; s/ydy C �.v; s/zdz C �.v; s/zdz (defined in (2.7)
below) is then given by

�.v; s/z D �.
s
2
C 2/y

s
2

.yv2/
2

.jv1 � zv2j2 C jyv2j2/
s
2
C2
;

�.v; s/y D 2�.
s
2
C 2/y

s
2

.v1 � zv2/yv2

.jv1 � zv2j2 C jyv2j2/
s
2
C2
;

�.v; s/z D ��.
s
2
C 2/y

s
2

.v1 � zv2/
2

.jv1 � zv2j2 C jyv2j2/
s
2
C2
:

Thus we recover the form introduced by Ito in [22].

2.5. Fourier transform. Recall that the Cartan decomposition g D p˚ k identifies
the tangent space TeKX at the point eK 2 X with p. Given Y 2 ^N�1p and polynomials
P and Q, evaluation at Y defines a Schwartz function

 .Y; P ˝Q/ 2 S.V /

given explicitly by
 .v; Y IP ˝Q/ D e�v

�vp.v; Y IP;Q/;

with p.v; Y IP;Q/ D Q.v/P.v�/p.v; Y /.
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We write h � ; � i for the scalar product on V defined by hv;wi D 2Re.w�v/ and given a
Schwartz form f 2 S.V /, we define its Fourier transform F f 2 S.V / by

F f .v/ D

Z
V

f .w/e2�ihv;wi dw;

where dw denotes the Lebesgue measure on CN . Since the polynomial p.v; Y IP;Q/ is anti-
holomorphic, it is also harmonic and hence we have

(2.13) F  .Y; P ˝Q/ D C .Y; P ˝Q/

for some constant C satisfying C 4 D 1. In particular,

F  .0; Y IP ˝Q/ D  .0; Y IP ˝Q/ D 0:

Similar statements hold for �.Y; P ˝Q/ for any Y 2 ^Np.

2.6. Integral on a maximal torus. Let T � G be the torus of diagonal matrices. The
inclusion of T in G induces an embedding

T=T \K ! X

identifying T=T \K with the submanifold of X consisting of diagonal hermitian matrices.
This submanifold is diffeomorphic to RN�1>0 : writing

(2.14) C D ¹.t1; : : : ; tN / 2 RN>0 W t1 � � � tN D 1º;

the map .t1; : : : ; tN / 7! diag.t�11 ; : : : ; t�1N /T \K identifiesC ' T=T \K. We use this iden-
tification to orient T=T \K as follows: forgetting the coordinate tN gives a diffeomorphism
C ' RN�1>0 . We orient C , and hence T=T \K, by pulling back the standard orientation
of RN�1>0 (given by the volume form dt1

t1
^ � � � ^

dtN�1
tN�1

).

Lemma 2.5. Let v ¤ 0. If Re.s/C 2N C 2p > 0, the form �.v; P ˝Q; s/ is integrable
on T=T \K. For P D eI andQD zJ monomial with I D .i1; : : : ; iN / and J D .j1; : : : ; jN /
multi-indices, we haveZ

T=T\K

�.v; P ˝Q; s/ D

NY
kD1

�. s
2N
C 1C ik/

vk
jk

jvkj
s
N v

ikC1
k

:

Proof. Since �.v; P ˝Q; s/ D Q.v/�.v; P ˝ 1; s/, we may assume thatQ D 1. In the
above coordinates for C we have h D diag.t21 ; : : : ; t

2
N / and dh D 2diag.t1dt1; : : : ; tNdtN /,

and so the restriction of P.v�h/p.v/ to T=T \K is given by

NY
jD1

.t2j vj /
ij � 2.�1/

N.N�1/
2

X
j

.�1/j�1vj t
2
j .vN 2tNdtN /

^ � � � ^4.vj 2tjdtj / ^ � � � ^ .v12t1dt1/

D 2N .�1/
N.N�1/

2

NY
jD1

t
2ij
j vj

ijC1
X
j

.�1/j�1
dtN

tN
^ � � � ^

bdtj
tj
^ � � � ^

dt1

t1
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since t1 � � � tN D 1. For t 2 C and u > 0, set ui D tiu. This gives

u1 � � �uN D u
N and

dui

ui
D
dti

ti
C
du

u
;

and hence�X
j

.�1/j�1
dtN

tN
^ � � � ^

bdtj
tj
^ � � � ^

dt1

t1

�
^
du

u
D
duN

uN
^ � � � ^

du1

u1
:

The map ..t1; : : : ; tN /; u/ 7! .u1; : : : ; uN / induces a diffeomorphism C �R>0 ' RN>0. Using
this as change of variables, we computeZ

T=T\K

�.v; P ˝ 1; s/ D

Z
C

Z 1
0

 .uv; P ˝ 1/usCNCp
du

u

D 2N .�1/
N.N�1/

2

Z
RN>0

e�
P
u2
j
jvj j

2

 
NY
jD1

t
2ij
j uijC1vj

ijC1

!

� usCNCp
duN

uN
^ � � � ^

du1

u1

D 2N
NY
jD1

vj
ijC1

Z 1
0

e�u
2
j
jvj j

2

u
sC2N
N
C2ij

j

duj

uj

D

NY
jD1

�. s
2N
C 1C ij /

vj
ijC1

jvj j
s
N
C2C2ij

:

The above lemma shows that the integral of �.v; P ˝Q; s/ on T=T \K has meromor-
phic continuation to s 2 C that is regular at s D 0. Its value at s D 0 for P D eI and Q D zJ

is Z
T=T\K

�.v; P ˝Q; s/

ˇ̌̌̌
sD0

D

NY
kD1

ikŠ
vk
jk

v
ikC1
k

:

It follows easily that for arbitrary P we can writeZ
T=T\K

�.v; P ˝Q; s/ D C.s/Q.v/P.�𝜕z1 ; : : : ;�𝜕zN /

 
NY
jD1

vj

jvj j
s
N
C2

!
;

for some meromorphic function C.s/ such that C.0/ D 1.

3. Eisenstein cocycle

Let k be an imaginary quadratic field with ring of integers O. We fix an integer N � 2
and let Vk D kN and Gk D SLN .k/ (recall that V D CN and G D SLN .C/). We also fix
an embedding � W k ! C, which makes V a k-module and induces inclusions Vk � V and
Gk � G.

Given a non-zero ideal I of O, define

(3.1) ƒ.I / D I�1 ˚ON�1:
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It is an O-submodule of kN that we regard as a lattice in CN via the embedding kN ! CN

induced by � . We write �.ƒ.I // for the intersection of AutO.ƒ.I // with SLN .k/; more
explicitly,

�.ƒ.I // D

´ 
a tb

c D

!
2 SLN .k/ W a 2 O; D 2MN�1.O/;

b 2 .I�1/N�1; c 2 IN�1

µ
:

Let p � O be a prime ideal coprime to I . We define a congruence subgroup �0.p; ƒ.I //
of �.ƒ.I // by

�0.p; ƒ.I // D

´ 
a tb

c D

!
2 �.ƒ.I // W c 2 .pI /N�1

µ
I

thus �0.p; ƒ.I // D �.ƒ.pI // \ �.ƒ.I //. When I D O, we have �.O/ D SLN .O/ and
�0.p; ƒ.O// D �0.p/ is the standard level p subgroup of SLN .O/.

In this section we prove Theorem 1.1. We first define a more general cocycle

ˆ
p;q
p .ƒ.I // W �0.p; ƒ.I //

N
! F ˝ V p;q;

where V p;q is given in (2.1) and F is a certain space of functions defined on complements of
unions of affine hyperplanes in V , endowed with a natural action of SLN .k/. In the last section
we will show that its cohomology class is non-trivial by computing its value explicitly on the
units of degree N field extensions of k.

3.1. Definition of the cocycle. Let I � k be a fractional ideal. Then �.I / � C is
a lattice. Given a pair of integers p; q 2 Z�0 and z 2 C, define the Kronecker–Eisenstein series

Kp;q.z;I ; s/ D pŠ
X

a2�.I/

z C a
q

.z C a/pC1jz C ajs
; z … �.I /:

The sum converges absolutely for Re.s/ > 1C q � p and for z in a compact subset of C. The
series Kp;q.z; a; s/ has an analytic continuation to the whole s-plane that is regular at s D 0,
see e.g. [11, 12, 37].

More generally, for an O-lattice ƒ � kN , let U.ƒ/ be the open subset of CN obtained
by removing all translates of coordinate hyperplanes by � 2 �.ƒ/. For I D .i1; : : : ; iN / and
J D .j1; : : : ; jN / in ZN

�0 and z 2 U.ƒ/, define

KI;J .z;ƒ; s/ D
X

�2�.ƒ/

Y
1�k�N

ikŠ
zk C �k

jk

.zk C �k/
ikC1jzk C �kj

s
:

The function KI;J .z;ƒ; s/ can be expressed as a homogeneous degree N polynomial of
Kronecker–Eisenstein series: pick non-zero fractional ideals I1; : : : ;IN of k such that

ƒ � I1 ˚ � � � ˚ IN :

Then
KI;J .z;ƒ; s/ D

X
�2ƒ=I1˚���˚IN

KI;J .z C �.�/;I1 ˚ � � � ˚ IN ; s/
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and
KI;J .z;I1 ˚ � � � ˚ IN ; s/ D

Y
1�k�N

Kik ;jk .zk;Ik; s/:

Thus KI;J .z;ƒ; s/ converges absolutely for Re.s/ > 1Cmax¹jk � ikº and has analytic con-
tinuation to all s 2 C that is regular at s D 0. We set

KI;J .z;ƒ/ D KI;J .z;ƒ; 0/

and define

F WD spanhKI;J .
�1z;ƒ/ W 
 2 SLN .k/;ƒ an O-lattice in kN i;

which carries a natural action of SLN .k/.

Definition 3.1. Let A be a matrix in End.ƒ.I // \ GLN .k/. Then

A�1ƒ.I / � ƒ.I /

and we define the generalized Dedekind sum

DI;J .z; A;ƒ.I // D detA�1KI;J .A�1z; A�1ƒ.I //

D detA�1
X

�2ƒ.I/=Aƒ.I/

KI;J .A�1.z C �.�//;ƒ.I //:

Let p be a proper ideal of O coprime to I and let Np be its norm. Define

DI;Jp .z; A;ƒ.I // D DI;J .z; A;ƒ.pI // � Np �DI;J .z; A;ƒ.I //:

If A 2 End.ƒ.I // but A is not invertible, set

DI;J .z; A;ƒ.I // D DI;Jp .z; A;ƒ.I // D 0:

For p; q 2 Z�0, recall the G-representation V p;q introduced in (2.1). A basis of V p;q is
given by the vectors

eI;J WD ..te1/
i1 � � � .teN /

iN /˝ .e1
j1 � � � eN

jN /;

where I; J 2 ZN
�0 satisfy i1 C � � � C iN D p and j1 C � � � C jN D q.

Recall that given a group � and a ZŒ��-module M , a map ˛ W �N !M is said to be
a homogeneous .N � 1/-cocycle if it is equivariant, that is,

(3.2) ˛.

1; : : : ; 

N / D 
˛.
1; : : : ; 
N /; 
; 
1; : : : ; 
N 2 �;

and satisfies

(3.3)
X

1�i�NC1

.�1/i�1˛.
1; : : : ; 
i�1; 
iC1; : : : ; 
NC1/ D 0; 
1; : : : ; 
NC1 2 �:

Theorem 3.2. Let I ;p � O be non-zero coprime ideals of O and assume that p ¤ O.
Given 
 D .
1; : : : ; 
N / 2 �0.p; ƒ.I //N , let

A.
/ D .
1e1j � � � j
N e1/ 2MN .O/
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be the matrix formed by the first columns of 
1; : : : ; 
N . Then A.
/ 2 End.ƒ.I //. For fixed
p; q in Z�0, define a map

ˆ
p;q
p .ƒ.I // W �0.p; ƒ.I //

N
! F ˝ V p;q

by
ˆ
p;q
p .z; 
;ƒ.I // D

X
jI jDp

jJ jDq

DI;Jp .z; A.
/;ƒ.I //˝ A.
/eI;J :

Then ˆp;qp .ƒ.I // is a homogeneous .N � 1/-cocycle.

Note that the first row of the matrix A.
/ in the statement has entries in O whereas all its
other rows have entries in I . The statement that A.
/ 2 End.ƒ.I // follows. Note also that

A.

1; : : : ; 

N / D 
A.
1; : : : ; 
N /; 
; 
1; : : : ; 
N 2 �0.p; ƒ.I //:

The equivariance property (3.2) of ˆp;qp .ƒ.I // follows from this. Thus it remains to show
the cocycle property (3.3). To prove it we will next define – as an Eisenstein series – a closed
�0.p; ƒ.I //-invariant differential form

Ep.z;  
p;q; ƒ.I // 2 AN�1.X/˝ V p;q

and .N � 1/-dimensional submanifolds

�.
/ � X; 
 2 �0.p; ƒ.I //
N ;

such that
ˆ
p;q
p .z; 
;ƒ.I // D

Z
�.
/

Ep.z;  
p;q; ƒ.I //:

The cocycle property will follow from the fact that for 
1; : : : ; 
NC1 2 �0.p; ƒ.I // we can
find a simplex

�.
1; : : : ; 
NC1/ � X

with boundary

𝜕�.
1; : : : ; 
NC1/ D
X

1�i�NC1

.�1/i�1�.
1; : : : ; 
i�1; 
iC1; : : : ; 
NC1/

and such that Ep.z;  
p;q; ƒ.I // decreases rapidly on �.
1; : : : ; 
NC1/ for fixed z.

3.2. Eisenstein series. For v 2 V , an O-lattice ƒ � Vk and a holomorphic polyno-
mial P (resp. Q) on V _ (resp. on V ), consider the theta series

�.v; P ˝QI ;ƒ/ WD
X
�2ƒ

 .v C �;P ˝Q/:

The series converges rapidly as  .v; P ˝Q/ is rapidly decreasing. By (2.6), we obtain a dif-
ferential form �.v; P ˝QI ;ƒ/ 2 AN�1.X/ satisfying


��.
v; 
P ˝ 
QI ;ƒ/ D �.v; P ˝QI ;ƒ/; 
 2 �.ƒ/;
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where �.ƒ/ WD AutO.ƒ/\ SLN .k/. The Mellin transform of �.v; P ˝QI ;ƒ/ is the Eisen-
stein series

E.v; P ˝QI ;ƒ; s/ WD

Z C1
0

�.tv; P ˝QI ; tƒ/tsCNCp�q
dt

t

D

X
�2ƒ

�.v C �;P ˝Q; s/;

where �.v; s/ is given by (2.9). Here the sum converges when Re.s/� 0 but can be analytically
continued to the whole s-plane in a standard way using Poisson summation. To do this, consider
the scalar product h � ; � i on CN given by

hv;wi D 2Re.v � w�/

and define
ƒ_ D ¹w 2 CN

W hv;wi 2 Z for all v 2 ƒº:

Given g 2 G and a tangent vector Y 2 p D TeKX we can define a vector g�Y 2 TgKX .
The invariance property (2.6) can be rewritten as

 .gv; g�Y IgP ˝ gQ/ D  .v; Y IP ˝Q/:

By (2.13),  . � ; Y IP ˝Q/ 2 S.V / is an eigenvector for the Fourier transform and so Poisson
summation givesX

�2ƒ

 .t.v C �/; g�Y IP ˝Q/

D

X
�2ƒ

 .tg�1.v C �/; Y Ig�1.P ˝Q//

D CVol.CN =ƒ/�1t�2N
X
�2ƒ_

e2�ihv;�i .t�1g��; Y Ig�1.P ˝Q//:

Using this, we can write

E.v; g�Y IP ˝QI ;ƒ; s/

D

Z 1
0

�.tv; g�Y IP ˝QI ; tƒ/t
sCNCp�q dt

t

D

Z 1
1

�.tv; g�Y IP ˝QI ; tƒ/t
sCNCp�q dt

t
C C Vol.CN =ƒ/�1

�

X
�2ƒ_

e2�ihv;�i
Z 1
1

 .tg��; Y Ig�1.P ˝Q//t�sCNCq�p
dt

t
:

The last expression converges for all s 2 C and gives the desired analytic continuation (with
no poles since  .0/ D F  .0/ D 0) of E.v; P ˝QI ;ƒ; s/. We set

E.v; P ˝QI ;ƒ/ D E.v; P ˝QI ;ƒ; 0/ 2 AN�1.X/:

Proposition 3.3. For a fixed column vector v 2 CN and polynomials P and Q, the
form E.v; P ˝QI ;ƒ/ is closed.

Proof. For t > 0 define the theta series

�.tv; P ˝QI�; tƒ/ D
X
�2ƒ

�.t.v C �/; P ˝Q/;
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where � is given in (2.10). The same argument used above shows that

E.v; P ˝QI�;ƒ; s/ WD

Z 1
0

�.tv; P ˝QI�; tƒ/tsCNCp�q
dt

t
; Re.s/� 0;

admits analytic continuation to s 2 C (with no poles). The relation

dE.v; P ˝QI ;ƒ; s/ D �
s

2N
E.v; P ˝QI�;ƒ; s/;

which follows from (2.11), proves the claim.

Thus we may regard E. � ; P ˝QI ;ƒ/ as a closed differential .N � 1/-form on X
valued on the space of smooth functions C1.V /, and by (2.8) we have the equivariance
property


�E.
v; 
P ˝ 
QI ;ƒ/ D E.v; P ˝QI ;ƒ/; 
 2 �.ƒ/:

For ƒ D ƒ.I / defined in (3.1), we set

Ep.v; P ˝QI ;ƒ.I /; s/ D E.v; P ˝QI ;ƒ.pI /; s/

� Np �E.v; P ˝QI ;ƒ.I /; s/

and
Ep.v; P ˝QI ;ƒ.I // D Ep.v; P ˝QI ;ƒ.I /; 0/:

Again we regard Ep. � ; P ˝QI ;ƒ.I // as a closed differential .N � 1/-form on X valued
in C1.V /, equivariant under �0.p; ƒ.I //.D �.ƒ.pI // \ �.ƒ.I ///.

3.3. Behavior on Siegel sets. Fix two coprime ideals p and I of O with p of prime
norm. Recall that proper rational parabolics ofGk D SLN .k/ are in bijection with proper flags

W� W 0 ¨ W0 ¨ � � � ¨ Wr ¨ kN ; r � 0:

Before stating our next result we recall the definition of Siegel sets. For a strictly increas-
ing sequence J D ¹j1 < � � � < jrº of integers in ¹1; : : : ; N � 1º, let Wjk D he1; : : : ; ejk i and
let PJ be the standard parabolic of SLN .k/ stabilizing the flag

WJ W 0 ¨ Wj1 ¨ � � � ¨ Wjr ¨ V:

We can write PJ D NMA, where (setting j0 D 0 and jrC1 D N )

N D NJ D

8̂̂̂̂
<̂
ˆ̂̂:

0BBBB@
1j1 � � � � �

0 1j2�j1 � � � �

0 0
: : : �

0 0 0 1jrC1�jr

1CCCCA
9>>>>=>>>>; ;

M DMJ D

8̂̂̂̂
<̂
ˆ̂̂:

0BBBB@
A1 0 � � � 0

0 A2 � � � 0

0 0
: : : 0

0 0 0 ArC1

1CCCCA W Ak 2 GLjk�jk�1.C/; jdet.Ak/j D 1

9>>>>=>>>>; ;
A D AJ D ¹a.t1; : : : ; trC1/ W tk > 0; det a.t1; : : : ; trC1/ D 1º:

(3.4)
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where

a.t1; : : : ; trC1/ WD

0BBBB@
t11j1 0 � � � 0

0 t21j2�j1 � � � 0

0 0
: : : 0

0 0 0 trC11jrC1�jr

1CCCCA :
An element g 2 G can be written as

g D nmak; n 2 N; m 2M; a 2 A; k 2 SU.N /:

In this decomposition n and a are uniquely determined by g and m and k are determined up to
an element of M \ SU.N /.

For t 2 R>0, let

At D

²
a.t1; : : : ; trC1/ 2 A W

tk

tkC1
� t for all k

³
:

The Siegel set determined by t > 0 and a relatively compact set ! � NM is

(3.5) S.t; !/ WD !At � SU.N / � SLN .C/I

we refer to its image in X also as a Siegel set.
More generally, suppose that W� is a proper flag of kN . A Siegel set for the cusp defined

by W� is a set of the form
S.g; t; !/ WD g�1!At � SU.N /;

where g 2 SLN .k/ is such that gW� is a standard flag (i.e. of the form WJ for some J).
We say that W� defines a good cusp if 
e1 2 W0 for some 
 2 �0.p; ƒ.I //.

Proposition 3.4. Suppose that W� defines a good cusp. If v 2 kN satisfies

.v Cƒ.pI // \Wr D ;;

then Ep.v; P ˝QI ;ƒ.I // is rapidly decreasing on every Siegel set for the cusp defined
by W�.

For the proof it will be convenient to work with adeles. Given a finite Schwartz function
�f 2 S.Vk.Af // and t > 0, let

�.v; t; P ˝QI�f ˝  / D
X
�2kN

�f .�/ .t.v C �/; P ˝Q/;

E.v; P ˝QI�f ˝  ; s/ D

Z 1
0

�.v; t; P ˝QI�f ˝  /t
sCNCp�q dt

t

D

X
�2kN

�f .�/�.v C �;P ˝Q; s/:

Using Poisson summation as in Section 3.2, for Y 2 ^N�1p, we may write

�.v; g�Y; t; P ˝QI�f ˝  /

D CVol.CN =ƒ.I //�1t�2N

�

X
�2Vk

c�f .�/e2�ihv;�i .t�1g��; Y Ig�1.P ˝Q//
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and

E.v; g�Y; P ˝QI�f ˝  ; s/

D

X
�2Vk

�f .�/

Z 1
1

 .tg�1.v C �/; Y Ig�1.P ˝Q//tsCNCp�q
dt

t

C C Vol.CN =ƒ.I //�1
X
�2Vk

c�f .�/e2�ihv;�i
�

Z 1
1

 .tg��; Y Ig�1.P ˝Q//t�sCNCq�p
dt

t
;

showing that E.v; P ˝QI�f ˝  ; s/ admits analytic continuation to s 2 C that is regular at
s D 0. Note that we can write

Ep.v; P ˝QI ;ƒ.I // D E.v; P ˝QI�f .p;I /˝  ; s/jsD0;

where �f .p;I / 2 S.Vk.Af // is given by

�f .�Ip;I / D

8̂<̂
:
0 if � … ƒ.pI /˝O

bO;
1 if � 2 ƒ.pI /˝O

bO and �1 … I�1 ˝O
bO;

1 � N.p/ if � 2 ƒ.pI /˝O
bO and �1 2 I�1 ˝O

bO:
Proof of Proposition 3.4. FixY 2 ^N�1p and a vector v 2 kN . Define f�f 2S.Vk.Af //

by f�f .�/ D �f .��vIp;I /. For g D .gf ; g1/ 2 SLN .Ak/, polynomials P andQ and t > 0,
define

�P˝Q.g; t/ D
X
�2kN

f�f .g�1f �/ .tg�11 �; Y IP ˝Q/

and

EP˝Q.g; s/ D

Z 1
0

�P˝Q.g; t/t
sCNCp�q dt

t

D

X
�2kN

f�f .g�1f �/�.tg�11 �; Y IP ˝Q; s/:

Then our Eisenstein series Ep.v; P ˝QI ;ƒ.I // satisfies

Ep.v; .g1/�Y IP ˝QI ;ƒ.I /; s/ D Eg�11 .P˝Q/..gf D 1; g1/; s/:

SinceEP˝Q is linear in P andQ and V p;q is a polynomial representation ofG, it follows that
g�11 .P ˝Q/ grows at most polynomially on any Siegel set. It follows that it suffices to show
that EP˝Q..gf D 1; g1/; s/ is rapidly decreasing on every Siegel set for the cusp defined by
W� for all P ˝Q 2 V p;q; since EP˝Q.g; s/ is an automorphic form, we can check this by
showing that the constant term

EP˝Q..gf D 1; g1/; s/N D

Z
N.Q/nN.A/

EP˝Q.n.gf D 1; g1/; s/ dn

vanishes, where N denotes the unipotent radical of the parabolic P corresponding to W�. Let
us fix P and Q and drop P ˝Q from the notation and write simply E.g; s/ and E.g; s/N. By
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transitivity of constant terms, we may assume that P is maximal, i.e. that the flagW� consists of
just one proper subspace W0 of kN . Note that under our assumptions on v we have f�f .�/ D 0
for � 2 W0. For � 2 kN �W0, the orbit of � under N.Q/ is �CW0. Writing N�.Q/ for the
stabilizer of � in N.Q/, we have

E..gf D 1; g1/; s/N D

Z
N.Q/nN.A/

� X
�2kN�W0

f�f .n�1f �/

�

Z 1
0

 .tg�11 n�11 �; Y IP ˝Q/t
sCNCp�q dt

t

�
dn

D

X
�2kN =W0
�¤0

Z
N.Q/nN.A/

� X
n02N�.Q/nN.Q/

f�f ..n0nf /�1�/
� �.tg�11 .n0n1/

�1�; Y IP ˝Q; s/

�
dn

D Vol.N�.Q/nN�.Af //
X

�2kN =W0
�¤0

Z
N�.Af /nN.Af /

f�f .n�1f �/ dnf

�

Z
N�.R/nN.R/

�.tg�11 n�11 �; Y IP ˝Q; s/ dn1:

Let 
 2 �0.p; ƒ.I // such that l WD h
e1i � W0. As the Schwartz function �p.I /, the p-com-
ponent of �f , satisfies Z

kp

�p.w C xe1II / dx D 0; w 2 Vk.kp/;

using that �p.I / is invariant under �0.p; ƒ.I //, we computeZ
N�.Af /nN.Af /

f�f .n�1f �/ dnp D

Z
W0.Af /

f�f .�C w/ dw
D

Z
W0.Af /

�f .�v C �C w/ dw

D

Z
W0.Af /=l.Af /

Z
Af

�f .�v C �C w
0
C x
e1/ dx dw

0

D 0;

showing that indeed the constant term is zero.

3.4. Tits compactification and modular symbols. First recall that the Tits building
�Q.G/ is a simplicial set whose non-degenerate simplices are in bijection with (proper) ratio-
nal parabolic subgroups P of G, or equivalently with proper k-rational flags

W� W 0 ¨ W0 ¨ � � � ¨ Wr ¨ kN ; r � 0:

The stabilizer P.W�/ of this flag is a rational parabolic of G that defines an r-simplex in�Q.G/.
Its i -th face is the simplex corresponding to the flag obtained from W� by deleting Wi (degen-
erate simplices correspond to proper flags where we allow Wi D WiC1 for any i ).
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For a parabolic subgroup P, denote by NP its unipotent radical and write LP D P=NP for
its Levi quotient, SP for the maximal Q-split torus in the center of LP andAP D SP.R/0 for the
identity component of the real points of SP. WritingX.LP/Q for the group of rational characters
of LP, we define MP D

T
˛2X.LP/Q

ker˛2. Then we have the direct product decomposition

LP.R/ DMP.R/AP:

The simplex in �Q.G/ corresponding to P admits a natural geometric realization. To
define it, let aP and nP be the Lie algebras of AP and NP respectively, and let ˆC.P;AP/ be
the set of roots for the adjoint action of aP on nP. These roots define a positive chamber

aCP D ¹H 2 aP W ˛.H/ > 0; ˛ 2 ˆ
C.P;AP/º:

Writing h � ; � i for the Killing form on g, we define an open simplex

aCP .1/ D ¹H 2 aCP W hH;H i D 1º � aCP

and a closed simplex

aCP .1/ D ¹H 2 aP W ˛.H/ � 0; hH;H i D 1; ˛ 2 ˆ
C.P;AP/º

in aP. Note that for P maximal the Lie algebra aP is one-dimensional and so aCP .1/ is just
a point. Moreover, if Q is another rational parabolic, then aCQ .1/ is a face of the closed sim-
plex aCP .1/ if and only if P � Q. It follows that aCP .1/ gives a geometric realization of the
simplex in �Q.G/ corresponding to P, and so the Tits building �Q.G/ admits the geometric
realization

(3.6) j�Q.G/j �
a

P

aCP .1/=�;

where the union runs over all proper rational parabolics P of G and� is the equivalence relation
induced by the identification of aCQ .1/ with a face of aCP .1/ whenever P � Q. As a set we
may write

j�Q.G/j D
a

P

aCP .1/

as a disjoint union of open simplexes aCP .1/.

3.4.1. Tits compactification. Here we follow [23] and [6, Section III.12]. The Tits
compactification QX

T has boundary j�Q.G/j: as a set we have

QX
T
D X [

a
P

aCP .1/:

The topology on QX
T can be described in terms of convergent sequences (for a full description

see [6]). Note that we have fixed x0 2 X corresponding to the maximal compact subgroup
K D SU.N / � G D G.R/ and hence a unique Cartan involution � of G that fixes K and
extends to G (namely, �.g/ D tg�1). There is a unique section i0 W LP ! P of the quotient
map P! LP with image invariant under � . We write

P D P.R/; NP D NP.R/; AP.x0/ D i0.AP/; MP.x0/ D i0.MP.R//
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and obtain the Langlands decomposition (explicitly given by (3.4) for standard parabolics)

P D NPAP.x0/MP.x0/:

Writing XP DMP.x0/=.K \MP.x0//, this induces a diffeomorphism

(3.7) NP � AP.x0/ �XP ! X; .n; a;mK/ 7! namK:

The topology on QX
T is characterized by the following properties:

(1) The subspace topology on the boundary j�Q.G/j is the quotient topology given by (3.6).

(2) Let x 2 X . A sequence xn 2 QX
T

, n � 1, converges to x if and only if xn 2 X for
n� 0 and xn converges to x in the usual topology of X .

(3) Let H1 2 aCP .1/ and let .xj /j�1 be a sequence in X . Write xj D nj exp.Hj /mj for
unique nj 2 NP, Hj 2 aP and mj 2 XP according to the horospherical decomposition
(3.7). Then xj ! H1 if and only if xj is unbounded and

(i) Hj =kHj k ! H1 in aP,
(ii) d.njmjx0; x0/=kHj k ! 0,

where d denotes the Riemannian distance on X .

With this topology, QX
T is a Hausdorff space on which G.Q/ acts continuously.

Given points x 2 X and x0 2 QX
T , we denote by Œx; x0� the unique oriented geodesic

segment starting at x and ending at x0. More explicitly, if x0 2 X , we define Œx; x0� to be the
image of

(3.8) s.x; x0/ W Œ0; 1�! QX
T
; t 7! s.t I x; x0/;

the constant speed parametrization by the unit interval of the unique oriented geodesic seg-
ment with s.0I x; x0/ D x and s.1I x; x0/ D x0. If x0 belongs to the boundary of QX

T , then
there exists a unique parabolic subgroup P such that x0 corresponds to H1 2 aCP .1/. In the
coordinates given by (3.7), we have x D n exp.H/m, and we define Œx; x0� to be the image of
the map

(3.9) s.x; x0/ W Œ0; 1�! QX
T
; t 7! s.t Ix;x0/D

´
n exp.H C t

1�t
H1/m if t < 1;

x0 if t D 1:

Given subsets S � X and S 0 � QX
T , the cone C.S; S 0/ (also known as the join S � S 0) is the

subset of QX
T defined as

C.S; S 0/ D
[
x2S
x02S 0

Œx; x0�:

If S D ¹xº, we say that C.S; S 0/ is the cone on S 0 with vertex x. When S 0 is given by a sim-
plicial map �r ! �Q.G/ into the Tits boundary, the cone on S 0 with vertex x is naturally
the image of an .r C 1/-simplex j�rC1j ! QX

T (oriented so that the boundary orientation
agrees with that of S 0). More generally, if S is given by a simplicial map j�kj ! X and S 0 is
given by a simplicial map �r ! �Q.G/, then the cone C.S; S 0/ is the image of a map

j�kj � j�r j � Œ0; 1�!Q X
T

that factors through the join

(3.10) j�kCrC1j ' j�k ��r j !Q X
T
:
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3.4.2. Modular symbols. For k � 0, let �0
k

be the first barycentric subdivision of the
standard k-simplex. Its vertices are in bijection with the non-empty subsets of ¹0; : : : ; kº, and
a set of vertices ¹v0; : : : ; vrº forms an r-simplex if and only if they are linearly ordered, i.e.
v0 � � � � � vr . Denote this simplex by �v0;:::;vr .

For a collection 
 D .
0; : : : ; 
k�1/ of k � N elements of �0.p; ƒ.I //, let us define
a continuous map

�.
/ W j�0k�1j ! QX
T
:

Assume first h
0e1; : : : ; 
k�1e1i ¤ kN . For each chain v0 � � � � � vr defining an r-simplex
in �0

k�1
, the flag

(3.11) 0 ¨ h
ie1 j i 2 v0i � h
ie1 j i 2 v1i � � � � � h
ie1 j i 2 vri ¨ kN

is a proper flag of length r . We define �.
/.�v0;:::;vr / to be the corresponding (possibly
degenerate) r-simplex in �Q.G/; we give this simplex the orientation induced by �.
/ by
the standard orientation on �0

k�1
. This assignment preserves faces and degeneracies and so

defines a simplicial map �.
/.
Next assume that k D N and the vectors 
0e1; : : : ; 
N�1e1 are linearly independent.

Define
A.
/ D .
0e1j � � � j
N�1e1/ 2MN .O/ \ GLN .k/

to be the matrix formed by the first columns of 
0; : : : ; 
N�1. Fix an N -th root .detA.
//�
1
N

of detA.
/�1 and let a.
/ D .detA.
//�
1
N A.
/; the matrix a.
/ has determinant one and

defines a point

(3.12) x0.
/ D a.
/K 2 X

(independent of the choice of N -th root above). Suppose that v0 ¨ � � � ¨ vr is a chain defining
a non-degenerate r-simplex in�0N�1. If vr ¤ ¹0; : : : ; N � 1º, then we define�.
/.�v0;:::;vr /
to be the r-simplex of �Q.G/ corresponding to the flag (3.11). If vr D ¹0; : : : ; N � 1º, then
we define

(3.13) �.
/.�v0;:::;vr / D cone on �.
/.�v0;:::;vr�1/ with vertex x0.
/:

These assignments are compatible with face maps and therefore give rise to a well-defined
continuous map �.
/ W �0N�1 ! QX

T . By induction on k one shows that

�.
 0
0; : : : ; 

0
k�1/ D 


0�.
0; : : : ; 
k�1/; for 
 0 2 �0.p; ƒ.I //:

Note that when the vectors 
ie1 are linearly dependent, the image of the map �.
/ is
contained in the boundary of QX

T . When they are linearly independent, the intersection

�ı.
/ WD X \ Im.�.
//

of the image of�.
/with the interiorX of QX
T is a submanifold of dimensionN � 1, namely

(3.14) �ı.
/ D

´
a.
/diag.t1; : : : ; tN /K W ti 2 R>0;

NY
iD1

ti D 1

µ
� G=K D X:

(To see this, we may assume that 
ie1 D ei , so that a.
/ is the identity matrix 1N . Consider
first a non-degenerate simplex �v0;:::;vr in �0N�1 with vk D ¹1; : : : ; jvkjº. If jvr j < N , then
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the r-simplex �.1N /.�v0;:::;vr / in the Tits compactification of X corresponds to the standard
proper flag

0 ¨ hei j i � jv0ji ¨ � � � ¨ hei j i � jvr ji ¤ Vk;

and the subgroup AP of the corresponding parabolic P is

AP D ¹a.t0; : : : ; trC1/ W ti > 0; det a.t0; : : : ; trC1/ D 1º;

where

a.t0; : : : ; trC1/ WD

0BBBB@
t0 � 1jv0j

t1 � 1jv1j�jv0j
: : :

trC11N�jvr j

1CCCCA :
If jvr j D N , then the cone of �.1N /.�v0;:::;vr�1/ with vertex x0 is

¹a.t0; : : : ; trC1/K j a.t0; : : : ; trC1/ 2 AP; t0 � � � � � trC1º:

The statement follows since any r-simplex �.1N /.�v0;:::;vr / can be obtained as a translate of
a simplex corresponding to a standard flag as above by a Weyl group element.)

The coordinates
a.
/diag.t1; : : : ; tN /K 7! ti

identify�ı.
/ with the manifold C defined in (2.14). This isomorphism is orientation preserv-
ing.2) For convenience we define �ı.
/ D ; if A.
/ is not invertible.

Note that (3.14) implies that�ı.
/ admits a finite cover by SLN .k/-translates of (images
in X of) standard Siegel sets of the form (3.5). One may take this cover to consist of one Siegel
set for every parabolic P stabilizing a flag consisting of subspaces of the form h
ie1 j i 2 I i
for I ¨ ¹0; : : : ; N � 1º.

3.5. Evaluation on modular symbols and the cocycle property. We can now relate
the Eisenstein series Ep.v; P ˝QI ;ƒ.I // and the Eisenstein cocycle.

Proposition 3.5. Assume that v does not lie in any ƒ.pI /-translate of a proper sub-
space of V of the form h
ie1 j i 2 I i for I � ¹0; : : : ; N � 1º. Thenˆp;qp . � ; 
;ƒ.I // is defined
at v and

ˆ
p;q
p .v; 
;ƒ.I //.P ˝Q/ D

Z
�ı.
/

Ep.v; P ˝QI 
p;q; ƒ.I //:

Proof. Consider the matrix A.
/ D .
0e1j : : : j
N�1e1/. If A.
/ is not invertible, then
both sides are zero by definition. Now assume that A.
/ is invertible and take A.
/�1P and
A.
/�1Q to be monomial, say

A.
/�1P.z/ D zI D z
i1
1 � � � z

iN
N and A.
/�1Q.z/ D zJ D z1

j1 � � � zN
jN I

it suffices to show that with this choice of P and Q we haveZ
�ı.
/

Ep.v; P ˝QI 
p;q; ƒ.I // D DI;Jp .v; A.
/;ƒ.I //:

2) Recall that we have defined the orientation of �ı.
/ to be induced by the boundary and that the
orientation on C is fixed in Section 2.6.
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Note that the proof of Proposition 3.4 shows that, for any s, the Eisenstein seriesEp.v; P ˝QI

 ;ƒ.I /; s/ is rapidly decreasing on any Siegel set corresponding to a good cusp; since �ı.
/
admits a finite cover by such Siegel sets, it follows thatEp.v; P ˝QI ;ƒ.I /; s/ is integrable
over �ı.
/. For Re.s/� 0, we computeZ

�ı.
/

E.v; P ˝QI p;q; ƒ.I /; s/

D

X
�2ƒ.I/

Z
�ı.
/

�p;q.v C �;P ˝Q; s/

D

X
�2ƒ.I/

Z
T=T\K

a.
/��p;q.v C �;P ˝Q; s/

D

X
�2ƒ.I/

Z
T=T\K

�p;q.a.
/�1.v C �/; a.
/�1.P ˝Q/; s/

D jdetA.
/j�
s
N detA.
/�1

X
�2ƒ.I/

Z
T=T\K

�p;q.A.
/�1.v C �/; A.
/�1.P ˝Q/; s/;

where the last equality follows from the homogeneity property (2.12). The desired identity
follows by analytic continuation from Lemma 2.5.

We can now use Proposition 3.5 to prove thatˆp;qp .ƒ.I // is indeed an .N � 1/-cocycle,
i.e. that it satisfies property (3.3).

Given N C 1 elements 
0; : : : ; 
N 2 �0.p; ƒ.I //, write Sj for �.
0; : : : ; b
j ; : : : ; 
N /
and fix x 2 X such that

x …
[

0�j�N

Sj :

Then Sj is an (oriented) .N � 1/-simplex in the boundary of QX
T , and we denote by .�1/jSj

the same simplex with opposite orientation if j is odd. Note that
P
j .�1/

jSj is a cycle, i.e.P
.�1/j 𝜕Sj D 0. For each j with 0 � j � N , we next define an N -simplex

Cj W j�N j ! QX
T
:

Assume first that h
0e1; : : : ; b
j e1; : : : ; 
N e1i ¤ kN . We define Cj to be the cone on .�1/jSj
with vertex x (cf. Section 3.4.1); its boundary is 𝜕Cj D .�1/jSj � .�1/jC.x; 𝜕Sj /.

Now assume that h
0e1; : : : ; b
j e1; : : : ; 
N e1i D kN . Then the intersection Sıj of Sj with
X is non-empty, and in (3.12) we have defined a barycenter xj WD x0.
0; : : : ; b
j ; : : : ; 
N /2 Sıj
such that Sj is the cone on 𝜕Sj with vertex xj . We define Cj to be the cone C.Œx; xj �; 𝜕Sj /,
where Œx; xj � denotes the oriented geodesic segment from x to xj . More explicitly, let

s W Œ0; 1�! Œx; xj �

be the constant speed parametrization of the geodesic segment joining s.0/ D x to s.1/ D xj .
For each simplex �.
0; : : : ; b
j ; : : : ; 
N /.�v0;:::;vr / contained in 𝜕Sj , let P be the correspond-
ing parabolic; writing s.t/ D n.t/ exp.Ht /m.t/, we obtain a map

(3.15) Œ0; 1� � aCP ! X; .t;H 0/ 7! n.t/ exp.Ht CH 0/m.t/;

whose closure is C.Œx; xj �; �.
0; : : : ; b
j ; : : : ; 
N /.�v0;:::;vr //. Since 𝜕Sj has empty bound-
ary, the boundary of Cj is the union of Sj (D the cone on Sıj with vertex xj ) and the cone
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C.x; 𝜕Sj /; we orient Cj so that the induced orientation on Sj is that given by (3.13), so that
𝜕Cj D .�1/jSj � .�1/jC.x; 𝜕Sj /.

It follows that the sum�.
0; : : : ; 
N / D
P
j Cj has boundary

P
j .�1/

jSj . The cocycle
property (3.3) follows immediately from Stokes’ theorem and the following lemma.

Lemma 3.6. Assume that v does not lie in any ƒ.pI /-translate of a proper subspace
of V of the form h
ie1 j i 2 I i for I � ¹0; : : : ; N º. Then the Eisenstein series Ep.v; P ˝QI

 p;q; ƒ.I // is rapidly decreasing on �.
0; : : : ; 
N /.

Proof. By Theorem 3.4, it suffices to show that each Cj can be covered by finitely many
Siegel sets of good cusps, which is obvious from the explicit description (3.15).

4. Eisenstein cocycle and critical values of Hecke L-series

4.1. Units of extensions of k. Let L be a field extension of k of degree N � 2. We
denote its ring of integers by OL and write �1; : : : ; �N for the complex embeddings of L in C
extending � . We obtain an embedding

� 2 HomO.L;C
N /; �.l/ D .�1.l/; : : : ; �N .l//:

Let n W L� ! k� be the norm map and L1 be the kernel of n. We fix ideals a, P and f of
OL that are pairwise coprime and such that p WD n.P/ is prime. We let U.f/ D O�L \ .1C f/

and U.f/1 D U.f/ \ L1. We denote by U.f/1tors the torsion subgroup of U.f/1 and fix units
u1; : : : ; uN�1 2 U.f/ that generate a subgroup U.f/0 WD hu1; : : : ; uN�1i of U.f/1 that is free
abelian of rank N � 1 and maps bijectively to U.f/1=U.f/1tors via the quotient map.

Lemma 4.1. Let I be a fractional ideal of O coprime to p. Assume that I is isomorphic
to .detO.fa�1//�1. There exists a k-isomorphism ˛ W L ��! kN making the diagram

fa�1 ƒ.I /

f.aP/�1 ƒ.pI /

˛
�

˛
�

commute.

Proof. Fix an isomorphism z̨ W fa�1 ��! ƒ.I /. Then the O-lattices ƒ1 D ƒ.pI / and
ƒ2 D z̨.f.aP/�1/ contain ƒ.I / and ƒi=ƒ.I / ' O=p for i D 1; 2. For each finite place v
of k and i D 1; 2 we obtain an Ov-latticeƒi;v D ƒi ˝O Ov in kNv , and we haveƒ1;v D ƒ2;v
for all v ¤ p. Pick gp 2 SLN .ƒ.I /p/ such that gpƒ2;p D ƒ1;p and let

Up D SLN .ƒ.I /p/ \ SLN .ƒ2;p/:

ThenUp is an open compact subgroup of SLN .kp/ andU D gpUp �
Q
v¤p SLN .ƒ.I /v/ is an

open subset of SLN .Ak;f /. As SLN .k/ is dense in SLN .Ak;f /, we may find g 2 SLN .k/\U .
Then g stabilizes ƒ.I / and gƒ2 D ƒ1 (since gƒ2;v D ƒ1;v for every finite place v), and so
˛ WD g ı z̨ makes the diagram in the statement commute.
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From now on we fix an isomorphism ˛ as in the above lemma. These choices define:

� a vector
v0 D ˛.1/ 2 k

N ;

� a k-basis j̨ D ˛
�1.ej / (j D 1; : : : ; N ) of L and a matrix

a˛ D .�i . j̨ //
�1 det.�i . j̨ //

1
N 2 SLN .C/

(here det.�i . j̨ //
1
N denotes a fixed N -th root of det.�i . j̨ //),

� an inclusion
�˛ W L

�
! GLN .k/

sending l 2 L� to the map x 7! ˛.l˛�1.x//, that can be described using a˛:

�˛.l/ D a˛diag.�.l//a�1˛ :

Define
�1.v0; ƒ.I // D ¹
 2 �.ƒ.I // W .
 � 1/v0 2 ƒ.I /º

and
� WD �0.p; ƒ.I // \ �1.v0; ƒ.I //:

As multiplication by u 2 U.f/1 induces an O-linear automorphism of fa�1 and f.aP/�1

of determinant 1 that preserves 1C fa�1, the restriction of �˛ to U.f/1 defines an inclu-
sion

�˛ W U.f/
1
! �:

� Write .L˝k;� C/1 for the elements of .L˝k;� C/� of norm 1 and .L˝k;� C/1c for the
maximal compact subgroup of .L˝k;� C/1. The map u 7! �˛.u/a˛.D a˛diag.�.u///
induces an embedding

(4.1) �˛ W .L˝k;� C/1=.L˝k;� C/1c ! X

and hence a basepoint x˛ D a˛SU.N / 2 X and a map

�˛ W X.f/ WD U.f/
1
n.L˝k;� C/1=.L˝k;� C/1c ! �nX:

By Kronecker’s theorem (“algebraic integers all of whose conjugates are of norm one are
roots of unity”), the kernel of the action of U.f/1 on .L˝k;� C/1=.L˝k;� C/1c equals
the torsion subgroup U.f/1tors of U.f/1, and the action of

U.f/0 D hu1; : : : ; uN�1i ' U.f/
1=U.f/1tors

on .L˝k;� C/1=.L˝k;� C/1c is free. Fix the orientation on .L˝k;� C/1=.L˝k;� C/1c
associated to the canonical orientation of CN and write

ŒX.f/� 2 HN�1.X.f/;Z/ ' HN�1.hu1; : : : ; uN�1i;Z/

for the fundamental class of the (compact, oriented) .N � 1/-manifold X.f/. We write

cor W H�.hu1; : : : ; uN�1i;Q/! H�.U.f/1;Q/

and
res W H�.U.f/1;Q/! H�.hu1; : : : ; uN�1i;Q/
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for the corestriction and restriction maps respectively and set

Zf D ŒU.f/ W U.f/
0��1corŒX.f/� 2 HN�1.U.f/1;Q/:

� The embeddings �1; : : : ; �N W L! C give a basis for .L˝k;� C/_; let us denote by
𝜕
𝜕�1
; : : : ; 𝜕𝜕�N

the dual basis of .L˝k;� C/__ ' L˝k;� C. Writing ˛C D ˛ ˝ 1 for the
extension of ˛ W L! kN to an isomorphism L˝k;� C ! V , we define polynomials

P˛ D ˛C

�
𝜕
𝜕�1

�
� � �˛C

�
𝜕
𝜕�N

�
2 SymNV;

Q˛ D n ı ˛
�1
C 2 SymNV

_
:

Note that these polynomials satisfy

(4.2) a�1˛ P˛ D det.�i . j̨ //�1.e1 � � � eN /; a�1˛ Q˛ D det.�i . j̨ // � z1 � � � zN :

For non-negative integers p; q, we define

P p;q˛ D pŠ�N � P p˛ ˝Q˛
q
2 .V pN;qN /_:

Then P p;q˛ is invariant under �˛.U.f/1/. We define

Z
p;q
f
D Zf ˝ P

p;q
˛ 2 HN�1.U.f/1; .V pN;qN /_/:

Let
res.Ep.v0I 

pN;qN ; ƒ.I /// 2 HN�1.U.f/1; V pN;qN /

be the cohomology class defined by the restriction of the closed form Ep.v0I 
pN;qN ; ƒ.I //

and define

hEp.v0I 
pN;qN ; ƒ.I //; Z

p;q
f
i

D res.Ep.v0I 
pN;qN ; ƒ.I /// \Z

p;q
f

D ŒU.f/ W U.f/0��1
Z
X.f/

��˛Ep.v0; P
p;q
˛ I 

pN;qN ; ƒ.I /; s/

ˇ̌̌̌
sD0

:

4.2. Partial zeta functions. Given integers p; q � 0, define the partial zeta function

�
p;q
f
.a; s/ D

X0

x2U.f/n1Cfa�1

n.x/
q

n.x/pC1jn.x/j2s
; Re.s/� 0:

(Since uu D 1 for every u 2 O�, this is well-defined provided that p C q C 1 is divisible by
the order of the subgroup n.U.f// of O�, which we assume.) Define also the “P-smoothed”
partial zeta function

�
p;q
f;P
.a; s/ D NP�s�

p;q
f
.aP; s/ � NP1�s�

p;q
f
.a; s/:

These partial zeta functions admit meromorphic continuation to s 2 C that is regular at s D 0.

Proposition 4.2. We have

hEp.v0I 
pN;qN ; ƒ.I //; Z

p;q
f
i D det.�i . j̨ //�

p;q
f;P
.a; 0/:
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Proof. For s in the range of convergence of the Eisenstein series, we computeZ
X.f/

��˛E.v0; P
p;q
˛ I 

pN;qN ; ƒ.I /; s/

D

Z
U.f/0n.L˝k;�C/1=.L˝k;�C/1c

��˛

� X
v2v0Cƒ.I/

�pN;qN .v; P p;q˛ ; s/

�

D

Z
U.f/0n.L˝k;�C/1=.L˝k;�C/1c

��˛

� X
x21Cfa�1

�pN;qN .˛.x/; P p;q˛ ; s/

�

D

Z
U.f/0n.L˝k;�C/1=.L˝k;�C/1c

��˛

� X
x2U.f/0n1Cfa�1

X
u2U.f/0

�pN;qN .˛.ux/; P p;q˛ ; s/

�

D

X
x2U.f/0n1Cfa�1

Z
.L˝k;�C/1=.L˝k;�C/1c

��˛�
pN;qN .˛.x/; P p;q˛ ; s/:

Writing T for the torus of diagonal matrices in G, note that the image of �˛ is identified with
the translate a˛.T=T \K/ � X . Since

.a�1˛ v/i D det.�i . j̨ //�
1
N �i .˛

�1.v//;

using (4.2) and Lemma 2.5 and writing � D det.�i . j̨ //�
1
N , we computeZ

.L˝k;�C/1=.L˝k;�C/1c

��˛�
pN;qN .˛.x/; P p;q˛ ; s/

D

Z
T=T\K

�pN;qN .a�1˛ ˛.x/; a�1˛ .P p;q˛ /; s/

D pŠ�N
Z
T=T\K

�pN;qN .��.x/;�pN .e1 � � � eN /
p
˝�

�qN
z1 � � � zN

q; s/

D pŠ�N�pN�
�qN

Z
T=T\K

�pN;qN .��.x/; .e1 � � � eN /
p
˝ z1 � � � zN

q; s/

D �pN�
�qN

pŠ�N�. s
2N
C 1C p/N

NY
kD1

.��k.x//
q

j��k.x/j
s
N .��k.x//

pC1

D j�j�s��NpŠ�N�. s
2N
C 1C p/N

n.x/q

jn.x/j
s
N n.x/pC1

and the statement follows.

4.3. Moving cycles to the Tits boundary. We now give a fundamental domain D for
the action of hu1; : : : ; uN�1i on the image of the map �˛ defined in (4.1), and a decomposition
of D into .N � 1/-simplices indexed by the symmetric group SN�1.

4.3.1. Simplices. Let us first define the relevant simplices. For any integer k � 0, x 2X
and 
 D .
0; : : : ; 
k/ 2 �0.p; ƒ.I //kC1, we define a continuous map

z�.
; x/ W j�kj ! X



Bergeron, Charollois and García, Eisenstein cohomology classes for GLN 35

inductively on k as follows:

� For k D 0 we have �k D ¹�º and we set z�.
0; x/.�/ D 
0x.

� Assume that k � 1 and that we have defined z�.
0; : : : ; 
k�1; x/ for every collection
of elements 
0; : : : ; 
k�1 2 �0.p; ƒ.I //. We define z�.
0; : : : ; 
k; x/ to be the cone on
z�.
0; : : : ; 
k�1; x/ with vertex 
kx (we orient this cone by declaring that its vertices

0x; : : : ; 
kx are in increasing order).

By induction on k one shows that

z�.
 0
0; : : : ; 

0
k�1; x/ D 


0 z�.
0; : : : ; 
k�1; x/ for 
 0 2 �0.p; ƒ.I //:

4.3.2. Fundamental domain. Consider now the fundamental domain D for the action
of hu1; : : : ; uN�1i on the image of the map �˛ defined as follows: for t 2 Œ0; 1�N�1, let

�.u/.t/ D .�1.u1/
t1 � � � �1.uN�1/

tN�1 ; : : : ; �N .u1/
t1 � � � �N .uN�1/

tN�1/ 2 .C�/N

and let
D D ¹a˛�.u/.t/K W t 2 Œ0; 1�

N�1
º � X:

There is a standard decomposition of Œ0; 1�N�1 into .N � 1/-simplices:

Œ0; 1�N�1 D
[

�2SN�1

¹.t1; : : : ; tN�1/ 2 Œ0; 1�
N�1
W t�.1/ � � � � � t�.N�1/º:

This induces a corresponding simplicial decomposition of D : writing

Ui D �˛.ui / 2 �0.p; ƒ.I //

and

(4.3) u� D .1; U�.1/; U�.1/U�.2/; : : : ; U�.1/ � � �U�.N�1//;

we have

(4.4) D D
X

�2SN�1

sgn.�/z�.u� ; x˛/:

4.3.3. Deforming z�.
; x/. Let k � 0, x 2 X and 
 2 �0.p; ƒ.I //kC1 with k < N .
In this subsection we define a homotopy between the simplices z�.
; x/ and �.
/; that is,
a map

H.
; x/ W j�kj � Œ0; 1�! QX
T

such that

H.
; x/jj�k j�¹0º D
z�.
; x/;

H.
; x/jj�k j�¹1º D �.
/:

(4.5)

Since the cones in X depend on the order of the vertices we try to define this homotopy with
a bit of care.

Moreover, we will show thatH can be covered by a finite number of Siegel sets attached
to good cusps (recall that we say that a cusp corresponding to a rational flag W� is good if we
can find 
 2 �0.p; ƒ.I // such that 
e1 2 W0) and has the equivariance property

(4.6) H.
 0
0; : : : ; 

0
k; x/ D 


0H.
0; : : : ; 
k; x/ for 
 0 2 �0.p; ƒ.I //:
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To defineH , we use a decomposition of j�kj � Œ0; 1� defined inductively as follows. For
k D 0 we take the decomposition of ¹�º � Œ0; 1� ' Œ0; 1� with 0-simplices ¹0º and ¹1º and the
1-simplex .0; 1/. The decomposition of j�kj � Œ0; 1� is defined inductively on k by joining
every simplex of .�k�1 � ¹0º/ [ .𝜕�k � Œ0; 1�/ with the barycenter of �k � ¹1º, as in the
following figure.

More precisely, we define, inductively on k, a subset Sk of �k ��0k satisfying

(4.7) j�kj � jŒ0; 1�j D

ıG
.s;s0/2Sk

C.jsj � ¹0º; js0j � ¹1º/

(here the symbol
Fı denotes an almost disjoint union: the cones indexed by different pairs

in Sk have disjoint interiors). We define Sk as follows:

� For k D 0 we have �0 D ¹�º and we set S0 D �0 ��0.
� Let k > 0 and assume that Sk�1 has been defined. Let x0 be the barycenter of �k . To

describe which pairs .s; s0/ belong to Sk , recall that every simplex s0 2 �0
k

either (i) is
the 0-simplex ¹x0º, or (ii) lies on a face of 𝜕�k , or (iii) is the cone C.¹x0º; s00/ with
vertex x0 for a unique simplex s00 of �0

k
contained in the boundary 𝜕�k . In case (i)

we declare that for every s 2 �k we have .s; ¹x0º/ 2 Sk . In case (ii), the vertex s0 lies
on a face �k�1 � 𝜕�k . We declare that .s; s0/ 2 Sk if and only if s belongs to the
same face of 𝜕�k as s0 and .s; s0/ 2 Sk�1. In case (iii), we declare that .s; s0/ 2 Sk
with s0 D C.¹x0º; s00/ if and only if s and s00 belong to the same face of 𝜕�k and
.s; s00/ 2 Sk�1. Property (4.7) follows by induction on k.

With this decomposition of j�kj � jŒ0; 1�j in hand, we can now defineH by induction on
k. For k D 0 we recall the definition of s.x; x0/ W Œ0; 1�! QX

T (see (3.8) and (3.9)). Writing
h
0e1i for the point of the boundary of QX

T corresponding to the flag given by the line h
0e1i,
we set

H.
0; x/ D s.
0x; h
0e1i/:

Note that the image of H.
0; x/ is the cone C.¹
0xº; ¹h
0e1iº/.
Assume that k � 1 and we have defined H.
0; : : : ; 
k�1; x/ for every collection of ele-

ments 
0; : : : ; 
k�1 2�0.p; ƒ.I //. Let 
 D .
0; : : : ; 
k/2�0.p; ƒ.I //kC1. Assume first that
h
0e1; : : : ; 
ke1i ¤ k

N . Then �.
/ corresponds to a simplex in �Q.G/. We define H.
; x/
using the decomposition (4.7) by taking the restriction of H.
; x/ to C.jsj � ¹0º; js0j � ¹1º/ to
be the simplicial map (3.10) whose image is the cone C.z�.
; x/.s/;�.
/.s0//.
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Now assume that h
0e1; : : : ; 
ke1i D kN (and hence kC 1DN ). Given .s; s0/ 2 SN�1,
we define the restriction of H.
; x/ to C.jsj � ¹0º; js0j � ¹1º/ to be the simplicial map (3.10)
whose image is the cone defined as follows:

� If s0 is the barycenter x0 of �N�1, take the cone to be C.z�.
; x/.s/; ¹x0.
/º/ (recall
that x0.
/ 2 X denotes the barycenter of the modular symbol �.
/).

� If s0 belongs to the boundary 𝜕�N�1, then s and s0 belong to the same face of 𝜕�N�1,
and the restriction of H.
; x/ to C.jsj � ¹0º; js0j � ¹1º/ has already been defined to be
the map whose image is the cone C.z�.
; x/.s/;�.
/.s0//.

� In the remaining case we have s0 D C.¹x0º; s00/ for a unique simplex s00 2 𝜕�N�1. In
this case we form the cone C 0 WD C.z�.
; x/.s/; ¹x0.
/º/ � X and take the cone to
be C.C 0; �.
/.s00//.

By induction on k one shows that H.
; x/ is well-defined and continuous3) and satisfies
(4.5) and (4.6). Note that the image of H.
; x/ is given by a finite union of cones of the form
C.S; S 0/, where S is a compact subset of X and S 0 is a simplex in the boundary of QX

T

corresponding to a good cusp; it follows that the image of H.
; x/ can be covered by finitely
many Siegel sets attached to these cusps.

4.4. Smoothing and evaluation. We can use the above results to express values of
partial zeta functions as polynomials in Kronecker–Eisenstein series, by using the fact that
the Eisenstein series Ep.v0I ;ƒ.I // is closed and moving the simplices in (4.4) to the Tits
boundary. In order to guarantee that the Eisenstein series is rapidly decreasing, we will use the
following lemma due to Colmez and Schneps [12, Lemma 5]. In its statement we write vzP for
the valuation defined by a prime ideal zP of OL and denote by SL=k the set of all non–zero
prime ideals zP of OL such that the residue field OL=zP has degree one over O=.zP \O/.

Lemma 4.3. Let ¹�iºi2I be a finite collection of non-zero k-linear forms on L. There
exists a constant C such that if zP 2 SL=k satisfies NzP > C and l 2 L satisfies vzP.l/ < 0 and
vP0.l/ � 0 for every other prime divisor P0 of .zP \O/OL, then �i .l/ ¤ 0 for every i 2 I .

In particular, if zP 2 SL=k satisfies NzP > C , a is a fractional ideal of L coprime to
.zP \O/OL and l 2 azP

�1
� a, then the forms �i are all non-vanishing on the coset l C a.

Proof. We can write �i .l/ D trL=k.li l/ for unique li 2 L�. Take C so that NzP > C

implies that zp D zP \O is unramified in L and for every prime divisor P0 of zpOL we have
vP0.li / D 0 for all i . For i 2 I and l as in the statement, we have vzP.li l/ < 0 and vP0.li l/ � 0

for every other prime divisor P0 of zpOL. This implies ([33, II, Section 3, Corollaire 2]) that
trL=k.li l/ is not a zp-integer, and hence is not zero.

For a prime ideal zP of OL coprime to f , a and P, define the “.P; zP/-smoothed” zeta
function

�
p;q

f;P;zP
.a; s/ D NzP�s�p;q

f;P
.azP; s/ � NzP�s�p;q

f;P
.a; s/:

The following theorem implies Theorem 1.2 of the introduction.

3) This latter statement can be deduced from the following general principle: let X and Y two topological
spaces, .Fi /i2I a finite cover of X by closed sets, and fi W Fi ! Y continuous maps. If fi and fj coincides on
Fi \ Fj for all i; j , then there exists a (unique) continuous map f W X ! Y that is equal to fi on Fi for each i .
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Theorem 4.4. There exists a constant C such that if zP is a prime ideal of OL such that
the residue field OL=zP has degree one over O=zp and NzP > C , then

det.�i . j̨ //�
p;q

f;P;zP
.a; 0/ D ŒU.f/ W U.f/0��1

X
�2SN�1

sgn.�/

�

X
l2zP�1f=f
l¤0

ˆ
pN;qN
p .v0 C ˛.l/; u� ; ƒ.I //.P

p;q
˛ /:

Proof. Let us define a collection ¹�iºi2I as in Lemma 4.3. Writing u�;j (0 � j < N )
for the components of the N -tuple u� in (4.3), we consider the finite set ¹Wiºi2I of all proper
subspacesWi of Vk of the form hu�;j e1 j j 2 J i, for all � 2 SN�1 and all J � ¹0; : : : ; N �1º.
For each subspaceWi we choose a non-zero linear form �i onL such thatWi � ker.�i ı ˛�1/.
Let C.I / be the constant provided by Lemma 4.3.

Now take C > C.I / such that any prime ideal zP with NzP > C is coprime to a, f

and P; then Lemma 4.3 and Theorem 3.4 show that, for any l 2 zP�1f � f , the Eisenstein
series Ep.v0 C ˛.l/; P

pN;qN
˛ I p;q; ƒ.I // is rapidly decreasing on every Siegel set of every

cusp corresponding to a flag W� given by a chain of subspaces Wi with i 2 I ; in particular, for
such l we have Z

𝜕H.u� ;x˛/
Ep.v0 C ˛.l/; P

p;q
˛ I 

pN;qN ; ƒ.I // D 0:

Since X
l2zP�1f=f
l¤0

Ep.v0 C ˛.l/; P
p;q
˛ I 

pN;qN ; ƒ.I //

is invariant under U.f/1, the equivariance property (4.6) shows that

0 D
X

�2SN�1

sgn.�/
Z
𝜕H.u� ;x˛/

X
l2zP�1f=f

l¤0

Ep.v0C˛.l/; P
p;q
˛ I 

pN;qN ; ƒ.I //

D

X
�2SN�1

sgn.�/
Z
�ı.u� /

X
l2zP�1f=f

l¤0

Ep.v0C˛.l/; P
p;q
˛ I 

pN;qN ; ƒ.I //

�

X
�2SN�1

sgn.�/
Z
z�.u� ;x˛/

X
l2zP�1f=f

l¤0

Ep.v0C˛.l/; P
p;q
˛ I 

pN;qN ; ƒ.I //:

(4.8)

The proof of Proposition 4.2 shows that

ŒU.f/ W U.f/0��1
Z
X.f/

X
l2zP�1f=f
l¤0

Ep.v0 C ˛.l/; P
p;q
˛ I 

pN;qN ; ƒ.I //

D det.�i . j̨ //�
p;q

f;P;zP
.a; 0/:
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We computeZ
X.f/

X
l2zP�1f=f

l¤0

Ep.v0 C ˛.l/; P
p;q
˛ I 

pN;qN ; ƒ.I //

D

X
�2SN�1

sgn.�/
Z
z�.u� ;x˛/

X
l2zP�1f=f

l¤0

Ep.v0 C ˛.l/; P
p;q
˛ I 

pN;qN ; ƒ.I //

D

X
�2SN�1

sgn.�/
Z
�ı.u� /

X
l2zP�1f=f

l¤0

Ep.v0 C ˛.l/; P
p;q
˛ I 

pN;qN ; ƒ.I //

D

X
�2SN�1

sgn.�/
X

l2zP�1f=f

l¤0

ˆ
pN;qN
p .v0 C ˛.l/; u� ; ƒ.I //.P

p;q
˛ /:

using (4.4), (4.8) and Proposition 3.5, respectively.
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